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Abstract

This paper proposes a novel approach to extracting option-implied equity premia, and
empirically examines the information content of these risk premia for forecasting the
stock market return. Our approach does not require specifying the functional form
of the pricing kernel, and does not impose any restrictions on investors�preferences.
We only assume the existence of put and call options which complete the market,
and show that the equity premium can be inferred from expected excess returns on a
portfolio of options. An empirical investigation of S&P 500 index options yields the
following conclusions: (i) the implied equity premium predicts stock market returns;
(ii) the implied equity premium consistently outperforms variables commonly used in
the forecasting literature both in- and out-of-sample; (iii) at the cross-sectional level,
stocks that are more sensitive to the implied equity premium have higher returns on
average.
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1 Introduction

We propose a novel approach to extracting option-implied equity premium estimates and

examine their information content for the stock market return. The equity premium is the

expected stock market return in excess of the risk-free rate. Measuring the equity premium

is important for both investment and corporate decisions (see Fama and French, 2002, and

Welch, 2000); the equity premium determines the �rm�s cost of capital and the investors

compensation for investing in risky stocks.

Our approach does not impose parametric restrictions on the dynamics of the underlying

stock and does not require specifying the functional form of the pricing kernel. It also avoids

some of the well-known misspeci�cations problems inherent in parametric approaches.1 We

contribute to the large, yet inconclusive, literature on the predictability of stock market

returns and �nd strong evidence that our measure of the option-implied equity premium

predicts stock market returns. The empirical results show that predictability is stronger for

monthly and quarterly horizons and persists for more than six months. We also �nd that the

forecasting power of the option-implied equity premium is superior to that of other variables

known to predict stock market returns, a �nding that is true both in- and out-of-sample.2

The out-of-sample R2 for the implied equity premium is higher than 10% for the monthly

horizon while other predictor variables have either negative or positive, but small, out-of-

sample R2. We also �nd that the option-implied equity premium helps explain the cross-

section of equity returns. Stocks that are more sensitive to the implied equity premium have

higher returns on average. The results are robust to additional controls such as the Fama-

French, the momentum and the aggregate volatility (as proxied by the VIX index) factors.

This cross-sectional evidence is consistent with the conditional CAPM of Jagannathan and

Wang (1996) and captures the notion that time varying equity premium and market betas

make the unconditional expected stock return related to both the market and the premium

betas (i.e., the sensitivity of stock to the equity premium). The empirical results also show

that the high-minus-low premium beta portfolio has a positive and signi�cant alpha of 0:46%

per month. Overall, the time series and cross-sectional tests show that our measure of the

option-implied equity premium is a plausible proxy for the equity premium.

Our approach exploits the following simple and intuitive idea: The expected excess return

on any derivative asset is determined by the price of risk of priced factors, therefore it is

possible to estimate the equity premium using expected excess returns on the appropriate

derivatives, and without imposing any functional form on the pricing kernel.3 In extracting

the option-implied equity premium, the underlying setup is an N�dimensional continuous-

1Previous studies have dealt with misspeci�cations problems by attempting to �nd better speci�ed models.
See Broadie, Chernov and Johannes (2007), Pan (2002), and Santa-Clara and Yan (2010) for examples on
parametric approaches.

2We consider the main variables used in Goyal and Welch (2008).
3This idea is similar to what Ait-Sahalia, Wang and Yared (2001) suggest in their conclusion.
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time di¤usion model. WithN di¤erent sources of risk, an equal number of securities�exposed

to these sources of risk�are needed to complete the market. The existence of a continuum of

call and put options allows for these N non-redundant securities to be synthetically created

from options. We refer to these securities as basic derivatives in the sense adopted by Brown

and Ross (1991): All derivatives are a portfolio of the basic derivatives. Since these basic

derivative assets complete the market, they can be used to replicate the payo¤ of any other

derivative. And in particular, they can be used to form a strategy that perfectly replicates the

underlying asset and thus hedges the other (N�1) risk factors. The estimation of the implied
equity premium reduces to the estimation of the expected return on this strategy. More

speci�cally, we show that the equity premium is a weighted average of the expected excess

return on the basic derivative assets where the weights are determined by the sensitivity of

these basic derivatives to risk factors. Both, the expected excess return and the weights can

be estimated in a model-free manner.

Because the estimation of expected option returns is rather cumbersome, we use derivative

assets whose prices are inferred from options as basic derivative assets, rather than the

options themselves. In principle, these basic derivative assets could include a broad range

of securities. Bakshi and Madan (2000) show that the price of virtually any contingent

claim with an integrable payo¤ function can be inferred from option prices in a model-free

manner. However, only a few instruments permit a reasonably accurate estimation of the

expected excess return. The key feature in our approach lies in the use of "conveniently

chosen" portfolios of options for which the expected return can be reliably estimated. In

our application, we restrict ourselves to the quadratic, the cubic and the upside quadratic

contracts for which the computation of the physical and risk-neutral expectations�the two

ingredients needed for the expected excess return �can be performed in a model-free manner.

All these contracts are inferred from portfolios of options.

The literature on the information content of option markets has been rapidly expanding

over the past few years. Virtually all existing �ndings seem to suggest that option markets

provide useful insights on the future path of the underlying asset, and thus help predict

returns. At the cross-sectional level, Pan and Poteshman (2006) �nd that the ratio of call

to put option volumes�a measure of the weight that market participants put on upside risk

relative to downside risk�is signi�cantly related to future stock returns. Conrad, Dittmar

and Ghysels (2009) �nd a signi�cant relationship between moments implied in individual

equity option prices and future returns on the underlying stock. Along the same lines, Xing,

Zhang, and Zhao (2010) provide evidence that the volatility skew, i.e., the di¤erence in

implied volatility between OTM put and ATM call options, predicts the future underlying

stock return up to a six-month horizon. Ang, Hodrick, Xing, and Zhang (2006) �nd that

VIX is a priced factor in the cross-section of stock returns while Chang, Christo¤ersen and

Jacobs (2009) document that the exposure to higher-order moments implied in S&P 500
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index options is also priced in the cross-section.

In addition to explaining the cross-section of equity returns, option data have also proved

to be useful in predicting stock market returns. Using a general equilibriummodel, Bollerslev,

Tauchen and Zhou (2009) link the equity premium to the variance risk premium. Their

empirical results reveal that the variance risk premium, estimated using option data, predicts

stock market returns. Bollerslev, Gibson and Zhou (2011) propose a simple approach to

estimating volatility risk premia using a general stochastic volatility model. These risk premia

are then shown to predict stock market returns. Finally, Bakshi, Panayotov and Skoulakis

(2011) �nd that their measure of forward variance, also extracted from option data, predicts

stock market returns.

Our paper is closely related to the literature on non-parametric estimation of option-

implied risk premia. Bollerslev and Todorov (2011) propose a non-parametric framework for

quantifying jump risk premia that relies on the recently introduced techniques for estimating

expected jump tails (Bollerslev and Todorov, 2010) and a model-free approach for inferring

risk-neutral expectations from option prices. Their �ndings suggest that jump fear justi�es

the magnitude of the market risk premium. In this paper, rather than looking only at the

jump component, we estimate the total market risk premium. Bakshi and Kapadia (2003)

use a stochastic volatility model that does not impose any functional form on the pricing

kernel, and document a negative volatility risk premium. They show that the expected return

on a delta-hedged strategy is determined by the volatility risk premium and they interpret

negative return as evidence of a negative volatility risk premium. While it is natural to use

delta-hedged strategies to look for evidence on the volatility risk premium, estimating the

equity premium is not straightforward. Our approach speci�cally addresses this issue.

Using a simple Black-Scholes type model, Campello, Chen and Zhang (2008) establish

a link between the risk premium on individual stocks and corporate bond returns. Both

stocks and corporate bonds can be seen as contingent claims on the �rm value. The expected

returns on both securities are thus determined by the same underlying source of risk. Since

returns on both securities are inherently linked, Campello, Chen and Zhang (2008) infer the

stock risk premium from expected bond returns. In this paper, we focus on the market risk

premium rather than the risk premium on individual securities. We link the stock market

risk premium to the expected excess return on a set of basic derivative assets.

The paper is organized as follows. Section 2 sets forth the theoretical foundation of our

approach for extracting of the implied equity premium. Section 3 applies the theoretical

framework to a general two-factor model using S&P 500 index option data and presents

the estimation results for the implied equity premium. We test the predictive power of the

implied equity premium for stock market returns in section 4. Section 5 investigates the

out-of-sample performance of the implied equity premium using non-overlapping monthly

returns, and section 6 presents the results of cross-sectional tests. Section 7 concludes.
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2 Implied Equity Premium: Theory

Our objective is to extract the implied equity premium from derivative contracts. Starting

with a broad assumption on the uncertainty in the economy, we propose a simple approach

to measure the implied equity premium without parameterizing the process that generates

the uncertainty in the economy. To do so, we rely on a general class of continuous-time

di¤usion models, similar to most of the existing option pricing literature. We present the

model in section 2.1. Our approach assumes the existence of a continuum of call and put

options that span the payo¤ on N non-redundant securities that complete the market. We

examine the necessary conditions for the existence of such securities and discuss some related

works on market completeness in section 2.2. Section 2.3 presents our main result, i.e., the

derivation of the measure for the implied equity premium.

2.1 The Model

We follow Bakshi and Madan (2000) and assume a frictionless market where the sources of

uncertainty in the economy obey to a multi-dimensional di¤usion process. The model can

be written as follows
dSt
St

= � [St;Xt; t] dt+ � [St;Xt; t] dWt; (1)

and

dXt =  [St;Xt; t] dt+
 [St;Xt; t] dWt; (2)

where St is the underlying stock price, Xt = (x
1
t ; ::::; x

N�1
t )0 is a vector of observable or latent

factors,Wt is an N�dimensional Brownian motion, � [St;Xt; t] is a scalar, � [St;Xt; t] is an

1�N vector,  [St;Xt; t] is an (N �1)�1 vector, and 
 [St;Xt; t] is an (N �1)�N matrix.

The no-arbitrage assumption ensures the existence of at least one risk-neutral measure Q

under which the dynamic of St and Xt is (see Harrison and Kreps (1979)).

dSt
St

= (� [St;Xt; t]� � [St;Xt; t]� [St;Xt; t]) dt+ � [St;Xt; t] dW
�
t (3)

= (rt � qt)dt+ � [St;Xt; t] dW
�
t ;

and

dXt = ( [St;Xt; t]�
 [St;Xt; t]� [St;Xt; t]) dt+
 [St;Xt; t] dW
�
t ; (4)

where dW�
t = dWt + � [St;Xt; t] is an N�dimensional Brownian motion under Q. The

instantaneous risk-free rate rt and the continuous dividend yield qt are assumed to be time-

varying but deterministic. Equation (3) constrains the drift of any asset under Q to be equal

to risk-free rate minus the dividend yield.

