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Abstract

We propose a stylised dynamic model to understand the role of social networks in the phenomenon we

call “globalization.” This term refers to the process by which even agents who are geographically far apart

come to interact, thus overcoming what would otherwise be a fast saturation of local opportunities. A

key feature of our model is that the social network is the main channel through which agents exploit new

opportunities. Thus only if the social network becomes globaI (heuristically, “reaches far”) can global

interaction be steadily sustained. To shed light on the conditions under which such a transformation

may, or may not, take place is the main objective of the paper.

One of our interesting insights is that in order for a local social network to turn global, the economy

needs to display a degree of “geograhical cohesion” that is neither too high (for then global opportunities

simply do not arise) nor too low (in which case there is too little social structure for the process to take

off). And if globalization does arise, we show that it often occurs abruptly and consolidates as a robust

state of affairs. We also show how it is affected by improvements in the flow at which information travels

in the network, or by the range at which the social network can be used to discipline behavior.

Keywords: Social networks, Globalization, Search, Cooperation, Social Cohesion, Innovation.
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1 Introduction

The idea that most economies are fast becoming more globalized has become a commonplace, a mantra

repeated by the press and popular literature alike as one of the distinct characteristics of modern times.

Economists, on the other hand, have also started to devote substantial effort to constructing measures of

globalization that extend well beyond the traditional concern with trade openness (see Section 2 for a short

summary of this predominantly empirical literature). Only relatively scant attention, however, has been

devoted to understanding the phenomenon from a theoretical viewpoint. And this, of course, not only limits

our grasp of matters at a conceptual level. It also limits our ability to advance further along the empirical

route.

The main objective of this paper is to provide a terse model of globalization from the perspective afforded

by the theory of social networks. A first question that arises concerns the nature of the phenomenon itself:
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what is globalization? Our response is that it involves two key (related) features. First, agents are relatively

close in the social network, even if the population is very large – this is the situation often described as a

“small world.” Second, the links (connections) among agents tend to span long geographical distances.

A second question is equally basic: Why is globalization important? Our model highlights the following

points. Economic opportunities for collaboration appear both locally and globally (in terms of geographical

space). The former are relatively easy to find and exploit but they are also limited in number. Hence

sustained economic expansion must be able to access opportunities at a global scale. The social network

is crucial in this respect, since information and trust (both of which underlie collaboration) are largely

channelled through it. Sustained economic expansion, therefore, can only unfold if the social network itself

becomes global in the sense suggested before. This, in sum, is the process of socio-economic globalization

that provides the fuel and support for growth.

The former considerations raise a host of interesting issues. How and when is an economy able to build

a truly global social network? Is the corresponding process gradual or abrupt? Does it lead to a robust

state of affairs, or is it a fragile outcome hinging upon some quite special circumstances? What is the role

of geography? Does geography provide a structure that facilitates, or instead hinders, globalization? Can

we think of it in terms of some measure of social capital that can be accumulated and maintained? Is the

there a role for policy? Are there temporary policy measures that achieve permanent results?

Our model addresses these questions and provides some novel insights into the phenomenon. To end

this short Introduction, we summarize some of them. In general, if the economic potential associated to

globalization is large, its materialization arises abruptly (i.e. as a sharp response to small changes in the

environment). Furthermore, the transition is robust, not crucially depending on the environmental changes

that brought it about in the first place. Geography plays an important role. Somewhat paradoxically,

a certain extent of geographical cohesion is needed for the build-up of a global social network. But if

such cohesion is too strong, it is detrimental to the whole process and can block it altogether. Hence

some intermediate level of cohesion is optimal. In essence, globalization is the result of a high enough

accumulation of social capital, manifested in terms of dense and distant connections. This opens up the

possibility of multiple equilibrium outcomes: due to history, chance, or policy some economies may heave

proven successful while others not, under the same environmental circumstances. In fact, suitable policy

measures impinging temporarily on the may explain such persistently different outcomes.

The rest of the paper is organized as follows. Section 2 reviews some related literature and briefly

outlines a companion paper where we test empirically some basic implications of our theory. Section 3

presents the model: in Subsection 3.1 we describe the interaction framework, while in Subsection 3.2 the

dynamics. Section 4 carries out the analysis, decomposed in three parts. Firstly, Subsection 4.1 discusses

numerical simulations that illustrate important features of the model. Secondly, Subsection 4.2 undertakes

the theoretical analysis in a simplified benchmark setup applying to a limit infinite-population context.

Thirdly, Subsection 4.3 extends the theory to a general context with finite populations and any parameter

configuration. Section 5 concludes the main body of the paper with a summary of its content and an outline

of future research. For the sake of smooth exposition, formal proofs as well as some other details of our

theoretical and numerical analyses are relegated to the Appendix.
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2 Related literature

As advanced, the bulk of economic research on the phenomenon of globalization has been of an empirical

nature, with only a few papers addressing the issue from a theoretical perspective. Two interesting theoretical

papers that display a certain parallelism with our approach are Dixit (2003) and Tabellini (2008). In both

of them, agents are distributed over some underlying space, a tension arising between the advantages of

interacting with far-away agents and the limits to this interaction imposed by geographical distance. Next,

we outline these papers and contrast our different approaches.

The model proposed by Dixit (2003) can be succinctly summarized as follows: (i) agents are arranged

uniformly on a ring and are matched independently on each of two periods; (ii) the probability that two

agents are matched decreases with their ring distance; (iii) gains from matching (say trade) grow with ring

distance; (iv) agents’ interaction is modelled as a Prisoner’s Dilemma; (v) information on how any agent

has behaved in the first period arrives at any other point in the ring with a probability that decays with

distance.

In the context outlined, the intuitive conclusion obtains that trade materializes only between agents that

do not lie too far apart. Trade, in other words, is limited by distance. To overcome this limitation, Dixit

contemplates the operation of some “external enforcement.” The role of it is to convey information on the

misbehavior of any agent to every potential future trader, irrespective of distance. Then, assuming that

such external enforcement is quite costly, it follows that its implementation is justified only if the economy

is large. For, in this case, the available gains from trade are also large and thus offset the implementation

cost.

The second paper, Tabellini (2008), relies on a spatial framework analogous that of Dixit (2003). In

it, however, distance bears solely on agents’ preferences: each matched pair again plays a modified Pris-

oner’s Dilemma, but with a warm-glow atruistic component in payoffs whose size falls with the distance

to the partner. Each individual plays the game only once. This allows the analysis to dispense with the

information-spreading assumption of Dixit’s model that is tailored to the fact that agents are involved in re-

peated interaction. Instead, the distinguishing characteristic of Tabellini’s model is that agents’ preferences

(associated to the rate at which the warm-glow term decreases with distance) are shaped by a process of

intergenerational socialization à la Bisin and Verdier (2001).

In a certain sense, altruist preferences and cooperative behavior act as strategic complements in Tabellini’s

model. This, in turn, leads to interesting coevolving dynamics of preferences and behavior. For example,

even if both altruism and cooperation start at low levels, they can reinforce each other and eventually lead

the economy to a state with a large fraction of cooperating altruists (i.e. agents who care for, and cooperate

with, even relatively far-away partners). Under reasonable assumptions, such steady state happens to be

unique. There are, however, interesting variants of the setup where the enforcement of cooperation (i.e. the

detection and reversion of cheating) is the endogenous outcome of a political equilibrium, and this allows for

multiple steady states that depend on initial conditions.

In resemblance with the two papers just summarized, our approach also attributes to some suitable

notion of “geographical” distance a key role in shaping the social dynamics. In Dixit (2003) and Tabellini

(2008), however, the impact is quite direct: the ability to sustain cooperation (either through observability
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or altruism) is taken to decrease in such exogenous distance. In our case, instead, the relevant distance in

this respect is social and endogenous, for it is determined by the evolving social network. It is precisely in

the evolution of the social network that geographic distance plays a role: geographically closer agents are

assumed to enjoy a higher arrival rate of collaboration opportunities, although these opportunities in effect

materialize only if their current social distance is short enough.

Next, let me turn to the empirical literature concerned with the phenomenon of globalization. Typically, it

has focused on a single dimension of the problem, such as trade (Dollar and Kraay (2001)), direct investment

(Borensztein et al. (1998)) or portfolio holdings (Lane and Milesi-Ferretti (2001)). A good discussion of

the conceptual and methodological issues to be faced in developing coherent measures along different such

dimensions are systematically summarized in a handbook prepared by the OECD (2005 a,b). But, given

the manifold richness of the phenomenon, substantial effort has also been devoted to developing composite

indices that reflect not only economic considerations, but also social, cultural, or political. Good examples

of this endeavour are illustrated by the interesting work of Dreher (2006) –see also Dreher et al. (2008) – or

the elaborate globalization indices periodically constructed by A.T. Kearney/Foreign Policy (2006) and the

Centre for the Study of Globalization and Regionalization (2004) at Warwick.

