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We study a market in which k identical and indivisible objects are allocated

using a uniform-price auction where z > k bidders each demand one object.

Before the auction, each bidder receives an informative but imperfect signal

about the state of the world. The good that is auctioned is a common-value

object for the bidders, and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning

the object but before he observes the state. We show that there are symmetric

equilibria in which the auction price is completely uninformative about the state

of the world and aggregates no information even in an arbitrarily large auction. In

the equilibrium that we construct, because prices do not aggregate information,

agents have strict incentives to acquire costly information before they participate

in the market. Also, market statistics other than price, such as the amount of

rationing and bid distributions contain extra information about the state. Our

findings sharply contrast with past work which shows that in large auctions

where there is no ex-post action, the auction price aggregates information.
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“We must look at the price system as a mechanism for communicating information if we want to

understand its real function....The most significant fact about this system is the economy of knowledge

with which it operates, or how little the individual participants need to know in order to be able to

take the right action...” Hayek (1945).

1. Introduction

One important reason to trust markets arises from the belief that market prices accurately

summarize the vast array of information held by market participants. Whether this belief is

justified, that is, whether prices efficiently aggregate information dispersed among agents that

are active in an economy is a central economic question addressed by past research. In certain

auction markets, prices do in fact effectively aggregate dispersed information. Specifically,

consider a market in which a large number of identical common-value objects are sold through

a uniform-price auction. In such an auction, if the bidders each have an independent signal

about an unknown state of the world and if this unknown state determines the value of the

object, then the equilibrium price converges to the true value of the object as the number

of objects and the number of bidders grow arbitrarily large. Therefore, the auction price

reveals information about the unknown state of the world. Wilson (1977), Milgrom (1979),

and Pesendorfer and Swinkels (1997) have shown that this remarkable result holds under

quite general assumptions.

In many situations, however, the common value of an object is not determined solely by

the unknown parameters of the environment, i.e., the unknown state of the world. Rather,

the object’s value is also a function of how the object is utilized; in turn, the optimal way

to utilize the object can depend on the unknown state of the world. For example, suppose

that a large tract of land is to be divided and sold to farmers in smaller parcels through a

uniform-price auction. Each farmer who successfully acquires a parcel of land in the auction

needs to decide which crop to grow (e.g., wheat or rice). However, there is uncertainty about

future crop prices as well as which crop grows best on that land. Alternatively, consider

a uniform-price auction in which bandwidth is sold to telecommunication companies. Each

winner must decide whether to use conventional technology or adopt an unconventional new

one. However, there is uncertainty about future demand drivers (such as customer tastes)

which will determine which technology is more profitable. In both of these examples, the

winner of an object in the auction (a piece of land in the first and bandwidth in the second)

must choose an action which will itself affect the value that the winner derives from the

object. Moreover, this action must be taken after the auction is finalized but before some

payoff-relevant uncertainty is resolved.

In the examples discussed above, if the auction price provides additional information that

reduces uncertainty, i.e., if the auction price aggregates information, then the winners would
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make better decisions when choosing their action (which crop to grow or which technology

to adopt). However, none of the past work on information aggregation in auctions explores

how the information revealed by the auction price is used after the auction is completed.

In contrast; in this paper we explicitly model how the information about the state of the

world is used after a common-value auction is completed; in our model, the auction’s winners

must decide on an action in order to put the objects acquired into productive use and the

optimal choice of action depends on the true state of the world. We show that such large

common-value auctions have symmetric equilibria in which the equilibrium price reveals no

information about the state of the world. Moreover, in such equilibria the nonrevealing price

leads to inefficiency: a substantial number of buyers who acquire an object in the auction

inefficiently choose the wrong action. Our result suggests that if information is useful for

efficient decision making, then the equilibrium price may not aggregate all the information

relevant for the decision and thus inefficiency may persist even in a large market. This finding

stands in stark contrast to earlier studies which show that prices aggregate information when

there is no immediate use for this information.

More specifically, we study a model in which k identical and indivisible objects are allo-

cated using a uniform-price auction in which z > k bidders each demand one unit of the

good. Before the auction, each bidder receives an informative but imperfect signal about the

state of the world. In the auction, bidders choose their bids as a function of their signal,

the k highest bidders are allocated one unit of the object, and all bidders who win an ob-

ject pay a uniform price equal to the k + 1st highest bid. The good that is auctioned is a

common-value object for the bidders and a bidder’s valuation for the object is determined

jointly by the state of the world and an action that he chooses after winning the object but

before he observes the state. In a large market, if the market clearing price were to aggregate

all information, then actions would be chosen efficiently and competition would necessarily

drive the price of the object to its efficient-use value.

We explore a number of properties of markets as the numbers of bidders and the objects

grow proportionately; however, our primary focus is on the informativeness of prices. An

outsider who could observe the signals of an arbitrarily large number of bidders would learn

the state of the world perfectly. Motivated by such an outsider’s perspective, we say that

prices fully aggregate information if an outsider can figure out the state of the world almost

perfectly just by observing the equilibrium price.

