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Abstract

We consider contests with many, possibly heterogeneous, players and prizes that

include many existing contest models as special cases. We show that the equilibria of

such contests are approximated by an appropriately defined set of incentive-compatible

individually-rational single-agent mechanisms.

This approach makes it possible to approximate the equilibria of contests whose

exact equilibrium characterization is complicated, as well as the equilibria of contests

for which there is no existing equilibrium characterization. This facilitates contest

design, welfare analysis, and comparative statics.

1 Introduction

There are many settings in which economic agents compete for prizes by expending resources.

Some of these settings, such as rent-seeking scenarios, political campaigns, competitions for

promotions, and some research and development races, typically involve a small number of

competitors and prizes; other settings, such as college admissions, competitions by employers

for workers on a national or international level (e.g., hospitals for residents, universities for
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faculty), sales competitions in large firms, and certain sports competitions (e.g., marathons)

involve a large number of competitors and prizes.

The competitors often differ in their abilities, technologies, access to capital, and prior

investments. They may also receive differential treatment in the contest, and have differing

valuations for the prizes. The prizes are often heterogeneous - colleges differ in their prestige,

jobs differ in their characteristics - which may further accentuate the asymmetries among

competitors. Existing contest models, however, typically do not accommodate substantial

asymmetries among competitors and heterogeneity in prizes, because each feature separately,

and their combination in particular, present significant technical difficulties. This limits the

study of real-world contests, in which asymmetric competitors and heterogeneous prizes are

rather common.

The goal of this paper is to expand our understanding of contests with asymmetric

competitors and heterogeneous prizes by approximating their equilibrium outcome when the

number of players and prizes is large (but finite). We show that for a broad specification

of contests, as the number of players and prizes increases, players’ equilibrium bids and

resulting allocation of prizes are approximated by a subset of the incentive compatible (IC)

and individually rational (IR) mechanisms that allocate a limit set of prizes to a single agent

whose possible types correspond to a limit set of players.

More precisely, we begin with two distributions, one of agent types and one of prizes, and

a continuous utility function for the agent, whose arguments are an agent type, a prize, and

a bid. The utility increases in the prize and decreases in the bid, but need not be quasi-linear

in the bid or monotonic in the agent type. We then define a sequence of contests 1 2   ,

such that the -th contest has  players and prizes (some of which may be worth 0). The

players compete by each choosing a non-negative bid, simultaneously and independently. The

player with the highest bid obtains the highest prize (prize ), etc. The -th prize in the -th

contest is the prize that is the -th -quantile of the prize distribution. The Bernoulli utility

of the -th player in the -th contest corresponds to the agent utility with an agent type

that is the -th -quantile of the agent type distribution. This contest is a game of complete

information, so the equilibria are typically in mixed strategies. The complete information

assumption, which we discuss in in Section 1.1, can be interpreted as each player knowing
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the set of prizes and the empirical distribution of the players she is facing. The generality

of the agent’s utility function accommodates a wide range of asymmetries among players

and heterogeneity in prizes. The approximating single-agent IC-IR mechanisms we consider

allocate to each agent type a distribution over prize-bid pairs in a way that is consistent with

an “inverse tariff” that assigns a prize to each bid.

The rough intuition for the approximation is as follows. In any contest, a player can

bid 0 and secure the lowest prize, so IR holds. As the number of players increases, the

competition they face becomes similar. That is, the mappings between bids and players’

percentile rankings (given the other players’ equilibrium strategies) become similar for all

players, and coincide in the limit. This “almost” implies that also the mappings between

bids and distributions of prizes that the players face become similar, and coincide in the

limit. Therefore, in the limit, each player can mimic any other player in terms of what they

obtain. Moreover, by the law of large numbers, the common limit mapping is deterministic,

so that each bid maps to a single prize. This yields an inverse tariff such that in the limit

players choose their bids as in a mechanism-design setting in which a single agent faces the

inverse tariff. In particular, the mechanism defined by this mapping is IC.

This intuition is incomplete, however, since for some bids the distributions of prizes

may not be similar for all players (despite the fact that the percentile rankings are), even

when the number of players grows large. Therefore, a player’s bid may not be sufficient

for determining, even approximately, the prize that the player gets in a large contest. For

example, if the limit percentile ranking of a bid  is 12 and there are half as many identical

prizes as players, then it is unclear whether in a large contest a player obtains a prize by

bidding . This is the case in the setting of Section 3.1, where by bidding slightly above

 some players obtain a prize with a relatively high probability while other players obtain

a prize with a relatively low probability, even when the number of players grows large. In

addition, even in settings in which this problem does not arise the notion of approximation

implied by the intuition is substantially weaker than the ones we are able to obtain.

Our most general, but weakest, result applies to agent utilities that depend arbitrarily

(but continuously) on the agent’s type. For the result, we consider for each player the

equilibrium distribution over bids and corresponding distribution over prizes, and represent
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these distributions for all players simultaneously as a distribution over players, prizes, and

bids. The result establishes the convergence of this distribution in weak∗-topology as  grows

large to a distribution over agent types, prizes, and bids that corresponds to a mechanism.

This type of convergence enables us to approximate the average strategy (or the distribution

over prize-bid pairs) of players that are close to a given agent type, but this may not be a

good approximation of the equilibrium strategy of any single agent.

Under a strict single crossing condition on the agent’s utility we establish a much stronger

form of convergence, which delivers a simultaneous approximation of all players’ equilibrium

strategies. We show that in this case as  grows large players’ equilibrium strategies become

almost deterministic and the resulting allocation approaches the assortative one. In particu-

lar, this result applies to agent utilities that satisfy strict single crossing and are quasi-linear

with respect to bids. For such utilities, in addition to the strong form of convergence to the

assortative allocation, the IC-IR mechanism that implements the allocation is unique and

can be characterized by applying standard techniques from the mechanism-design literature.

We are therefore able to say (approximately, but with an arbitrary degree of precision as 

increases) how each player will bid, and what prize she will obtain by making any given bid.

This stronger result applies to many existing contest models, which are surveyed in Section

1.1.

Our results are useful in the analysis of large contests in three somewhat related ways.

First, the results approximate the equilibria of contests whose exact equilibrium character-

ization is complicated. Second, they approximate the equilibria of contests for which there

is no existing equilibrium characterization. These include a wide range of contests with het-

erogeneous prizes, contests that combine identical and heterogeneous prizes, and contests in

which players’ utilities are not quasi-linear in their bids. Third, the results facilitate contest

design, welfare analysis, and comparative statics. They imply, for example, that under strict

single crossing large contests approximately attain the unique assortative allocation.1

The rest of the paper is organized as follows. Section 1.1 surveys the related literature.

Section 2 introduces the basic terminology and notation. Section 3 presents some examples

1A similar result was derived by Bulow and Levin (2006) in a non-trivial manner for a specific form of

players’ utilities (see Section 3.2).
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that illustrate our results and the arguments that support them in concrete scenarios. The

examples also describe important applications, which have been studied in the literature.

Section 4 contains our main results and some discussion of their application. Section 5

contains the proofs of our main results when the limit set of prizes has full support. Section 6

concludes. Appendix A contains the proofs of intermediate results from Section 5. Appendix

B contains the proofs of our main results when the limit set of prizes may not have full

support. Appendix C shows that a similar approximation result holds for a contest in which

players have head starts, even though our main results do not apply directly to this contest.

1.1 Related Literature

Our model includes many variants of the multi-prize all-pay auction with complete informa-

tion, in which each player chooses a bid and pays the associated (and possibly idiosyncratic)

cost.2 Because the equilibria of such contests often have a complicated structure and are not

straightforward to derive, existing closed-form equilibrium characterizations are limited to

contests with either precisely two participating players and one prize (Hillman and Samet

(1987), Hillman and Riley (1989), Che and Gale (1998, 2006), Kaplan and Wettstein (2006),

Siegel (2010)), or identical prizes and players with identical costs (Baye, Kovenock, and

de Vries (1993, 1996), González-Díaz (2012), Clark and Riis (1998)), or identical players

(Barut and Kovenock (1998)). Equilibrium characterizations in the form of an algorithm

are available for some contests with either identical prizes and players with heterogeneous

costs (Siegel 2010, 2013a),3 or with heterogeneous prizes and players with identical costs

(Bulow and Levin (2006), González-Díaz and Siegel (2012), Xiao (2012)). The heterogene-

ity in prizes, however, is limited to very specific functional forms. Moreover, algorithmic

2Models of competition with incomplete information were studied by Amann and Leininger (1996),

Moldovanu and Sela (2001, 2006), Parreiras and Rubinchik (2010), and Siegel (2013b) among others. Other

models of competition postulate a probabilistic relation between competitors’ efforts and prize allocation.

See Tullock (1980) and Lazear and Rosen (1981). For a comprehensive treatment of the literature on com-

petitions with sunk investments, see Nitzan (1994) and Konrad (2007).

3Siegel (2009) gives a closed-form expression for players’ equilibrium payoffs, but does not solve for

equilibrium.
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characterizations make further analysis, such as comparative statics, difficult or impossible.

Our paper also contributes to the literature on large games. This literature typically

makes continuity assumptions that exclude auction-like games (see, for example, Kalai (2004)

and Carmona and Podczeck (2009, 2010)). A notable exception is Bodoh-Creed (2012), who

explicitly considers uniform-price auctions with incomplete information, but assumes enough

uncertainty about the set of prizes to exclude the possibility of a small change in the rank

order of a bid having a large effect on the prize obtained. Moreover, the analysis in this

literature often focuses on -equilibria of large games, which may not approximate Nash

equilibria well. In contrast, our approach deals with the discontinuities that arise naturally

in contests, approximates Nash equilibria, and uncovers a novel connection to mechanism

design.

A more closely related paper is Hickman’s (2009) theoretical analysis of affirmative action

in college admissions. He considers a quasi-linear contest model with incomplete information

that satisfies strict single crossing, and approximates the outcome for a large number of

applicants by a continuum model in which the limit set of prizes has full support (so a small

change in the rank order of a bid cannot have a large effect on the prize obtained). Our

paper differs from Hickman’s (2009) work in three main ways. First, our approach does not

require quasi-linearity, strict single crossing, or full support of the limit prize set (although we

obtain stronger results under these conditions), and is therefore applicable to a wide range of

settings. Second, we relate the outcomes of large contests to single-agent mechanisms, which

allows us, under certain conditions, to derive the approximation in closed form. Third, our

model is one of complete information, and therefore includes many existing contest models

as special cases.

From an applied perspective the assumption of complete information, which we interpret

as competitors knowing the empirical distribution of their opponents, allows for a broad

degree of ex-ante asymmetries among competitors, and fits settings in which data about

the pool of competitors is available to the competitors (for example, colleges may release

information about the composition of the applicant pool and firms may disclose aggregate

information about the profile of their employees). The assumption of incomplete informa-

tion, while suitable to many settings, implies that the ex-ante asymmetry among competi-
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tors is limited, and also implies that competitors entertain a small probability of facing

an unreasonable set of competitors. From a theoretical perspective, complete information

requires techniques that deal with non-monotonic, complicated mixed-strategy equilibria,

which may also contain atoms and gaps, whereas incomplete information with strict single

crossing leads to equilibria in strictly increasing pure strategies. Thus, techniques developed

for incomplete-information settings are unlikely to apply to complete-information settings,

whereas our approach seems readily modifiable to contests with incomplete information.

Finally, there is a literature on matching and search that employs continuum models to

approximate matching models with many participants. Azevedo and Leshno (2012) show

that stable matchings are easy to find and are often unique in a two-sided matching model

with a continuum of agents on one side. Che and Kojima (2010) show that the random

priority (random serial dictatorship) mechanism and the probabilistic serial mechanism con-

verge to each other as the number of copies of a given set of object types grows large. Peters

(2010) analyzes a model of directed search with a continuum of workers and firms, which is

more tractable than the discrete version of the model.

2 Terminology and notation

2.1 Single-agent setting

There is a single agent of type  ∈  = [0 1] with CDF  , where  () is the mass of

types  such that  ≤ .4 It will sometimes be convenient to interpret the agent’s types as

a continuum of infinitesimal agents. There is a mass 1 of prizes  ∈  = [0 1] with CDF

, where  () is the mass of prizes  such that  ≤ . We will sometimes refer to prize 0

as “no prize.” We assume that  is continuous and strictly increasing, but  may be any

probability distribution. As will become clear later, this choice of assumptions is motivated

by applications. If  is strictly increasing on  we say that  has full support, or that prizes

have full support. Note that  may have full support even if there are masses of identical

prizes, i.e.,  is discontinuous, or, equivalently,  has atoms.

4All probability measures are defined on the -algebra of Borel sets.
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The utility of the agent is given by a continuous function  (  ), where  is his

type,  is the prize he obtains, and  ≥ 0 is his bid. Since  = 0 corresponds to no prize,
 ( 0 0) = 0 for all . Higher prizes are better and higher bids are more costly, so (  )

strictly increases in  for every   0 and  ≥ 0, and strictly decreases in  for every  ≥ 0
and  ≥ 0. The utility is quasi-linear in bid if

(  ) = ( )− ,

where ( ) is the continuous utility of type  from obtaining prize , and  is the monetary

cost of bidding .

We assume that sufficiently high bids are prohibitively costly, so  ( 1 max)  0 for

some max and all . This occurs, for example, when the utility is quasi-linear. Thus, bids

of max or higher are strictly dominated by 0, so we restrict the range of bids that the agent

can make to  = [0 max]. To simplify our proofs, we choose the number max to be rational.

