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Abstract

We report the findings of an experiment designed to study how people learn and make
decisions in network games. Participants in our experiment interact in an (Anti-)Coordination
game for 20 rounds with their neighbours in a network. Our experimental design enables us
to observe both which actions participants choose and which information they consult before
making their choices. We use this information to estimate learning types using maximum
likelihood methods. There is substantial heterogeneity in learning types. However, the vast
majority of our participants are categorized either as reinforcement learners or (myopic) best-
response learners. Network topology and player position in the network have limited influence
on the estimated distribution of learning types. We do, however, find some differences. In
particular, players in networks with cycles and players in positions with more neighbors tend
to be characterized by simpler learning rules. Our results suggest that, while broad categories
of learning are stable across contexts, players adjust towards simpler learning rules in more
complex environments.

JEL Classification: C72, C90, C91, D85.
Keywords : Experiments, Game Theory, Heterogeneity, Learning, Maximum Likelihood Method,

Networks.

∗We wish to thank Clayton Featherstone, Sanjeev Goyal, Matthew Jackson, Muriel Niederle, Aljaz Ule and Marco
van der Leij as well as audiences in Stanford, Navarra, Cambridge, USACH, Universidad Católica de Chile, Shanghai
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Lehendakari Aguirre 83, 48015 Bilbao, Spain (jaromir.kovarik@ehu.es).
‡School of Economics, University of Nottingham, University Park Campus, NG7 2RD Nottingham, United Kingdom

(friederike.mengel@nottingham.ac.uk).
§Department of Economics (AE1), Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
¶Departamento de Economia, USACH, Alameda 3363, Santiago, Chile (gabriel.romero@usach.cl).

1



1 Introduction

Most scholars now agree that economic agents arrive at their decisions in strategic situations via a
process of learning and economists have developed a variety of theoretical models of learning in games.
These models, however, often lead to very different predictions both in the short- and in the long-run
(Fudenberg and Levine, 1998). As making predictions is one of the ultimate goals of economics, it
is important to understand how economic agents learn, whether there is heterogeneity, and to which
extent learning rules employed by agents remain stable across different contexts. Abstracting from
these issues may lead to imprecise predictions of behavior at the individual and aggregate level and
this may in turn impede correct evaluations of final impacts of policy interventions and economic
shocks.

A considerable amount of research has been conducted to understand how people learn in games.
This research has provided mixed evidence so far. Models that have found support in some studies
have been rejected in others.1 By far the most common approach to study learning in experiments
has been the representative-agent model. Under this approach a single learning model is estimated
to explain the average or median behavior of participants. One downside of the representative-agent
approach is that, if there is heterogeneity in learning types, it is far from clear how robust the insights
are to small changes in the distribution of types or whether comparative statics predictions based on
the representative agent will be correct (e.g. Kirman, 1992). In addition, Wilcox (2006) shows that
in the presence of heterogeneity representative agent models can produce significant biases favoring
reinforcement learning relative to belief learning models (see also Cheung and Friedman, 1997, or Ho
et al., 2008). Two exceptions to this literature are Camerer and Ho (2002), who assume that agents
fall into two segments of subpopulations with different parameter values for each, and Camerer et
al. (2002), who estimate a mixture of standard and sophisticated EWA learners in the population.

Another approach has been to estimate learning models individually for each subject (Camerer,
Ho, and Wang, 1999; Cheung and Friedman, 1997; Ho et al., 2008). However this approach is likely
to lead to small-sample biases (Cabrales and Garcia Fontes, 2000; Wilcox 2005) and estimations are
only consistent if the experiment involves “sufficient” time periods, where “sufficient” can often mean
practically infeasible in a typical experiment.2

In addition, many studies restrict the information feedback given to participants thereby ruling
out some learning models ex ante. If e.g. no information about payoffs of other participants is
provided then payoff-based imitation learning is not possible. But even if information feedback is
extensive, estimation of learning types solely on basis of observed behavior may easily fail to detect
the underlying data-generating processes (Salmon, 2001). Hence, while the existing literature has
provided valuable insights into how people learn in specific situations, most studies were not designed
to address the questions of individual heterogeneity and stability across contexts we mention above.

In this paper we attempt to address these issues. We conduct an experiment where information
about past play and payoffs of all participants as well as about network neighbors is available, but
where we keep track of which information each participant consults between rounds. We combine
this information with information about observed choices to estimate a distribution of learning types
using maximum likelihood methods. The advantage of observing both behavior and information is
that even if different learning rules predict the same choices at the same decision node, they can be
distinguished as long as different information is needed in each case to identify the correct choice.

We study strategic interactions in networks. In networks (compared to random matching or fixed

1See Camerer (2003, Chapter 6), Erev and Roth (1998), Mookherjee and Sopher (1997), Kirchkamp and Nagel
(2007) or Feltovich (2000) among others.

2Cabrales and Garćıa-Fontes (2000, Footnote 17) report that the precision of the estimates starts to be ”reasonable”
after observing around 500 periods of play.
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pairwise matching scenarios) it is more often possible to distinguish learning models via information
requests. For example, consider myopic best response and forward-looking learning. Under random
matching an agent needs to know the distribution of play in the previous period irrespective of
whether she is learning via myopic best responses or whether she is forward-looking. In a network,
though, a myopic best responder needs to know only the past behavior of her first-order neighbors
(who she interacts with), while a forward-looking learner may need to know the behavior of her
second-order neighbors to be able to predict what her first-order neighbors will choose in the following
period.3 An additional advantage of this design is that it allows us to systematically change the
network topology (moving e.g. from very homogeneous to heterogeneous situations) and see how
this affects the estimated distribution of learning types. We can also ask whether an agent’s position
within a network (e.g. central vs. peripheral) affects the way she learns. Hence our study allows us
to address two key questions that most previous studies have found difficult to address: the question
of individual heterogeneity and the question of how stable learning is across contexts.

Participants in our experiment interacted in a 4 × 4 Anti-Coordination Game. We hoped that
with 4 × 4 games we would eventually get convergence to Nash equilibrium, but that convergence
would not be immediate. Slow enough convergence is necessary to be able to study learning across
a number of rounds. Compared to pure Coordination games, Anti-Coordination games also have
the advantage that different learning rules prescribe different play more often and, compared to e.g.
conflict games, they have the advantage that standard learning models do converge.

In our analysis we apply a methodology first introduced by El-Gamal and Grether (1995) and ex-
tended by Costa-Gomes et al. (2001; CCB, henceforth). CCB monitor subjects’ information look-ups
and use an error-rate analysis to develop a procedural model of decision making, in which a subject’s
type first determines her information look-ups, possibly with error, and her type and look-ups jointly
determine her decision, again possibly with error. In our model, each player learns according to a
certain learning rule, which is drawn from a common prior distribution. We consider four prominent
learning models as possible descriptions of subjects’ behavior. One of our learning types is reinforce-
ment learning, another is imitation learning, and two models correspond to belief-based learning
(myopic best response and forward-looking learning). A potential downside of our approach is that
the fact that participants have to request information may per se distort their decisions. We try to
understand whether this is the case by comparing decisions in the main treatments with additional
treatments.

In total our experiment consists of six treatments. Three treatments with endogenous information
search (for three different network topologies) and three control treatments with the same networks
but without endogenous information search. In these full information treatments participants are
given all the information that can be requested in the former treatments by default. We use these
control treatments to see whether the possibility of search per se affects behavior and whether
participants request all the information they would naturally use in making their decisions. We
find no significant differences in behavior between the control treatments and the treatments with
endogenous information search.

We now briefly summarize our main results. There is substantial heterogeneity in the way people
learn in our data. However, most agents can be classified as either reinforcement learners or belief
learners. Even though we observe significant effects of the network topology on subjects’ behavior
(which actions they choose), our results suggest that networks have limited influence on how people
learn. In fact the estimates are virtually identical in two of our networks. We do find, however, that
in our (star-like) network with the highest variance in the degree distribution all participants are

3Which information she needs exactly will of course depend on her theory about how her first-order neighbours
learn. However, it is clear, that a myopic best response learner does not need information beyond her first-order
neighbourhood.
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best characterized by belief learning rules, while there is no evidence for reinforcement learning.
On the other hand, player position within the network seems to affect learning. Peripheral players

(with fewer links) are best characterized by myopic best response as opposed to central players who
are characterized by a mixture of reinforcement learners and myopic best responders. This difference
is intuitive. Forming beliefs about opponents’ possible actions (as in myopic best response) requires
more reasoning resources and hence may become more costly in terms of reasoning cost if an agent
has more neighbors. Moreover, as most players in our star-like network only have one neighbor this
can also explain why we only observe belief learning in this network. Hence, people seem to be
shifting towards simpler and cognitively less demanding rules in more complex situations (being it
more neighbors or a more complex network architecture).

Because almost all participants can be described by either reinforcement learning or (myopic)
belief-based rules, our results support the assumptions of EWA (Camerer and Ho, 1998, Camerer et
al., 2002). EWA includes reinforcement and belief learning as special cases as well as some hybrid
versions of the two. Unlike in EWA we do not restrict to those models ex ante, but our results
suggest that - at least in the context considered - a researcher may not be missing out on too much
by focusing on those models. However, while EWA should be a good description of behavior at
the aggregate level, at the individual level only about 16% of our participants request information
consistent with both reinforcement learning and belief-based learning rules.

To assess how important it is to use information beyond subjects’ actions, we compare the esti-
mated population shares with estimations where we disregard information searches. We detect large
biases in these estimates. Estimations based solely on observed action choices lead us to accept
certain learning rules that subjects could not have been using, simply because they did not consult
the minimum amount of information necessary to identify the corresponding actions. Since we use
a relatively large 4 × 4 game, which allows to distinguish learning rules more easily on the basis
of behavior only, this problem is likely to be more severe in smaller 2 × 2 games often studied in
experiments.