These empirical pursuits, however, stand in contrast with our approach in that they are not designed as

truly systemic. That is, the postulated measures of globalization are based on the individual characteristics

of the different “agents” rather than on their interplay with the overall structure of interaction. Our model,

instead, calls for systemic, network-like, measures of globalization. A few papers in the recent empirical

literature that move in this direction are Kali and Reyes (2007), Arribas et al. (2009), and Fagiolo et

al. (2010). They all focus on international trade flows and report some of the features of the induced

network that, heuristically, would seem appealing, e.g. clustering, node centrality, multistep indirect flows,

or internode correlations. Their objective is mostly descriptive, although Kali and Reyes show that some

of those network measures have a significant positive effect on growth rates when added to the customary

growth regressions. These papers represent an interesting first attempt to bring genuinely global (network)

considerations into the discussion of globalization. To make the exercise truly fruitful, however, we need

some explicitly formulated theory that guides both the questions to be asked as well as the measures to be

judged relevant

In a companion empirical paper, Duernecker, Meyer, and Vega-Redondo (2011) have built on the theory

presented here to undertaken a step in this direction. First, that paper introduces an operational counterpart

of the measure of integration following from our present theoretical model. Then, it checks whether that

measure is a significant variable in explaining intercountry differences in growth performance. In this exercise

we again rely on the usual control variables that are considered in the growth literature but, most crucially,

address the key endogeneity problem that lies at the core of the empirical issue. We find that our measure

of integration is a robust and very significant explanatory variable, which supersedes traditional measures

of openness (e.g. the ratio of exports and imports to GDP), rendering them statistically insignificant. This

suggests that the network-based approach to integration that is proposed here adds (when compared with

the usual “local” approach) a systemic perspective that is rich and novel. We refer the interested reader to

the aforementioned companion paper for details.
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3 The model

The formal presentation of the model is divided in two parts. First, we describe the underlying (given)

spatial setup and the (changing) social network that is superimposed on it. Second, we specify the dynamics

through which the social network evolves over time from the interplay of link creation (innovation) and

link destruction (volatility). The formulation of the model is kept at an abstract level in order to stress its

versatility. In Appendix A, however, we spell out in detail a concrete setup that provides a game-theoretic

foundation for the model. In this setup, agents are assumed to be involved in a collection of repeated games

of uncertain duration in which cooperation is supported (at equilibrium of an underlying population game)

by both bilateral and third-party threats of punishment.

3.1 The basic setup

Let N be a fixed (large) population of n agents, evenly spread along a one-dimensional ring of fixed length.

To fix ideas, we shall speak of this ring as reflecting physical space but, as is standard, it could also embody

any other relevant characteristic (say, ethnic background or professional training). The location of each

individual in the ring is assumed fixed throughout. For any two agents i and j, the “geographical” distance

between them is denoted by d(i, j). By normalizing the distance between two adjacent agents to one, we

may simply identify d(i, j) with the minimum number of agents that lie between i and j along the ring,

including one of the endpoints.

Time is modelled continuously. At each point in time t ≥ 0, there is social network in place, g(t) ⊂
{ij ≡ ji : i, j ∈ N}, each of its links interpreted as an ongoing project run in collaboration by the two

agents involved. This introduces an additional notion of distance between agents – their social (or network)

distance – that is given by the length of the shortest network path connecting any two nodes. (If no such

path exists, their social distance is taken to be infinite.) In general, of course, the prevailing social distance

δg(t)(i, j) between any two nodes i and j can be higher or shorter than their geographical distance d(i, j) –

see Figure 1 for an illustration.

3.2 Dynamics

The law of motion of the system identifies the current state at any given t with the prevailing network g(t).

The state changes due to two forces alone: innovation and volatility. The first one underlies the creation of

new links, while the second one leads to the destruction of existing ones. We describe each of them in turn.

3.2.1 Innovation

At every t, each agent i gets an idea for a new project at a fixed rate η > 0. This project, however, requires

the complementary skills of some other agent j. From an ex ante viewpoint, the probability pi(j) that the

agent required by i’s idea is some particular j is taken to satisfy:

pi(j) ∝ 1/ [d(i, j)]
α

, (1)
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Figure 1: Snapshot of a situation at some t. By way of illustration, note that whereas the social distance
is maximal (infinity) between agents i and j who are neighbors on the ring (i.e. their geodistance is the
minimal of 1), the same comparison for i and k yields the opposite conclusion, namely, their geodistance is
higher than their social distance.

i.e. it decays with the geographical distance (geodistance, for short) between i and j at some rate α > 0.

Since this abstract formulation admits a wide variety of concrete interpretations, in order to fix ideas we

shall discuss just two of them. A first one is the most simplistic. It conceives i and j as actually meeting

physically at the time i has the idea, so decay just reflects the fact that closer agents meet more often than

distant ones. A second alternative is based on the idea that fruitful collaboration not only requires some

complementarity of skills between the agents involved but also compatibility in a number of dimensions

(e.g. language, norms, expectations, etc.). In this case, geographical decay can be thought as embodying

the notion that further-away agents share less of a common ground on which such a compatibility must be

based. Whatever the interpretation, the strength of these considerations is modelled by the exponent α > 0,

which for the sake of conciseness we shall refer to as (geographical) cohesion.

Consider then an agent i who has an idea for a project that needs the concourse of another agent j.

When will this idea indeed materialize into an actually running project? Our model prescribes that this will

happen if, and only if, the following two conditions are jointly met:

L1 Agents i and j are not already involved in an ongoing project together.

L2 These agents are close, either geographically or socially, as captured by two positive parameters, ν and

µ respectively. More precisely, we require that at least one of the following conditions holds:

(a) they are at a geodistance no higher than ν;

(b) they are at a social distance no higher than µ.

Condition L1 captures in a very simple and stark way another key idea of our setup – namely, that there is a

limit to (or saturation of) the fruitful opportunities that can be carried out by repeatedly relying on the same
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partners. This can be motivated by the assumption that the economic potential of any given combination

of skills is restricted to a “niche” of limited size. Thus, in order for an agent to expand her set of economic

opportunities, she cannot just rely on the intensive margin but needs to exploit the “extensive margin.”1

Finally, Condition L2 embodies the restrictions to be satisfied in the formation of any new link. It requires

that the two agents involved not be too far away (as given by ν and µ) in at least one of the two notions of

distance considered. The specific value of ν has just minor implications on the analysis since it concerns the

exogenously fixed notion of distance associated to “geography.” (To be sure, the fact that ν is positive plays

a crucial role.) We simplify matters, therefore, and choose ν = 1 throughout, thus particularizing L2(a) to

the mere condition that agents i and j be geographic neighbors.

Instead, concerning social distance, the precise value of µ ∈ N considered in part (b) of L2 does have

interesting implications on the analysis, so we keep it as an explicit parameter of the model. Conceptually,

it reflects the range at which the social network can operate as an effective channel for information, access,

or trust. In principle, there could be many alternative mechanisms at work, and hence we choose to refer

to it very generally as the (quality of the) institutions prevailing in the economy. Within the microfounded

scenario described in Appendix A, the parameter µ will be interpreted as the so-called “circle of trust” – i.e.

how far on the social network individuals respond (at equilibrium) to a violation of the cooperative norm on

a third party by punishing the deviator. 2

3.2.2 Volatility

As advanced, project volatility – i.e. link decay – is the second force governing the dynamic process. We

choose to model it in the simplest possible manner. Specifically, we posit that every existing link/project

is discontinued (say, because it becomes “obsolete”) at a constant rate λ, which is normalized to unity

(λ = 1) without loss of generality. Link destruction is therefore modelled as an exogenous process, letting

the interplay between the social network and the overall dynamics all be channelled through the mechanism

of link formation alone.3

1Given the assumed ex-ante homogeneity across agents, we posit that the same strict limit of at most one standing project
applies to every pair of agents. Allowing for some inter-agent heterogeneity in this respect could have interesting implications
on the process of network formation, and would be in line with the substantial skewdness in the distribution of innovation that
is observed in the real world – see, for example, Jaffe and Trajtenberg (2002).

2Conceptually, µ can be taken to modulate the extent to which the population abides by the cooperative norm embodied by
the underlying equilibrium. Such a game-theoretic interpretation is in line with the influential work of Coleman (1988, 1990),
who stressed that the cohesiveness (or, as he called it, “closure”) of the social network is often key in deterring opportunistic
behavior. This is also a theme that has been revisited extensively by recent literature, also casting the problem in game-theoretic
terms – see e.g. Greif (1993), Haag and Lagunoff (2006), Lippert and Spagnolo (2006), Vega-Redondo (2006), Karlan et al.
(2009) and Jackson et al. (2010).

3Invoking considerations of trust or monitoring analogous to those that have been suggested for link formation, it could be
postulated, for example, that the rate at which every link disappear grows with the network distance of the agents involved
(excluding their own link). We conjecture that nothing essential in the analysis would be affected by this modification.
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4 Analysis

In a nutshell, the network formation process modelled in the preceding section can be succinctly described

as the struggle of innovation against volatility. The primary objective of our analysis is to understand the

conditions under which such a struggle allows for the maintenance, in the long run, of a high level of economic

interaction (i.e. connectivity). More specifically, our focus will be on how the long-run performance of the

system is affected by the (sole) three parameters of the model: η (the rate of innovation), α (geographical

cohesion) and µ (institutions).

The discussion in this section is organized in three parts. First, we start with some numerical simulations

that are useful to highlight issues and insights that will arise in our general analysis. Second, we develop

a formal theory that is directly applicable only to the limit case of an infinite population, but nevertheless

sheds light on the key mechanisms at work in the general setup. Third, we devise a numerical approach

to solving the model that allows us to generate a full array of comparative-statics results for all parameter

configurations and thus provides a detailed understanding of the model.

4.1 Some preliminary numerical simulations

By discretizing in a natural way the continuous-time theoretical model (see Appendix B for details), we have

conducted numerical simulations that provide us with some informal but useful illustration of the range of

behavior displayed by the system in the long run. For the sake of focus, our main objective at this point will

center on the following two issues. First, we want to obtain an intuitive understanding of what changes occur

in the economy when it turns global and what are the main mechanisms that lead to this transformation.

