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This study proposes a utility-based framework for the determination of optimal
hedge ratios (OHRs) that can allow for the impact of higher moments on hedging
decisions. We examine the entire hyperbolic absolute risk aversion family of utili-
ties which include quadratic, logarithmic, power, and exponential utility func-
tions. We find that for both moderate and large spot (commodity) exposures, the
performance of out-of-sample hedges constructed allowing for nonzero higher
moments is better than the performance of the simpler OLS hedge ratio. The pic-
ture is, however, not uniform throughout our seven spot commodities as there is
one instance (cotton) for which the modeling of higher moments decreases wel-
fare out-of-sample relative to the simpler OLS. We support our empirical findings
by a theoretical analysis of optimal hedging decisions and we uncover a novel link
between OHRs and the minimax hedge ratio, that is the ratio which minimizes
the largest loss of the hedged position. © 2011 Wiley Periodicals, Inc. Jrl Fut Mark
32:909–944, 2012 
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1. INTRODUCTION

There is now indisputable evidence to suggest that the return distributions of
risky assets depart from normality.1 Under some fairly weak assumptions con-
cerning the shape of investor utility functions, Scott and Horvarth (1980) show
that investors are concerned not just with the mean and variance of asset
returns but also with the distribution’s higher moments, exhibiting a preference
for larger odd moments and smaller even ones. Importantly, Kraus and
Litzenberger (1976, 1983) and Harvey and Siddique (2000) have made it clear
that systematic risk related to skewness is priced by the market.2 Moments
higher than the third have also been taken into account in the asset pricing lit-
erature.3 With the noticeable exceptions of Kallberg and Ziemba (1983), Post,
Vliet, and Levy (2008), and arguably also Jondeau and Rockinger (2006), the
general message from these studies is that higher moments do matter in terms
of asset pricing and that a failure to account for them may lead to sub-optimal
asset allocation decisions.

Another, almost entirely separate strand of finance literature, has looked
at the hedging decisions of risk-averse investors.4 A large number of empirical
studies5 have been concerned with the estimation of the optimal hedge ratio
(OHR), defined as the optimal number of futures contracts to employ per
unit of the spot asset to be hedged.6 An easy way to calculate this number of
futures contracts is to employ the OLS hedge ratio, which is simply measured
as the slope coefficient of an OLS regression of spot returns on futures
returns. This implies a static risk management strategy that involves a one-off
decision on the optimal hedge and might therefore yield suboptimal hedging
decisions in periods of high basis volatility. To overcome this problem, quite a
large literature has developed, which models the OHR within a conditional

1For example, deviations from normality have been observed for emerging stock market indices (Harvey,
1995), hedge fund indices (Agarwal & Naik, 2004), individual hedge funds (Brooks & Kat, 2002), relative-
strength strategies (Harvey & Siddique, 2000), and futures contracts (Christie-David & Chaudhry, 2001).
2Along the same lines, examples of studies that extend the existing literature to incorporate skewness include
Hong, Tu, and Zhou (2007) on measuring the economic significance of incorporating asymmetries into
investment decisions, Chunhachinda, Dandapani, Hamid, and Prakash (1997) on international portfolio
decision in the presence of skewness, Barone-Adesi, Gagliardini, and Urga (2004) on incorporating co-skewness
into asset pricing models, and Post et al. (2008) on risk aversion and skewness preference.
3Of note for example are Kallberg and Ziemba (1983) on the impact of different utility functions on asset
allocation, and Jondeau and Rockinger (2006) on optimal portfolio allocation.
4It is generally accepted that privately held, owner-managed firms are risk-averse. Listed companies, too, can
act as risk averters in the presence of capital market imperfections, i.e. outside the Modigliani–Miller para-
digm (Brown & Toft, 2002; Froot, Scharfstein, & Stein, 1993).
5The existing theoretical treatment of optimal hedging relies either on joint normality or log-normality
(Brown & Toft, 2002; Moschini & Lapan, 1995) or on a specific decomposition, additive or multiplicative, of
hedgeable and nonhedgeable risks (Benninga, Eldor, & Zilcha, 1983; Briys, Crouhy, & Schlesinger, 1993).
An exception is Harris and Shen (2003), who develop an OHR estimator that is robust to leptokurtosis.
6See, for example, Cechetti, Cumby, and Figlewski (1988).
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framework, taking into account the dynamics between the spot and futures
returns (for example, Brooks, Henry, & Persand, 2002; or Miffre, 2004).
These studies have mainly employed models from the multivariate general-
ized autoregressive conditionally heteroscedastic (MGARCH) family. They
have reached conflicting results on the out-of-sample hedging effectiveness
of conditional minimum variance hedge ratios, even before taking into
account the additional costs involved with continually buying and selling
futures contracts so as to rebalance the hedged portfolio when the model sug-
gests. At best, MGARCH models have led to very modest improvements in
cross-hedging efficiency when evaluated on an out-of-sample basis. Hence,
the benefits of active risk management strategies ought to be viewed with
caution.

Almost without exception, empirical studies on the determination of
OHRs at best assume that investors have two-moment (quadratic) utility func-
tions or that the distribution of returns on the hedged portfolio is normal, so
that the mean and variance alone are sufficient to determine the hedge ratio
optimally.7 In a slight generalization, Levy (1969) shows that a cubic utility
function can be employed where investor preferences depend on skewness.
However, it is not at all obvious, when one is released from the constraint of
the mean–variance framework, why one should stop at skewness, for in addi-
tion to an aversion to negative skewness, rational investors should possess an
aversion to positive excess kurtosis as well. Even less plausibly, many studies
focus on minimum variance hedging, where the mean, as well as any moments
of order higher than the second, is ignored. Such an assumption concerning
the mean will only be appropriate if investors are infinitely risk-averse, or if the
expected return is zero.

Clearly then, if return distributions depart from normality and/or mean
returns are nonzero, hedging strategies that assume normality might lead to
sub-optimal hedging decisions. This study therefore develops a new methodol-
ogy for estimating OHRs within a utility-based framework that allows for
investors to have nonzero preferences for higher moments. The approach that
we propose has many advantages, including that it

1. does not employ (notoriously unreliable) estimates of higher moments,

2. does not impose a parametric distribution on returns and is therefore not
subject to parameter uncertainty,

7A slightly weaker assumption than return normality is that the spot and corresponding futures returns are
drawn from a multivariate elliptical distribution. In such circumstances, even if the spot returns are skewed
and/or leptokurtic, the magnitude or otherwise of these higher moments is not affected by hedging with
futures and thus optimally, they should not enter into the hedger’s objective function.
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3. does not require the futures market to be unbiased, and
4. permits fast and reliable numerical implementation.8

While designing our utility-based hedge ratio, we measure, for the first
time, the loss of welfare that may be incurred if one uses OLS hedge ratios in
nonquadratic utility functions. By doing so, we draw together the literatures on
hedging with futures, and on utility maximization with higher moments.

The extant literature concerning the impact of higher moments on hedging
is very sparse. We are aware of only three studies (Gilbert, Jones, & Morris,
2006; Harris & Shen, 2006; Yamada & Primbs, 2004) that study the impact of
higher moments on hedging. There are, however, important differences between
these studies and this study. First, Yamada and Primbs (2004) and Harris and
Shen (2006) focus on value-at-risk and conditional value-at-risk, whereas we
focus on utility-based hedging. Second, while we use futures contracts as hedg-
ing instruments, Yamada and Primbs (2004) use options and Harris and Shen
(2006) consider cross hedging with currencies. Third, and possibly most impor-
tantly, Yamada and Primbs (2004) and Harris and Shen (2006) focus on para-
meterization up to the fourth moment, Gilbert, Jones, and Morris (2006) derive
and apply a partial equilibrium model of hedging that allows for skewness (but
not kurtosis) in the hedger’s utility function, whereas we provide a more general
utility-based framework that determines optimal hedges using all moments of
the return distribution. Our approach therefore encompasses that of Yamada
and Primbs (2004), Gilbert et al. (2006) and Harris and Shen (2006).

Interestingly, Harris and Shen (2006) show, using a set of daily currency
exposures, that minimum variance hedging is likely to reduce the out-of-sample
variance of the hedged portfolio, but the skewness and kurtosis are likely to
fall and rise, respectively. This result indicates that the benefit of hedging may
be overstated since these higher moments move in exactly the opposite direc-
tions to those preferred by a rational utility maximizer of the form described in
the theoretical literature. This provides a strong motivation for developing a
utility-based framework for determining the OHR, and we are the first (to our
knowledge) to do so, since such an approach will automatically take these
higher moments into account when estimating the hedge ratio and assessing
its effectiveness.9

8Our approach, based on Newton’s optimization method and detailed in Appendix A, is able to deal with gen-
eral nonparametric distributions of returns and, apart from strict concavity, does not impose restrictions on
the utility function. The method exhibits quadratic convergence, doubling the number of digits of accuracy
at each iteration, and it is thus extremely fast. Apart from computing OHRs, our procedure is also suitable for
solving optimal investment problems with a large number of assets because the computational effort grows
only quadratically with the number of assets. By contrast, the use of co-skewness and co-kurtosis (see, for
example, Harvey, Liechty, Liechty, & Müller, 2010; Jondeau & Rockinger, 2006) makes the computational
time grow with the third and fourth power of the total number of assets, respectively.
9Similarly, Brooks and Kat (2002) observed that hedge funds, while demonstrating impressive performance on
mean-variance grounds, also typically have less desirable higher moment values than traditional asset classes.
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In anticipation of our results, we find that for moderate and large com-
modity exposures, the out-of-sample performance of hedges constructed allow-
ing for nonzero higher moments is better than the performance of the simpler
OLS hedge ratio. Hence, it seems that for most of our cross-section (namely,
for six of the seven commodities studied), higher moments do matter when it
comes to determining OHRs: the welfare of hedgers is generally maximized
when higher moments are taken into account.