We say that weak single crossing holds if for any 1  2, 1  2, and 1  2 we have

that (1 2 2) ≥ (1 1 1) implies (2 2 2) ≥ (2 1 1). That is, if a lower type

1 prefers to obtain a higher prize 2 at a higher bid 2 to obtaining a lower prize 1 at a

lower bid 1, then so does any higher type 2. If the higher type strictly prefers to obtain

the higher prize at the higher bid, i.e., the second inequality is strict, then we say that strict

single crossing holds.

A consistent allocation is a probability distribution  on  ×  whose marginal on

 coincides with  and whose marginal on  coincides with . This condition says that

precisely the available prizes are allocated to the agent types, and each type obtains exactly

one prize (which can be equal to 0, that is, no prize). The conditional distribution ,

 ∈ , will be interpreted as the lottery over prizes that type  faces.

With quasi-linear utility, an allocation  is efficient if it allocates the prizes in a way

that maximizes the non linear part of the agent’s utility, i.e., it maximizesZ
∈

Z
∈

( )( )

across all consistent allocations.

A (direct) mechanism  prescribes for each reported type  ∈  a joint probability

distribution ( ) over prizes  ∈  and bids  ∈ . A mechanism is incentive compatible
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(IC) if the expected utility of each type is maximized by reporting truthfully, i.e.,Z
∈

Z
∈

(  )( )

is maximized at  = .

A mechanism is individually rational (IR) if the expected utility of each type from re-

porting truthfully is at least as high as the utility from bidding 0 and obtaining the “lowest”

available prize, i.e., Z
∈

Z
∈

(  )( ) ≥  (  0) , (1)

where  = inf { :  ()  0}; in addition, we require that the inequality is an equality for
at least one type . If prizes have full support, then  = 0, so the right-hand side of (1) is

 ( 0 0) = 0.

An inverse tariff is a non-decreasing upper semi-continuous function that maps bids to

prizes; a tariff mechanism is an IR mechanism for which there exists an inverse tariff such

that for every type  ∈  the probability distribution ( ) assigns probability 1 to the

set of prize-bid pairs that maximize  (  ) among the prize-bid pairs in which the prize

is the one assigned to the bid by the inverse tariff. A tariff mechanism is clearly IC.

A mechanism implements an allocation  if the marginal of  on  coincides with 

for almost every . This does not imply that  and { :  ∈ } determine a probability
distribution on  ×  ×.5 When they do, which will be the case in all our results, we say

that the mechanism that implements  is regular, and refer to the distribution on × ×

as the outcome of the mechanism.

2.2 Contests

Given a single-agent setting, for every  we define a complete-information contest (“the -th

contest”) in which  players compete for  prizes (some prizes may be “no prize”). The

players compete by each choosing a bid in , simultaneously and independently. The player

with the highest bid obtains prize , the player with the second-highest bid obtains prize

5To see why, take some non-measurable function  :  → [0∞), have  distributed uniformly on, and

assign probability 1 to, the diagonal {( ) :  ∈ }, and have  assign probability 1 to the pair (  ()).

That is, type  is prescribed bid  () and prize .
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−1, and so on. Ties are resolved by a fair lottery. The players and prizes correspond to the
-quantiles of the distributions of agent types and prizes in the single-agent setting. That is,

the utility of player  from obtaining prize  and bidding  in the -th contest is (  

  ),

where  = −1 () is the player’s type (recall that  is continuous and strictly increasing)

and  = −1 () = inf { :  () ≥ }.6 Note that if  ≤  (0), then prize  is “no

prize.” A slight adaptation of the proof of Corollary 1 in Siegel (2009) shows that every

contest has at least one Nash equilibrium.

To formalize our notions of approximation, for every  we transform any equilibrium of

the -th contest to a probability distribution  on  ×  × , which we refer to as the

outcome of the equilibrium. We then relate these distributions to probability distributions

 that describe the outcomes of regular mechanisms. To begin, an equilibrium of the -th

contest determines for every player  a distribution over her bids,  , and a distribution over

the prizes she obtains for every bid, where we denote by 
 ( ) her probability of obtaining

prize  by bidding .

We first define the conditionals of  on the sets { }× ×{} by setting the probability
of obtaining prize  to 


 ( ). We set the probability of obtaining any other prize  to 0.

These conditionals and the distribution  determine a distribution on { } ×  × . We

define a distribution  on  ×  × by letting these distributions be the conditionals on

the  sets { } ×  ×, each of which has probability 1, and assigning probability 0 to

the complement of these sets.

Our results will show convergence of  to . The notion of convergence, however, will

vary across the results. We will introduce the appropriate notions when we formulate our

results.

6The grid 1      can be replaced with any other -element grid on [0 1] such that the probability

distribution that assigns probability 1 to every element in the grid converges in weak∗-topology to the

uniform distribution on [0 1].
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3 Examples

We first demonstrate our approximation approach in a few contest settings that appeared in

the literature.

3.1 All-pay auctions with identical prizes

This example focuses on all-pay auctions with identical prizes, which were studied by Clark

and Riis (1998). They considered competitions for promotions, rent seeking, and rationing

by waiting in line (see also Siegel (2010)).

For our single-agent setting assume a quasi-linear utility, a mass  ∈ (0 1) of identical
non-zero prizes, and agent types that coincide with the agent’s utility for a non-zero prize.

To satisfy continuity, set  ( ) =  and have the support of  be {0 1}. (Note that this
 does not have full support.) Assume a uniform type distribution, that is,  () =  for

all  ∈ , and let  = 12, so () = 12 for all  ∈ [0 1) and (1) = 1. We make these

latter assumptions for ease of exposition.

An efficient allocation assigns prizes to the highest agent types; this is done, for example,

by the probability measure  on  ×  that assigns probability 1 to, and is distributed

uniformly on, the set

{( 0) :  ≤ 12} ∪ {( 1) :   12}.

The unique IC-IR mechanism that implements this allocation prescribes for every type

 ≤ 12 bid 0 and for every type   12 bid 12. The mechanism is a tariff mechanism

with a discontinuous (but upper semi-continuous) inverse tariff that maps bids  ∈ [0 12)
to prize 0 and bids  ≥ 12 to prize 1. Indeed, given the inverse tariff, the optimal bid is
0 for types   12 and 12 for types   12. For type 12 both 0 and 12 are optimal.

Therefore, the mechanism prescribes an optimal bid for every type . In this example, and

in the examples discussed later, it is easy to see that the IC-IR mechanisms that implement

efficient allocations are regular.

We now show that the outcome of the mechanism approximates the equilibria of contests

with many players and prizes. Clark and Riis (1998) solved for the unique equilibrium in

this setting and describe it in closed form, and we use their characterization to demonstrate

11



the approximation.7 For every , the -th contest is an all-pay auction with  players and

 ≡ p2q (non-zero) prizes, and the value of a non-zero prize to player  is .

.

.

.

1

n-m-1

n-m

n-m+1

n-m+2

n

.

.

.

.

.

.

0 (n-m)/n

.

.

.
lnln-m+2

...

.

.

.

1

n-m-1

n-m

n-m+1

n-m+2

n

.

.

.

.

.

.

0 (n-m)/n

.

.

.
lnln-m+2

...
Bid

Figure 1: The support of players’ strategies (dots represent atoms) in the unique

equilibrium

As Figure 1 shows, in equilibrium the −− 1 players with the lowest valuations bid
0, and each of the + 1 players with the highest valuations bids on an interval. The lower

bounds of these intervals are monotonic in players’ valuations, and the common upper bound

is (−)  = 1 − ∈ {12 12 + 12}. By (2) in Clark and Riis (1998), the lower
bound of the bidding interval of player   − is

 =
³
1− 



´µ
1−Π

=−+1




¶
. (2)

This implies that for any   0, as  grows large the lower bound of the bidding interval of

player  = −+ (and therefore also those of players−    −+−1) approaches
0. Thus, for every   0, as  grows large the number of players with valuations greater

than 12 who bid on [ 1−] grows large. This contrasts with the previous observation

7An alternative approach, in the spirit of our general results, is only to partially characterize the equilibria

for large , using equilibrium properties derived from first principles, and use this partial characterization to

establish the approximation. We omit this derivation for the example in the interest of brevity; it is available

from the authors upon request.
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that in the single-agent mechanism types higher than 12 bid 12, so it may seem that the

outcome of the mechanism does not approximate the equilibrium for large . This apparent

discrepancy is overcome by noting that the lower bound of the bidding interval of a player

with valuation approximately (12) +  is for large  approximately
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The first fraction is bounded above byµ 1
2
+ 

2
1
2
+ 

¶ 
2

→
→∞

0,

and the second fraction is bounded above by 1, so as  increases the lower bound of the

bidding interval approaches 12. Therefore, for any   0, for sufficiently large  at most a

fraction  of the players bid more than  away from what the mechanism prescribes for the

types that correspond to them.

3.2 All-pay auctions with heterogeneous prizes and multiplicative

utilities

This example focuses on all-pay auctions with heterogeneous prizes and multiplicative utili-

ties, which were studied by Bulow and Levin (2006), hence forth B&L. They considered the

national residency matching program, in which residents are matched to hospitals. Hospi-

tals compete by offering identity-independent wages, each hospital can hire one resident, and

hospital ’s utility from hiring resident  is .

For our single-agent setting assume a quasi-linear utility, a continuum of different prizes,

and a utility for a prize that is the product of the agent’s type and the prize. Thus,  ( ) =

. We assume that  and  are uniform.8 (Note that prizes have full support.)

The assortative allocation, in which type  obtains prize , is efficient. An IC mechanism

that implements this allocation and prescribes for type  bid () has the property that

 = argmax

{ − ()}.

8B&L make this assumption in Section 7, in which they study the contest for →∞.
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This implies that 0() = . Since in an IR mechanism the bid of type 0 has to be 0 (because

type 0 obtains prize 0), we have that  () = 22. This mechanism is a tariff mechanism

with a continuous inverse tariff that maps every bid  ∈ [0 1] to prize √2. Indeed, given the
inverse tariff, the optimal bid for type  is 22, which is the bid the mechanism prescribes

for type .

We now provide some intuition for why the outcome of this mechanism approximates

the equilibria of contests with many players and prizes. For every , the -th contest is an

all-pay auction with  players and  prizes, and the value of prize  to player  is 2.9

As in the previous example, the simplicity of the allocation and the IC-IR mechanism that

implements it contrasts with the relative complexity of players’ equilibrium mixed strategies,

which are depicted in Figure 2. Moreover, while the IC-IR mechanism is given explicitly,

players’ mixed strategies are derived by an algorithm and are not described in closed form.

We therefore only provide a heuristic argument for the approximation. The argument makes

use of some equilibrium properties demonstrated by B&L, but does not require their full

algorithm for constructing the equilibrium. A complete, but somewhat less illuminating,

proof of the approximation can be obtained by adapting the proof of Theorem 1 below.

...........................

N-1
N

1
2

0
Bid

...........................

N-1
N

1
2

0
Bid

0
Bid

0
Bid

Figure 2: The support of players’ strategies in the unique equilibrium

The outline of the argument is as follows. Each player chooses a bid from an interval,

and the intervals are staggered so that the intervals of higher players have higher lower and

9In the notation of B&L, ∆ = 2, as in their Proposition 5.
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upper bounds. The number of players that have a given bid in their interval is known. This

enable us to divide each bidding interval to a known number of smaller intervals, which turn

out to be of approximately equal length, such that the density on each subinterval is known

and constant. This enables us to compute the length of the interval and tells us how this

length changes across players. This also shows that the intervals shrink to points as  grows

large. Taken together, these observations imply efficiency and pin down the limiting bid of

each player.10

We now describe the argument in greater detail. B&L show that player ’ s strategy is

continuously distributed on an interval [  

 ]. The intervals have the property that 


  

and  ≤  for any    (except  = 1 and  = 2, in which case  =  = 0).

In particular, if a bid  is contained in some player’s bidding interval, then it is contained

in the bidding intervals of players (), ()+1,..., , where () is the lowest player whose

interval contains , and  is the highest player whose interval contains . B&L show that

() = argmin


(
1

− 

X
=

2


− 2


 0

)
, (3)

and that the density of the strategy of player , () ≤  ≤ , at bid  that belongs to her

bidding interval is

1

− ()

X
=()

2


− 2


. (4)

(see their Lemma 2 and the following paragraph).

Choose a rational  ∈ (0 1), and take a sequence of  → ∞ such that  = .

Partition the bidding interval of player  into subintervals such that player  is the low-

est bidder on the rightmost subinterval, the second lowest bidder on the second rightmost

subinterval, and so on, until the leftmost subinterval, on which she is the highest bidder.

It follows from (3) that  −  () differs from
p
2 () by at most 1 (see their Lemma 3).

In particular,  () is of order . Therefore, the number of subintervals in the partition is

approximately
√
2.

From (4), the density of player ’s strategy on these subintervals is approximately

 +
2

()[() + 1]
 +

22

()[() + 2]
  +

√
22

()[() +
√
2]

,

10B&L demonstrated that virtually all the surplus is realized as  grows large.
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respectively, where  is the density on the rightmost subinterval. Moreover, (3) implies that

 cannot exceed 2()[()− 1].11

The lengths of these subintervals are approximately equal.12 Denote this common length

by ∆. Since

∆+

∙
+

2

()[() + 1]

¸
∆+

∙
+

22

()[() + 2]

¸
∆++

"
+

√
22

()[() +
√
2]

#
∆ ≈ 1

and () is of order , we have that ∆ is of order 2.