Second, we would like to obtain some preliminary insights on the role played by geography as well as the

positive and negative effects of geographical cohesion.

Consider first the simulation results described in Figure 2. Each of its four diagrams traces different loci

of steady-state values for four different variables (measured on the vertical axes) associated to different values

of the innovation rate η (measured on the horizontal axes) and fixed values of the remaining parameters.

The main point to make on the parameters considered here is that the level of geographical cohesion is

relatively low, α = 0.5. This value, in particular, is well below the threshold of unity that, as we shall see

(cf. Subsection 4.2), marks a qualitative change in the environment.

The steady-state variables recorded in each of the diagrams of Figure 2 are as follows:

(a) average degree, as given by 2L
n , where L is the total number of links and n is the population size;

(b) average social distance, computed as 1
n(n−1)

∑
i,j∈N δ(i, j);

(c) the average geographical distance, obtained as 1
L

∑
ij∈g d(i, j);

(d) the fraction of agent pairs who are given a link-creation opportunity and actually form a new link.

In each of the four diagrams there are two loci of steady-state values, corresponding to the sole two (stable)

steady-state configurations that arise: one corresponding to initial conditions where the social network

8



(a) Average network degree (b) Average social distance

(c) Average geodistance (d) Effective linking probability

Figure 2: Discontinuous transition in network connectivity, and hysteresis, as the innovation rate η changes
for given (low) α = 0.5 and µ = 3 (with λ = 1, n = 1000).

displays a high connectivity (dashed line) and another where the initial social network is sparse (solid line).

Let us first focus on Diagram (a) of Figure 2. The two steady-state loci displayed in it display a similar

pattern. Initially, there is a low-connectivity regime where not only the average degree is low but the

responsiveness to increases in η is very low as well. Then, there is an abrupt transition to a high connectivity

regime where both the average degree and the responsiveness to increases in η becomes high. In terms

of the parameter η there are three different regions: a low region with a unique steady-state regime of

low connectivity; a middle region where the two regimes (with high- and low-connectivity) are possible,

depending on initial conditions; and a high region where again there is a single steady-state regime, in this

case with high connectivity. A further interesting implication of this behavior is that, if one traces the effect

of gradual changes in η on the steady state (from initial conditions defined by the previous steady state) the

9



system displays strong hysteresis. That is, around the points where regime transitions occur, the responses

to increases or decreases in η are not symmetric. 4

To understand the mechanism underlying the pattern just described, it is useful to turn to Diagrams (b)

and (c) in Figure 2, which are the exact counterparts of the previous Diagram (a), now pertaining to average

social distance (per agent pair) and average geodistance (per existing link). We find that, corresponding to

each transition to a high-connectivity regime there is a corresponding transformation of the social network

that, in our terminology (recall the Introduction), has to be understood as a transition to globalization. The

latter transitions, in other words, may be seen as the other side of the coin of the former one, i.e. they must

go hand in hand. Why is this the case?

To answer that question, we focus on Diagram (d), which shows that what is the main implication of

globalization: to induce a sharp increase in the effective linking probability. Only because there is an abrupt

fall in social distances (the world becomes “small”) link creation becomes so much more effective, which in

turn is needed if a high-connectivity configuration is to be sustained as a steady state. (Note that if the

economy enjoys many links, many are also destroyed and hence many need to be continuously created to

compensate for that.)

As indicated, the behavior displayed in Figure 2 is obtained in a scenario where the level of geographical

cohesion (α = 0.5) is relatively low and, in particular, below one. What happens if it is significantly higher?

This is explored in the simulations described in Figure 3, where the level of cohesion is raised to a value of

α = 2 (above the threshold of one). For the sake of a clear comparison, the remaining parameters are exactly

the same as before, and so is the interpretation of the different diagrams and curves displayed in them.

Figure 3 reveals a striking contrast between the low- and the high-cohesion scenarios. Specifically, in

comparison with the low-cohesion scenario, the following key differences are observed in the present high-

cohesion one:

(i) Steady-state behaviour is unique throughout.

(ii) The responsiveness to η is always significant, even at the lowest levels when the underlying network is

very sparse.

(iii) The effective linking probability remains well below unity, decreasing with η for most of its range.

Thus the first interesting observation, stated in (i) above, is that initial conditions do not matter any more

in the long run if cohesion is relatively high. Thus, even if the process starts from a very sparse network,

the steady-state configuration to which the process converges is the same as the one achieved from initial

conditions displaying a high connectivity. The key reason for this has to do with the useful structure

supporting the linking process when the matching process displays significant geographical cohesion. In this

case, potential partners tend to be geographically close, which in turn implies that it is likely that both have

been previously matched (and formed a link) with some common third agents who are geographically close

as well. On average, therefore, it will be quite likely that there is a short network path between potential

partners, who can then form a link if they do not yet have one (recall L1-L2 in Subsection 3.2.1). Under

4This, of course, is simply a reflection of the dependence of initial conditions that occurs in the middle η region. The
implications of it for policy are potentially important, as briefly outlined in Section 5.
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(a) Average network degree (b) Average social distance

(c) Average geodistance (d) Effective linking probability

Figure 3: Continuous change in network connectivity, without hysteresis, as the innovation η rate changes
when α = 2 and µ = 3 (λ = 1, n = 1000).

these circumstances, initial conditions are no longer relevant to predict where the process will end up in the

long run – only the value of the underlying parameters matters.

Essentially the same idea underlies point (ii) above. That is, even if η is low and the induced network

is sparse, the geographic structure provided by a relatively large α allows increases in the innovation rate

to translate into corresponding increases in connectivity of a comparable magnitude. But now comes an

important trade-off: such higher cohesion comes at a cost, which is the point highlighted by item (iii) above.

Specifically, congestion becomes an important issue, resulting from the saturation of the intensive margin in

link creation – i.e. the impossibility of having more than one link per agent pair. This, in fact, is not only

manifested in the lower effectiveness of link creation stated in (iii). It is also evident from a comparison of

Diagrams (a) in Figures 2 and 3. Such a comparison shows that, for high values of the innovation rate, the
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level of connectivity achieved under α = 0.5 is substantially higher than that obtained for α = 2 – the only

proviso is that η be high enough that globalization has materialized in the first case.

Overall, the former discussion suggests that there should be an “optimal level of cohesion” which strikes

the best balance between the need to have some geographic structure in order to build a dense social

network and the detrimental congestion effects that are brought about by too much such cohesion. Indeed,

our analysis will show that such a tradeoff is a general feature of the model, and that the induced tension

is resolved in a natural way, as a function of the remaining parameters. For example, we shall find that the

higher is the quality of institutions or the faster innovation opportunities arrive, the lower is the (optimal)

level of cohesion that the economy needs to attain its maximum long-run potential.

4.2 Benchmark theory

In this section, we study a benchmark limit context where the population is very large (n → ∞) and the

underlying network is parametrized by its average degree. The insights gained from this scenario will help us

understand some of the key forces at work in the general model – in particular, those forces explained at an

informal intuitive level in the preceding subsection. We shall see, for example, that there are solid theoretical

reasons why a certain threshold on geographical cohesion (α = 1 in the benchmark limit scenario) marks the

point above which the economy is able to build a dense social network from scratch. Another theoretical

prediction will be that, in those cases where cohesion is not too strong, the transition towards globalization

must be very sharp and locally irreversible, i.e. displays hysteresis.

Our analysis will revolve around the following simple characterization of the stable steady states of the

process. Let φ denote the conditional linking probability prevailing at some steady state – i.e. the probability

that a randomly selected agent who receives an innovation draw effectively succeeds in forming a new link.

Then, the induced expected rate of project/link creation is simply the product φ·η·n where η is the innovation

rate and n the population size (for the moment, taken to be finite). On the other hand, if we continue to

denote the average degree (average number of links per node) by z, then the expected rate of project/link

destruction is λ(z/2)n = 1
2zn, where recall that we are making λ = 1 by normalization.5 Thus, finally,

bringing the former two expressions together and cancelling n on both sides, the condition “rate of link

creation = rate of link destruction” that characterizes a steady state in the lage-population limit can be

written as follows:

φ η =
1

2
z. (2)

Naturally, the difficulty here lies in a proper determination of φ, which is an endogenous variable that

depends on the state of the system, i.e. on the prevailing network g(t). To address the problem, we follow an

approach that is common in the modern theory of complex networks. It rests on the assumption that g(t) is

a randomly generated network, and the induced distribution over possible networks is suitably parametrized

by the average network degree z(t).6 This leads us to postulate a function Φ : R+ → [0, 1] specifying

5Also remember that the number of links is half the total degree because every link contributes to the degree of its two
nodes.

6This is, for example, the approach undertaken by two of the canonical models in the random network literature: the
Erdös-Rényi networks (Erdös and Rényi (1959)) and the Scale-Free networks (Barabási and R. Albert (1999)). Even though
each of them displays polar features in a number of key respects (e.g. in terms of the variance displayed by the induced
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the conditional linking probability Φ(z) associated to each average degree z, from which the steady-state

condition (2) may be rewritten as follows:

Φ(z) =
1

2η
z. (3)

The above condition may in turn be conceived as an equation in z from which, in principle, the equilibrium

network connectivity prevailing in the steady states of the process can be suitably determined

As advanced, the properties of the resulting steady states crucially depend on the value of α. We need

to consider, specifically, two qualitatively different regions:

• Low geographical cohesion (LGC): α ≤ 1

• High geographical cohesion (HGC): α > 1

In the first LGC region, “geography” (in our general sense) has relatively little bearing on how new ideas

arise while in the second one, HGC, the opposite applies. We shall show that each of these two regions in

the parameter space display qualitatively different implications – not only for the set of configurations that

qualify as possible equilibria but, most crucially, on their respective stability.

