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Abstract 
 
 
 
 
 
 
 
 
The unifying theme of this dissertation is the measurement of production efficiency, covering 
both parametric and non-parametric approaches to efficiency assessment. The first chapter 
considers the estimation of a fixed-effect panel data model with disturbances that are spatially 
correlated, based on a geographic or economic proximity measure. For when the time 
dimension is small (the usual panel data case), the study develops a generalized moments 
estimation approach based on a cross-sectional model from Kelejian and Prucha (1999). This 
approach is then applied in a stochastic frontier framework to a panel of Indonesian rice 
farms. Within this framework, spatial correlations are based on geographic proximity, and 
represent productivity shock spillovers across the production units. Using a Moran I test 
statistic, the first chapter empirically demonstrates that productivity shock spillovers may 
exist in this (and perhaps other) data sets, and that these spillovers have profound effects on 
technical efficiency estimation. The second chapter represents a logical extension of the first 
as it theoretically develops a random effect panel data model that accounts for spatial 
correlation across disturbance terms. The model is then applied within the framework of 
production frontier to the same data set of Indonesian rice farms. The study empirically 
confirms the impact of spatial correlation on the estimates of technical efficiency and 
compares the results with the outcomes from the first chapter. The empirical results also 
indicate that the technique developed here provides a viable alternative to the incorporation of 
time-invariant regressors in the equation specification. The third chapter addresses the 
drawbacks of the routine use of ratio analysis in the assessment of retailing performance. 
Applying multiple input-multiple output data envelopment analysis (DEA), the study assesses 
the technical and scale efficiency of the retail chain operation of a European mobile operator 
and identifies input excesses and means of reducing them. It also provides a review of 
parametric methodologies (COLS and SFA) and their use in testing the hypothesis of the 
constant returns to scale of the employed technology. The study concludes with policy 
recommendations for improvements in the productive efficiency of retail chain operations. 
 
Jednotícím tématem této dizertační práce je měření efektivity výroby s využitím jak 
parametrických, tak i neparametrických přístupů k hodnocení efektivnosti. První část 
dizertace se zabývá odhadem panelových dat modelem pevných efektů s náhodnou složkou, 
která je prostorově korelována na základě určité geografické blízkosti, nebo ekonomické 
závislosti. Pro případ, kdy časová dimenze dat je malá (což je u panelových dat obvyklý 
případ) článek rozvíjí metodu obecných momentů založenou na modelu studie Kelejiana a 
Průchy (1999). Tato metoda je pak aplikována v kontextu stochastické produkční hranice na 
panelu indonéských rýžových farem. V tomto kontextu vyplývají prostorové korelace z 
geografické blízkosti a představují vedlejší účinky šoků ovlivňující produktivní efektivitu 
výrobních jednotek. Pomocí testovací statistiky Moran I, článek empiricky dokazuje možnou 



viii 
 

přítomnost vedlejších účinků těchto šoků v těchto (a možná i dalších) datech a to, že tyto šoky 
mají významný dopad na odhady technické efektivity. Druhá část dizertace představuje 
logické rozšíření první části tím, že teoreticky rozvíjí model náhodných efektů, který 
reflektuje přítomnost prostorové korelace v náhodné složce. Model je následně aplikován v 
kontextu stochastické produkční hranice na stejná data indonéských rýžových farem. Článek 
empiricky potvrzuje vliv prostorové korelace na odhad technické efektivity a srovnává 
výsledky této analýzy s výsledky dosaženými v prvním článku. Empirické výsledky rovněž 
naznačují, že postup vyvinutý zde nabízí alternativu k zahrnutí časově invariantních regresorů 
v specifikaci odhadované funkce. Třetí část dizertace adresuje nedostatky běžně používané 
analýzy poměrových výkonnostních ukazatelů pro účely hodnocení efektivity maloobchodu. 
Uplatněním metody více vstupů- více výstupů studie hodnotí technickou a rozsahovou 
efektivitu fungování řetězce maloobchodních prodejen evropského mobilního operátora a 
identifikuje míru excesů využívaných produkčních vstupů a způsoby jejích redukce. Studie 
také poskytuje přehled parametrických metod (COLS a SFA) a jejich využití pro testování 
hypotézy konstantní ekonomie rozsahu pro použitou technologii. Studie závěrem poskytuje 
doporučení pro zlepšení produkční efektivity obchodního řetězce maloobchodních prodejen.  
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Introduction1 
 
 
 
 
 
 
 
 
 
The unifying theme of my dissertation is the measurement of production efficiency, covering 

both parametric and non-parametric approaches to efficiency assessment.  

The first chapter considers the estimation of a fixed-effect panel data model with 

disturbances that are autocorrelated across cross-sectional units. It is assumed that the 

disturbances are spatially correlated, based on some geographic or economic proximity 

measure. If the time dimension of the data is large, feasible and efficient estimation proceeds 

by using the time dimension of the data to estimate the spatial dependence parameters. For the 

case where the time dimension is small (the usual panel data case), the study develops a 

generalized moments estimation approach that is a generalization of a cross-sectional model 

from Kelejian and Prucha (1999). This approach is then applied in a stochastic frontier 

framework to a panel of Indonesian rice farms where spatial correlations are based on 

geographic proximity, altitude, and weather. The correlations represent productivity shock 

spillovers across the rice farms in different villages on the island of Java.  Using a Moran I 

test statistic, the first chapter empirically demonstrates that productivity shock spillovers may 

exist in this (and perhaps other) data sets, and that these spillovers have profound effects on 

technical efficiency estimation. 

The second chapter represents a logical extension of the first chapter as it theoretically 

develops a random effect model that accounts for correlation across disturbance terms and 

empirically demonstrates how this correlation can bias the estimates of individual specific 

terms. The model is then applied in the framework of a stochastic production frontier where 

firm-level output is an additive function of inputs and a random error term composed of 

technical inefficiency and statistical noise. Viewing statistical noise as productivity shocks 

                                                 
1All remaining errors are the responsibility of the author. 
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due to the geographical or economic proximity of cross-section units study shows that 

productivity spillovers (correlations) may exist in the statistical noise component, and 

demonstrate the effect of these spillovers on the estimates of technical efficiency. Moreover, 

the results indicate that the technique presented here provides an alternative to the 

incorporating of time-invariant regressors in the equation specification.  

Performance in retailing is usually evaluated by the routine use of ratio analysis, but 

due to the univariate nature of this simple management tool there are many drawbacks to the 

obtained results. The last chapter aims to demonstrate the successful employment of 

parametric and non-parametric methods for evaluating technical performance in retailing. The 

results of this study are used to optimize the retail chain of a European mobile 

telecommunication network operator by providing estimates of and recommendations for 

improvements in the productive efficiency of the chain operations. Estimates of store-level 

technical and scale efficiency indicate that a majority of stores are operating in the decreasing 

returns-to-scale region of the production possibility set. The employed methodology enables 

identification of input excesses and means of reducing them.  
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Chapter 1 

Generalized Moments Estimation of a Spatially 
Correlated Panel Data Model2 

 
 
 
 
 
 
 
 
 
Much has been written about spatial dependence in cross-sectional economic data that can be 

distinguished by absolute or relative location. For example, data on employment or wealth can 

be organized by county, state, census tract, or country, and spatial dependence can be 

modeled across these units. Anselin (1988) and Anselin and Rey (2010) provide an excellent 

textbook treatment of the analysis of spatially dependent data. Theoretical or empirical spatial 

issues have also been addressed in Anselin (2010); Case (1991); Conley (1999); Delong and 

Summers (1991); Dubin (1988); Fishback, Horrace, and Kantor (1999); Kelejian and 

Robinson (1993); Moulton (1990); Quah (1992); and Topa (1996).   These cross-sectional 

specifications address the important phenomena of spatial aggregation, infrastructure effects, 

and economic spillovers, to name a few. 

Kelejian and Prucha (1999) consider a generalized moments estimation of regression 

models that allows the spatial autocorrelation of disturbances across cross-sectional units. 

Estimation hinges on the ex ante specification of a “spatial weighting matrix” in the 

regression error. The form of the weighting matrix is at the discretion of the analyst, but often 

it can be based on meteorological theory. “Of course, if panel data are available one can 

consider, for example, a seemingly unrelated regression model, or an error component model 

to permit for cross-sectional correlation, and estimate the cross-sectional correlations via the 

time dimension of the panel if the time dimension is large” (Kelejian and Prucha (1999), 

                                                 
2A previous version of this work was published as Druska V. and Horrace W.C. (2004). “Generalized Moments 
Estimation for Spatial Panel Data: Indonesian Rice Farming.” American Journal of Agricultural Economics, 86 
(1), 185-198.  
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footnote 2, p. 509). Unfortunately, in the usual panel data case, the time dimension is small 

(fixed), so consistent estimation of the cross-sectional correlations is typically not justified. 

This study extends the Kelejian and Prucha estimator to the usual panel-data case, 

based on certain restrictions on the evolution of spatial dependence over time. It is important 

to stress that the panel-data theory presented is for the case where T is fixed; consequently, the 

current discussion also hinges on the ex ante specification of a spatial weighting matrix. Once 

we allow the time dimension to grow, the specification of the weighting matrix becomes 

unnecessary, as the estimation techniques presented herein become empirically inferior to 

approaches that rely on T-asymptotics, such as seemingly unrelated regression models or error 

component models. 

We apply these spatial techniques to a stochastic frontier model in which a common 

production function and farm-level technical efficiencies are estimated for a sample of farm 

inputs and outputs. Cross-sectional estimation of these models is due to Aigner, Lovell and 

Schmidt (1977) and Meeusen and van den Broeck (1977), while panel estimation is due to 

Schmidt and Sickles (1984). Our concern is, of course, the panel specification, and we select a 

panel of 171 Indonesian rice farms observed over six periods for our example. The output is 

rice and the inputs are things such as seed, fertilizer, and land acreage. The time dimension of 

the data is small, so consistent estimation of cross-sectional correlations in the error process is 

not justified. Consequently, we specify a spatial weighting scheme in the error process that 

allows for spillovers across farms based on geographic proximity and weather conditions. The 

results indicate that spatial correlations exist in the data and have an impact on the magnitude 

and variability of the production function and technical efficiency estimates obtained. 

 

1.1  A Panel Model with Spatial Disturbances 
Consider the standard fixed effect (FE) model 

yit = i + xit  + uit, i = 1, ..., N,  

t = 1, ..., T, 

where  is (k1) and xit is (1k).  Here we assume that T is fixed, so we cannot rely on T-

asymptotics.  Forming a vector of observations in i, the model becomes 

(1) yt =  + xt  + ut, t = 1, ..., T, 

where  = [1, ..., N] and xt is (Nk). Now suppose that the error term is spatially lagged 

such that 

(2) ut = tMtut  + t, t = 1, ..., T, 
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where t is a scalar, spatial autoregressive parameter, Mt is a (NN) spatial weighting matrix 

of known constants (diagonal elements equal to 0) that captures the spatial correlations across 

cross-sectional units, and εt (N × 1) is a zero-mean disturbance. (Later we allow for a time-

invariant spatial parameter and weighting matrix.) The elements of Mt are mijt, and are chosen 

based on some geographic or economic proximity measure such as contiguity, physical, 

economic or climatic distances, or dissimilarities. For example, in section 1.3, we select mijt to 

be the inverse of the physical distance (km-1) between unit i and unit j in time period t. 

The application of interest is the stochastic frontier model, where yit and xit are the 

productive output and exogenous inputs, respectively, of farm i in period t. Stochastic frontier 

models specify output as a linear function of (a) farm level technical (in)efficiency (an 

unobserved factor imputed to each farm, embodied in αi), (b) a representative log-production 

function (deterministic, within the control of each farm, and represented by xtβ), and (c) 

productivity shocks (random, out of the farmer’s control, and represented by ut). Therefore, 

equation (1) is a stochastic frontier specification. When augmented by equation (2), the 

specification implies that, in each period t, productivity shocks are correlated across i, and 

specifically that the productive output of farm i is a function of the spatial lag of productivity 

shocks, ρtMtut, experienced by other farms in the sample. This would seem reasonable if 

productivity shocks included geographic or climatic unobservables that affected farms in 

similar ways but were location- or climate-specific (e.g., unmeasured rainfall, temperature, 

and sunlight). Notice that there is no spatial lag of yt on the right-hand side of equation (1). 

Therefore, the specification implicitly assumes that, in each period t, the productive output of 

farm i is not a function of the output of other farms in the sample. This seems reasonable if 

the production function is viewed as a purely deterministic (engineering) process, where the 

farmer controls all the inputs. We need the following additional assumptions:  

 

Assumption 1: The elements of t are independently and identically distributed with 

zero mean and finite variance 2
t  , the fourth moment of t is finite, and t  is 

independent of s ,  t  s.  

Assumption 2:  All diagonal elements of Mt are zero. The matrix (IN - tMt) is non-

singular.  |t| < 1. 

 

Notice that under Assumptions 1 and 2, ut = (IN - tMt)-1t, so E(ut) = 0 for all t, but 

E(utut) has a general, non-spherical structure, which is a function of t, Mt and 2
t . Since Mt 
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is known, E(utut) is known up to t and 2
t , the parameters that we will ultimately estimate. 

Estimation of t and 2
t  allows feasible and efficient estimation of equation (1). Also, notice 

that if t = , Mt = M, and 2
t  = 2, then E(utut) is a constant, which can be consistently 

estimated as T. Here, we assume that T is fixed, so the consistent estimation of E(utut) is 

unreasonable, and we must assume that Mt is known to identify an estimate of equation (1). 

For now, assume that t and 2
t  are known.  Forming vectors in t from the vectors of 

observations in i, 

(3) y = T + x  + u,  

u = (IN)M*u  + , 

where T is a T-dimensional column vector of ones, and 



















TM

M

M

00
00
00

*
1

    



















T





00
00
00

*
1

 . 

Notice that 



















NT

N

I

I

E
2

2
1

00
00
00

)'(




  , 

so the disturbance in equation (2) is heteroskedastic. Define tttNt MI  /)(    and then 

we can pre-multiply the model in equations (1) and (2) to get 

(4) ****
tttt xy   , 

where ttt yy * , ttt xx * ,  tt * , and ttttt  /*  . Stacking observations in  t, 

(5) y
*
 = * + x*

  + *, 

where ]',...,'[' **
1

*
T  , a TN dimensional vector. Equation (5) possesses a “well-behaved” 

disturbance, that is, E(*) = 0 and E(*


*
) = ITN. The identification of any estimates of the 

parameters in equation (5) hinges on the estimation of the unknown parameters Mt, ρt, and 2
t , 

which will be undertaken later. Kelejian and Prucha’s cross-sectional procedure could be 

directly applied to equation (4) T times over N observations to recover estimates of ρt and 2
t  
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for known Mt. These estimates could then be used to estimate the parameters in equation (5).3 

We refer to this estimation technique as “unrestricted estimation.” Our application implies 

some equality restrictions on the model in equation (5). In particular, our definitions of spatial 

dependence are based on the distinct physical characteristics of the farming villages on the 

island of Java (longitude, latitude, infrastructure, etc.), which are certainly constant over the 

short time period of the data (six years). Therefore, we impose some equality restrictions on 

equation (5) to identify alternative estimators of the model parameters. 

 

1.1.1  Fully Restricted Specification 
One obvious restriction is to assume that some subset of the weighting matrices, 

autoregressive parameters, and variance parameters are equal. As an extreme case we could 

assume that M1 = … = MT = M, 1 = …  = T =  , and 2
1  = … = 2

T   = 2 , implying that 1 

= … = T =  . Then **  t  in equation (4) and * = T in equation (5). Of course, 

the error term  of equation (3) is no longer heteroskedastic, it has variance matrix E() = 


2
ITN, so  need not be a function of  for efficiency. FE estimation of equation (5) under this 

full restriction will then be efficient for * and , if  and 2 are known, and if the restriction 

is true. It is also consistent for fixed T as N. Additionally, an estimate of  can be 

recovered by transforming the estimate of * with . Of course,  and 2 are not known, so 

the challenge is to consistently estimate them, so that equation (5) can be feasibly estimated;  

this is undertaken in section 1.2. 

 

1.1.2  Partially Restricted Specification 
As another example of a reasonable restriction on the parameters of the model, briefly 

consider the empirical example. We observe N = 171 Indonesian rice farms over T = 6 

periods. Periods 1, 3, and 5 are “wet or rainy seasons” and periods 2, 4, and 6 are “dry 

seasons”. It may be reasonable to suspect that 1 = 3 = 5 = W  (wet) and 2 = 4 = 6 = D 

(dry), and we can suspect a similar equation for Mt, 2
t , and t. (This may be true on the 

island of Java, since during the rainy season many roads in the low country are impassable, 

and hence spill-overs based on infrastructure are potentially diminished.)  Then,  


*= [(W)’ (D)’ (W)’ (D)’ (W)’ (D)’]  

                                                 
3 Conley’s technique could also be applied here and could conceivably produce more flexible results since 
Conley’s technique accommodates less restrictive assumptions on the error process. However, our intent is to 
specifically examine the Kelejian and Prucha results. 
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in equation (5) is a TN dimensional column vector that consists of 2N parameters.  The system 

in (5) then consists of 2N + k parameters and can effectively be treated as 2  171 = 342 farms 

observed over 6/2 = 3 periods, so the FE estimation of equation (5)  is feasible, since it has 

been assumed that realizations of the error t are independent across both t and i. Of course, 

there will be an efficiency loss in the estimate of *, relative to the fully restricted estimate, 

since the time series dimension has been effectively cut in half from 6 to 3, but the slope 

parameter  will still be efficient (and consistent in N) since it is still based on the same 

number of observations, TN. Again the challenge is the estimation of W, D, 2
W , and 2

D , 

which is undertaken in the following section. 

 

1.2  Feasible Estimation  

Kelejian and Prucha (1999) develop a moments estimator of the parameters t and 2
t  in the 

cross-sectional setting (T = 1). We now generalize their results for the case where t and 2
t  

are different across t.4 Using their notation, let tu~  be a predictor of ut from the FE (or within) 

regression implied by equation (1), ignoring equation (2). That is, tu~  converges in distribution 

to the random variable ut.  Additionally, let tu
~ =Mt tu~ , tu

~
=Mt tu

~ , t =Mtt, and t =Mt t . 

Consider the following 3T moment conditions implied by equations (1) and (2) and 

assumptions 1 and 2. 

 21 ]'[ tttNE   ,  

)'(]'[ 121
ttttt MMtrNNE   ,   

0]'[ 1 

ttNE  , 

t = 1, ..., T. Noting that t = (IN - tMt)ut, these moment conditions imply the following system 

of 3T equations 

 0],,[ 22  ttttt   

where 

 

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112
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ttNttN

t

uuEuuuuE

MMtruuEuuE

uuEuuE

,  

                                                 
4 We present no proofs of our results, because they are all straightforward extensions of Kelejian and Prucha’s 
proofs.   
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t = 1, ..., T.   The sample analogs based on tu~  are 
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t = 1, ..., T. Here t is the usual error associated with a sample of statistical realizations (i.e. it 

will ultimately be squared, summed, and then minimized by selecting parameters optimally). 

The system consists of 3T equations and 3T unknowns, but the system is actually T separate 

subsystems of three equations and three unknowns. If these T subsystems satisfy Assumptions 

1 and 2 above and Assumptions 3, 4, and 5 of Kelejian and Prucha (1999), then Theorem 1 of 

Kelejian and Prucha (1999) is applicable to the individual subsystems.5 That is, t̂  and 2ˆ
t  

that solve the non-linear optimization 

(7) ]0:),()',([minarg)ˆ,ˆ( 222

,

2

2
 ssrsr tt

sr
tt   

are consistent for t and 2
t  as N.  For a proof see Kelejian and Prucha (1999).  Let  

 2ˆ/)ˆ(ˆ
tttNt MI   . 

(We can substitute t̂  for t and estimate equation (5), but we will ultimately choose to 

restrict the model.) Let us call t̂  and 2ˆ
t  unrestricted estimates.   

 

                                                 
5 Assumptions 3, 4, and 5 of Kelejian and Prucha (1999) are contained in the Appendix. 
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1.2.1  Feasible Estimation of the Fully Restricted System 

If we can assume that M1 = … = MT  = M, 1 = …  = T =  , and 2
1  = … = 2

T   = 2 as 

before, then we can impose the assumption in equation (6) and estimate t̂  and 2ˆ
t , t = 1, ..., 

T, as above.6 Then average estimates of   and 2 are  

(8) 
t

tT  ˆˆ 1  and 
t

tT 212 ˆˆ  . 