This implies that the length of each bidding interval tends to 0 as  and  grow large.

Passing to a subsequence if necessary, these shrinking intervals converge to a number ().13

Since () and (−1) differ approximately by the length of one interval, ∆, the derivative
of () at  is

0() =
∆

1
= . (5)

In particular, higher types obtain higher prizes in the limit. This implies that type  obtains

prize . Since type 0 obtains 0, (5) implies that type  bids () = 22.

11Indeed,

− ()

− () + 1
 =

1

− () + 1

X
=−1

2


− 2

 − 1

− 1

− () + 1

2

 − 1 −
− ()

− () + 1

2

 − 1 +
2



=
1

− () + 1

X
=−1

2


− 2

 − 1

+
− ()

− () + 1

2

[()− 1]() ≤
− ()

− () + 1

2

[()− 1]() .

The last inequality follows from the definition of (). This yields

 ≤ 2

[()− 1]() ,

as required.

12Intuitively, this follows from Lemma 3 in B&L; or, more precisely, from the fact that  −  () is of

order
p
2 (). We omit the details of a formal proof.

13In this heuristic argument, we do not show that () is independent of the choice of this subsequence.

(This independece also implies that there is no need to pass to a subsequence.)
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3.3 All-pay auctions with heterogeneous prizes and identical play-

ers

This example focuses on all-pay auctions with heterogeneous prizes and identical players,

which were studied by Barut and Kovenock (1998). They considered grading, promotions,

procurement settings, and political competitions.

For our single-agent setting, assume a quasi-linear utility, a continuum of different prizes,

and a utility for a prize that is independent of the agent’s type. Thus,  ( ) = . For ease

of exposition, we assume that  and  are uniform.

All allocations are efficient. One example is the uniform allocation, whose density is

( ) = 1 for all values of  and . The unique IC-IR mechanism that implements this

allocation has( ) distributed uniformly on the diagonal  = . This is a tariffmechanism

with a continuous inverse tariff that maps every bid  ∈ [0 1] to prize . Indeed, given the
inverse tariff, all bids in [0 1] are optimal for every type.

We now show that the outcome of this mechanism approximates the equilibria of contests

with many players and prizes. For every , the -th contest is an all-pay auction with 

players and  prizes, and the value of prize  to every player is . Barut and Kovenock

(1998) showed that the contest has a unique equilibrium, in which all players randomize

uniformly across all bids  ∈ [0 1]. Thus, the players behave in the contest exactly as the
types that correspond to them do in the mechanism. Moreover, by the law of large numbers,

for every   0 and large enough , a player who bids  obtains a prize in [−  + ] with

probability at least 1− .

4 Main results

4.1 Results with strict single crossing

We begin with our stronger results, which apply to settings in which strict single crossing

holds. In such settings, any tariff mechanism has the property that higher types are pre-

scribed weakly higher prizes. This motivates our definition of the assortative allocation, in

which type   0 obtains prize  = −1 ( ()), where −1() = inf { :  () ≥ }, and
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type 0 obtains prize inf { :  ()  0}. The assortative allocation is obviously consistent.
Our results show that under strict single crossing the equilibria of large contests are approx-

imated by tariff mechanisms that implement the assortative allocation. We first formulate

our results for settings in which prizes have full support, and then for settings in which this

condition is violated. The condition that  has full support guarantees that −1 is continu-

ous, so when the number of players and prizes is large, it is enough to know the approximate

rank-order of a player’s bid to know the approximate utility she derives from the prize she

obtains. For the formulation of the results, recall that  = −1 ().

Theorem 1 Suppose that strict single crossing holds and prizes have full support. Then,

for any   0 and any equilibrium of a sufficiently large contest,

(a) with probability 1 every player  obtains a prize that differs by at most  from

−1 ( ( ));

(b) there is a regular tariff mechanism with a continuous inverse tariff that implements

the assortative allocation, such that with probability 1 the bid of every player  differs by at

most  from the bid that the mechanism prescribes for type  .

When there is a unique IC-IR mechanism that implements the assortative allocation,14

the mechanism in part (b) of Theorem 1 coincides with this mechanism.

If  is quasi-linear, then the assortative allocation is also efficient, because 2 (2) −
1 (2)  2 (1) − 1 (1) for any 1  2 and 1  2.

15 If, in addition,  satisfies the

conditions of the envelope theorem, then the unique IC-IR mechanism that implements the

14This happens, for example, if  ,  , and  are smooth functions, the partial derivative of  with respect

to  is bounded away from 0, and the solution to the problem

max


(−1 () ())

is determined by the first-order condition. In this case

0() =
(−1 () ())
(−1 () ())

(−1 )0()

by the envelope theorem, and this differential equation has a unique solution that satisfies the boundary

condition (0) = 0.

15To see why, apply strict single crossing to 1 = 1(1) and 2 = 1 (2).
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assortative allocation prescribes for type  bid

 () = 
¡
−1 ( ())

¢− Z 

0


¡
−1 ( ())

¢
. (6)

We therefore have the following corollary of Theorem 1.

Corollary 1 Suppose that strict single crossing holds, prizes have full support,  is quasi-

linear, and  satisfies the conditions of the envelope theorem. Then, for any   0 and any

equilibrium of a sufficiently large contest, with probability 1 every player  bids within  of

 ( ) given by (6) and obtains a prize that differs by at most  from −1 ( ( )).

Corollary 1 applies, for example, to the setting of Section 3.2.

We now consider settings in which strict single crossing holds, but prizes may not have

full support. This is the case in the setting of Section 3.1. The difficulty when  does not

have full support is that −1 is discontinuous, so the approximate rank-order of a player’s bid

may be insufficient to know the approximate utility she derives from the prize she obtains.

In the setting of Section 3.1, for example, if the rank-order of a player’s bid is approximately

2, we do not know whether she obtains a non-zero prize or not. Nevertheless, the following

result shows that the approximation of Theorem 1 holds “up to .”

Theorem 2 Suppose that strict single crossing holds and prizes have full support. Then,

for any   0 and any equilibrium of a sufficiently large contest,

(a) a fraction of at least 1− of the players  obtain with probability at least 1− a prize

that differs by at most  from −1 ( ( ));

(b) there is a regular tariff mechanism that implements the assortative allocation, such

that the bid of each of a fraction of at least 1−  of the players  differs with probability at

least 1−  by at most  from the bid that the mechanism prescribes for type  .

We also have an analogue of Corollary 1.

Corollary 2 Suppose that strict single crossing holds,  is quasi-linear, and  satisfies the

conditions of the envelope theorem. Then, for any   0 and any equilibrium of a sufficiently

large contest, each of a fraction of at least 1−  of the players  bids with probability at least

1−  within  of  ( ) given by (6) and obtains with probability at least 1−  a prize that

differs by at most  from −1 ( ( )).
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Corollary 2 applies, for example, to the setting of Section 3.1.

In addition to approximating the outcome of large contests that have been solved in the

literature, Theorems 1 and 2 and their corollaries apply to many contests for which there is no

existing equilibrium characterization. To demonstrate this, consider the following example.

Suppose that  and  are uniform, so the assortative allocation assigns prize  to type

. Let the agent’ utility be quasi-linear with  ( ) =  () for some strictly increas-

ing and continuous function  such that  (0) = 0. As we saw in Section 3.2, the case

 () =  corresponds to the setting of B&L. The case  () = 2 corresponds to Xiao’s

(2013) quadratic prize sequence.16 The case  () =  corresponds to Xiao’s (2013) geomet-

ric prize sequence.17 Xiao (2013) shows that players’ equilibrium strategies in these two cases

may contain gaps (see Figure 3). This does not happen in the linear setting of B&L. For

contests that correspond to other, non-trivial functions  (including  () =  for   2),

there is no existing equilibrium characterization.

0
Bid

...................
...................

N-1
N

1
2

0
Bid

0
Bid

...................
...................

N-1
N

1
2

Figure 3: The support of players’ equilibrium strategies (dotted lines represent gaps) in a

possible equilibrium in the setting of Xiao (2013)

Since for any strictly increasing  strict single crossing holds, Corollary 1 applies, and

(6) shows that  () =  ()− R 
0
 () . For large , therefore, a player with type  bids

16This is because  ( ( + 1) )−  ( ) =  (2 + 1) 2, so



µ


 + 1



¶
− 

µ






¶
−
µ


µ






¶
− 

µ


 − 1


¶¶
= 

2 + 1

2
− 

2 − 1
2

= 
2

2
.

17This is because  ( ( + 1) )  ( ) = 1.
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close to − R 
0
 ()  and obtains a prize close to .

Theorems 1 and 2 and their corollaries also apply to contests that combine identical

(non-zero) and heterogeneous prizes, which have not been studied in the literature. Such

contests correspond to distributions  that have atoms. For example, let

 () =

⎧⎨⎩ 2 0 ≤   1

1  ≥ 1
,

so that half the prizes have value 1. Letting  () = , we obtain a setting similar to that

of Section 3.2, which differs from that example in that there are many identical best prizes.

In this case, the assortative allocation assigns prize 2 to every type  ≤ 12, and prize 1
to every type   12. Corollary 1 applies, and (6) shows that  () = 2 for   12

and  () = 14 for  ≥ 14. For large , therefore, a player with type  bids close to

min {2 14} and obtains a prize close to min {2 1}.
In addition, Theorems 1 and 2 and their corollaries apply to settings in which  ( ) is

not multiplicatively separable, and Theorems 1 and 2 apply to settings in which  (  )

is not quasi-linear in .

4.2 Results without strict single crossing

We now turn to settings in which strict single crossing may not hold. Without strict single

crossing, an approximating mechanism may implement a consistent allocation other than

the assortative one, and may approximate large contests not as well as under strict single

crossing.

Theorem 3 Regardless of single crossing (or prizes having full support), for any   0, any

metrization of weak∗-topology,18 and any equilibrium of a sufficiently large contest there is

a regular tariff mechanism that implements a consistent allocation whose outcome is -close

(in the metrization of weak∗-topology) to the outcome of the equilibrium. If prizes have full

support, then the inverse tariff is continuous. If weak single crossing holds and the utility is

quasi-linear, then the consistent allocation is also efficient.

18See Rudin (1973) for the definition of this topology and its properties.
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Theorem 3 applies to the setting of Section 3.3 (including the implications when prizes

having full support and weak single crossing holds), whereas Theorems 1 and 2 do not.

The approximation in Theorem 3 is weaker than those in the previous results. In fact,

it may be that even for large  the approximating mechanism does not approximate the

behavior of any player individually. To illustrate this, consider the setting of Section 3.1

with ( ) = 1 instead of ( ) = , and let  = 2 + 1. Then the -th contest has

an equilibrium in which the  even players 2 4     2 bid 0 and obtain no prize, and the

 + 1 odd players 1 3     2 + 1 employ the same mixed strategy on [0 1]. As  increases,

the mixing players bid close to 1 and obtain a prize with probability close to 1. Therefore,

the distributions  converge in weak∗-topology to the distribution  in which every type

 bids 0 and obtains 0 with probability 12 and bids 1 and obtains 1 with probability

12. Consequently, the strategies of all players in every contest qualitatively differ from the

conditionals of .

Nevertheless, for every type  Theorem 3 allows us to approximate, for large , the joint

equilibrium distribution over prize-bid pairs of players with types close to . To see why,

take a closed interval  that contains , a slightly larger open interval  , and a continuous

function  :  ×  × → [0 1] whose value is 1 on  ×  × and 0 on the complement of

 ×  ×. Then

( ) =

Z
×[0)×[0)

(  )

Z
××

(  )

can be interpreted as a distribution over prize-bid pairs that approximates, for large , the

joint equilibrium distribution over prize-bid pairs of players with types close to . The

reason that this approximation works while the approximation of each player’s equilibrium

distribution may fail is that in order to obtain an approximation for players with types

in a neighborhood of a given type , we need to take a sufficiently large . Then, the

neighborhood may include many other player types, and from the limit distribution we only

learn about the average strategy across all these types.

If, however, for every type  there is a unique prize-bid pair ( ) that maximizes

 (  ) among the prize-bid pairs in which the prize is the one assigned to the bid by the

inverse tariff, then convergence in weak∗-topology implies convergence in a sense similar to

22



that of Theorem 2. Namely, for any   0 and sufficiently large , for a fraction 1−  of the

players, with probability 1−  the prize that player  obtains differs from  by at most 

and the bid of player  differs from  by at most .

Another difference between Theorem 3 and the previous results is that the set of tariff

mechanisms that implement a consistent allocation may be quite large even if every contest

has a unique equilibrium. For example, in the setting of Section 3.3 there is a continuum of

efficient allocations and tariffmechanisms that implement them, all associated with the same

inverse tariff that maps every bid  ∈ [0 1] to prize . We conjecture, however, that Theorem
3 is the strongest general convergence result that one can obtain. This is because some

contests have many equilibria, and different sequences of equilibria may be approximated by

different mechanisms. To see this, consider again the setting of Section 3.1 with  = 2 + 1

and ( ) = 1 instead of ( ) = . The -th contest has an equilibrium in which players

1      bid 0 and obtain no prize, and players +1      employ the same mixed strategy

on [0 1]. As  increases, the mixing players bid close to 1 and obtain a prize with probability

close to 1. Therefore, the distributions  converge in weak∗-topology to the distribution 

in which every type   12 bids 0 and obtains no prize and every type  ≥ 12 bids 1 and
obtains a prize. Similarly, there is a sequence of equilibria with a limit distribution in which

every type  ≤ 12 bids 1 and obtains a prize and every type   12 bids 0 and obtains no

prize, as well as many other sequences of equilibria with different limit distributions.