We present two main results. In our first main result, we construct a particular sequence of

symmetric equilibria in which, as the market grows arbitrarily large, the limit price conveys

no information about the true state of the world and remains strictly below the efficient use-

value of the object. In the equilibria we construct, a strictly positive fraction of agents choose
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the wrong action because the price conveys no new information. Therefore, inefficiency per-

sists even in a large market whose outcome would have been efficient if one could observe all

of the bidders’ signals. Also, because the equilibrium price does not convey new information,

agents have strict incentives to acquire costly information both before they participate in

the auction and after the objects have been allocated.

A prominent property of the equilibrium which we construct is that equilibrium bids

are nondecreasing in the signal that an agent receives, i.e., the equilibrium is monotone.

In order to explore the robustness of our first result, we also study arbitrary symmetric

equilibria which are monotone. In our second result, we characterize equilibrium behavior in

any symmetric, monotone equilibrium and we provide a sufficient condition under which such

equilibria exist. We then use our characterization to show that no sequence of symmetric,

monotone equilibria can fully aggregate information. Moreover, a non-negligible fraction of

the auction’s winners choose the wrong action in such equilibria.

In a nutshell, our results suggest that the auction price may not aggregate information

if the information is useful for productive efficiency. In our model, market statistics other

than price, such as the amount of rationing and bid distributions, are informative. There-

fore, whether these statistics are observed after an auction is finalized can affect how much

information is aggregated by prices. Moreover, dynamic trading in which traders engage in

multiple rounds of activities may augment the accumulation of useful information.

In order to obtain our result, we make a number of strong assumptions that jointly re-

strict the signal distribution and the value of an object as a function of the state and the

chosen action. However, the key driver of our result is the assumption that we make on the

interaction between the unknown states and the actions that are chosen. In particular, our

main assumption requires that the optimal action is different in each state and that choosing

the wrong action in a given state is particularly costly. This assumption implies that it is

best to own the object when the state is known with certainty, and worst to own the object

when there is significant uncertainty about the state.

Relation to the literature. This paper is closely related to earlier work which studies infor-

mation aggregation in large auctions. Wilson (1977) studied second-price auctions with com-

mon value for one object for sale, and Milgrom (1979) extended the analysis to any arbitrary

number of objects. Both of these papers show that as the number of bidders gets arbitrarily

large, price converges to the true value of the object, but only provided that there are bid-

ders with arbitrarily precise signals about the state of the world. Pesendorfer and Swinkels

(1997) further generalize the analysis to the case where there are no arbitrarily precise sig-

nals. They show that prices converge to the true value of a common-value object in all

symmetric equilibria if and only if both the number of identical objects and the number
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of bidders who are not allocated an object grow without bound. Pesendorfer and Swinkels

(2000) generalize the analysis further to a mixed private, common-value environment. Fi-

nally, Kremer (2002) shows that the information aggregation properties of auctions are more

general than the particular mechanisms studied before; he does this by providing a unified

approach that uses the statistical properties of certain order statistics.1 Our model is closest

to Pesendorfer and Swinkels (1997). The main difference from theirs is that in our model the

object’s value is jointly determined by the unknown state of the world and the action that

the owner of the object later takes.2

Our work also relates to the literature on costly information acquisition in rational-

expectations models, such as Grossman and Stiglitz (1976, 1980) and Grossman (1981).

These papers explain the conceptual difficulties in interpreting prices as both allocation de-

vices and information aggregators. Specifically, they argue that if consumers and producers

need to undertake a costly activity in order to acquire information, then equilibrium prices

cannot reveal the state of the world perfectly. Their reasoning is as follows: if prices were to

reveal the state perfectly, then no agent would have an incentive to pay for information in

the first place; but if no agent acquires information, then the prices cannot reveal the state

as there is no information to aggregate. However, as was the case for auction markets, these

papers do not explicitly consider how the information revealed by the market price could be

used by the market participants once they have completed their trade in the market. In our

model, since prices do not aggregate information, agents have a strict incentive to acquire

information. This finding contrasts with the findings of Grossman and Stiglitz (1980), who

argue that agents have no incentive to acquire information precisely because prices are so

efficient in aggregating information.

Our model is related to work by Bond and Eraslan (2010) who show that trade between

two agents with the same preferences is possible if the value of the object traded is jointly

determined by an unknown state of the world and an ex-post action that the eventual owner

of the object will undertake. In their model, trade is precluded by a no-trade theorem without

1See Hong and Shum (2004) for a calculation of the rate at which price converges to the true value in
large common-value auctions. Jackson and Kremer (2007) show that the result of Pesendorfer and Swinkels
(1997) does not generalize to an auction with price discrimination. See Kremer and Skrzypacz (2005) for
related results concerning the link between information aggregation and the properties of order statistics.