We shall call these estimates the fully restricted average estimates. The estimates will be 

consistent as N, as long as the restriction is true. These are two-stage estimates, where in 

the first stage unrestricted estimates are calculated ( t̂  and 2ˆ
t , t = 1, ..., T), and the 

restriction is imposed in the second stage of averaging over t. Since the estimates are based on 

the unrestricted estimates they do not exploit all the information in the data set 

simultaneously. That is, each t̂  and 2ˆ
t  is calculated from one of T separate sub-samples of 

the data. These estimates imply 

 )ˆ(ˆ MI N  , 

which can be substituted into equation (5). Then FE estimation of equation (5) with * = 

T ̂ is unbiased for * and . 

If we can (a) impose the restriction, (b) estimate the parameters in a single step, and 

(c) do so such that the data is not divided into T subsamples, then the resulting parameter 

estimates should be more efficient than the average fully restricted estimates. One such 

estimate is based on the moment conditions: 

 21 ]')[(  TNE ,  

)'()(]')[( 121 MMtrNTNE   ,  

0]')[( 1  TNE , 

where =M and  =M .7 Letting u~  be a predictor of u from the FE (or within) regression 

implied by equation (3), u~ =Mu~ and u
~

=Mu
~ , equation (6) becomes 

(9) ),(],,[ 222   gG , 

where 

                                                 
6 The fact that we estimate t , t = 1, ..., T, implies a test of the hypothesis 1 = …  = T = . We are not aware of 
any such test, nor are we aware of a standard error calculation for the estimate of t. Of course, the standard error 
could be boot-strapped. Later we use the Moran I and Lagrange Multiplier test to test the significance of the 
overall weighting scheme in each period. 
7 Notice that the middle moment condition contains N-1 and not (TN)-1, since it is based on M and not M*. 
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The system consists of three equations and three unknowns and is exactly the Kelejian and 

Prucha (1999) result.  Then estimates ~  and 2~  follow from  

(10) ]0:),()',([minarg)~,~( 222

,

2

2
 ssrsr

sr

 . 

We shall call these the fully restricted moment estimates (to differentiate them from the fully 

restricted average estimates). The potential efficiency gain of ~  and 2~ estimates over the 

estimates ̂  and the 2̂  hinges on the fact that equation (9) exploits the information 

contained in TN observations and imposes a hypothetically correct restriction, while equation 

(6) exploits the information contained in N observations over t = 1, …, T, with no restriction. 

Again, ~  and 2~  imply ~ , which can be inserted in equation (5); then FE estimation of 

equation (5) with * = T
~
 is unbiased for * and . Consistent estimation of  follows by 

transforming the estimate of * by ~ . 

 

1.2.2  Feasible Estimation of the Partially Restricted System 
For our 171 Indonesian rice farms observed over six periods, if we can assume that M1 = … = 

M6 = M, 1 = 3 = 5 = W , 2 = 4 = 6 = D , 2
1  = 2

3   = 2
5  = 2

W  , and 2
2  = 2

4   = 2
6  

= 2
D , then we can impose the assumption M1 = … = M6 = M in equation (6) and estimate t̂  

and 2ˆ
t , t = 1, ..., 6 as above. Then consistent estimates of  W, D, 2

W , and 2
D  are the 

partially restricted average estimates. 

(11) )ˆˆˆ(ˆ 5313
1  W , 

  )ˆˆˆ(ˆ 6423
1  D   

and  

)ˆˆˆ(ˆ 2
5

2
3

2
13

12  W ,   

)ˆˆˆ(ˆ 2
6

2
4

2
23

12  D . 

Again, these are two-stage estimates, which imply that 
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 2ˆ/)ˆ(ˆ
WWNW MI    and  

2ˆ/)ˆ(ˆ
DDND MI  , 

which can be substituted into equation (5).  Then FE estimation of equation (5) with  


*= [ ,)'ˆ( W  ,)'ˆ( D ,)'ˆ( W  ,)'ˆ( D ,)'ˆ( W  )'ˆ( D ]’   

is consistent for * and . 

Define W = [1 3 5], D = [2 4 6], '~
Wu  = [ '~

1u '~
3u '~

5u ], and '~
Du  = [ '~

2u '~
4u '~

6u ].  

Additionally, let ju
~ =M ju~ , ju

~
=M ju

~ , j =Mj, j =M j , and j = W, D. 

It follows analogously that the single stage estimates are 

(12) ]0:),()',([minarg)~,~( 222

,

2

2
 ssrsr jj

sr
jj  ,  j = W, D, 

where 

 jjjjjjjj gG  ],,[),( 222  ,  j = W, D, 

and where Gj and gj are Gt and gt of equation (6), but with j substituted for t and 3N 

substituted for N. Call these estimates the partially restricted moment estimates. j~  and 2~
j  

imply j
~  for wet and dry seasons, and FE estimation of equation (5) is again consistent for 


* and . 

 To summarize, the unrestricted estimation procedure yields t̂  and 2ˆ
t  by solving 

equation (7); this is simply the application of the Kelejian and Prucha procedure T times. 

These estimates imply fully restricted average estimates ( ̂  and 2̂ ) by averaging over T in 

equation (8) or partially restricted average estimates ( j̂  and 2ˆ
j ,  j = W, D) by averaging 

over wet and dry seasons in equation (11).  These are two-stage estimates.  Fully restricted 

moment estimates ( ~  and 2~ ) are produced by solving (10) and partially restricted moments 

estimates ( j~  and 2~
j ,  j = W, D) are produced by solving equation (12). These are single 

stage estimates. 

  

1.3  Application to Indonesian Rice Farms 
We now estimate the models with a balanced panel of Indonesian rice farms. The data were 

previously analyzed by, for example, Erwidodo (1990), Lee (1991), Lee and Schmidt (1993), 

and Horrace and Schmidt (1996, 2000). For detailed discussion of the data see Erwidodo 

(1990). For the panel specification of a stochastic frontier model, y is the natural logarithm of 
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output (ln(rice)), x is a vector of inputs (e.g. seed and fertilizer)  and i  embodies farm-level 

technical inefficiency. This is a standard stochastic frontier specification based on a Cobb-

Douglas production function. Per Schmidt and Sickles (1984), a measure of technical 

efficiency for farm i is calculated plugging the estimate of i into the expression exp(i - 

maxjj). In order to perform the spatial analysis we first specify the spatial weighting matrix 

Mt for the error process, which captures productivity spillovers across farms.   

 

1.3.1 Geographic and Climatic Characteristics of West Java 
In 1977 the Indonesian Ministry of Agriculture began to survey 171 rice farms concerning 

farming practices over six (three wet and three dry) growing seasons.  The farms were 

selected from six villages located in the production area of the Cimanuk River Basin in West 

Java. Of the six villages included in the sample, two are located on the north coast of the 

island in an area with average altitudes of 10–15 meters above sea level. Another three 

villages are in an area (600–1100 meters above sea level) in the central part of West Java. The 

last village is in the center of  the island with an altitude of 375 meters. The infrastructure in 

the Cimanuk River Basin is fairly heterogeneous. Some of the villages (in both highland and 

lowland areas) lack reliable transportation systems and local roads are almost impassable in 

the wet  season. Other villages located in close proximity to province capital cities are highly 

accessible along paved, all-weather roads.8 

Based on these facts, we constructed and performed our analysis using two different 

weighting matrixes M1t and M2t. The first one, M1t, is based on the inverse of the 

geographical distance between individual farms.9 We used the geographical coordinates of 

the villages to determine the physical distances between producing units. The distances 

between individual villages are between 31 and 91 km. The individual distances between 

farms within the same village is unavailable and is therefore arbitrarily chosen to be 10 km.10 

The M1 weighting matrix then consists of the inverse values of these distances. That is, mijt 

equals the inverse of the distance between farms i and j. In the second weighting matrix we 

                                                 
8 The survey ended in 1983, so the infrastructure description may be different from the current state. 
9 Cliff and Ord (1973,1981) first measured the potential interactions between spatial units using a combination of 
distance measures and the relative length of the common border (contiguity). Since there is no measure of 
contiguity available in our case we use physical distance only as a proxy for interdependence between spatial 
units. 
10 Experimentation with the weighting matrix suggested that the analysis was fairly robust to this arbitrary 
selection. 
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employ an intra-village contiguity scheme.11 For M2t we let mijt equal 1 if farms i and j are in 

the same village and 0 otherwise. That is, the weighting scheme is based on common villages.  

For computational simplification and as a standard practice in forming weighting matrixes we 

normalize each weighting matrix so the elements of each row sum to 1. Additionally, all the 

weighting schemes are assumed time invariant, so the t subscript can be dropped. 

 

1.3.2  Spatial Analysis of Indonesian Rice Farms 
We first estimate the standard FE model of stochastic production frontier described by (1). 

Inputs to the production of rice included in the data set are seed (kg), urea (kg), trisodium 

phosphate (TSP) (kg), labor (labor-hours), and land (hectares).  Output is measured in 

kilograms of rice.  The data also include dummy variables.  DP equals 1 if pesticides were 

used and 0 otherwise.  DV1 equals 1 if high yield varieties of rice were planted and DV2 

equals 1 if mixed varieties were planted. DSS equals 1 if it was a wet season and 0 otherwise. 

The results are in column I of Table 1.1 and are based on the restriction that 1 = ... = 6 = 0.   

These results are identical to those contained in Horrace and Schmidt (1996).  

Before embarking on a spatial analysis, we use the residuals from the standard FE 

estimation to determine whether or not spatial dependence (based on each of our three 

weighting schemes) exists in the data. As before, let the usual FE residuals in period t be tu~ . 

We employ two tests for spatial dependence; the first is the Moran I statistic (see e.g. Anselin, 

1988). To preclude confusion with the symbol for the identity matrix we adopt the script .  

The  statistic for period t is 

t = }~'~/]~'~]{[/[ tttt uuuMuSN , 

where N is the number of farms and S is the sum of all the elements in the weighting matrix 

M. The null hypothesis for this test is the “absence of spatial dependence”.12  Notice that we 

have dropped the t subscript on the weighting matrix M, because our empirical analysis 

assumes time invariance for this matrix. As shown by Cliff and Ord (1972), the asymptotic 

distribution for the statistic is standard normal if  is transformed in the usual manner: 

 zt = {t – E[ t]}/ V[t]1/2 ,  

                                                 
11 Moran (1948) and Geary (1954) advanced initial measures of spatial dependence (spatial correlation) that 
were based on the notion of binary contiguity between spatial units. That is, if spatial units have a common 
border (are contiguous) a value of 1 is assigned to the spatial correlation and 0 otherwise. 
12 According to Anselin (1988), the interpretation of the test is not always straightforward, even though it is by 
far the most widely used approach.  Indeed, while the null hypothesis is obviously absent spatial dependence, a 
precise expression for the alternative does not exist.    

15



 

where E[ t] is the mean, and V[t] is the variance of the statistic in period t, derived under 

the null of “no spatial dependence”. In the general case of a non-normalized weighting matrix 

these can be expressed in the form: 

E[t ] = (N/S)tr(PM)/(N – k)  

V[t ] = (N/S)2{tr(PMPM) + tr(PM)2  + [tr(PM)]2/(N – k)(N – k +2) – {E[t ]}2 , 

where P is the projection matrix ')'( 1
ttttN xxxxI   and xt is a matrix of the demeaned 

exogenous variables from the standard model in equation (1). The test was conducted for both 

weighting schemes in each time period t = 1,..., 6. The zt-scores for weighting scheme M1 are 

in the third row (zt) of Table 1.2 and range from 6.0702 in period t=2 to 26.4159 in period t=4.  

It is therefore safe to conclude that at the 95% confidence level we reject the hypothesis of 

“no spatial dependence” based on weighting scheme M1. Test results for weighting schemes 

M2 were similar and are contained in the third row (zt) of Table 1.4. 

The Moran I statistic is sensitive to heteroskedasticity and tends to over-reject the 

standard normal critical value. An alternative language multiplier (LM) test procedure for the 

null hypothesis of no spatial dependence is presented by Anselin, Bera, Florax, and Yoon 

(equation (9)). The test statistic  

 
])'[(

]/~'~[ 22

MMMtr

uMu
LM ttt

t



  

is distributed 2
1 with critical values of 3.84 (95% level) and 6.63 (99% level). Results are in 

the last rows of Tables 1.2 and 1.4 for weighting schemes M1 and M2, respectively, and 

confirm the Moran I results. We reject the null hypothesis in each case. 

 Based on these test results, our proposed weighting schemes appear justified in each 

period. Consequently, we estimated the unrestricted spatial autoregressive parameters and 

error variances for each period for each scheme using equation (6).  Notice that the 

autoregressive and variance parameter estimates are identified for each period, even though 

the parameters * and  in equation (5) are not. Estimation results are contained in Tables 1.2 

and 2.4 for M1 and M2, respectively. Note that for both weighting schemes, the -parameter 

tends to be larger in period 1 than in period 2, larger in period 3 than period 4, and larger in 

period 5 than in period 6.  These differences correspond to differences in wet seasons (t = 1, 

3, 5) and dry seasons (t = 2, 4, 6).   

To identify parameter estimates for * and  in equation (5) we estimated the fully and 

partially-restricted systems described in sections 1.2.1 and 1.2.2, respectively.  The fully 

restricted system, 1 = … = 6 = , was estimated using both the average autoregressive 
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parameter of equation (8), ̂ , and the moments autoregressive parameter of equation (10), ~ , 

for each weighting scheme.  Estimation results for ̂  = 0.7248 and for ~  = 1.0557 using 

weighting scheme M1 are given  in columns II and III in Table 1.1. There is little difference in 

the slope parameter estimates based on ̂  or ~  of the standard FE model of column I.  This 

is not surprising, since ignoring the spatial dependence causes an efficiency loss in the slope 

parameter estimates (not a bias). Indeed, the most noticeable differences in the estimates of 

columns I, II and III are in the standard error estimates, with Columns II and III being 

generally smaller than column I, the standard model. The sign of the coefficient on the 

pesticide variable (DP) changes from positive to negative when we include spatial effects, 

however, it is always insignificant. The difference in the magnitudes of ̂ and ~  is 

troublesome. Perhaps this difference indicates that the restriction 1 = … = 6 =  does not 

hold.  We did not attempt to test this, however it would be possible if the variance matrix of t 

were estimable. The results of the fully restricted model under weighting scheme M2 is in 

columns II and III in Table 1.3. The results are similar to the M1 case: slope coefficients do 

not change much, standard error estimates decrease, and there is a large difference between 

the two estimates of .  

The feasible estimation of the partially-restricted system follows the same pattern, 

except that instead of only one correlation coefficient fixed for all time periods now we 

estimate and utilize two correlation coefficients: one for wet and one for dry seasons. We 

calculate the average parameter estimates of equation (11)  ( W̂ , D̂ ) and the moments 

estimates of equation (12) ( W
~ , D

~ ) for each weighting scheme. FE estimation results for 

( W̂ , D̂ ) and ( W
~ , D

~ ), based on weighting scheme M1, are in columns IV and V of Table 

1.1. The differences between the average and moments parameter estimates are much less 

pronounced than the fully restricted case (compare estimates W̂  = 0.7584  to W
~  = 0.8218, 

estimates D̂  = 0.6914 to D
~  = 0.7476, and estimates ̂  = 0.7248 to ~  = 1.0557). One might 

conclude that the partially restricted model seems to fit the data better, however this is not 

formally tested. (Additionally, the fact that the estimates are now all less than unity suggests 

that the partially restricted model may be favored over the fully restricted model.) Again, the 

standard errors of the slope parameter estimates are smaller for the partially restricted model 

than for the standard model (column I). The coefficient on the season variable (DSS) is not 

identified, since it is effectively time invariant now that the data set has been dichotomized 
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into “wet” and “dry” sub-samples.13 The coefficients on the partially restricted system are 

generally higher than those of the fully restricted system (columns II and III) and the standard 

model (column I). As in the fully restricted system, the coefficient on the pesticide variable 

(DP) is negative and insignificant. Even though it is insignificant, this is troubling, since 

economic theory usually dictates that the production function to be nondecreasing in its 

arguments. However, one could argue that too much pesticide might have a negative effect on 

output. Alternatively, one could argue that we have not adequately controlled for the 

interaction between pesticides (DP), output (y), and weather (DSS, W, and D).  Perhaps, 

pesticide use is higher during the wet season (more water, more insects) and our simple 

dummy variable for pesticide does not adequately capture a more complex relationship. 

Nonetheless, the implications are compelling and the coefficient is insignificant. Estimation 

results for weighting scheme M2 are similarly presented in columns IV and V of Table 1.3. 

Again, the results are similar to scheme M1 for this particular sample. 

 

1.3.3  Technical Efficiency Rankings 
Stochastic frontier models are often concerned with estimating firm-level technical 

inefficiency and, in particular, determining the relative magnitudes of the resulting 

inefficiency measures, using a rank or order statistic. In the following analysis we 

demonstrate how the various weighting schemes affect the technical efficiency rankings of the 

farms. Specifically, for each weighting scheme we estimate and rank the estimated technical 

efficiencies, exp(i - maxjj), for each farm. This is done for the standard FE model (column I 

of Table 1.1) and for the fully restricted moments estimator (column III of Tables 1.1 and 

1.3). The idea is to see how the rankings differ between the standard model and the spatial 

model for both of the weighting schemes. Order statistics for each model are contained in 

Table 1.5. The first three columns of the table are results for the standard FE model.  Since 

there are 171 farms we only report results for the four farms with the highest technical 

efficiency, the four farms with the median technical efficiency, and the four farms with the 

lowest technical efficiency. Column I contains the farm number, column II contains the 

ordered estimates of farm-level technical efficiency, and column III contains the ordinal 

rankings for the standard FE model (numbered 1 to 171).  To see the effects of the spatial 

dependence on technical efficiency estimation, we also report the ordinal rankings for the 

                                                 
13 Even though the time dimension has effectively been cut in half by this dichotomy, the estimates of the slope 
parameters are still based on the entire sample (TN) after the observables have been demeaned based on whether 
they are “dry” or “wet”. 
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same 12 farms for the fully restricted spatial model under weighting schemes M1 and M2 in 

columns IV and V. While there are some changes across weighting schemes in the rank 

ordering of the most- and least-efficient farms, these are minor. For instance, in the standard 

model, farm 152 had a technical efficiency rank of 4, but it has a rank of 6 under the 

weighting schemes. Notice that the ranking of the most efficient farm (farm 164) is always 1 

and that of the least efficient farm (farm 45) is always 171. The largest differences in ranking 

appear in the median farms. For example, farm 166 has a standard FE ranking of 85 but 

spatial rankings of 116. These are potentially large changes in the median technical efficiency 

ranking, which could only be detected with a spatial analysis.  

To further summarize the changes in the efficiency ranking in Table 1.5, we calculate 

Spearman’s rho (rs) for each weighting scheme, using the standard FE model as the baseline. 

Spearman’s rho is a standard measure of rank correlation between two rank statistics given by 
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where i is the difference in the rankings for the ith farm. For example when comparing the 

rank statistic for the standard model and the M1 model in Table 1.5,  164 = 0 and 15 = 86 – 

62 = 24. Here we always compare the rankings of the M1and M2 models to the standard 

model ranking. It is true that rs  [-1, 1], rs = 1 when the two rank statistics are identical and 

rs = -1 when the rank statistics are completely reversed (i.e. as we move from one order 

statistic to the other, the most efficient farm becomes the least efficient, the second most 

efficient farm become the second-least efficient, etc.). The Spearman statistics are in the last 

row of Table 1.5 and are on the order of 0.8 for both of the weighting schemes. We can 

interpret this result as saying that only 80% of the rank statistic is preserved when we use a 

spatial weighting specification over the standard specification.   

To better understand the changes in technical efficiency under the various weighting 

schemes, we present some density plots of the estimates of the parameters, αi. Technically, 

there is no distribution of αi to speak of, since it is assumed to be a fixed parameter and not a 

random variable. The estimates of the αi are indeed random, and each estimate has its own 

marginal distribution from the joint distribution of the estimate of the N-dimensional vector α. 