5 Proofs

As a preliminary step, we choose an equilibrium for each contest, and refer to the sequence

in which the -th element is the equilibrium of the -th contest as the sequence of equilibria.

For each of the theorems, we will show that every subsequence of this sequence contains a

further subsequence that satisfies the statement of the theorem. This suffices, because the

following observation can be applied with  being the set of equilibria of contest .

(Subsequence Property) Given a sequence of sets { :  = 1 2   }, suppose that for
every sequence { :  = 1 2   } with  ∈  it is the case every subsequence { :  =
1 2   } contains a further subsequence { :  = 1 2 } such that every element  has
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some property. Then there exists an  such that for every  ≥  every element in  has

this property.19

The proof of Theorem 2 is in Appendix B. The structure of the proof is similar to that

of Theorem 1 below, but the proof of Theorem 1 relies heavily on the continuity of −1, so

to prove Theorem 2 almost every step of the proof must be modified and additional results

must be derived.

5.1 Proof of Theorem 1

We begin with an outline of the proof. Given a subsequence of equilibria, each equilibrium in

the subsequence induces for each player a mapping from bids to expected percentile rankings.

We consider the average of those mappings, and −1 composed with this average gives a

mapping  from bids to prizes. As  increases, this mapping approximates the equilibrium

mappings from bids to prizes of all players in the -th contest. We then find a subsequence

of   that converges to some limit mapping  from bids to prizes. To do this, we first

define  on the rationals in  by successively picking subsequences that are convergent on

an increasing number of the rationals and applying a diagonalization procedure. Next, we

extend the resulting function to . We show that the resulting  is continuous and the

subsequence of  converges uniformly to  . Then, for each agent type we define the set of

optimal bids when  is treated as an inverse tariff, and define the mapping from agent types

to sets of optimal bids. We consider a small neighborhood of the graph of this mapping, and

show that for large  every player ’s best responses in the -th contest are in the “ -slice”

of this object. This slice is a superset of a small neighborhood of the set of optimal bids

of the agent type. In particular, a slice can in principle be large even if the set of optimal

bids of the corresponding agent type is small (this happens when the set of optimal bids

of a nearby agent type is large). We show, however, that strict single crossing combined

with this characterization of players’ best responses implies that each agent type has a

single optimal bid, which is continuous and weakly increases in the agent type. This implies

that the characterization bounds every player’s best response set, and therefore the support

19Otherwise, there would be a subsequence of elements without the property.
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of her equilibrium strategy, within an arbitrarily small interval as  increases. We then

conclude that the unique mechanism induced by  implements the assortative allocation.

This demonstrates part (b) in the statement of the theorem; part (a) then follows easily.

To simplify notation, we take the subsequence to be the sequence of equilibria (this has

no effect on the proof). We denote an equilibrium by  = (1      

), where 


 is player

’s equilibrium strategy in the -th contest (we abuse notation by using  sometimes to refer

to the random variable whose range is  and sometimes to refer to the induced distribution

on ). We denote by 
 () the random variable that is the percentile location of player 

in the ordinal ranking of the players in the -th contest if she bids slightly above  and the

other players employ their equilibrium strategies.20 That is,


 () =

1



Ã
1 +

X
 6=
1 (


)

!
,

where 1 () is 1 if  ≤  and 0 otherwise. Let


 () =

1



Ã
1 +

X
 6=
Pr ( ≤ )

!
be the expected percentile ranking of player . Then, by Hoeffding’s inequality, for all  in

 we have

Pr (|
 ()−

 ()|  )  2 exp
©−22 (− 1)ª . (7)

Finally, let

 () =
1



X
=1


 ()

be the average of the expected percentiles rankings of the players in the -th contest if they

bid  and the other players employ their equilibrium strategies.

Now, let  be the mapping from bids to prizes induced by . That is,  () =

−1 ( ()). Recall that −1 () = inf { :  () ≥ } and that −1 is continuous (prizes
have full support).

Because  is (weakly) increasing, so is . Take an ordering of all rationals in ,

denoted by 1 2   . Take a converging subsequence of the sequence 
 (1), denote it by

20This is the infimum of her ranking if she bids above , which is equivalent to bidding  and winning any

ties there. If players’ strategies are continuous, then this is equivalent to bidding .

25



1 (1), and denote its limit by  (1). Take a converging subsequence of the sequence

1 (2), denote it by  2 (2), and denote its limit by  (2). Continue in this fashion to

obtain a function  : {1 2   }→ [0 1]. In addition, define a subsequence of  such that

its -th element is the -th element in the sequence  . For the rest of the proof, denote

this new sequence by .

We now describe some properties of  :

(1)  is (weakly) increasing, because every  is (weakly) increasing.

(2)  (0) = 0.

Indeed, suppose to the contrary that  (0)  0. This implies that for some   0 and

large enough , we would have that  (0)  (0) + . This means, in turn, that the

strategies of a fraction of at least (0) +  players in the -th contest have atoms at 0.

Therefore, there is a positive probability that these players tie for a fraction  of prizes of

positive value, so any one of them would be better off bidding slightly above 0 instead of

bidding 0.

(3)  (max) = 1, because 
 (max) = 1 and therefore 

 (max) = 1.

The following lemma shows that  can be extended uniquely to a continuous function

on the entire interval .

Lemma 1 For any  ∈  (not necessarily rational) and any two sequences  ↑  and  ↓ 
of rationals in , we have lim () = lim ().

The proof of Lemma 1, and those of other results in this subsection, is in Appendix A.

The idea of the proof is that if  is discontinuous at some , then for large  it is better to

bid slightly above  than slightly below . This violates the following property, which we also

use in other proofs.

(No-Gap Property) In any equilibrium, there is no interval ( ) ∈  of positive

length in which all players bid with probability 0 and some player bids in [ max] with

positive probability.

Indeed, suppose the contrary, and consider such a maximal interval ( ). A player would

only bid  or slightly higher than  if some other player has an atom at . But the player
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with the atom would be better off by either slightly increasing her bid (if she is tying with

other players and winning the tie would increase her prize) or by decreasing her bid (in the

complementary case).

We extend  to the entire interval  by setting  () = lim () for some sequence

 →  of rationals in . Lemma 1 shows that  () is the same regardless of the chosen

sequence . Lemma 1 also guarantees that this is indeed an extension, and that the extended

 is continuous. Continuity implies the following result.

Lemma 2  converges to  uniformly on .

We now relate players’ equilibrium behavior in large contests to the inverse tariff  . For

every , denote by  type ’s set of optimal bids given  , i.e., the bids  that maximize

(  () ). Denote by  () the -neighborhood of the graph of the correspondence that

assigns to every  ∈ [0 1] the set , i.e.,  () is the union over all types  and bids

 ∈  of the open balls of radius  centered at ( ). For every type  denote by  ()

the set of bids  such that ( ) ∈  ().

Note that  () is a 2-dimensional open set, while each  () is a 1-dimensional

“slice.” Note also that  () is in general larger than the union across  of the pairs ( )

for which the distance between  and some bid in  is less than . In particular,  ()

may contain bids whose distance from every bid in  is more than . Using the sets

 (), we can characterize players’ equilibrium behavior.

Lemma 3 For every   0, there is an  such that for every  ≥  , the equilibrium bid of

every player  = 1   in the -th contest belongs to 
() with probability 1, i.e.,

 (
()) = 1.

The proof up to this point did not rely on strict single crossing, a fact we will use in the

proof of Theorem 3. We now show that under strict single crossing  is a singleton.

Lemma 4 If strict single crossing holds, then for all  the set  is a singleton. In

addition, the function  that assigns to  the single element of  is continuous and

weakly increasing.
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Lemma 4 implies that for every   0 there is a   0 such that

 () ⊆ ∪∈ (× [ ()−   () + ]) ,

i.e.,  () ⊆ [ ()−   () + ] for every type . We therefore, have the following

corollary of Lemmas 3 and 4.

Corollary 3 For every   0, for large enough  every player  bids in [ ( )−   ( ) + ]

with probability 1.

To prove part (b) of the theorem it remains to show that ◦ is the assortative allocation.
This is done by the following lemma.

Lemma 5 −1 ( ()) =  ( ()) for any type .

Thus, the mechanism that prescribes for type  prize  ( ()) and bid  () implements

the assortative allocation. Moreover, the utility of type 0 is 0, because  ( (0)) = 0 and

type 0 can get prize 0 by bidding 0, so  (0) = 0. Together with the observation that every

type is at least as well off bidding optimally as getting utility 0 by bidding 0 and obtaining

prize  (0) = 0, we have that the mechanism is IR.

To complete the proof, it remains to show part (a) in the statement of the theorem.21

Let  =  () and  () =  for some type , and for some   0 let 0 and 00 be such

that  (0) =  − 2 and  (00) =  + 2. Finally, let 0 and 00 be such that 0 =  (0)

and 00 =  (00). (Take 0 = 0 and 0 = 0 if  − 2  0, and 00 = 1 and 00 = (00) if

 + 2  1.)

By Lemma 3, for sufficiently large , every player with type 0 or lower bids less than

the player with type , and every player with type 00 or higher bids more than the player

21This part would follow easily from part (b) if we made the slightly weaker claim that every type 

obtains a prize that is close to −1 ( ( )) with high probability, but not necessarily with probability 1.

Indeed, by Lemmas 3 and 5 and the continuity of  , in sufficiently large contests every type  bids with

probability 1 a  such that  () is arbitrarily close to −1 ( ( )). By Lemma 2, this is also true if we

replace  () with (). It therefore follows from (7) and the continuity of −1 that every type  obtains

a prize that is arbitrarily close to −1 ( ( )) with arbitrarily high probability.
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with type . This means that the player with type  outbids at least a fraction  (0) of

the players, so she obtains a prize no lower than −1 ( (0)) =  ( (0)) =  − 2, and

outbids no more than a fraction  (00) of the players, so she obtains a prize no higher than

−1 ( (00)) =  ( (00)) =  + 2. (These inequalities are immediate if  − 2  0 or if

+2  1.) Moreover,  can be chosen to apply simultaneously to all  (and corresponding

, 0, and 00), by uniform continuity of  , which proves part (a) in the statement of the

theorem.

5.2 Proof of Theorem 3

For expositional simplicity, we prove the theorem assuming that prizes have full support.

Relaxing this assumption is straightforward given the proof of Theorem 2 in Appendix B.22

The proof coincides with that of Theorem 1 up to (but not including) showing that best

response sets  are singletons. Without strict single crossing, best response sets may not

be singletons, so we cannot pin down each player’s limiting bidding behavior or a unique

mechanism induced by  . Instead, we approximate the equilibria of large contests by their

limits in weak∗-topology.

To do so, from the subsequence of contests that corresponds to the subsequence  that

converges uniformly to  , choose a subsequence such that  converges to some probability

distribution  in weak∗-topology. We will show that  assigns probability 1 to the set

 = {(  ) :  ∈  and  =  ()} ⊂  ×  ×.

By standard arguments the correspondence that assigns  to type  is upper hemi-

continuous. Therefore, the set {( ) :  ∈ } ⊂  ×  is closed, and by continuity of

 ,  is also closed. Suppose to the contrary that  assigns a positive probability to the

complement of . Then, for some   0,  assigns a positive probability to the complement

of the 2-neighborhood of , that is, to the set× ×−. Consider the -neighborhood
 of  and its closure ̄ (which is contained in ), and take a continuous function  :

22To see why, replace  with  ∗, note  is still closed, and use Lemma 12 to show (8). The rest of the

proof is unchanged.
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 ×  × → [0 1] such that (̄ ) = 1 and ( ×  × −) = 0. Then,Z
  1.

But by Lemma 3, convergence of   to  , and (7), for sufficiently large  every player  with

arbitrarily high probability bids  and obtains  such that (   ) ∈  . Thus,Z
 → 1, (8)

a contradiction.

Thus, the limit mechanism prescribes for each of a measure 1 of types  bids  ∈ 

and corresponding prizes  () with probability 1. This implies that  determines a tariff

mechanism.23 It is regular, because each  is regular. It remains to show that this mech-

anism implements a consistent allocation, but this follows from the fact that  implement

consistent allocations. We show this for the marginal with respect to ; the proof for the

marginal with respect to  is analogous.

Consider a continuous function  :  ×  ×  → [0 1] whose value is 1 on the set of

all (  ) such that  ≤ ∗ and 0 on the set of all (  ) such that  ≥ ∗ + , for some

  0. Then, by the definition of weak∗-convergence,Z


 →
Z
.

For large enough  the integrals on the left-hand side belong to [ (∗)−   (∗ + ) + ].

These integrals would belong to [ (∗)  (∗ + )] if the marginals of  with respect to 

were equal to  . But the marginal of  with respect to  is not equal to  ; rather, it is

a measure that assigns probability 1 to every  . These measures, however, converge in

weak∗-topology to  , which implies that the integrals belong to [ (∗)−   (∗ + ) + ].