As in Bakshi and Kapadia (2003) and Duarte and Jones (2007), we do not impose any
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parameterization on the pricing kernel and thus do not postulate any functional form for the

prices of risk and risk exposures, i.e., the di¤usions. In doing so, we avoid some of the well-

known drawbacks of parametric approaches which potentially can lead to wrong conclusions

about risk premia when poorly speci�ed models are used. The estimation of risk premia in

parametric approaches, in contrast to ours, may be vitiated by misspeci�cations in both the

prices of risk and risk exposures, as explained by Duarte and Jones (2007).

As we will explain in more detail below, our approach does not require the identi�cation

of the (N � 1) factors given by the vector Xt. These factors could be observable or latent.

The intuition behind our approach is to focus on the derivatives that capture these factors

rather than trying to directly identify the factors. We relate the equity premium to the

expected return on a set of �conveniently chosen�portfolios of options from which we infer the

implied equity premium. These portfolios have payo¤functions for which we can conveniently

obtain reliable estimates of the physical and risk-neutral expectations, the two ingredients

of expected returns.

2.2 Market Completeness

Market completeness assumes that the payo¤ on any claim can be replicated by taking

positions in the marketed assets. Under the speci�cation stated in section 2.1, the stock

and the risk-free bond fail to complete the market with respect to the N sources of di¤usive

risk. In order to complete the market, we therefore need N non-redundant securities that

provide di¤erent exposures to each of the N � 1 factors and the underlying asset. A security
is non-redundant if its payo¤ cannot be spanned by taking positions in the other N � 1
securities.

The notion of market completeness attained through options trading was �rst discussed

by Ross (1976). In a simple state-space framework, he shows that derivatives need not to

be very complex to complete the market and that European options provide investment op-

portunities better tailored to meet investors risk preferences. Other studies that discuss the

market completing feature of options include Breeden and Litzenberger (1978), Green and

Jarrow (1987), Nachman (1988), Duan, Moreau and Sealey (1992) and Bajeux and Rochet

(1996). More recently, Carr and Madan (2001) show how to span any twice di¤erentiable

function of the underlying stock using a continuum of call and put options, the risk-free

bond and the underlying stock. Theorem 1 of Bakshi and Madan (2000) generalizes this

result to the case of all integrable functions. The theorem also shows that the spanning via

options is equivalent to the spanning via the characteristic function, but the latter may be

mathematically more tractable. In our setup, the market completeness achieved via the N

non-redundant securities allows us to derive explicit expressions for the implied equity pre-

mium. The following assumption de�nes the necessary conditions for the existence of these
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non-redundant securities. To simplify the notation and facilitate the mathematical derivation

of our results, we denote Yt = [ St X0
t ]
0 and � [Yt; t] = [ St (� [Yt; t])

0 (
 [Yt; t])
0 ]0.

Assumption 1. There exists a continuum of call and put options whose price is contin-

gent on the underlying asset price St and the vector of factors Xt. In addition, these options

span the payo¤ of N contingent claims, Ft = (F 1t ; :::; F
N
t )

0, whose Jacobian N � N matrix

rYFt = (rYF
1
t ; :::;rYF

N
t ) is invertible.

The above assumption ensures that the N contingent claims are not redundant and

thus complete the market. This condition is similar to those used in Liu and Pan (2003)

and Bajeux and Rochet (1996). The sensitivity of the contingent claims to the N sources

of di¤usive risk is captured by the Jacobian matrix, whereas the invertibility of this matrix

ensures the non-redundancy of theN contingent claims. The non-redundancy in turn ensures

that the N contingent claims provide di¤erent exposures to all sources of risk and thus

complete the market. Moreover, with the continuum of options we can virtually span the

payo¤ of any derivative asset under some regularity conditions. As a result, we can use

options to price theN contingent claims. Although these contingent claims are not marketed,

they can be synthetically created from options, the underlying stock and the risk-free bond.

Proposition 1 formalizes this result.

Proposition 1 Given assumption 1, the N contingent claims, Ft= (F 1t ; :::; F
N
t ), complete

the market. We refer to these N claims as basic derivative assets.

The proof of Proposition 1 is shown in the Appendix. Proposition 1 shows that any

asset can be replicated by taking positions in the basic derivative assets. The sense of basic

derivatives considered here is the one adopted by Brown and Ross (1991), i.e., all derivatives

are a portfolio of the basic derivatives.

2.3 Extraction of the Implied Equity Premium

The intuition underlying our approach is to use the basic derivative assets to form a strategy

that is perfectly exposed to the underlying stock market and hedges other factors. The

expected return on this strategy is determined by the stock market risk premium. Conversely,

we can infer the stock market risk premium from the expected return on this strategy. To

this end, we simply need to determine the positioning on the basic derivative assets required

to form such a strategy and compute its expected returns. We establish this result in the

next proposition.
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Proposition 2 Given the vector of N basic derivative assets, Ft= (F 1t ; :::; F
N
t ), with an

invertible Jacobian matrix rYFt, the equity premium �t is given by

�t = EPt

�
dSt
Stdt

�
+ qt � rt =

NX
k=1

F kt
St
!t;k

�
EPt

�
dF kt
F kt dt

�
� rt

�
; (5)

where EPt [:] is the expectation under the physical probability measure conditional on time

t information set, !t;k =
�
(rYFt)

�1�
1;k
, qt is the continuous dividend yield and rt is the

instantaneous risk-free rate.

The proof of Proposition 2 is shown in the Appendix. Proposition 2 shows that the

equity premium is a weighted average of expected excess return on the basic derivatives.

The weights !t;k�s capture the sensitivity of the basic derivatives to the vector of risk factors

Yt. Proposition 1 of Bakshi and Kapadia (2003) is based on a somewhat similar intuition.

Using a stochastic volatility model, Bakshi and Kapadia (2003) relate the volatility risk

premium to the expected return on a delta hedged strategy. In this paper, we use N basic

derivatives to form a strategy with expected returns equal to the equity premium. This

strategy is perfectly exposed to the underlying asset and hedges the (N�1) factors. In what
follows, we illustrate this point. Combining the no-arbitrage assumption with Itô�s lemma,

we can show that the dynamic for a derivative F kt is described by the following process
4

dF kt � rtF
k
t dt =

�
rYF

k
t � [Yt; t]� [Yt; t]

�
dt+rYF

k
t � [Yt; t] dWt: (6)

Using a vector representation for Ft= (F 1t ; :::; F
N
t ); we have

dFt � rtFtdt = (rYFt� [Yt; t]� [Yt; t]) dt+rYFt� [Yt; t] dWt: (7)

Consider a strategy with a vector of weights on the basic derivative assets z = I1�(rYFt)
�1

where I1 is a unit (row) vector with the 1th element equal to one and all the other elements

equal to zero. In other words, this strategy is a portfolio with the positions
�
(rYFt)

�1�
1;k

in each of the k = 1; :::; N basic derivative assets. The dynamic of this strategy is

dzFt � rtzFtdt = dI1 � (rYFt)
�1Ft � rtI1 � (rYFt)

�1Ftdt: (8)

Using equation (7), we have

dzFt � rtzFtdt =
�
I1 � (rYFt)

�1rYFt� [Yt; t]� [Yt; t]
�
dt

+I1 � (rYFt)
�1rYFt� [Yt; t] dWt

= (I1� [Yt; t]� [Yt; t]) dt+ I1� [Yt; t] dWt: (9)

4See the Appendix for the derivation of equation (6).
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Using the fact that I1� [Yt; t] = I1[ St (� [Yt; t])
0 (
 [Yt; t])

0 ]0 = � [Yt; t] ; we obtain

dzFt � rtzFtdt = St� [Yt; t]� [Yt; t] dt+ St� [Yt; t] dWt: (10)

Since the no-arbitrage assumption constrains the drift of the underlying stock � [Yt; t] �
� [Yt; t]� [Yt; t] to be equal to rt � qt under Q, then

dzFt � rtzFtdt = St(� [Yt; t]� (rt � qt))dt+ St� [Yt; t] dWt

= dSt � (rt � qt)Stdt; (11)

the last equation shows that the strategy perfectly replicates the underlying stock.

We convert the instantaneous return in equation (5) into a discrete-time form as it is

commonly done in the literature (see for instance Bakshi and Kapadia (2003) and Duarte

and Jones (2007)). The discretization may result in some approximation errors. To alleviate

the e¤ects of these approximation errors, we focus on one-month periods. The approximation

for the one-period ahead equity premium is

e�t:t+1 =X
k

F kt
St
!t;k

�
EPt

�
F kt+1 � F kt

F kt

�
� rt:t+1

�
: (12)

The expression for the equity premium, e�t:t+1, is very tractable and all the terms can be
computed in a model-free manner. This feature di¤erentiates our approach from existing

studies that estimate risk premia using parametric approaches (see for instance Broadie,

Chernov and Johannes (2007), Pan (2002), and Santa-Clara and Yan (2010)). The estimation

of the implied equity premium requires the computation of the price of the basic derivative

assets, their conditional expected payo¤ under the physical measure, and the weights !t;k�s

on the basic derivatives. The price of these basic derivatives can be inferred from the value

of a portfolio of options.

We discuss the choice of the basic derivatives and the estimation details in the next

section, where we apply our approach to a two-factor model. Note that although we focus

on a two-factor model, for completeness�sake, we also present results for a three-factor model

(see section 4.2).
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3 Application to a Two-Factor Model

3.1 Methodology

In this section, we apply our framework to a two-factor model. We assume that the dynamic

for the underlying stock price St is given by

dSt
St

= �t(St; xt)dt+ �t(St; xt)dW1;t; (13)

and

dxt = �t(St; xt)dt+ �t(St; xt)dW2;t; (14)

where xt is the second factor that determines the value of any derivative in addition to the

underlying stock price St, and W1;t and W2;t are two Brownian motion processes that could

be correlated. As explained earlier our approach does not require the identi�cation of the

factors. Given the general consensus on the importance of stochastic volatility in option

pricing models, we can for instance think of xt as a stochastic volatility factor. Under the

risk-neutral measure, the stochastic di¤erential equation can be written as

dSt
St

= (rt � qt) dt+ �t(St; xt)dW
�
1;t; (15)

and

dxt = (�t(St; xt)� �t(St; xt)�2;t(St; xt)) dt+ �t(St; xt)dW
�
2;t; (16)

where dW �
1;t = dW1;t + �1;t(St; xt) and dW �

2;t = dW2;t + �2;t(St; xt). Let �t be the equity

premium

�t = EPt

�
dSt
Stdt

�
+ qt � rt = �t(St; xt) + qt � rt = �t(St; xt)�1;t(St; xt): (17)

In the presence of two risk factors, we need two basic derivative assets to back out the equity

premium. We use the quadratic and the cubic contracts denoted by Vt and Wt, respectively.

We de�ne the quadratic and the cubic contracts as contingent claims on the underlying stock

expiring at time t+ � and paying o¤R2t+� and R
3
t+� , respectively, where Rt+� = ln(St+�=St).