However, for the purposes of exposition, we treat the estimates of αi as if they are random 

draws from a univariate distribution in what follows. According to the panel data specification 

of Schmidt and Sickles, αi = αmax-τi, where τi is the nonnegative technical efficiency of farm i 

and αmax is a parameter representing maximal efficiency. The implication is that for fixed αmax, 
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the “distribution” of αi is just a relocation of the “distribution” of technical inefficiency. 

Therefore to infer the effects of various weighting schemes on the estimates of technical 

efficiency is to make inferences on the estimates of αi.  

Density plots for the various models are given in Figure 1.1. Density estimates are 

based on maximum likelihood, cross-validation bandwidth selection, and a standard Gaussian 

kernel. Fixing αmax across models, some generalizations about this data set can be made. First, 

the standard fixed effect model (FE in the figure) without spatial lags in the errors tends to 

underestimate αi (overestimate technical inefficiency) in comparison to the spatial models 

(M1 and M2). This is technical inefficiency in an absolute sense, since we are fixing α
max 

across models at some unknown value. This is reflected in Figure 1.1 as the density of the 

standard FE model being shifted to the left of the densities for the spatial models (with little to 

no rescaling). This has implications for the predictions of the conditional mean output implied 

by equation (1): the FE model (on average) gives lower predictions of productive output than 

the spatial models (all else being equal). That is, for fixed technology and input factors, the 

spatial models impute more of the observed output to unobserved technical ability (αi) and 

less of it to luck (uit) in this data set. Indonesian rice farms may be operating closer to the 

efficiency frontier than previous studies suggest. 

 

1.4 Conclusions 

This study presents a generalization of the cross-sectional model of Kelejian and Prucha 

(1999). Because economic agents and entities have finite lives, one cannot always rely on 

large T in panel data sets. Most panel data sets (with the exception of perhaps microeconomic 

financial data) have large N and small T. Additionally, if T is somewhat large, the usually 

time-invariant unobserved heterogeneity models (e.g., FE) may not be applicable, since it is 

widely held that heterogeneity may change in long-run, dynamic economic systems 

(particularly when it is viewed as technical inefficiency). The result is that consistency 

arguments usually must hinge on N-asymptotics. This is fine for estimating conditional means 

(the model’s slope parameters). However, any second moment parameters that embody cross-

sectional dependence cannot be consistently estimated in the sense that they will necessarily 

rely on T-asymptotics. 

When faced with this dilemma, researchers have two recourses: collect more data or 

impose more structure on the model and hope that the structure will be testable. Given the 

aforementioned arguments against large T, it would seem that we have only the alternative of 
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imposing more structure on our models. The question then becomes: what structure is 

reasonable? Spatial weighting schemes seem to be a reasonable and natural approach. The 

theoretical economic literature is rife with arguments for economic spillovers, and spatial 

analysis provides a means to make these spillovers explicit. Moreover, tests of “no spatial 

dependence” do exist in the literature. Therefore, if we must make assumptions about the 

second moments of our data, spatial weighting schemes may be a viable approach.  

Dynamic spatial dependence in the second moment of our estimators has implications 

for dynamics in the first moment. The FE model has time-invariant heterogeneity parameters, 

but the transformed model has dynamic parameters. It is this loss of time-invariance that 

makes the general model “not identified,” and forces us to impose some restrictions on the 

dynamics of the spatial dependence. This could be important. Most panel data models that 

attempt to make the heterogeneity parameters dynamic do so by imposing structure on the 

first moments of the models. For instance, several articles in the stochastic frontier literature 

impose a special structure on the conditional mean of the heterogeneity parameters. (For 

examples see Cornwell, Schmidt, and Sickles 1990; Lee and Schmidt 1993; Battese and 

Coelli 1992; and Kumbhakar 1990.) The models presented here create dynamic heterogeneity 

through second moment conditions on the error process. The implications of this difference 

for models of dynamic heterogeneity are unknown, but it is interesting to point this difference 

out.  

Additionally, spatial dependence may be a way to indirectly incorporate time-invariant 

regressors into a FE model. For example, Horrace and Schmidt (1996) incorporate dummy 

variables for the six villages into a random effects specification but are forced to exclude 

these dummy variables from a FE specification, because they are time-invariant at the farm 

level. In the application presented here, village effects are incorporated into the second 

moment of the residual for the FE model. While there are commonly employed techniques for 

incorporating time-invariant regressors into a FE model (see Hausman and Taylor 1981), the 

research presented here provides analysts with an alternative means of accomplishing this.  
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1.A Tables and Figures 
  
Table 1.1  Weighting Scheme M1 – Inverse of Distance 
 
 Standard FE 

Model 
 
I 

Fully Restricted 
Average 
 
II 

Fully Restricted 
Moment  
 
III 

Partially 
Restricted 
Average 
IV 

Partially 
Restricted 
Moment 
V 

̂  - 0.7248 - - - 

~  - - 1.0557 - - 

w̂  - - - 0.7584 - 

D̂  - - - 0.6914 - 

W
~  - - - - 0.8218 

D
~  - - - - 0.7476 

      
Seed 0.1208 0.1038 0.0998 0.1292 0.1248 
 (0.030) (0.025) (0.024) (0.024) (0.024) 
Urea 0.0918 0.0894 0.0901 0.1405 0.1440 
 (0.021) (0.018) (0.017) (0.015) (0.015) 
TSP 0.0892 0.0353 0.0244 0.0340 0.0307 
 (0.013) (0.012) (0.012) (0.011) (0.011) 
Labor 0.2431 0.2366 0.2379 0.2254 0.2204 
 (0.032) (0.029) (0.028) (0.026) (0.026) 
Land 0.4521 0.4879 0.4931 0.5046 0.5141 
 (0.035) (0.031) (0.030) (0.027) (0.027) 
DP 0.0338* -0.0178* -0.0298* -0.0224* -0.0212* 
 (0.032) (0.028) (0.028) (0.025) (0.025) 
DV1 0.1788 0.1084 0.0935 0.1250 0.1320 
 (0.041) (0.038) (0.038) (0.034) (0.035) 
DV2 0.1754 0.1060 0.0952 0.0917 0.0947 
 (0.057) (0.049) (0.048) (0.048) (0.048) 
DSS 0.0533 0.0759* 0.1062* - - 
 (0.022) (0.063) (0.302) - - 
      
R-sq  0.910228 0.9246 0.9271 0.9190 0.9177 
Note: Numbers in parentheses are standard errors. All estimates are significant at least at the 5% significance 
level except those marked with an asterisk. 
 
 
 
Table 1.2  Unrestricted Estimates, Weighting Scheme M1 
 
Time period 1 2 3 4 5 6

0,62 0,52 0,87 0,84 0,77 0,71
0,04 0,08 0,08 0,07 0,05 0,07

z t 8,24 6,07 24,95 26,42 14,16 12,30
LMt 65,41 30,50 1461,01 1680,70 254,85 175,99

t̂
2ˆ

t
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Table 1.3  Weighting Scheme M2 – Common Villages 
 
 Standard FE 

Model 
 
I 

Fully Restricted 
Average 
 
II 

Fully Restricted 
Moment  
 
III 

Partially 
Restricted 
Average 
IV 

Partially 
Restricted 
Moment 
V 

̂  - 0.6604 - - - 

~  - - 0.9882 - - 

w̂  - - - 0.6811 - 

D̂  - - - 0.6398 - 

W
~  - - - - 0.7388 

D
~  - - - - 0.6999 

      
Seed 0.1208 0.1035 0.0996 0.1255 0.1248 
 (0.030) (0.025) (0.024) (0.024) (0.024) 
Urea 0.0918 0.0909 0.0901 0.1435 0.1446 
 (0.021) (0.018) (0.017) (0.015) (0.015) 
TSP 0.0892 0.0356 0.0239 0.0326 0.0301 
 (0.013) (0.012) (0.012) (0.011) (0.011) 
Labor 0.2431 0.2385 0.2376 0.2201 0.2198 
 (0.032) (0.029) (0.028) (0.026) (0.026) 
Land 0.4521 0.4855 0.4934 0.5131 0.5148 
 (0.035) (0.031) (0.030) (0.028) (0.027) 
DP 0.0338* -0.0189* -0.0306* -0.0208* -0.0219* 
 (0.032) (0.028) (0.028) (0.025) (0.025) 
DV1 0.1788 0.1116 0.0928 0.1335 0.1326 
 (0.041) (0.038) (0.038) (0.034) (0.035) 
DV2 0.1754 0.1080 0.0947 0.0970 0.0961 
 (0.057) (0.049) (0.048) (0.049) (0.049) 
DSS 0.0533 0.0789* 0.0844* - - 
 (0.022) (0.051) (1.424) - - 
      
R-sq  0.910228 0.9240 0.9271 0.9171 0.9174 
Note: Numbers in parentheses are standard errors. All estimates are significant at least at the 5% significance 
level except those marked with an asterisk. 
 
 
 
Table 1.4  Unrestricted Estimates, Weighting Scheme M2 
 
Time period 1 2 3 4 5 6

0,57 0,48 0,79 0,79 0,69 0,65
0,04 0,08 0,08 0,07 0,05 0,07

z t 7,50 5,09 23,54 23,51 13,66 11,18
LMt 57,03 21,62 1409,13 1386,30 256,73 153,03

2ˆ
t
t̂
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Table 1.5  Orders Statistics, Various Models 
 

Standard FE Model Spatial Models 
Farm # Standard 

FE 
Efficiency 

Standard 
FE 
Model 

Weight 
Scheme 
M1 

Weight 
Scheme 
M2 

Weight 
Scheme 
M3 

164 100% 1 1 1 1 
118 93.23% 2 2 2 3 
163 93.03% 3 3 3 2 
152 89.93% 4 6 6 4 
13 55.62% 84 106 106 114 
166 55.47% 85 116 116 108 
15 55.40% 86 62 62 72 
40 55.35% 87 54 54 64 
86 39.80% 168 165 165 166 
143 38.37% 169 169 169 170 
117 37.90% 170 168 168 168 
45 36.55% 171 171 171 171 
 rs: 1.0000 0.8027 0.8095 0.8674 

 
 
 
 
Figure 1.1 Density estimates of αi for various models 

  
FE = fixed effect with no spatial weighting  
M1 = M1 weighting scheme 
M2 = M2 weighting scheme 
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Appendix 
 
The following are the assumptions 3, 4, and 5 from Kelejian and Prucha (1999).  Let P(t) = 
(IN - tMt)-1 with typical element pij(t). 
 
Assumption 3: (i) The sums i|mijt| and j|mijt| are bounded by, say, cm <  for all 1  i, j  N, 
N 1. (ii)  The sums i| pij(t)| and j| pij(t)| are bounded by, say, cp <  for all 1  i, j  N, N 
1, |t| < 1. 
 
Assumption 4:  Let  itu~  be the i

th element of tu~ . There exists finite dimensional random 
vectors dit and t such that | itu~ -uit|  ||dit|| ||t|| with N-1

i||dit||2+ = Op(1) for some  > 0 and N-

1/2
i||t|| = Op(1). 

 
Assumption 5:  The smallest eigen value of tt is bounded away from zero. 
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Section 2 
A Random Effect Model with Spatial 

 Dependence in the Error Term 

 
 

 
 
 
 
 
 
 
The merits and appropriateness of the two central modes of panel data treatment, fixed effect 

(FE) and random effect (RE) models, have been discussed by Mundlak (1978), Chamberlain 

(1978), and Hausman and Taylor (1981), among many others. The goal of this study is to deal 

with a problem that may arise in the application of these models. Although these panel data 

models differ by design in the treatment of the unit-specific effect, they both share the same 

independence assumption across a statistical noise component. The violation of this 

assumption yields inefficient estimates of regression coefficients and leads to a bias in the 

estimates of the unit-specific coefficients in FE and RE models.  

Independence assumptions across cross-sectional units are often at odds with 

economic theory. For example, real shocks in remote areas can have an impact through price 

change on the rest of the economy, currency crises in one part of the world can travel via 

financial liaisons and cause repercussions in seemingly secluded areas, and to price the 

quality of air one must consider local weather conditions. Spatial dependence is pertinent to 

urban, development, growth, environmental and other areas of economics. This issue has been 

addressed in theoretical or empirical form in Anselin (2010); Anselin and Rey (2010); Case 

(1991); Conley (1999); Delong and Summers (1991); Dubin (1988); Fishback, Horrace, and 

Kantor (1999); Kelejian and Robinson (1993); Moulton (1990); Quah (1992); and Topa 

(1996).   Interdependencies among economic agents, firms or countries demonstrated in reality 

and not parametrically accounted for in an econometric model specification represent from a 

statistical point of view dependence among individuals’ unobservables. 

In this paper I consider the panel data case when the disturbances are spatially 

correlated across the cross-sectional units, as these are related in the economic or geographic 

dimension. If the time dimension of data is large enough one can consistently estimate cross-

28



 

sectional correlation with standard approaches that rely on T-asymptotics (see e.g. Kmenta 

1990). When the time dimension is small (the typical panel data case) and hence when one 

cannot rely on T-asymptotics, this paper develops an RE panel data estimator that extends the 

cross-sectional GMM model developed by Kelejian and Prucha (1999). The GMM-based 

treatment of the same spatial phenomena in the FE model was developed by Druska and 

Horrace (2004); henceforth this paper will be referred to as “DH”. This paper thus represents 

a natural extension of this estimator from the panel data case when individual unit-specific 

coefficients are treated as fixed to the case when they are treated as random.  

Kelejian and Prucha (1999) consider a generalized moment estimation technique that 

permits correlation across the disturbances in the case of cross-sectional data. This cross-

sectional correlation can be likened to time series correlation and its estimation requires the 

specification of a spatial weighting matrix that captures the interdependency among cross-

sectional units. The construction of the weighting matrix is usually guided by underlying 

economic, geographic or meteorological theory.14 Although this seems to be a strong 

parametric assumption imposed on the model, it is a testable assumption and it represents the 

price to be paid for the lack of the time dimension in the data. Obviously, if the time 

dimension in the panel data is large enough, one can proceed with a seemingly unrelated 

regression model or an error component model to estimate cross-sectional correlation via the 

time dimension. However, for the typical panel data case characterized by small time 

dimension the application of these techniques cannot be justified. In this paper I consider the 

usual panel data case when N, the number of units, is large, while T, the number of time 

observations per unit, is small, and adopt the Kelejian and Prucha cross-sectional estimator to 

the RE panel data treatment. 

The empirical part of this paper presents an application of the herein-derived spatial 

technique to an efficiency measurement problem within a stochastic frontier framework. In 

this framework the firm-level output is modeled as an additive function of inputs and a 

random error term composed of technical inefficiency and statistical noise. While there are 

many different ways to estimate these types of models15 they all hinge on an independence 

assumption across the statistical noise component. The RE specification16 of the models 

considered in this paper is not an exception. Within this framework statistical noise can be 

viewed as productivity shocks due to the geographical or economic proximity of cross-

                                                 
14 A comprehensive treatment of spatial phenomena and estimation techniques is provided by Anselin (1988). 
15 A comprehensive summary of these techniques and theory is provided by Kumbhakar and Lovell (2000).  
16 A panel data treatment of this type of model in the form of FE and RE is in Schmidt and Sickles (1984). 
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sectional units. Given this viewpoint, it is not unreasonable to suspect that productivity shocks 

within a given industry may be correlated across realizations. That is, productivity spillovers 

(correlations) may exist in the statistical noise component, and the usual independence 

assumption across the realizations of statistical disturbances may be violated. 

Using a panel of 171 Indonesian rice farms observed over six periods I empirically 

demonstrate that the productivity shocks (cross sectional correlation in the random part of the 

error term) potentially exist in this data set, and that spillovers have an impact on the 

estimates of technical efficiency.17 In this data set the production function output is rice, and 

inputs are things like seed, labor, fertilizer, and land acreage.  Since the time dimension of the 

data is quite small, the consistent estimation of cross-sectional correlations in the error 

process is of little comfort. Therefore I apply the GMM methodology and proceed with the 

specification of a spatial weighting scheme in the error process. The proposed specification of 

the weighting matrix allows for spillovers across farms, utilizing information on geographical 

coordinates of the villages, to determine the physical distances between producing units. The 

results indicate the presence of spatial correlations in this data generation process, which has 

ramifications for the estimation of the production function and the estimation of farm-level 

technical efficiency. 

The chapter is organized as follows. In section 2.2 the RE model with a spatially 

correlated error term is formulated and identifying parameter restrictions are set. Section 2.3 

presents the feasible estimation technique based on the Kelejian and Prucha (1999) 

generalized moment method. The following section illustrates the application of the technique 

on the sample of Indonesian rice farm data and compares RE estimates with the results from 

the FE model in DH. Section 2.5 concludes.  

 

                                                 
17 To provide a complete set of results from the extension of Kelejian and Prucha to the panel data setting I use 
the same data set of 171 Indonesian rice farms observed over six time periods, and the same weighting matrix 
definitions as DH, and report the results of the Kelejian and Prucha extension to both the fixed effect and random 
effect model. 
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2.1 RE Model with Spatial Disturbances 

Consider the following specification of a RE panel data model (Hsiao 1990): 
(1) ititit xy   ,  ,,...,1 Ni    

Tt ,...,1 , 

where  represents a constant term,  is (k1), and xit is (1k). it  is assumed to consist of a 

random unit specific component i  and a random time- and unit-specific disturbance term itu :  

(2) itiit u . 

Standard (and fairly restrictive) assumptions of the basic RE model are:   

,0)()(  iti uEE    ,0)( itiuE   
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The variance-covariance matrix of i is VeeIE Tuii  ')'( 22
 , e being 1xT vector of 

ones. Its inverse is (Nerlove 1971 and Maddala1971) 
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Forming a vector of observation in t and rearranging the right-hand side of equation (1) the 

model becomes 

(5) iii xy   ~ , 

where ),...,(),',('),,(~
1 iTiiii xex   . Under the above assumptions an efficient 

parameter estimator of (5) is a GLS estimator of  with normal equations 

31



 

(6) 
















 








N

i

iiGLS

N

i

ii yVxxVx
1

1

1

1 ~ˆ~~  . 

Note that PPV '1  , where  ')/1)(1( 2/1 eeTIP T  . Were the P known, one could 

estimate GLS̂  by pre-multiplying (5) by the transformation matrix P and applying the OLS 

method to the transformed model. This is equivalent to first subtracting )1( 2/1 of 

individual means iy  and ix  from their corresponding values of ity  and itx , and then running 

OLS on  

(7)     .)1()1( 2/12/1
itiitiit xxconstyy     

Since 2
u and 2

  are unknown, two-step feasible GLS (FGLS) estimation is used. In the first 

step variance components are estimated using within-group and between-group residuals: 

(8) 
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where W̂  are within, and )ˆ,( B  between, estimates of model’s coefficients. In the second 

step, the estimated values of variance components are substituted into (6) and the coefficients 

of the RE model are estimated. 

As stated in (3), the fundamental assumption of the standard RE model is that the 

random disturbance term, itu , is not correlated across cross-sectional units or over time. In the 

following I relax the assumption of no cross-sectional correlation; instead I allow for spatial 

dependence across units and suppose that the disturbance term is spatially correlated so that 

(after forming vectors of observations in i) 

(10) ttttt uMu   , 

where tu is a Nx1 vector of the random disturbance term in (1), scalar t represents a spatial 

correlation parameter, t is a (Nx1) zero-mean disturbance term, and Mt is a (NN) spatial 

weighting matrix of known constants, which captures the spatial correlations across cross-

sectional units. Elements of Mt and mijt are specified to be nonzero if cross-sectional unit i 

relates to unit j in a meaningful way and are chosen based on some geographic or economic 

proximity measure such as contiguity, physical distance, or economic or climatic 
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dissimilarities.18 If mijt is nonzero, units i and j are referred to as neighbors. All diagonal 

elements of Mt are zero, i.e. no unit is viewed as its own neighbor. The variable ttuM is 

referred to as a spatial lag of tu . I need to invoke two more assumptions: 

 

Assumption 1: The elements of t are independently and identically distributed with 

zero-mean and finite variance 2
t , the fourth moment of t is finite, and t is 

independent of s,  t  s. 

Assumption 2: The matrix (IN - tMt) is non-singular.  

 

Equation (10) and assumptions 1 and 2 imply that tttNt MIu  1)(  , 0)( tuE  for all t, 

and )( ttuuE  has a general, non-spherical structure that is a function of t, Mt and 2
t . 