2There is extensive work on information aggregation and the role of prices in various other market con-
texts. For example, see Reny and Perry (2006) and Cripps and Swinkels (2006) for large double auctions;
Vives (2011) and Rostek and Weretka (2010) for markets for divisible objects; Rubinstein and Wolinsky
(1985, 1990), Osborne and Rubinstein (2010), Lauermann (2013), Lauermann and Wolinsky (2011, 2012),
Lauermann and Virág (2012), Golosov et al. (2011), Ostrovsky (2012) for search markets. In the voting con-
text, Feddersen and Pesendorfer (1997) show that information is aggregated in large elections as long as
the voting rule is not unanimous, and Bhattacharya (2013) shows that this result hinges critically on the
assumption that the preferences voters comove in the same direction with new public information.
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any ex-post action. It is the ex-post action and the consequent value of information that lead

to the possibility of trade. Our model shares the feature that the eventual owner of an object

undertakes an action once trading is complete. However, whereas they consider a bilateral

bargaining framework and focus on the possibility of trade, we analyze an auction framework

with a large number of strategic bidders and focus on information aggregation.

A prominent feature of our equilibrium construction is pooling by bidders who receive

signals that lie in a certain range. In a recent paper, Lauermann and Wolinsky (2012) study

an auction where the seller needs to solicit bidders for the auction and this makes the number

of participants of the auction dependent on the state of the world. Similar to our paper, their

model also features pooling in equilibrium. There is pooling in their model because bidding

the pooling bid provides insurance against winning too frequently in the low-payoff state.

The reason why pooling is sustained in our model is different: winning at the pooling bid

provides the bidder with additional information which he can then use to make a better

informed action choice.

Finally, there is a growing literature which investigates the impact of financial markets

on the real economy. Past work in this literature explores situations where speculators’

private information about the success prospects of an action to be chosen by a manager

(or a CEO or a central banker) is partially revealed through its effect on the prices of

financial assets or derivatives. Knowing this, managers also factor in financial asset price

information when deciding on their course of action. Papers in this literature then argue

that such feedback loops may decrease the information content of prices. A recent paper by

Bond et al. (Forthcoming) surveys this literature.

2. Model

We consider a sealed-bid, uniform-price auction. There are z bidders with unit demand

and k identical objects. We denote the ratio of objects to bidders (i.e., market tightness) by

κ := k
z
< 1. The set of states of the world is Ω := {L,R} with a generic element ω. The

state of the world is drawn according to a common prior π ∈ [0, 1], where π denotes the

prior probability that the state is R. Each bidder i observes a private signal si that belongs

to the set of signals S = [0, 1], and submits a bid bi ∈ [0,∞). Each of the k highest bidders

receives an object and is called a winner; all other bidders are called losers.3 Each winner

pays a price p which is equal to the (k + 1)st highest bid.

The bidders’ signals are independently and identically distributed conditional on the state

of the world. Each bidder’s signal distribution has a cumulative distribution function F (.|w)

with a continuous density f(.|w). If a bidder believes that the probability of state R is p,

3To rank bids that are tied, nature picks a ranking of bidders at random with each ranking equally likely.
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then we say that the bidder’s likelihood ratio is ρ := p/(1 − p). For a bidder who receives

signal s ∈ [0, 1], we denote his likelihood ratio, slightly abusing notation, to be ρ(s), defined

as follows:

ρ(s) =
π

1− π

f(s|R)

f(s|L)
= ρ0

f(s|R)

f(s|L)
,

where ρ0 := π/(1 − π) denotes the prior likelihood ratio derived from the common prior π.

In addition to our assumption that the density function is continuous we make the following

assumption on the signal distributions:

Assumption 1 (MLRP) The likelihood ratio ρ(s) is a strictly increasing function of s.4

In what follows, we refer to the mth highest value among n signals by Y m
n . Let sκR ∈ S

and sκL ∈ S be the unique signals that satisfy F (sκR|R) = 1− κ and F (sκL|L) = 1− κ. Recall

that κ < 1 is the market tightness, i.e., the ratio of objects to bidders. Intuitively, in a large

market there are approximately as many bidders with signals above sκR as there are objects in

state R. Therefore, if we were to allocate the objects to the bidders with higher signals first,

then, in state R, the bidders who receive an object would be approximately those bidders

whose signals exceed sκR.

The payoff of a bidder who does not win an object is equal to zero. We assume that a

bidder who wins an object must choose an action from a finite set of actions denoted by A.