Both the quadratic and the cubic contracts have been documented by the literature to

provide valuable information content on stock returns. For example, Bollerslev, Tauchen

and Zhou (2009) �nd that the variance risk premium (measured by the spread between

VIX and the realized variance) predicts future stock market returns. Chang, Christo¤ersen

and Jacobs (2009) �nd that stocks that are highly exposed to the implied market skewness

earn on average higher return. Conrad, Dittmar and Ghysels (2009) document that the

response of returns to the implied skewness is asymmetric with highly-negative skewness
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stocks generating higher average returns. In addition to their valuable information content,

the use of quadratic and cubic contracts also greatly facilitates the empirical estimation of

the implied equity premium. Indeed, the calculation of the physical and risk-neutral second

and third moments � the two components of the expected excess return� is fairly easy.

Motivated by these �ndings, we use the quadratic and the cubic contracts as basic derivative

assets. Moreover, we also investigate the sensitivity of our measure to the choice of basic

derivative assets. We consider the upside quadratic contract, denoted Ut, (similar the upside

variance contract used in Bakshi, Madan and Panayotov (2010)) and form other pairs of

basic derivatives (See section 4.2).

Applying equation (5) for N = 2 and using the quadratic and the cubic contracts as basic

derivatives, we can infer the implied equity premium as follows

�t = EPt

�
dSt
Stdt

�
+ qt � rt = !t;1

Vt
St

�
EPt

�
dVt
Vtdt

�
� rt

�
+!t;2

Wt

St

�
EPt

�
dWt

Wtdt

�
� rt

�
: (18)

or equivalently,

�t = EPt

�
dSt
Stdt

�
+ qt � rt = !t;1

1

St

�
EPt

�
dVt
dt

�
� Vtrt

�
+!t;2

1

St

�
EPt

�
dWt

dt

�
�Wtrt

�
; (19)

The above relationship shows that the equity premium is a weighted average of the expected

excess return on the quadratic and the cubic contracts. Proposition 2 shows that these

weights are determined by the inverse of the Jacobian matrix of the basic derivative assets.

Using the quadratic and the cubic contracts as basic derivative assets, we can show that

these weights are

!t;1 =
@Wt

@x
@Vt
@S

@Wt

@x
� @Wt

@S
@Vt
@x

; (20)

and

!t;2 =
�@Vt

@�
@Vt
@S

@Wt

@x
� @Wt

@S
@Vt
@x

; (21)

where @Vt
@S
and @Wt

@S
are the deltas of the quadratic and the cubic contracts, and @Vt

@x
and @Wt

@x

are their sensitivities to the factor xt, respectively. We can rewrite the weights as follows

!t;1 =
1
@Vt
@S

mt; (22)
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and

!t;2 =
1
@Wt

@S

(1�mt); (23)

where mt =
1

1�( @Wt
@S

@Vt
@x )=(

@Vt
@S

@Wt
@x )

: Rewriting the weights this way makes it very convenient

to estimate them when implementing our approach. The deltas can be estimated using a

model-free approach as described in the Appendix, while mt can be estimated from a simple

regression as outlined at the end of this section.

The discrete-time expression for the one-period ahead equity premium is therefore

e�t:t+1 = EPt

�
St+1 � St

St

�
+ qt:t+1 � rt:t+1 = mt

1
@Vt
@S
St

�
EPt [Vt+1]� Vt(1 + rt:t+1)

�
+(1�mt)

1
@Wt

@S
St

�
EPt [Wt+1]�Wt(1 + rt:t+1)

�
: (24)

Clearly, the equity premium requires the estimation of three ingredients: the price (i.e.,

the risk-neutral expectation) and the delta of the quadratic and the cubic contracts Vt and

Wt, their conditional expected payo¤EPt [Vt+1] and E
P
t [Wt+1], and �nally the weights given

by mt. The details of the derivation and the estimation of the prices of the quadratic and

the cubic contracts and their deltas, which are based on model-free techniques (as in Bakshi,

Kapadia and Madan (2003)), are explained in the Appendix. However, it is worth mentioning

that these contracts are inferred from portfolios of options. In what follows, we outline how

we estimate the weights and the conditional expected payo¤s. Note that the estimation of

the one-month ahead (t+ 1) equity premium is based on information available up to month

t.

Starting with the weights, the estimation of mt relies on the following regression

St � St�1
St�1

� rt = m0+m1
1

@Vt
@S
St
[Vt � Vt�1(1 + rt)]+m2

1
@Wt

@S
St
[Wt �Wt�1(1 + rt)]+"t; (25)

with the constraints that m0 equals zero and m2 equals 1 � m1. Taking the expectation

under the physical measure of the above equation with the constraints just mentioned we

recover the discrete-time expression for the equity premium (see equation (24)).

All regressions are run using daily observations within the month, that is: every day

within a particular month, we estimate the prices of the quadratic and the cubic contracts

and their deltas, and then use them in the regression given by equation (25).5

Turning to the conditional expected payo¤s, and assuming that the quadratic and the

cubic contracts mature in time t+1 (i.e., Vt+1 = R2t+1 and Wt+1 = R3t+1), their estimation is

5For simplicity we use returns on S&P 500 index reported in CRSP which do not include dividends, and
assume that the one-day risk-free rate, rt, in equation (25) is zero.
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based on their sample counterparts using daily returns, Rt, within the previous month

bEPt �Rnt+1� = tX
s2t

Rns;t; (26)

where the subscripts s and t denote the day s of month t, and n = 2 for the quadratic

contract and n = 3 for the cubic contract.

Admittedly, the historical third moment may be an imprecise estimate of the true con-

ditional third moment under the physical probability measure. As a robustness check, we

�nd a negligible impact on the implied equity premium when we constrain the third physical

moment to be zero. The correlation between the constrained and unconstrained estimates

is 99%.

Asset pricing theory postulates that the equity premium should be positive if investors

are risk-averse. In accordance with the theory, we estimate another version of the equity

premium where we constrain it to be positive. Speci�cally, we estimate mt in equation (25)

with the constraint that the one-month ahead equity premium in equation (24) is positive.

3.2 Data

The estimation of the implied equity premium requires data on S&P 500 index options as

well as the underlying index. The option data are collected from OptionMetrics while the

index data are collected from CRSP. Both samples span the period from January 1996 to

October 2010.

In testing the predictive power of the implied equity premium, we control for several

predictor variables that have been explored in previous studies. These variables are presented

in Section 4 and are available from Amit Goyal�s Web site.

Finally, in the cross-sectional tests performed in Section (6), we use some of the traditional

control variables such as the Fama-French, the momentum, and the aggregate volatility (as

proxied by the VIX index) factors. The data on the Fama-French and momentum factors

are collected from Kenneth French�s online data library while the data on the VIX are from

the Chicago Board of Options Exchange (CBOE).6 The data on the individual stocks used

in the cross-sectional tests are collected from CRSP.

3.3 Estimation Results

We now proceed with the estimation of the equity premium according to equation (24).

Figure 1 depicts the monthly time series of the one-month ahead implied equity premium.

The unconstrained and constrained (i.e., constrained to be positive) estimates of the implied

6We use the old VIX as in Ang, Hodrick, Xing, and Zhang (2006).
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equity premium are shown in top and middle panels, respectively. The top panel of Figure

1 reveals some negative spikes mainly in periods of high volatility such as 9/11, the stock

market downturn of 2002, and the recent �nancial crisis. The �gure also shows some positive

spikes preceding the market upturns of 2003 and 2009.

Panel A of Table 1 summarizes the descriptive statistics of the equity premium. As

expected, the mean of the unconstrained estimates of the implied equity premium is positive

and equal to 2:21% for the one-month horizon. The mean is slightly higher for the constrained

version and equals 2:71%. With the exception of very few months, the unconstrained implied

equity premium estimates are positive during the sample period. For instance, the percentage

of negative estimates is 11%, as shown by Panel A of Table 1. There is little di¤erence

between the constrained and unconstrained implied equity premia in the mean, however, it

is worth pointing out that the constrained implied equity premium is right-skewed while the

unconstrained one is left-skewed, has higher standard deviation and exhibits fatter tails.

Panel B of table 1 shows that the correlation between the constrained and unconstrained

measures is fairly high and equals 0:79. The �rst order auto-correlations reported in Panel

A of table 1 suggest that the measures of the implied equity premium are not very persistent

with a �rst order autocorrelation equal to 0:26 for the unconstrained measure and 0:06 for the

constrained one. We also note that the correlations reported in Panel B of table 1 show that

implied equity premia are positively and signi�cantly correlated with future stock market

returns. Finally, Panel B of Table 1 shows that the contemporaneous relationship between

implied equity premia and stock market returns is negative although it is not possible to

�rmly conclude that this relationship is robust.

Overall, these �ndings provide enough evidence that the implied equity premium is con-

sistent with the observed stock market returns. In particular, the implied equity premium is

positively related with future returns and inversely related to current prices (an increase in

the equity premium should lower current prices). It also has reasonable statistical properties.

In the next three sections, we run several additional tests to assess whether our measure

of the implied equity premium is consistent with the observed returns in the stock market.

4 Stock Market Return Predictability

While the extraction of the equity premium without fully specifying any functional form for

the pricing kernel is by itself compelling, it remains to be seen whether such an estimate

captures the theoretical and empirical stylized facts that are typically associated with the

stock market risk premium. In this section, we show that our implied equity premium is

consistent with the main stylized facts.
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4.1 The Basic Predictive Regression

The most obvious stylized fact is the positivity of the premium, a property on which the

foundation of asset pricing theory hinges. While the constrained implied equity premium is

positive by construction, the unconstrained one has only few negative estimates and thus

captures this property. Table 1 shows that the percentage of positive monthly estimates of

the unconstrained implied equity premium is approximately 89%. Moreover, these negative

estimates are observed mostly during periods of high volatility, as shown by Figure 1.

In addition to the positivity of the equity premium, another desirable property is the

positive correlation with future returns. Establishing the predictability of the stock market

return can be quite challenging, especially for short-term horizons. This topic has been

extensively debated in the literature and the reported results are quite mixed. For example,

the comprehensive analysis of the performance of a large set of predictors reported in Goyal

and Welch (2008) casts doubt on the out-of-sample predictability of stock market returns. In

contrast, Campbell and Thompson (2008) �nd that imposing restrictions on the predictive

regressions improve the out-of-sample performance of predictors variables. Rapach, Strauss

and Zhou (2010) combine forecasts of individual predictive regression models and provide

evidence in favor of the out-of-sample predictability of stock market returns. Cochrane

(2008) takes a di¤erent approach and argues that if both dividend growth and returns are

not forecastable then the dividend price ratio should be constant which obviously contradicts

the data. Then, if dividend growth is not forecastable then returns must forecastable. The

author �nd that growth is not forecastable and interprets this result as evidence supporting

the predictability of returns.