Since Mt is known, )( ttuuE  is known up to the t and 2
t  parameters, which I will 

ultimately estimate. Estimates of t and 2
t  allow the feasible estimation of equation (1), 

producing efficient estimates of regression parameters and unbiased estimates of unit-specific 

coefficients when the disturbance term is spatially correlated across cross-sectional units.19  

For now, assume that Mt, t, and 2
t  are known and that the disturbance term in (1) is 

spatially correlated according to (10).  Forming vectors of observations in i I can rewrite the 

model in (1) as 

(11) ttt uxy    

 ttttt uMu    

where ],...,[],,...,[],,...,[],,...,[ 1111 NtttNtttNNttt uuuxxxyyy   , and t = 1,…, T. 

Further forming vectors in t from the vectors of observations in i, the model in (11) becomes 

(12) uexey       

u = (*IN) M*u  + , 

where e is 1xT vector of ones, ],...,[],,...,[],,...,[ 111 TTT uuuxxxyyy  , and 

                                                 
18 For example, in section 2.3, I set mijt to one if farms are located in the same village and to 0 otherwise. 
19 It has to be stressed that the presented panel data technique is for the case when one cannot rely on T-
asymptotics. As T  , the specification of the weighting matrix becomes unnecessary and the approach 
presented here becomes inferior to approaches relying on T-asymtotics, such as seemingly unrelated regression 
or error component models. 
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Note that the disturbance term  in (12) is heteroskedastic over time. Defining 

tttNt MI  /)(  , I can pre-multiply the model given by (11) to get   

(13) ttttt xy *****   , 

where  tttttttttt xxyy  **** ,,,  and ttttt u  /*  . Pooling observations 

in t yields 

(14) *****   xy , 

where ]',...,'[' **
1

*
T   and ]',...,'[' **

1
*

T  are TN dimensional vectors and the well-

behaved disturbance term * satisfies 0)( * E  and TNIE )'( ** . The feasible estimation 

of (14) hinges on the knowledge of Mt, t, and t
2. The GMM estimator developed for the 

cross-sectional case by Kelejian and Prucha could be directly applied to each cross section of 

N observations and parameters t, and t
2 could be estimated using the predicted values of the 

spatially correlated disturbance term ut from equation (11). I refer to this approach as 

unrestricted estimation. However, in this specification the unobserved heterogeneity term 

varies across cross-sectional units and the time series. As a result, this system consists of TN 

observations and TN + k parameters, so estimates are not identified.  

It is not unreasonable to assume that in practical application the characteristics 

determining the spatial dependence across units tend to be stable over the short time span of 

the usual panel data—the case of our interest. Actual applications are thus likely to imply 

certain equality restrictions on the model in (14) that allow for the identification of the 

model’s parameters. In the application used in this paper the definitions of spatial dependence 

are based on geographical characteristics (e.g. physical locations and distance between units), 

which are certainly constant over the short time period of the given data. This allows us to set 

equality restrictions on equation (14), leading to the identification of the model parameters. 

 

2.1.1 Fully Restricted Specification 

The specifications of spatial dependence reflect the distinct physical characteristics of the 

farming villages located in the west part of Java island (e.g. longitude, latitude, infrastructure, 

etc.), which can be deemed constant over the relatively short time period of six years. 
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Therefore the first and straightforward equality restriction is to assume that the components of 

weighting matrices, autoregressive and variance parameters, do not change over time, i.e. that 

M1= …= MT = M , 1=…= T = , and 222
1 ...   T , implying that  T...1 . In 

this case  *
t  and  *

t  in equation (13) and   e*  and   et

*  in 

equation (14). Moreover the disturbance term   in equation (10) is no longer heteroskesdastic. 

Its variance matrix is TNIE 2)'(    and   does not have to be a function of   for the sake 

of efficiency. Were  and  
2
 known, the RE would provide efficient parameter estimates of 

(14) provided the imposed restriction is true. The unbiased estimates of  could then be 

arrived at by transforming the estimated * with  . To compute the FGLS of equation (14), 

consistent estimates of  and 2 are required. An extended Kelejian and Prucha methodology 

will be used to estimate these parameters in section 3.  

 

2.1.2 Partially Restricted Specification 

To arrive at another reasonable parameter restriction, consider the empirical example. In our 

sample the 171 Indonesian rice farms, selected from six villages located in the production area 

of the Cinamuk River Basin in West Java, are observed over six numbered time periods from 

which 1, 3, and 5 represent “wet seasons”, W, and periods 2, 4, and 6 “dry seasons”, D.20 

Given this fact together with the specifics of the farm locations,21 I impose the restriction22 

that 1 = 3 = 5 = W  (wet) and 2 = 4 = 6 = D (dry), and similarly for Mt, 2
t , and t.  

Then *= [W D W D W D] and *= [W D W D W D] in equation (14) 

are TN dimensional column vectors, consisting of only 2N and 2 different parameters 

respectively.  The system in (14) then consists of 2N + k + 2 parameters and can effectively 

be treated as 2171 = 342 farms observed over 6/2 = 3 periods. Although relative to the fully 

restricted case there will be an efficiency loss in the estimate of * (as the time series 

dimension is cut in half), the slope parameters will be efficient and consistent (in N) as all NT 

observations are utilized. As in the fully restricted case, consistent estimates of ,W  ,D  ,2
W  

and 2
D  are required to proceed with a feasible GLS estimation of model in (14).  

                                                 
20 The specification reflects actual weather conditions on Java island.  
21 This partial restriction is motivated by the fact that during the rainy season many roads in the low country of 
Java island are impassable, and hence spillovers based on infrastructure are potentially diminished relative to the 
dry season.  
22 The same partially restricted specification is used in DH. 
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2.2 Feasible Estimation  

This section develops a feasible estimator of the RE model with a spatially inter-correlated 

disturbance term that extends the cross-sectional model of Kelejian and Prucha to the panel 

data case. I propose the following four-step estimation procedure. First, estimate the standard 

RE model in (12) neglecting the spatial correlation in the disturbance term. Second, formulate 

the spatial weighting scheme M, test the statistical validity of the specified spatial 

dependence, and use a GMM technique to estimate the cross-sectional correlation in the 

disturbance term. Third, transform the model (12) by the estimate of  via a Cochrane-

Orcutt-type transformation to account for the spatial correlation and re-estimate the 

transformed model using the RE estimator. Fourth, to arrive at consistent estimates of µ and 

, transform the estimates of µ* and * by the estimate of . 

 

2.2.1 Feasible Estimation of the Fully Restricted System  

In what follows I assume that t , 2
t , and tM  are constant for all time periods and equal 

to  , 2 , and M, respectively.23 In this case I can obtain an asymptotically efficient estimate 

of  and consistent estimates of µ and  by the following four-step procedure: 

 

Step 1. Estimate the RE model in (12) ignoring the correlation in u by a standard FGLS 

technique to obtain a sample predictor of the spatially correlated disturbance term u, denoted 

by u~ . 

 

Step 2. Based on a geographic or economic proximity measure specify elements mij of M. 

Before proceeding with the spatial transformation of the RE model one should verify the 

validity of this spatial dependence assumption e.g. by using a Moran I statistic as follows. As 

above let tu~ denote the estimate of the standard RE residual in period t. The test statistics for 

the period t is defined as 

}~~/]~~]{[/[ ttttt uuuMuSN


 , 

                                                 
23 Note that if spatial correlation is constant over time and the time dimension of data is large enough, one may 
use estimation techniques relying on T-asymptotics (such as seemingly unrelated regression or error component 
model) to arrive at an empirically superior estimate of spatial correlation. The technique developed herein is for 
the case when time dimension of the data is small. 
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where N is the number of cross-sectional observations and S is the sum of all elements of M. 

The null hypothesis for the Moran I test is the “absence of spatial correlation”. Cliff and Ord 

(1972) show that the standard normal distribution is the asymptotic distribution for the 

statistic when t  is transformed in the standard manner: 

ZIt = {t – E[ t]}/ V[t]1/2, 

where E[ t] represents the mean and V[t] the variance of the statistic in period t derived 

under the above null hypothesis. These are expressed for the general case as 

E[t ] = (N/S)tr(PM)/(N – k)  

V[t ] = (N/S)2{tr(PMPM) + tr(PM)2  + [tr(PM)]2/(N – k)(N – k +2) – {E[t ]}2 . 

P = 'ˆ)ˆ'ˆ(ˆ 1
ttttN xxxxI   is the projection matrix and tx̂  is the matrix of demeaned exogeneous 

variables from standard model in equation (1). 

After the rejection of the “no spatial dependence” hypothesis follows the estimation 

of the correlation coefficient   (and 2 ) using a u~ estimate. To do so I extend the GMM 

method of Kelejian and Prucha from the cross-sectional case to the case of panel data. 

Consider the following moment conditions implied by the spatially correlated model in (12) 

and Assumptions 1 and 2: 

(15) 21 ]')[(  TNE , 

)'()(]')[( 121 MMtrNTNE   , 

  0]')[( 1  TNE , 

where =M
*
 and  =M

* .24 Moreover let u = M*u and u =M*u . Recalling that  = (ITN - 

M
*) u, the above moment conditions (15) imply the following system of three equations and 

three unknowns25 

(16) 0  , 

where 
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 . 

Let u~ =M
*
u~ , u

~
=M

*
u
~ , and   22 ,,  . The sample analogs based on u~  then are 

                                                 
24 Note that the second moment condition is based on M not M* and therefore contains 1N  not 1)( TN . 
25 The system of three equations follows from the individually squaring and summing of   uu  and 

  uu , from multiplying the first with the second expression and summing, and finally by dividing all the 
elements by the sample size TN. 
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(17) ),( 2  gG , 

where   can be viewed as regression residuals associated with sample observations (i.e. 

parameters   will be found by minimizing the sum of squares of its elements) and  
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This system consists of three equations and three unknowns and corresponds directly to 

Kelejian and Prucha’s results. If this system satisfies Assumptions 1 and 2 above and 

Assumptions 3, 4, and 5 of Kelejian and Prucha26 then Theorem 1 of Kelejian and Prucha 

applies: the ~  and 2~  that solve the nonlinear optimization 

(18) ]0:),(),([minarg)~,~( 222

,

2

2
 ssrsr

sr

   

are consistent estimates of   and 2 as N  . Following DH, I refer to these as the fully 

restricted moment estimates.27 

 

Step 3. Use the fully restricted moment estimate ~  from the transformation matrix 

)~(~ *MITN  . Apply a Cochrane-Orcutt-type transformation to (12) substituting ~  for 

  to form the RE model with the well-behaved disturbance term given by (14). Estimate the 

transformed equation (14) by the FGLS technique to arrive at consistent estimates of * , * , 

and  . 

 

Step 4. Consistent estimates of  and  follow from the transformation of * and * by ~ .  

 

2.2.2 Feasible Estimation of the Partially Restricted System 

Following the discussion in 2.2, consider the following equality restrictions on the 

model in (12):  M1 = … = M6 = M, 1 = 3 = 5 = W , 2 = 4 = 6 = D , 2
1  = 2

3   = 2
5  = 

2
W , 2

2  = 2
4   = 2

6  = 2
D . Let '~

Wu  = [ '~
1u '~

3u '~
5u ] and '~

Du  = [ '~
2u '~

4u '~
6u ] denote the 

predictor of the disturbance term u in equation (12) for the wet and dry season, respectively. I 

                                                 
26 Kelejian and Prucha’s Assumptions 3, 4, and 5 are provided in the Appendix. 
27 The proofs of results are not presented as they represent straightforward extensions of Kelejian and Prucha’s 
proofs. 
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can obtain a feasible estimate of the parameters in (12) analogously to the fully restricted 

case.  

First define W = [1 3 5] and D = [2 4 6], and let ju
~ =M ju~ , ju

~
=M ju

~ , 

j =Mj, and j =M j , j = W, D. The estimates of j  and 2
j are then given by minimizing  

(19) ]0:),(),([minarg)~,~( 222

,

2

2
 ssrsr jj

sr
jj  ,  j = W, D, 

where 

 jjjjjjjj gG  ][),( 222  ,  j = W, D. 

Here Gj and gj are special forms of the G and g of equation (16), each collecting the 

observations for wet or dry periods only, and 3N is substituted for TN. In this case the 

application of the Kelejian and Prucha methodology requires that each of the two “3N” 

subsystems satisfies Assumptions 1 through 5 so that Theorem 1 can be applied to arrive at 

consistent estimates of j  and 2
j , j

~  and 2~
j . Following DH let us refer to these estimates 

as the partially restricted moment estimates.28   

As above, j
~  and 2~

j  allow the formulation of 2* /)~(~
jjTNj MI   for wet and 

dry seasons. The ~  can be substituted for   in equation (14).  FGLS applied to (14) again 

yields consistent estimates of * , * , and  .  

 

2.3 Application of Stochastic Production Frontier to Indonesian Rice 

Farms 

In what follows I utilize the stochastic production frontier framework defined for the panel 

data case in Schmidt and Sickles (1984). In the stochastic production function equation  

(20) iititit uxy   ,   ,,...,1 Ni   

Tt ,...,1 , 

yit is firm production output, xit is a vector of production inputs, and uit stands for random 

production shocks. The firm-specific time-invariant term αi represents technical inefficiency, 

and 0i for all i. (For the case of a cost function the sign of the one-sided term would be 

                                                 
28 In addition to this approach DH estimates the correlation coefficient for each cross-section allowing these 
parameters to vary in time and then use the average over time. DH refers to these estimates as partially restricted 

average estimates. The method used here may be more efficient as it utilizes all the available data to arrive at the 
correlation estimates. 
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positive.) Let 0)( 


aE i and define  

,


 a
       



 aii 
 . 

Using this notation, the model in (20) becomes a panel data model with both error terms 

having zero mean:  

(21) iititit uxy 


 . 

Treated as an RE model with spatial dependence in the error term, uit (21) can be estimated by 

the four-step FGLS method described above. To arrive at the estimates of technical efficiency, 

further define 

   ,iii 


  

so that the model becomes 

(22) ititiit uxy   . 

Denote the N estimates of intercepts from (22) as ,ˆ,...,ˆ1 N and define 

)ˆmax(ˆ
i   and 

,ˆˆˆ
ii     i=1,2, …, N. 

A measure of technical efficiency for production unit i is calculated by plugging the estimates 

of i into the expression: )ˆexp(   iiTE . Given the FGLS estimates ̂  of the slope 

parameters and regression residuals  ˆˆ
ittiit xy   from the standard and spatially corrected 

RE model, the efficiency estimates i̂ can be recovered from the estimates of  i :    

(23) ,1ˆ 
T

iti
T

   Ni ,...,1 . 

Provided that ̂  is consistent (which it is, if N), these estimates are consistent as T. As 

an alternative, one can use the best linear unbiased predictor (BLUP) defined by Taub (1979) 

as follows:  

,
)ˆˆ(

)ˆ*ˆ(ˆ
*ˆ

22

2

u

t

itit

i
T

xy

















 

and the resulting estimate of µi is  

(24) .*ˆ*ˆˆ
ii    

With T this estimator converges to (23). The differences in results were negligible. Both of 

the estimators of µi rely on a well-behaved disturbance term uit. In case this component is 

polluted by the presence of cross-sectional correlation, both of the above predictors yield 
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biased estimates of µi and hence lead to incorrect estimates of unit-specific technical 

efficiency.  

As the illustration of the spatially corrected FGLS estimator of the RE model I use the 

balanced panel data of rice farms for which I estimate the stochastic production frontier 

function and unit-specific technical efficiency. The sample comes from the survey of the 

Indonesian Ministry of Agriculture consisting of 171 rice farms, located in six villages, that 

were observed over a period of three years, each consisting of a wet and a dry season (N=171, 

T=6). Villages are scattered around the Cimanuk River Basin in West Java. Weather 

conditions vary considerably among villages (highland areas receive much more precipitation 

and are characterized by lower average temperatures than lowlands) and so does the village 

infrastructure (while some villages are close to capital cities and have a fairly developed 

infrastructure other villages are virtually inaccessible during the rainy season.)29 To capture 

the spatial dependence across production units, akin to DH I construct two different weighting 

schemes, M1 and M2, based on the geographical proximity of individual rice farms. The first 

weighting matrix represents the inverse of the distance between villages, while the 

construction of the second matrix employs the contiguity principle (i.e. mij is set to 1 if farms i 

and j are both from the same village and zero otherwise).  

Using this balanced panel I first estimate a stochastic production frontier model, in 

which the dependent variable, y, is the natural logarithm of the production output (the amount 

of rice measured in kilograms), the production inputs in natural logarithms (seed, labor, land 

and fertilizer) with dummy variables (DP = 1 if pesticides were used and 0 otherwise, DV1 = 

1 if a high-yield variety of rice was planted, DV2 = 1 if mixed varieties of rice were planted; 

DR1–5 are dummies for five out of the six villages) represent a vector of explanatory 

variables, x, and i embody farm-level technical inefficiency. This is a stochastic frontier 

specification based on a Cobb-Douglas production function that has been extensively applied 

to this data set previously (see Erwidodo 1990, Horrace and Schmidt 1996, 1999 and Lee and 

Schmidt 1993). 30  

Estimation results from the standard RE model (assuming no presence of spatial 

correlation) are reported in column IV of Table 2.1 (next to the results from the FE model of 

DH). Based on the Hausman specification test I can reject the correlation of individual effects 

with the other regressors in this data set and therefore I can proceed further with the RE 

                                                 
29 The survey ended in 1983, so the infrastructure description may be different from the current state. 
30 A detailed discussion of the data is provided by Erwidodo (1990). 
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model.31 In the next step I perform a test for spatial dependence in the error term for which I 

employ the Moran I statistic. The test results achieved for both weighting schemes M1 and 

M2 in each time period t = 1, ..., 6 are reported in Table 2.3. I reject the null hypothesis (of 

“no spatial correlation”) at the 95% significance level for each time period. The test results 

thus support the specification of the weighting schemes and hence I proceed with the 

estimation of the spatial correlation coefficients and the FGLS of the spatially corrected RE 

model.  

 

2.3.1 Estimation Results 
Tables 2.1 and 2.2 summarize the estimation results for the RE model and compare them with 

the outcome from DH. The Hausmann test for this data set indicates that both FE and RE 

provide consistent estimates, with RE being the more efficient estimator. In line with this 

result, as can be seen in Table 2.1, standard RE model estimates of the slope coefficients have 

smaller standard errors than standard FE. This difference narrows after we correct FE for 

spatial correlation using fully restricted moment estimates and it disappears completely in 

case we apply a partially restricted method (correction of the FE model for spatial correlation 

increases the efficiency of the slope coefficient estimates).  

Note that unlike the typical FE model, in the RE framework we can also analyze the 

effect of time-invariant regressors (regional dummies DR1–5) on the production output. As in 

the case of the FE model (DH), we can see an improvement in the efficiency of the RE model 

slope estimates as their estimated standard errors decrease after correction for spatial 

correlation. The regional dummy variables and a dummy variable for the wet season represent 

a startling exception to this trend. The significance of their estimated coefficients markedly 

decreases in the spatially adjusted RE model. My interpretation of this result is that it 

demonstrates (and hence proves the assertion in DH) that the spatial dependence structure 

imposed on the second moment conditions has the potential to capture the regional effect 

modeled by these time-invariant dummy regressors. This result indicates an additional benefit 

of the proposed approach to the modeling of the spatial dependence. The loss of the 

significance of the seasonal dummy (DSS) coefficient (for both FE and RE) indicates that the 

proposed spatial dependence modeling technique likely also captures a seasonal effect. This is 

particularly evident for the case when we allow the cross-sectional correlation to vary 

between wet and dry seasons. In this case the DSS coefficient is not identified in the spatially 
                                                 
31 The value of the  - test statistic for Hausman test with eight degrees of freedom is 12.691, with a P-value = 
0.1229.  
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corrected FE model and in the spatially corrected RE model its estimated coefficient is far 

from significant. 

The sum of the estimated coefficients (excluding the regional dummy variables) for all 

FE and RE models exceeds unity and indicates that rice farms operate in the increasing-

returns-to-scale region. Unlike for the FE model there is no general tendency for the estimated 

coefficients to increase as we move from the standard model to its spatial version. 

Consistently with the FE model, the size of the TSP (fertilizer) coefficient drops after 

correcting for spatial correlation, indicating a more complex relationship between this 

production input and production output. While the size of the slope coefficients estimated by 

the RE model tend to stay the same or decline as we move from the standard to the spatial 

model(s), the estimated size of the constant term increases as we move from the standard to 

the partially and to the fully restricted spatial model.    