The paper proceeds as follows. Section 2 describes in detail the experimental design. Section 3
gives an overview of behavior using simple descriptive statistics. Section 4 introduces the learning
models. Section 5 contains the econometric framework and our main results. Section 6 presents
additional results and Section 7 concludes. Some additional tables and the experimental Instructions
can be found in Appendix.

2 Experimental Design

2.1 General Setup

In all treatments in our experiment participants repeatedly played the symmetric two player game
depicted in Table 1 with their (first-order) neighbors in the network. Within each session the networks
were fixed, which means that each participant played with the same neighbors in all of 20 periods.
Each player had to choose the same action against all her neighbors. If participants were allowed to
choose different actions for their different neighbors, the network would become irrelevant for choices
and many learning rules would become indistinguishable in terms of information requirements.

Payoffs in each round are given by the average payoff obtained in all the games against the
neighbors. We chose to pay the average rather than total payoffs to prevent too high inequality in
earnings due to different connectivity. The game payoffs are expressed in terms of Experimental
Currency Units (ECU), which were converted into Euros at the end of the experiment at exchange
rate 1 Euro to 75 ECU. The 4 × 4 one-shot game involves elements of both coordination and anti-
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A B C D
A 20, 20 40,70 10, 60 20, 30
B 70,40 10, 10 30, 30 10, 30
C 60, 10 30, 30 10, 10 30,40
D 30, 20 30, 10 40,30 20, 20

Table 1: The Game

coordination. Equilibria (A,B) and (B,A) are efficient, while there is a sense in which actions C
and D are less risky. C maximizes payoffs if neighbors choose uniformly at random and D is the
maxmin choice. Hence there is an element of Coordination on either efficient or risk-dominant
behavior. On the other hand, there is also an element of Anti-Coordination, since within each subset
{A,B}×{A,B} and {C,D}×{C,D} each player has an equilibrium which she strongly prefers and
all Nash equilibria are such that the two players have to choose different actions. We chose a 4× 4
rather than a 2×2 game, because (i) we hoped that this would generate sufficiently slow convergence
to equilibrium to be able to analyze learning in a meaningful way and (ii) a larger game makes it
already easier to identify a larger number of different learning rules from observing agents’ choices
only.

The treatments differed along two dimensions: network architecture and information accessibility.
Throughout the paper we denote network architectures with numbers 1, 2 and 3 (see Figures 1-3) and
information levels with capital letters N (endogenous) and F (full information). In Subsection 2.2
we discuss our three network topologies and in Subsection 2.3 we explain the information conditions.

2.2 Network Topology

Figures 1-3 present the three network architectures used in the experiment and Table 2 summarizes
the most standard network characteristics of these networks.4 The three networks are very similar in
terms of most network characteristics, with the exception of degree heterogeneity, measured by the
variance in degree, σ2(κ) =

∑8
i=1(κi − κ)2, where κi is the degree of agent i (i.e. the number of i’s

first-order neighbors) and κ the average degree in the network. We chose the networks in such a way
that starting from the homogeneous network, the circle, heterogeneity in degree is varied while the
other network characteristics are kept approximately constant. We selected networks with different
variances σ2(κ) to see whether and how learning is affected if there are strong asymmetries in the
environment. Note also that two of our networks contain cycles, while the third one does not.

An equilibrium in a network game (in our experiment of 8 players) is obtained when all players
choose an action that is a best response to whatever their neighbors choose. All our networks
are designed such that many pure strategy equilibria exist in the one-shot network game. A table
describing all strict Nash equilibria in the three networks can be found in the Appendix. Coordinating
a network of 8 players on any one of the many possible equilibria is possible, but not obvious. We
expected to see mis-coordination in early periods, but hoped to see learning and convergence to
equilibrium afterwards.

4Obviously, one could define many more network characteristics. In Table 2 we present measures that can be found
in standard textbooks; e.g. Vega-Redondo (2007).
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Figure 1: Treatments N-1 and F-1
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Figure 2: Treatments N-2 and F-2
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Figure 3: Treatments N-3 and F-3

Of course, each of these networks also allow for many Nash equilibria of the repeated (20 period)
game. Since our focus here is on learning we will not discuss or compare these equilibria any further.
However, we can say at this stage that in none of the networks (in any of the treatments) behavior
corresponded even approximately to a Nash equilibrium of the repeated game. Behavior did converge,
though, to a Nash equilibrium of the one-shot game in several networks (see below).

2.3 Information

Another treatment variable concerns information about histories of play. The benchmark cases are
provided by treatments N−1, N−2 and N−3. In these endogenous information treatments, we did
not provide our participants with any information by default. Rather, at the beginning of each round
they were asked which information they would like to consult. They could ask for three types of
information: (i) the network structure, (ii) past action choices and (iii) past payoffs of their network
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N − 1 N − 2 N − 3

Number of players 8 8 8
Number of links 8 8 7
Average degree κ 2 2 1.75
σ2(κ) 0 8 16.5
Charact. path length 2.14 2.21 2.21
Clustering coeff. 0 0 0
Average betweenness 0.42 0.40 0.37
Variance betweenness 0 0.21 0.21

Table 2: Network Characteristics.

neighbors. More precisely, if a subject asks for the network position of her first order neighbors she
is shown how many neighbors she has and their experimental identity (which is a number between 1
and 8; see Figures 1-3). With second order neighbors, she is shown their experimental identity as well
as the links between the first and second-order neighbors. The same holds for third and fourth-order
neighbors. Regarding actions and payoffs, subjects were shown the actions and/or payoffs of their
first-, second-, third- and/or fourth-order neighbors if they asked for this information. Participants
were also not shown their own payoff by default, but instead had to request it. This design feature
allows us to have complete control over which information people hold at any time of the experiment.

We placed two natural restrictions on information search. First, subjects were only allowed to ask
for the actions and/or payoffs of subjects whose experimental identity they had previously requested.
Second, they were not allowed to request the experimental identity of higher order neighbors without
knowing the identity of lower order neighbors. Figures 4(a) - 4(b) show both the screen, in which each
subject had to choose the type of information she desired, and how the information was displayed
after subjects had asked for it. Each piece of information about actions and/or payoffs had a cost of 1
ECU. Requesting information about the network had a larger cost of 10 ECU, since, once requested,
this information was permanently displayed to the participants.

(a) Screen: Information Requests (b) Screen: Information Display

Imposing a (small) cost on information search is a crucial element of our design. Of course, even
though costs are “small” this does affect incentives. We imposed costs to avoid that participants
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request information they are not using to make their decisions. We also conducted one treatment
that coincided with treatment N − 2 but where there was no cost at all to obtaining information.
In this treatment behavior did not differ significantly from N − 2, but participants asked for all the
information (almost) all the time. This means that without costs monitoring information search does
not help us to identify learning rules.5

To see whether information search per se affects behavior (e.g. because participants do not
look up “enough” information due to the costs) we conducted three control treatments with full
information. In those treatments F − 1, F − 2 and F − 3 there was no information request stage
and all the information was displayed at the end of each period to all participants. We call these the
full information treatments. We can use those treatments to study whether convergence is slower or
whether there are any other differences in behavior induced by the existence of costly information
search. We did not find significant differences between the F and N treatments (see below). Table 3
summarizes the treatment structure of the experiment.6

Network 1 Network 2 Network 3
Endogenous Information (N) 40 (800; 5) 56 (1120; 7) 40 (800; 5)
Full Information (F) 24 (480; 3) 24 (480; 3) 24 (480; 3)
Total 64 (1280; 8) 80 (1600; 10) 64 (1280; 8)

Table 3: Treatments and Number of Subjects (Number of Observations; Number of Independent
Observations).

The experiment was conducted between May and December 2009 at Maastricht University using
the software Z-tree (Fischbacher, 2007). A total of 224 students participated. The experiment lasted
between 60-90 minutes. Each 75 ECU were worth 1 Euro and participants earned between 7,70 and
16,90 Euros, with an average of 11,40 Euro.

3 Descriptive Statistics

In this section, we provide a brief overview of the experimental findings, regarding convergence to
equilibrium and information searches of subjects. Since we want to focus on estimation of learning
types in this paper we refer readers to Kovarik et al. (2011) for a detailed analysis of the observed
behavior in this experiment.

3.1 Behavior

Network topology has a strong impact on behavior. More precisely, there is an non-monotonic effect
of degree heterogeneity on convergence to equilibrium. We observe relatively high convergence in
Network 2, intermediate levels in Network 1, followed by Network 3. The entire network converges
to an equilibrium 12% (28% and 0%) of cases in N − 1 (N − 2 and N − 3, respectively). All
the differences are statistically significant if we take each network (rather than individual) as an

5As alternative approach was taken by CCB. They use the computer interface MouseLab. However, as they
state ”the space of possible look-up sequences is enormous, and our subjects’ sequences are very noisy and highly
heterogeneous” (p. 1209). As a result, they make several assumptions to be able to work with the data. We avoid
some of these problems with our design.

6The table does not contain the treatment N−2 without costs mentioned above. We will not discuss this treatment
any further, but results are of course available upon request. Other than the treatments reported we didn’t conduct
any other treatments or sessions and we did not run any “pilot studies”.
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Figure 4: Information Search. Left: Identity of First-, Second-, Third- and Fourth-Order Neighbors.
Right : Action Choices of First-, Second-, Third- and Fourth-Order Neighbors. Note the different
scales of the y-axis.

independent observation (Mann-Whitney, p < 0.01). Behavior is not statistically different, however,
along the information dimension (convergence rates are 13%, 46% and 13% for F-1, F-2 and F-3
respectively). In all treatments participants eventually coordinated on a Nash equilibrium where
all players choose either C or D (if they coordinate at all). (A table containing all the strict Nash
equilibria of the one-shot network game can be found in Appendix A.) Hence different information
conditions (i.e. full vs. endogenous information) do not seem to change the behavior of experimental
subjects.