Therefore,

Z
 also belongs to [ (∗)−   (∗ + ) + ]. Taking the limit for  → 0,

and applying right-continuity of CDFs, we obtain that  is the marginal of  with respect

to .

23If needed, change  on a measure 0 set of types  so that it assigns to every type  bids  ∈  and

corresponding prizes  ().
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This completes the proof of the first part of the theorem. To show the second part, recall

that the limit mechanism prescribes for each type  only bids  ∈  (together with prizes

 ()), i.e., such bids are prescribed with probability 1.

If for some 0  00 and 0  00 type 0 is prescribed 0 and type 00 is prescribed 00, then

0 weakly prefers 0 to 00 and 00 weakly prefers 00 to 0. By weak single crossing, 00 weakly

prefers 0 to 00, and 0 weakly prefers 00 to 0. That is, each of the two types is indifferent

between the two bids. Thus, if a lower type is prescribed a higher prize, this is without loss

of efficiency.

6 Conclusion

In large contests, players’ strategies and the resulting distribution of prizes are approximated

by certain single-agent mechanisms. Under strict single crossing and quasi-linearity of play-

ers’ utilities, the approximating mechanism is unique. Thus, the outcomes of large contests

can be approximated by using standard techniques from the mechanism design literature,

even when solving for equilibrium is difficult or impossible. An immediate implication is that

the outcome of large contests that satisfy strict single crossing is approximately assortative,

regardless of the details of players’ utilities and the distribution of prizes. Another implica-

tion is that contest design and certain comparative statics exercises can be conducted easily

for large contests. For example, suppose that a designer has a budget that can be used to

generate a distribution of prizes. For each distribution there is a corresponding assortative

allocation, which generates some surplus, and a corresponding distribution of bids, which

are unique under the aforementioned conditions. Given a welfare measure that depends on

the surplus and bid distribution, such as a weighted average of the surplus and the aggregate

bids, the designer can choose the prize distribution that maximizes welfare. If the designer

controls the distribution of players, then similar exercises can also be performed with respect

to this distribution.

The approach and results can also be used to provide foundations for contest models with

a continuum of competitors, in the spirit of Morgan, Sisak, and Várdy (2013). It may also

be possible to derive additional results that are weaker than Theorems 1 and 2, but stronger
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than Theorem 3, by identifying suitable conditions weaker than strict single crossing.

The approximation approach may also prove useful for studying other contest specifica-

tions. One example is large contests with ex-ante symmetric players, in which each player

has private information about her utility function. Another example is contests in which

some players have initial advantages that must be overcome by other players. Appendix

C contains an example of such a contest and its approximation.24 More generally, the ap-

proach may be useful in analyzing other large discontinuous games, such as large auctions

and double auctions.

24Obtaining a general result for such contests is not straightforward, because they require allowing the

agent’s utility function to weakly decrease in his bid, whereas many of our arguments rely on the assumption

that a higher bid is inferior if it does not increase the probability of obtaining better prizes.
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A Proofs of results from Section 5.1

A.1 Proof of Lemma 1

Suppose the contrary for some  ∈ (0 max),  ↑ , and  ↓ . Let 0 = lim () and

00 = lim () (the limits exist by the monotonicity of  ), and let  = (00 − 0) 4. In

what follows, the index  is assumed large enough so that +1 ≤ max and − 1 ≥ 0.
Suppose first that  (0  ) strictly increases in . By uniform continuity of  and the

inequality 00 −   0 + , there exist a ∆  0 and  such that for any  ≥  ,

min


∙


µ
 00 −  +

1



¶
− 

µ
 0 +  − 1



¶¸
≥ ∆. (9)

Choose an element 0 of the sequence  such that 0 ∈ (− 1 ), and choose an

element 00 of the sequence  such that 00 ∈ ( + 1). Take a   0 small enough so

that (1−)∆−max  0, where max = max ( 1 0). Choose  ≥  large enough so

that:

Proof. | (00)−  (00)|  3 and |  (0)−  (0)|  3.

For all , Pr (( (00)−
 (

00))  )   and Pr ((
 (

0)− (0))  )  , (see (7))

where  is small enough so that  (00)−−1 ( (00)− )  3 and −1 ( (0) + )−
 (0)  3 (recall that −1 is continuous).

Then, in the equilibrium that corresponds to , no player bids in [− 1 0] with

positive probability, because such bids give lower payoff than bidding slightly above 00. To

see why, note that the payoff of any player  from bidding in [− 1 0] is at most

(1−)

µ


µ
   (

0) +
2

3
 − 1



¶¶
+max ≤ (1−)

µ


µ
  

0 +  − 1



¶¶
+max,

and the payoff from bidding slightly above 00 is at least

(1−)

µ


µ
   (

00)− 2
3
 +

1



¶¶
≥ (1−)

µ


µ
  

00 −  +
1



¶¶
.

The difference in the two payoffs is therefore at least

(1−)

µ


µ



 00 −  +

1



¶
− 

µ



 0 +  − 1



¶¶
−max ≥ (1−)∆−max,

which is positive by the definition of .

This shows that no player bids in [− 1 0] with positive probability, so by the No-Gap

Property  (0) = 1. But   (0)→  (0) ≤ 0  00 ≤ 1, a contradiction.
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The difficulty when  (0  ) weakly increases in  is that there may not be a positive

∆ for which (9) holds. Nevertheless, for any   0, the arguments above hold for all  in

[ 1], and in particular there exist rational 0 and 00 such that for large  (1) players with

types higher than  prefer to increase their bid by 00 − 0 in order to improve their prize

by 2 and (2)  (00) −  (0)  . Letting ̂ = inf
©
̃ :  

¡
̃
¢ ≥  (00)− 2

ª ∈ (0 00),
we see that only players with types no higher than  can bid in

£
0 ̂
¤
. But for sufficiently

small  (and using uniform continuity of −1) this would not be enough to increase  (0)

to   (0) + 2, contradicting 
¡
̂
¢ ≥   (00)− 2 (recall that  is right continuous).

For the case  = max, set 
00 = max and repeat the argument above.

25

Suppose now that  = 0. Then the above proof, with 0 = 0 instead of 0 =  − 12 ,
shows that for large  no player bids 0 = 0 with positive probability. This means, in turn,

that sufficiently small bids give lower payoff than the bid 00. Thus, no player bids close to

0 = 0 with positive probability, which contradicts the No-Gap Property.

A.2 Proof of Lemma 2

Suppose the contrary. Then there is some   0 and a sequence of integers 1 2        

such that for every  there is some bid  with |  ()−  ()|  . Passing to a subse-

quence if necessary, we assume that the sequence  → .

Consider rationals 0 and 00 such that 0    00 and  (00) −  (0)  2; such

numbers exist because  is continuous.26 For large enough values of , we have that

|  (0)−  (0)|  2 and | (00)−  (00)|  2.

For any 0 ∈ [0 00], either (a)  (0) ≥  (0), or (b)   (0) ≤  (0).

By the monotonicity of  and  , we have

  (0)−  (0) ≤   (00)−  (0) ≤ | (00)−  (00)|+ | (00)−  (0)|  

in case (a), and

 (0)−   (0) ≤  (00)−   (0) ≤ | (00)−  (0)|+ | (0)−   (0)|  

in case (b).

25The only difference is that bidding “slightly above max” is impossible. But by bidding max a player

wins with probability 1, because max is strictly dominated by 0 for all players.

26If  = 0 set 0 = 0, and if  = max set 
00 = max
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Since  ∈ [0 00] for large enough values of , we obtain a contradiction to the assumption
that | ()−  ()|   for all such .

A.3 Proof of Lemma 3

Suppose to the contrary that for arbitrarily large , the strategy of some player  in the

-th contest assigns a positive probability to the complement of 
(). Passing to a

convergent subsequence if necessary, we assume that  → ∗.

Note that for every  there is a   0 such that any bid from the complement of  ()

gives type  a payoff lower than any element of  by at least . Otherwise, by taking

a suitable subsequence, we would show that there exists an element of  that belongs to

the complement of  (). Let  = ∗.

Observe that:

1. The maximal payoff of type , attained at any bid from , is continuous in .

Indeed, by continuity of the payoff function, any bid  ∈  yields to any type close

enough to , a payoff close to that obtained by type  by bidding . Thus, the maximal

payoff function is lower semi-continuous.27

Suppose now that the function is not upper semi-continuous. That is, there is a   0

and a sequence of types  →  such that by bidding some  type  obtains a payoff at

least  higher than the maximal payoff of type . Passing to a convergent subsequence if

necessary, we assume that  → . By continuity of the payoff functions, by bidding  type

 obtains a payoff higher by at least   0 than her maximal payoff, a contradiction.

2. For every   0, for sufficiently large  the highest payoff that type  can obtain by

bidding in the complement of 
() is higher by at most  than the highest payoff that

type ∗ can obtain by bidding in the complement of ∗ ().

Indeed, suppose that for    type  obtains by bidding some  in the complement

of 


() a payoff at least  higher than the highest payoff that type ∗ can obtain by

bidding in the complement of ∗ (). Passing to a convergent subsequence if necessary,

we assume that  → . Since every (  ) belongs to the complement of  (), so does

(∗ ); thus, (∗ ) belongs to the complement of ∗ (). However, by continuity of the

27Lower semi-continuity says that the value of the limit is no lower than the limit of values, while upper

semi-continuity says that the value of the limit is no higher than the limit of values. A function is continuous

if and only if it is upper and lower semi-continuous.
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payoff functions, bidding  gives type ∗ a payoff by at least  higher than the highest payoff

that type ∗ can obtain by bidding in the complement of ∗ (), a contradiction.

By 1 and 2, for sufficiently large , any bid in the complement of 
() gives type 

a payoff lower by at least 2 than any bid in 
. By uniform convergence of  to  , the

analogous statement, with 2 replaced with some smaller positive number and  replaced

with , is also true. This means, however, that for sufficiently large , player  would be

strictly better off bidding slightly above any bid in 
than bidding in the complement

of of 
(). This is because (7) implies that for sufficiently large , by bidding slightly

above  the player obtains a prize arbitrarily close to () with probability arbitrarily close

to 1.

A.4 Proof of Lemma 4

Observe that for any 0  00, strict single crossing implies that if 0 ∈ 0 and 00 ∈ 00,

then 0 ≤ 00. Suppose that 0 contained two bids, 1  2, for some type 
0. The first

observation and Lemma 3 imply that for any 0    (2 − 1)3, for sufficiently large

 only players with types in  = [max {0 −  0} min {0 +  1}] may bid in the interval
[1 + (2 − 1)3 2 − (2 − 1)3].

Proof. Let

max
∈∈

[(−1 (max { () +∆ 1})  2 − 2 − 1)

2
)− (  1 +

(2 − 1

3
)]

be the maximal possible gain in utility when bidding 2−(2− 1)2 instead of 1+(2− 1)3
and getting a prize that is ∆ higher in the distribution of prizes. This gain becomes negative,

and bounded away from 0, for sufficiently small ∆  0. Indeed, suppose that for a sequence

∆ → 0 there is a sequence ( ) such that

lim inf[( 
−1 (max { () +∆ 1})  2 − 2 − 1

2
)− (  1 +

2 − 1

3
)] ≥ 0.

Passing to a subsequence if necessary, consider the limit (∗ ∗) of ( ). Observe that

by upper semi-continuity of  we have that lim sup () +∆ ≤  (∗). By monotonic-

ity and continuity of −1, this last inequality implies that lim sup−1 ( () +∆) ≤
−1 ( (∗)) = ∗. Therefore, by continuity of  we would have that

(∗ ∗ 2 − 2 − 1

2
)− (∗ ∗ 1 +

2 − 1

3
) ≥ 0,
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a contradiction.

Taking ∆ =  (min {0 +  1}) −  (max {0 −  0}), for sufficiently small   0, we

obtain that for sufficiently large  every player is better off bidding 1 + (2 − 1)3 than

bidding 2 − (2 − 1)2. Moreover, every player is better off bidding 1 + (2 − 1)3 than

bidding any bid in [2 − (2 − 1)2 2 − (2 − 1)3], because such bids are even more costly

than 2 − (2 − 1)2, whereas the fraction of additional players defeated is still at most

∆. Therefore, no player bids in the interval [2 − (2 − 1)2 2 − (2 − 1)3]. But then,

by the No-Gap Property, no player bids more than 2 − (2 − 1)3. This implies that

 (2 − (2 − 1)3), so  (2 − (2 − 1)3) is equal to 1. Therefore, 2 is not in 0,

because bidding slightly above 2 − (2 − 1)3 gives type 
0 a higher payoff.

Consequently,  is a singleton for any , and by strict single crossing the corresponding

function  is weakly increasing. An argument analogous to the argument that showed the

singleton property shows that  is continuous.

A.5 Proof of Lemma 5

Consider first some type  such that min = min { :  () =  ()}  0 and max =

max { :  () =  ()}  1 (min and max are well defined because  is continuous). Take
any  ∈ ¡0min©min 1− max

ª¢
. By Corollary 3 applied to  = (

¡
min

¢− ¡min − 
¢
)2,

if  is sufficiently large, then the equilibrium bids of every player with type lower than

min −  are lower than (min − ) + . Therefore, a player who bids 
¡
min

¢
outbids

all players with types lower than min −  and obtains a prize  ≥ −1(
¡
min − 

¢
).