 

2.3.2 Technical Efficiency Estimates 
Stochastic frontier analyses provide a means to assess firm-level technical inefficiency in 

terms of the relative magnitudes of individual units’ inefficiency by using a rank or order 

statistic. Hence I estimate and rank the estimated technical efficiencies )ˆexp(   iiTE for 

each farm. I apply both estimators (23) and (24) to produce the estimates of the unit-specific 

terms. The comparison of the results from these two estimators revealed no differences in 

farm ranking and the density distributions of the estimated unit-specific regression 

coefficients were not significantly different.   

I report efficiency levels and relative ranking results for the RE model in Table 2.4 

and compare them with the FE results from DH shown in Table 2.5. Since there are 171 farms 

I only report (along the lines of DH) results for the four farms with the highest technical 

efficiency, the four farms with the median technical efficiency, and the four farms with the 

lowest technical efficiency. In Tables 2.4 and 2.5, column I shows the farm number, column 

II contains the ordered estimates of farm-level technical efficiency for the standard model, 

and column III provides the ordinal rankings for the standard model (numbered 1–171). To 

assess the impact of spatial dependence on the estimates of technical efficiency, columns IV 

and V report the ordinal rankings for the same 12 farms for the fully restricted spatial model 

under weighting schemes M1 and M2. While there are some changes across weighting 

schemes in the rank ordering of the most and least efficient farms, these are minor for both the 

RE and FE model. For instance, in the standard RE model, farm 163 had a technical 
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efficiency rank of 3, but it has a rank of 4 under the weighting schemes. Notice that the 

ranking of the most and the least efficient farms (farm 164 and 143 for RE; and 164 and 45 

for FE) is constant across the models. While the least efficient farm from RE has a higher 

rank in the FE model and vice versa, they are still ranked among the bottom four farms across 

the models. For both the FE and RE models the largest differences in ranking appear in the 

median farms. To further assess the difference in relative efficiency ranking, Tables 2.4 and 

2.5 provide the Spearman’s rho (rs) statistic. Spearman’s rho (rs) is a standard measure of 

rank correlation between two rank statistics given by 

NN
r i

i

s





3

26
1



, 

where δi is the difference in the rankings for the ith farm. In column III the rank correlation 

between the standard FE and standard RE model is reported. Column IV (V) gives the rank 

correlation between M1 (M2) and the standard model. The value of 0.96 in Table 2.4 for both 

M1 and M2 indicates that 96% of the rank statistics is preserved after I correct the RE model 

for spatial dependence. In comparison with FE (with a rank correlation for M1 or M2 of 0.8) 

the use of the spatial weighting specification in RE changes the relative rank of technical 

efficiency very little. The rank correlation between the standard FE and RE (column III) is 

0.93, indicating that moving from the FE to the RE model preserves a high proportion of the 

ranking in this data set. 

To further assess the impact of spatial dependence on the estimate of technical 

efficiency I constructed (along the lines of DH) the density distributions of the estimated unit-

specific regression coefficients µi for the standard and spatially corrected RE models (M1, 

M2). These are shown in Figure 2.1 and can be compared with the density distributions of αi 

(fixed effect coefficients) for the standard and spatially corrected FE model taken from DH. 

Density estimates are based on maximum likelihood, cross-validation bandwidth selection, 

and a standard Gaussian kernel. Fixing the maximum value of i
 (for FE) and µi (for RE) 

across models, some generalizations about the analyzed data set can be made. First, both the 

standard FE and RE models without correction for spatial autocorrelation in the errors tends 

to underestimate i and µi (overestimate technical inefficiency) in comparison with the 

spatially corrected models (M1 and M2). This is technical inefficiency in an absolute sense, 

since we are fixing a maximum value of i
 (for FE) and µi (for RE) across models at some 

unknown value. This is reflected in Figure 2.1 and 2.2 as the densities of the standard FE and 

RE models are shifted to the left of the densities for their spatial counterparts. This has 
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implications for the predictions of the conditional mean output implied by equation (1): the 

standard FE and RE models (on average) yield lower predictions of productive output than the 

spatial models (all else equal). That is, for fixed technology and input factors, the spatial 

models impute more of the observed output to unobserved technical ability (i for FE and µi 

for RE) and less of it to luck (uit) in this data set. Indonesian rice farms may be operating 

closer to the efficient frontier than previous studies suggest. 

2.4 Conclusions 

Interdependency across cross-sectional units is a frequent phenomenon in economic theory as 

well as in economic data sets and it presents a formidable estimation challenge for empirical 

econometricians. In the case when one can rely on a large T dimension in panel data, a 

seemingly unrelated model or error component model can, for example, be used to properly 

address the issue of cross-sectional dependence. However, panel data sets with a large T 

dimension are not very common when studying real world phenomena. In practice the 

researcher is typically faced with data sets that are observation-rich in the N dimension but 

poor in the T dimension. Hence the consistency of the estimates of these models often has to 

rely on N.  This works well for estimates of the model’s slope coefficients. However, any 

second moment parameters that embody cross-sectional dependence cannot be consistently 

estimated in the sense that they will necessarily rely on T. As a result, the unit-specific 

heterogeneity components of these models cannot be consistently estimated. 

 To achieve consistent estimates of the unit-specific constant parameters, DH propose 

for the typical panel data case (when the N dimension is large and the T dimension is small) a 

generalization of the GMM estimation approach (due to Kelejian and Prucha 1999) for the FE 

model that enables accounting for cross-sectional correlation in the disturbance term. This 

paper complements DH as it adopts the GMM framework to the RE model that accounts for 

correlation across the disturbance terms and, using the framework of the stochastic production 

frontier, it empirically demonstrates how this correlation can bias the estimates of unit-

specific technical efficiency.  

The cost of this approach is the necessity to impose additional structure on the model 

in the form of a spatial weighting scheme, which captures the spatial correlations across cross-

sectional units. However, these structures can typically be supported by solid arguments for 

economic spill-overs stemming from the theoretical economic literature. Moreover, the 

research stream devoted to the study of spatial phenomena provides a means that let us 
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explicitly account for these spill-over effects. Finally, these structures are testable and hence 

the spatial weighing schemes appear as a viable approach to create assumptions about the 

second moments of given data. 

In the general version of the spatial RE model above I impose a dynamic spatial 

dependence structure on the error process of the RE model that allows the weighting scheme 

and cross-sectional correlation parameter to vary for each time period. In the transformed RE 

model the time-invariant, unit-specific parameters of the standard RE model thus also become 

fully dynamic. While in its general form the transformed model is not identified, this 

technique (after invoking additional restrictions on second moment dynamics) provides a 

valuable alternative means to model the dynamics in the heterogeneity parameters.32 In 

practical applications the characteristics determining the spatial dependence across units tend 

to be stable over the short time span of the usual panel data (the case of our interest) and can 

provide a natural means to restrict model dynamics. In the application used in this study the 

definitions of spatial dependence are based on stable geographic characteristics, which allow 

us to set restrictions on the dynamics of the second moment that lead to the identification of 

the model parameters. The partially restricted version of the production frontier model 

capturing the differences between wet and dry seasons presented in this paper demonstrates 

the ability of this approach to model dynamics in the second moment with dynamic 

implications for the first moment parameters estimates.   

Moreover, the estimation results of this study bear out that imposing spatial structure 

on the second moment conditions can indeed provide a means to indirectly incorporate time-

invariant regressors into a panel data model (a hypothesis put forward by DH). This is 

important especially for the FE model where, for example, in this particular data set, the effect 

of the dummy variables for individual villages cannot be directly accounted for using an FE 

specification.33   

 

                                                 
32 The usual approach to modeling the dynamics of the heterogeneity parameters is to impose a special structure 
on the conditional first moment of unit-specific coefficients. For examples of this technique see Kumbhakar 
(1990) and Lee and Schmidt (1993). 
33 This approach thus provides a viable alternative to the commonly employed techniques for incorporating time-
invariant regressors into a fixed effect model, see Hausman and Taylor (1981). 
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2.A Tables and Figures 
 
Table 2.1 Rice Regressions, Weighting Scheme M1 – Inverse of Distance 
 

Standard Fully Partially Standard Fully Partially 
FE Restricted Restricted RE Restricted Restricted

Model Moment Moment Model Moment Moment
I II III IV V VI
- 1,0557 - - 0,7110 -
- - 0,8218 - - 0,7513
- - 0,7476 - - 0,6742

Seed 0,1208 0,0998 0,1248 0,1327 0,1154 0,1142
(0,030) (0,024) (0,024) (0,027) (0,023) (0,024)

Urea 0,0918 0,0901 0,1440 0,1131 0,1125 0,0950
(0,021) (0,017) (0,015) (0,018) (0,016) (0,017)

TSP 0,0892 0,0244 0,0307 0,0762 0,0367 0,0399
(0,013) (0,012) (0,011) (0,012) (0,011) (0,011)

Labor 0,2431 0,2379 0,2204 0,2231 0,2295 0,2421
(0,032) (0,028) (0,026) (0,029) (0,026) (0,026)

Land 0,4521 0,4931 0,5141 0,4770 0,5084 0,4845
(0,035) (0,030) (0,027) (0,031) (0,028) (0,028)

DP 0,0338 -0,0298 -0,0212 0,0141 -0,0166 -0,0057
(0,032) (0,028) (0,025) (0,029) (0,026) (0,026)

DV1 0,1788 0,0935 0,1320 0,1772 0,1256 0,1197
(0,041) (0,038) (0,035) (0,038) (0,036) (0,036)

DV2 0,1754 0,0952 0,0947 0,1446 0,0965 0,1033
(0,057) (0,048) (0,048) (0,052) (0,046) (0,045)

DSS 0,0533 0,1062 0,0492 0,0614 0,0444
(0,022) (0,302) (0,021) (0,060) (0,055)

DR1 -0,0512 -0,0486 -0,2425
(0,050) (0,130) (0,236)

DR2 -0,0442 -0,0646 -0,0520
(0,059) (0,119) (0,210)

DR3 -0,0725 -0,0759 -0,0739
(0,062) (0,122) (0,219)

DR4 0,0116 0,0336 0,0237
(0,059) (0,132) (0,232)

DR5 0,0749 0,0690 0,0682
(0,060) (0,129) (0,229)

Const 5,0635 5,2462 5,6190
(0,194) (0,203) (0,266)

R-sq 0,9102 0,9271 0,9177 0,8840 0,8543 0,8590

Fixed Effect Model Random Effect Model

~

W
~

D
~
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Table 2.2  Rice Regressions, Weighting Scheme M2 – Common Villages 
 

Standard Fully Partially Standard Fully Partially 
FE Restricted Restricted RE Restricted Restricted

Model Moment Moment Model Moment Moment
I II III IV V VI
- 0,9882 - - 0,6501 -
- - 0,7388 - - 0,6750
- - 0,6999 - - 0,6259

Seed 0,1208 0,0996 0,1248 0,1327 0,1330 0,1114
(0,030) (0,024) (0,024) (0,027) (0,024) (0,024)

Urea 0,0918 0,0901 0,1446 0,1131 0,1140 0,0958
(0,021) (0,017) (0,015) (0,018) (0,016) (0,016)

TSP 0,0892 0,0239 0,0301 0,0762 0,0347 0,0404
(0,013) (0,012) (0,011) (0,012) (0,011) (0,011)

Labor 0,2431 0,2376 0,2198 0,2231 0,2627 0,2379
(0,032) (0,028) (0,026) (0,029) (0,026) (0,027)

Land 0,4521 0,4934 0,5148 0,4770 0,4680 0,4876
(0,035) (0,030) (0,027) (0,031) (0,028) (0,028)

DP 0,0338 -0,0306 -0,0219 0,0141 -0,0045 -0,0104
(0,032) (0,028) (0,025) (0,029) (0,026) (0,026)

DV1 0,1788 0,0928 0,1326 0,1772 0,1306 0,1200
(0,041) (0,038) (0,035) (0,038) (0,037) (0,036)

DV2 0,1754 0,0947 0,0961 0,1446 0,0933 0,1045
(0,057) (0,048) (0,049) (0,052) (0,047) (0,045)

DSS 0,0533 0,0844 0,0492 0,0743 0,0156
(0,022) (1,424) (0,021) (0,074) (0,041)

DR1 -0,0512 -0,3059 -0,0856
(0,050) (0,141) (0,256)

DR2 -0,0442 -0,0496 -0,0467
(0,059) (0,127) (0,238)

DR3 -0,0725 -0,0493 -0,0168
(0,062) (0,134) (0,244)

DR4 0,0116 0,0955 -0,0039
(0,059) (0,138) (0,262)

DR5 0,0749 -0,3257 -0,0029
(0,060) (0,142) (0,240)

Const 5,0635 5,5189 5,3111
(0,194) (0,227) (0,264)

R-sq 0,9102 0,9271 0,9174 0,8840 0,8500 0,8612

Fixed Effect Model Random Effect Model

~

W
~

D
~
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Table 2.3  Moran I Test of Weighting Scheme M1 and M2    

Time period 1 2 3 4 5 6

M1 Z I 3,822 3,466 23,855 22,465 11,136 9,904

M2 Z I 3,413 2,814 22,488 19,957 10,714 9,013  

 
 
Table 2.4  Technical Efficiency Orders Statistics, RE Models 
 

Farm No. Standard RE Efficiency (%) Standard RE model Weight Scheme M1 Weight Scheme M2

I II III IV V

164 100,00% 1 1 1
118 98,91% 2 2 2
5 93,91% 3 4 4

163 91,66% 4 3 3
146 61,14% 84 71 71
119 61,26% 85 101 101
51 61,24% 86 127 127
38 61,23% 87 79 79
45 61,17% 168 168 168
142 41,98% 169 167 167
145 41,51% 170 169 169
143 39,56% 171 171 171
r s 0,9287 0,9666 0,9669

Standard RE Model Spatial RE Models

 

 

Table 2.5 Technical Efficiency Orders Statistics, FE Models 

Farm No. Standard FE Efficiency (%) Standard FE model Weight Scheme M1 Weight Scheme M2

I II III IV V

164 100% 1 1 1
118 93.23% 2 2 2
163 93.03% 3 3 3
152 89.93% 4 6 6
13 55.62% 84 106 106
166 55.47% 85 116 116
15 55.40% 86 62 62
40 55.35% 87 54 54
86 39.80% 168 165 165
143 38.37% 169 169 169
117 37.90% 170 168 168
45 36.55% 171 171 171
r s 0,9287 0,8027 0,8095

Spatial FE ModelsStandard FE Model
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Figure 2.1 Density estimates of µi for RE models 

 

 

 

 

 
 
 
 
 
 
Notes:  
RE = random effect with no spatial weighting  
M1 = M1 weighting scheme 
M2 = M2 weighting scheme 
 
 
 
 
 
 
Figure 2.2 Density estimates of αi for FE models 

  
Notes:  
FE = fixed effect with no spatial weighting  
M1 = M1 weighting scheme 
M2 = M2 weighting scheme 

µ
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Appendix 

The following are the assumptions 3, 4, and 5 from Kelejian and Prucha (1999).  Let P(t) = 
(IN - tMt)-1 with typical element pij(t). 
 
Assumption 3:  (i) The sums i|mijt| and j|mijt| are bounded by, say, cm <  for all 1  i, j  N, 
N 1.  (ii)  The sums i| pij(t)| and j| pij(t)| are bounded by, say, cp <  for all 1  i, j  N, N 
1, |t| < 1. 
 
Assumption 4:  Let  itu~  be the i

th element of tu~ . There exists finite dimensional random 
vectors dit and t such that | itu~ -uit|  ||dit|| ||t|| with N-1

i||dit||2+ = Op(1) for some  > 0 and N-

1/2
i||t|| = Op(1). 

 
Assumption 5:  The smallest eigen value of tt is bounded away from zero. 
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Section 3 

Too large or too small? Returns to scale in 
a retail network34 

 
 
 
 
 
 
 
 
While increasing market penetration sets a limit on the future revenue growth of mobile 

network operators, high earnings expectations persist on the side of shareholders. These 

expectations fuel incentives for improvement of the productivity of operators resources. 

Therefore, to secure optimal allocation of operators resources, managers are often interested 

in supporting their decisions by the use of academic methodologies. 

This technical efficiency and returns to scale study supports a wider scope project on 

the optimization of a mobile network operator retail network. We focus on identifyng 

returns to scale, because mobile network operators in environments with high rate of changes 

are constantly forced to grapple with competitors by creating economies of scale. Further, 

according to the managerial literature (e.g. Stabell and Fjeldstadt 1998) on chain value 

creation, key determinants of costs of the retail chain are capacity utilization and scale of 

operations. 

When analyzing the productivity of their operations, retailers usually rely on aggregate 

measures like sale per unit of size or unit of labor. In operations research literature (e.g. 

Athanassopoulos and Ballantine 1995, Beamon 1999, Reynolds 2004), it is argued that the 

use of ratio analysis (common for managerial evaluation of performance) is not sufficient to 

properly assess performance of analyzed decision making units because the major limitation 

of ratio analysis is its univariate nature. To deal with this drawback, our study illustrates the 

application of a more comprehensive framework for assessing the performance of retail 

network units by comparing the results of non–parametric, parametric production frontier 

methods and ratio analysis. Parametric methods are capable of handling single output–

multiple input technology, and require specification of production function form. The non–
                                                 
34A previous version of this work was published as Brázdik F. and V. Druska (2005) “Too large or too small? 
Returns to scale in a retail network”. CERGE EI Working Paper no. 273 
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parametric method used in this work, allows for multiple input–multiple output technologies 

and does not require specification of the production function form. Moreover, the non–

parametric method provides information on returns to scale on an individual level. The use of 

parametric methods (Corrected Ordinary Least Squares – COLS and Stochastic Frontier 

Analysis – SFA) along with a non–parametric method (Data Envelopment Analysis – DEA) 

provides a means of assessing the robust- ness of estimated efficiency levels. 

The retail units have only limited control over their outputs, which are mostly 

determined by the sales potential of the unit’s location. Therefore, the suitable behavioral 

objective for retail network managers would be input minimization, rather than output 

maximization. To determine the efficiency of retail network units, production frontier analysis 

is assesses the actual levels of inputs with respect to the estimated optimal levels of inputs. 

This input oriented efficiency measure detects managerial failures to minimize use of inputs 

for a given level of output. Moreover, this approach provides an indication of the possible 

gains from exploiting technical and scale efficiencies. 

The paper is organized as follows. Section 3.1  provides details of the retail technology 

and discusses the input–output specification used to model the production frontier. Section 

3.2  lays out the theoretical DEA framework  and specifies  the linear programming problem 

used to evaluate the technical and scale efficiency of the retail units. It also provides a review 

of the parametric methodologies (COLS and SFA) used to test the hypothesis of constant 

returns to  scale of e mployed  technology. The section 3.3 reports  a  ratio  analysis  and 

production frontier results and section 3.4 concludes with a summary of policy implications. 

 

3.1   Retail technology 

A formulation of the DEA problem and specification of the production function form 

requires an understanding of the production process and the identification of production 

inputs and outputs, respectively. This section briefly describes the production function of 

the retail outlets and defines the corresponding measures of production inputs and 

outputs. 

The key function of retail outlets of a mobile network operator is to acquire new 

subscriptions to services provided by the operator. The acquisition of a new customer 
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involves the sale of a SIM card35, a mobile phone (and accessories), and the selection of

a price plan suiting the subscriber’s preferences. While revenues reported by a store are

derived from the sale of equipment (and prepaid credit vouchers), these are not considered

to be the key output of the unit.36 Rather, definition of key unit’s output is motivated

by the store’s primary acquisition function. Once a customer signs up for one of the price

plans (or purchases a prepaid card) he starts using the services provided by the network

operator and he generates revenues that are collected either via monthly bill or via sale

of prepaid vouchers. In fact this revenue is also used to cover the costs of running re-

tail stores thus revenues collected from acquired subscribers represent the key (f nancial)

benef t derived from the operation of retail stores. Therefore, the number of SIMs sold

and monthly revenue generated by the number of subscribers acquired in a store were

chosen as an output measures.

     In total we use three different production output specif cations. For two one–output

models we use either the number of SIM cards sold to customers or the revenue generated

by these customers, respectively. In the case of the two–output models (DEA only) we

describe outputs together as SIM cards sold and revenue generated by customers using

the sold SIM cards.