3.2 Information

Given the important role information requests will play in learning type detection in later sections,
we describe the search patterns in more detail.

Network Structure. Figure 4 illustrates the information searches concerning the network struc-
ture, aggregated over treatments. In the first round 77.5%, 76.8% and 72.5% of subjects in N − 1,
N − 2 and N − 3, respectively, asked for the identity of direct neighbors in the first round. Roughly
90% of individuals end up demanding this information (92.5, 89.3 and 87.5%, respectively) by the
last round of the experiment. Around 45% of subjects request the network structure up to their
second-order neighbors (35%, 50% and 50% for N − 1, N − 2 and N − 3, respectively) by the last
round. Only 12.5%, 23.2% and 12.5%, respectively, request information about the entire social net-
work. Remember that information about the network structure - once requested - was permanently
displayed.

Payoffs. Slightly less than 50% of individuals ask for their own payoff to be displayed. Only
about 11.9%, 10.7% and 11.6% for N − 1, N − 2 and N − 3, respectively, require information about
the payoffs of their first-order neighbors. These percentages drop statistically to zero for more distant
individuals.

Actions. Around 50% of individuals pay to learn past actions of their opponents (i.e. their
direct neighbors in the network). There is no statistical difference across the three networks. The
percentages decline over time, which we attribute to convergence to equilibrium. Despite the strategic
effect of second-order neighbors’ actions on the play of direct opponents, the interest in their behavior
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is relatively small. After period 3 in all N -treatments, only around 18% of individuals request past
action choices of agents at distance two. And only a negligible fraction of subjects look for information
about choices of third- or fourth-order neighbors. Figure 4 shows the evolution of the action-related
information requests over time, aggregated over all the treatments.

4 Framework

This section presents the framework we use to estimate the learning types of our subjects. Our
fundamental view is that subjects learn about stage-game strategies rather than playing repeated-
game strategies from the outset. Each subject’s behavior is then determined, with error, by one of
four learning rules (types). The type of each agent is determined by independent draws from the
same distribution and remains constant over the 20 rounds she plays. Our goal is to estimate the
distribution of types.

We consider four possible learning types. One rule is reinforcement, another rule is based on
imitation, and two rules are belief-based. The criterion for the selection of these learning types was
their prominent role in the theoretical and experimental literature. In what follows, we describe each
of them informally; the exact algorithms used for each learning model considered in this paper can
be found in Appendix:

1. Under Reinforcement learning (RL) participants randomize between actions with probabilities
that are (linearly) proportional to past payoffs obtained with these actions.

2. Payoff-based imitation (PBI ) selects the most successful action from the previous period (i.e.
the action with the highest average payoff) in an agent’s first-order neighborhood including the
agent herself.

3. Under Myopic best responses (MBR) players choose a myopic best-response to the last period
play of their first-order neighbors.

4. Forward-looking (FL) subjects assume that their first-order neighbors are myopic best respon-
ders and best-respond to what they anticipate their first-order neighbors to play in the following
period.

All the above learning rules are adaptive. The forward-looking rule is probably the most sophis-
ticated among them and closest to capturing aspects of repeated interaction. We exclude hybrid
models, such as experience-weighted attraction of Camerer and Ho (1999). However, we can say
something about how well EWA will be able to describe behavior by looking at how well its com-
ponent rules perform. The reader may also wonder why we did not include level-k learning rules
or similar. There are multiple reasons for this. The main reason is that level-k learning - despite
its name - is not defined as an explicitly dynamic learning model. As a consequence it is not clear
which information a level-k learner should request or how they should update their beliefs about the
distribution of k in the population upon receiving new information. Section 6 reports estimations
with some variants of the above learning rules.

4.1 Identifying Learning Rules from Decisions

Obviously, it is only possible to identify learning rules if different rules predict different actions
and/or information requests in the experiment. Concerning action choices, for every period and
subject we compute which action she should have played according to each of the learning rules.
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Table 4 presents the average number of rounds (out of 19) in which - given the behavior in the
experiment - two different learning types predict different action for the participants.

In all treatments, the number of rounds RL prescribes different behavior than our imitation
learning model ranges from 11 to 15 rounds. Reinforcement is also well separated from belief-based
learning models (in at least 7/19 rounds). The number of rounds in which PBI’s decisions are
different from those of belief learning ranges from 11 to 15 rounds. Finally, the number of rounds in
which MBR and FL’s decisions differ ranges from 7 to 10, depending on the treatment.

Overall, the table shows that the learning rules considered entail different predictions most of the
time. This is due to our design involving the 4 × 4 Anti-Coordination game and should give good
chances to estimations of learning types based on decisions alone. We will see below that, despite
this fact, the estimates are still significantly biased if only action choices are considered.

Treatments
N-1 F-1

RL PBI MBR RL PBI MBR
PBI 11 11
MBR 9 14 10 13
FL 7 11 9 8 11 10

Treatments
N-2 F-2

RL PBI MBR RL PBI MBR
PBI 11 15
MBR 9 14 8 16
FL 8 13 8 7 14 7

Treatments
N-3 F-3

RL PBI MBR RL PBI MBR
PBI 11 11
MBR 11 15 9 15
FL 8 11 11 8 12 10

Note: Each cell contains the number of rounds two
types predict different action choices (out of 19).

Table 4: Separation between learning types on basis of decisions.

4.2 Identifying Learning Rules from Information Requests

Apart from choices we also observe participants’ information requests. Naturally, different learning
rules imply different needs in terms of information. First, a reinforcement learner only needs to
consult her own past payoffs. Else, reinforcement learning is not possible. Similarly, payoff-based
imitation requires participants to consult their first-order neighbors’ identities, actions, and payoffs,
while a myopic best responder has to consult her first-order neighbors identities and action choices.
Last, forward-looking learners should look up her first- and second-order neighbors’ identities and
action choices. Table 5 summarizes this information.

Now if participants consult all the information all the time, observing information searches would
not allow to discriminate among the learning rules from these searches. This problem is mitigated
in our design, since subjects had to pay for each piece of information they asked for. Table 14 in
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Learning Type
Info Neighbor RL PBI MBR FL

Id 1 x x x
2 x

Action 1 x x
2 x

Payoff Own x x
1 x

Table 5: Minimal Information Required for Each Rule (x indicates that a piece of information is
required for the corresponding learning rule).

Appendix shows that the monetary cost of information plays an important role in our experimental
design. Without such costs, information search would have no discriminatory power.

On the other hand, one may argue that the searches may affect the way people learn and play, but
the comparison between the costless and costly endogenous information treatments (as well as the
comparison between N and F treatments) reveals that subjects’ behavior in unaffected by whether
the information is costless or costly (endogenous or full). Imposing a small cost on information,
though, makes people focus on the information that is relevant to their decision making process.

Another question is whether participants can trade-off different pieces of information. One could
imagine, for example, that a participant asks for choices of her first- and second-order neighbors and
then uses this information together with the payoff matrix to compute the payoffs of her first-order
neighbors. Clearly, we cannot avoid this, but we believe that (i) making such inferences about the
network structure is virtually impossible and (ii) setting such a low cost of consulting actions and
payoffs (1 ECU) makes the inferences about not requested information more costly than asking for
the desired information directly.

4.3 Decisions and Information Requests in the Data

In this subsection, we provide a descriptive overview of the performance of the different learning rules
in the data. Figure 5 shows the fractions of individuals who simultaneously request the minimal
necessary information corresponding to a rule and choose as prescribed by that rule. The figure
illustrates the fractions of subjects, who look up the minimal information set and choose according
to each learning rule at least 25% (50 %) of periods, i.e. more than 5 (10) times (left and right panel,
respectively). The general insight from these figures is that behavior corresponding to payoff-based
imitation is virtually non-existent in the experiment and only few individuals seem to behave as
forward-looking agents, while most individuals’ searches are consistent with reinforcement learning
or myopic best responses.

Figure 6 provides a different look at the data. For each individual and each rule, we calculate the
number of times the individual behaves according to this rule (in terms of both information searches
and actions taken). For each individual, we then select the rule which is the most frequent predictor
of her behavior. In case of ties, we classify the individual as each of these types with uniform shares.7

7One, two and three individuals have never satisfied the condition for any rule in N−1, N−2 and N−3, respectively.
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Figure 5: Fractions of subjects, who request the minimal information set and play the action as
prescribed by each learning type more than 25% (left) or 50% (right) of rounds.

Figure 6: Frequencies of learning types using a simple classification procedure.

This way, each subject is classified into one rule (or with uniform probabilities into various rules)
and Figure 6 plots the shares of learning types in the population. We observe that the view is even
starker than in Figure 5: virtually no subject in the whole sample is classified as PBI or FL. On
the other hand, the two remaining rules seem to play an important role in the data.

Note that Figures 5 and 6 are descriptive and provide only a coarse view of the data. In Figure
6, for example, participants may be categorized as being of a certain type even though they behave
in accordance with any rule in only very few periods. In the following section, we estimate learning
types more rigorously using maximum likelihood methods.

5 Maximum-Likelihood Estimations

In this section, we introduce the econometric framework and report our main results.

5.1 Econometric Framework

We start specifying our econometric approach. First, the following definition links information
searches to learning rules:

Occurrence: In every round a participant requests at least the minimal information she needs to
identify the action choice corresponding to her learning type.

These individuals are not included in Figure 6.
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While this assumption seems quite innocuous, it can still be too strict in some cases and we will
relax it sometimes. For instance, after convergence has occurred participants may not always ask for
the minimal information.

CCB remark that Occurrence could be satisfied by chance in their experiment, resulting in low
discriminatory power. As discussed above this problem is mitigated in our design, since subjects had
to pay for each piece of information they asked for (see Section 4.2 and Table 14 in Appendix).