The picture is, however, not totally uniform as we uncover cases for which
the modeling of higher moments hurts more than it helps: namely, for cotton, the
simpler OLS hedge ratio maximizes the welfare of hedgers more than a more
sophisticated hedge ratio that takes into account higher moments. The case of
cotton is of interest as it highlights the limitations of our utility-based hedge
ratio which works well when departures from normality are not too strong. The
return distribution of cotton presents an extremely negative skew, which was
induced by government incentives to stimulate production in the mid 1980s in
China.10 A hedger who is wary of the risk that cotton producers in China could
again be given strong incentives to increase output, might see our utility-based
hedge ratio as appealing. Any sharp drops in prices similar to those of 1986 will
be better hedged within our approach than within the standard OLS. In normal
circumstances, however, the extreme drops in prices driven by government-
induced output are unlikely to reoccur, and thus a hedger taking into account
skewness risk may end up giving too much weight to extreme events such as
that of 1986. This explains why our utility-based hedge ratio fares worse under
normal circumstances than standard OLS for cotton.

The remainder of the article is organized as follows. Section 2 presents the
theoretical underpinning of our higher moment hedge ratio and provides a
numerical illustration based on an airline company hedging its fuel exposure.
Section 3 introduces the data set of seven commodities and Section 4 presents
the empirical results. Finally, Section 5 concludes.

2. METHODOLOGY

2.1. Derivation

An agent who hedges a long spot position at time t using ht futures contracts
will receive the following change in wealth between times t and t �1, Rt�1, to
the hedged position

10The very sharp decrease in the price of cotton during August 1986 (� 58.46%) was driven by a sharp
increase in stocks between 1984 and 1986. The excess supply was the result of incentives from the Chinese
government where procurement in excess of standard volume was paid extra (United Nations Conference on
Trade and Development report).

913
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(1)

where Ct�1 and Ft�1 denote the changes in the cash (spot) and futures prices,
respectively, between times t and t � 1.

Although the literature on determining OHRs is now vast, traditionally,
academic research has assumed that only the first two moments of the utility
function are of concern to the investor. Under this assumption, and provided
that the value of the hedged portfolio follows a pure martingale process, it is
easy to show that the OHR is simply the ratio of the covariance between the
cash and futures returns to the variance of the futures returns, equivalent to
the OLS hedge.

In general, it is not obvious whether we should stop at the second, third,
fourth, or nth moment. Thus, we are compelled to adopt a more general utility-
based approach. To test the robustness of our results, we examine a whole family
of utility functions including the logarithmic, exponential, power, and quadrat-
ic utility (the so-called hyperbolic absolute risk aversion (HARA) or LRT class,
see Cass & Stiglitz, 1970; Ingersoll, 1987) as well as fourth moment polynomi-
al approximations thereof. To emphasize the generality of our approach, we
develop the main theoretical results for general utility functions and only later
focus on the HARA class.

Definition 2.1: We call U: �S [��, �) with effective domain DU (i.e. the set
where U is finite) a utility function if

1. U is at least twice differentiable on the interior of DU,

2. U�� � 0 on the interior of DU,

3. the maximal domain on which U is strictly increasing has nonempty
interior,

4. limvS�� U�(v) � �� or limvS�� U� (v) � 0, where we set U�(v) � �� for
.

In cases when , we define the inverse utility U�1 as taking values
in .

Fix a probability space (	, P, F) with finite sample space 	 :� {vi: 
i � 1, . . ., n} n � �. Denote by X, Y two random variables representing the
excess returns of the future contract and of the spot asset, respectively.11 We
denote their realizations concisely by Xi, Yi with i � 1, . . ., n.

DU

DU (� DU

v �DU

DU

Rt�1 � Ct�1 � htFt�1

11We suppress time subscripts throughout this section. The random variable X corresponds to the change in
the futures index and Y is interpreted as the change in the cash value . The expectation E(
)is inter-
preted as the expectation at time t conditional on the information at that time.

Ct�1Ft�1
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Assumption 2.2: Throughout the study we assume that there is no arbitrage, i.e.
there is a measure Q equivalent to P and such that EQ(X) � EQ(Y) � 0.

The next theorem is technical. It states that, in the absence of arbitrage,
the spot position is either completely unhedgeable or the optimal hedge is well-
defined. This result is no longer true, in general, with unbounded return distri-
butions.

Theorem 2.3: Consider a utility U and an initial endowment and define

The hedgeable set I :� {h� �:supq��E(U(n� hY � qX)) � ��} is an interval
containing an open neighborhood of zero. For every hedgeable spot position 
(h � I), the maximizer in supu��u(v, h, q) exists and is unique; we denote it by
w(n, h). Here, h allows for a “wealth effect” of the spot position, or the physical
exposure to the spot asset.

Define the certainty equivalent (CE) wealth increase in the standard way,

and denote its maximal value by CE(v, h) :� supq��CE(v, h, q). For h � I, the
quantity CE(v, h) is finite, whereas for h � I we have CE(v, h) � ��.

Our framework involves a series of one-period hedging decisions. Suppose
that the hedger is long h units of the spot asset (i.e. h captures the physical
exposure to the spot asset) and assume that this position is hedgeable, h � I. If
the investor does not hedge, she optimally continues to hold w(v, 0) futures
contracts. This is known as a speculative position. The literature on optimal
hedging typically assumes that the futures market is unbiased, E(X) � 0 in
which case the speculative position is zero by Jensen’s inequality. If the investor
hedges optimally, her position in the futures changes to w(v, h). One can now
define the OHR as the difference between the optimal futures position and the
speculative position, per unit of commodity exposure,

(2)

We use the standard convention whereby the hedge ratio signifies the
number of futures contracts the investor shorts as a result of being long one
unit of the spot asset, and hence the extra minus sign in Equation (2). In the
case of backwardation or contango when E(X) � 0, the optimal futures posi-
tion is nonzero even if the agent holds no spot assets, and therefore w(v, 0) does
not constitute a hedge in itself. In such a case, only the incremental position

OHR(v, h) :� �
w(v, h) � w(v, 0)

h
.

CE(v, h, ) :� U�1(u(v, h, )) � v

u(v, h, ) :� E(U(v � hY � X)) � [��, �).

v � DU

�

� �

�
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over and above the speculative holding w(v, 0) should be interpreted as the
hedging position, which is reflected in Equations (2) and (3).

The welfare gain (WG) from a particular (not necessarily optimal) hedge h
is defined as follows12

(3)

If one wants to understand and compare optimal investment/hedging dic-
tated by the various utility functions (i.e. those whose value depends on higher
moments as opposed to quadratic utility), it is important to normalize the
resulting portfolio by some measure of risk aversion. This insight goes back to
Arrow (1971). The most convenient normalization factor turns out to be the
Arrow–Pratt coefficient of risk aversion; see Arrow (1963), Pratt (1964),
Kallberg and Ziemba (1983), and Samuelson (1970). We apply a similar nor-
malization to the risk-adjusted performance measurement below.

Using the coefficient of local absolute risk aversion,

we define the normalized spot and futures positions as follows:

(4)

Similarly, we define a normalized WG, which we call the hedging potential
(HP),

(5)

The normalization is performed to enable meaningful comparison of the
hedging coefficients and welfare measurements across different utility functions.
Essentially, we will see that the results are primarily driven by the values of l and
u and only to a lesser extent by the shape of the utility function itself. HP is robust
in the sense that it possesses a meaningful limit as h approaches 0 and this limit
coincides across all utility functions when the futures market is unbiased.13 For
HARA utility functions, the HP is independent of the wealth level v. The role of
the HP is clarified in the numerical example below (Section 2.2).

HP(v, h, h) �
WG(v, h, h)

A(v)h2 .

l :� A(v)h, u :� A(v).

A(v) :� �
U–(v)
U�(v)

WG(v, h, h) � CE(v, h, w(v, 0) � hh) � CE(v, h, w(v, 0)).

12Our measure of the welfare loss arising from using a second-best strategy is based on the CE as in Kallberg
and Ziemba (1983) and Pulley (1983), by contrast to Simaan (1993), who uses a compensating variation in
terminal wealth.
13In an unbiased futures market, the limiting value of the HP of the optimal hedge for h→ 0 is r2(X, Y)Var(Y),
where r is the correlation coefficient. This holds for an arbitrary utility function, see Theorem 2.6.
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To evaluate the normalized quantities, it is convenient to define a “nor-
malized utility.”