A central role in the analysis is played by the probability that the collaborator needed by any particular

agent in order to undertake a new project is precisely one of his two neighbors on the ring. From (1), this

probability is simply given by the inverse of the following magnitude:

ζ(α, n) ≡
(n−1)/2∑
d=1

1

dα
, (4)

where, for simplicity, we assume that n is odd. In our study of the limit case n→∞, we are led to

ζ(α) ≡ lim
n→∞

ζ(α, n) =

∞∑
d=1

1

dα
, (5)

which is the real-valued Riemman Zeta Function. It is well-known 7 that

ζ(α) <∞ ⇐⇒ α > 1. (6)

Thus, if, α > 1, the aforementioned probability is well-defined and given by [ζ(α, n)]−1. Instead, if α ≤ 1,

the series in (5) diverges and we shall interpret [ζ(α)]
−1

to be equal to zero.

Our analysis starts with the following simple result that establishes useful properties on the linking

probability φ prevailing in a finite network where the population size is n. (The proof can be found in

Appendix B.) Later on, we shall build upon this result to formulate the properties on the function Φ(z) used

to model the infinite-population context.

degree distributions), in both cases the family of networks under consideration can be parametrized by the average degree z
(cf. Vega-Redondo (2007)).

7See e.g. Apostol (1974, p. 192).
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Proposition 1 Let g(t) be the network prevailing at some time t in a population of size n, and consider

any given agent i who is enjoying an innovation (link-creation) opportunity. Denote by φi(t) the conditional

probability that it actually establishes a new link (under the link-formation rules L1-L2 in Subsection 3.2.1)

and let Mi(g(t)) stand for the size of the component to which it belongs.8 Then, for any randomly selected

agent i, we have:

φi(t) ≤
Mi(g(t)) + 1

2
[ζ(α, n)]

−1
. (7)

In addition, if agent i happens to be isolated (i.e. has no partners), then

φi(t) ≥ [ζ(α, n)]
−1
. (8)

Let us now return to the assumption that the network prevailing at any t can be modelled as a large

random network, which belongs to a family of such networks that can be suitably parametrized by their

average degree z. Under these conditions, it is well known that many interesting properties of the induced

networks depend on z in a “threshold” manner.9 For our purposes, an important such property concerns

the expected component size associated to a randomly selected node, a magnitude which will be denoted

by M̄(z;n) in order to reflect its dependence on z for any given (finite) population size n. The indicated

threshold property can be formulated as follows:

∃ẑ > 0 s. t. lim
n→∞

M̄(z;n) <∞ ⇐⇒ z < ẑ. (9)

That is, the average component size turns from finite to unbounded as the average degree exceeds a

particular threshold.

Based on this property, we now formulate some useful assumptions on the function Φ in (3) that specifies

the conditional linking probability of a randomly selected node. Extending the previous notation, let us write

this function as Φ(z; α) in order to account explicitly for the dependence on α spelled out in Proposition 1.

First, we first two contrasting assumptions on how the function behaves locally around z = 0 under the two

polar scenarios considered before, i.e. LGC (α ≤ 1) and HGC (α > 1).

A1. Let α ≤ 1. Then, there exists some ẑ > 0 such that for all z ≤ ẑ, Φ(z; α) = 0.

A2. Let α > 1. Then, Φ(0; α) = [ζ(α)]
−1

> 0

Assumption A1 applies to the LGC scenario and simply follows from (6), (7), and (9) if one interprets Φ(z, α)

as the limit of the linking probability of a randomly selected node i when n → ∞. In contrast, A2 applies

to the HGC scenario and follows from (6) and (7) as n→∞, since when z = 0 almost all nodes must then

be isolated.

Finally, we also postulate two further assumptions that are largely of a technical nature:

8As usual, a component is defined to be a maximal set of nodes such that every pair of them are connected, either directly
by a link or indirectly through a longer path. The size of a component is simply the number of nodes included in it

9See, for example, the extense survey of Newman (2003) or the very accessible monograph by Durrett (2007, Ch. 3) for a
good account of the different results from the theory of random networks that will be used here.
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A3. The function Φ(z; α) is jointly continuous in z and α.

A4. Given any α, there exists some z̃ ≥ 0 such that Φ(z̃; α) > 0. Moreover, for any z′, z′′ such that z′′ > z′,

Φ(z′; α) > 0⇒ Φ(z′′; α) > 0.

Assumption A3 is just a standard regularity condition that facilitates the analysis. On the other hand,

A4 first states that there is a sufficiently high level of network connectivity for which the linking probability

of agents is positive. This implicitly presumes that the institutional parameter µ – which has been kept

in the background in the present analysis – is high enough. An elaboration on this point is carried out in

Remark 1 below, while a full-fledged analysis of the role of this parameter is postponed to the study of the

finite-population setup that is undertaken in Section 4.3. The second part of A4 then simply states that,

once such sufficient level of connectivity has been attained, further increases in it still preserve some positive

linking probability. Intuitively, this captures the idea that This, in essence, implies that linking saturation

is never so complete that (in a context where the population is arbitrarily large but the average node degree

is finite) there must be some, say, second neighbors who are not current partners themselves.

Conceiving assumptions A1-A4 as a suitable representation of the system for very large populations, we

now contemplate the following dynamics for its aggregate state.

ż = ηΦ(z; α)− z

2
(10)

The above differential equation simply reflects the dynamics through which the net effect of link creation

and link destruction changes the average degree of the network. Our ensuing results highlight some of the

interesting conclusions that follows from a simple analysis of (10). As before, all proofs can be found in

Appendix B.

We start with two results on the conditions (in particular, concerning geographical cohesion) under which

the economy is capable, or not, of building up a significant social network “from scratch.”

Proposition 2 Let α ≤ 1. Then, the state z = 0 is asymptotically stable.10

Given any initial condition z0 ≥ 0, denote by [$(z0, t)]t≥0 the trajectory induced by (10) that starts at z0.

Proposition 3 Let α >1. Then, if η > 0, the state z = 0 is not asymptotically stable. Furthermore, there

exists a unique steady state z∗ > 0 that satisfies the following condition:

∃ε > 0 s.t. ∀z(0) ≤ ε, $[z(0), t]→ z∗. (11)

The former two results stress the importance of cohesion in the build-up of the social network. When

cohesion is low, a virtually empty network with z = 0 is robust (i.e. locally stable). Instead, if the cohesion

parameter α exceeds the critical threshold of one, such a configuration becomes unstable and, in fact, there

is a unique positive average degree to which the economy converges from any sufficiently small extent of

overall connectivity.

10As standard, a state is said to be asymptotically stable if any trajectory of the system hat starts sufficiently close to it
converges to that state. This notion, therefore, is one of local stability.
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Figure 4: An illustration of how the equilibrium degree changes with η under low cohesion (α < 1)). See the
text for an explanation.
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Figure 5: An illustration of how the equilibrium degress change with η under moderately high cohesion
(1 < α < ᾱ for some relatively low ᾱ). See the text for an explanation.

The key ideas underlying the previous two propositions are illustrated in Figures 4 and 5. Steady states

are represented by intersections of the function Φ(z) and the ray of slope 1/(2η). First, in Figure 4 we depict

a situation with low cohesion (i.e. α < 1), which implies from A1 that Φ(z) displays a uniform value of

zero up to some average degree ẑ > 0. Then we have that, if η is small enough (e.g. η = η′ in this figure),

the induced ray is so steep that the only steady state involves a network displaying a zero average degree.

Instead, for larger values of η such as η′′, we observe that there are two additional steady states with a
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positive average degree (z2 and z3), the first being unstable and the second stable. The key point we want to

stress here, however, is that, for any value of η, the zero-degree equilibrium is locally stable – so, for example,

in the situation illustrated in Figure 4, this happens both for the low η′ as well as for the high η′′.

In contrast, Figure 5 depicts a situation corresponding to a cohesion parameter α > 1. In this case,

Φ(0) = [ζ(α, n)]
−1

> 0, which implies that every value of η induces a positive equilibrium degree, to which

the system converges from an initially empty network (i.e. one with z = 0). If η is high enough, such an

equilibrium degree is low and remains so as long as η is below a certain threshold (η̂ in the figure). But

as η grows beyond this threshold, a discontinuous (possibly very large) increase in the equilibrium degree

takes place (from z4 to z5 in the example considered). Thereafter, if η increases further, the degree displayed

by the corresponding equilibrium grows unboundedly (i.e. up to z5 and beyond). As we show below, this

pattern illustrated in terms of Figure 5 always occurs when the economy displays a level of cohesion that is

slightly above the amount required to escape the empty network – i.e. the value of α is above one but not

too large. The unboundedness of the degree as a function of η, however, applies generally for all values of

α > 1.

Proposition 4 Given any α > 1, denote by z∗(η) the steady state that is established in Proposition 3. The

function z∗(·) is strictly increasing and unbounded (i.e. for any z̄, there exists some η̄ such that if η ≥ η̄,

then z∗(η) ≥ z̄.

Proposition 5 There exists some ᾱ such that if 1 < α < ᾱ, the function z∗(·) displays an upward right-

discontinuity at some η = η0 > 0.

Remark 1 So far in our analysis, the parameter µ that we have identified with the quality of institutions has

played no explicit role. It is, however, implicit in the function Φ(·) that models how the conditional linking

probability depends on the connectivity of the network. Clearly, in a context such as that of the present

benchmark model (where the population is taken to grow arbitrarily large), a significant linking probability

can only be attained if µ grows with n, the population size. Under our maintained assumption that the

underlying network is well-described as a random network, this is a moderately demanding requirement.