For each subject i and learning type k ∈ {1, 2, ..., K}, we compute the percentage of times subject
i asked for the minimum information required for learning rule k (“Compliance with Occurrence”).
We sort the resulting percentages into three categories: (i) Z, 0 compliance with Occurrence; (ii)
M, 1%− 49% compliance with Occurrence; (iii) H, 50%− 100% compliance with Occurrence. This
categorization has two advantages. It minimizes the need for structural restrictions (see CCB for
more details), while it allows us to evaluate whether subjects who frequently ask for the minimal
information set are more precise in their decisions.

In each round a subject’s learning type determines her information search (possibly with error)
and her type and information search then determine her decision (again possibly with error). Let
θkj denote the probability that a subject has compliance j with rule k in the experiment, where
j ∈ {Z,M,H} and

∑
j θkj = 1 for each k. Note that for a given subject in a given round, a

learning type may predict more than one possible action. We assume that in this case participants
choose uniformly at random among those actions. Let c denote the number of possible action choices
predicted by a learning rule in a given round, with c ∈ {1, 2, 3, 4}. A subject employing rule k
normally makes decisions consistent with rule k, but in each round, given compliance j she makes an
error with probability εkj ∈ [0, 1]. We assume that the error rates are independent and identically
distributed across rounds and subjects. In the event of an error we assume that participants play
each of the four actions with probability 1

4
. As a result, given j and c the probability of making one

of the c actions consistent with rule k (either by mistake or as a result of employing rule k) is

(1− εkj)
1

c
+
εkj
4

=

(
1− 4− c

4
εkj

)
1

c
, (1)

and the probability to choose one of the actions that is not consistent with rule k,
εkj
4

. For each
learning rule k in each period we observe whether or not a participant took a decision consistent
with k.

Let θk = (θkZ , θkM , θkH) and εk = (εkZ , εkM , εk,H), respectively, be the vectors of compliance levels
and error rates for each k ∈ {1, 2, ..., K}. Let T ickj denote the number of rounds in which subject i has
c possible action choices consistent with rule k and compliance j with learning type k. xickj denotes
the number of rounds in which i has c possible action choices according to type k, compliance j
with k and takes one of the decisions consistent with k. Define

∑
c T

i,c
kj = T ik,j and

∑
c x

i,c
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i
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i
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i
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i
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i
K); and

= = (T 1, ..., TN) and X = (x1, ..., xN). As a result, the probability of observing sample xik and T ik is

Lik(εk, θk|T ik, xik) =
∏
j

∏
c

θ
T i,c
kj

kj

[(
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4
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)
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c
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4
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and the log-likelihood function for the entire sample is

lnLF (p, ε, θ|=, X) =
N∑
i=1

ln

{
K∑
k=1

pk
∏
j

∏
c

θ
T ic
kj

kj

[(
1− 4− c

4
εkj

)
1

c

]xickj (εkj
4

)T ic
kj−x

ic
kj

}
. (3)
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We assume that our data set is a sample generated by (3).8 Our aim is to find a mixture model
- p = (p1, p2, ..., pK) - that provides the best evidence in favor of our data set. It has been shown
that the maximum likelihood method, under mild conditions satisfied by (3), produces consistent
estimators for finite mixture models (Leroux, 1992). With K learning types, we have (6K − 1) free
independent parameters: (K − 1) independent probabilities pk, 2K type k compliance j information
search probabilities θkj, and 3K type-dependent compliance level error rates εkj. It is well known that
it is easy to overparameterize this sort of finite mixture models. Standard information criteria for
model selection, such as the Aikake Information Criterion (AIC) and Bayesian Information Criterion
(BIC), might not perform satisfactorily (Prasad et al., 2007, Biernacki et al. 2000; Cameron and
Trivedi, 2010). In the following, we describe how we proceed with model selection (i.e. selection of
components) in our case.

For given k, j and c, xickj exerts a significant positive influence on the estimated value of pk as
long as the following inequality holds:

ln

[
(1− 4−c

4
εkj)

1
c

εkj
4

]
≥ 0. (4)

The left hand side of (4) is decreasing in the error rate, approaching 0 as εk,j tends to 1. This means
that type k decisions are taken as evidence of learning rule k only if the estimated error rates suggest
that the decisions were made on purpose rather than by error. CCB show that, regardless of the
level of compliance j, the log-likelihood function favors type k when T ikj and hence the estimated θkj
are more concentrated on particular level of compliance j. CCB use the unrestricted estimates of
θkj as a diagnostic, giving more confidence to the estimated values of pk for which both T ikj and θkj
are ”more” concentrated on ”high” levels of compliance j. If, however, the decisions consistent with
type k occur with the wrong information search, they are not taken as evidence of type k. We follow
their criteria.

Let us comment somewhat on the interpretation of θk = (θkZ , θkM , θkH). A high concentration at
zero compliance may lead to a probability θkZ very close to 1, and to a high estimated frequency pk.
However, such high estimated value of θkZ and, consequently, low estimated values of θkM and θkH
indicate that subjects do not consult the minimum information corresponding to rule k very often.
As a result, it would be hard to argue that learning rule k explains the behavior of the subjects
clustered in component k.

With these considerations in mind, we will use the estimated values of θk and the error rates εk
as a tool for selecting the components of our finite mixture model. We will proceed as follows:

Step (a) Estimate the model using K learning rules.

Step (b) If there is a learning type l whose estimated θlZ is larger than 0.60, go to step (c). If every
learning type has an estimated θkZ smaller than 0.60 (i.e. that the minimal information set
was requested at least with probability 0.4) and if estimated error rates increase as compliance
decreases, stop the estimation process.

Step (c) Remove learning type l, set K = K − 1 and go back to step (a).

8Our model is an incomplete data structure model. The missing data constitute an unobservable matrix Z whose
components are K-dimensional vectors, such that zik = 1 if and only if the underlying generating process of data xi

is a learning type k process.
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Learning types

Parameters RL PBI MBR FL

K=4

pk 0.21 0.62 0.17 0

θk,Z 0.03 0.99 0.05 -

K=3

pk 0.20 0.23 0.57

θk,Z 0.09 0.07 099

K=2

pk 0.57 0.43

θk,Z 0.55 0.10

Table 6: Selection Algorithm. Treatment N-1

5.2 Estimation Results with Information Searches

We start by illustrating how our algorithm selects learning rules in our treatments with endogenous
information. Table 6 shows the results for treatment N − 1. For the sake of brevity we moved the
tables corresponding to treatments N − 2 and N − 3 to Appendix.

Table 6 shows the estimated type frequencies pk and parameters θkZ . After step (a) θ̂PBI,Z = 0.99
(in bold in Table 6), meaning that subjects classified as PBI almost certainly do not consult the
information required by this learning rule. Therefore, our selection criterion suggests that there is no
evidence that subjects’ behavior was induced by the PBI learning rule, this is also consistent with
the evidence in Section 4, and we remove PBI from the estimation. In this way, we iterate steps
(a), (b) and (c) as long as there exist no k such that θ̂kZ > 0.6. The algorithm stops with only two
rules, RL and MBR, remaining. Our selection algorithm converges to the same learning rules in
N − 2 and in treatment N − 3 it selects one learning type: MBR (see Tables 18-20 in Appendix).
We describe the result in more detail below.

There is additional information that can be gained by studying Tables 6 and 18-20. In N − 3, for
example, our population is overall best described by MBR. But small percentages of decisions are
also very accurately described by other rules that eventually get eliminated by the algorithm. For
example 3% are very accurately described by forward-looking with θFL,Z = 0.49. It is also noteworthy
that about 10% of decisions are accurately described by RL (step K = 3, where θRL,Z = 0.16). Hence,
while (using our selection algorithm) we force the estimation to explain all decisions (by the entire
population) attributing a significant share of decisions to noise or errors, studying the sequence of
estimations can also give us insights into which rules are able to explain accurately and which rules
can best account for the more noisy decisions.

We also address carefully the robustness of our results. First of all, we varied the threshold for
θkZ . If we set that threshold to 0.5, we select the same models in treatments N − 2 and N − 3. In
N − 1, the algorithm stops with one unique learning rule, MBR. Note, however, that θ̂RL,Z = 0.55
in Table 6, not that far from 0.5. If we increase the threshold up to 0.9, the algorithm would select
the same population composition in the three treatments, being the percentages of RL and MBR
very similar in the three networks (see Table 7).9

9This finding may reinforce our general conclusion that learning types composition is relatively stable across different
networks. Nevertheless, we still use a more conservative threshold θ̂k,Z ≤ 0.6 as our benchmark, because we believe
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Treatments

N-1 (LL = −1406) N-2 (LL = −2019) N-3 (LL = −1474)

Parameters RL MBR RL MBR RL MBR

pk 0.57 0.43 0.59 0.41 0.68 0.32

θZ 0.55 0.10 0.48 0.14 0.90 0.65

θM 0.06 0 0.09 0 0.10 0.11

θH 0. 39 0.90 0.43 0.86 0 0.23

εZ 1 1 1 1 1 1

εM 0.52 - 0.5 - 0.58 0.74

εH 0.51 0.46 0.55 0.41 - 0.57

Table 7: Information Search and Decisions

Second, we artificially altered the order of elimination of the learning types (for which the minimal
information set was rarely requested) and in all cases we converge to the same mixture composition
as in the benchmark case. Hence, all our results are robust to the order of elimination of learning
types.10

Next we describe our main results. Table 7 reports the maximum likelihood estimates of learning
type probabilities, pk, unconditional compliance probabilities, θkj, and compliance conditional error
rates, εkj, in the selected models. Figure 7 illustrates the estimated frequencies for reinforcement
learning and myopic best-response learning.