Definition 2.4: We say that f: �S [��, �) defined by

(6)

(7)

is a normalized utility to U at initial wealth .
The normalization in (6) ensures that f has a coefficient of absolute risk

aversion equal to 1 at 0. The choice of c1 and c2 in (7) is for convenience only14;
it achieves f(0) � 0 and f�(0) � 1. Denoting by g the coefficient governing the
shape of HARA utility, we show in Appendix B that the normalized HARA util-
ity is given by

(8)

Conveniently, the normalized HARA utility depends only on the shape
parameter g and not on the initial wealth v or its own local risk aversion A(v).
Thus, we have obtained a very parsimonious representation of the entire HARA
class, which makes it easier to present our numerical results. The literature
also discusses fourth order polynomial approximations of different utility func-
tions, obtained by the Taylor expansion.15

In the next theorem, we prove that one can compute the OHR and the HP
generated by utility U by means of the normalized utility f.

fg(z) :�    

(1 � z�g)1�g � 1
1�g � 1

for g � 0, g � 1

ln(1� z) for g � 1
ƒ 1� z�g ƒ 1�g � 1

1�g � 1
for g � 0

1 � e�z for g � ;�.

v � DU

c1 :�
A(v)
U�(v)

, c2 :��c1U(v)

f(z) :� c1Uav �
z

A(v)
b � c2

g

14It is well known in utility theory that any values of c1 > 0 and would lead to the same ordinal expected
utility.
15For the HARA utility class, the corresponding polynomial normalized utility reads

(9)

For example, Jondeau and Rockinger (2006) use a special case of Equation (9) with g � �. We have also ana-
lyzed hedging decisions using the polynomial approximations, but since they are materially the same as for
the original HARA utilities, we do not report them in the study.

f
~
g(z) � z �

z2

2
� (1 � 1�g)

z3

6
� (1 � 1�g)(1 � 2�g)

z4

24
.

c2 � �
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Theorem 2.5: Consider a utility U, initial endowment and a correspon-
ding normalized utility f. Define

(10)

Then h is hedgeable for utility U if and only if l is hedgeable for utility f and

(11)

(12)

where l is the normalized spot position from Equation (4).
Please see Appendix C for proofs.

2.2. Airline Example

We now present an illustrative numerical example of an airline hedging its fuel
exposure. This provides a physical illustration of the potential economic impor-
tance (or otherwise) of higher moments when hedging at the firm level (Brown &
Toft, 2002) and demonstrates how the abstract methodology described in the
previous section can be practically implemented. Given the losses that some
airline companies faced in 2008–2009 as a result of hedging decisions that
were with the benefit of hindsight very unfortunate, this example is worth-
while. In the following sections, we then proceed to a more detailed but also
more stylized analysis using commodity data, an area which is much more
familiar within the hedging literature, and which researchers in this area can
more easily relate to.

Suppose that the book value of the company is $3.5 bn and the expected
net income is $0.5 bn, giving projected book value v � $4.0 bn. Assume that
the expected fuel bill at current prices is h � $0.8 bn and that the fuel bill
uncertainty due to price variations dominates all the other uncertainty in the
airline’s revenues and expenses. Assume further that the airline does not wish
to pass fuel cost increases onto its passengers.16 Finally, assume that the local

HP(v, h, h) � g(l, h)

OHR(v, h) � ĥ(l)

g(l, h) �
a(l, a(0)� lh) � a(l, a(0))

l2 .

ĥ(l) � �
a(l) � a(0)

l

a(l) � arg max
u��

 E( f(lY � uX))

a(l, u) � f �1(E( f(lY � uX)))

v � DU

16Figures based on Southwest Airlines (US) financial statement for 2000 (source: SEC 10-K filing for 2001).
Unlike some other major airlines, Southwest did not apply fuel surcharges to fares—see Morrell and Swan
(2006).
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relative risk aversion of the airline is moderate17 at 5. Then the normalized
exposure is 

To compute the optimal hedge, we compile data on monthly jet fuel price
returns18 to obtain a histogram for Y and obtain synchronized returns for
prospective cross hedging with commodity futures (in this case light crude oil)
to obtain the distribution of X. With the joint empirical distribution of X and Y,
we then evaluate (11) for l � 1, using different normalized utility functions as
shown in Equation (8). The results are presented in Table I. We use five utility
functions: quadratic (g � �1), which takes into account only the first two
moments, quartic (g � �3) also including (co-)skewness and (co-)kurtosis,
and exponential (g � �), logarithmic (g � 1) and fourth power hyperbolic
(g � 5), which involve all moments of the joint distribution in different propor-
tions. We discuss the relationship of the OLS hedge ratio to the quadratic util-
ity hedge ratio in Appendix D. Numerically, the OLS hedge is in this case indis-
tinguishable from the quadratic utility hedge (g � �1).

It is evident that the OHRs dictated by different utility functions are very
similar to each other and to the OLS hedge ratio. One may nevertheless wonder
about the welfare implication of using the OLS hedge when the hedger cares
about higher moments of the return distribution. It might conceivably be the case
that a small deviation from the OHR causes a large loss in the certainty equivalent
wealth. In Table II, we therefore report (i) OLS HP, g(l, hOLS) � 1,200, the nor-
malized WG that results from using the second-best (i.e. the OLS) hedge ratio
in each utility function, and (ii) OHR HP, , the WG of the
optimal hedge for each utility. Function g is defined via Theorem 2.5 with nor-
malized utility given by (8). Since we use monthly data, the multiplication by
1,200 means that we interpret the WG as the percentage point increase in pro-
jected value per year.

g(l, ĥg(l)) � 1,200

l � 5 � 0.8
4.0 � 1.

17By comparison, Brown and Toft (2002) specify the welfare loss of an unhedged position between 3.9 and
12.7% of an expected net income. To obtain the same result in our example, the coefficient of relative risk
aversion would need to be roughly between 2.5 and 8, corresponding to a normalized exposure l between 0.5
and 1.6.
18Monthly returns on U.S. Gulf Coast kerosene prices in the period from April 1990 to April 2007. Source:
U.S. Department of Energy, Energy Information Administration.

TABLE I 

Optimal Hedge Ratios for Airline Fuel Exposure

g �1 �3 1 5 �

OHR 0.9511 0.9487 0.9654 0.9520 0.9502

Note. Illustrative example for normalized exposure l �1. g determines the shape of HARA utility function. Skewness and kurtosis of
the futures (spot) return distributions are, respectively, 0.3, (0.2); 4.2, (5.2). OHR, optimal hedge ratio; HARA, hyperbolic absolute risk
aversion.

919
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What do these figures mean in our airline example? The welfare impact of
hedging as opposed to no hedging is substantial and for all utility functions, the
HP represents 440–500 basis points. However, this figure is the normalized
WG corresponding to a local risk aversion of unity and 100% exposure to the
commodity. A simple conversion from (5) shows

(13)

Our company has relative risk aversion A(v)v � 5 and normalized exposure
l � 1, and therefore the actual WG translates to 500/5 � 100 basis points
from the projected book value of 4.0 bn, or 8% of expected net profit, which is
roughly in the middle of the range [3.9%,12.7%] specified by Brown and Toft
(2002).

The normalization above serves two purposes. First, if we fix the shape 
of the HARA utility function (say exponential), then two different companies
with the same l will have exactly the same optimal hedge. The first company
may have a smaller fuel exposure and higher risk aversion and the second con-
versely higher physical exposure to fuel price fluctuations but a lower degree of
risk aversion. Such invariance is embedded in the definition of HARA utility
and can be shown algebraically. More importantly, even if one uses different
utility functions (for example quadratic vs. exponential), the OHRs tend to be
very similar, at least for small values of l. This is no longer guaranteed by con-
struction, but rather it is an empirical feature that comes out of our analysis.
Determining the values of l that are “small” must be conducted empirically
and we examine this question below.

A similar statement applies for the optimal HP . If we fix the
shape of the HARA utility (for example as exponential), two different compa-
nies with the same l will have identical percentage WG per unit of relative risk
tolerance and per square of relative commodity exposure. Significantly, this
quantity has a nondegenerate limit as l approaches 0 and in an unbiased
futures market, the limit coincides across all utility functions. If we consider

g(l, ĥ(l))

WG(v, h, h)
v

� HP(v, h, h) � (A(v)v) � ah
v
b2

�
l2

A(v)v
 HP(v, h, h).

TABLE II 

Normalized Welfare Gain (HP) from Using Optimal (Denoted OHR) and 
OLS Hedge Ratios, Respectively 

g �1 �3 1 5 �

OLS HP 4.5626 4.3793 4.9474 4.4527 4.4045
OHR HP 4.5626 4.3793 4.9484 4.4527 4.4045

Note. Illustrative example for normalized exposure l � 1 in jet fuel. OHR, optimal hedge ratio; HP, hedging potential.
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different utility functions (for example quadratic vs. exponential), the normal-
ized WG is no longer identical across utility functions for a fixed value of l but
it turns out empirically that for small values of l, the normalized hedging per-
formance tends to be similar across different utility functions.

Theorem 2.6: Consider arbitrage-free excess returns X, Y and assume the
futures market is unbiased—that is, E(X) � 0. For any utility U and any 
we have

where r(X, Y) is the correlation coefficient between X and Y, and hOLS is the
OLS hedge ratio.

Let us examine typical values of l. In Table III, we detail the book value v
and the fuel expenditure h for Southwest Airlines in the period 2000–2007.
The values of l range between 0.7 and 1.8 for moderate relative risk aversion 
of 5, and between 2.8 and 7.3 for high risk aversion of 20. In the last two
columns, we show the conversion factor between the HP and the actual per-
centage WG, WG/v. The table suggests that in the airline industry, l can be as
high as 7.3, while the conversion factor may go up to 2.7. It is possible that in
other sectors, l might be even higher.