For, as it is well known,11 the diameter of the largest (giant) component of a random network grows slowly

with n, even when this component represents a significant fraction of the population (possibly close to one).

More precisely, the diameter grows as slowly as (i.e. at no higher order than) log n. This may then be as

well the assumption underlying the function Φ (and, in particular, assumption A4).

4.3 From the benchmark set-up to the general model

The benchmark model considered in Subsection 4.2 is to be conceived as a stylized and manageable repre-

sentation of a context where the population is very large. This approach has proven useful in highlighting

some important features of the model, but this has been achieved at the price of underplaying other issues

that are best studied in a finite-population scenario. Particularly important examples of such issues are,

say, the extent to which geographical cohesion may induce local saturation of opportunities, or the impact

11See the references mentioned in Footnote 9
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of institutions on long-run performance (recall Remark 1). Another limitation of the benchmark set-up is

that, given the very general nature of its postulated assumptions (A1 to A4), it permits the establishment of

qualitative conclusions but not an exhaustive comparative analysis of parameter changes. To address these

manifold concerns is the main objective of this subsection.

The approach pursued in this section builds crucially upon the conceptual and methodological insights

resulting from our analysis of the benchmark model in Subsection 4.2. In particular, we shall continue to

rely on the steady-state condition (2) – and its reformulation as in (3) – to determine the values for average

connectivity around which the system gravitate over time. Just as before, this will allow us to single out the

stable steady states and the transitions between them induced by small changes in the parameters of the

model. But, to do so, irst we must develop a way of determining the function Φ(z) that gives the effective

linking probabilities associated to different values of z. Since we are now looking for a concrete determination

of this function for any parameter configuration and any population size, we shall do it numerically rather

than analytically. Thus, in contrast with our former approach, we shall rely on numerical methods to arrive

at a good estimate of the function Φ and, on the basis of it, subsequently conduct a theoretical analysis akin

to that carried out for the benchmark setup. Next, we describe in detail the numerical procedure used to

determine the function Φ(·)

Algorithm P: Numerical determination of Φ(z)

Given any parameter configuration and a particular value of z, the value Φ(z) is determined through

the following two phases.

1. First the process is simulated starting from an empty network but putting the volatility component

on hold – that is, avoiding the destruction of links. This volatility-free phase is maintained until

the average degree z in question is reached.

2. Thereafter, a second phase is implemented where random link destruction is brought in so that,

at each point in time, the average degree remains always equal to z. In practice, this amounts to

imposing that, at each instant in which a new link is created, another link is subsequently chosen

at random to be eliminated. (Note that, by choosing the link to be removed in an unbiased

manner, the topology of the networks so constructed coincides with that which would prevail if

the resulting configuration were a genuine steady state.) As the simulation proceeds in the manner

described during this second phase of the procedure, the fraction of times that a link is actually

created between meeting partners is recorded. When this frequency stabilizes, the corresponding

value is identified with Φ(z).

Given the function Φ(·) computed through Algorithm P, the value η φ(z) induced for each z acts, just as in

the benchmark model, as a key theoretical reference. For, in effect, it specifies the “notional” rate of project

creation that would ensue (normalized by population size) if such average degree z were stationary. Indeed,

when the overall rate of project destruction λ z2 = z
2 equals η φ(z), the former conditional “if” applies and

thus a steady state actually obtains.

Diagrammatically, the situation can be depicted as a point of intersection between the function Φ(·) and

a ray of slope equal to 1/(2η). Figure 6 includes four different panels where such intersections are depicted

for a fixed ratio 1/(2η) and alternative values of α and µ. For each parameter configuration, the functions
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Φ(·) are determined through Algorithm P.

Figure 6: Graphical representation of the equilibrium condition Φ(z) = 1
2η z in the general framework. The

diagrams trace the steady states as points of intersection between a fixed ray of slope 1/(2 η) and the function
Φ(·) computed for different institutions µ (within each panel) and cohesions α (across panels).

As a quick and informal advance of the systematic analysis that is undertaken below, note that Figure 6

shows behavior that is fully in line with the insights and general intuition shaped by the benchmark model.

First, we see that the transition towards a highly connected network is abrupt and large for low values of α,

but gradual and significantly more limited overall for high values of this parameter. To focus ideas, consider

specifically the panel for α = 0.5 and the case with µ = 3. There, at the value of η associated to the ray

being drawn (η ' 15), the system is at a point of a discontinuous transition. This situation contrasts with

that displayed in the panels for larger α – see e.g. the case α = 2 where the differences are starkest – in

which changes in η (affecting the slope of the ray) would trace a continuous change in the equilibrium values.

It is worth emphasizing that some of the details apparent in Figure 6 point to significant differences

with the benchmark model. For example, Phi(z) does not uniformly vanish to zero below a certain positive
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threshold ẑ for α ≤ 1. This, of course, is simply a consequence of the fact that this condition must be

expected to hold only in the limit as the population size z →∞. For finite populations, that is, significant

deviations from it must be expected, which is a point that underscores the benefits of developing an approach

that extends our original benchmark model to account for finite-population effects.

The question may still be raised as to whether such numerical approach indeed represents a valid way

to solve for the steady-state values associated to different parameter configurations. To confirm its validity,

we have conducted a systematic comparison of the theoretical predictions induced by this approach and

corresponding simulation results. Rather than providing here an exhaustive account of this exercise, we

illustrate matters in Figure 7 by focusing on the two scenarios (with low and a high cohesion) for which

we conducted the simulations reported in Subsection 4.1 – for clarity, attention is restricted to the results

that pertain the long-run/steady-state average degree. We find that, forboth scenarios there is a precise

correspondence – not just qualitative but also quantitative – between the theoretical predictions and the

simulation results. This illustrates that, indeed, we can confidently regard our present numerical approach

as a suitable way of analyzing theoretically the model, very much along the lines used for the benchmark

setup in Subsection 4.2. In the remaining part of this section, our analysis will focus on three issues. Firstly,

Figure 7: Comparison between the theoretical predictions and the numerical simulations on the steady-state
average degree for each of the two scenarios (α = 0.5 , 2) considered in Subsection 4.1.

we shall revisit the relationship between cohesion and the rise of globalization. Secondly, we shall study

the effect of institutions on long-run connectivity. Finally, we address the issue of how the optimal level of

cohesion depends on the remaining parameters of the model. 12

12Given that our approach to determining the function Φ(·) is numerical, we need to discretize the parameters η and α
(institutions µ is already defined to be discrete). For η we choose a grid of unit step, i.e. the set Ψη = {1, 2, 3, ...} while for
α the grid step is chosen equal to 0.05, thus the grid is Ψα = {0.05, 0.1, 0.15, ...}. As population size, our results below are
reported for n = 1000. We have conducted, however, robustness checks to confirm that the gist of our conclusions is unaffected
by the use of finer grids or larger population sizes.
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4.3.1 Geographical cohesion and the transition to globalization

Within the limit setup considered by the benchmark model, the transition to globalization from a sparse

network is only possible if the cohesion parameter α > 1 (cf. Proposition 2). This, however, can only be

strictly true in the limit case of an infinite population, as clearly illustrated by the simulations reported

in Subsection 4.1. In general, for a large but finite population, it is to be expected that the transition to

globalization becomes progressively harder (in terms of the innovation rate η required) as α approaches,

and falls below, unity. And, in line with the main insights captured by Propositions 4 and 5, it would be

expected as well that, once globalization has taken place, its implications are sharper and more substantial

the lower is geographical cohesion.

Our present general approach permits the exploration of the former conjectures in a systematic manner,

going beyond the stylized insights derived from our benchmark model. The results of this endeavor are

presented in Figure 8 for a representative range of the parameters α and µ. In its different diagrams, we trace

the effect of η on the lowest average network degree that can be supported at a steady-state configuration

of the system. In line with our discussion in Subsection 4.2, this outcome is interpreted as the long-run

connectivity attainable when the social network must be “built up from scratch,” i.e. from a very sparse

network. Diagrams (a)-(b) in Figure 8 show that a discontinuous and powerful transition occurs for values

of α that are well below unity, while its Diagrams (e) and (f) show that the transition is gradual and much

less effective if α is significantly higher than one. This contrasting behavior occurs for a significant span

of values of µ, the quality of institutions. Instead, for a middle range of cohesion that includes α = 1 and

other close values, the nature of the transition is less extreme and, in fact, changes from being discontinuous

to continuous as µ increases. This is in line with our intuitive understanding of the model and provides a

clear-cut confirmation of the suggested conjectures.

4.3.2 The role of institutions

Now we turn to exploring the impact of institutions on the rise of globalization. The situation is described in

Figure 9, where we show the effect of institutions on the lowest network connectivity supportable at a steady

state for a representative range of the remaining parameters, α and η. The primary conclusion following

from in Figure 9 is that, provided η is large enough, there is a relatively low value of µ at which institutions

saturate their ability to increase the long-run connectivity of the network. That is, all what is required

to achieve the full potential of institutions is that µ be above a certain threshold that is low relative to

population size.