In treatment N − 1, 57% of the population are best described as reinforcement learners and the
remaining 43% as myopic best responders. RL has high compliance with occurrence (θ̂RL,H = 0.39),

while θ̂MBR,H even equals 90%. In both cases, estimated error rates increase as compliance decreases
(i.e. the more frequently people classified into each rule consult the information the more they act
in harmony with the rule) and the estimated unconditional zero compliance probabilities are lower
than the corresponding error rates. These results suggest that the estimated type frequencies of RL
and MBR are highly reliable.

In N − 2, 59% and 41% of subjects are best described by RL and MBR, respectively. The
estimated θ’s and ε’s are also well behaved. Note that the estimates are remarkably similar in N − 1
and N − 2. In both networks, the combination of reinforcement learners and myopic best responders
best describes the population, being the estimates for myopic best responses more accurate and
reinforcement learning able to absorb somewhat more of “noisy behavior”.

Finally, for the stricter threshold of 60% only MBR survives in N − 3. At step K = 2, 68% of
subjects are classified as reinforcement learners, but they consult their corresponding information set
with probability 0.1. Consequently, we remove RL and end up with MBR only.

In sum, the topology of the underlying network seems to have a limited influence on subjects’
learning types. The mixture composition is very similar in N − 1 and N − 2, with a majority

that people classified into one learning type should request the information corresponding to this rule more often than
in 10% of cases.

10We have also considered some variants of the learning rules to see how robust our results are to their definitions.
See Section 6 for the results.
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Figure 7: Estimation of pk using information requests and decisions.

of subjects best described as reinforcement learners and the remaining participants as belief-based
learners. MBR seems to play a more important role in N−3. Here, the whole population is classified
into belief-based learning types and there is no evidence for reinforcement learning. This is possibly
due to the fact that learning in N − 3 is less complex cognitively, because (i) there are no cycles and
(ii) many players only have one neighbor in this network. As a consequence, players may resort to
more sophisticated rules (such as MBR) more often compared to a simpler rules such as RL. We
will come back to this issue below. However, we have to be cautious about these results, because
standard errors are not available. This makes it impossible to test network effects formally.

Since almost all participants can be described by either reinforcement learning rules or belief
based rules, our results support the assumptions of EWA (Camerer and Ho, 1998; Camerer et al.,
2002), which includes reinforcement and belief-based learning as special cases as well as some hybrid
versions of the two. Unlike in EWA we do not restrict to those models ex ante, but our results
suggest that - at least in the context considered - a researcher may not be missing out on too much
by focusing on those models. While EWA should be a good description of behavior at the aggregate
level, at the individual level only about 16% of our participants request information consistent with
both reinforcement learning and belief-based learning rules.

There might be two caveats regarding our results. First, could it be that we are overestimating
the frequency of RL, because participants might look up their own payoffs just because they want
to know their payoffs and not because they use this information in their learning rule? We probably
do, but only to a small extent. Note, first, that the estimation procedure identifies high correlations
between information searches and “correct” choices given the learning models consistent with the
information search. As a result, if a decision-maker always looks up some information for other
reasons (unrelated to the way she learns and play), then this will not lead to high correlations and
hence will not mislead the estimation procedure. In addition, the fact that we do not find evidence
for RL in N − 3 indicates that this is a minor issue in our study.

Another caveat could be that we are not giving imitation learning the best chances here, since
players are not symmetric in terms of their network position and since players typically want to
choose a different action than their neighbors in an Anti-Coordination game. To address this issue,
we verify whether imitation of second-order neighbors (whose actions players typically want to mimic
in equilibrium) can best describe the behavior of any subject. We allow for both conformist and
payoff-based imitation and observe that no subject is best described solely by imitating within the
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second-order neighborhood.11

A Coordination game would certainly have given better chances to imitation learning. However
in these games our learning models are most often indistinguishable in terms of the choices they
imply for any given information search. Since our main focus is the comparison of estimations with
and without taking into account information searches, we designed the experiment in such a way to
give the latter the best possible chances. If one was primarily interested in understanding in which
situations agents resort to social learning (imitation) as opposed to best response or reinforcement
learning, then one would need to conduct additional experiments involving different games. We leave
these issues for future research.

5.3 Estimation Results without Information Searches

How important role does monitoring of information requests play in our estimations? To address this
question, in this section we estimate learning types solely on basis of participants’ observed choices
(disregarding their information searches). The objective is to show that if we only use information
about subjects’ behavior the estimates are less accurate, in spite of the fact that our design should
give these estimations good chances (see Section 4.1).

Recall that we assume that a type-k subject normally makes a decision consistent with type k,
but she can make an error with probability εk, in which case she chooses an action with probability
1
4
. Let xick measure the number of rounds in which subject i has c possible action choices and takes

a decision consistent with k. Under this model specification the probability of observing sample xik
can be written as

Lik
(
εk|xik

)
=

∏
c=1,2,3,4

[(
1− 4− c

4
εk

)
1

c

]xi,ck (εk
4

)T i,c
k −xi,ck

. (5)

Adding up over all individuals and learning types, we get the log-likelihood of the whole data set:

lnLF (p, ε|x) =
N∑
i=1

ln

{
K∑
k=1

pk
∏

c=1,2,3,4

[
(1− 4− c

4
εk)

1

c

]xi,ck (ε
4k

)T i,c
k −xi,ck

}
. (6)

As in (3), the influence of xick on the estimated value of pk decreases as εk tends to 1 and meaning
that learning type-k decisions are thus taken as evidence of rule k only to the extent that the
estimated value of εk suggests they were made on purpose rather than in error.

Parameters of model (6) are estimated using maximum likelihood methods as before. In this case
we have 2K − 1 free independent parameters, (K − 1) corresponding to frequency types pk, and K
corresponding to the error rates. Since under this specification the shape of the objective function
(6) is better behaved compared to (3), we can now estimate the standard error rates. Table 8 reports
estimated frequencies and error rates for each treatment.

Note that in all cases we have evidence in favor of the four learning rules. Based on these results
we could conclude that there is evidence of payoff-based imitation (8% in N − 1, 4% in N − 2 and
23% in N − 3) and forward-looking learning (30% for N − 1, 11% and 5% for N − 2 and N − 3
respectively). However, our data in Section 4 show that subjects hardly ever checked the necessary

11Two subjects are simultaneously best described by more than one learning rule in N − 3, including conformist
imitation within the second-order neighborhood, reinforcement learning and myopic best responding. However, one
of them is best described by each of these rules in only one period, while the other subject is comply with them only
three times. These figures suggest that their compliance with imitation (as much as with the other rules) is rather
accidental than made on purpose.
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information to identify the corresponding action choices. Consequently, it is very unlikely that these
learning rules have generated the behavior of subjects in the experiment. Summing across those
learning rules, these numbers indicate that 15% of participants are mis-classified if we only consider
action choices and abstract from which information they consult!

The important message of this section is that if we disregard the information that subjects request
we may end up accepting learning rules that subjects actually do not use. Remember also that our
design (involving the 4×4 Anti-Coordination game) was chosen in order to give estimation by choices
alone good chances to detect learning behavior, since learning rules can be discriminated better by
focusing on choices alone. Hence in general the biases resulting from estimations by decision alone
may be much more severe for smaller and coordination-like games than those that we encounter.

Treatment N − 1 (LL = −760)

RL PBI1 MBR FL
pk 0.21∗∗∗ 0.08∗ 0.42∗∗∗ 0.30

(st.er.) 0.07 0.06 0.10
εk 0.08∗∗∗ 1∗∗∗ 0.58∗∗∗ 0.42∗∗∗

(st.er.) 0.03 0.10 0.05 0.054
Treatment N − 2 (LL = −1022)

RL PBI1 MBR FL
pk 0.49∗∗∗ 0.04∗∗∗ 0.35∗∗∗ 0.11

(st.er.) 0.01 0.08 0.01
εk 0.26∗∗∗ 0.48∗∗∗ 0.47∗∗∗ 0.76∗∗∗

(st.er.) 0.003 0.02 0.01 0.05
Treatment N − 3 (LL = −772)

RL PBI1 MBR FL
pk 0.51∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.05

(st.er.) 0.01 0.01 0.01
εk 0.34∗∗∗ 0.70∗∗∗ 0.42∗∗∗ 0.28∗∗∗

(st.er.) 0.01 0.01 0.01 0.01
Note: (***) Significant at 1% level; (**) at 5% level; (*) at 10% level.

Table 8: Estimation based solely on observed behavior.

How do we know that the model with information search gives “better” and not just “differ-
ent” estimates than the model without information search? Obviously estimations that take into
account information searches use more information and hence they can rule out learning rules that
are plausible when looking at decisions only, but simply not possible because the decision-maker did
not have the minimal information needed for that rule. The estimation procedure identifies high
correlations between information search and “correct” choices given the learning models consistent
with the information search. Hence if a decision-maker always looks up some information for other
reasons (unrelated to the way she learns), then this will not lead to high correlations and hence
will not mislead the procedure based on information searches. The only case in which the process
with information search could be misled is if (i) two different rules predict the same choices and (ii)
information needed for one rule can be deduced from information needed for the other rule. Our
experimental design renders (ii) unlikely, and Table 4 shows that (i) is only very rarely the case in
our experiment. Note also that situations such as (i) will likely affect estimations that disregard
information searches even more strongly.
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6 Further Results

In this section, we estimate some alternative models. First, we estimate rules by player position to see
whether network position (central vs. peripheral) affects how agents learn. Second, we substitute the
MBR rule with different variations of belief-based learning. Third, we provide additional estimations
making stronger distributional assumptions. Fourth, using simulated data we evaluate to what extent
our econometric model is capable of identifying the learning rules present in the population. Finally,
we relax our assumption of occurrence.