In this paper we contribute to this large literature and show that our measure of the

implied equity premium presented in previous sections predicts future stock market returns

in- and out-of-sample. With few notable exceptions (see Bollerslev, Tauchen and Zhou (2009)

for example), previous studies have mostly used near unit root variables to predict stock

market returns. By contrast, our implied equity premium estimate is not very persistent

(see Table 1) and therefore avoids potential statistical problems.7

We investigate the information content of the implied equity premium by running the

following predictive regression

Rt+1:t+k = c0 + c1e�t:t+1 + c2e�t�1:t + "t+k; (27)

where Rt+1:t+k = 12
k
[log(Rt+1 + 1) + ::::+ log(Rt+k + 1)] is the annualized k�month excess

return. The implied equity premium and the returns are annualized to facilitate comparison

across regressions. The implied equity premium e�t:t+1 is based on the month t information
7See, for instance, Stambaugh (1999) and Ferson, Sarkissian and Simin (2003) for discussion on the e¤ects

of serial correlation on statistical inference.
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set and is thus predetermined. We also include the lagged implied equity premium known

in month t� 1 as new information might not be re�ected simultaneously in the option and
stock markets.

While the literature �ndings on the lead-lag relationship between the option and stock

markets appear to be inconclusive, Fleming, Ostdiek and Whaley (1996) provide evidence

that index options lead the underlying index.8 They argue that transaction costs for index

options are lower than transaction costs for a portfolio on the stock index constituents. As

a result, informed trading would rather occur in option markets and thus new information

would more rapidly be re�ected in option markets.9

In testing the predictability of stock market returns, we run our regression for di¤erent

horizons on a monthly frequency basis. We use Hodrick (1992) t�statistics, which are robust

to heteroskedasticity and serial correlation and have been shown to be superior to those of

Newey-West (1987) when overlapping returns are used (see for instance Ang and Bekaert

(2007)).

The regression results are reported in Table 2. As expected, the implied equity premium

is positively related to future returns. At the monthly horizon, there is some evidence that

current and lagged implied equity premia predict stock market returns with an R2�s of 10%

(see Table 2). Predictability seems to be stronger for quarterly horizon and persists for more

than six months in some cases. The results are signi�cant for both the constrained and

unconstrained implied equity premia.

Table 2 also shows that the adjusted R2�s are higher than 15% for quarterly horizon.

However, Bollerslev, Tauchen and Zhou (2009) urge cautiousness in interpreting R2 when

overlapping data are used. Boudoukh, Richardson, and Whitelaw (2008) argue that even

under the null hypothesis of no predictability R2�s increase proportionally with the horizon as

a result of persistence and overlap in the data. For this reason, section 5 focuses exclusively

on non-overlapping monthly returns and presents the results for out-of sample R2�s.

4.2 Robustness Checks

In this section, we test the robustness of the basic regression described previously with

respect to: 1. the sample period; 2. the choice of the basic derivatives; 3. the number of

factors driving the uncertainty in the economy; and 4. a set of standard control variables

that have been used in the literature. As we show below, the results of the basic regression

reported in Table 2 remain overall robust to these tests.

In our �rst robustness check, we conduct a subsample analysis and split our sample in two

8For studies on this subject, see for instance, Stephan and Whaley (1990), Vijh (1990), Chan, Chung and
Johnson (1993) and Chan, Chung and Fong (2002).

9Fleming, Ostdiek and Whaley (1996), argue that individual stocks are far more liquid than stock options,
and therefore we expect stock prices to lead stock option prices.

16



sub-periods 1996-2003 and 2004-2010. The results reported in Table 3 are rather consistent

across sub-periods. The predictability of stock market returns remains signi�cant for both

sub-periods, albeit stronger in the second one.

In the previous section we used the quadratic and the cubic contracts to extract the

equity premium. In this section, we also consider the upside quadratic contract, denoted

Ut, and which pays o¤ R2t+1IfRt+1>0g, where IfRt+1>0g is the indicator function of the event

fRt+1 > 0g. This contract is similar the upside variance contract used in Bakshi, Madan
and Panayotov (2010). The estimation of the upside quadratic contract price and its delta is

explained in the Appendix while the estimation of the conditional expected payo¤ is based

on the sample counterpart using daily returns over the previous month

bEPt �R2t+1IfRt+1>0g� = tX
s2t

R2t;sIfRt;s>0g: (28)

where the subscripts s and t denote the day s of month t. In the two factors models, we need

two basic derivatives to implement our approach, we thus form two additional pairs of basic

derivatives using the quadratic, the cubic and the upside quadratic contracts. The results

are reported in Table 4 and are rather consistent with those discussed in section 4.1, thus

demonstrating the robustness of our approach to the choice of basic derivatives. Whether we

extract the equity premium from the quadratic and the upside quadratic contracts or from

the cubic and the upside contracts, both lead to signi�cant and very similar similar results.

In our third robustness check, we extend the procedure discussed in section 3.1 to the case

of a three factor model. Since three basic derivatives are required to estimate the implied

equity premium, we use the quadratic, the cubic and the upside quadratic contracts. In this

case, we can show that the equity premium is given by10

e�t:t+1 = EPt

�
St+1 � St

St

�
+ qt:t+1 � rt:t+1

+mt;1
1

@Vt
@S
St

�
EPt [Vt+1]� Vt(1 + rt:t+1)

�
+mt;2

1
@Wt

@S
St

�
EPt [Wt+1]�Wt(1 + rt:t+1)

�
+(1�mt;1 �mt;2)

1
@Ut
@S
St

�
EPt [Ut+1]� Ut(1 + rt:t+1)

�
: (29)

As for the two-factor model, mt;1 and mt;2;are estimated from the following regression using

daily observations within the previous month

10See Appendix for the derivation of this result.
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St � St�1
St�1

� rt = m0 +m1
1

@Vt
@S
St
[Vt � Vt�1(1 + rt)] +m2

1
@Wt

@S
St
[Wt �Wt�1(1 + rt)]

+m3
1

@Ut
@S
St
[Ut � Ut�1(1 + rt)] + "t; (30)

with the constraints that m0 equals zero and m3 equals 1�m1�m2. The estimation of the

price of each contract, its delta and its conditional payo¤ is carried out as in the two-factor

model. The results for the predictive regression are reported in Table 4. As in the two-

factor model, the equity premium extracted from a three-factor model signi�cantly predicts

the stock market return. However, when adding a third factor, the forecasting performance

of the implied equity premium seems to weaken, a sign that a two factor model is more

consistent with the data. For this reason, we do not extend the empirical analysis beyond

the three-factor model.

In our fourth robustness check, we test the performance of our measure in terms of

predictability after controlling for some of the main predictor variables used in previous

studies. Although the evidence of predictability is contested, several studies report that

some variables can predict stock market returns. We control for the following variables used

in Goyal and Welch (2008): Book-to-Market Ratio (b/m), Net Equity Expansion (ntis),

Dividend Yield (d/y), Earnings Price Ratio (e/p), Dividend Price Ratio (d/p), Default

Yield Spread (dfy), Dividend Payout Ratio (d/e) and Long Term Rate of Returns (ltr).11

We run a regression of the following type

Rt+1:t+k = c0 + c1e�t:t+1 + c2e�t�1:t + �Zt + "t+k; (31)

where Zt is one of the predictors presented above and Rt+1:t+k is as de�ned in section 4.1.

We report the results for monthly and quarterly horizons in Table 5. The signi�cance of

the implied equity premium remains almost unaltered after the inclusion of other predictors,

con�rming the robustness of our results. The results provide some evidence that the dividend

yield and the dividend price ratio predict stock market returns at the monthly and quarterly

horizon.

5 Out of Sample Predictions

Recent studies show that many predictors perform well in-sample but fail dramatically when

tested out-of-sample (see, for instance, Goyal and Welch (2008)). In section 4, we �nd

strong evidence that our measure of implied equity premium predicts stock market returns

for di¤erent horizons in-sample. In this section, we conduct a series of out-of-sample tests.
11See Goyal and Welch (2008) for complete description of the variables.
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To gauge the out-of-sample performance of the implied equity premium, we use the out-

of-sample R2 as in Campbell and Thompson (2008) and Goyal and Welch (2008). At time

t� 1, we estimate the forecast value of the stock market return bRt from a regression of the

following general form using data from the beginning of the sample through time t� 1

Rt = c0 + cP
0
t�1 + "t; (32)

where P0t�1 is a vector of predictor variables. We run the above regression recursively to

obtain forecasts, bRt0 ; bRt0+1; bRt0+2; :::; bRT , using only information available up to the time
we make the forecast; t0 is the starting date of the forecast (out-of-sample) period and T is

the last date in the sample (i.e., October 2010). The out-of-sample R2 (OOS R2) is de�ned

as

R2 = 1�

TP
t=t0

�
Rt � bRt�2

TP
t=t0

�
Rt �Rt

�2 : (33)

where the historical mean, Rt, is also estimated using data from the beginning of the sample

through time t � 1. In an attempt to balance between the length of the forecasting period
and the estimation period, we try di¤erent starting dates for the forecasting period t0: 2000,

2002 and 2004. These choices ensure that we have enough observations in the estimation

and forecasting periods to perform inference. The use of overlapping data is often criticized.

Therefore, we focus on non-overlapping returns in this section. The option data required

to estimate our measures of implied equity premium are not available for a long period, we

restrict thus our analysis to monthly horizon. The results for the OOS R2 along with the

in-sample R2 (IS R2) for the out-of-sample period are reported in Table 6. The table shows

that OOS R2 for the implied equity premium is consistently positive. The results are rather

impressive with an OOS R2 higher than 10% in some cases. For comparison, we also report

the OOS R2 for the predictor variables used in section 4. Consistent with previous studies,

we �nd that these predictors have either positive, but small, or negative IS R2 and negative

OOS R2 with perhaps the exception of the Net Equity Expansion variable (ntis). Our newly

proposed measure of implied equity premium therefore consistently outperforms other equity

premium predictors in- and out-of-sample. This is true for the various out-of-sample periods

considered in our analysis.

Our measure of implied equity premium is a weighted average of expected returns on the

quadratic and cubic contracts, i.e., a weighted average of the spreads between the physical
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and risk-neutral second and third moments.12 We denote the second moment spread SVt:t+1
and the third moment spread SWt:t+1

SVt:t+1 = EPt [Vt+1]� Vt(1 + rt:t+1) = EPt
�
R2t+1

�
� EQt

�
e�rt:t+1R2t+1

�
(1 + rt:t+1) (34)

and

SWt:t+1 = EPt [Wt+1]�Wt(1 + rt:t+1) = EPt
�
R3t+1

�
� EQt

�
e�rt:t+1R3t+1

�
(1 + rt:t+1) (35)

In the next exercise, we compare the performance of the implied equity premium to

the performance of the second and third moment spreads. The results in Table 6 show

that when we use current and lagged second and third moment spreads all together in the

same predictive regression, the in-sample R2 is higher than 13% which is very comparable

to the in-sample R2 of the implied equity premium. While there is a little di¤erence in

the in-sample performance between our measure of the equity premium and the moment

spreads, the implied equity premium clearly outperforms the moment spreads out-of-sample.