The intuition for such an “institutional saturation” is based on fact that, as explained, the social network

prevailing in a steady state can be regarded as a random network. Hence we may invoke the standard theory

of random networks to argue that, for sufficiently connected networks, almost all nodes must lie (with very

high probability) at a network distance that coincides with the network diameter, i.e. they lie at maximum

distance. (Recall Footnotes 6 and 9.) This implies that, at the point where globalization occurs, µ can

be no lower than the network diameter. Consequently, further improvements in institutions should entail

no further formation of links. On the other hand, the reason why such a threshold should be low relative

to population size is less apparent. In part, this is reflection of another prominent property of random
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Figure 8: Numerical solution for the lowest average network degree that can be supported at a steady state,
as the innovation rate η rises, for different given values of geographical cohesion α and institutions µ (with
λ = 1, n = 1000).
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Figure 9: Numerical solution for the lowest average network degree that can be supported at a steady state,
as institutions improve, for different given values of the innovation rate η and geographical cohesion α (with
λ = 1, n = 1000).

networks that was already discussed in Remark 1: the diameter of random networks grows very slowly (i.e.

scales logarithmically) with population size. Thus, the minimum value of institutions required to sustain a

globalized state is indeed small relative to population size. What Figure 9 shows is that, in addition, the

value of institutions above which such a globalized state arises also grows very slowly with population size.

Finally, let us highlight another interesting observation gathered from the above diagram. Figure 9

shows that, for low levels of cohesion, the effect of institutions on the average degree is step like, i.e. not

only does it have no effect above the required threshold but the same happens for any improvement that

keeps the resulting institutions below it. Again, the intuition for this behavior is based on aforementioned

considerations. When cohesion is low, any significant flow of link creation must rely on the existence of a

global network. Consequently, if institutions do not allow such a network to arise, the rate of link creation

is vanishing small. Instead, at the threshold where an institutional improvement does lead to globalization,
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µ cannot lie below the network diameter. Such a threshold, therefore, also represents the saturation point

beyond which any further increase is ineffectual.

4.3.3 The optimal level of geographical cohesion

Throughout our discussion, we have stressed the two contradictory implications of geographical cohesion:

it provides useful structure to the linking process but, on the other hand, exacerbates the problem of

congestion/saturation of local linking opportunities. This is why we have we expect that, in general, there

will be an optimal resolution of this trade-off at some intermediate level – what we label as the Optimal

Geographic Cohesion (OGC), identified with the optimal value α = α∗ that maximizes the long-run average

network degree when the process starts from a sparse network. We have informally conjectured that such

OGC should decrease with the quality of the environment, i.e. as institutions get better (higher µ) or

innovation proceeds faster (higher η). This is precisely the gist of the message conveyed by Figure 10.

The intuition for the clear-cut evidence described in Figure 10 should be quite clear by now. In general,

geographical cohesion can only be useful to the extent that it helps the economy build and sustain a dense

social network in the long run. Except for this key consideration, the lower geographical cohesion the economy

the better, for it will consequently minimize the detrimental effects of congestion. Heuristically, therefore,

one may think of the OGC as the lowest value of α that allows the build-up of a dense social network. Since

such a build-up becomes easier to perform the better the underlying environmental conditions, the negative

dependence of OGC on η and µ readily ensues.

5 Summary and conclusions

The paper has proposed a “spatial” theoretical framework to study the relationship between globalization

and economic performance. The main feature of the model is that connections breed connections, for it is

the prevailing social network that supports the materialization of new linking opportunities. In the end, it

is the fast exploitation of those opportunities that offsets the persistent process of link decay and hence may

sustain a steady state with a dense network of connections.

But in order for such a process to unfold, the social network must become global, i.e. network distances

must be short and links must span long geographical distances. Otherwise, only local opportunities become

available and thus economic performance is sharply limited by local saturation. To understand the way in

which this phenomenon of globalization comes about has been the primary concern of the paper. We have

seen, for example, that it may occur quite abruptly and that, as it unfolds, the interplay of “geography” and

the evolving social network may be quite subtle.

This paper is to be viewed as a first step in what we hope might be a multifaceted research program.

From a theoretical viewpoint, an obvious task for future research is to enrich the microeconomic/strategic

foundations of the model. This will require, in particular, to describe in more detail how information flows

through the social network, and the way in which agents’ incentives respond to it. Another important

extension of the model would be to allow for significant agent heterogeneity (the basis for so much economic

interaction), which should probably be tailored to the underlying geographic space, as in the work of Dixit
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Figure 10: Optimal level of geographical cohesion (OGC), as a function of institutions µ, given different
values of η (Panel (a)) and as a function of the the innovation rate η, given different values of η (Panel (b)).

(2003) – cf. Section 2.
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The theoretical framework also opens the room for the discussion of policy. Just as a brief illustration at

this point, recall that (if geographical cohesion is not very strong) the model yields significant equilibrium

multiplicity – both in terms of the parameter region where it occurs as well as in the gap in economic

performance entailed. Such multiplicity, in turn, brings in some hysteresis in how the model could react to

small and temporary parameter changes. Specifically, slight changes in some of the parameters (e.g. a small

stimulus to innovation) may trigger a major shift to globalization that, once attained, would remain in place

even if the original environmental/parametric conditions were restored. In essence, what such policy would

do is ride on the self-feeding effects that are inherent to network phenomena to attain major and robust (i.e.

locally irreversible) changes in the state of the system.

Finally, another important route to pursue is of an empirical nature. As discussed as well in Section 2,

there is a substantial empirical literature on the phenomenon of globalization but a dearth of complementary

theoretical work supporting these efforts. The present paper hopes to contribute to closing the gap, by

suggesting what variables to measure and what predictions to test. Specifically, our model highlights network

interaction measures and stresses the importance of the indirect connections afforded by prevailing economic

projects to support the creation of further projects. As briefly outlined in that earlier section, Duernecker,

Meyer, and Vega-Redondo (2010) have built upon these insights and the corresponding theory to construct

network measures of economic interacion and relate them to different measures of economic performance.
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Appendix

Appendix A

Microfoundation of the model: a game-theoretic approach

In an abstract manner, any prevailing link connecting two agents was conceived in Section 3 as an ongoing

project that is run continuously until it becomes obsolete and disappears. As explained in Subsection 3.2,

the general rules L1-L2 by which new links are formed admit diverse interpretations. Here we propose

a game-theoretic framework describing in detail how projects are set-up and operated, which provides a

possible microfoundation for those rules.

Consider any two agents, i and j, who are facing an opportunity to start one such project. This project

amounts to initiating a bilateral interaction that is modelled as a dynamic game (with an uncertain end)

that consists of two different phases.

1. Setup Stage First, at the start of the interaction, the agents have to finance some fixed cost 2K to

setup the project. Only if they manage to cover this cost the project can start to operate. To tackle

the problem, they play what essentially amounts to a one-shot Prisoner’s Dilemma. Each of them has

to decide, independently, whether to Cooperate (C ) or Defect (D). If both choose C, they share the

cost equally (i.e. each covers K) and the project starts. Instead, if only one cooperates, the cooperator

covers the total cost 2K while the defector pays nothing, and the project can subsequently start to

operate as well. Finally, if both defect, the setup cost is not covered, the project fails to start, and the

economic opportunity is irreversibly lost.

2. Operating Phase Provided that the setup cost has been covered in the first stage, the project

immediately starts to run over (continuous) time until the point when it becomes “obsolete” and

vanishes (recall Subsection 3.2.2). During its lifetime, the project delivers a return flow that depends

on the effort exerted by the two agents involved. At each instant of time, their efforts can be high (H )

or low (L). While an agent who exerts high effort incurs an (additive) cost of b, low effort is costless.

If both agents choose H, then each obtains a gross payoff flow of 1 + b and hence a net payoff of 1.

Otherwise (i.e. if at least one agent exerts low effort), the project generates a gross payoff flow of W

for each agent, so that the net payoff flow in that case is W for the agent(s) choosing L and W − b
for the agent (if any) who chooses H. To sum up, we can describe the situation within the operation

phase as the repeated play (with a stopping rate of λ = 1) of a simultaneous stage game displaying the

following payoff table:

j
i L H

L W,W W,W − b
H W − b,W 1, 1

To complement the above description of the situation, assume that the fixed cost K incurred in the
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Setup Stage is dependent on the geodistance of the two agents involved, i and j. Specifically, let us make

the simplifying assumption that this cost solely depends on whether they are neighbors (i.e. d(i, j) = 1)

or not:13 In the former case, they incur a relatively low cost K0 (say, because they take advantage of their

geographic proximity), while otherwise the fixed setup cost incurred is K1 (> K0).

Now we introduce two different strategic scenarios in which one can study the intertemporal interaction

described in Phases 1 and 2:

Bilaterally Independent (BI) Scenario: In this case, each network link defines a bilateral repeated game

that is strategically independent of what occurs anywhere else in the economy. Hence overall population

play is merely a juxtaposition of the equilibrium behavior displayed by each of the connected couples

in their respective bilateral game.

Population-Embedded (PE) Scenario: This corresponds to a situation where the behavior in the bilat-

eral interaction of two players can be dependent on (and also affect) the behavior displayed in some

other interaction undertaken by these players. Under these conditions, therefore, the whole population

must be seen as playing a single common game.

Next, we compare the implications of each of the two scenarios, BI and PE. In both cases, the central

issue is whether repeated interaction (either for a particular couple of partners or across different couples)

can provide agents with individual incentives to cover the setup cost involved in the creation of new links.

To render the problem interesting, we assume that it can never be in the interest of a single agent to pay

the full amount 2K required to start the operation of a project, but instead it is worthwhile to cover such a

setup cost if shared equally. To be precise, suppose that agents discount future payoffs at the common rate

r > 0, so that the effective discount rate within a given ongoing project is ρ ≡ r + λ = r + 1. Then, the

required condition is as follows:

K <
1

ρ
< 2K. (12)

We assume that the previous inequalities are satisfies for any of the projects that may arise, be they between

neigbors or not. This amounts to positing the following.