6.1 Estimation by Player Position

We estimate our model separately for different player positions in the network to understand whether
how people update their behavior is influenced by their position in the network. To estimate the
model separately for each position in the networks would lead to very small samples (of 5-8 inde-
pendent observations only) and hence very likely to small sample biases. To mitigate this problem
we categorize players into two different categories according to whether they have a “central” or
“peripheral” position in the network. In Network 1 all players are symmetric and hence have the
same position. As a consequence, we focus on networks 2 and 3 in this analysis.

In network 2 we call Players 1, 2, 7 and 8 “peripheral” and Players 3, 4, 5 and 6 “central” (see
Figure 2), while in network 3 we call Players 1, 5, 6, 7 and 8 “peripheral” and Players 2, 3 and 4
“central” (Figure 3).

In N − 2 we have different results for “peripheral” and “central” players. All peripheral players
are classified as MBR learners, while 36% of central players as RL and 64% as MBR. The intuition
is similar to before. Peripheral players have only few neighbors (in most cases only one) and hence
it is cognitively less demanding for peripheral players to store information about past play of their
neighbors. Hence, it seems intuitive that players with fewer neighbors rely more often on myopic
best response that is computationally more demanding compared to RL. Player position does also
have an effect on behavior, as we discuss in more detail in our companion paper (Kovarik et al, 2011).
Figure 8 shows these results and compare them with the benchmark estimations for N − 2.

In N − 3 players’ position has virtually no effect on the learning rules players are best described
by. Both “peripheral” and “central” players (as well as the benchmark estimation from previous
section) are classified as MBR.

Figure 8: Estimation by Player Position in treatment N-2. N−2 CP refers to “central” players 3,4,5
and 6; N − 2 PP includes “peripheral” players 1,2,7 and 8 (see Figure 2).
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6.2 Splitting the Sample by Cognitive Reflection

In this section, we split our subjects according to their answers in a cognitive reflection test (Freder-
icks, 2005), conducted in a post-experimental questionnaire. The test consists of the three following
questions

1. A bat and a ball cost Euro 1.10 in total. The bat costs Euro 1.00 more than the ball. How
much does the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to
make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days
for the patch to cover the entire lake, how long would it take for the patch to cover half of the
lake?

All these questions have an answer that immediately springs into mind (10 cents, 100 minutes,
24 days), but which is wrong. The right answer (5 cents, 5 minutes, 47 days) can only be found by
engaging in some cognitive reflection. Note that the test is not measuring intelligence, but rather
the willingness of subjects to engage in costly cognitive reflection.

In order to avoid small sample biases (and since the estimates are very similar in N − 1 and
N − 2), we aggregate our data from treatments N − 1 and N − 2 and subsequently split this sample
by using the following measure of cognitive reflection. We categorize participants as displaying
“low” cognitive reflection if they answered 0 or 1 question correctly and participants as displaying
high cognitive reflection if they answered 2 or 3 questions correctly. We then estimate the distribution
of learning types as above separately for “low” and “high” cognitive reflection.

Cognitive Reflection

Low (LL = −1479) High (LL = −1876)

Parameters RL MBR RL MBR

pk 0.51 0.49 0.57 0.43

θZ 0.92 0.72 0.48 0.13

θM 0.08 0.05 0.06 0.00

θH 0.00 0.22 0.46 0.87

εZ 1 1 1 1

εM 0.47 0.71 0.59 -

εH - 0.41 0.48 0.39

Observations 798 1026

Table 9: Information Search and Decisions with the Sample split by Cognitive Reflection.

Table 9 reports the results of this exercise. The results center around the same two learning rules
as above, namely reinforcement learning and myopic best response. The estimated distribution of
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these two types is remarkably similar across our two categories. Interestingly, though, the precision
of estimates is much higher for the sub-sample categorized as ”high cognitive reflection”. Presumably
hence participants that are more willing to engage in cognitive reflection display less noisy information
searches as well as choices which is picked up by the precision of our estimates.

6.3 Fictitious Play with Limited Recall

In this section we estimate model (3) with different alternative variations of belief learning. In
particular, we assume that subjects only base their learning on a limited number of last periods.
This way, myopic best responders are one end of this classification basing their decisions on the
last round only. We consider six alternative specifications: players best respond to the play of their
opponents in the last three, six, nine, twelve, fifteen and twenty past periods to construct their
beliefs. Note that the last variation represents the standard fictitious-play learning. Denote by FPs
the variation, under which subject based their decision on the last s periods. Hence, under this
terminology, myopic best-responders are fictitious players who only recall the last period, i.e. FP1,
and fictitious players correspond to FP20. We compare these alternatives with the benchmark model
and rank them according to their log-likelihood values. For each treatment we solely present results
for the best performing model (Table 21 in Appendix).

In all treatments the best-performing model is the benchmark from Section 5.2 with MBR (i.e.
FP1). However, the increment in the log-likelihood value in the benchmark model with respect to
the second best-performing model is very small (lower than 1% in all cases).

In N − 1 there is no difference between the benchmark model and the model with FP3 and the
estimated parameters are remarkably similar. In the other two treatments the model including FP6

outperforms the other alternative models and the estimated frequency types are again very similar
to the benchmark that contain MBR. In all cases FP20 is among the last in the ranking.

These results suggest that depending on the environment assuming that FP learners have bounded
memory to form their beliefs explains a little more of the variation in subjects’ decisions compared
to FP20 model. Hence, the proposed variants of fictitious play can be empirically more relevant than
the standard definition of this learning rule. Note though that we have not considered weighted
fictitious play in the model.

6.4 Estimation Using a Poisson Process

In order to asses to what extent our results depend on the distributional assumptions behind the
likelihood function, in this section we re-estimate the learning rules assuming that the processes
behind our data follow a Poisson distribution.

We keep assuming that a participant should frequently request the minimal information she needs
to identify the action choice corresponding to her learning type. Let I ik denote the number of rounds
in which subject i searches information consistent with learning type k during the experiment and
xik denotes the number of rounds in which subject i makes a decision consistent with learning rule
k. We assume that the variables I ik and xik follow a Poisson distribution with means µk and λk,
respectively. Note that we again assume type-dependent parameters, which takes into account that
the difficulty in processing information varies across learning rules.

The probability of observing sample (I ik, x
i
k) is

Lik(µk, λk|I ik, xik) =
e−µkµ

Iik
k

I ik!

e−λkλ
xik
k

xik!
,

and the log-likelihood function is
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lnLF (p, µ, λ|I, x) =
N∑
i=1

ln

(
K∑
k=1

pk
e−µkµ

Iik
k

I ik!

e−λkλ
xik
k

xik!

)
. (7)

Because of problems of over-parameterization related to finite mixture models, we apply a selec-
tion algorithm similar to that of Section 5. If µ̂k < 0.5, then subjects classified as type k hardly ever
check the minimal information set consistent with this rule and cannot identify the corresponding
action choice. As a result, we remove the types whose µ̂k < 0.5. Table 10 shows the estimation
results.

Endogenous Information Treatments

N − 1 (LL = −255) N − 2 (LL = −339) N − 3 (LL = −114)
RL MBR RL MBR MBR FL

pk 0.58 0.42 0.52 0.48 0.30 0.70
µk 1.92 7 2.15 6.34 12.76 0.21
λk 1.02 4.41 1.15 3.99 5.68 0

Table 10: Poisson distribution. Estimation based on information search and observed behavior.

Our estimates provide evidence in favor of reinforcement and belief-based learners in N − 1 and
N − 2. In addition, the estimated frequencies are remarkably similar to model (3) in Table 7. Again,
lower values of µk and λk suggest that RL absorbs more of the noisy behavior.

In N−3 we see that 70% of subjects are classified as forward-looking learners if K = 2. However,
the estimated parameter µ̂FL = 0.21; that is, subjects classified as FL hardly ever check the infor-
mation set corresponding to this rule. Consequently, using the our selection criterion all subjects are
classified as MBR learners as in (3).

Hence, this alternative and more restrictive model confirms the type composition of the sample
from Section 5. This conclusion still holds if we increase the threshold µ̂k up to (almost) two in the
selection algorithm.

6.5 Evaluating the Information Search Model Using Monte Carlo

In this section we analyze the ability of our model specification to detect the true mixture of the
population. The exact objective of this exercise is to answer the following question: If the estimated
composition of the population in N − 1 is the true composition, is our estimation procedure able to
detect it precisely?

To this aim we simulate a data set with the same structure as our experimental data. We let
computers simulate the behavior of two different learning types, RL and MBR. Then, we estimate
the model (3) using this data set and apply our selection algorithm to test whether our procedure
can recover the true data-generating processes.

In the paper we only report results for treatment N − 1.12 To mimic our experiment, we simulate
data for five groups of eight players (40 subjects in total) who play our Anti-coordination game for
20 periods. We assume that 58% of subjects are RL and 42% are MBR in all simulations and the
types are randomly distributed on the network according to the above probabilities. We consider
three different parameter constellations (summarized in Table 11) as follows:

12Since the conclusions are the same for N − 2 and N − 3, we do not report them here.
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1. Full Compliance (FC): subjects search their respective information set with probability 1 and
make no mistake in choosing the corresponding action choice.

2. High Compliance (HC hereafter): subjects search their corresponding information search with
high probability and make mistakes choosing actions with low probability,

3. Low Compliance (LC): subjects have low compliance with occurrence and make mistakes with
high probability.

For each case we have 250 computer-generated samples with these characteristics.