     The mobile phone operator at the time of this study was running a retail network with

over forty outlets across the country and was considering closing or relocating some

of the existing units as well as opening additional units at new locations. Some key

questions management faces when setting up a retail outlet are: What should the size

of the sales area be? How many sales people are required to achieve the sales potential

in that unit’s sales area? These two factors appear to be the key determinants of the
35SIM, a Subscriber Identity Module, is a card commonly used in a GSM phone. The card holds a

microchip that stores information and encrypts voice and data transmissions. The SIM card also stores
data that identif es the caller to the network service provider.

36The biggest revenue item (from total revenue reported by a store), the handset revenue, would be a
misleading output indicator as phones sold together with an activation of a tariff plan are sold at subsidized
prices and the margins (difference between retail and wholesale price) are hence in these cases negative.
The negative handset margin is thus treated by the operator and the industry as the component of Subscriber
Acquisition Cost (SAC) rather than as revenue derived from providing services.
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outlet performance in addition to the regional and location aspects.37 At the same time,

the costs of these two production factors represent 98% of the units’ total operating

costs.38 Therefore the number of sales representatives (employees) and the sales area of

the store were identified as the production inputs. This specif cation of inputs is used for

all models.

     The stores’ sizes and their locations were determined by the retail chain manager at

the outset of the retail network roll out on the basis of the initial sales potential estimates

of individual regions. The size of each location allows for a variable number of em-

ployees, up to the point of its capacity given by the sale area. The total headcount per

individual store is decided jointly by the local store manger, regional manager, and cen-

tral retail network manager. Based on the observed traffic pattern, the store manager is

able to adjust the capacity of the sale force by drawing on part–time staff. Store opening

hours are set so as to ref ect the sales potential of the location; i.e. stores in shopping

malls are open whole weekends, while stores in other locations are e.g. open for lim-

ited hours on Saturdays. As one employee represents 40 working hours per week, the

measure of the number of employees captures the differences in opening hours across

stores.

     Following the literature on retail productivity other criteria relevant for retail pro-

ductivity assessment including employees’ personal characteristics such as training level

and motivation (Bush, Bush, Ortinau and Hair 1990, Lusch and Serpkenci 1990); wage

rate (Bucklin 1978) and such as attitudes (MecKenzie, Podsakoff and Fetter 1993); be-

havioral outcomes such as service quality (Parasuraman, Zeithaml and Berry 1994) and

assortment differences (Grewal, Levy, Mehrotra and Sharma 1999) were considered.

However, as explained below there is no evidence that these factors differ across the

studied retail stores and employees; thus these characteristics are not helpful in explain-

ing productivity variation across stores in our sample.
37The regional aspects and sales potential of individual sales areas were assessed in a separate study

and are beyond the scope of this paper.
38Utilities and site maintenance represent remaining units’ costs.
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     At the time of this study, the strong market growth and increasing penetration forced

operators to allocate their resources primarily in the subscriber’s acquisition activities.

Acquisition is thus seen as the primary goal of the retail stores, and the work effort of

the sales persons is stimulated by the incentives that ref ect this goal. Because incentives

and overall reward scheme of the sales staff is centrally designed and is homogeneous

across stores, the variable pay of the sales staff is driven by the number and the value

of the SIMs sold. The value of the SIM is measured by the (expected) revenue the sold

SIM will generate, which in turn is proxied by the price tariff the customer with the given

SIM subscribes to.

The time spent with an individual customer purchasing a specific service does not

differ from location to location, but does differ from customer to customer due to the

differences in tariffs being sold. The key discriminator here is the payment type asso-

ciated with the tariff sold. The prepaid tariffs (also known as ’pay as you go’ tariffs)

take a shorter time to sell than do postpaid tariffs. Consumers with prepaid tariffs, as

the attribute indicates, pay for the services in advance, i.e. before the services are con-

sumed. On the other hand the postpaid tariffs allow the subscribers to consume services

before being is charged for them. Postpaid fees are collected from these subscribers via

invoices that are sent to their home addresses. This system requires that the customer

register personal data with the operator (and often also f nalization of the time specific

service contract) and thus requires longer sale time. Postpaid tariffs bind subscribers to

paying a regular monthly fees, thus guarantying operator a recurring monthly revenues

which, as a consequence, increases the value of the postpaid customer above the prepaid

one (it is common knowledge that mobile subscribers on prepaid tariffs generate on aver-

age a lower monthly revenue than do postpaid subscribers). This fact is captured by the

incentive scheme, and the longer time spent acquiring postpaid subscriber is rewarded

by the higher number of points earned by the sales staff for the acquisition of this type

of customer.

     However, the busiest locations may produce a perverse effect despite this feature
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of the incentive scheme. The extreme workload (high number of incoming shoppers)

at these busy locations can cause the sales staff to go after quantity rather than quality

of customers, as total points earned is under these conditions thus maximized. As a

consequence the busy locations can sell a high volume of SIMs, though their average

value may be lower compared to the SIMs activated by other less busy stores whose

locations show a smaller sales potential. We capture this specific feature of the retail sale

technology in one of the DEA models by using two output measures: number of SIMs

sold and total revenue generated by the store.

     Even though some time of the sales staff is spent on serving the current subscribers,

this is not seen as the primary goal of the store and does not take a big share of staff

time; hence it is not ref ected by the incentive scheme. Based on staff and store manager

experience and on a comparison across stores the share of time spent on service activities

is minor and approximately the same in all stores (and varies across stores by about +/-

5%).

     All sales persons must pass the same sales skills training so that the high quality

of service is homogeneous and preserved across stores.39 Quality of service is measured

regularly, and quality assurance test results from the time period of this study indicate

that there is very small variation in key quality indicators across stores and sales persons.

The consistently high homogeneous quality of sales staff thus limits possible explana-

tions for the varying degree of eff ciency across stores. Homogeneity of the other service

attributes (e.g. types of offered handsets) is ensured by the systems and technology sup-

porting the seamless operation of all stores (e.g. central inventory system).

     While the output potential (number of shoppers coming to the store) is assumed to

be given and determined by the regional characteristics and intensity of the operator’s

nationwide advertising campaigns the realization of that output potential is (assumed to

be) the function of the input mix (quality of inputs is assumed homogeneous) and it is
39Quality of both sale and product skills are ensured. Moreover, each introduction of new products or

services by the operator is coupled with the appropriate product/service specif c knowledge training of the
sales staff.
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the optimum input mix we seek to identify for each location.

3.1.1 Data description

Table 3.1 in the Appendix, summarizes the descriptive statistics of inputs and outputs used

to specify the production mix. Stores in our sample were observed over a 3–month of

steady mobile market growth. The 42 stores represent the total number of the operator’s

stores, and the number of SIMs reported are those sold over the period of one quarter

of the year. The revenues reported were accounted for in the third month of the quarter

following the sale (acquisition) period. The number of employees are cumulative over

the 3–month period and thus ref ect total man-hour capacity devoted to sales activity

in the time period we study. All variables are measured with minimum error as the

information systems in place provide automatic data collection and their accuracy has

been tested over time prior to the study period.

Figure 3.1 (see Appendix), presents the matrix of scatter plots for each pair of input and

output variables. The high positive correlation between number of employees and both

measures of output is clearly visible. However, the relationship is less clear when sales

area is considered. While output seems to increase with number of employees it does not

seem to measure up with increasing sale area size. This observation clearly corresponds

to the actual flexibility of input adjustments. The number of employees can be adjusted

fairly flexibly to reflect the varying demand conditions of each store. However the size

of the sale area is fixed over the time of the lease and once the location and the size of

the store is decided (based on the initial estimates of the location sales potential) there is

limited possibility to adjust this production input.

This study (efficiency and input slack estimates) thus gauges the quality of two sep-

arate skills: the ability of the central manager to determine optimum size–location and

total retail chain headcount mix, and the ability of individual retail store managers to op-

timally schedule employees. The identified labor input slacks can thus be directly trans-

lated into a reduction of employees working hours. The size of sale areas are, however,
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more diff cult to adjust in practice. It is up to the manager to consider the possibilities for

store size adjustment or alternative solution in addressing low incoming customer traffic

if slacks are small. When slacks are substantial, store relocation may be inevitable to

evade further wasteful consumption of resources.

3.2 Methodology

There is no single widely accepted approach to assessing retail store productivity (Donthu

and Yoo 1998). However, in recent retailing studies (e.g. Donthu and Yoo 1998, Reynolds

2004) production frontier methodologies are most frequently used. In this paper we use

both parametric and non–parametric production frontier methods to create a comprehen-

sive framework for technical eff ciency analysis.

In their original paper on production frontier methods, Marschak and Andrews (1944)

sketched out the terms “technical” and “economic eff ciency” (paragraph 1 and 11) of

a firm. Later, Farrell (1957) defined the efficiency of a decision making unit (DMU),

which consists of two components: technical efficiency (TE) and allocative efficiency

(AE). In Farrell’s efficiency concept, overall efficiency (OE) is defined as multiplicative

combination of technical and allocative eff ciency, so that OE=TE*AE. Allocative effi -

ciency expresses the extent to which an analyzed DMU uses its inputs in proportions

which minimize the costs of production, assuming that the unit is already fully techni-

cally efficient. Technical efficiency measures the extent to which inputs are converted to

outputs relative to the best practice frontier.

An important feature of the retailing network in a competitive market is that the

retail stores must meet the demand for their services but are not able to choose the level

of output they will offer due to competition limitations. Further in our case, we have to

abstract from the role of prices of mobile network services because the retail units do

not affect these prices; all retail units are offering the same services for the same prices.

Regional and location aspects (demographic, social, economic and competitive supply

patterns of towns/districts) that determine the sales level of mobile network services by
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retail units are considered to be beyond the unit’s control. These facts provide a rationale

for considering the levels of outputs as given by local characteristics and by the general

operator’s sales strategy. Given the exogeneity of the output levels, the retail network

maximizes prof t simply by minimizing the levels of used inputs for producing a given

level of output.

We also abstract from the role of prices in allocation of resources because rent and

size of the retail unit is predominantly affected by location characteristics and availability

of space for rent. Due to these restrictions, we do not assume that the unit location and

size is chosen with respect to allocative eff ciency. Therefore, rather than considering

the cost or profit efficiency level of retail units, we focus our analysis on the technical

efficiency of units, especially input efficiency.

The following sections review input–oriented DEA methodology and two parametric

methods (COLS and SFA) used to search for the production frontier that allows us to

evaluate technical and scale efficiency of retail stores.

3.2.1 Non–parametric frontier approach: DEA

Using Farrell’s (1957) concept, Charnes, Cooper and Rhodes (1978) introduced the first

DEA model to evaluate technical efficiency in a multi input–output environment. Since

then, the CCR model and its modifications have become a widely used tool for operations

analysis and production frontier search in many sectors including schools, hospitals or

banks. The DEA models measure the efficiency of DMUs by identifying of the best per-

forming units. These best performing units are then used to construct the “best practice

frontier” through a piecewise linear envelopment of observed data. Therefore the effi -

ciency scores estimated by the DEA models are relative measures of efficiency within

the sample of the analyzed DMUs.

The DEA approach assumes that each of the considered DMUs is described by a

vector x j, x j = (x1 j, . . . ,xm j)
T of m inputs amounts that are used to produce s outputs

in amounts described by vector y j, y j = (y1 j, . . . ,ys j)
T . To aggregate these vectors into
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matrices of inputs and outputs the following notation will be used:

matrix of inputs vectors Xm×n = (x1, . . . ,xn)

ith row of “input” matrix X ix = (xi1, . . . ,xin), i = 1, . . . ,m

matrix of outputs vectors Yr×n = (y1, . . . ,yn)

rth row of “output” matrix Y ry = (yr1, . . . ,yrn), r = 1, . . . ,s.
When using the DEA approach to search for the “best practice frontier”, it is assumed

that the set of production mixes used by DMUs is described by the production possibility

set

T = {(x,y)| using inputs x ≥ 0 outputs y ≥ 0 are produced}

and it is assumed that the technology set has the following properties:

1. Convexity: If (x j,y j) ∈ T, j = 1, . . . ,n and λ ∈ R
n
+, ⇒ (Xλ,Yλ) ∈ T.

2. Ineff ciency property: If (x,y) ∈ T and x̄ ≥ x, then (x̄,y) ∈ T.

If (x,y) ∈ T and ȳ ≤ y then (x, ȳ) ∈ T.

3. Minimum extrapolation: T is the intersection of all sets satisfying the conve-

xity and ineff ciency property and such that each of the observed production mix

(x j,y j) ∈ T, j = 1, . . . ,n.

4. No free lunch: (0,y) 6∈ T, for y > 0.

The production frontier (“best–practice frontier”) determine the minimum level of

inputs that needed to produce a given level of outputs. The input–oriented DEA models

examine the levels of inputs needed for the production of DMU’s output mix, and the

efficiency measure indicates whether the DMU under consideration uses the minimum

necessary level of inputs. The simplest input–oriented eff ciency score of the DMU j

measures the maximum proportional reduction of inputs that allow production of the

same output mix as the examined DMU j. However, due to its simplicity, this measure

fails to uniquely identify efficient units. Therefore, we will use a more complex eff -

ciency measure, described later.
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We use the input–oriented DEA models to evaluate the input–oriented pure technical

efficiency and scale efficiency score of the DMU j, for j = 1, . . . ,n which are character-

ized by the following general linear programming problem:

min
λ j,θ j,e j,s j

θ j − ε(1T e j +1T s j) (1)

s.t. θ jxi j − ixλ j − ei j = 0, i = 1, . . . ,m;

ryλ j − sr j = yr j, r = 1, . . . ,s;

ϕ(1T λ j) = ϕ;

λ j,e j,s j ≥ 0,

where λ j ∈ R
n
+ (intensity variable), θ j ∈ R+ (proportional input reduction), e j ∈ R

m
+

(non–proportional input excess), s j ∈R
s
+ (output slack), ϕ takes the value 0 for the CCR

input–oriented model introduced by Charnes et al. (1978) and 1 for the BCC input–

oriented model by Banker, Charnes and Cooper (1984).40 Formulation of these mod-

els as in Problem 1 is referred to as envelopment form because the optimal solution

(θ∗j ,λ∗
j ,e∗j ,s∗j) ∈ R

1+n+m+s
+ identif es the projection of DMU j on the envelopment sur-

face (“best practice frontier”) in the direction of proportional inputs reduction.

θ∗j expresses the minimal, proportionally reduced, levels of inputs for the DMU j

while keeping the outputs at the same levels, in order to improve the technical efficiency

of this unit.41 Low value of θ∗j indicates excessive use of all inputs in the production mix.

This property of θ∗j provides a rationale for using θ∗j as an efficiency measure. Due to the

fact that this measure ignores non–proportional reduction of inputs, additional conditions

on input excess and output slack are needed to identify efficient units.

The constant ε in Problem 1 is a non–Archimedean infinitesimal that allows the

problems of the search for maximal input reduction and the search for frontier pro-

jection to be condensed into a single optimization problem. In a chapter on computa-
40Here, R+ denotes the set of positive real numbers and 1 is a column vector of ones.
411− θ∗   j   expresses the maximal proportional input reduction of input levels.
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tional aspects of the DEA, Charnes, Cooper, Lewin and Seiford (1994) argue that the

value of ε should be determined by an analyzed sample. Therefore, we choose ε =

10−6 min j=1,...,n 1/(∑i=1,...,m xi j) for our analysis. This choice of ε means that propor-

tional input reduction effectively preempts the optimization that involves non–proportional

slacks e j and s j. The DEA models as stated in Problem 1 are solved by implementing of

the primal–dual interior point method designed by Mehrotra (1992).42

The elements ei j express the input excess for each of the inputs, and the vector e j ∈

R
m
+ is formed to express the non–proportional input excess for DMU j’s input–output

mix. At least one element of e∗j (part of the optimal solution) should be zero, otherwise

there exists the possibility of proportional input reduction. Similarly for outputs, the

outputs slacks sr j form a vector of outputs slacks s j ∈ R
s
+ and s∗j expresses the possible

output augmentation. Further, individual slack analysis can help retail managers allocate

resources more effectively and improve performance.

The eff ciency of DMU j is evaluated using the optimal solution (λ∗
j ,θ

∗
j ,e∗j ,s∗j) of

Problem 1 under the assumption of the selected returns to scale (RTS) type. In the DEA

literature ( Charnes et al. 1994, Banker et al. 1984, Sueyoshi 1997) the efficiency of

DMU j is evaluated according to the following theorem:

Theorem 1. Efficient DMU j : The DMU j is DEA efficient if both of the following condi-

tions are satisfied: 1) θ∗j = 1; and 2) All values of slacks are zero: 1T e∗j = 0 and 1T s∗j = 0.

Otherwise DMU j is inefficient.

If DMU j is identified as inefficient according to Theorem 1, the optimal values of

slacks e∗j , s∗j and the optimal value θ∗j identify the sources and levels of present ineffi -

ciency.43 To take into account the presence of proportional and non–proportional slacks

we use the efficiency measure introduced by Tone (1993) to evaluate efficiency in a

comprehensive yet simplified fashion by defining the following input oriented efficiency
42To analyze sensitivity of solutions with respect to the choice of ε, we used ε = 0 to calculate new

efficiency scores. No significant changes in efficiency scores were recorded.
43According to Theorem 1 θ∗j = 1 is just a necessary condition but not sufficient to evaluate the DMU j

as efficient. Consider the case of DMU6 in Figure3.2, where θ∗   6(VRS) = 1 but because e∗  j > 0 this unit is
dominated in efficiency by DMU4.
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measure:

χ j =

(

θ∗j −
1T e∗j
1T x j

)

1T y j
1TY λ∗

j .
(2)

This efficiency measure has the following properties:

1. χ j = 1 ⇔ The DMU j is efficient

2. χ j = θ∗j ⇔ The values of all slacks are zero

3. 0 ≤ χ j ≤ 1

4. χ j is a units invariant measure

5. χ j is monotonically increasing in inputs and outputs of DMU j

6. χ j is decreasing in the relative values of the slacks.

The first efficiency measure property guarantees that this efficiency measure uniquely

identifies the efficient DMU while the fourth, fifth and sixth property provide a rationale

for use of this measure to create efficiency an ranking for analyzed DMUs.

Further, after identifying efficient DMUs and identifying of projections onto the pro-

duction frontier (potential efficiency improvements), we use the DEA methodology to

examine scale efficiencies of DMUs. Scale efficiency measures the extent to which

DMU j can take advantage of returns to scale by a change in its size towards the op-

timal scale, characterized by the constant returns to scale property.44

Charnes et al. (1994) and Sueyoshi (1997) provide an extensive summary of the re-

lationships between various DEA model specif cations and estimated types of efficiency

(technical, pure technical, scale, cost, and allocative). Following the outlined methodol-

ogy, we estimate the pure technical efficiency of DMU j using the BCC model (setting

ϕ = 1 in Problem 1), and the technical and scale efficiency by utilizing the CCR model
44As defined in the glossary of the Steering Committee for the Review of Commonwealth/State Service

Provision (1997).
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(setting ϕ = 0 in Problem 1). Because of the multiplicative nature of technical efficiency,

the scale efficiency of production frontier elements can be evaluated by breaking down

the technical efficiency score into a scale of operations component and a “pure” technical

efficiency score.

We also estimate the model under the assumption of non–increasing returns to scale

(NIRS). Such a model is derived from Problem 1 by replacing the intensity variable

constraint with inequality 1T λ j ≤ 1. For these input oriented DEA models the following

property for optimal solution θ∗j holds:

0 < θ∗j(CRS)≤ θ∗j(NIRS)≤ θ∗j(VRS)≤ 1. (3)

The amount of scale inefficiency can be imagined as the distance between the con-

stant returns to scale (CRS) and the variable returns to scale (VRS) frontier, because this

distance is determined by the scale efficiency component of technical efficiency. Fig-

ure 3.2 illustrates the comparison of the CRS frontier (CCR model) with the VRS frontier

(BCC model). In Figure 3.2, the VRS frontier and production possibility set are divided

according to the RTS type of frontier elements into subsets of increasing returns to scale

(IRS, dashed line), scale efficient (bold solid line) and decreasing returns to scale (DRS,

dot–dash line). Elements from the horizontally shaded area can be projected in the input

reduction direction onto the part of the frontier with the IRS property, and from vertically

shaded area onto the part of the frontier with the DRS property. Projections of elements

from the cross–shaded area belong to the scale efficient part of the production frontier.