This action, together with the state of the world, determines the winner’s valuation for the

good. Although all our of arguments go through with an arbitrary, finite number of actions,

to keep exposition simple, we assume that A = {l, r}. A winning bidder’s payoff is jointly

determined by the auction price p, the action that he chooses a ∈ A, and the state of the

world ω ∈ Ω. In particular, we assume that a winning bidder’s payoff is equal to v(a, ω)− p,

where the function v(a, ω) gives the winner’s valuation for the object. In what follows, we

assume, without loss of generality, that v(r, R) ≥ v(l, L) and we make the following main

assumption:

4All of the results in this paper go through without alteration if we drop Assumption 1 and our assumption
that the density function f is continuous. With two states, we can always ensure that the likelihood ratio
function ρ(s) is nondecreasing in s by reordering the signals, i.e., we can ensure that MLRP holds in its
weak form. In this paper, we make a stronger assumption to simplify our proofs. For further reference, see
our working paper Atakan and Ekmekci (2012) where we prove identical results but without Assumption 1.
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Assumption 2 The valuation function satisfies the following three inequalities:

v(l, L) > v(r, L),(1)

v(l, L) > v(l, R),(2)

v(l, R) ≥ 0 and v(r, L) ≥ 0.(3)

Note that if the valuation function does not satisfy inequality (1), then r is a weakly

dominant action. Also, if the valuation function does not satisfy inequality (2), then a bidder’s

valuation for the good is higher in state R than in state L regardless of the action he chooses.

The final inequality ensures that owning the good is weakly preferred to not owning the good

given any prior over the states. Therefore, if inequality (3) is satisfied, then it is individually

rational for all the bidders to participate in the auction. Consider, to fix ideas, a simple case

where v(l, R) = v(r, L) = 0. In this case, Assumption 2 implies that a bidder’s valuation for

the good is positive if his action matches the state of the world, and his valuation for the

good is zero if his action does not match the state of the world.

Remark 1 Assumption 2 is the substantive assumption which allows us to argue that

information is not aggregated in our model. The main implication of Assumption 2, which

we use in many of our arguments, is the fact that a bidder’s expected valuation for the good

is a nonmonotonic function of the probability that he assigns to state R. In contrast, if

either inequality (1) or (2) is not satisfied, then a bidder’s expected valuation for the good

is a monotonic function of the probability that he assigns to state R. In either of these two

cases, Pesendorfer and Swinkels (1997)’s findings apply under Assumption 1 and therefore

information is aggregated in every symmetric equilibrium of a large market. See section 5.1

for a more detailed discussion of this nonmonotonicity.

2.1. Strategies, equilibrium, and values. Each bidder submits a bid after observing

his signal. A bidding strategy for player i is a measure Hi on [0, 1] × [0,∞) with marginal

distribution F (s) = πF (s|R)+(1−π)F (s|L) on its first coordinate (see Milgrom and Weber

(1985)). The set of all bidding strategies is Σ. A strategy is pure if there is a function

b : [0, 1] → [0,∞) such that H({s, b(s)}s∈[0,1]) = 1.5

Each winner chooses an action from the set of actions A. Hence, the action strategy is

a mapping from a bidder’s signal, his bid, and the winning price to an action, ai : S ×

[0,∞)× [0,∞) → A. Since the bidders’ actions do not affect other bidders’ payoffs, confining

attention to pure strategy actions is without loss of generality.

5If b represents H , then so does any function that is equal to b at almost every s ∈ [0, 1].
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In the rest of the paper, we will restrict attention to pure symmetric Nash equilibria, which

are equilibria where each bidder uses the same pure bidding strategy, i.e., bi = bj for every

two bidders i and j. The term Prb denotes the joint probability distribution over states

of the world, signal and bid distributions, allocations, and prices, where this distribution

is induced by the pure and symmetric bidding strategy profile where each bidder uses the

bidding strategy b.

Below we define a bidder’s value as a function of his beliefs but we work with the likelihood

ratio instead of working directly with beliefs for analytic convenience.6 The value function

u is a bidder’s expected valuation for an object as a function of the likelihood ratio ρ. In

particular, let u : [0,∞) → R be the function defined by

u(ρ) = max
a∈{l,r}

{

1

ρ+ 1
v(a, L) +

ρ

ρ+ 1
v(a, R)

}

.

Note that u(0) = v(l, L) and limρ→∞ u(ρ) = v(r, R). Let ρ∗ ∈ (0,∞) be the unique solution

to the equation:

1

ρ+ 1
v(l, L) +

ρ

ρ+ 1
v(l, R) =

1

ρ+ 1
v(r, L) +

ρ

ρ+ 1
v(r, R).

This cutoff is the likelihood ratio that makes a bidder indifferent between action l and r.

Such a cutoff always exists because of Assumption 2. In what follows, we extensively use

the fact that the value function u(·) is strictly decreasing in the interval [0, ρ∗] and strictly

increasing in the interval [ρ∗,∞). For a depiction of the value function see figure 1.