G1. K1 <
1
ρ < 2K0.

The former inequality implies that, within the payoff possibilities provided by a single interaction, the only

way in which both agents can be interested in starting a project is if they can anticipate that the partner

will share the cost (at least with some probability). Given the nature of the the setup game, however, such

a state of affairs will not materialize unless the equilibrium in place punishes any deviant from cooperation

in that first stage of the relationship. Such a punishment may occur, of course, within the ensuing bilateral

relationship between the two agents involved in the link, if there were a continuation equilibrium in the

second phase of their relationship where the induced payoff consequences can be made severe enough. This

amounts to postulating the following condition:

13This is in line with with the assumption that nu = 1 and could be readily adapted if any other value of ν were to be
considered.
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W

ρ
<

1

ρ
−K (13)

Under the above condition, link creation decisions could be supported bilaterally, hence rendering the problem

independent of network considerations. So let us start by assuming that this condition is satisfied for

neighbors, i.e.

G2. W
ρ < 1

ρ −K0.

This assumption implies that neighbors can benefit from the lower setup cost K0 to support their collabo-

ration in every new project at equilibrium.

On the other hand, concerning agents who are not neighbors, the interesting assumption to make is

that condition (13) does not apply. This implies that their cooperation in the Startup Phase can only be

attained if their behavior is socially “embedded”. The simplest case in which such social embeddedness can

be effective is when
2W

ρ
<

2

ρ
−K. (14)

The above condition, which is is obviously weaker than (13), allows for cooperation to be supported as

individually optimal at the setup stage if, after a deviation from it, not only the partner but also an additional

agent punishes the deviator. We shall make, therefore, the following assumption:

G3. 2
ρ − 2K1 <

2W
ρ < 2

ρ −K1.

This assumption implies that, in order to have cooperation among non-neighboring agents, a minimal amount

of “social embeddedness” of the relationship is sufficient.

Under the parameter restrictions embodied by G1, G2, and G3 (which can be easily seen to be com-

patible),14 we construct an equilibrium of the repeated game played by the population over time with the

following characteristics:

(i) Agents are forward looking in every respect, except that they do not envisage how their behavior at

any given t may have an effect on the future evolution of the network, g(τ) for τ > t. That is, they

abstract from the process of network formation and behave as if the current network were to remain

in place forever.

(ii) Information on the behavior of some agent i at the setup stage of any new project starting at t spreads

instantaneously through the network component in g(t) to which i belongs.

Building upon (i)-(ii), we shall consider equilibria of the population game where every player i ∈ N

chooses a particular form of “trigger strategy.” To define it precisely, we need to introduce some notation.

First, given any network g, denote by δig(j, k) the network distance between some j and k when the paths that

go through i are excluded. Then, given the parameter µ ∈ N and any link ij ∈ g, define N µ
ij(g) ≡ {k 6= j :

14Note that if one makes K1 = 2K0 = 1
ρ

and W = 1
2

, the inequalities in G1-G3 are satisfied with equality. Having observed

this, it is immediate to see that small pertubations from those values can be implemented that lead to the desired inequalities.
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ik ∈ g ∧ δig(j, k) ≤ µ− 1
}

as the set of those neighbors of i different from j that are no farther away from

j than µ − 1, along paths that exclude i. Of course, in general, this set could be empty. But if it is not, a

particular agent in this set, ςµij(g(t)), is assumed to be selected in some arbitrary but pre-established manner.

As explained below, this agent is the one who is in charge of punishing i if he defects upon j in the setting-up

of a link ij.

Relying on the previous notation, we posit that the population displays a symmetric profile where every

agent i relies on a strategy that prescribes the following (contingent) behavior:

• Consider first the decisions to be taken at any t concerning any given project that is already in the

operating phase. Then, agent i is taken to choose L (low effort) if, and only if, any of the following

three contingencies apply:

– either i or his partner j defected in the set-up stage of the project;

– either i or/and his partner j chose L in some of the previous operating stages of the project;

– a new project has started at t that involves i (respectively j) in which this agent has unilaterally

defected in the setup stage upon some third player k and ςµik(g(t)) = j (respectively, ςµjk(g(t)) = i).

• Consider now the decision to be taken at the setup stage of a project that becomes available at t

between i and some other j. Then, agent i chooses C (cooperation) in this stage if, and only if, either

i and j are neighbors or δg(t)(i, j) ≤ µ− 1.

It is straightforward to check that, if agents’ perceptions and information are as described in (i)-(ii) and

stage payoffs satisfy assumptions G1-G3, the strategy described above defines a symmetric Nash equilibrium

of the population game. This equilibrium reflects a cooperative social norm where agents cooperate not only

with neighbors but also with all those who are socially close (as specified by µ) and, on the other hand, are

willing to punish deviators on third parties provided these are close enough (the upper bound in this case

being µ − 1). The implication of all this is that, in the network-formation process, agents will be ready to

form new links with neighbors and all other agents who are not more than µ links apart, as indeed postulated

in Subsection 3.2.1.

In our general description of the model, we have identified the parameter µ with the (quality of the)

institutions prevailing in the economy. In abstract terms, it captures the extent to which agents can rely

upon the social network to support the formation of new links/projects. As suggested, it could reflect how

fast information travels along the network, or how useful it is in providing access to new opportunities. In

the context of our present strategic framework, µ can be interpreted along the lines of what Karlan et al.

(2009) label the “circle of trust,” which is a notion that has been highlighted by a number of prominent

scholars studying the effect of institutions on economic performance.15 The essential idea here is that µ

measures how strongly agents “internalize” the social norm of cooperation. If the support of this norm – i.e.

the quality of institutions – is weak, agents should only be prepared to punish others if they have defected

15An early instance can be found in the celebrated study of Southern Italy by Banfield (1958). There he argued that the
persistent backwardness of this region was largely due to a pervasive amoral familism, i.e. the exclusive concern for the well-
being of the closely related, as opposed to that of the community at large. More recently, Platteau (2000) has elaborated at
length on the idea, stressing the importance for economic development of the dichotomy between generalized morality (moral
sentiments applied to abstract people) and limited-group morality (which is restricted to aconcrete set of people with whom
one shares a sense of belonging).
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upon individuals who are socially very close. Instead, if institutions are strong, any violation of the social

norm that agents are acquainted with is readily punished.

Appendix B

Proofs

Proof of Proposition 1

First, in order to establish 7, note that a necessary requirement for any agent ı to be able to establish

a new link at t with some other agent j who has been selected as given in (1) is that either j belong to

the same network component of i or/and both nodes are (geographical) neighbors. Given that there are

Mi − 1 other nodes in i’s component and every agent has two geographic neighbors, the desired inequality

follows since the maximum probability with which any agent j can be chose as a potential partner of i is

[2 ζ(α, n)]
−1

On the other hand, to establish (8), we simply need to recall that an isolated node i will always form a

new link with either of its two geographical neighors if these are selected as potential partners. Since the

geographic distance to each of them is normalized to 1, the probability that either of them is selected is

simply 2 [2 ζ(α, n)]
−1

. This readily leads to the desired lower bound.

Proof of Proposition 2

Given α, define by F (z) ≡ ηΦ(z; α)− z
2 the one-dimensional vector field defining the dynamical system

(10). By A1, when α ≤ 1, the derivative F ′(z) of this function at any z < ẑ is given by:

F ′(z) = −1

2
< 0 (15)

which obviously induces the desired conclusion.

Proof of Proposition 3

In view of A2, when α > 1, we have that Φ(0, α) > 0 provided η > 0. This implies that z = 0 is not a

steady state of the system (10), hence a fortiori not asymptotically stable.

Let now denote by z∗ the lowest value of z such that ηΦ(z; α) = z/2. From A3, such z∗ is well-defined and

strictly positive. It then follows that, for some sufficiently small initial z(0), $[z(0), t]→ z∗, as claimed.

Proof of Proposition 4

Consider any arbitrarily large value z̄. Given α, let χ ≡ min {Φ(z, α) : z ≤ z̄}. From A4, χ > 0. Choose

η̄ such that η̄ χ > z̄/2. Then, clearly, if η ≥ η̄, we have:

∀z ≤ z̄, ηΦ(z, α) > z/2, (16)
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which implies that z∗(η) ≥ z̄, where z∗(η) is the unique steady introduced in Proposition 3. This completes

the proof.

Proof of Proposition 5

Consider any given α̂ > 1. By A4, there exists some corresponding z1 and z2 (z1 < z2) and ζ > 0 such

that

∀α ≤ α̂, ∀z ∈ (z1, z2), Φ(z, α) > ζ. (17)

This then implies that we can choose some η̂ such that, if η ≥ η̂, then

∀α ≤ α̂, ∀z ∈ (z1, z2), ηΦ(z, α) >
1

2
z.

Fix now z1 and z2 as above as well as some α ≤ α̂. For any given β > 0, define the ray of slope β as the

locus of points Rβ ≡
{

(z, y) ∈ R2 : y = β z, z ≥ 0
}

. We shall say that a ray Rβ supports Φ on [0, z2] if

∀z ∈ [0, z2], Φ(z, α) ≥ β z

with the above expression holding with equality for some ẑ ∈ [0, z2], i.e. for such ẑ we have:

Φ(ẑ, α) = β ẑ. (18)

Now note that, by A1 to A3, there must exist some ᾱ > 1 with ᾱ ≤ α̂ such that, if 1 < α ≤ ᾱ the (unique)

ray Rβ′ that supports Φ on [0, z2] has its slope β′ satisfy

0 < β′ ≤ 1

2η̂
(19)

So choose ᾱ so that (19) holds and let η′ =
1

2β′
. For such value η′ we may identify z∗(η′) with the lowest

average degree ẑ such that (18) holds. Clearly, z∗(η′) ≤ z1, where z1 is chosen as in (17).