Network 1 (Circle)

Parameters FC HC LC

Numb. RL 23 23 23
Numb. MBR 17 17 17
Total 40 40 40

Types’ Parameters (k = RL,MBR)
θk,Z 0 0 0.55
θk,M 0 0.15 0
θk,H 1 0.85 0.45
εk,Z 1 1 1
εk,M 0 0 0
εk,H 0 0.10 0.55

Table 11: Assumptions for Monte Carlo Simulations

Table 12 reports the results of this exercise. We observe that in all cases our selection algorithm
identifies correctly the learning rules present in the population. The shares of PBI and FL are
virtually zero in all cases. Moreover, we find very small biases in the estimated frequencies in both
FC and HC. Hence, if people are relatively precise both making their choices and looking up the
information, our estimation procedure succeeds selecting the population composition in all cases.

As subjects become less precise in their information searches and decisions (LC), we still recover
which types are present in the population, but there are biases in the estimated values. In our
particular case, the mechanism overestimates the presence of MBR by 13% and underestimates
the share of RL by the same amount. The intuition of such biases is as follows. First, recall the
variable T ik,Z that measures the number of rounds in which subject i does not consult the information
set corresponding to rule k. Notice that in FC the variable T iRL,Z = T iMBR,Z = 0. As subjects
become less precise in their information searches, these variables increase, which in turn increases
the concentration in zero compliance level. Since in our computer-based samples 23 (out of 40)
subjects have T iMBR,Z = 19, this concentration is relatively higher for MBR generating the observed
shift toward more MBR at the expense of RL.

Since our estimates in Section 5.2 lie somewhere between the HC and LC scenarios, we select the
correct mixture composition of the population and if there exist some biases in the estimates these
biases will be relatively small.
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Network 1 (Circle)

RL PBI MBR FL

True pk 0.575 0 0.425 0

FC
p̂k 0.597 0.002 0.399 0.002
(se) 0.07 0.008 0.075 0.006
Bias 0.02 0.002 -0.03 0.0012
HC
p̂k 0.5710 0.0004 0.4283 0.0001
(se) 0.0447 0.004 0.043 0.0004
Bias -0.003 0.004 0.003 0.0001
LC
p̂k 0.443 0 0.556 0
(se) 0.0302 0 0.0302 0
Bias -0.132 0 0.132 0

Table 12: Monte Carlo Simulations

6.6 Relaxing the Assumption of Occurrence

In this section we relax our assumption of occurrence, allowing people not to look up the information
every time they play. This is important here, since we have observed that subject consulted the
information less frequently after convergence to an equilibrium.

To this aim, we assume that a subject has the information she needs to identify the action choice
corresponding to her type if she has asked for the minimal information set at least once in the last
four periods. Table 13 reports the estimates, which again confirm our results in Section 7. In N − 1
and N − 2 we have evidence in favor of RL and MBR and their shares are relatively stable in both
cases. In N − 3 we observe the major difference, we now have evidence in favor of RL and MBR.
In all case the estimated θ’s and ε’s are well behaved, hence we put confidence in the estimated
frequency types.
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Treatments

N-1 (LL = −1081) N-2 (LL = −1408) N-3 (LL = −1179)

Parameters RL MBR RL MBR RL MBR

pk 0.48 0.52 0.49 0.51 0.43 0.57

θZ 0.14 0.03 0.11 0.02 0.21 0.04

θM 0 0 0 0 0 0

θH 0.86 0.97 0.89 0.98 0.79 0.96

εZ 1 1 1 1 1 1

εM - - - - - -

εH 0.66 0.41 0.44 0.51 0.41 0.69

Table 13: Information Search and Decisions

7 Concluding Remarks

We study how subjects learn in a 4× 4 normal form (anti-) coordination network game. The way in
which subjects interact and the way in which information spreads through the network may shape
subjects’ decisions. To gain insight into these issues we vary the topology of the underlying interaction
structure. In particular, we systematically vary the heterogeneity in degree, holding constant other
networks characteristics. As a second treatment variation we let subjects decide which information
they would like to see before making their decisions or provide them with full information.

We find that there is substantial heterogeneity in the way people learn in our data. However most
agents can be classified as either reinforcement learners or belief learners. Our results suggest that
in context of complex environments (due to more neighbors or a more complex network structure),
subjects rely more often on learning rules (such as reinforcement learning) that are cognitively less
demanding compared to belief-based learning models. Future research is needed to address the
question of heterogeneity and context stability across different games and other contexts and at the
individual rather than aggregate level.
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A Appendix: Nash Equilibria of Network Game

Nash equilibria
Network 1 Network 2 Network 3

(A,B,A,B,A,B,A,B)
(B,A,B,A,B,A,B,A)
(C,D,C,D,C,D,C,D)
(D,C,D,C,D,C,D,C)

(D,D,C,D,C,D,D,C)
(D,C,D,C,D,D,C,D)
(C,D,C,D,D,C,D,D)
(D,C,D,D,C,D,D,C)
(C,D,D,C,D,D,C,D)
(D,D,C,D,D,C,D,C)
(D,C,D,D,C,D,C,D)
(C,D,D,C,D,C,D,D)

(A,B,A,B,B,A,A,A)
(B,A,B,A,A,B,B,B)
(C,D,C,D,D,C,C,C)
(D,C,D,C,C,D,D,D)

(C,D,D,D,C,D,C,C)
(D,C,D,D,C,D,C,C)
(D,C,D,D,D,C,C,C)
(C,D,D,C,C,D,D,D)
(A,B,C,D,D,C,C,C)

(A,B,A,B,A,A,A,A)
(B,A,B,A,B,B,B,B)
(C,D,C,D,C,C,C,C)
(D,C,D,C,D,D,D,D)

(D,C,D,D,C,C,C,C)
(C,D,D,C,D,D,D,D)
(A,B,C,A,B,B,B,B)
(D,C,D,B,A,A,A,A)
(C,D,C,A,B,B,B,B)
(B,A,B,C,D,D,D,D)

Table A-1: Strict Nash equilibria. The format is (a1, ..., a8) where ai, i = 1, ..8 is the action of player i.

B Appendix: Learning Rules: Algorithms

In this subsection we present the algorithms corresponding to each learning rule. In each round,
subjects play a 4× 4 game against their neighbors and the set of actions is {a, b, c, d} for all players.

In reinforcement learning, subjects choose strategies that have performed well in the past with
larger probabilities. Formally, at period t each subject i has a propensity to play each of her four
actions. Let qi(z, t) represent subject i’s propensity at time t of playing action z, for all t and
z ∈ {a, b, c, d}. These propensities are updated by adding the payoff φ received in period t for
playing action z to the previous propensity. Therefore, the updating rule is: qi(z, t+ 1) = qi(z, t) +φ
if z was played in t and qi(z, t + 1) = qi(z, t) when i chose an action different from z in period t.
Thus actions that achieved higher returns are reinforced and player i chooses action z at round t if

qi(z, t) ∈ max{qi(a, t), qi(b, t), qi(c, t), qi(d, t)} (8)

The second class of learning model we consider is imitation learning model. Let NR
i denote the

set of Rth order neighbors of any subject i, with R ∈ {1, 2, ...,M} and, cardinality ni. In payoff based
imitation order R, learners copy the most successful strategy within their Rth order neighbors. Let
∆R
i (z, t) represent the average payoff of those players who played action z in round t within subject’s

i Rth order neighborhood. Player i, then, at time t chooses action z if

∆R
i (z, t) ∈ max{∆R

i (a, t),∆R
i (b, t),∆R

i (c, t),∆R
i (d, t)} (9)

Under belief learning models subjects form beliefs on their opponents’ strategies and choose an
action that best responds to those beliefs. Let vi be a vector whose elements, vi(z, t) represent the
weight subject i gives to her opponents playing each pure strategy z in round t. Therefore player i
believes her opponents in round t play action z with probability pi(z) = vi(z,t)∑

s∈{a,b,c,d} vi(s,t)
. Player i then

chooses a pure strategy that is a best response to the probability distribution. A fictitious player
consider the whole history of the game to compute her probability distribution. Let Zi(z, t) represent
the set of player i’s first order neighbors who played pure strategy z at round t with cardinality ni(z, t).
At the first round no weight is put in any strategy, and hence, fictitious players choose randomly. For
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all subsequent periods a fictitious player updates her belief vector by vi(z, t) = vi(z, t− 1) + ni(z, t).
On the other hand, a myopic best responder only uses the most recent period to form her beliefs.
Therefore, the updating rule for a myopic best responder is vi(z, t) = ni(z, t).

Our last belief-based learning model is forward looking order 2 in which players assume their first
order neighbors are myopic best responder and, consequently, choose a best response to their first
order neighbors’ myopic best response. Let q(i, t) be a vector containing a number of elements equal
to the number of player i’s first order neighbors. Each element of q(i, t) represents player i’s first
order neighbor’s myopic best response at round t. Thus player i chooses a pure strategy that is a
best response to q(i, t).

For all learning rules, in case of tie, the player is assumed to choose randomly between the options
that tie.

C Appendix: Additional Tables

Heterogeneous Network 2

RL PBI MBR FL
N − 2 without costs 0.92 0.88 0.95 0.74
N − 2 with costs 0.40 0.07 0.48 0.13

Table 14: Occurrence’s discriminatory power. The percentage of rounds subjects consulted the
minimal information required by each learning rule if information is costless (above), compared to
N − 2 (below).