3. Large Markets and the Failure of Information Aggregation

In this section we present our main result as Theorem 1. In Theorem 1, we construct a

sequence of equilibria for auctions {Γz}
∞
z=1 where the zth auction Γz has z bidders and ⌊κz⌋

objects for sale.7 In the remainder of the paper, we will proceed as if κz is an integer for

expositional simplicity. We assume that the other parameters of the auctions, i.e., (v, F, π, κ),

are constant along the sequence and satisfy all the assumptions that we have already made.

For the sequence of equilibria we construct, equilibrium price reveals no information about

the state of the world at the limit where there is an arbitrarily large number of bidders. Al-

though the limit equilibrium price reveals no information, bidders do learn some information

about the state of the world from the fact of winning because, despite the price is indepen-

dent of the state, the probability of winning depends on the state. However, the amount of

6The whole analysis could be redone working directly with beliefs as there is a one-to-one mapping between
likelihood ratios and beliefs.

7 The term ⌊κz⌋ refers to the highest integer not bigger than κz.
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0
ρ

Valuation

ρ∗

u(ρ)

v(l, L)

v(r,R)

Figure 1: Continuation value as a function of the likelihood ratio of the bidder who wins a unit in
the auction, before he makes the action choice. Assumption 2 implies that u(ρ) is a nonnegative,
nonmonotonic function which is minimized at ρ∗ as depicted here.

information that they learn is limited and therefore incorrect ex-post actions are frequently

undertaken.

3.1. Information aggregation. Here we formally define information aggregation and its

failure. Our object of study is a sequence of bidding functions b = {bz}
∞
z=m. We say that the

sequence b is an equilibrium sequence if bz is part of a symmetric Nash equilibrium of Γz for

each z.

Suppose that the number of bidders z is large. In this case, the law of large numbers

implies that observing the signals (s1, ..., sz) conveys precise information about the state of

the world ω ∈ {L,R}. The bidding function bz determines a price p∗ for the auction Γz given

any realization of signals (s1, ..., sz). We say that information is aggregated in the auction if

this price p∗ also conveys precise information about the state of the world. More precisely,

(i) if the likelihood ratio
Prbz (p

∗|R)

Prbz (p
∗|L)

is close to zero (i.e., if it is arbitrarily more probable that

we observe such a price when ω = L), then an outsider who observes price p∗ learns that

the state is L. Alternatively, (ii) if the likelihood ratio
Prbz (p

∗|R)

Prbz (p
∗|L)

is arbitrarily large, then an

outsider who observes price p∗ learns that the state is R. If the probability that we observe a

price that satisfies either (i) or (ii) is arbitrarily close to one, then we say that the equilibrium

sequence b fully aggregates information. Conversely, if the likelihood ratio
Prbz (p

∗|R)

Prbz (p
∗|L)

is close

to one, i.e., if we are equally likely to observe price p∗ in either of the two states, then an

outsider who observes price p∗ learns arbitrarily little information about the state of the

world. If the probability that we observe such a price is arbitrarily close to one, then we say

that the equilibrium sequence b aggregates no information. The precise definitions are as

follows:
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Definition 1 An equilibrium sequence b aggregates no information if, for any ǫ > 0,

lim
z→∞

Prbz

(

pz ∈

{

p ∈ [0,∞) :
Prbz(p|R)

Prbz(p|L)
∈ (1− ǫ, 1 + ǫ)

})

= 1.

An equilibrium sequence b fully aggregates information if, for any ǫ > 0,

lim
z→∞

Prbz

(

pz ∈

{

p ∈ [0,∞) :
Prbz(p|R)

Prbz(p|L)
∈ [0, ǫ) ∪ (1/ǫ,∞))

})

= 1.

Remark 2 Our definition of information aggregation takes the perspective of an outside

observer who only sees the auction price. Our definition differs from the definition provided

by Pesendorfer and Swinkels (1997). In their model, the state of the world is defined as the

value of the object and each bidder receives a signal about that value. Therefore, they say

that information is aggregated if the equilibrium prices converge to the true value of the

object as the market grows large. In their setup, each state represents a distinct value for

the object, so when information is aggregated in their model with their definition, then it is

also aggregated under our definition. Conversely, if information aggregation fails using our

definition, then it will also fail under the definition of Pesendorfer and Swinkels (1997). We

should note that in the equilibria we construct, some bidders who participate in the auction

obtain additional information compared to an outside observer but these bidders nevertheless

remain imperfectly informed about the state of the world (for more, see Remarks 5 and 7).

3.2. Failure of information aggregation. Our main theorem shows that if, in addition

to Assumptions 1 and 2, the two assumptions described below are satisfied, then there exists

an equilibrium sequence b which aggregates no information. Recall that sκR ∈ S is the signal

such that F (sκR|R) = 1− κ. The first assumption we require for the theorem is as follows:

Assumption 3 ρ(0) > 0 and u(ρ(0)) < u(ρ(sκR)).