Now consider any η′′ > η′. Then we have:

∀α ≤ ᾱ, ∀z ∈ [0, z2], η′′Φ(z, α) >
1

2
z. (20)

But, since Φ(·) ≤ 1, there must exist some z′′ such that

η′′ Φ(z′′, α) =
1

2
z′′. (21)

As before, we identify z∗(η′′) with the lowest value of z′′ for which (21) holds. Then it follows from (20)

that z∗(η′′) ≥ z2. This establishes that the function z∗(·) displays an upward right-discontinuity at η′ and

completes the proof.
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Appendix C

Simulation algorithm

Here we describe in detail the algorithm that is used to conduct the simulations in Subsection 4.1. The

adaptation of it that is used to compute numerically the function Φ(·) in Subsection 4.3 (which is labelled

as “Algorithm P”) is based on the same procedure.16

The algorithm proceeds in two successive steps, which are repeated until certain termination criteria are

met. The first step selects and implements a particular adjustment event (which can be either an innovation

draw or a link destruction) and the second step checks whether or not the system has reached a steady state.

As mentioned, we normalize the rate of link destruction to λ = 1. Thus the free parameters of the model

are η, α, and µ. The state of the network at any point in the process is characterized by the n×n dimensional

adjacency matrix A. A typical element of it, denoted by a(i, j), takes the value of 1 if there exists an active

link between the nodes i and j, and it is 0 otherwise. L denotes the total number of active links in the

network. By construction, L has to equal twice the number of non-zero elements in the state matrix A.

We now describe systematically each of the steps the algorithm. The algorithm runs in discrete steps but

its formulation is intended to reflect adjustments that are undertaken in continuous time. Hence only one

adjustment takes place at each step (either a new link is created or a pre-exisiting links is destroyed), with

probabilities proportional to the corresponding rates. Some given A, characterizes the initial state, which

can be either an empty network (with A containing only zeros), or some other network generated in some

pre-specified manner.

• Step I: At the start of each simulation step, t = 1, 2, ..., an adjustment event is randomly selected: This

event can be either an innovation draw or a link destruction. As explained, the two possibilities are

mutually exclusive. The rates at which either of the two events occur are fixed and equal to λ per link

and η per node. Every node in the network is equally likely to receive an innovation draw. Similarly,

all existing links are equally likely to be destructed. Hence the flow of innovation draws and destroyed

links are respectively given by η n and λL. This implies that the probability of some innovation draw to

occur is ηn
ηn+λL whereas some link destruction occurs with the complementary probability. Depending

on the outcome of this draw, the routine proceeds either to Step A.1. (innovation draw) or Step B.1.

(link destruction)

– A.1. The routine starts by selecting at random the node i ∈ N that receives the project draw. All

nodes in the network are equally likely to receive the draw, so the conditional selection probability

for a particular node is 1/n. Having completed the selection, the algorithm moves to A.2.

– A.2. Another node j ∈ N (j 6= i) is selected as potential “partner” of i in carrying out the

project. The probability pi(j) that any such particular j is selected satisfies pi(j) ∝ d(i, j)−α.

This can be translated into an exact probability pi(j) = B × d(i, j)−α by applying the scaling

factor B =
(∑

j 6=i∈N d(i, j)−α
)

derived from the fact that
∑
j 6=i∈N pi(j) = 1. The algorithm

then moves to A.3.
16The MATLAB code implementing the algorithm is available upon request.

33



– A.3. If a(i, j) = 1, there is already a connection in place between i and j. In that case, the

innovation draw is wasted (by L1 in Subsection 3.2.1), and the algorithm proceeds to Step II. If,

instead, a(i, j) = 0 the algorithm proceeds to A.4.

– A.4. In this step, the algorithm examines whether or not it is admissible (given L2 in Subsection

3.2.1) to establish the connection between i and j. First, it checks whether i and j are geographic

neighbors, i.e. d(i, j) = 1. If this is the case, the link is created (by L2(a)) and the step ends.

Otherwise, it computes the current network distance between i and j, denoted δA(i, j). This

distance is obtained through a breadth-first search algorithm that is described in detail below. If

it is found that δA(i, j) ≤ µ then the link ij (= ji) is created (by L2(b)) and the corresponding

elements in the adjacency matrix A, a(i, j) and a(j, i) are set equal to 1. Instead, if δA(i, j) > µ,

the link is not created. In either case, Step A.4 is ended. At the completion of this step, the

algorithm proceeds to Step II.

– B.1. If the event selected in Step I involves a link destruction, the algorithm randomly picks one

of the existing links in the network and dissolves it. The state matrix is updated accordingly by

setting a(i, j) and a(j, i) both equal to 0. All existing links in the network are equally likely to

be destructed. Thus, for a specific link the probability of being selected is L−1. Once the link

destruction process is completed, the algorithm moves on to Step II.

• Step II: If we start with an empty network (with A containing only zeros) and let the two forces -

innovation and volatility - operate, then network gradually builds up structure and gains in density.

If this process is run long enough, eventually, the network attains its equilibrium. An important

question in this context is, when to terminate the simulation? Or put differently, how can we find out

that the system has reached a stationary state? Step II of the algorithm is concerned with this issue.

Strictly speaking, the equilibrium of the network is characterized by the constancy of all the endogenous

variables. That is, in equilibrium, the structure of the network, as measured for instance by the average

connectivity, remains unchanged. However, a computational difficulty arises from the random nature of

the processes involved. Link creation and destruction are the result of random processes, which imply

the constancy of the endogenous variables only in expectations. In other words, each adjustment step

leads to a change in the structure of the network, and consequently, the realization of each of the

endogenous outcomes fluctuate around a constant value. To circumvent this difficulty, the algorithm

proceeds as follows:

– C.1. At the end of each simulation step t , the routine computes (and stores) the average connec-

tivity prevailing in the current network as z(t) = 2×L(t)
N .

– C.2. Every T steps it runs an OLS regression of the T most recent values of z on a constant and

a linear trend.

– C.3. Every time the slope coefficient changes its sign from plus to minus, a counter n is increased

by 1.

Steps I and II are repeated until the counter n exceeds the predetermined value of n. For certain

parameter combinations, mainly for those that imply high and globalized interaction, the transition process

towards the equilibrium can be very sticky and slow. For that reason and to make sure that the algorithm

does not terminate the simulation too early we set T = 5× 105, T = 104 and n = 10.
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Breadth-first search algorithm: In Step A.4. we use a breadth-first search algorithm to determine if,

starting from node i, the selected partner node j can be reached along the current network within at most

µ steps. The algorithm is structured in the following step-wise fashion:

• Step m = 1: Construct the set of nodes which are directly connected to i, Formally, this set is given

by X1 = {k ∈ N : δA (i, k) = 1}. Stop the search if j ∈ X1 otherwise proceed to Step m = 2

• Step m = 2, 3, ... For every node k ∈ Xm−1 construct the set Vk = {k′ ∈ N \ {i} : δA (k, k′) = 1}.
Let Xm be the union of these sets with all the nodes removed which are already contained in Xm−1.

Formally: Xm =

{ ⋃
k∈Xm−1

Vk

}
\ Xm−1. By construction, all nodes k′ ∈ Xm are located at geodesic

distance m from the root i, i.e. δA (i, k′) = m, ∀k′ ∈ Xm. Moreover, all elements in Xm are nodes that

were not encountered in any of the previous 1, 2, ...,m − 1 steps. Stop the search if (a) j ∈ Xm, (b)

m = µ, or (c) Xm = ∅, otherwise proceed to Step m + 1. In Case (a), Node j has been found within

distance µ ≤ µ. In Case (b), continuation of the search is of no use as δA (i, j) > µ, in which case the

creation of the link ij cannot rely on rule L2(b). Finally, in Case (c), no new nodes are encountered

along the search, which implies that i and j are disconnected from each other.

The above-described search proceeds (for no more than µ steps) until Case (a), (b), or (c) occurs.

Computation of the variables of interest: In the text we report the equilibrium outcomes of four

endogenous variables: the average connectivity of the network, the average geographical distance spanned

by the links, the average network distance, and the effective probability of link creation. We next show how

each of these are computed.

1. To compute the average connectivity of the network we simulate the equilibrium of the system for

t = 1, 2, ...t, with t = 5× T , steps and take the average of z(t) over all t realizations.

2. Similarly we compute the average geographical distance between connected nodes in the network as

the average of
{

1
L

∑
ij∈g(t) d(i, j)

}t
t=1

.

3. Formally, the average network (or geodesic) distance should be computed as, 1
N

∑
i,j∈N δg(i, j). How-

ever, in the current context this approach is not advisable, due to the potential existence of disconnected

subparts in the network. Any two nodes, i and j, which are not jointly located on such a subpart would

- literally - be δg(i, j) = ∞ steps away from one another. To account for that we randomly draw N

pairs of (i, j) and compute δg(i, j) for each of them. If i and j happen to be disconnected we set δg(i, j)

equal to a high number δ < ∞. The randomization also helps to economize on computational speed,

since computing δg(i, j) for all possible pairs (i, j) would imply a substantial computational burden.

4. The effective probability of link creation is computed as the ratio of the number of innovation draws

which lead to a successful link creation to the total number of innovation draws obtained in t simulation

steps.
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