Overall, the results show that there is clear advantage of using the implied equity premium

for forecasting stock market returns out-of-sample. Finally, we note that the second moment

spread has a positive out-of-sample R2, this result is consistent with Bollerslev, Tauchen and

Zhou (2009) who �nd that the variance risk premium, measured by the spread between VIX

and the realized variance, predicts future stock market returns.

6 Implied Equity Premia and the Cross-Section of Stock

Returns

To gain further insight on the information content of our measure of implied equity premium,

we run cross-sectional tests. We investigate the relationship between expected stock returns

and their sensitivity to the implied equity premium. Our tests are motivated by the con-

ditional version of the CAPM. Jagannathan and Wang (1996) show that in the conditional

12By the no-aribtrage assumption, the time t price of the quadratic contract is Vt = EQt
�
e�rt:t+1R2t+1

�
and the time t price of the cubic contract is Wt = E

Q
t

�
e�rt:t+1R3t+1

�
, where EQt [:] is the expectation under

the risk-neutral probability measure conditional on time t information set. Recall that we assume that the
quadratic and the cubic contracts mature in time t+ 1, i.e., Vt+1 = R2t+1 and Wt+1 = R

3
t+1. Therefore, we

have
EPt [Vt+1]� Vt(1 + rt:t+1) = EPt

�
R2t+1

�
� EQt

�
e�rt:t+1R2t+1

�
(1 + rt:t+1);

and
EPt [Wt+1]�Wt(1 + rt:t+1) = E

P
t

�
R3t+1

�
� EQt

�
e�rt:t+1R3t+1

�
(1 + rt:t+1):
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CAPM, the unconditional expected return on a given stock is

E [Rt] = a0 + a1�
mkt + a2�

prem; (36)

where �mkt = cov(Rt; R
mkt
t )=var(Rmktt ) is the market beta, �prem = cov(Rt; �

mkt
t�1 )=var(�

mkt
t )

is the premium beta, Rmktt is the market return and �mktt is the time-varying equity premium.

Jagannathan and Wang (1996) test the above pricing relationship using the default spread

as a proxy for the equity premium. If our measure of implied equity premium is a good proxy

for the equity premium, we should observe a signi�cant relationship between expected stock

returns and their sensitivities to the implied equity premium. This is the main hypothesis

we test in this section. Our objective is not to test the conditional version of CAPM. We

should observe a signi�cant relation between expected stock returns and their sensitivity

to the equity premium whether the conditional CAPM fully explains the cross-section of

stock returns or not. This is true as long as the market beta and the equity premium are

time-varying.

To test our main hypothesis, we form portfolios based on their lagged premium betas.

Many recent studies use daily returns to estimate the betas, see for instance Ang et al

(2006), Chang, Christo¤ersen and Jacobs (2009), and Lewellen and Nagel (2006). Using

daily returns allows to capture the time variation in the betas by using shorter windows (as

short as one month) without considerably impairing the precision of the beta estimates. We

follow these studies and estimate �prem using daily returns within the month.13 We consider

three cases

1. Rt � r = �+ �mkt(Rmktt � r) + �preme�t:t+1 + "t;

2. Rt�r = �+�mkt(Rmktt �r)+�HMLRHML
t +�SMBRSMB

t +�MomRMom
t +�preme�t:t+1+"t;

3. Rt � r = �+ �mkt(Rmktt � r) + �preme�t:t+1 + �V IX�V IXt + "t:

Rmktt is the stock market return, RHML
t is the returns on the high minus low factor, RSMB

t

is the return small minus big factor, RMom
t is the momentum factor and �V IXt is the �rst

di¤erence of VIX. Regression (2) controls for the Fama-French and momentum factors while

regression (3) accounts for Ang et al (2006) �ndings, i.e., stocks with higher sensitivity to the

innovations in VIX earn on average higher returns. Each month, we estimate �prem from one

of the above regressions using individual stocks and then we sort these stocks into quintiles

based on their �prem�s. For each quintile, we compute the value-weighted average of monthly

returns over the next month.

The results are reported in Table 7. We use all the stocks reported in CRSP daily stock

�le. For each quintile, we report, the mean, the standard deviation and the alphas from
13The estimation of the daily implied equity premium is described in the Appendix. The regressions are

based on daily estimates of the one-month ahead implied equity premium.
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the CAPM and the 4�factor Carhart model (see Carhart (1997)) using the full sample of

monthly returns. The results clearly show a monotonically increasing pattern: as expected,

stocks with higher �prem consistently earn higher returns. This pattern is observed for the

average excess returns and the alphas from the CAPM and the 4�factor Carhart model. The

monthly spread between average excess returns on the top quintile and average excess returns

on the bottom quintile is around 1% per month when �prem is estimated from regressions

(1) and (3) and equals 0.46% per month when �prem is estimated from regression (2). We

note also that, the spread in the alphas is very close to the spread in excess mean returns,

although stocks with low �prem have negative alphas and stocks with high �prem have positive

alphas. In all the cases, the spread is signi�cant at 10% level, even after controlling for the

Fama-French and the momentum factors. In addition, Panel C of table 7 shows that our

results are not explained by the exposure to the innovations in the VIX. Overall, the results

reported in Table 7 are consistent with the �ndings of Jagannathan and Wang (1996).

7 Conclusion

The literature on the predictability of stock market returns has mainly focused on either

macro-economic or stock market variables. In this paper, we explore a di¤erent avenue and

demonstrate that option markets o¤er valuable information content that helps predict stock

market returns, and also explains the cross-sectional variability among stocks. We propose

a novel approach to estimating the implied equity premium that hinges on the following

rather intuitive idea. Since the expected excess return on any derivative asset is determined

by the price of risk of priced factors, then it is possible to estimate the equity premium using

expected excess returns on the appropriate derivatives and without imposing any functional

form on the pricing kernel.

The information content of our measure of implied equity premium is then assessed

through a set of time series and cross-sectional tests. Our empirical �ndings show that the

implied equity premium outperforms the main predictor variables used in previous studies in

forecasting stock market returns. At the cross-sectional level, the high-minus-low premium

beta (i.e., the sensitivity of stocks to the implied equity premium) portfolio has a positive

and signi�cant alpha. This result is consistent with the conditional CAPM.

Although we focus on stock market risk premia, our approach could be applied to estimate

expected returns on individual stocks using equity option data. Admittedly, the lack of

liquidity in individual equity options compared to index options could impact the estimation

results. Other potential applications may include other derivative markets such as interest-

rate derivatives. We could for instance extract the expected excess return on bonds from

bond options.
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Appendix A: Proof of Propositions 1 and 2

Proof of Proposition 1. By Itô�s lemma, the dynamic for a derivative F kt is

dF kt =

�
@F kt
@t

+
�
rYF

k
t

�0
� [Yt; t] +

1

2
� [Yt; t]r2

YF
k
t � [Yt; t]

0
�
dt+

�
rYF

k
t

�0
� [Yt; t] dWt;

(37)

where rYF
k
t is an N � 1 vector with [rYF

k
t ]i =

@Fkt
@yi

and r2
YF

k
t is an N � N matrix with

[r2
YF

k
t ]i;j =

@2Fkt
@yi@yj

, yi = [Y]i is the ith element of Y = [ S X0 ]0. By the no arbitrage

assumption, Ft satis�es the following PDE

@F kt
@t

+
�
rYF

k
t

�0
(� [Yt; t]� � [Yt; t]� [Yt; t])rYF

k
t +
1

2
� [Yt; t]r2

YF
k
t � [Yt; t]

0 � rtF
k
t = 0:

(38)

Replacing in equation (37) gives

dF kt � rtF
k
t dt =

��
rYF

k
t

�0
� [Yt; t]� [Yt; t]

�
dt+

�
rYF

k
t

�0
� [Yt; t] dWt: (39)

Using a vector representation for Ft= (F 1t ; :::; F
N
t ), we have

dFt � rtFtdt = (rYFt� [Yt; t]� [Yt; t]) dt+rYFt� [Yt; t] dWt; (40)

where rYFt is an N �N matrix with [rYFt]k;i =
@Fkt
@yi
. Let At be the price of any derivative

asset and consider a strategy with a vector of weights on the basic derivative assets z =

rYA
0
t (rYFt)

�1, then we have

dzFt � rtzFtdt = drYA
0
t (rYFt)

�1Ft � rtrYA
0
t (rYFt)

�1Ftdt: (41)

Using equation (40), we obtain

dzFt � rtzFtdt =
�
rYA

0
t (rYFt)

�1rYFt� [Yt; t]� [Yt; t]
�
dt

+rYA
0
t (rYFt)

�1rYFt� [Yt; t] dWt

= (rYA
0
t� [Yt; t]� [Yt; t]) dt+rYA

0
t� [Yt; t] dWt; (42)

which gives

dFtz� rtFtzdt = dAt � rtAtdt: (43)

The equation above shows that we can replicate any derivative At with the basic derivative

assets which proves proposition 1, i.e., the basic derivative assets complete the market.
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Proof of Proposition 2. Denote �t the equity premium

�t = Et[
dSt
St
] + qt � rt = � [St;Xt; t]� (rt � qt)

= (� [Yt; t])
0 � [Yt; t] : (44)

where the second equality follows from the no arbitrage assumption that constrains the drift

of any asset under Q to be equal to risk-free rate minus the dividend yield, i.e., � [St;Xt; t]�
(� [Yt; t])

0 � [Yt; t] = (rt � qt). Taking the expectation of equation (40) gives

Et [dFt]� rtFtdt = (� [Yt; t]� [Yt; t]rYFt) dt: (45)

Given that rYF is invertible, we can deduce the vector of risk premia, denoted � [Yt; t],

� [Yt; t] = � [Yt; t]� [Yt; t] = (E [dFt] =dt� rtFt) (rYFt)
�1 : (46)

Taking the �rst element in � [Yt; t], we have.