Consequently, 
¡

¡
min

¢¢ ≥ −1
¡

¡
min − 

¢¢
, and because  and −1 are continuous,

by taking  to 0 we obtain 
¡

¡
min

¢¢ ≥ −1
¡

¡
min

¢¢
. Similar arguments show that


¡

¡
min − 

¢¢ ≤ −1
¡

¡
min

¢¢
, and because  and  are continuous, by taking  to

0 we obtain 
¡

¡
min

¢¢ ≤ −1
¡

¡
min

¢¢
. Similarly, for sufficiently large , the bids of

all players with types higher than max +  are higher and bounded away from  (max),

so  ( (max)) ≤ −1 ( (max + )), and by taking  to 0 we obtain  ( (max)) ≤
−1 ( (max)); and similar arguments show that  ( (max)) ≥ −1 ( (max)). Since

 () = 
¡
min

¢
=  (max), this yields that  ( ()) = −1

¡

¡
min

¢¢
= −1 ( (max)).

Therefore,  ( ()) = −1 ( ()) (because −1 ◦  is monotonic).

Suppose that min  0 and max = 1. Then, 
¡

¡
min

¢¢
= −1

¡

¡
min

¢¢
by an

analogous argument to the previous case. And because 
¡

¡
min

¢¢
=  ( (1)) and−1◦
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is weakly increasing, we have  ( ()) ≤ −1 ( ()) for any  ∈ £min 1¤. To show the
reverse inequality, it suffices to show that  ( (1)) = 1, because −1 ( ()) ≤ 1 for any .
Suppose to the contrary that  ( (1)) =   1. This means that for sufficiently large  by

bidding  (1) a player obtains a prize bounded away from 1 with arbitrarily high probability.

On the other hand, for any   0, if  is sufficiently large, then by bidding  (1)+ a player

obtains prize 1 with probability 1. Thus, if  is sufficiently small and  is sufficiently large,

then no player bids in an interval slightly below  (1), contradicting the No-Gap Property.

Now suppose that min = 0 and max  1. Then, the arguments above show that

 ( (max)) = −1 ( (max)). And because  ( (0)) =  ( (max)) and −1 ◦  is

weakly increasing, we have  ( ()) ≥ −1 ( ()) for any  ∈ [0 max]. To show the

reverse inequality, it suffices to show that  ( (0)) = 0, because −1 ( ()) ≥ 0 for any
. Because  (0) = 0, it suffices to show that  (0) = 0. Suppose to the contrary that

 (0) =   0.

The proof of Lemma 3 establishes that all the best responses of a player with type  (to

the equilibrium strategies of the other players), and not only her equilibrium bids, belong to


(). Thus, by the monotonicity of  and this stronger result, for any small   0 and

large enough  no player has best responses lower than −   0.

For such an , denote by ∗  0 the lowest bid such that some player bids arbitrarily

close to ∗ with positive probability. Suppose that some player  has an atom at ∗. This

player obtains the lowest prize by bidding ∗. Indeed, since the bids of all other players are

no lower than ∗ with probability 1, by bidding ∗ player  can obtain a prize higher than the

lowest one only as a result of favorable tie breaking at ∗. But then player  would be better

of by bidding slightly above ∗ instead of bidding ∗. On the other hand, any positive bid

that gives the lowest prize cannot be any players’s best response (she could get the lowest

prize or better by bidding 0). Therefore, no player has an atom at ∗. By the definition of

∗, there is a player who makes bids arbitrarily close to ∗ with positive probability. Because

no player has an atom at ∗, the probability that the player obtains prize 0 by making bids

that approach ∗ approaches 1. Therefore, such bids cannot be the player’s best response

either (she would be better off bidding 0).

Finally, it cannot be that min = 0 and max = 1. This is because by the previous parts

of the lemma, max = 1 implies  ( (1)) = 1 and max = 0 implies  ( (0)) = 0, which

contradicts the definitions of min and max.
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B Proof of Theorem 2

Recall that −1 () = inf { :  () ≥ }, and note that −1 may be discontinuous (but
is left-continuous). This requires modifying almost all the arguments used in the proof of

Theorem 1. In order not to obscure the structure of the proof, we relegate to the end of the

section the proofs of all intermediate results.

Let 0 = (

0 


0 ) be a longest interval in [0 

−1 (1)] to which  assigns measure 0; let

1 = (

1 


1 ) be a longest such interval disjoint from 1, and so on. Then, every open interval

of prizes that has measure zero is contained in one of the intervals 0 1 . And for any

  0, there is a  such that the lengths of +1, +2  sum up to less than .

The definitions of 
 , 


 , 

, and   are as in Section 5.1. The definition of  , however,

must be changed. We first define a function  on the rationals in . Take an ordering of

all rationals in , denoted by 1 2   .. Take a converging subsequence of the sequence

 (1), denote it by 
1 (1), and denote its limit by  (1). Take a converging subsequence

of the sequence 1 (2), denote it by 2 (2), and denote its limit by  (2). Continue in

this fashion to obtain a function  : {1 2   }→ [0 1], which is weakly increasing (because

each  is). In addition, define a subsequence of  such that its -th element is the -th

element in the sequence  . For the rest of the proof, denote this new sequence by  (with

the corresponding sequence  = −1 ◦).

Let  = −1 ◦. We now list some properties of  :
(1)  ≤ lim inf  (because −1 is left-continuous), and  = lim  if −1 is continuous.

(2)  is (weakly) increasing, because −1 and  are.

(3)  (max) = −1 (1), because  (max) = 1 so  (max) = 1.

The discontinuities in −1 imply that  defined on the rationals in  may not be con-

tinuous, so Lemma 1 does not hold. Points of discontinuity, however, correspond to open

intervals of prizes that have measure zero. More precisely, we have the following result.

Lemma 6 For any   0 in  (not necessarily rational) one of the following conditions

holds:

1. For any two sequences  ↑  and  ↓  of rationals in , we have lim () =

lim ().

2. There is some  = 1 2  such that for any two sequences  ↑  and  ↓ , of rationals
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in , we have lim () =  and lim () =  . Moreover, lim () = () and

lim () = ().

Using Lemma 6, we define a function  ∗ on the entire interval  by setting  ∗ () =

lim () for some sequence  ↓  of rationals in (and  ∗ (max) = −1 (1)). Monotonicity

of  on the rationals guarantees that  ∗ () is well-defined, and is the same regardless of the

sequence . In addition, it is easy to check that  ∗ is (weakly) monotonic, right-continuous,

and continuous at every bid  such that condition 1 from Lemma 6 holds. Note that  ∗ may

not be an extension of  , because when lim () 6=  () for a rational , we have that

 ∗() = lim () 6=  ().

Consider now a bid   0 such that condition 2 from Lemma 6 holds. Denote this

bid  by , where  is described in condition 2. Then, there is a bid 0   such that

 (0) =  () = 
¡

¢
, so  is constant on an interval below . Indeed, if (

0)  
¡

¢

for all 0  , then, as in the proof of Lemma 6, for large  no player would bid any 0

slightly below , because bidding slightly above  would almost certainly give a prize no

lower than  , whereas bidding 
0 would almost certainly give a prize no higher than . Let

 = inf
©
0 :  (0) = 

¡

¢ª

 .

It is also true that every maximal interval on which  ∗ is constant with a value lower

than −1 (1) is
£
 

¢
for some . Indeed, consider a maximal nontrivial interval with lower

bound  and upper bound  on which the value of  ∗ is   −1 (1). It suffices to show

that  ∗ ()  , because then condition 2 from Lemma 6 applies to , which implies that

 =  for some ; and the maximality of
£
 

¢
yields  = . Suppose that 

∗ () = .

Then, for large enough  bidding  almost certainly gives a prize at most slightly higher

than , whereas bidding slightly above  almost certainly gives a prize not much lower than

. The former statement follows directly from right-continuity  ∗ and the assumption that

 ∗ () = . The latter statement is obvious for  = 0. And for   0 it follows from the

observation that either  ∗ is continuous at , in which case the statement is obvious, or

 ∗ is discontinuous at , in which case  has an atom at  ∗
¡

¢
= . But then, for large

enough , no player bids in some neighborhood of , because bidding slightly above  leads

to a higher payoff. This contradicts the No-Gap Property, because   −1 (1).

Because −1 may be discontinuous,  need not uniformly converge to  or  ∗, even

on the set of points at which they are continuous. In particular, for a rational  in
£
 

¢
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it may be that  ()   () = 
¡

¢
for arbitrarily large , so   () = −1 ( ()) ≥

  , whereas 
∗ () = . Nevertheless, 

 “almost converges” uniformly except on

some neighborhoods of a finite number of intervals [ ]. More precisely, we say that 


converges uniformly to  ∗ up to  on a set  if there exists an  such that for every  ≥ 

and  ∈  we have that

| ()−  ∗()|  .

We then have the following modification of Lemma 2.

Lemma 7 For every   0, there exists a number  such that for every   0,   converges

uniformly to  ∗ up to  on the complement of

 =

[
=1

( −   + ).

We now relate players’ equilibrium behavior in large contests to the inverse tariff  ∗.

Define ,  () and  () as in Section 5.1 with 
∗ instead of  (the maximal payoff

is achieved because  ∗ is increasing and right-continuous, so is upper semi-continuous).

Define the mass expended in an interval of bids  (by a set of players  in the -th contest)

as
¡P

∈ Pr { ∈ }¢ . We then have the following result, which we use in proving the
remaining results.

Lemma 8 For any interval
£
 

¤
and any   0 and   0, there exists   0 such that

for sufficiently large  we have that:

(i) The mass expended in [ −   + ) by players with types  for which  ∈  ()

is less than 3;

(ii) The mass expended in ( −  ] by players with types  for which  ∈  () is

less than 3.

In addition, for any   0, for sufficiently large  we have that:

(iii) The mass expended in
£
 +   − 

¤
by all players is less than 3.

Lemma 3 must also to be modified.
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Lemma 9 For every   0, there exist  such that for every   0 and sufficiently large

,28 the equilibrium bid of every player  in the -th contest belongs with probability 1 to


() ∪

[
=1

( −  ).

Strict single crossing no longer implies that  is a singleton. Instead, we have the

following result.

Lemma 10 If strict single crossing holds, then for all but a countable number of types the

set  is a singleton. For those types for which it is not a singleton,  contains precisely

two elements:  and  for some . The correspondence that assigns to type  the set 

is weakly increasing (i.e., for any 0  00, if 0 ∈ 0 and 00 ∈ 00, then 0 ≤ 00) and

upper hemi-continuous.

Let  () = min, and note that  is increasing and left continuous, and is not right

continuous precisely at types  for which  is not a singleton. We then have the following

corollary of Lemmas 8, 9, and 10, which is a modification of Corollary 3.

Corollary 4 For every   0, for large enough  a fraction 1 −  of the players  bid in

[ ( )−   ( ) + ] with probability 1− .

To prove part (b) of the theorem it remains to show that  ∗ ◦  is the assortative
allocation. This is done by the following lemma, which is a modification of Lemma 5 that

accommodates the discontinuities in  ∗ and .

Lemma 11 −1 ( ()) =  ∗ ( ()) for any type   0.

To complete the proof, it remains to show (a) in the statement of the theorem. To do so,

we use the following result, which we also use to prove that Theorem 3.

Lemma 12 For every    0, and sufficiently large , there exists an event  ⊂ × ×
such that () ≥ 1−  and for every (   ) in  we have that:

(1) | −  ∗()|  , or

(2) |− |   and | −  ∗()|   for some  in 
.

If strict single crossing holds, then (2) holds for every (   ) in .

28How large  needs to be may depend on .
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To see that Lemma 12 implies (a) in the statement of the theorem, choose some   0.

Lemma 12 with 22 instead of , shows that for every   0, there is a large enough  such

that for a fraction 1−2 of the players , the conditional probability of ∩{ }× × is

at least (1− ) , i.e.,each such player  obtains with probability at least 1− a prize  that
differs by at most  from the prize  ∗ prescribes to some optimal bid of the player’s type. Let

 = 2, denote by the number of types  for which  ∗ (max)− ∗ (min)  , and

choose  large enough so that   2. Then, by excluding the players with types  for

which  ∗ (max)− ∗ (min)  , we have that for large enough  each of a fraction

1− of the players  obtains with probability at least 1− a prize  such that | −  ( )|  ,

because for some  in 
we have | −  ( )| ≤ | ∗ ()−  ( )|+ | −  ∗()| ≤ 2 = .

B.1 Proof of Lemma 6

Let lim () = 0 and lim () = 00. Both limits 0 and 00 exist and 0 ≤ 00 by

monotonicity. Suppose that 0  00. If  assigns a positive measure to (0 00), then it

assigns a positive measure to any interval with endpoints sufficiently close to 0 and 00. In

such a case, we obtain a contradiction by arguments similar to those used in the proof of

Lemma 1. Indeed, for sufficiently large  no bidder would bid slightly below , because

bidding slightly above  would almost certainly give a better prize.

Thus,  assigns measure zero to (0 00). This implies that (0 00) ⊆ ( ) for some
. By definition,  takes values in [0 ] ∪ [  1], so 0 =  and 00 =  . Moreover, the

monotonicity of  implies that  is the same for any sequences  ↑  and  ↓  of rationals
in . It remains to show that lim () = () and lim () = ().

For this, note that if lim ()  (), then lim ()  . Similarly, if lim () 

(), then lim ()   . The inequalities lim ()  () and lim ()  ()

can be ruled out similarly if  does not have atoms at  or 

 . Suppose that  has an

atom at  and lim ()  (). Since lim () =  ,  (
)  () for sufficiently

large . Take two rationals  such that ()   ()  ( ); denote them by 0  00.