We now proceed to examine the impact of higher moments for l � 7.3.
The results are shown in Table IV. Compared with Table II, the difference

lim
hS0

 HP(v, h, OHR(v, h)) � r2(X, Y)Var(Y)

lim
hS0

 OHR(v, h) �
Cov(X, Y)

Var(X)
�: hOLS

v � DU

TABLE III 

Fuel Expenditure for Southwest Airlines 

Book Fuel Fuel 
value cost costto l WG/v to HP

Year $bb,v $bn,h book,h/v RRA � 5 RRA � 20 RRA � 5 RRA � 20

2000 3.45 0.49 0.14 0.7 2.8 0.1 0.4
2001 4.01 0.80 0.20 1.0 4.0 0.2 0.8
2002 4.42 0.77 0.17 0.9 3.5 0.2 0.6
2003 5.05 0.83 0.16 0.8 3.3 0.1 0.5
2004 5.52 1.00 0.18 0.9 3.6 0.2 0.7
2005 6.68 1.34 0.20 1.0 4.0 0.2 0.8
2006 6.45 2.14 0.33 1.7 6.6 0.6 2.2
2007 6.94 2.54 0.37 1.8 7.3 0.7 2.7

Note. Conversion factor between percentage welfare gain and the hedging potential equals (h/v)2 � RRA, see Equation (13). RRA,
relative risk aversion; WG, welfare gain; HP, hedging potential. Source: SEC filings 2000–2007. 
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between the OLS hedge ratio and the utility-based hedge ratios is more pro-
nounced. The same is true for the WG of utility-based hedging. Consider, for
example, the HARA utility with g � 5. For l � 1, there is no perceptible differ-
ence between the OLS HP and the potential of the optimal utility-based hedge.
For l � 7.3, the story is very different—the increase in HP amounts to five
basis points. Using the conversion factor in Table III (bottom right corner), we
find that the actual WG is 2.7 times higher, amounting nearly to 14 basis
points per year.

2.3. Hedgeable Positions and Asymptotics for Large
Commodity Exposure

We now consider the dependence of the optimal hedge on the normalized expo-
sure, l, for l→ �. It is clear that for any utility with effective support bounded
from below (i.e. utility functions such as log utility, which take the value of ��

for a finite argument), hedging will become infeasible for large enough values
of l unless a perfect hedge is available. Hence for 0 � l � �, it is useful to
know the range of l values that are hedgeable. This leads to the notion of the
minimax hedge ratio.

Definition 2.7: Consider random variables X,Y with realizations We
call the minimax hedge ratio if it solves the problem

(14)

The optimization (14) can be written as a linear program which admits a
feasible solution under the no-arbitrage assumption. Since the value function
in (14) is bounded above by zero, it follows that the minimax hedge always
exists. The minimax hedge ratio itself needs not be unique but the minimax
return (the optimized value function) always is. We can now address the issue
of hedgeable positions for HARA utility functions with 0 � g � �.

max
h��
5 min

i�51,...,n6(Yi � hXi)6.
h

5Xi, Yi6ni�1.

TABLE IV 

Normalized Welfare Gain (Hedging Potential, HP) from Using Optimal (denoted OHR) and
OLS Hedge Ratios, Respectively

g �1 �3 1 5 �

OHR 0.9511 0.9628 – 1.0448 0.9963
OLS HP 3.8244 3.7398 – 7.0314 4.8426
OHR HP 3.8244 3.7404 – 7.0821 4.8527

Note. Illustrative example for normalized exposure l � 7.3 in jet fuel. OHR, optimal hedge ratio; HP, hedging potential. 

922



Optimal Hedging with Higher Moments 15

Journal of Futures Markets DOI: 10.1002/fut

Theorem 2.8: Denote by w the minimax return, .
The normalized position l is hedgeable for normalized HARA utility with 
0 � g � � if and only if 0 � 1 � lw/g.

In the airline example, the minimax hedge ratio equals 1.3239 and the
corresponding minimax return is �22.6%. Consider a firm with logarithmic
HARA utility (g � 1 in Equation 2.8). In this case, fuel price risk becomes
unhedgeable if the normalized exposure exceeds 1/0.226 � 4.4. As l approach-
es the unhedgeable threshold of 4.4 from below, the optimal hedge increasing-
ly resembles the minimax hedge. In Table I, we have used l � 1 which means
that extreme events do not play a significant role in the hedging decision and
the optimal log utility hedge does not depart significantly from the OLS hedge
ratio. In contrast, when l � 7.3 > 4.4, we obtain an unhedgeable position for
the HARA logarithmic utility (g � 1), and hence the missing values in the
fourth column of Table IV.

We can now look at the behavior of the OHR for large values of l. As tran-
spires from the previous discussion, this question is only interesting for g � 0
and for g � � because for 0 < g � � �, any large enough commodity exposure
becomes unhedgeable. In Table V, we report results for five utility functions:
quadratic (g � �1), which takes into account only the first two moments,
quartic (g � �3) also including (co-)skewness and (co-)kurtosis, and another
two HARA utilities using the first 6 and the first 16 moments, respectively.
Finally, we employ exponential utility (g � �), which involves all moments of
the joint distribution.

The OHRs in the first column (l � 0) vary slightly due to the nonzero
mean futures return (that is why Theorem 2.6 does not apply here). We observe
that for l � 1, there is relatively a little variation in the OHR across utility
functions while for l � 10, higher moments matter substantially. Somewhat
surprisingly, for exponential utility, the outcome for large l is very close to the
minimax hedge (we prove this theoretically in Theorem 2.9 below). One can

w :� mini�51,p ,n6(Yi � hXi) � 0

TABLE V 

OHR for Jet Fuel as a Function of Normalized Fuel Exposure l.

g\l 0 1 10 100 1000

�1 0.9511 0.9511 0.9511 0.9511 0.9511
�3 0.9468 0.9487 0.9696 1.0478 1.0323
�5 0.9463 0.9491 0.9849 1.1823 1.1404
�15 0.9458 0.9498 1.0093 1.3054 1.2770
� 0.9456 0.9502 1.0275 1.3184 1.3224

Note. Parameter g governs the shape of utility function—see Equation (8). OHR, optimal hedge ratio. 
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view Table V as containing two polar cases—the OLS hedge ratio in the top left
corner, and the minimax hedge ratio in the bottom right corner.

The minimax HR is an ultra-cautious hedging strategy concerned solely
with the most extreme events captured by the data. On the other hand, the
OLS hedge ratio by construction pays more attention to small returns which
occur most of the time and contribute much toward the overall variance. This
may, of course, backfire if there is a temporary divergence between the spot and
futures markets—Metalgesselschaft is one notorious victim of such divergence.
The choice of g shifts the focus between “extreme-event” and “every-day” hedg-
ing strategies. With g � �1, one adopts the “every-day” approach no matter
how high the exposure to the commodity l. With g � �, the right strategy is
determined endogenously as a function of both the commodity exposure l and
the size of extreme events captured in the data. Table VII provides empirical
values of the OLS and minimax hedge ratios for the seven commodities, which
we discuss subsequently.

Based on the results in Table V, one may conjecture that HARA hedge
ratios have a well-defined limit for l → �. We capture the limit analytically in
the following theorem.

Theorem 2.9: 1) Choose g� (��, 0) and denote by the OHR generated by
the normalized HARA utility (8). Suppose the problem 
has a unique minimizer. Then

2) Suppose the minimax hedge is unique, then the exponential utility
hedge ratio tends to as l→ �,

The first part of the theorem has a clear intuitive meaning. For integer g� 0,
the expected HARA utility includes a combination of co-moments of order 1 to
1 � g. Theorem 2.6 suggests that for small l, only the first two moments mat-
ter. For l → �, the situation is completely the opposite: only the largest
moment of the hedged return matters.

The second part of the theorem uncovers a novel link between exponential
utility hedge ratios and the minimax hedge ratio. In a wider context, the result
hinges on the asymptotic elasticity of the utility at ��. That is, in general the
result holds for any utility which is finite valued on �, bounded from above,
and satisfies 

lim
xS��

�
f(x)

xf�(x)
� 0.

lim
lS�

 ĥ�(l) � h.

h
h

lim
lS�

 ĥg(l) � argmin
h�R

 E( ƒ Y � hX ƒ 1�g).

minh�RE( ƒ Y � hX ƒ 1�g)
ĥg(l)
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In the HARA class, the exponential is the only utility function with this
property.

We now proceed to a more detailed analysis using a set of commodity
hedges using futures contracts, with the data described in the following section
and the results presented and discussed in Section 4.

3. DATA

The data, downloaded from Datastream International, comprise end-of-month
spot and futures prices on seven U.S. commodities: four agricultural commod-
ity futures (corn, cotton, soybean oil, and sugar), one energy future (heating
oil), and two metal futures (gold 100 oz, and silver 1,000 oz). To compile the
time-series of futures prices, we collect the futures prices on all nearest and
second nearest contracts. We hold the first nearby contract up to one month
before maturity. At the end of that month, we roll our position over to the sec-
ond nearest contract and hold that contract up to one month before maturity.