St (� [Yt; t])
0 � [Yt; t] =

X
k

!t;k
�
EPt

�
dF kt

�
=dt� rtF

k
t

�
=

X
k

F kt !t;k

�
EPt

�
dF kt
F kt dt

�
� rt

�
: (47)

where !t;k =
�
(rYFt)

�1�
1;k
. Using equations (47) and (44), we obtain Proposition 2

�t =
X
k

F kt
St
!t;k

�
EPt

�
dF kt
F kt dt

�
� rt

�
: (48)

Appendix B: Implied Equity Premium in a Three-Factor Model

Assume that the dynamic for the underlying stock price St is given by

dSt
St

= �t(St; x
1
t ; x

2
t )dt+ �t(St; x

1
t ; x

2
t )dW1;t; (49)

and

dx1t = �1t (St; x
1
t ; x

2
t )dt+ �1t (St; x

1
t ; x

2
t )dW2;t; (50)

dx2t = �2t (St; x
1
t ; x

2
t )dt+ �2t (St; x

1
t ; x

2
t )dW3;t; (51)

where x1t and x
2
t the two factors that determine the value of any derivative in addition to
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the underlying stock price St, and W1;t, W2;t and W3;t are three Brownian motion processes

that could be correlated. Applying equation (5) for N = 3 and using the quadratic, the

upside quadratic and the cubic contracts as basic derivatives, we can infer the discrete-time

expression for the implied equity premium as follows

e�t:t+1 = EPt

�
St+1 � St

St

�
+ qt:t+1 � rt:t+1

+!t;1
1

St

�
EPt [Vt+1]� Vt(1 + rt:t+1)

�
+ !t;2

1

St

�
EPt [Wt+1]�Wt(1 + rt:t+1)

�
+!t;3

1

St

�
EPt [Ut+1]� Ut(1 + rt:t+1)

�
: (52)

The weights are determined by the inverse of the Jacobian matrix of the basic derivative

assets

!t;1 =
h1

@Vt
@S
h1 +

@Wt

@S
h2 +

@Ut
@S
h3
; (53)

where h1 = @Wt

@x1
@Ut
@x2

� @Wt

@x2
@Ut
@x1
, h2 = @Vt

@x2
@Ut
@x1

� @Vt
@x1

@Ut
@x2

and h3 = @Vt
@x1

@Wt

@x2
� @Vt

@x2
@Wt

@x1
. We can

rewrite !t;1 as follows

!t;1 =
1
@Vt
@S

1

1 + @Wt

@S
h2=

@Vt
@S
h1 +

@Ut
@S
h3=

@Vt
@S
h1
;

=
1
@Vt
@S

m1;t; (54)

where m1;t =
1

1+
@Wt
@S

h2=
@Vt
@S
h1+

@Ut
@S

h3=
@Vt
@S
h1
. Similarly, !t;2 is given by

!t;2 =
h2

@Vt
@S
h1 +

@Wt

@S
h2 +

@Ut
@S
h3
; (55)

which can be rewritten as follows

!t;2 =
1
@Wt

@S

1
@Vt
@S
h1=

@Wt

@S
h2 + 1 +

@Ut
@S
h3=

@Wt

@S
h2
;

=
1
@Vt
@S

m2;t; (56)
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where m2;t =
1

@Vt
@S
h1=

@Wt
@S

h2+1+
@Ut
@S

h3=
@Wt
@S

h2
. Finally !t;2 is given by

!t;3 =
h3

@Vt
@S
h1 +

@Wt

@S
h2 +

@Ut
@S
h3
;

=
1
@Ut
@S

1
@Vt
@S
h1=

@Ut
@S
h3 +

@Wt

@S
h2=

@Ut
@S
h3 + 1

=
1
@Ut
@S

(1�m1;t �m2;t): (57)

For the last equality, we can verify that

1�m1;t �m2;t = 1� 1

1 + @Wt

@S
h2=

@Vt
@S
h1 +

@Ut
@S
h3=

@Vt
@S
h1

� 1
@Vt
@S
h1=

@Wt

@S
h2 + 1 +

@Ut
@S
h3=

@Wt

@S
h2

=
1

@Vt
@S
h1=

@Ut
@S
h3 +

@Wt

@S
h2=

@Ut
@S
h3 + 1

: (58)

Therefore the implied equity premium for a three-factor model is

e�t:t+1 = m1;t
1

@Vt
@S
St

�
EPt [Vt+1]� Vt(1 + rt:t+1)

�
+

1
@Vt
@S
St

�
EPt [Wt+1]�Wt(1 + rt:t+1)

�
+(1�m1;t �m2;t)

1
@Ut
@S
St

�
EPt [Ut+1]� Ut(1 + rt:t+1)

�
: (59)

Appendix C: Prices and Deltas

Based on the results of Bakshi and Madan (2000) and Carr and Madan (2001), the price

(i.e., the risk-neutral expectation) of any contingent claim expiring at time t+ � and with a

twice di¤erentiable payo¤ function,  k(St+� ), can be inferred from a portfolio of OTM call

and put options as follows

Ft = EQt
�
e�rt:t+� k(St+� )

�
=
�
 k(St)� St 

k
S(St)

�
e�rt:t+� +  kS(St)St

+

Z 1

St

 kSS(K)C(t; t+ � ;K)dK +

Z St

0

 kSS(K)P (t; t+ � ;K)dK: (60)

The delta can be proxied as a portfolio of OTM option deltas

@Ft
@S

= EQt
�
e�rt:t+� k(St+� )

�
=
@
��
 k(St)� St 

k
S(St)

�
e�rt:t+� +  kS(St)St

	
@S

+

Z 1

St

 kSS(K)
@C(t; t+ � ;K)

@S
dK +

Z St

0

 kSS(K)
@P (t; t+ � ;K)

@S
dK: (61)
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Using the above equation, we deduce the price of the quadratic V expiring next period

Vt = EQt
�
e�rt:t+1R2t+1

�
=

Z 1

St

2
�
1� ln

�
K
St

��
K2

C(t; t+ 1; K)dK

+

Z St

0

2
�
1 + ln

�
St
K

��
K2

P (t; t+ 1; K)dK: (62)

and its delta @Vt
@S

@Vt
@S

=

Z 1

St

2
�
1� ln

�
K
St

��
K2

@C(t; t+ 1; K)

@S
dK

+

Z St

0

2
�
1 + ln

�
St
K

��
K2

@P (t; t+ 1; K)

@S
P (t; t+ 1; K)dK: (63)

The price of the cubic contract W expiring next period is

Wt = EQt
�
e�rt:t+1R3t+1

�
=

Z 1

St

6 ln
�
K
St

�
� 3 ln

�
K
St

�2
K2

C(t; t+ 1; K)dK

�
Z St

0

6 ln
�
St
K

�
+ 3 ln

�
St
K

�2
K2

P (t; t+ 1; K)dK: (64)

and its delta @Wt

@S
is given by

@Wt

@S
=

Z 1

St

6 ln
�
K
St

�
� 3 ln

�
K
St

�2
K2

@C(t; t+ 1; K)

@S
dK

�
Z St

0

6 ln
�
St
K

�
+ 3 ln

�
St
K

�2
K2

@P (t; t+ 1; K)

@S
dK: (65)

Finally, the price of the upside quadratic contract U expiring next period is

Ut = EQt
�
e�rt:t+1R2t+1IfRt+1>0g

�
=

Z 1

St

2
�
1� ln

�
K
St

��
K2

C(t; t+ 1; K)dK (66)

and its delta is @Ut
@S
proxied by

@Ut
@S

=

Z 1

St

2
�
1� ln

�
K
St

��
K2

@C(t; t+ 1; K)

@S
dK (67)

Appendix D: Data, Variables, and Estimation

We use the implied volatility of S&P 500 index options reported in OptionMetrics. We
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�lter out options: (i) that violate no-arbitrage conditions, (ii) with zero volume or zero open-

interest, (iii) that have missing or extreme implied volatility � 2 or � 0:01 and (iv) with

zero bid price.

We present the details for the computation of the integral of the following general form

on a given day t for a horizon �Z 1

St

 kSS(Kj�1)C(t; t+ � ;K)dK: (68)

We �rst estimate the implied volatility surface using all the options available on the

considered day and then convert them to option prices which in turn are used to deduce the

price of the quadratic, the upside quadratic and the cubic contracts. We follow the procedure

used by OptionMetrics and estimate the implied volatility, denoted IVt(�; �), for a given

level of delta � and a horizon � , using a smoothing kernel technique

IVt(�; �) =

NX
n=1

(volun) IVt(�n; �n)�n

NX
n=1

(volun) �n

; (69)

where �n = 1p
2�
exp

n
� log(�n=�)2

2h1
� (�n��)2

2h2

o
and volun is the option trading volume and

N is number of call options available on the day in question. We �x h1 = 0:05 and h2 =

0:005. We compute the implied volatility for OTM call options for di¤erent level of delta

�j = 0:02%; 0:04%; :::; 0:48%; 0:5%, for a total of 25 implied volatilities. The "implied" strike

prices are deduced from the deltas by inverting the Black-Scholes formula for the delta

Kj = St exp
n
�N�1(�j)� IVt(�j; T )

p
T + (r � (IVt(�j; T ))

2 =2)T
o
: (70)

We then use implied volatilities and implied strike prices as inputs in the Black-Scholes

formula in order to obtain call option prices. For the risk-free rate�another input in the

Black-Scholes formula�, we use the zero coupon yield curve reported in OptionMetrics and

use linear interpolation to obtain the rate for the appropriate maturity. Then we follow

Duan and Wei (2009) and approximate the integral in equation (68) using call option prices

computed as described above

 kSS(Kj)C(t; t+ � ;Kj) +
25X
j=2

�
 kSS(Kj�1)C(t; t+ � ;Kj�1) +  kSS(Kj)C(t; t+ � ;Kj)

�
(Kj �Kj�1): (71)

Since the estimation of the integral is based on OTM options, we were careful to discard
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the estimated option price if the implied strike is lower than the underlying asset value. We

follow the same procedure for the integral involving put options. The procedure described

above allows to standardize the number of options used each period and ensures that we

have the same number for call and put options to compute the respective integrals.

The integral in the delta involving call optionsZ 1

St

 kSS(K)
@C(t; t+ � ;K)

@S
dK (72)

is approximated by

 kSS(Kj)�j +
25X
j=2

�
 kSS(Kj�1)�j�1 +  kSS(Kj)�j

�
(Kj �Kj�1): (73)

where the "implied strike" Kj is given by equation (70) and is computed for each level of

delta �j = 0:02%; 0:04%; :::; 0:48%; 0:5%. The integral in the delta involving put options is

approximated in the same way.

The estimation of the monthly implied equity premium requires the computation of the

risk-neutral expectations for one month horizon and the deltas at a monthly frequency.

Therefore, we compute the risk-neutral expectations and the deltas as described above using

data on the last business day of the month.

The results in section 6 are based on the estimation of the implied equity premium for

one-month horizon at a daily frequency, which requires estimates of physical and risk-neutral

expectations at a daily frequency. We estimate the risk-neutral expectations (for one month

horizon) in each day as described above. For the daily physical moments, we use León, Rubio

and Serna, (2005) model

Rt = �0 + ht�t; �t � N(0; 1); (74)

and

ht = �0 + �1ht�1(�t�1 + �3)
2 + �2ht�1; (75)

st = �0 + �1�
3
t�1 + �2st�1; (76)

�t = �0 + �1�
4
t�1 + �2�t�1; (77)

where ht, st and kt are the conditional volatility, skewness and kurtosis, respectively. The

one-day ahead physical second and third moments are Et[R2t�1] = ht+1 + �
2
0 and Et[R

3
t+1] =

st+1h
3=2
t+1 + 3�0(ht+1 + �20) � 2�30, respectively. Since we only need the second and third

moments, therefore to reduce the number of parameters and facilitate the estimation, we

impose the following constraints: �0 = 3, �1 = 0 and �2 = 0. In other words, we constraint
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the conditional kurtosis to be equal to 3. The parameters of the model are estimated using

a maximum likelihood method. To account for possible time-variation in the model parame-

ters, we re-estimate the model each year using a one-year window of daily returns to obtain

the time series of one-day ahead moments. Since we estimate the implied equity premium

at a daily frequency but for one-month horizon, we multiply the one-day ahead moments by

21 and use them as proxy for the one-month ahead moments.