The first part of this assumption requires that even a bidder with signal 0 is not sure

that the state is L. The second part of the assumption is a joint restriction on the prior, the

informativeness of signals 0 and sκR, and values. This assumption is likely to hold in economic

situations where state R is sufficiently more likely a priori, or in environments where higher

signals are more informative than lower signals, or in economic situations where choosing

the correct action in state R is considerably more profitable than choosing the correct action

in state L. A simpler case in which Assumption 3 is satisfied is when all the bidders would

choose action r if they acted solely on the information contained in their private signal, i.e.,

if ρ(0) = f(0|R)
f(0|L)

ρ0 ≥ ρ∗. In such a case, the agents’ valuation for the good is an increasing
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function of their signals.

Remark 3 For any f under which signal zero is not perfectly informative, i.e., f(0|R)
f(0|L)

> 0,

any κ ∈ (0, 1), and any ρ∗, there exits a cutoff likelihood ratio ρ > 0 such that if the prior

likelihood ratio ρ0 exceeds ρ, then Assumption 3 is satisfied. In other words, Assumption 3

is satisfied for sufficiently large ρ0.
8

The second assumption we require for the theorem is as follows:

Assumption 4 u(ρ(sκR)) < v(l, L).

Under this assumption, if a bidder who received signal sκR chooses an action based solely on

this signal, then this bidder’s expected valuation is lower than v(l, L). Therefore, a sufficiently

strong additional signal in favor of state L can increase the expected valuation of such a

bidder. This assumption is likely to hold in economic situations where there are not too

many bidders per available unit.9 See figure 2 for a depiction of a situation where both

Assumption 3 and 4 are satisfied.

Remark 4 For any f under which signal zero is not perfectly informative, i.e., f(0|R)
f(0|L)

> 0,

any κ ∈ (0, 1), and any ρ∗, there exits a cutoff likelihood ratio ρ̄ > 0 such that if the prior

likelihood ratio ρ0 is less than this cutoff, then Assumption 4 is satisfied, i.e., Assumption

4 is satisfied if ρ0 is sufficiently small. Moreover ρ̄ > ρ.10 Combining this insight with the

similar finding in Remark 3 we conclude that both Assumption 3 and 4 are satisfied if the

prior likelihood ratio lies in the open interval (ρ, ρ̄).

Our main theorem is below. All proofs are in the Appendix.

Theorem 1 If Assumptions 1, 2, 3 and 4 are satisfied, then there exists an equilibrium

sequence b which reveals no information.

Remark 5 A strictly positive fraction of the auction’s winners choose the wrong action in

the equilibrium sequence that we construct for Theorem 1. This inefficiency occurs because

8To see why this statement is true, note that if ρ0 = f(0|L)
f(0|R)ρ

∗, then ρ(0) = ρ∗ and therefore u(ρ(0)) <

u(ρ(sκR)) because u(·) is minimized at ρ∗.
9If there are few bidders per available unit, i.e., if the market is not particularly tight and κ is close to one,

then sκR is small. However, if sκR is either sufficiently close to ρ∗ or smaller than ρ∗, then u(ρ(s)) < v(l, L)
for all s ≤ sκR. Therefore, there is a cutoff κ̄ such that for all κ ≥ κ̄ we have u(ρ(sκR) < v(l, L).

10Define ρ̄ as the unique ρ ∈ (0, 1) which satisfies the equality u(ρ̄
f(sκ

R
|R)

f(sκ
R
|L) ) = v(l, L). It is clear that

Assumption 4 is satisfied iff ρ ∈ (0, ρ̄). Note also that if ρ0 = ρ̄, then u(ρ0
f(0|R)
f(0|L) ) < v(l, L) = u(ρ̄

f(sκ
R
|R)

f(sκ
R
|L) ),

i.e., if ρ0 = ρ̄, then Assumption 3 is satisfied. Therefore, ρ̄ > ρ.
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Figure 2: This figure shows the initial range of beliefs, expressed as likelihood ratios, on the belief-
value graph. These beliefs and values satisfy Assumptions 3 and 4.

the equilibrium price reveals no information. We provide the details for this inefficiency in

section 3.4, item (i).

We prove this theorem by constructing an equilibrium sequence which aggregates no in-

formation. In this construction, each bidding function bz in the equilibrium sequence b is a

nondecreasing function of s. Assumption 3 allows us to construct an equilibrium sequence in

which each bidding function bz is nondecreasing in s. Assumption 4, on the other hand, al-

lows us to ensure that the equilibrium sequence that we construct aggregates no information

about the state of the world.

In the equilibrium that we construct, information is not aggregated by the price because

agents with different signals submit the same “pooling” bid (see figure 3) and because the

auction price is equal to this pooling bid in both states. We now provide some intuition for

Theorem 1 by i) arguing that if the bidding function is nondecreasing, then there must be

pooling; and ii) arguing that pooling can be sustained in equilibrium.