TABLE VII 

Comparison of OLS and MINIMAX In-Sample Hedge Ratios 

Hedge Ratio

OLS MINIMAX Minimax Loss % (co)Skewness Excess (co)Kurtosis

Corn 1.033 0.519 15.3 0.5 0.4 0.4 0.3 4.1 4.0 3.8 3.7 3.7
Cotton 0.862 �1.203 47.2 0.1 0.2 0.7 �0.7 1.1 1.0 1.3 �0.8 9.4
Gold 0.966 0.587 7.0 0.3 0.6 0.8 1.1 5.1 4.9 5.0 5.3 5.7
Heating Oil 0.825 0.911 31.9 0.5 0.4 0.6 0.9 2.9 1.3 1.5 2.7 5.0
Silver 0.927 0.525 8.4 �0.1 0.2 0.3 0.5 2.3 2.0 1.8 1.7 1.7
Soybean Oil 1.024 0.994 6.4 0.4 0.5 0.6 0.7 2.0 2.2 2.4 2.6 2.9
Sugar 0.748 0.625 21.8 0.3 0.6 0.8 1.0 2.0 1.8 1.9 2.1 2.6

Note. Minimax loss represents the worst case loss of a portfolio hedged with the minimax hedge ratio. Coskewness values corre-
spond to sample versions of the following population moments:

Excess cokurtosis values correspond to sample versions of the following population moments: 

Here mX, mY are the means and sX, sY are the standard deviations of the futures and spot returns, respectively. Variable rXY denotes
the correlation between futures and spot returns. The slight discrepancies between the skewness and kurtosis values in this table and
the corresponding values in Table VI are caused by the use of different estimators. This table uses consistent estimators of co-
moments which are, however, not unbiased in a normal model. Table VI employs the so-called G1,G2 estimators which are unbiased
in a normal model (Joanes & Gill, 1998). Similar estimators for normalized co-moments are not readily available. 

E((X � mX) (Y � mY)3)
sXs

3
Y

� 3rXY, E((Y � mY)4)
s4

Y

� 3.

E((X � mX)4)
s4

X

� 3, E((X � mX)3(Y � mY) )
s3

XsY

� 3rXY, E((X � mX)2(Y � mY)2)
s2

Xs
2
Y

� 1 � 2r2
XY,

E((X � mX)3)
s3

X

, E((X � mX)2(Y � mY) )
s2

XsY

, E((X � mX) (Y � mY)2)
sXs

2
Y

, E((Y � mY)3)
s3

Y

.
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Returns are then computed as the changes of these settlement prices. The pro-
cedure is then rolled forward to the next set of nearest and second nearest con-
tracts when a new sequence of futures returns is compiled. The process is
repeated throughout the data set to generate a sequence of nearby maturity
futures returns.

The data set covers the period from January 31, 1979 to September 30,
2004. Note that we include in our analysis some commodity futures and spot
assets that started trading after January 1979 or that were delisted before
September 2004. As a result, the sample spans shorter periods for some con-
tracts (cotton, heating oil, and silver).19

Since, by construction, any practical hedging decision is made out-of-sample,
the overall period is split into two sub-samples. The in-sample period covers
approximately two thirds of the data set and is used for estimation. The out-of-
sample period, used for forecasting and hedging decisions, covers the remaining
one-third.

Table VI presents some summary statistics for the futures returns, the cor-
responding spot returns, and the hedged portfolio returns, where a time-invariant
OLS hedge is employed. Most spot series are significantly leptokurtic and are
positively skewed because events such as hurricanes or wars positively affect
commodity prices. Most noteworthy, cotton is an exception since its return dis-
tribution is negatively skewed at the 1% level. This reflects the rise in cotton
stocks that took place in the mid 1980s (and culminated at 11.4 million tons in
1985–1986) that came hand-in-hand with a very sharp fall in cotton prices
(�58.46% in August 1986). The excess supply was in part driven by govern-
ment incentives where procurement in excess of standard volume was given an
extra 30% price bonus in China. Other incentives to encourage production
included subsidizing inputs (e.g., fertilizers) or advancing cash ahead of pro-
curement.

Hedging with futures is evidently very successful for the vast majority of
series. Compared with the spot return variance, the hedged portfolio variance
is on average around 73% lower, and for gold, the reduction in variance is over
90%. However, interestingly, the skewness falls for the hedged portfolio returns
in five of the seven series compared with the spot skewness, whereas the kurto-
sis rises for five of the series. Thus, if we accept the premise that hedgers are
indeed concerned with higher moments, then the effectiveness of the OLS
hedge may be overstated by a consideration of only the reduction in variance.

The values of the minimax return (Section 2.3) for different commodities
are shown in Table VII. Empirically, the smallest minimax losses (in absolute
value) occur for soybean oil (at 6.4%), gold (at 7%), and silver (at 8.4%). 
19For these commodities, the samples used were as follows: January 1980—September 2004 for cotton,
January 1982—September 2004 for heating oil, and May 1981—October 2002 for silver.
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The largest minimax losses occur for cotton and heating oil, which stand at
47.2 and 31.9%, respectively. There appears to be no firm link between the
minimax hedge and the OLS hedge ratio across different commodities. Broadly,
the two hedge ratios tend to have the same sign and similar magnitude, but cot-
ton is again the notable exception to this rule of thumb in our collection of
commodities.

4. EMPIRICAL RESULTS

In the interests of brevity, we report only the out-of-sample results rather than
those in sample, since the former are of direct practical interest as they match
the investor experience. We illustrated our higher moment hedging methodolo-
gy using an airline company hedging its fuel exposure in Section 2.2. We will
now replicate the same computations for the seven U.S. commodities
described in the previous section. To avoid repetition, we refer the reader to
Section 2.2 where we provided a thorough interpretation of the reported quan-
tities.

Table VIII measures (i) the averages and standard deviations of the OHRs
over the rolling out-of-sample period—that is, the OHRs obtained for each util-
ity function, (ii) OLS HP, g(1, hOLS) � 1,200, the normalized WG that results
from using the second-best (i.e. the OLS) hedge ratio in each utility function,
and (iii) OHR HP , the WG of the optimal hedge for each
utility. Function g is defined via Theorem 2.5 with normalized utility given by
(8). The multiplication by 1,200 means we can interpret the WG as the per-
centage point increase in initial wealth per year. We consider HARA utility
functions with baseline risk aversion g � {�3, �1, 1 5, �}. The framework
allows us to examine a much wider range of parameters, but we have found
that all utility functions with |g| > 5 essentially behave like the exponential util-
ity, g � �.

We report results for two levels of normalized exposure: moderate, l �1;
and large, l � 10.20 The labelling “moderate, large” refers to the empirically
observed difference between the OLS HR and the optimal utility-based HR at
the given level of l and the size of the corresponding WG from switching from
OLS to optimal utility-based HRs. The labeling does not imply that the impact
of hedging is medium or large, respectively. In fact, in the Southwest airline
example, the value of jet fuel as a fraction of projected book value was 20%,
which, assuming relative risk aversion of 5, led to l � 1. Even though l � 1 is
labelled as “moderate,” the gain from hedging was about 1% of the projected
book value. This amounts to 5% of the total fuel exposure in that example and

g(1, ĥ(1)) � 1,200

20We also compute the results for the case where l � 0, which we term small commodity exposure. Since the
findings are qualitatively identical to those for l � 1, in the interests of brevity they are not reported.
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$40 million in monetary terms, which cannot be considered small by any stan-
dards. It is also important to bear in mind that l can be simply large because
the local risk aversion of the hedger is very high, irrespective of the size of the
actual physical exposure to the commodity.

4.1. Moderate Commodity Exposure, L � 1

What increase in welfare can be achieved if one uses historical hedge ratios to
determine appropriate hedging strategies for future time periods? Hedgers are

TABLE VIII 

Out-of-Sample Hedging Performance, l � 1 

Commodity
g

(in, out)      OLS �1 �3 1 5 �

Corn OLS HP 17.83 17.87 17.98 17.91 17.89
(204, 103) OHR HP 17.69 17.89 18.43 18.07 18.00

mean HR 1.00 0.99 1.00 1.04 1.01 1.01
std HR 0.01 0.01 0.01 0.02 0.01 0.01

Cotton OLS HP 19.85 19.83 19.83 19.82 19.82
(196, 99) OHR HP 19.85 19.42 17.50 18.97 19.16

mean HR 0.83 0.83 0.81 0.71 0.79 0.80
std HR 0.02 0.02 0.02 0.02 0.02 0.02

Gold OLS HP 3.63 3.62 3.61 3.62 3.62
(204, 103) OHR HP 3.61 3.65 3.71 3.67 3.66

mean HR 0.97 0.96 0.98 1.01 0.99 0.99
std HR 0.00 0.00 0.00 0.01 0.01 0.01

Heating oil OLS HP �11.60 �11.75 �11.93 �11.84 �11.81
(180, 91) OHR HP �11.55 �11.39 �11.39 �11.36 �11.37

mean HR 0.83 0.82 0.81 0.81 0.80 0.80
std HR 0.01 0.01 0.01 0.01 0.01 0.01

Silver OLS HP 14.11 14.12 14.14 14.12 14.12
(170, 86) OHR HP 13.91 14.30 14.89 14.56 14.46

mean HR 0.94 0.92 0.96 1.00 0.98 0.97
std HR 0.01 0.01 0.01 0.01 0.01 0.01

Soybean oil OLS HP 12.15 12.09 12.06 12.07 12.08
(204, 103) OHR HP 12.12 12.11 12.18 12.12 12.12

mean HR 0.99 0.99 1.00 1.02 1.01 1.00
std HR 0.02 0.02 0.02 0.02 0.02 0.02

Sugar OLS HP 2.20 2.17 2.15 2.16 2.17
(204, 103) OHR HP 2.21 2.16 2.08 2.12 2.14

mean HR 0.76 0.75 0.77 0.80 0.79 0.78
std HR 0.01 0.01 0.01 0.02 0.01 0.01

Note. The values in parentheses below the series labels denote the number of in-sample and out-of-sample observations, respec-
tively. Below that, means and standard deviations of the OLS hedge ratios are also presented in the first column. The entries for each
asset in the remaining columns give first the hedging potentials (welfare gains) of the OLS and of the utility-based hedges, respective-
ly, followed by the means and standard deviations of the hedge ratios for the OLS and utility-based hedges. Parameter g determines
the shape of HARA utility; see Equation (8) and Appendix B. OHR, optimal hedge ratio; HARA, hyperbolic absolute risk aversion; HP,
hedging potential. 
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assumed to update their information sets once a month and to re-estimate their
OHRs accordingly. The new hedge ratios are then used as a basis for risk man-
agement over the following month. We calculate the resulting time series of
returns according to Equation (1). The out-of-sample (ex post) HPs generated
from different utility functions are reported in Table VIII for both the case
when we inappropriately use the OLS hedge (OLS HP) and the case when we
use the utility-based optimal hedge (OHR HP).