Finally, to estimate the weights !t;1 and !t;2 (i.e., mt) for each day, we run the regression

given by equation (25) using a rolling window of 21 days.
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Figure 1: Implied Equity Premia

The �gure plots the time series for the implied equity premium for one-month horizon. The top panel shows
the unconstrained estimates while in the middle panel we constrain to implied equity premium to be positive.
We also plot the time series for the S&P 500 index value (bottom panel). The sample period is from January
1996 through October 2010.
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Table 1: Descriptive Statistics

The table summarizes the descriptive statistics for the implied equity premium (panel A) and the correlation
matrix between the implied equity premium and future and current market returns, Rt, (panel B). The mean
and the standard deviation are reported in monthly percentage. �(1) is the �rst order autocorrelation and
%Neg is the percentage of negative equity premium estimates. Signi�cant correlations at 5% level are in
boldface. The sample period is from January 1996 through October 2010.

Panel A: Implied Equity Premium

~�t:t+1 ~�t:t+1

(unconstrained) (constrained)

Mean 2.21 2.71

Std 3.34 1.96

Skew -2.24 0.89

Kurt 11.60 4.08

�(1) 0.26 0.06

% Neg 11.80 0.00

Panel B: Correlation Matrix

~�t:t+1 ~�t:t+1 Rt Rt+1

(unconstrained) (constrained)

~�t:t+1 (constrained) 0.79
Rt 0.01 -0.22
Rt+1 0.18 0.17 0.10

Rt+2 0.33 0.27 -0.05 0.11
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Table 2: Predictive Regressions for Stock Market Returns

We run the following predictive regression for di¤erent horizons k

Rt:+1:t+k = c0 + c1e�t:t+1 + c2e�t�1:t + "t+k;
where Rt+1:t+k = 12

k [log(Rt+1 + 1) + ::::+ log(Rt+k + 1)] is the annualized k�month excess return. The
implied equity premium e�t:t+1 is based on the month t information set, while the lagged implied equity
premium e�t�1:t is based on the month t� 1 information set. The results for the unconstrained (constrained)
equity premium are reported in Panel A (Panel B). Hodrick t�statistics robust to serial correlation and
heteroskedasticity are reported in parentheses. The sample period is from January 1996 through October
2010.

Panel A: Unconstrained Panel B :Constrained

k 1 3 6 12 24 1 3 6 12 24

Multivariate Regressions

Constant -0.14 -0.11 -0.04 0.00 -0.02 -0.31 -0.26 -0.15 -0.05 -0.05

(-1.98) (-1.53) (-0.63) (0.05) (-0.58) (-3.07) (-3.00) (-1.98) (-0.94) (-1.18)

~�t:t+1 0.14 0.25 0.12 0.01 0.01 0.37 0.44 0.27 0.09 0.07

(0.95) (2.95) (1.63) (0.19) (0.66) (1.77) (3.63) (3.12) (1.64) (1.51)

~�t�1:t 0.44 0.18 0.05 -0.01 0.01 0.63 0.40 0.21 0.08 0.04

(2.60) (1.71) (0.74) (-0.35) (0.52) (2.87) (3.35) (2.31) (1.50) (1.04)

Adj R2 10.75 15.13 3.51 -1.15 -1.14 8.62 16.54 8.88 1.06 0.44

Univariate Regressions

Constant -0.06 -0.07 -0.03 0.00 -0.02 -0.13 -0.14 -0.09 -0.03 -0.04

(-0.97) (-1.27) (-0.55) (-0.01) (-0.51) (-1.62) (-2.33) (-1.55) (-0.62) (-0.94)

~�t:t+1 0.26 0.30 0.13 0.00 0.01 0.43 0.47 0.28 0.10 0.07

(1.82) (2.86) (1.48) (0.08) (0.65) (2.04) (3.69) (3.10) (1.63) (1.49)

Adj R2 2.64 11.55 3.46 -0.60 -0.53 2.54 9.74 5.85 0.73 0.60

Constant -0.11 -0.06 -0.02 0.00 -0.02 -0.20 -0.13 -0.07 -0.03 -0.03

(-1.75) (-0.98) (-0.33) (0.08) (-0.50) (-2.38) (-2.12) (-1.23) (-0.56) (-0.78)

~�t�1:t 0.47 0.25 0.08 -0.01 0.01 0.66 0.44 0.23 0.09 0.05

(2.96) (2.04) (0.95) (-0.24) (0.55) (3.04) (3.44) (2.40) (1.51) (1.07)

Adj R2 10.35 7.60 1.07 -0.55 -0.58 6.78 8.13 3.81 0.49 -0.08
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Table 3: Predictability in Subsamples

We split our sample in two sub-periods 1996�2003 and 2004�2010 and run the following predictive regression
for di¤erent horizons k

Rt+1:t+k = c0 + c1e�VWt:t+1 + c2e�VWt�1:t + "t+k;
where Rt+1:t+k = 12

k [log(Rt+1 + 1) + ::::+ log(Rt+k + 1)] is the annualized k�month excess return. The
implied equity premium e�t:t+1 is based on the month t information set, while the lagged implied equity
premium e�t�1:t is based on the month t� 1 information set. The results for the unconstrained (constrained)
equity premium are reported in Panel A (Panel B). Hodrick t�statistics robust to serial correlation and
heteroskedasticity are reported in parentheses. The sample period is from January 1996 through October
2010.

Panel A: Unconstrained Panel B :Constrained

k 1 3 6 12 24 1 3 6 12 24

1996�2003

Constant -0.13 -0.07 -0.04 0.00 0.00 -0.20 -0.14 -0.09 -0.02 -0.01

(-1.22) (-0.72) (-0.55) (0.03) (-0.01) (-1.62) (-1.36) (-0.95) (-0.34) (-0.26)

~�t:t+1 0.09 0.15 0.13 0.03 0.02 0.24 0.22 0.19 0.06 0.05

(0.65) (1.52) (1.76) (0.82) (1.09) (1.01) (1.89) (2.09) (1.13) (1.65)

~�t�1:t 0.45 0.18 0.12 0.03 0.01 0.42 0.27 0.15 0.07 0.02

(1.90) (1.53) (1.61) (0.88) (0.57) (1.72) (2.05) (1.59) (1.15) (0.80)

Adj R2 6.91 5.30 6.32 -1.12 -1.66 2.39 5.28 4.99 -0.47 -1.24

2004-2010

Constant -0.15 -0.13 -0.05 -0.01 -0.05 -0.47 -0.43 -0.22 -0.08 -0.06

(-1.56) (-1.39) (-0.55) (-0.17) (-0.91) (-2.67) (-2.86) (-1.78) (-0.89) (-1.02)

~�t:t+1 0.22 0.39 0.14 0.00 -0.04 0.57 0.85 0.39 0.12 0.02

(0.71) (2.60) (1.24) (-0.07) (-1.90) (1.35) (3.20) (2.36) (1.46) (0.46)

~�t�1:t 0.38 0.11 -0.04 -0.08 -0.02 0.98 0.58 0.29 0.07 -0.01

(1.33) (0.59) (-0.33) (-1.34) (-0.89) (2.30) (2.61) (1.59) (1.10) (-0.18)

Adj R2 13.74 25.50 0.53 -0.37 -2.10 18.74 36.25 10.80 -0.91 -3.60
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Table 4: Predictability and Alternative Implied Equity Premium Estimates

We run the following predictive regression for di¤erent horizons k

Rt+1:t+k = c0 + c1e�t:t+1 + c2e�t�1:t + "t+k;
where Rt+1:t+k = 12

k [log(Rt+1 + 1) + ::::+ log(Rt+k + 1)] is the annualized k�month excess return. The
implied equity premium e�t:t+1 is based on the month t information set, while the lagged implied equity
premium e�t�1:t is based on the month t � 1 information set. In Panel A, the equity premium is extracted
from the quadratic, the upside quadratic and the cubic contracts using a three-factor model. In Panel B, the
equity premium is extracted from the quadratic and the upside quadratic contracts using a two-factor model.
Finally, in Panel C, the equity premium is extracted from the cubic and the upside quadratic contracts using
a two-factor model. Hodrick t�statistics robust to serial correlation and heteroskedasticity are reported in
parentheses. The sample period is from January 1996 through October 2010.

Unconstrained Constrained

k 1 3 6 12 24 1 3 6 12 24

Panel A: 3-factor model�using quadratic, cubic and upside quadratic contracts

Constant -0.08 -0.05 -0.02 0.00 -0.03 -0.19 -0.11 -0.08 -0.03 -0.04

(-1.31) (-0.89) (-0.41) (-0.09) (-0.81) (-2.26) (-1.40) (-1.18) (-0.52) (-0.93)

~�t:t+1 0.20 0.19 0.10 0.02 0.04 0.35 0.24 0.17 0.06 0.05

(1.71) (2.61) (1.65) (0.62) (1.79) (2.68) (2.41) (2.40) (1.23) (1.43)

~�t�1:t 0.20 0.09 0.02 0.00 0.04 0.31 0.15 0.10 0.04 0.03

(1.68) (1.01) (0.38) (0.00) (1.97) (1.84) (1.44) (1.41) (0.77) (0.97)

Adj R2 7.51 10.76 3.59 -0.82 1.42 4.75 4.39 3.69 -0.11 0.15

Panel B: 2-factor model�using quadratic and upside quadratic contracts

Constant -0.13 -0.10 -0.05 -0.01 -0.03 -0.28 -0.24 -0.15 -0.08 -0.08

(-1.91) (-1.49) (-0.75) (-0.17) (-0.79) (-2.87) (-2.76) (-2.09) (-1.35) (-1.67)

~�t:t+1 0.21 0.28 0.15 0.03 0.04 0.44 0.46 0.30 0.15 0.13

(1.26) (2.89) (1.90) (0.76) (1.72) (1.91) (3.41) (3.26) (2.54) (2.65)

~�t�1:t 0.44 0.21 0.08 0.01 0.04 0.58 0.42 0.25 0.14 0.10

(2.43) (1.88) (1.07) (0.26) (1.71) (2.44) (3.14) (2.60) (2.28) (2.39)