Assume that the bidding function is strictly increasing and therefore that there is no

pooling bid. Consider a bidder who receives a signal ǫ > 0 that is arbitrarily close to the

lowest signal (i.e., zero). If the auction price is equal to this bidder’s bid, then this bidder is

almost certain that the state is L in a sufficiently large auction. However, then a bidder who

receives signal zero would rather outbid a bidder who receives signal ǫ. This is because the

bidder with signal zero is more convinced that the state is L than the bidder with signal ǫ.

This, however, contradicts that the bidding function is strictly increasing.11

In our construction, a pooling bid can be sustained because agents have an incentive to

learn the state in order to use this information while choosing their action. Specifically, when

11Note that this argument crucially hinges on the nonmonotonicity of the value function (see figure 2 and
section 5.1).
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Figure 3: A typical equilibrium bidding function. Buyers with signals below a cutoff sp bid
a pooling bid bp, and those with signals above sp bid according to the bidding function in
Pesendorfer and Swinkels (1997), i.e., b(s) = v(r,R) Pr(ω = R|s1 = s, Y k

n−1 = s) + v(r, L) Pr(ω =
L|s1 = s, Y k

n−1 = s) for s > sp.

the price is equal to the pooling bid, objects are allocated using rationing among the bidders

who choose the pooling bid.12 A bidder who chooses the pooling bid and wins an object

through rationing at a price equal to the pooling bid obtains more information about the

state of the world, compared to the case in which he instead chooses a higher bid, avoids

rationing, and wins an object. This is because winning an object under rationing is more

likely in state L than in state R. In other words, rationing is a lottery whose odds depend

on the state of the world. Moreover, a sufficiently strong signal in favor of state L is valuable

for some agents because the value function is nonmonotonic. If a bidder who chooses the

pooling bid increases his bid, then he acquires an object more frequently because he avoids

rationing when the price is equal to the pooling bid. However, in this case he forgoes the

extra piece of information that comes from winning under rationing. Because this extra piece

of information is sufficiently valuable for bidders who choose the pooling bid, these bidders

refrain from increasing their bids.

3.3. Sketch of the construction. In this section, we sketch the ideas behind constructing

the equilibrium sequence b whose existence is claimed in Theorem 1. Specifically, we con-

struct an equilibrium in which no information is aggregated in a hypothetical market with

a continuum of bidders with mass one and a continuum of objects with mass κ. Focusing on

a hypothetical market with a continuum of bidders allows us to capture the main properties

of the equilibrium sequence b for a market with a finite but large number of bidders while

allowing us to avoid the more technical details involved in describing such equilibria for finite

markets. In what follows we repeatedly use the fact that the value function u(·) is strictly

12See Stiglitz and Weiss (1981), Bester (1985, 1987), and Lauermann and Wolinsky (2012) for other mod-
els where there is rationing in equilibrium.
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decreasing in the interval [0, ρ∗] and strictly increasing in the interval [ρ∗,∞). Note that

Assumption 3 implies that ρ∗ < ρ(sκR). This is because otherwise the fact that u(·) is strictly

decreasing on [0, ρ∗] would imply that u(ρ(sκR)) < u(ρ(0)) which contradicts Assumption 3.

See figure 2 for a depiction.

We construct an equilibrium in which the equilibrium bidding function b is constant on the

interval [0, sp] for some cutoff signal sp > sκR, which we calculate further below (i.e., b(s) = bp

for all s ∈ [0, sp]), and the bidding function is equal to the strictly increasing bidding function

in Pesendorfer and Swinkels (1997) on the interval (sp, 1], i.e., b(s) = v(r, R)Pr(ω = R|s1 =

s, Y k
n−1 = s) + v(r, L)Pr(ω = L|s1 = s, Y k

n−1 = s) for s ∈ (sp, 1]. We call the bid bp (i.e., the

bid submitted by all bidders with signals in the interval [0, sp]) the pooling bid or pooling price

and we set this bid bp equal to u(ρ(sp)), i.e., the expected utility of an agent who receives

the cutoff signal sp. See figure 3 for a depiction of the bidding function b. This equilibrium

has the following properties:

(i) The auction price is equal to the pooling price in either state of the world, and hence

conveys no additional information about the state of the world. The auction price is always

equal to the pooling price because sp exceeds sκR. The fact that sp exceeds sκR implies that

for any price p′ > bp, the mass of bidders who submit a bid greater than or equal to p′ is

strictly smaller than the mass of available objects, i.e., the measure of the set {s : b(s) ≥ p′}

is strictly less than κ in both states.

(ii) Bidders with signals that exceed sp bid above the pooling price therefore, they are

always allocated an object and always choose action r. These bidders choose action r because

they obtain no new information from the auction price and because choosing r is optimal

based solely on their private signal.