For moderate commodity exposures, there is some evidence ex post that
the investment potential of the optimal hedge exceeds that of the OLS hedge.
This is the case for example for corn, where the HPs of the OLS hedge average
17.9 across utility functions, whereas the HPs of the utility-based hedge are
slightly higher at an average of 18.1. This suggests that modeling the hedge
ratios with the true distribution and thus taking into account higher moments
increases the welfare of the hedger out-of-sample by an average of 0.15% a
year. The increase in welfare is more noticeable for a HARA utility with g � 1
(for which the OHR HP exceeds the OLS HP by 0.45% a year). In this case,
adopting a more sophisticated approach to determining the hedge ratio helps as
it increases welfare by an incremental average of 0.45% a year compared with
the OLS hedge. The results presented in Table VIII convey a similar picture for
heating oil and silver, where the increases in welfare generated from modeling
higher moments equal 0.37 and 0.34% a year, respectively, across the eight util-
ity functions considered. Across commodities and utility functions, the maxi-
mum increase in welfare generated from explicitly taking higher moments into
account is obtained for silver for a hedger with a HARA utility and g � 1. In
that case, utility-based hedging increases welfare by a substantial 0.75% a year.

The results for gold and soybean oil are not as pronounced, with increases
in welfare that average 0.05% a year across utility functions. So for these two
commodities, there is only a slight decrease in wealth that occurs from using
OLS hedging. Finally, in the case of cotton, the HP of the OLS hedge ratio
exceeds that of the OHR by 0.81% a year across the eight utility functions we
considered. The results are particularly dramatic for a hedger with a HARA util-
ity and g � 1 (hedging with higher moments then decreases wealth by 2.33% a
year). This suggests that, in this case, anything more sophisticated than OLS
hedging decreases welfare relative to the simpler OLS hedge. The case of cotton
is of interest as it highlights the limitations of the utility-based hedge ratio
which works well when departures from normality are not too pronounced. In
the case of cotton, the higher moment hedge ratio fails to improve welfare as the
return distribution of cotton presents an extremely negative skew (Table VII). In
normal circumstances, the extreme event that caused the negative skew21 is

21The negative skew was due to a very sharp decrease in cotton prices in 1986 that followed incentives from
the Chinese government to stimulate production.
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unlikely to reoccur, making our higher moment hedge ratio too conservative and
thus unsuitable for hedging normal price exposure. A hedger fearing a sharp
drop in cotton prices (similar to that of the mid 1980s) would, however, be well
advised to adopt the utility-based hedge ratio.

Bringing together the evidence of Table VIII, it appears in most cases that
modeling the hedge ratios with the true distribution and thus taking into
account higher moments does increase the out-of-sample welfare of a hedger
with moderate commodity exposure. To put it differently, there is, for most
commodities (such as silver, heating oil and corn mainly, but also for gold and
soybean oil) some systematic loss in wealth that occurs from inappropriately
using OLS hedging.

All else equal, a hedge ratio that is stable over time is preferable to one
that is highly volatile in order to keep the transactions costs from rebalancing
the hedged portfolio to a minimum. In order to investigate the variability of the
estimated hedge ratios from the various techniques, Table VIII also reports the
means and standard deviations of the estimated 1-step ahead rolling hedge
ratios. The means of the utility-based OHRs are bigger than the means of the
OLS hedge ratios for five of the seven spot series hedged (corn, gold, silver, soy-
bean oil and sugar), while they are smaller for the remaining two (cotton and
heating oil). Thus, most of the time, switching to a utility-based approach that
explicitly incorporates higher moments leads to higher hedge ratios, commen-
surate with a more precise estimate of the risks associated with systematically
leptokurtic return distributions. In all cases, OLS-based hedging yields hedge
ratios that have slightly lower variances, indicating more stable hedge ratios
and therefore a lower cost of hedging.

In order to examine the relative sizes and stabilities of the estimated
hedge ratios, Figures 1 and 2 plot the predictive hedge ratios implied by OLS
and various utility functions in the HARA class. The hedge ratios are esti-
mated recursively using all in-sample data, with one observation added at
each time step, for cotton and gold, respectively. Figure 1 shows that in the
case of cotton, the OLS hedge ratio is higher and less variable than those
estimated from HARA utility functions, and in particular, logarithmic utility
generates a dynamic OHR that has a lower mean but much higher variance
than the others. Similarly, for gold (Figure 2), the OLS hedge ratio is much less
volatile than that of the other utility functions (although now the OLS hedge
also has a lower average value). This increased variability of the utility-based
hedge ratios suggests that more frequent rebalancing of the hedged portfolio
would be required, which could have consequences for the cost of implement-
ing the hedges. In order to investigate this issue, we repeat the analysis of
Table VIII but now computing the HP based on transactions-cost adjusted
returns. Following Locke and Venkatesh (1997), we assume transactions costs
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of 0.033% per round-trip trade. The net of cost results are presented in
Table IX.

HP is typically reduced by around 0.06, but the reduction is smaller for
series where the hedge ratio is more stable (e.g. silver) and larger, perhaps up to
0.11, for series where it is more volatile (e.g. heating oil). The reduction in HP
is, as expected, almost always larger for optimal hedging than OLS hedging.
But the difference is very small and for no values of g and for none of the com-
modities does the relative merit of one approach over the other qualitatively
alter. The reduction in HP averaged across all commodities and all values of g
is 0.048 for OLS hedging and 0.056 for optimal hedging. Thus, we conclude
from this analysis that hedging using all moments is certainly feasible from a
practical perspective.

Figure 3 shows how the OHR varies with l for the OLS, three-moment
(g � �2) and four-moment (g � �3) cases for cotton.22 The figure illustrates
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FIGURE 1
Out-of-sample hedge ratios for cotton, l � 1, for the OLS and OHRs, g � �1, �3, 1, 5, �. OHR,

optimal hedge ratio.

22Similar plots for all seven of the commodity series examined in this study are available from the authors
upon request but are not presented due to space constraints.
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that for small values of l, there is very little difference between the OLS hedge
ratio and the three- and four-moment utility-based hedge ratios. However, as 
l rises toward 10 (and therefore the normalised exposure to the spot asset
grows), the OHR for the hedges allowing for higher moments diverge from the
OLS hedge ratios. The impact of incorporating kurtosis into the mix when
moving from the three-moment to the four-moment utility makes very little dif-
ference to the OHR, although the OHR is heavily dependent on l.

Table X shows the first four moments of the hedged portfolio returns out-
of-sample. Comparing the results with the no hedge case, both the OLS and
the utility function-based hedges successfully reduce the variance of the
hedged portfolio returns—sometimes moderately and sometimes spectacularly
(e.g. gold). Also in this table, for comparison we report the summary statistics
of the hedged portfolio returns when a multivariate GARCH (diagonal VECH)
model is employed.

Perhaps precisely because by design OLS will minimize the (in-sample)
variance of the hedged portfolio returns, it also results in out-of-sample 
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FIGURE 2
Out-of-sample hedge ratios for gold, l � 1 for the OLS and OHRs, g � � 1. � 3, 1, 5, �. OHR, optimal

hedge ratio. 
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portfolio variances that are often lower than those of the utility-based hedges.
The multivariate GARCH results also confirm the findings of the previous lit-
erature that such models are unable to outperform time-invariant hedges out-
of-sample. For only two of the seven series does the MGARCH approach yield
a lower out-of-sample return variance than that of the OLS hedge. In some
cases, such as corn and cotton, the OLS approach is considerably superior,
while for heating oil it is considerably inferior.