Then, for sufficiently large  any player obtains prize  with arbitrarily high probability

by bidding any  ∈ [0 00]. Thus, for sufficiently large , no player would bid with non-zero
probability any  ∈ [(0 + 00)2 00]. This contradicts the No-Gap Property.

Suppose that  has an atom at  and lim ()  (). Then, for sufficiently large 

bidding  almost certainly gives a prize no better than . In contrast, bidding 
 almost
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certainly gives a prize at least as good as  . This follows directly from (7) if  has an

atom at  . If  does not, then this again follows from (7) for large enough , because

 ()   () for any . For large enough  a contradiction is obtained similarly to the

last part of the proof of Lemma 1.

B.2 Proof of Lemma 7

The proof is analogous to the proof of Lemma 2. Take a  such that the lengths of +1,

+2  sum up to less than 2. Take any   0, and suppose to the contrary that there

is an increasing sequence of integers 1 2         such that for every  there is some

bid  ∈  with |  ()−  ∗ ()| ≥ . Passing to a subsequence if necessary, we

assume that the sequence  → . Take rationals 0 and 00 such that 0    00 and

 ∗ (00)−  ∗ (0)  2,29 and

[0 00] ⊂  −
[
=1

[ ].

This is possible, since the lengths of +1, +2  sum up to less than 2. In addition, for

large enough  we have that | (0)−  ∗ (0)|  2 and |  (00)−  ∗ (00)|  2, since

the length of each +1, +2  is less than 2. The rest of the proof coincides with the

proof of Lemma 2.

B.3 Proof of Lemma 8

First, observe that the maximal payoff of type , attained at any bid in , is still con-

tinuous in . The proof is almost the same as that in Lemma 3. The only difference is that

 ∗ is upper semi-continuous, as opposed to the continuous  in the proof of Lemma 3. But

upper semi-continuity is all that is needed for the continuity of the maximal payoff.

This observation implies that there exists a   0 such that for any type  any bid in

the complement of  () gives type  a payoff lower by at least  than any bid in .

Indeed, suppose that for every = 1 2  there exist type  and bid  in the complement

of  () that gives type  a payoff lower by less than 1 than any bid in . Passing

to a convergent subsequence if necessary, assume that  →  and  → . Bidding  gives

29If  = 0, take 0 = 0.
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type  a payoff no lower than any bid in , by upper semi-continuity of 
∗. This means

that  ∈ . But this cannot be, because the complement of  () is a closed set that

contains ( ) for all , so  belongs to the complement of  ().

For (i), suppose in contradiction that for any   0 there are arbitrarily large  such

that the mass expended in [ −   + ) by players with types  for which  ∈  () is

at least 3. Take  small enough so that the payoff that such players obtain by bidding

slightly more than any bid in  is higher by 2 than the payoff that they would obtain

by bidding  −  and getting .
30

Suppose first that   0. We can assume, due to the Subsequence Property, that the

sequence 
¡
 − 

¢
converges. Denote its limit by . It cannot be that  ≥ 

¡

¢
, because

of the monotonicity of  and the definition of .

Thus,   
¡

¢
. Take a positive   min

©
6

¡

¢− 

ª
). For  ≥  −  and

sufficiently large , if  ()  
¡

¢−2, then no player of type  such that  ∈  ()

bids , because such a player would obtain a strictly higher payoff by bidding slightly more

than any bid in . Let  be defined by 

−+ = inf

©
 :  () ≥ 

¡

¢− 

ª
. Since

  
¡

¢ −  and  () is right-continuous, we have that   0 (for sufficiently large

). And since for every    −  +  we have 
 ()  

¡

¢ −   

¡

¢ − 2 (by

definition of ), the mass of at least 3 must be expended in [

 −  +  


 + ).

If a mass of at least 4 is expended in
¡
 −  +  


 + 

¢
by these players, then we

have that 
¡
 + 

¢ ≥ 
¡
 −  + 

¢
+ 4 ≥ 

¡

¢ −  + 4  

¡

¢
+ 12.

But  is monotone and its value on the rationals in
£
 

¢
is 

¡

¢
by definition of ,

a contradiction. Otherwise, the players with types  for which  ∈  () bid precisely

 −  +  with probability at least 12. Since these players tie with each other at

 −  + , by bidding  −  +  they must obtain a prize of a specific type  with

probability 1, even if they lose all ties at − + . (Otherwise, each of them could obtain

30To see why bidding slightly above any  ∈  gives a payoff close to  (  ∗ ()  ), consider the

following two cases:

(a) −1(())   ∗ () for all rationals   ; in this case, for any   , if  is sufficiently large,

then the player obtains a prize higher than  ∗ () with arbitrarily high probability by bidding any .

(b) −1(()) =  ∗ () for rationals    close enough to ; in this case,  ∗ () =  ∗ () for such

rationals . This implies that  = 0 for some 0, and for any bid 0 , we have that 
−1 is left-continuous

at ( ∗
¡
0
¢
).
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a strictly better distribution of prizes by bidding slightly above  −  +  and winning the

ties at  −  + .) But a player who loses all ties at 

 −  +  has rank order no higher

than 
¡

¢ − , by definition of , so  ≤ . Therefore, such a player would obtain a

strictly higher payoff by bidding slightly more than any bid in .

Now suppose that  = 0. We can assume, due to the Subsequence Property, that the

sequence 
¡
 − 

¢
converges. Denote its limit by . The monotonicity of  and the

definition of .imply that  ≤ 
¡

¢
. The case   

¡

¢
is handled as in the case

  0 above. Suppose that  = 
¡

¢
. Then, for any   0 such that  +   , for

sufficiently large  the mass expended in
¡
 


 + 

¢
by all players is smaller than 6,

because  () = 
¡

¢
for any rational  ∈ ¡ +  

¢
. And if for sufficiently large  the

players with types  for which  ∈  () bid precisely  with probability at least 6,

then the ranking of a player who ties at  and loses is at most 
¡

¢− 12. But in this

case each player of type  for which  ∈  () would strictly prefer bidding slightly more

than any bid in  to bidding 

, a contradiction.

To show (ii), note that if  = 0 for some 
0, then (i) follows from (ii). Thus, suppose

that  6= 0 for any 
0. Suppose in contradiction that for any   0 there are arbitrarily large

 such that the mass expended in ( −  ] by players with types  for which  ∈  ()

is at least 3. Take  small enough so that the payoff that such players obtain by bidding

slightly more than any bid in  is higher by 2 than the payoff that they would obtain by

bidding −  and getting  . Observe that for sufficiently large , by bidding  any player

almost certainly obtains a prize at most slightly better than  ∗ () =  . This because

 6= 0 for any 0, so  ∗ is continuous at  and  ∗ ()   () for    (provided that

 ()  1). Therefore, for large enough  a player with type  for which  ∈  () would

be better off bidding slightly above any  ∈  than bidding in ( −  ].

Part (iii) follows immediately from the fact that the value of  on
£
 

¢
is 

¡

¢
, by

definition of .

B.4 Proof of Lemma 9

As shown in the proof of Lemma 8, there exists a   0 such that for any type  any bid in

the complement of  () gives type  a payoff lower by at least  than any bid in .
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Take   0 such that for any type , bid , and prizes 0 and 00 with |0 − 00| ≤  we have

| ( 0 )−  ( 00 )| ≤ 

3
.

Next, take a  guaranteed by Lemma 7 for this . In addition, take  large enough so the

lengths of +1, +2  sum up to less than 2. Finally, for any   0 take an  that

satisfies the definition of uniform convergence up to  on the complement of . (Note that

 is the same for all .)

Suppose to the contrary of the statement of the lemma that there is a   0 and a

subsequence of contests such that a player  in the -th contest has a best response  to the

strategies of the other players that does not belong to 
()∪

[

=1
(− ). As usual,

we assume that the subsequence is the entire sequence; moreover, we assume that  → ∗

and  → ∗.

Consider the following two cases:

A. (∗ 6=  for any  = 1  ) In this case, for some   0 there is a neighborhood of

∗ that is disjoint from . By uniform convergence of 
 to  ∗ up to  on the complement

of ,

 (  
 ()  )−  (  

∗ ()  ) ≤ 

3

for sufficiently large  ≥ . And because  ∈ 
(), for any  ∈ 

we have

 (  
∗ ()  )−  (  

∗ ()  ) ≥ .

Thus, we obtain

 (  
∗ ()  )−  (  

 ()  ) ≥ 2
3
.

Observe that any bid 0 higher than  guarantees, for sufficiently large , a prize not much

worse than  ∗() with arbitrarily high probability.31

We will now show that by bidding , for sufficiently high  type  obtains with arbi-

trarily high probability a prize no better than  ()+. Indeed, since 
∗ does not belong to

31To see why, note first that  ∈ ( ) for any . Next, consider the following two cases:
a) ( =  for some ) Then: either (i)  has no atom at  and (0)   () for any 0  , or (ii)

 has an atom at  and (0) ≥  () for any 0  . In both these cases, any 0   guarantees (for

sufficiently large , and with high probability) a prize no lower than  ∗() = .

b) ( 6=  for any ) In this case,  ∗() = lim↑  (), so by left-continuity of −1, an agent obtains a

prize not much lower than  ∗() by bidding 0 = .
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£
 

¤
for any  ≤ , we have that  (0) is bounded away from

¡
1
¢
     

¡

¢
for ratio-

nals 0 sufficiently close to ∗. Therefore,  () is also bounded away from
¡
1
¢
     

¡

¢

for sufficiently large . And for sufficiently large , bidding  in the -th contest gives with

arbitrarily high probability a rank order arbitrarily close to  (). Since the lengths of

+1, +2  sum up to less than 2, for sufficiently large , by bidding  a player obtains

with arbitrarily high probability a prize no better than −1 ( ()) + .

Therefore, by definition of , we have that by bidding  type 

 obtains a payoff that

is higher than  (  
 ()  ) by at most slightly more than 3. Consequently, for

sufficiently large  player  would obtain by bidding some 0   in the -th contest a

payoff strictly higher than by bidding , a contradiction.

B. (∗ =  for some  = 1 ) Then, consider a 
∗∗ slightly higher than ∗, such that ∗∗

does not belong to [ ] for  = 1  , and such that: (i) for sufficiently large  the payoff

(of any player) in the -th contest of bidding ∗∗ is lower than the payoff of bidding  by at

most 6; (ii) for sufficiently large , we have that (  
∗() )−(   ∗(∗∗) ∗∗) ≥ 56

for any  in 
. This latter condition is possible because, by definition, (∗ ∗) ∈  (),

so for large enough  by continuity of  and the maximal payoff we have (  
∗() ) −

(  
∗(∗) ∗) ≥ 1112 for any  in 

, and by right continuity of  ∗ at ∗ we have

that (  
∗(∗) ∗)− (  

∗(∗∗) ∗∗) ≤ 12 for ∗∗ sufficiently close to ∗.

Now apply an argument analogous to that in case A with ∗∗ playing the role of  to

show that for large  a player of type  obtains at least 23 more by bidding  in 

than by bidding ∗∗, and conclude that by (i) the same holds for  instead of ∗∗ with 23

replaced with 2, a contradiction.

B.5 Proof of Lemma 10

Monotonicity of the correspondence follows from strict single crossing, and upper hemi-

continuity follows from standard arguments.32

Suppose that  contains a pair of bids 1  2. Below we will show that for any

  0 and any interval [ ] such that 1   and   2, for sufficiently large  the mass

expended in [ ] by all players is at most . This implies that the function , and therefore

32More precisely, this follows from the fact that  is the set of all  such that ( 
∗()) maximizes type

’s utility over the closure of the graph of  ∗, which is a compact set.
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 ∗, is constant on every such interval [ ], and therefore on (1 2). But  ∗ (2)   ∗ (1)

because 1  2 are in , so by definition of the discontinuity points  of 
∗ we must have

(1 2) ⊆
¡
 

¢
for some . And because  ⊆ \ ∪

[∞
=1
( ), we have that 1 = 

and 2 = .

It remains to show that for any   0, for sufficiently large  the mass expended in [ ] by

all players is at most . We will show this for 2 and players of types lower than  (a similar

argument applies to types higher than ). Choose 0   such that  ()− (0)  3. For

sufficiently small   0, we have that sup∪≤0 ()   (because the correspondence is

monotonic and 0  , so every bid in 0 is at most 1  ).

Therefore, by Lemma 9, there is some  such that for every   0 and sufficiently large

 any bid in [ ] made by a player of type  ≤ 0 in the -th contest is in
[

=1
( −  ).

Consider one of these  intervals for which ( −  ) ∩ [ ] is not empty. First note that
sup∪≤0 ()   ≤ , so  is not in ∪≤0 (). If 


  sup∪≤0 (), then by

Lemma 8 there exists a  such that for sufficiently large  the mass expended in
¡
 −  

¢
(and therefore [ ]) by players of type  ≤ 0 is less than 6. If  ≤ sup∪≤0 (),

then by (ii) and (iii) in Lemma 8, for sufficiently large  the mass expended in [ ] by

players of type  ≤ 0 is less than 6.

Therefore, for large enough  the mass expended in [ ] by players of type  ≤ 0 is

smaller than 6, and because  ()−  (0)  3, the mass expended in [ ] by players

of type  ≤  is smaller than 2.