Adj R2 10.38 15.01 5.41 -0.71 0.50 7.07 15.22 10.30 4.19 5.12

Panel C: 2-factor model�using cubic and upside quadratic contracts

Constant -0.16 -0.13 -0.05 0.00 -0.02 -0.21 -0.16 -0.06 -0.01 -0.04

(-2.24) (-2.33) (-0.96) (0.03) (-0.62) (-2.68) (-2.57) (-1.20) (-0.19) (-1.00)

~�t:t+1 0.08 0.33 0.12 0.00 0.02 0.08 0.41 0.16 0.03 0.07

(0.41) (3.24) (1.75) (0.02) (0.77) (0.28) (2.94) (1.84) (0.44) (1.60)

~�t�1:t 0.68 0.31 0.11 0.00 0.01 0.82 0.28 0.12 0.01 0.03

(3.08) (2.93) (1.62) (-0.04) (0.40) (3.01) (2.13) (1.27) (0.12) (0.77)

Adj R2 8.05 9.64 1.30 -1.23 -1.12 7.12 8.33 1.52 -1.13 -0.16
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Table 5: Predictability and Control Variables

We run a regression of the following type

Rt+1:t+k = c0 + c1e�t:t+1 + c2e�t�1:t + �Zt + "t+k;
where Rt+1:t+k = 12

k [log(Rt+1 + 1) + ::::+ log(Rt+k + 1)] is the annualized k�month excess return and e�VWt:t+1
is the equity premium extracted from the quadratic and the cubic contracts. e�VWt:t+1 is based on the month t
information set, while e�VWt�1:t is is based on the month t�1 information set. Zt is one of the following predictor
variables: Book-to-Market Ratio (b/m), Net Equity Expansion (ntis), Dividend Yield (d/y), Earnings Price
Ratio (e/p), Dividend Price Ratio (d/p), Default Yield Spread (dfy), Dividend Payout Ratio (d/e), and
Long Term Rate of Returns (ltr). We focus on, monthly and quarterly horizons. The results for the
unconstrained (constrained) equity premium are reported in Panel A (Panel B). Hodrick t�statistics robust
to serial correlation and heteroskedasticity are reported in parentheses. The sample period is from January
1996 through October 2010.

Zt b/m ntis d/y e/p d/p dfy d/e ltr

Panel A:Unconstrained

Monthly Horizon

Constant -0.30 -0.14 0.64 -0.09 0.60 -0.26 -0.07 -0.16

(-1.70) (-1.95) (1.89) (-0.34) (1.70) (-2.40) (-0.61) (-2.10)

~�t:t+1 0.15 0.13 0.17 0.15 0.16 0.17 0.15 0.16

(1.02) (0.89) (1.11) (0.97) (1.10) (1.10) (1.01) (1.04)

~�t�1:t 0.46 0.42 0.46 0.44 0.46 0.50 0.45 0.45

(2.72) (2.46) (2.72) (2.60) (2.74) (2.95) (2.70) (2.63)

Zt 0.62 1.64 0.20 0.02 0.19 10.79 0.09 1.62

(0.94) (0.59) (2.37) (0.17) (2.17) (1.27) (0.84) (0.97)

Adj R2 10.85 10.59 11.95 10.28 11.78 11.53 10.89 11.01

Quarterly Horizon

Constant -0.30 -0.11 0.58 -0.16 0.55 -0.21 -0.03 -0.11

(-1.95) (-1.53) (1.79) (-0.66) (1.69) (-2.19) (-0.23) (-1.57)

~�t:t+1 0.27 0.22 0.28 0.26 0.28 0.28 0.26 0.26

(3.13) (2.66) (3.17) (2.90) (3.17) (3.17) (3.02) (2.97)

~�t�1:t 0.21 0.16 0.20 0.18 0.20 0.23 0.20 0.18

(2.00) (1.45) (1.91) (1.71) (1.95) (2.38) (1.96) (1.72)

Zt 0.77 3.14 0.17 -0.02 0.17 9.07 0.11 -0.02

(1.30) (1.15) (2.22) (-0.20) (2.13) (1.22) (1.12) (-0.02)

Adj R2 16.95 17.95 18.15 14.69 17.92 17.03 17.06 14.64
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Table 5 �Continued

Zt b/m ntis d/y e/p d/p dfy d/e ltr

Panel B: Constrained

Monthly Horizon

Constant -0.40 -0.32 0.33 0.13 0.25 -0.30 -0.36 -0.33

(-2.05) (-3.01) (0.92) (0.45) (0.67) (-2.52) (-2.08) (-3.09)

~�t:t+1 0.40 0.36 0.42 0.47 0.41 0.40 0.41 0.39

(1.83) (1.70) (1.94) (2.05) (1.90) (1.84) (1.84) (1.82)

~�t�1:t 0.65 0.61 0.66 0.71 0.66 0.64 0.65 0.64

(2.95) (2.78) (2.98) (3.04) (3.00) (2.89) (2.87) (2.90)

Zt 0.30 2.35 0.16 0.15 0.14 -1.97 -0.04 0.88

(0.46) (0.85) (1.88) (1.51) (1.60) (-0.23) (-0.35) (0.54)

Adj R2 8.47 9.03 9.53 9.79 9.26 8.38 8.45 8.55

Quarterly Horizon

constant -0.42 -0.26 0.34 0.00 0.29 -0.27 -0.26 -0.27

(-2.46) (-2.96) (0.98) (0.01) (0.80) (-2.63) (-1.65) (-3.03)

~�t:t+1 0.47 0.41 0.49 0.51 0.48 0.46 0.46 0.46

(3.69) (3.46) (3.82) (3.67) (3.77) (3.60) (3.37) (3.63)

~�t�1:t 0.43 0.37 0.43 0.46 0.44 0.41 0.41 0.41

(3.62) (3.12) (3.55) (3.20) (3.60) (3.46) (3.01) (3.36)

Zt 0.57 3.52 0.16 0.09 0.14 0.23 0.01 -0.59

(0.91) (1.30) (1.87) (1.03) (1.67) (0.03) (0.07) (-0.72)

Adj R2 17.86 20.91 19.48 18.03 19.00 16.55 16.56 16.81
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Table 6: Out of Sample Predictions for One-Month Horizon

We compute the out-of-sample R2 (OOS R2) de�ned below for one-month horizon

R2 = 1�

TP
t=t0

�
Rt � bRt�2

TP
t=t0

�
Rt �Rt

�2 ;

where the forecast value from the monthly regression below, bRt, and the historical mean, Rt, are computed
recursively using data from the beginning of the sample through time t� 1

Rt = c0 + cP
0
t�1 + "t;

where P0t�1 is the vector of predictor variables. For the predictor variables, we consider the implied equity
premium (constrained and unconstrained), the set of variables used in Table 5, and the second and third
moment spreads, denoted SVt:t+1 and SWt:t+1, respectively. For the starting date of the forecast period t0,
we try 2000, 2002 and 2004. For comparison, we also report the in-sample R2 (IS) for the forecast period.
R20s are reported in percentage. The sample period is from January 1996 through October 2010.

Forecasts begin in 2000 2002 2004

Predictor Variables P0t IS OOS IS OOS IS OOS

~�t:t+1; ~�t�1:t (unconstrained) 14.13 8.71 19.19 14.12 13.74 11.02

~�t:t+1; ~�t�1:t (constrained) 15.81 8.98 20.56 14.40 18.74 15.54

b/m -0.24 -3.92 -0.97 -8.66 -1.26 -3.00

ntis 0.64 -2.29 1.13 -0.14 3.81 1.58

d/y 1.10 -0.99 -0.17 -4.82 -0.94 -7.78

e/p -0.76 -3.92 -0.83 -6.81 -0.13 -15.20

d/p 0.33 -2.17 -0.84 -6.79 -1.26 -10.10

dfy -0.74 -3.08 -0.52 -3.05 -1.10 -2.04

d/e -0.47 -8.35 -0.81 -8.58 -0.64 -10.14

ltr -0.34 -1.49 -0.19 -1.73 0.79 -1.83

SVt:t+1 6.35 3.34 7.95 4.06 10.60 5.83

SVt:t+1; SVt�1:t 8.45 -7.97 10.29 -11.87 10.24 -25.07

SVt:t+1 -0.26 -6.88 0.02 -9.85 0.21 -13.19

SWt:t+1; SWt�1:t -0.04 -11.74 -0.12 -17.80 0.30 -22.38

SVt:t+1; SWt:t+1 6.94 -1.07 8.62 -0.03 12.03 0.48

SVt:t+1; SVt�1:t; SWt:t+1; SWt�1:t 13.30 -29.81 15.85 -39.35 14.19 -57.54
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Table 7: The Cross-Section of Stock Returns

We sort stocks into quintiles based on their lagged sensitivity to the implied equity premium, denoted �prem.
Each month, we estimate �prem from one of the following regressions using daily observations

1. (Panel A): Rt � r = �+ �mkt(Rmktt � r) + �preme�VWt:t+1 + "t;
2. (Panel B): Rt�r = �+�mkt(Rmktt �r)+�HMLRHML

t +�SMBRSMB
t +�MomRMom

t +�preme�VWt:t+1+"t;
3. (Panel C): Rt � r = �+ �mkt(Rmktt � r) + �preme�VWt:t+1 + �V IX�V IXt + "t:

For each quintile, we compute the value-weighted average return over the next month to obtain monthly times
series. We report the mean and the standard deviation of these time series in monthly percentage. Alpha�
CAPM is from the regression of the monthly time series on the market returns using the full sample and
Alpha�Carhart is from the regression of these monthly time series on the Fama-French and the momentum
factors. The last column reports cross-sectional (value-weighted) averages of �prem (used to rank stocks)
averaged through the entire sample. The t�statistics are reported in parentheses. The sample period is from
January 1996 through October 2010.

Mean Std Alpha� Alpha� �prem

CAPM Carhart

Panel A

1. low 0.06 7.08 -0.53 -0.49 -0.96

2 0.39 4.93 -0.04 -0.02 -0.30

3 0.51 4.29 0.13 0.09 0.01

4 0.56 4.81 0.14 0.10 0.33

5. high 0.95 6.97 0.39 0.49 1.01

5�1 0.88 5.21 0.93 0.97

(2.23) (2.35) (2.52)

Panel B

1. low 0.16 6.72 -0.42 -0.38 -1.07

2 0.33 4.77 -0.09 -0.12 -0.34

3 0.55 4.41 0.16 0.18 0.01

4 0.67 4.78 0.25 0.21 0.35

5. high 0.62 6.53 0.07 0.15 1.09

5�1 0.46 3.35 0.49 0.52

(1.82) (1.90) (2.00)

Panel C

1. low 0.08 7.33 -0.57 -0.51 -1.02

2 0.25 4.87 -0.09 -0.12 -0.32

3 0.47 4.21 0.18 0.20 0.01

4 0.50 4.76 0.17 0.12 0.35

5. high 0.94 7.09 0.50 0.61 1.06

5�1 1.02 5.54 1.06 1.12

(2.33) (2.43) (2.58)
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