Also of interest are the impacts of hedging using the various methods on
the higher moments of the hedged portfolio returns out-of-sample. For corn,
cotton, heating oil, silver, and especially gold, there is a marked difference
between the two. Focusing on the gold case, use of the HARA utility function
with g � 1 gives a return distribution with higher mean, lower variance, lower
kurtosis, but also lower skewness and a larger minimum loss than the corre-
sponding OLS hedge.23

To test the robustness of our findings to the sample analyzed, we replicate
the analysis performed in Tables VI,VII,VIII, and X with a shorter data set that

TABLE IX 

Out-of-Sample Hedging Performance Net of Transactions Costs, l � 1 

Commodity
g

(in, out)      �1 �3 1 5 �

Corn OLS HP 17.77 17.81 17.92 17.85 17.83
(204, 103) OHR HP 17.63 17.83 18.33 18.01 17.94
Cotton OLS HP 19.78 19.76 19.76 19.76 19.76
(196, 99) OHR HP 19.78 19.35 17.40 18.90 19.09
Gold OLS HP 3.62 3.61 3.60 3.61 3.61
(204, 103) OHR HP 3.60 3.63 3.66 3.64 3.64
Heating oil OLS HP �11.71 �11.86 �12.04 �11.95 �11.92
(180, 91) OHR HP �11.65 �11.51 �11.50 �11.47 �11.47
Silver OLS HP 14.09 14.10 14.12 14.10 14.10
(170, 86) OHR HP 13.89 14.27 14.85 14.53 14.43
Soybean oil OLS HP 12.11 12.05 12.01 12.02 12.03
(204, 103) OHR HP 12.07 12.07 12.12 12.08 12.07
Sugar OLS HP 2.17 2.15 2.12 2.13 2.14
(204, 103) OHR HP 2.19 2.12 2.02 2.08 2.10

Note. The values in parentheses below the series labels denote the number of in-sample and out-of-sample observations, respec-
tively. The entries for each asset in the remaining columns give first the hedging potentials (welfare gains) of the OLS and of the util-
ity-based hedges, respectively. Transactions costs of 0.033% per round trip have been deducted. Parameter g determines the shape
of HARA utility; see Equation (8) and Appendix B. OHR, optimal hedge ratio; HARA, hyperbolic absolute risk aversion; HP, hedging
potential. 

23Given that the MGARCH model fails to provide better hedges or noticeable differences in the higher
moments of the hedged portfolios compared with OLS, in the interests of brevity our comparison proceeds
only with the OLS and utility-based hedges.
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excludes the first five years of data. The results are qualitatively the same and
available from the authors upon request. Again, with the noticeable exception
of cotton, the conclusion from Table VIII of an overall increase in welfare when
higher moments are modeled is robust to the sample analyzed. This suggests
that the results are not sensitive to any learning that may have taken place in
the first five years of our data set.

4.2. Large Commodity Exposure, L � 10

Table XI shows the hedging performance for the OLS and utility-based hedge
ratios when commodity exposure is large (l � 10). Almost irrespective of the
utility function considered, there is a clear tendency for the HP of the OHR to
exceed the HP of OLS for five of our seven commodities. This is the case for
gold, heating oil, silver, soybean oil, and sugar. The differences are very small 
in terms of HP in most cases. However, when measured in terms of the change
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OHRs for different values of l for cotton. The three and four-moment hedge ratio corresponds to HARA

utility with g � �2 and �3, respectively. OHR, optimal hedge ratio. 
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TABLE X 

Moments of Hedged Commodity Returns, Out-of-Sample Results, l � 1. 

g

Commodity No Hedge OLS MGARCH �1 �3 1 5 �

Corn
Mean (% p.a.) �5.11 9.59 17.83 9.46 9.62 10.03 9.76 9.70
Std (% p.a.) 97.37 42.98 123.57 43.16 43.00 42.62 42.86 42.91
Skew �0.45 �1.54 0.66 �1.52 �1.55 �1.61 �1.57 �1.56
Kurt 0.05 6.26 �0.64 6.11 6.27 6.64 6.40 6.35
Min (% p.a.) �22.66 �17.36 �11.28 �17.33 �17.38 �17.47 �17.41 �17.40
Cotton
Mean (% p.a.) �2.83 13.50 4.56 13.49 13.10 11.30 12.66 12.85
Std (% p.a.) 102.49 43.68 70.86 43.70 43.92 47.23 44.37 44.15
Skew 0.45 0.36 �0.46 0.36 0.38 0.49 0.41 0.40
Kurt 0.04 1.02 2.45 1.02 0.96 0.54 0.88 0.92
Min (% p.a.) �18.64 �7.51 �23.08 �7.51 �7.40 �7.46 �7.31 �7.35
Gold
Mean (% p.a.) 1.37 4.11 4.21 4.09 4.13 4.21 4.17 4.15
Std (% p.a.) 47.13 8.13 8.27 8.21 8.07 8.08 8.03 8.03
Skew 1.03 1.09 0.90 1.24 0.90 0.35 0.66 0.75
Kurt 2.99 4.27 3.52 5.07 3.38 1.32 2.34 2.70
Min (% p.a.) �8.82 �1.21 �1.39 �1.13 �1.32 �1.66 �1.46 �1.40
Heating oil
Mean (% p.a.) 20.26 3.80 1.24 3.85 4.16 4.32 4.28 4.24
Std (% p.a.) 142.73 94.05 66.44 94.04 94.02 94.03 94.03 94.02
Skew 0.28 �0.20 0.19 �0.20 �0.18 �0.17 �0.17 �0.17
Kurt 0.71 1.99 3.38 1.96 1.86 1.82 1.82 1.83
Min (% p.a.) �31.18 �24.24 �15.51 �24.12 �23.47 �23.08 �23.20 �23.28
Silver
Mean (% p.a.) �0.11 12.26 11.52 12.05 12.45 13.05 12.71 12.62
Std (% p.a.) 69.71 24.97 20.80 24.67 25.30 26.65 25.84 25.63
Skew 0.01 2.04 2.17 2.07 1.98 1.78 1.89 1.92
Kurt 0.85 10.30 14.36 10.36 10.13 9.28 9.80 9.93
Min (% p.a.) �19.19 �5.26 �4.23 �5.16 �5.37 �5.67 �5.50 �5.45
Soybean oil
Mean (% p.a.) 4.82 12.61 12.58 12.58 12.62 12.71 12.65 12.64
Std (% p.a.) 109.24 37.04 37.31 37.24 36.96 36.36 36.73 36.82
Skew 0.54 0.96 0.99 0.98 0.95 0.87 0.92 0.93
Kurt 1.46 2.94 3.17 3.00 2.91 2.66 2.82 2.86
Min (% p.a.) �22.73 �5.60 �5.60 �5.62 �5.60 �5.53 �5.57 �5.58
Sugar
Mean (% p.a.) �0.02 �0.18 0.63 �0.16 �0.18 �0.21 �0.20 �0.19
Std (% p.a.) 93.40 54.88 57.24 54.81 55.01 55.49 55.20 55.13
Skew 0.27 �0.42 �0.58 �0.40 �0.46 �0.55 �0.50 �0.48
Kurt �0.23 2.31 2.93 2.26 2.39 2.56 2.47 2.44
Min (% p.a.) �16.09 �17.15 �17.96 �17.06 �17.26 �17.55 �17.39 �17.34

Note. The entries for each asset show in rows the first four sample moments of realized returns on (un)hedged portfolios, followed
by a row specifying the lowest monthly return of the (un)hedged position. Columns correspond to no hedge, OLS hedge, multivariate
GARCH hedge, and utility-based hedge ratios for different utility functions. Parameter g determines the shape of HARA utility; see
Equation (8) and Appendix B. OHR, optimal hedge ratio; HARA, hyperbolic absolute risk aversion; HP, hedging potential. 
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in CE wealth, the differences can be economically important (as illustrated in
the example of the airline company in Tables III and IV).

The opposite applies to the remaining two commodities, for which explic-
itly modeling higher moments is detrimental to utility, either marginally (in the
case of corn) or substantially (in the case of cotton). Hence, considering a high
value of normalized exposure (l � 10), it can be seen that paying too much
attention to higher moments can be counterproductive. In the case of cotton,
for example, the exponential utility hedge ratio is far inferior to the OLS hedge,
as reflected by a negative OHR HP.

TABLE XI 

Out-of-Sample Hedging Performance, l � 10. 

g

Commodity OLS �1 �3 1 5 �

Corn OLS HP 3.9846 4.3069 – 5.6320 4.8545
(204, 103) OHR HP 3.9660 4.3064 – 5.5811 4.8392

mean HR 1.0014 0.9900 1.0049 – 0.9901 1.0020
std HR 0.0084 0.0060 0.0070 – 0.0103 0.0081

Cotton OLS HP 4.4615 4.4077 – 5.0336 4.6942
(196, 99) OHR HP 4.4608 3.5488 – �� �5.2704

mean HR 0.8306 0.8303 0.5598 – �1.5309 �0.5499
std HR 0.0156 0.0152 0.0599 – 0.1116 0.1006

Gold OLS HP 1.1396 1.0717 – 1.0737 1.0693
(204, 103) OHR HP 1.1369 1.0737 – 1.0773 1.0724

mean HR 0.9658 0.9568 0.9750 – 0.9836 0.9809
std HR 0.0031 0.0030 0.0043 – 0.0056 0.0051

Heating oil OLS HP 2.4318 1.6983 – 4.2407 2.2051
(180, 91) OHR HP 2.4362 1.9128 – 4.1995 2.5295

mean HR 0.8285 0.8226 0.7251 – 0.8593 0.7488
std HR 0.0106 0.0111 0.0120 – 0.0134 0.0108

Silver OLS HP 2.8108 2.8868 – 3.3040 3.0663
(170, 86) OHR HP 2.7975 2.9032 – 3.3306 3.0897

mean HR 0.9401 0.9233 0.9632 – 0.9787 0.9736
std HR 0.0073 0.0071 0.0119 – 0.0140 0.0133