Figure 3.2 thus illustrates the situation in which DMU2 and DMU3 are scale efficient units

where as the rest of the analyzed units are scale inefficient due to the presence of either

IRS or DRS.

As illustrated above, the analyzed DMU j can be identified as operating in the region

of the production possibility set with a) increasing RTS, b) decreasing RTS or c) scale ef-

ficiency property. In addition to quantifying the scale efficiency level we also determine
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for each unit the type of RTS region it operates in. The literature on RTS identification

presents various approaches to extracting qualitative information on returns to scale of

the frontier. Löthgren and Tambour (1996) summarize four different (but equivalent)

approaches to estimating of returns to scale using a primal or dual solution to the DEA

models stated in Problem 1. To determine the RTS type for an individual retail unit we

employ the scale efficiency method. The concept of the scale efficiency method intro-

duced by Färe and Grosskopf (1985) is in detail discussed by Zhu and Shen (1995) and

can be given as the following theorem from Löthgren and Tambour (1996):

Theorem 2. Scale efficiency method: For the specific DMU j let define scale efficiency

measure SE j =
θ∗j(CRS)
θ∗j(VRS) . Then SE j = 1 iff the DMU j exhibits CRS (the DMU j is scale

efficient); if SE j < 1, then θ∗j(CRS)
θ∗j(NIRS) = 1 iff the DMU j exhibits IRS; if SE j < 1, then

θ∗j(CRS)
θ∗j(NIRS) < 1 iff the DMU j exhibits DRS.

An important part of the DEA analysis is the test for sensitivity of results to the selec-

tion of inputs and outputs for productivity mix description and returns to scale assump-

tion. For this purpose efficiency scores are calculated using alternative model specifica-

tions. Besides the descriptive statistics comparison, the sensitivity of efficiency rankings

constructed according to the efficiency measure of Tone (1993) is examined by use of

the Spearman rank correlation coefficient. The rank correlation coefficient and statis-

tics by Spearman (1904) test the hypothesis of rank independence. Spearman’s (1904)

correlation coefficient is commonly used to compare rankings in statistical studies.45

3.2.2 Parametric frontier approach: COLS

Further, to assess the robustness of efficiency and RTS estimates, we complement the

DEA methodology with results of the parametric production frontier approach using

corrected ordinary least squares (COLS) and stochastic frontier (SFA) methodology.
45For implementation details of the Spearman rank correlation coeff cient and statistics, see the manual

by Stata Corporation (2003). For properties of the correlation coeff cient see Kendall (1955).
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Winsten (1957), in his discussion of Farrell’s (1957) paper, suggested a parametric alter-

native to DEA that is based on a two–stage estimation of production frontier, known as

corrected ordinary least squares.

The deterministic production frontier of Cobb–Douglas production technology with

variable returns to scale is represented by the following model:

ln(y j) = β0 +
m

∑
k=1

ln(x jk)β j −u j, (4)

where the inputs x jk ∈ R+ are used to produce single output y j ∈ R+ for j = 1, . . . ,n

and inefficiency component u j ≥ 0 is assumed to be iid distributed with non-negative

mean and constant variance. Equation 4 is in the first stage estimated by OLS which

produces the unbiased and consistent slope parameters estimates of the frontier model.

In this stage, a consistent but biased estimate of intercept parameter β0 is obtained.

In the second stage, the unbiased intercept is estimated consistently by:

β̂∗
0 = β̂0 +max

j
{û j}, (5)

and the OLS residuals are corrected according to:

−û∗j = û j −max
j
{û j}.

This correction makes all residuals non–negative and at least one of them is zero. The

corrected residuals −û∗j are used to provide consistent estimates of technical efficiency.

The technical efficiency of producer i is calculated according to the following function:

T E(COLS) j = exp(−û∗j).

Using the technical efficiency score T E(COLS) j we construct an efficiency ranking and

compare this ranking to the DEA efficiency ranking to evaluate the sensitivity of our
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results.

3.2.3 Parametric frontier approach: SFA

The COLS approach, summarized in the previous section, does not take into account

the possible effect of random shocks that may also cause variation in output. Therefore,

we also employ a method of stochastic frontier which accounts for random shocks and

technical inefficiency effect on variation in output. Stochastic frontier analysis method

(SFA) was ficst introduced by Meeusen and van den Broeck (1977) and Aigner, Lovell

and Schmidt (1977). Since then, SFA has become a very popular tool that competes with

the DEA approach in estimating production frontiers.

Assuming that the production function is linear in logarithms, the stochastic produc-

tion frontier can be defined as follows:

ln(y j) = β0 +
m

∑
i=1

βi ln(xi j)+ v j −u j,

where u j represents the non–negative technical inefficiency component and v j is the

symmetric two–sided random shock component.

Various specifications of the inefficiency term distribution lead to distinct frontier

models. The most popular are half–normal (u j iid N+(0,σ2
u)), truncated normal (u j is

iid with N(µ,σ2
u) truncated at 0) and exponential model (u j iid exponentially distributed).

We estimate these models by maximum likelihood method.

Based on Kumbhakar and Lovell’s (2000) remark on the low sensitivity of efficiency

ranking to inefficiency distributional assumptions (conf rmed in our sample), we esti-

mate stochastic production frontier under the assumption of a half–normal distribution

of the inefficiency term. Under this assumption the likelihood–ratio test is used to test

for the presence of an inefficiency component in the model. This test compares values

of likelihoods functions under H0 : σ2
u = 0 against alternative hypothesis H1 : σ2

u > 0.

For more details on one–sided likelihood–ratio test statistics see Gutierrez, Carter and

70



Drukker (2001).

In addition assessing the robustness of efficiency estimates, we use the deterministic

(COLS) and stochastic (SFA) frontier methods to validate the conclusions of data envel-

opment analysis on returns to scale. To complete the parametric frontier analysis, we

test the null hypothesis that retail units employ the CRS technology by use of the Wald

test (Kmenta 1990) to test if the sum of production factor elasticities sums to 1 (testing

restriction ∑m
k=1 βk = 1).

3.3 Results

In this section a summary of performance analysis results obtained by the DEA and

parametric production frontier methodology is presented. Ratio analysis is discussed as

well. For all technology specifications, inputs are described by the size of the sale area

and the number of employees. As mentioned in previous sections, we use three different

specif cations of outputs to describe the retail technology of mobile network services.46

To assess technical efficiency we constructed four output/input ratios and ranked

units according to these four productivity indicators. Results of this analysis are summa-

rized in Table 3.2. For each ratio four top, middle and bottom performing units are shown.

There are two ratios per each output. We report the Spearman rank correlation coeffi-

cients for each output ratio and a low consistency of rankings is observed across ratio

measures (0.2811 and 0.4661) with respect to choice of output. These results illustrate

the problem with the univariate nature of ratio analysis. As mentioned in introduction,

ratio analysis is of capturing to capture the multivariate nature of the considered retailing

technology. These results thus provide a rationale for use of more complex measures of

productivity.

Using three different specifications of outputs we f rst compute efficiency scores by

the input–oriented DEA models. Two models use a single output specification: 1) num-

ber of SIMs sold (referred to as SIMs model), and 2) revenue generated by acquired
46Descriptive statistics of the models’ inputs and outputs are summarized in Table3. 1.
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subscribers (referred to as Revenue model). The third model uses two outputs: number

of SIMs sold and revenue generated by customers owning these SIMs (referred to as

SIMs&Revenue model). To estimate the production frontier under the SFA and COLS

approach, we use only the first and second one–output model specif cation.

Table 3.3 summarizes the descriptive statistics for the efficiency scores (χ j), technical

and scale efficiency (θCCR), pure technical efficiency (θBCC) and scale efficiency for all

three specifications of the DEA models. Table 3.3 shows that on average the retail units are

from 88 to 94 % scale efficient and that average pure technical efficiency (θ) ranges from

52 to 58% depending on model specification. This result suggests that pure technical

inefficiency is the main source of technical inefficiency and that DMUs on average are

operating close to full scale efficiency.

We used the efficiency score χ j to create performance rankings of DMUs. We as-

sessed the sensitivity of results with respect to model specif cation by calculating Spear-

man rank correlation coeff cients and by testing statistics for signif cance of rank corre-

lation coefficients. To assess the extent of correlation we used Mortimer’s (2002) review

of studies on parametric and non–parametric methods comparison as a benchmark. Also,

from analysis of the relation between sample size and extent of rank correlation in stud-

ies reviewed by Mortimer (2002), we were not able to identify any bias in extent of

correlation with respect to sample size. In general, for values of Spearman rank corre-

lation of 0.9 to 1, the correlation is considered very strong; for values between 0.7 and

0.9, correlation is considered strong; and for values between 0.5 and 0.7, correlation is

considered moderate.

The robustness of results was also tested by recalculating scores after the units iden-

tified as efficient and outlier units were removed from the full sample (42 observations).

The sample of 39 observations used in the test focused on the consistency of DEA results,

where we removed 3 units from the full sample that were identified as efficient by the 2

outputs–2 inputs models. Further, we removed the four busiest sales locations according

to a complementary study on store location aspects, where these four stores acquired a
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high number of customers (high number of SIMs acquired) when compared to the rest

of the stores. The decision to remove these four units is also supported by hat matrix

analysis, when these units are characterized by high values of leverage (0.1496–0.3536,

the small sample cutoff 3p/n suggested by Vellman and Welsch (1981), is 0.1428) and

Cook’s distance (0.2276–0.7083, while the cutoff 4/(n− k− 1), suggested by Belsey,

Kuh and Welsch (1980), is 0.1025).

Table 3.4 shows a summary of Spearman rank correlation coefficients for all considered

models under either a CRS or VRS assumption. All estimated correlation coefficients are

significant, and the high values of correlation coefficients values suggest a low sensitivity

of results to inputs and outputs specification among the considered models. Spearman’s

ranking correlation coefficient for these DEA technical efficiency rankings ranges from

0.7543 to 0.9728 in the case of SIMs models, 0.7115− 0.9882 in the Revenue model

and 0.7816−0.9882 for the SIMs&Revenue model.

The differences between θCCR and θBCC suggest that after eliminating pure technical

inefficiency (projecting observations onto the VRS frontier) inputs can be reduced on

average by additional 4–8 % without affecting level of outputs when CRS technology is

used. Table 3. 5 presents a detailed view on computed input reduction parameters and scale

eff ciency scores. The results presented in Table 3.5 are consistent with ordering condition

3 on theta. Table 3.5 also shows the levels of scale efficiency in the SE–score column.

The differences between means of efficiency scores (χ j) and means of proportional

reduction parameters (θ j) within the model specif cation arise from the presence of non–

proportional slacks when searching for efficiency improvements. As mentioned in the

methodology section, this information can be used to predict additional performance

improvement. To specify sources of this improvement, we present summary statistics of

non–proportional slacks in Table 3.6. From this summary it follows that adjustments in

store size can be the most important driver of possible performance improvements.

These results, as presented above imply that retail network costs can be reduced more

if retail units were to emulate the “best practice” rather than trying to adjust for scale eff -
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ciency of operations. These results are in line with other retail studies (Athanassopoulos

and Ballantine 1995, Donthu and Yoo 1998) which conclude that reductions in cost aris-

ing from the realization of economies of scale are less important than the costs saved

when a retailing network is undertakes improvements in technical efficiency.

A summary of RTS identification by the DEA method is presented in Table 3.7. These

results reveal that a majority of retail units appears to be operating in the decreasing

returns to scale region of the production possibility set when the input reduction objective

is imposed. This conclusion indicates the presence of economies of scale in the operation

of individual retail stores.

The RTS identification results obtained by the DEA are supported by tests of the

hypothesis that retail units employ CRS retail technology. To do this, we employed a

parametric (COLS and SFA) technique. Two one–output models of production frontier

were estimated. As mentioned above, we used the same outputs as in the one–output

DEA models; both inputs and outputs are expressed in terms of logarithms (output was

defined in terms of log of revenues and log of number of SIMs acquired, respectively).

Tables 3.8 and 3.9 present the results of this estimation, while Table 3.10 summarizes the

technical efficiency scores estimated by the parametric method. The estimated input

elasticities do not significantly vary across the parametric methods. However, based on

a log–likelihood ratio test we have to accept the hypothesis of no presence of an ineffi -

ciency component for the SFA model. As Schmidt and Sickles (1984) note, estimation

of the cross–sectional stochastic frontier model is based on strong distributional assump-

tions of statistical noise and inefficiency components of the error term. Therefore, we

attribute the failure to identify the asymmetric inefficiency component under the SFA

model in this sample to the negligible skewness of inefficiency distribution.

Figure 3.3 illustrates the distribution of technical efficiency and compares parametric

(COLS) and non–parametric (DEA) methods. The density estimates reveal patterns typ-

ical for efficiency scores from the DEA approach, where the peak close to unity is due

to eff cient DMUs that are used to identify the production possibility frontier. Therefore,
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it is more appropriate to compare rankings of technical efficiency scores that result from

parametric and non–parametric methods. These results are presented in Table 3.11.

Table 3.12 reports the results of testing for the prevailing type of returns to scale among

retail units. Based on the Wald test, the null hypothesis of CRS was rejected. The sum

of the elasticities of output with respect to inputs generated an estimated scale elastic-

ity. The values of elasticities sums were less than one, which supports the DEA results

regarding the presence of decreasing returns to scale.

The fact that the DRS property prevails for the majority of retail stores suggests that

further expansion of units’ operation size would lead to a less than proportional increase

in outputs and that units may became even less effective. In this case, contraction in the

size of retail store operations may increase their efficiency levels at the cost of a less than

proportional reduction of achieved output levels.

To test the sensitivity of results to the presence of the busiest units, Table 3.13 and Table

3.14 present results of the parametric approach when a reduced sample of 38 observations

is used. With this reduced sample, based on the log–likelihood ratio test we were able to

reject the hypothesis of no presence of the technical inefficiency component in the SFA

model.

Table 3.15 summarizes the results of technical efficiency estimation using reduced

sample under the DEA, COLS and SFA approach. Estimated average technical effi -

ciency range from 0.5253 to 0.6986. We report only the results for technical efficiency

scores under the VRS assumption because according to test results presented in Table 3.16

we were able to reject the hypothesis of CRS technology. Figure 3.4 shows estimates of

distributions of technical eff ciency scores. Again, to assess the consistency of techni-

cal efficiency results, we use ranking correlations. The ranking correlations for reduced

sample ranks are summarized in Table 3.11. Both extent of rank correlation (Spearman

rank correlation ranges from 0.67 to 0.98) and the fact that we were able to reject the hy-

pothesis of rank independence for all cases (at 1% signif cance level) lead us to conclude

that the technical efficiency rankings are robust with respect to the choice of the frontier
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approach.

Further, when comparing results for the reduced sample with results from the full

sample presented in Tables 3.3 and 3.10, we observe an upward shift in the average and

minimal technical efficiency score. This fact is consistent with the nature of technical

efficiency estimates used in this analysis. To analyze the sensitivity of rankings, we

compare rankings for the full and reduced sample by use of ranking correlation coeff -

cients. The ranking correlation coefficients for both samples are summarized in Table

18. These results allow us to consider our results as robust with respect to the choice of

the productivity frontier approach and to model specif cation across the full and reduced

samples.

Assessing Figure 3.5 and Figure 3.6, where type of returns to scale is drawn against the

level of input, we conclude that the overall DRS property of DMUs results from the DRS

property of size of store. This conclusion supports the ratio analysis results indicating

that sales per square meter decrease with size of the store. However, we cannot make

straightforward conclusion about the prevailing returns to scale property of labor input

characterized by number of employees.

Finally, the relation between levels of inputs used for the production and efficiency

scores is illustrated in Figures 3.7 and 3.8. We observe that the highest efficiency scores

are attained by units with a relatively small size (Figure 3.7). Similarly, as in the case of

the relation of the RTS type to number of employees, we cannot draw a straightforward

conclusion about the effect the number of employees has on the efficiency of retail store

3.8.

Figures 3.9 and 3.10 illustrate the ratio analysis of performance evaluation and links it

to the DEA approach to efficiency evaluation. These figures show DMUs in the space

of the output per unit of input: SIMs sold per employee and SIMs per square meter in

Figure 3.9, and revenue generated per employee and revenue generated per square meter in

Figure 3.10. To link the ratio analysis to performance evaluation with the DEA results, we

labelled data points in Figure 3.9 and Figure 3.10 with the DEA efficiency scores. Figure 3.9
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and Figure 3.10 reveal that units considered highly performing according to ratio analysis

also show high DEA efficiency scores. Efficiency growth in this space is indicated by the

thick arrow on the bottom of each graph. Productivity ratios (output per unit of input)

are highly correlated with efficiency scores.

In general, the higher the output per square meter and/or output per employee, the

higher the efficiency score. Lines that divide the graph area into four parts are meant

to separate the units that are in the upper quartile of maximal level of output per unit of

input. Based on ratio analysis, units in the outer regions are considered units with high

efficiency. This reasoning is confirmed by the high DEA eff ciency score of these outer

units.

3.4 Conclusion

The main objective of this paper was to demonstrate the use of a complex framework for

performance analysis by estimating technical and scale efficiency of individual stores in

the retail network of a mobile network operator. This framework allowed us to overcome

the shortcomings arising from the univariate nature of ratio analysis. The goal of this

technical efficiency study was to facilitate the optimization of resource allocation so that

retail units consume their inputs in an optimal mix to provide retail services.

We quantified the possible efficiency improvements of inefficient retail stores, using

an equi–proportional input reduction approach. Efficiency improvements can be driven

by improvements in better operational practices (improvements in headcount planning,

adjusting for variation in sales over time) or in adjustments of the production mix (size

of sales area per employee). We also identified the returns to scale type of analyzed units

as additional information for the adjustment of production mix size. The information

on the RTS type allows managers to decide on future expansion or on contraction in

size of operations after the unit adopts the practice of efficient production mix. Analysis

of non–proportional slacks indicated that reduction in store size can yield substantial

improvements in technical (and likely also in cost efficiency) for some of the larger
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stores. Robustness of the DEA results is supported by results from parametric frontier

methods (COLS and SFA).

In the performance evaluation of the retail units, managers can put too much empha-

sis on measuring output levels alone. However, there may be well managed stores whose

performance can be negatively affected by exogenous factors, or and poorly managed

store helped by favorable environmental factors. Low levels of outputs, therefore, are

not sufficient to judge on retail unit efficiency; to make decisions about units we hence

assessed the efficiency level and output levels together as two key performance measures.

To assess these performance measures together, we placed the retail units in an

outputs–efficiency space as displayed in Figure 3.11 and Figure 3.12. In both f igures

the space is divided into four quadrants at mean values. Retail units located in the "Stars"

quadrant are those with the highest efficiency scores and which are probably operating

in a favorable economic environment. Opposite to this is the “Cows” quadrant, which

contains low efficiency units probably located in an unfavorable environment (area with

low sales potential). The “Dogs” quadrant contains efficiently operated retail units with

lower levels of outputs, likely due to being located in low sales potential area. The

“Sleepers” quadrant contains retail units that show high levels of outputs, but this has

more to do with favorable environmental conditions than with good management. Units

located in the “Sleepers” quadrant are candidates for efficiency improvements that may

lead to even greater profits. Managers should attempt to increase the efficiency of stores

in these locations.

From a comparison of the extent of scale inefficiency and pure technical inefficiency,

we conclude that managers should implement the operational practices of the technically

efficient units rather than exploit economies of scale to improve retail network perfor-

mance. This conclusion is supported by the results of RTS identif cation, which indicates

that the majority of retail units is operating in the DRS region.