B.6 Proof of Corollary 4

Choose   0. Lemma 10 implies that there is a   0 and a finite number of intervals

of types with total  -mass 2, such that for every type  not in one of these intervals,

 () ⊆ [ ()−   () + ].33 Consider the fraction 1 − 2 of players  for whom


() ⊆ [ ( )−   ( ) + ], and let  be the one in the statement of 9 with 

instead of . By 9 with  instead of  and Lemma 8 with 22 instead of  and  = , at

33There is a   0 such that
P



¡
 − 

¢
 . For each  ≤  such that  =

©
 

ª
for

some type , consider the interval of types [ −   + ]∩ [0 1], where  is such that (the continuous) 
increases by no more than 2 on any interval no larger than 2. The sum of the  -mass of these intervals

is no larger than 2, and the sum of the “jumps” of  on the complement of these intervals is no larger

than .
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most a fraction 2 of these players  bid outside of [ ( )−   ( ) + ] with probability

higher than .

B.7 Proof of Lemma 11

Consider first some type   0 such that min = inf { :  () =  ()}  0 and max =

max { :  () =  ()}  1 (max is well defined because  is left continuous).
If  () 6=  for every , then by Lemma 10 we have that min is singleton, 

is continuous at min, and  ∗ is continuous at  (). Therefore, the arguments in the

proof of Lemma 5, with Corollary 4 instead of Corollary 3, show that  ∗
¡

¡
min

¢¢
=

−1
¡

¡
min

¢¢
. If  () =  for some , then by Lemma 10 we have that min =

©
 

ª
.

Consider a player who bids some rational  in
¡
 

¢
. Corollary 4 implies that for sufficiently

large  this player (1) outbids with arbitrarily high probability an arbitrarily large fraction

of the players with types min or lower, so lim () ≥ 
¡
min

¢
, and (2) is outbid by an

arbitrarily large fraction of the players with types higher than min, so  () ≤ 
¡
min

¢
.

Thus,  () = 
¡
min

¢
, so we have  ∗

¡

¡
min

¢¢
=  ∗

¡

¢
=  ∗ () = −1 ( ()) =

−1
¡

¡
min

¢¢
.

If  () =  for some , then max =
©
 

ª
, and an argument similar to the

one in the previous paragraph can be used to show that  ∗ ( (max)) = −1 ( (max)).

Suppose that  () 6=  for every , so max is a singleton and  is right continu-

ous at max. The arguments in the proof of Lemma 5, with Corollary 4 instead of Corol-

lary 3, show that −1 ( (max)) ≤  ∗ ( (max)) ≤ lim↓0−1 ( (max + )). Suppose

that  ∗ ( (max)) 6= −1 ( (max)). Then  (max) is a point of discontinuity of −1,

so  ∗ ( (max)) = lim↓0−1 ( (max + )) =  for some , and  (max) = . Thus,

−1 ( (max)) ≤  . Because  () =  (max) = , the previous paragraph shows that

 () = 
¡
min

¢
for any  in

¡
 

¢
, so 

¡

¢
= lim↑  () = 

¡
min

¢
, where the first

inequality follows from Lemma 6. Since 
¡

¢
= 

¡
min

¢
and min  max, we have

−1 ( (max)) ≥  . Together with the opposite inequality and  ∗ ( (max)) =  shown

above, we have that  ∗ ( (max)) = −1 ( (max)).

Thus,  ∗
¡

¡
min

¢¢
= −1

¡

¡
min

¢¢
and  ∗ ( (max)) = −1 ( (max)). Therefore, if

 () = 
¡
min

¢
, we have that  ∗ ( ()) = −1 ( ()), as in the proof of Lemma 5 (recall

that  () =  (max) because  is left continuous). If  ()  
¡
min

¢
, then arguments

similar to the ones in the previous paragraph show that  ∗ ( ()) = −1 ( ()).
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The remaining cases can be handled similarly to the same cases in the proof of Lemma

5.

B.8 Proof of Lemma 12

In what follows we consider players with type  such that  () ≥ 4. This guarantees that

there is a strictly positive amount, independent of , that all players are willing to pay in

order to improve the ranking of the prize they get by 2.

Take a  0 large enough so that the lengths of 0+1, 0+2  sum up to less than 2.

Take also a positive

0  min{  −  :  = 1 
0}

such that

( 0 0) ≥ (  ) (10)

for any , ,  with 0 −   2 and 0 −  ≤ 0.

In addition, take 0 small enough so that if  ∈ ( ) for all  = 1   0 and  ≤ + 0,

then  ∗()−  ∗() ≤ 2.

If strict single crossing holds, as in the proof of Corollary 4 take   0 small enough

such that there is a finite number of intervals of types with total  -mass 4, such that for

every type  not in one of these intervals,  () ⊆ ( ()− 0  () + 0). If strict single

crossing does not hold, take  = 0.

Finally, take large enough so that for any   0, if  is sufficiently large, the equilibrium

bid of every player  in the -th contest belongs with probability 1 to


() ∪

[
=1

( −  ).

In addition, assume that  ≥  0.

Our first claim is that:

Given a   0, for any  ∈ ( −  ) for all  = 1 , there exists an  such that

for every  ≥ , a player for whom  is a best response and bids  obtains (with high

probability) a prize  such that | −  ∗()|  2. We will also show that there exists an

 =  that is common for all such bids .

Suppose first that  6=  for any  = 1 . Since  () 6= () and  () 6= () for

any  = 1 , any rank order close to  () also differs from () and (). By (7),
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for sufficiently large , a player who bids  has (with high probability) a rank order close to

 (); in particular, this rank order differs from () and (). By the assumption that

the lengths of +1, +2  sum up to less than 2, this implies that the difference between

 ∗ () and the prize obtained by a player who bids  is at most 2 (with high probability).

Suppose that  =  for some  = 1 . By an argument analogous to the one used in

the previous case, the prize obtained by a player who bids  cannot, as  increases, exceed

 ∗() by more than 2 with a probability that is bounded away from 0. And  ∗() cannot

exceed this prize by more than 2 with a probability that is bounded away from 0 as 

increases, because the player would profitably deviate by bidding slightly above , which

would guarantee a prize no worse than  ∗() with arbitrarily high probability.

Now, note that the number  that was chosen for any bid  has the required property

also for all bids close enough to ; in the case of  =  for some  = 1  , we mean bids

close enough and higher than . That is, for every  there is a neighborhood  of that 

with  that is common for all bids from this neighborhood. The family of sets  is an

open covering of the compact set of bids  that satisfy  ∈ (−  ) for  = 1 . Thus,

it contains a finite subcovering, and any number  that exceeds numbers  for all elements

of this finite subcovering has the required property.

Our first claim shows that part (1) of the lemma holds for bids  ∈ ( −  ) for all

 = 1 . If strict single crossing holds, then part (2) of the lemma also holds for such

bids. That is, the -measure of (  ) with  ∈ ( −  ) for all  = 1  for which

part (2) of the lemma is violated is 2. To see why, recall that  was chosen so that for

a fraction 1 − 2 of the players  for large enough  we have that any  in 
() is

in ( ( )− 0  ( ) + 0), so |− |  0   for  =  ( ). By our first claim, the

prize  the player obtains by bidding  satisfies | −  ∗()|  2. Since  is in 
and

|− |  0, by (10) we have that  ∗()− ∗() ≤ 2. Finally,  ∗()− ∗() ≤ 2, because

of our choice of 0 and because  ≥  0.

Now consider bids  such that  is in (−  ) for some  = 1  . By (iii) of Lemma

8, we can disregard bids  in ( +   − ) for some  = 1 . Suppose that  is in

( −  ) for some  = 1  such that  6= 0 for all other 
0 = 1 . By (ii) of

Lemma 8, it is with no loss of generality to assume that  ∈ 
.34 We will show that for

34The lemma says only that the mass expended in ( −  ] by types  for which  ∈  () for some

  0 is small. However, if   0 is sufficiently small, then the fraction of types  such that  ∈  but
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sufficiently small  and for sufficiently large , player  obtains by bidding  (with arbitrarily

high probability) a prize  in ( ∗()−  ∗()+). First, not that player  cannot obtain by
bidding  a prize lower than  ∗()− (with probability bounded away from 0 for arbitrarily
large ), because for small enough  it would be profitable to deviate to bidding slightly

above , and obtaining a prize not much lower than 
∗() with arbitrarily high probability.

Player  cannot obtain by bidding  a prize higher than  ∗()+ (with probability bounded

away from 0 for arbitrarily large ), because by (7), for any rational    and sufficiently

large  the rank order of player  is with arbitrarily high probability bounded above by ()

. Thus, the upper bound on the prize follows from the assumption that  6= 0 for all other

0 = 1 , and that the lengths of +1, +2  sum up to less than 2.

Finally, suppose that  is in
¡
 −   + 

¢
for some  = 1 . By (i) of Lemma 8, it is

with no loss of generality to assume that  ∈ 
. We will show that for sufficiently small

 and for sufficiently large , equilibrium bidding in
¡
 −   + 

¢
leads (with arbitrarily

high probability) to a prize  ∈ ( ∗() −   ∗() + ), except a small probability event.

Indeed, by an argument similar to that from the previous case, such a bid cannot lead to a

prize lower than  ∗()−  (with probability bounded away from 0 for arbitrarily large ).

To obtain a prize higher than  ∗()+ with a non-vanishing probability, a player’s expected

rank order when bidding  cannot be, for large , much lower than 
¡

¢
. But, as in the

proof of Lemma 8, if non-vanishing fraction of players win a prize higher than  ∗()+ with

a non-vanishing probability by bidding in
¡
 −   + 

¢
, then the increase in expected rank

order on the interval
¡
 −   + 

¢
is bounded away from 0 for all , which contradicts the

fact that ( + ) approaches () as  increases.

C All-Pay Auctions with Head Starts

This setting is based on Siegel (2013a), who considered contests in which some players have

an initial advantage relative to other players. In the single-agent setting, all non-zero prizes

are identical and have the same value for all types. Type  has a head start of , so he cannot

bid less than , and his cost of bidding  ≥  is − . To model this and satisfy continuity,

we set (  ) =  − (− ) and have the support of  be {0 1}. We assume that  is

uniform. We also assume that there is a mass 12 of non-zero prizes, so () = 12 for all

 ∈  () is small.
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 ∈ [0 1) and (1) = 1. We make these simplifying assumptions for ease of exposition.

All allocations are efficient. Not all of them, however, can be implemented by an IC, IR

mechanism; one example is the allocation that assigns prizes to the types with the lowest

head starts. The assortative allocation can be implemented, and prescribes for every type

 ≤ 12 prize 0 and for every type   12 prize 1. Any IC-IR mechanism that implements

this allocation prescribes for every type  ≤ 12 bid  and for every types  ≥ 12 bid 32.
We now show that the outcome of this mechanism approximates the equilibria of contests

with many players and prizes. For every , the -th contest is an all-pay auction with p2q
(non-zero) prizes of value 1, in which the cost of bidding  ≥  for player  is  − .

To simplify a little further, we consider  = 2 + 1, so that there are  + 1 identical non-

zero prizes. As in some previous examples, the simplicity of the allocation and the IC-IR

mechanisms that achieve it contrast with the relative complexity of players’ equilibrium

mixed strategies, which include atoms and gaps (see Siegel (2013a)). Moreover, while the

IC-IR mechanism is given explicitly, players’ mixed strategies are derived by an algorithm

and are not described in closed form.

To show the approximation we make use of some equilibrium properties demonstrated by

Siegel (2013a), and do not require a complete equilibrium characterization. We first observe

that in equilibrium:

(a) players  = 1 2  −1 (the players with the lowest head starts) bid their head starts
and lose the contest (see Corollary 1 in Siegel (2013a)).

Now consider the other players. We will show that

(b) for any   0, if  is sufficiently large, then the fraction of players  +1     2+1

who bid  ∈ [(3 + 1)(2 + 1)−  (3 + 1)(2 + 1)] with probability higher than 1−  is

higher than 1− .

Indeed, note first that because players 1 2     −1 do not bid more than ( − 1)  (2 + 1)
and there are +1 prizes, a player  =  +1     2+1 wins a prize if she bids more than

( − 1)  (2 + 1) and in addition outbids at least one of the other players  +1     2+1.
This implies that no player  = +1     2+1 bids more than (3 + 1)  (2 + 1), because

such bids are strictly dominated by 0 for player . Another observation is that the equilib-

rium payoff of player 2 + 1 is ( + 1)  (2 + 1), which is the difference between her head

start and that of player  (see Theorem 1 or the first paragraph on page 16 of Siegel (2013a)).
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Now suppose that for some   0, for any   0 a fraction  of the  + 1 players

 +1     2+1 bid  ∈ [(3+1)(2+1)−  (3+1)(2+1)] with probability at most

1− . These players therefore bid less than (3+1)(2+1)−  with probability at least 

(because players  + 1     2+ 1 do not bid more than (3 + 1)  (2 + 1)). But then by

bidding (3+1)(2+1)− player 2+1 wins with a probability no lower than 1−(1− )
(+1)

(because she wins whenever not all these players bid more than (3 + 1)(2 + 1) − ), so

she can obtain a payoff no lower than

1− (1− )
(+1) − [(3 + 1)(2 + 1)− − (2 + 1)(2 + 1)]

= ( + 1) (2 + 1)− (1− )
(+1)

+ ,

which exceeds ( + 1)  (2 + 1) for sufficiently large .
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