Soybean oil OLS HP 4.4840 4.2833 – 5.5855 4.7980
(204, 103) OHR HP 4.4749 4.2872 – 5.5923 4.8043

mean HR 0.9940 0.9874 0.9957 – 0.9983 0.9978
std HR 0.0169 0.0162 0.0145 – 0.0138 0.0141

Sugar OLS HP 1.9795 1.8440 – 1.9804 1.9138
(204, 103) OHR HP 1.9835 1.8428 – 2.1106 1.9499

mean HR 0.7600 0.7505 0.7657 – 0.6632 0.7332
std HR 0.0076 0.0062 0.0158 – 0.0104 0.0172

Note. The values in parentheses below the series labels denote the number of in-sample and out-of-sample observations, respec-
tively. Below that, means and standard deviations of the OLS hedge ratios are also presented in the first column. The entries for each
asset in the remaining columns give first the hedging potentials (welfare gains) of the OLS and of the utility-based hedges, respective-
ly, followed by the mean and standard deviations of the hedge ratios for the OLS and utility-based hedges. Parameter g determines the
shape of HARA utility; see Equation (8) and Appendix B. OHR, optimal hedge ratio; HARA, hyperbolic absolute risk aversion; HP, hedg-
ing potential.
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The example is symptomatic of a more general issue that is pervasive in
finance. Suppose that the data-generating process behind the spot and futures
returns for cotton is accurately represented by the historical data. Suppose fur-
ther that the manager of company A ignores extreme negative returns in the
past data, arguing that such extreme events are unlikely to occur again in
future. Consequently, manager A selects a hedging strategy that very much
resembles an OLS hedge. By contrast, the manager of company B heeds 
the warning issued by the data and selects a hedging strategy leaning toward the
minimax hedge ratio. The problem for manager B is that until the extreme 
scenario captured in the historical data repeats itself, his strategy will be
extremely costly. For cotton, this is exemplified in Table XI by HARA utility-
based hedging strategies with g � 5, � in particular, although the loss in per-
formance is visible for all nonquadratic utility-based strategies.

As we did at the end in Section 4.1, we reproduce the analysis of Table XI
over a shorter sample that excludes the first five years of data. This is to test the
robustness of our inferences as learning that took place in the early days of
trading might have had an impact on the results obtained. Irrespective of the
sample analyzed, there are WGs to be earned from adopting a more sophisti-
cated hedging approach for some commodities (gold, heating oil, silver, and
sugar). However, the conclusion does not apply throughout as over the shorter
period, modeling higher moments can also be damaging (again, especially for
cotton).24

5. CONCLUSIONS

This study has proposed a utility-based framework for the determination of
OHRs that can allow for the impact of higher moments on the hedging deci-
sion. The approach is illustrated using the example of an airline hedging its fuel
exposure and is then applied to a set of seven commodities that are hedged with
futures contracts. The derivation of a general utility-based hedging framework
that allows for higher moments is well motivated given the non-normality in
most financial asset return series and the empirical observation in the literature
that conventional approaches can lead to hedged portfolio returns with less
attractive skewness and kurtosis properties than if no hedge had been imple-
mented at all.

24Tables VIII and XI present the WGs/losses that can be obtained from modeling higher moments for two lev-
els of commodity exposure, a moderate level l � 1 and a high level l � 10. We measure for two commodities
(corn and cotton) the out-of-sample hedging performance of the different hedge ratios with values of l rang-
ing from two to eight in increments of 2. The results (available upon request from the authors) are robust to
the commodity exposure l since, as before in Tables VIII and XI, modeling higher moments is found 
to increase welfare for corn and decrease welfare for cotton, although in the case of corn, the improvement
of higher moment hedging over OLS reduces as l increases.
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We find that for both moderate and large spot (commodity) exposures, the
performance of out-of-sample hedges constructed allowing for nonzero higher
moments is better than the performance of the simpler OLS hedge ratio.
Hence, it seems that for most of our cross section, higher moments do matter
when it comes to determining OHRs. The picture is, however, not uniform
across our seven spot commodities as there is one commodity (cotton) for
which the modeling of higher moments decreases welfare out-of-sample rela-
tive to the simpler OLS approach. We attribute the lack of performance of the
higher moment hedge ratio to the very negative skew of the cotton spot returns
(driven by the sharp rise in stocks in the mid 1980s). This case highlights the
limitation of the utility-based hedge ratio that works better when departures
from normality are not too extreme.

It would be a useful step for future research to determine whether our
broad conclusions also hold for other hedging assets, sample periods, and data
frequencies. As the framework proposed here is sufficiently general, it seems
also of interest to apply it to the type of strategic asset allocation problems that
equity investors face.

APPENDIX A: NUMERICAL ALGORITHM

The problem

can be solved by Newton’s iteration method provided that the initial guess q0 is
close to the optimal portfolio a. In practice, the quadratic approximation 
q0 � �E(XY)/E(X2) works very well. We define g: 

and assume that in each iteration g(q) � ��. Starting at q0 we use the itera-
tion

where

g–() � E(X2f–(Y � X)).

g�() � E(Xf�(Y � X))

k�1 � k �
g�(k)

g–(k)

g() � E( f(Y � X ))

�S� h 5��6

a � f�1(E(f(Y � aX)))

a � arg max
�Rn

 E( f(Y � X))
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Assuming sufficient smoothness of f the Taylor expansion yields

(A1)

Accordingly, we stop the iteration when

which in practice guarantees | f �1(g(qk)) � f �1(g(a))| � 10�12. The last
inequality means a very close proximity of the final iterate to the optimal hedg-
ing decision in terms of the resulting CE. Equation (A1) hints that |qk � a| has
half the number of zeros compared with the target function, i.e. in practice the
final iterate satisfies |qk � a| � 10�6. Rigorous proof of the quadratic conver-
gence can be found, for example, in Dennis and Schnabel (1996).

APPENDIX B: HARA UTILITY

The HARA family is described in Cass and Stiglitz (1970). We use a slight mod-
ification of the parametrization suggested in Ingersoll (1987).

Definition 7.1: The utility function

with a > 0 is called the hyperbolic absolute risk-aversion utility. We denote the
corresponding effective domain by D(g)(a, b) and the maximal domain on which
Ug is increasing by .

The HARA utility is an infinitely differentiable utility in the sense of
Definition 2.1. Ug is strictly increasing and unbounded from above for g� (0, 1];
it is strictly increasing and bounded from above for g � 1 and for g � 0 it has
a bliss point at �gb/a. For , the coefficient of absolute risk aversion
at reads

Ag(v; a, b) �
1

v�g � b�a

v � Dg(a, b)
g� � \ 506

Dg(a, b)

Ug(V; a, b) :�    

(aV�g � b)1�g � 1
1�g � 1

for g � 0, g � 1

ln(aV� b) for g � 1
ƒ aV�g � b ƒ 1�g � 1

1�g � 1
for g � 0

1 � e�aV for g � ;�.

�
(g�(k))

2

f�(f�1(g(k)))g–(k)
� 10�12

ƒ f�1(g(k)) � f�1(g(a)) ƒ � �
1

2f�( f�1(g(k)))
 
(g�(k))

2

g–(k)
� o((k � a)2).

g
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hence the acronym HARA. The HARA class has several advantages over the
more frequently used power utility functions. Fixing a positive initial wealth
level v one can, with an appropriate choice of a, b, make the HARA utility
increasing at v even when g� 0. Second, power utility (g� 0, b � 0) produces
unreasonable levels of risk aversion for large values of g This can be corrected
in the HARA class by selecting an appropriate value of b � 0.

Proposition 7.2: Fix g � � , and . 

Then fg in Equation (8) is a normalized utility to Ug(
; a, b) at v, in the sense of
Definition 2.4. Consequently the normalized utility is independent of the spe-
cific values of a, b, and v.

APPENDIX C: PROOFS

Proof of Theorem 2.3: See Černý (2003), Theorem 2.

Proof of Theorem 2.5: By a straightforward calculation

(C1)

for any normalized utility f, with u given in Equation (4). From here and (6) 
follows

(C2)

Equation (C1) implies . This together with (4) and
(C1) yields

whereby we obtain (12) from (3) and (5). The existence and uniqueness of the
maximizer in (10) was shown in Theorem 2.3.

CE(v, h, w(v, 0))
A(v)h2 �

f�1(E( f(lY � a(0)X)))

l2

CE(v, h, w(v, 0) � hh)
A(v)h2 �

f�1(E( f(lY � (a(0) � hl)X)))

l2

w(v, 0) � a(0)�A(v)

OHR(v, h) �
w(v, h) � w(v, 0)

h
�
a(l) � a(0)

l
� ĥ(l).

w(v, h) � a(l)�A(v),

A(v)CE(v, h, ) � f�1(E( f(lY � uX))) � a(l,u)

v � Dg(a, b)a � 0, b � �g � 0,h 5;�6
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APPENDIX D: OPTIMAL HEDGING AND OLS

Assuming sufficient smoothness ( ), the quantity a(l) is differentiable 

and we can think of the optimal hedge as the average value of the marginal
hedge ratios �a�(s) with s � [0, l].

By differentiating the first order condition with
respect to l we have

In the special case f �� � const, corresponding to quadratic utility, we
obtain

which means that is independent of l. If, in addition, the mean of X is zero
(the futures market is unbiased) then the quadratic hedge equals the slope
coefficient from the OLS regression of Y onto X and an intercept. For other
utility functions, the choice of l matters to some extent, but our empirical
results show that this dependence is extremely weak for l� [0, 1].
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