We argue that the DEA and parametric production frontier study permits a more

thorough and complex understanding of the assessment of retail store performance than
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does simple ratio analysis. Finally, the use of a “best practice” approach to predicting 

the operations of retail stores allows managers to set realistic and individual goals based 

on store–specific profile. 
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3.A Tables and Figures 

Variables Obs. Mean STD. Dev. Min Max
Inputs
Size (m2) 42 38.95 28.43 5 122
Employees 42 17.73 4.10 3 27
Outputs
SIM cards sold 42 2507.16 1428.56 793 6869
Sold SIM cards revenue 42 31.8033 19.6507 8.5255 92.6930

Table 3.1: Input–output summary
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Figure 3.1: Inputs–outputs relations
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Figure 3.2: Production frontier and returns to scale types

Rank SIMs per m2 SIMs per empl. Revenue per m2 Revenue per empl.
Top 4 DMU39 DMU33 DMU39 DMU33

DMU4 DMU31 DMU4 DMU4
DMU6 DMU4 DMU6 DMU31
DMU12 DMU24 DMU12 DMU30

Middle 4 DMU31 DMU13 DMU13 DMU14
DMU22 DMU29 DMU5 DMU17
DMU25 DMU22 DMU25 DMU13
DMU9 DMU17 DMU22 DMU12

Bottom 4 DMU2 DMU1 DMU27 DMU1
DMU32 DMU37 DMU29 DMU37
DMU8 DMU35 DMU8 DMU2
DMU15 DMU2 DMU15 DMU35

Rank correlation 0.28 0.47

Table 3.2: Ratio scores ranking
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Model Obs. Mean Std.Dev. Min Max
SIMs χ–CCR 42 .4474 .2235 .1510 1

θ–CCR 42 .5341 .2196 .1606 1
χ–BCC 42 .5394 .2312 .1962 1
θ–BCC 42 .5736 .2380 .2174 1
Scale eff ciency 42 .9433 .1175 .4372 1

Revenue
χ–CCR 42 .3855 .2410 .1039 1
θ–CCR 42 .4555 .2358 .1560 1
χ–BCC 42 .4161 .2976 .0966 1
θ–BCC 42 .5253 .2675 .2049 1
Scale eff ciency 42 .8830 .1261 .2600 1

SIMs&Revenue
χ–CCR 42 .3856 .2410 .1040 1
θ–CCR 42 .5377 .2193 .1606 1
χ–BCC 42 .4799 .2728 .1550 1
θ–BCC 42 .5841 .2414 .2174 1
Scale eff ciency 42 .9333 .1152 .4372 1

Table 3.3: Efficiency scores (χ) and θ summary statistics

Model SIMs Revenue SIMs&Revenue
CCR BCC CCR BCC CCR BCC

SIMs CCR 1.0000
BCC 0.8802 1.0000

Revenue CCR 0.9115 0.8436 1.0000
BCC 0.8815 0.7979 0.9092 1.0000

SIMs&Revenue CCR 0.9109 0.8439 0.9994 0.9089 1.0000
BCC 0.8457 0.9436 0.8350 0.8246 0.8353 1.0000

Note: All coeff cients are signif cantly different from 0 at 1% level.

Table 3.4: Spearman rank correlation
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Model SIMs Revenue SIMs&Revenue
Unit θCCR θBCC SE–score χ j–BCC θCCR θBCC SE–score χ j –BCC θCCR θBCC SE–score χ j–BCC
DMU1 0.5540 0.6020 0.9738 0.6020 0.5462 0.6215 0.8788 0.4334 0.5862 0.6215 0.9432 0.4334
DMU2 0.3660 0.4387 0.8341 0.4387 0.2622 0.3333 0.7867 0.3301 0.3659 0.4387 0.8341 0.2965
DMU3 0.6060 0.6082 0.9967 0.6082 0.4855 0.4871 0.9967 0.4831 0.6062 0.6082 0.9967 0.4937
DMU4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMU5 0.3620 0.4402 0.8230 0.4402 0.3285 0.3867 0.8495 0.3867 0.3623 0.4402 0.8230 0.3747
DMU6 0.2900 0.2907 0.9959 0.2907 0.1742 0.2049 0.8502 0.2027 0.2895 0.2907 0.9959 0.1776
DMU7 0.4670 0.4712 0.9917 0.4712 0.4073 0.4200 0.9698 0.3898 0.4673 0.4712 0.9917 0.4236
DMU8 0.3800 1.0000 0.4372 0.6220 0.2600 1.0000 0.2600 1.0000 0.4372 1.0000 0.4372 1.0000
DMU9 0.5380 1.0000 0.5381 0.9462 0.5648 1.0000 0.5648 0.9588 0.5648 1.0000 0.5648 0.9785
DMU10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMU11 0.2510 0.5309 0.9862 0.3810 0.5842 0.6669 0.8760 0.2342 0.5842 0.6669 0.8760 0.2341
DMU12 0.6010 1.0000 0.9825 1.0000 0.8523 1.0000 0.8523 1.0000 0.9825 1.0000 0.9825 1.0000
DMU13 0.8840 0.9117 0.9695 0.9117 0.8377 1.0000 0.8377 1.0000 0.8839 1.0000 0.8839 1.0000
DMU14 0.2980 0.4870 0.9850 0.4649 0.2964 0.3304 0.8971 0.1596 0.4797 0.4870 0.9850 0.3236
DMU15 0.4020 0.6695 0.9851 0.6293 0.5494 0.6252 0.8788 0.2811 0.6595 0.6695 0.9851 0.5909
DMU16 0.2850 0.6682 0.9847 0.4481 0.5196 0.5913 0.8787 0.1887 0.6580 0.6682 0.9847 0.3998
DMU17 0.3630 0.5791 0.9850 0.5688 0.4986 0.5691 0.8761 0.2651 0.5704 0.5791 0.9850 0.5606
DMU18 0.4390 0.5168 0.9783 0.5168 0.3818 0.4237 0.9011 0.2890 0.5056 0.5168 0.9783 0.4300
DMU19 0.4340 0.9131 0.9825 0.7209 0.6460 0.7520 0.8590 0.2526 0.8971 0.9131 0.9825 0.5985
DMU20 0.3310 0.5520 0.9866 0.5002 0.3469 0.3807 0.9112 0.1869 0.5446 0.5520 0.9866 0.3552
DMU21 0.4360 0.4895 0.9741 0.4895 0.3435 0.3868 0.8881 0.2678 0.4768 0.4895 0.9741 0.3924
DMU22 0.5600 0.5704 0.9825 0.5704 0.5523 0.6007 0.9194 0.4903 0.5604 0.6007 0.9329 0.4902
DMU23 0.2950 0.3510 0.9846 0.3510 0.2398 0.2540 0.9441 0.1904 0.3456 0.3510 0.9846 0.2629
DMU24 0.3670 0.4316 0.8501 0.4316 0.2686 0.3237 0.8298 0.3237 0.3669 0.4316 0.8501 0.3000
DMU25 0.4470 0.4516 0.9889 0.4516 0.3540 0.3670 0.9646 0.3364 0.4466 0.4516 0.9889 0.3728
DMU26 0.4850 0.4893 0.9914 0.4893 0.3962 0.4064 0.9749 0.3824 0.4851 0.4893 0.9914 0.4125
DMU27 0.2720 0.3844 0.9893 0.3828 0.3035 0.3287 0.9233 0.1964 0.3803 0.3844 0.9893 0.3325
DMU28 0.1510 0.3519 0.9895 0.2100 0.2403 0.2549 0.9427 0.0966 0.3482 0.3519 0.9895 0.1574
DMU29 0.3420 0.4598 0.9865 0.4598 0.3710 0.4049 0.9163 0.2503 0.4536 0.4598 0.9865 0.4099
DMU30 0.4860 0.4965 0.9778 0.4965 0.3746 0.4093 0.9152 0.3329 0.4855 0.4965 0.9778 0.4152
DMU31 0.6070 0.6823 0.8895 0.6823 0.5813 0.6370 0.9126 0.6370 0.6069 0.6823 0.8895 0.6273
DMU32 0.3080 0.3997 0.9832 0.3997 0.3399 0.3776 0.9002 0.2323 0.3930 0.3997 0.9832 0.3796
DMU33 0.2750 0.3493 0.9865 0.3493 0.2361 0.2498 0.9452 0.1758 0.3446 0.3493 0.9865 0.2589
DMU34 0.4030 0.4205 0.9774 0.4205 0.2417 0.2566 0.9419 0.2199 0.4110 0.4205 0.9774 0.2691
DMU35 0.1540 0.3608 0.9911 0.2051 0.2522 0.2625 0.9608 0.1033 0.3576 0.3608 0.9911 0.1550
DMU36 0.2860 0.3364 0.9884 0.3364 0.2936 0.3122 0.9404 0.2340 0.3325 0.3364 0.9884 0.3150
DMU37 0.9150 0.9525 0.9610 0.9525 0.8809 0.9105 0.9675 0.9105 0.9154 0.9525 0.9610 0.9048
DMU38 0.4250 0.6220 0.9854 0.6220 0.6418 0.7293 0.8800 0.3743 0.6418 0.7293 0.8800 0.3742
DMU39 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
DMU40 0.2750 0.3082 0.9893 0.3082 0.3382 0.3656 0.9251 0.2760 0.3382 0.3656 0.9251 0.2759
DMU41 0.1610 0.2174 0.7387 0.1962 0.1560 0.2174 0.7176 0.1938 0.1606 0.2174 0.7387 0.1938
DMU42 0.2900 0.2905 0.9976 0.2905 0.1861 0.2174 0.8560 0.2140 0.2898 0.2905 0.9976 0.1885

Table 3.5: θ and scale efficiency scores
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Relative slacks Obs. Mean Std. Dev. Min Max
Employees – BCC 42 0.0009 0.0060 0 0.0395
Employees – CCR 42 0.0017 0.0112 0 0.0727
Size – BCC 42 0.0626 0.1281 0 0.5280
Size – CCR 42 0.1114 0.1547 0 0.5663

Table 3.6: Relative non–proportional slacks summary

RTS type
Model IRS Scale eff cient DRS
SIMs 8 3 31
Revenue 10 3 29
SIMs&Revenue 8 3 31

Table 3.7: Returns to scale summary

COLS–SIMs

Source | SS df MS Number of obs = 42
-------------+------------------------------ F( 2, 39) = 14.43

Model | 4.55676971 2 2.27838485 Prob > F = 0.0000
Residual | 6.1590294 39 .157923831 R-squared = 0.4252

-------------+------------------------------ Adj R-squared = 0.3958
Total | 10.7157991 41 .261360954 Root MSE = .3974

------------------------------------------------------------------------------
lsimsacq | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .664571 .2136263 3.11 0.003 .232471 1.096671
lm2 | .1633477 .0889871 1.84 0.074 -.0166456 .3433411

_cons | 5.263163 .5035711 10.45 0.000 4.244594 6.281732
------------------------------------------------------------------------------

COLS–revenue

Source | SS df MS Number of obs = 42
-------------+------------------------------ F( 2, 39) = 7.13

Model | 3.36684954 2 1.68342477 Prob > F = 0.0023
Residual | 9.211201 39 .236184641 R-squared = 0.2677

-------------+------------------------------ Adj R-squared = 0.2301
Total | 12.5780505 41 .30678172 Root MSE = .48599

------------------------------------------------------------------------------
lrevenue | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .4894449 .2612503 1.87 0.069 -.0389837 1.017873
lm2 | .1776836 .108825 1.63 0.111 -.0424358 .397803

_cons | 11.62867 .6158328 18.88 0.000 10.38303 12.87431
------------------------------------------------------------------------------

Table 3.8: COLS – results for full sample
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SFA–SIMs

Stoc. frontier normal/half-normal model Number of obs = 42
Wald chi2(2) = 31.07

Log likelihood = -19.280665 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lsimsacq | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .664576 .2058572 3.23 0.001 .2611033 1.068049
lm2 | .1633458 .0857516 1.90 0.057 -.0047243 .3314159

_cons | 5.279347 1.060924 4.98 0.000 3.199975 7.358719
-------------+----------------------------------------------------------------

sigma_v | .382747 .0476542 .2998695 .48853
sigma_u | .0203664 1.184192 6.55e-52 6.33e+47
sigma2 | .14691 .0443624 .0599613 .2338587
lambda | .053211 1.207792 -2.314017 2.420439

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000

SFA–revenue

Stoc. frontier normal/half-normal model Number of obs = 42
Wald chi2(2) = 15.35

Log likelihood = -27.733185 Prob > chi2 = 0.0005
------------------------------------------------------------------------------

lrevenue | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .4894459 .251747 1.94 0.052 -.0039691 .982861
lm2 | .1776832 .1048665 1.69 0.090 -.0278513 .3832177

_cons | 11.63776 .9571444 12.16 0.000 9.761789 13.51373
-------------+----------------------------------------------------------------

sigma_v | .4682589 .0517822 .377013 .5815884
sigma_u | .0114784 .9416534 1.70e-72 7.76e+67
sigma2 | .2193982 .049804 .1217841 .3170123
lambda | .0245129 .95139 -1.840177 1.889203

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 0.00 Prob>=chibar2 = 1.000

Table 3.9: SFA – results for full sample

Model Obs Mean Std. Dev. Min Max
COLS–SIMs 42 0.4479 0.1807 0.1500 1.0000
COLS–Revenue 42 0.3960 0.1976 0.1474 1.0000
SFA–SIMs 42 0.9839 0.0003 0.9828 0.9848
SFA–Revenue 42 0.9909 0.0001 0.9907 .9911

Table 3.10: Parametric methods: Technical efficiency summary
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Ranking COLS–SIMs COLS–Rev. DEA–Rev. VRS DEA–SIMs VRS
COLS–SIMs 1.0000
COLS–Revenue 0.9316 1.0000
DEA–Revenue VRS 0.6018 0.6562 1.0000
DEA–SIMs VRS 0.8550 0.8128 0.8071 1.0000

Note: All coeff cients are signif cantly different from 0 at 1%.

Table 3.11: Spearman rank correlation coeff cients COLS–DEA (42 obs.)

Model Sum of elasticities F( 1, 39) Prob > F
COLS–SIMs 0.8279 0.9300 0.3416
COLS–Revenue 0.6671 2.3200 0.1359
Model Sum of elasticities chi2(1) Prob > chi2
SFA–SIMs 0.8279 1.0000 0.3178
SFA–Revenue 0.6671 2.5000 0.1140

Note: Reduced sample

Table 3.12: Wald test for hypothesis H0: CRS production function
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Figure 3.3: Comparison of density estimates (42 obs.)
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COLS–SIMs

Source | SS df MS Number of obs = 38
-------------+------------------------------ F( 2, 35) = 11.33

Model | 2.32361108 2 1.16180554 Prob > F = 0.0002
Residual | 3.59035357 35 .102581531 R-squared = 0.3929

-------------+------------------------------ Adj R-squared = 0.3582
Total | 5.91396465 37 .159836882 Root MSE = .32028

------------------------------------------------------------------------------
lsimsacq | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .4473402 .17792 2.51 0.017 .0861433 .8085371
lm2 | .1535561 .0747587 2.05 0.048 .0017879 .3053244

_cons | 5.827332 .4230969 13.77 0.000 4.968399 6.686264
------------------------------------------------------------------------------

COLS–revenue

Source | SS df MS Number of obs = 38
-------------+------------------------------ F( 2, 35) = 4.61

Model | 1.49073594 2 .74536797 Prob > F = 0.0167
Residual | 5.66231177 35 .161780336 R-squared = 0.2084

-------------+------------------------------ Adj R-squared = 0.1632
Total | 7.15304771 37 .193325614 Root MSE = .40222

------------------------------------------------------------------------------
lrevenue | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lfte | .2320428 .223436 1.04 0.306 -.2215564 .6856419
lm2 | .1732971 .0938837 1.85 0.073 -.0172969 .363891

_cons | 12.2748 .5313346 23.10 0.000 11.19614 13.35347
------------------------------------------------------------------------------

Table 3.13: COLS – results (38 obs.)
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SFA–SIMs

Stoc. frontier normal/half-normal model Number of obs = 38
Wald chi2(2) = 46.78

Log likelihood = -6.9128045 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lsimsacq | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .5718647 .1427028 4.01 0.000 .2921724 .851557
lm2 | .0786142 .0637068 1.23 0.217 -.0462489 .2034772

_cons | 6.126882 .2915422 21.02 0.000 5.55547 6.698295
-------------+----------------------------------------------------------------

sigma_v | .094448 .059624 .0274055 .3254973
sigma_u | .4983721 .0871752 .3537216 .7021759
sigma2 | .2572952 .0806131 .0992963 .415294
lambda | 5.276685 .1319612 5.018046 5.535325

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 4.36 Prob>=chibar2 = 0.018

SFA–revenue

Stoc. frontier normal/half-normal model Number of obs = 38
Wald chi2(2) = 7.850e+08

Log likelihood = -13.671618 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

lrevenue | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

lfte | .3801373 .0000816 4658.74 0.000 .3799774 .3802972
lm2 | .0293778 6.84e-06 4294.70 0.000 .0293644 .0293912

_cons | 12.90372 .000208 . 0.000 12.90331 12.90413
-------------+----------------------------------------------------------------

sigma_v | 9.10e-09 2.37e-06 7.6e-231 1.1e+214
sigma_u | .6934945 .0795493 .5538645 .8683255
sigma2 | .4809346 .110334 .264684 .6971853
lambda | 7.62e+07 .0795493 7.62e+07 7.62e+07

------------------------------------------------------------------------------
Likelihood-ratio test of sigma_u=0: chibar2(01) = 8.15 Prob>=chibar2 = 0.002

Table 3.14: SFA – results (38 obs.)

Model Obs Mean Std. Dev. Min Max
DEA–SIMs 38 0.6800 0.2369 0.2174 1.0000
DEA–Revenue 38 0.5921 0.2825 0.2083 1.0000
DEA–SIMs&Rev. 38 0.6986 0.2485 0.2174 1.0000
COLS–SIMs 38 0.5777 0.1666 0.2189 1.0000
COLS–Revenue 38 0.5263 0.1985 0.2262 0.9999
SFA–SIMs 38 0.6979 0.1767 0.2727 0.9578
SFA–Revenue 38 0.6110 0.2293 0.2023 0.9999

Table 3.15: Parametric methods: Technical efficiency summary
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Model Sum of elasticities F( 1, 35) Prob > F
COLS–SIMs 0.6008 6.9500 0.0124
COLS–Revenue 0.4053 9.7800 0.0035
Model Sum of elasticities chi2(1) Prob > chi2
SFA–SIMs 0.6504 10.3100 0.0013
SFA–Revenue 0.4095 6.2e+07 0.0000

Table 3.16: Wald test for hypothesis H0: CRS production function (38 obs.)
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Ranking DEA–SIMs DEA–Rev. DEA–SIMs&Rev. COLS–SIMs COLS–Rev. SFA–SIMs SFA–Rev.
DEA–SIMs 1.0000
DEA–Rev. 0.6695 1.0000
DEA–SIMs&Rev. 0.7859 0.9176 1.0000
COLS–SIMs 0.7583 0.8108 0.7863 1.0000
COLS–Rev. 0.6336 0.9188 0.8650 0.9011 1.0000
SFA–SIMs 0.7236 0.8193 0.7921 0.9845 0.8947 1.0000
SFA–Rev. 0.5517 0.8972 0.8374 0.8822 0.9691 0.8997 1.0000

Note: In all cases the hypothesis of rank independence was rejected at 1% signif cance level.

Table 3.17: Spearman rank correlation coefficients COLS–DEA (38 obs.)

Ranking 42 38
DEA–SIMs COLS–SIMs SFA–SIMs DEA–SIMs COLS–SIMs SFA–SIMs

42 DEA–SIMs 1.0000
COLS–SIMs 0.8130 1.0000
SFA–SIMs 0.8569 0.7934 1.0000

38 DEA–SIMs 0.7158 0.7236 0.9564 1.0000
COLS–SIMs 0.7409 0.7583 0.9690 0.9845 1.0000
SFA–SIMs 0.8565 0.7941 1.0000 0.9560 0.9687 1.0000

Ranking 42 38
DEA–Rev. COLS–Rev. SFA–Rev. DEA–Rev. COLS–Rev. SFA–Rev.

42 DEA–Rev. 1.0000
COLS–Rev. 0.6575 1.0000
SFA–Rev. 0.6580 0.9702 1.0000

38 DEA–Rev. 0.6575 0.8972 0.9201 1.0000
COLS–Rev. 0.5100 0.9188 0.9529 0.9691 1.0000
SFA–Rev. 0.6580 0.9702 1.0000 0.9201 0.9529 1.0000

Note: In all cases the hypothesis of rank independence was rejected at 1% signif cance level.

Table 3.18: Spearman rank correlation coefficients COLS–DEA
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Figure 3.4: Comparison of density estimates (38 obs.)
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Figure 3.5: Returns to scale type and size of store
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Figure 3.6: Returns to scale type and number of employees
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Figure 3.7: Size of store and efficiency score
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Figure 3.8: Number of employees and efficiency score
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Figure 3.9: SIM efficiency measure in per employee–per m2 space

Figure 3.10: Revenue efficiency measure in per employee–per m2 space
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Figure 3.11: SIMs acquired and efficiency score

Figure 3.12: Revenue and efficiency score
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