C.1 Treatment N-1 Estimations with Information Search

Treatment N-1 (LL = −1857)
Parameters RL PBI MBR FL

pk 0.21 0.62 0.17 0
θZ 0.03 0.99 0.05 -
θM 0 0 0 -
θH 0.97 0.01 0.95 -
εZ 1 1 1 -
εM - - 0.63 -
εH 0.56 0.11 0.31 -

Table 15: Information Search and Decisions N-1, all rules.
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Treatment N-1 (LL = −3023)
Parameters RL PBI MBR FL

pk 0.20 0.23 0.57
θZ 0.09 0.07 0.99
θM 0 0 0.01
θH 0.91 0.92 0
εZ 1 1 1
εM - - 0.99
εH 0.46 0.35 -

Table 16: Information Search and Decisions
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C.2 Treatment N-2 Estimations with Information Search

Treatment N-2 (LL = −2762)
Parameters RL PBI MBR FL

pk 0.29 0.36 0.23 0.12
θZ 0.04 1 0.03 0.98
θM 0 0 0 0.02
θH 0.96 0 0.97 0
εZ 1 1 1 1
εM - - - 1
εH 0.45 - 0.55 -

Table 17: Information Search and Decisions

Treatment N-2 (LL = −4260)
Parameters RL PBI MBR FL

pk 0.22 0.29 0.48
θZ 0.08 0.11 0.98
θM 0 0 0.02
θH 0.92 0.89 0
εZ 1 1 1
εM - - 0.77
εH 0.43 0.41 -

Table 18: Information Search and Decisions

C.3 Treatment N-3 Estimations with Information Search

Treatment N-3 (LL = −2010)
Parameters RL PBI MBR FL

pk 0.06 0.62 0.30 0.03
θZ 0.15 0.98 0.03 0.49
θM 0.02 0.02 0 0.50
θH 0.83 0 0.97 0.01
εZ 0.41 1 0.92 0.51
εM 0.8 0.76 - 0.81
εH 0.38 - 0.61 0.76

Table 19: Information Search and Decisions
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Treatment N-3 (LL = −2645)
Parameters RL PBI MBR FL

pk 0.10 0.18 0.72
θZ 0.16 0.14 0.97
θM 0.02 0.01 0.03
θH 0.82 0.85 0
εZ 0.69 0.98 1
εM 0.62 0.39 0.59
εH 0.31 0.66 -

Table 20: Information Search and Decisions
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C.4 Estimations with Variants of Fictitious Play

Treatment N-1 (LL = 1410)
Parameters RL FP3

pk 0.58 0.42
θZ 0.56 0.10
θM 0.06 0
θH 0.38 0.90
εZ 1 1
εM 0.53 -
εH 0.51 0.47

Treatment N-2 (LL = −2022)
Parameters RL FP6

pk 0.57 0.43
θZ 0.48 0.16
θM 0.09 0
θH 0.44 0.84
εZ 1 1
εM 0.47 -
εH 0.52 0.42

Treatment N-3 (LL = −1479)
Parameters RL FP6

pk 0.67 0.33
θZ 0.86 0.66
θM 0.14 0.09
θH 0 0.25
εZ 1 1
εM 0.64 0.70
εH - 0.70

Table 21: Variants of belief-based learning
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C.5 Robustness Estimations

Table A-14

Treatment N-1 (LL = −1081)
Parameters RL MBR

pk 0.48 0.52
θZ 0.14 0.03
θM 0 0
θH 0.85 0.97
εZ 1 1
εM - -
εH 0.66 0.41

Treatment N-2 (LL = −1408)
Parameters RL MBR

pk 0.49 0.51
θZ 0.11 0.02
θM 0 0
θH 0.89 0.98
εZ 1 1
εM - -
εH 0.44 0.51

Treatment N-3 (LL = −1179)
Parameters RL MBR

pk 0.43 0.57
θZ 0.21 0.04
θM 0 0
θH 0.79 0.96
εZ 1 1
εM - -
εH 0.41 0.73
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D Appendix: Sample Instructions (Treatments N − 1, N − 2

and N − 3)

Welcome and thanks for participating at this experiment. Please read these instructions carefully.
They are identical for all the participants with whom you will interact during this experiment.

If you have any questions please raise your hand. One of the experimenters will come to you and
answer your questions. From now on communication with other participants is not allowed. If you
do not conform to these rules we are sorry to have to exclude you from the experiment. Please do
also switch off your mobile phone at this moment.

For your participation you will receive 2 Euros. During the experiment you can earn more. How
much depends on your behavior and the behavior of the other participants. During the experiment
we will use ECU (Experimental Currency Units) and at the end we will pay you in Euros according
to the exchange rate 1 Euro = 75 ECU. All your decisions will be treated confidentially.

THE EXPERIMENT

In the experiment you are linked up with some other participants in this room, which we will
call your neighbors. You will play a game with your neighbors that we will describe below. Your
neighbors in turn are of course linked up with you, but (possibly) also with other participants in the
room. And their neighbors again are linked up with other participants and so on. . .

Note that your neighbors are not necessarily the participants who are located to your left and
right in the physical layout of the computer laboratory.

During the experiment, you will be able to find out how many neighbors you have as well as their
experimental identity, but not who they really are. This also means, of course, that your neighbors
will not know your real identity.

The experiment lasts for 20 rounds. In each round you play a game with each of your neighbors.
Your payoff in each round is the average payoffs obtained in all the games with your neighbors.

Each round consists of three stages, which we will describe in detail below. Here is a summary:

1. In the first stage you choose an action in the game. Note that you have to choose the same
action for all your neighbors.

2. In the second stage you can request information about your neighbors, your neighbors’ neigh-
bors etc. . . the actions they chose in the past period and the payoff they obtained in the past
period, as well as about your own payoff.

3. In the third stage, the information you requested is displayed on the computer screen.

We will now describe the different stages in more detail.

Stage 1 (Action Choice)

In the first stage you have to choose one action in the game, which is described by the following
table, which will be shown to you every time you choose an action.

A B C D
A 20,20 40,70 10,60 20,30
B 70,40 10,10 30,30 10,30
C 60,10 30,30 10,10 30,40
D 30,20 30,10 40,30 20,20
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In the table your actions and payoffs are given in dark grey and your neighbor’s actions and
payoffs in light grey. The table is read as follows (dark payoffs):

- If you choose A and your neighbor A, you receive 20
- If you choose A and your neighbor B, you receive 40
- If you choose A and your neighbour C, you receive 10
- If you choose A and your neighbor D, you receive 20
- If you choose B and your neighbor A, you receive 70
- If you choose B and your neighbor B, you receive 10
- If you choose B and your neighbor C, you receive 30
- If you choose B and your neighbor D, you receive 10
- If you choose C and your neighbor A, you receive 60
- If you choose C and your neighbor B, you receive 30
- If you choose C and your neighbor C, you receive 10
- If you choose C and your neighbor D, you receive 30
- If you choose D and your neighbor A, you receive 30
- If you choose D and your neighbor B, you receive 30
- If you choose D and your neighbor C, you receive 40
- If you choose D and your neighbor D, you receive 20

Note that your neighbor (light payoffs) is in the same situation as you are. This means that for
your neighbor:

- If your neighbor chooses A and you A, your neighbor receives 20
- If your neighbor chooses A and you B, your neighbor receives 40
- If your neighbor chooses A and you C, your neighbor receives 10
- If your neighbor chooses A and you D, your neighbor receives 20
- If your neighbor chooses B and you A, your neighbor receives 70
- If your neighbor chooses B and you B, your neighbor receives 10
- If your neighbor chooses B and you C, your neighbor receives 30
- If your neighbor chooses B and you D, your neighbor receives 10
- If your neighbor chooses C and you A, your neighbor receives 60
- If your neighbor chooses C and you B, your neighbor receives 30
- If your neighbor chooses C and you C, your neighbor receives 10
- If your neighbor chooses C and you D, your neighbor receives 30
- If your neighbor chooses D and you A, your neighbor receives 30
- If your neighbor chooses D and you B, your neighbor receives 30
- If your neighbor chooses D and you C, your neighbor receives 40
- If your neighbor chooses D and you D, your neighbor receives 20

Remember that you have to choose the same action for all your neighbors. Your gross payoffs in
each round are given by the sum of payoffs you have obtained in all games against your neighbors
divided by the number of neighbors you have.

Stage 2 (Information Request)

In the second stage you can indicate which of the following pieces of information you would like
to obtain

- the experimental identity of your neighbors
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- the experimental identity of your neighbors’ neighbors (2nd order neighbors)
- the experimental identity of your neighbors’ neighbors’ neighbors (3rd order)
- the experimental identity of your neighbors’ neighbor’s neighbors’ neighbors (4th order

neighbors)

Note that who is a neighbor of you does not change during the experiment. Hence once you have
asked for this information in some round, it will be displayed in all future rounds. Note also that in
order to receive information about your neighbors’ neighbors’ you first need to request information
about your neighbors etc. The cost of requesting each of these pieces of information is 10. You only
have to pay this cost once. In addition you can request information about the following items which
(in principle) can change in every round.

- the actions chosen by your neighbors
- the actions chosen by your neighbors’ neighbors
- the actions chosen by your neighbors’ neighbors’ neighbors
- the actions chosen by your neighbors’ neighbor’s neighbors’ neighbors
- the payoffs obtained by your neighbors
- the payoffs obtained by your neighbors’ neighbors
- the payoffs obtained by your neighbors’ neighbors’ neighbors
- the payoffs obtained by your neighbors’ neighbor’s neighbors’ neighbors
- your own payoffs

Obviously, in order to receive information about your neighbors (or neighbors’ neighbors’) actions
or payoffs you first need to request information about the experimental identity of your neighbors
(neighbors’ neighbors) etc. The cost of requesting each of these pieces of this information is 1 and
you have to pay it each time you request this information anew. Your net payoffs in a round are
your gross payoffs minus the cost of the information you requested.

Stage 3 (Information Display)

The information you have requested in Stage 2 is displayed on the screen for 40 seconds.

Control Questions

Before we start the experiment please answer the following control questions on your screen.

1. Assume you have only one neighbor. She chooses action B and you action D. Which gross
payoff will you get in this round?

2. Assume you have three neighbors and they choose action A, B and A. You choose action D.
Which gross payoff will you get in this round?

3. True or False: My neighbors change in every round of the game.

4. True or False: My neighbors face the same payoff table as I do.

5. True or False: My neighbors are those sitting in the cubicles to my left and right.
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