(iii) Bidders with signals smaller than sp who are allocated an object, i.e., the bidders who

bid the pooling price, take action l. Although the price conveys no information about the

state, the fact that a bidder wins an object by bidding the pooling price is a strong signal

favoring state L which induces that bidder to choose action l. Winning an object by bidding

the pooling price is a strong signal favoring state L because the mass of bidders bidding the

pooling price exceeds the mass of objects to be allocated to bidders who bid the pooling

price. Moreover, a bidder is more likely to be allocated a good in state L than in state R.

We discuss this issue in more detail below.

Calculating the cutoff signal sp. The cutoff signal sp is the signal which leaves a bidder

indifferent between bidding the pooling bid and bidding slightly above the pooling bid. As a

first step in calculating sp, we calculate a bidder’s payoff if he bids slightly above the pooling

bid, and if he bids the pooling bid and wins an object.

Payoff from bidding slightly above the pooling bid. If a bidder bids above the pooling bid,
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then he wins an object with certainty. The posterior belief of a bidder who wins an object

by bidding above the pooling bid is equal to his initial beliefs. This is because the auction

price is always equal to the pooling bid in this equilibrium and conveys no information.

Consequently, the expected value of the object to a bidder with signal s if he bids above the

pooling bid is u (ρ(s)).

Payoff from bidding the pooling bid. We now calculate the value of the object for a bidder

who receives the cutoff signal sp if he bids the pooling bid and wins a unit, when sp ≥ sκR.

In such an event, this bidder has an extra piece of information, which comes from the fact

that he wins a unit while bidding the pooling bid. In particular, a fraction 1 − F (sp|ω) of

bidders bid strictly above the pooling bid and each wins an object with certainty regardless

of the state. The fraction of objects that remains to be delivered to bidders who choose the

pooling bid is κ − (1 − F (sp|ω)). Since the number of objects remaining to be delivered is

less than the number of bidders, there is rationing among the bidders at the pooling bid.

Consequently, the belief of type sp (represented as the likelihood ratio) if he bids the pooling

bid and wins the object is as follows:

ρp(sp) := ρ(sp)
κ− (1− F (sp|R))

F (sp|R)
/
κ− (1− F (sp|L))

F (sp|L)
= ρ(sp)

κ− (1− F (sp|R))

κ− (1− F (sp|L))

F (sp|L)

F (sp|R)
,

where the ratio ∆(sp) := κ−(1−F (sp|R))
F (sp|R)

/κ−(1−F (sp|L))
F (sp|L)

reflects the extra information that a

bidder learns from winning an object at the pooling bid. If a bidder with signal sp bids the

pooling bid and wins the object, then the expected value of the object to him is equal to

u (ρp(sp)).

Remark 6 It is straightforward to verify that ∆(sp) < 1, that is, winning an object at the

pooling bid is more likely in state L than in state R; winning an object at the pooling bid

is therefore an additional signal in favor of state L. In the context of the auction models

of Pesendorfer and Swinkels (1997) or Milgrom and Weber (1982), the fact that ∆(sp) < 1

is commonly referred to as the loser’s curse.13 Intuitively, the loser’s curse holds because

if the state is L, then the MLRP assumption implies that fewer bidders choose a bid which

exceeds the pooling bid, and therefore more goods are left over to be allocated to the bidders

who choose the pooling bid.

As we stated above, the cutoff signal sp is the signal which leaves a bidder indifferent

between bidding the pooling bid and bidding slightly above the pooling bid. In other words,

13The loser’s curse is defined in the setting with finitely many bidders; however, the idea extends naturally
to the hypothetical setting with a continuum of bidders.
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Figure 4: This figure depicts the value of the object to the cutoff type as a function of the choice
of the cutoff type.

the cutoff signal is defined implicitly by the following equation:

u (ρ(sp)) = u (ρp(sp)) .

We now argue that this cutoff signal is unique. Specifically, we show that there is a unique

signal s ∈ [sκR, 1) such that u (ρ(s)) = u (ρp(s)), and we denote this signal by sp. We argue that

the functions u (ρ(·)) and u (ρp(·)) are depicted accurately by figure 4 and thus have a unique

point of intersection. That is, the function u (ρ(·)) is strictly increasing on the interval [sκR, s
∗]

where s∗ denotes the unique signal such that ρp(s∗) = ρ∗ (see figure 5). The function u (ρp(·))

strictly exceeds u (ρ(·)) at sκR, is strictly lower than u (ρ(·)) at s∗, and is strictly decreasing

in the interval [sκR, s
∗]. Thus the two functions must cross at a unique point sp ∈ (sκR, s

∗).

Moreover, u (ρp(·)) remains strictly below u (ρ(·)) on [s∗, 1) and therefore the two functions do

not cross again except at s = 1. To see why u(ρp(sκR)) > u(ρ(sκR)), note that ρp(sκR) = 0 and

that v(l, L) > u(ρ(sκR)) by Assumption 4. Therefore, u(ρp(sκR)) = u(0) = v(l, L) > u(ρ(sκR)).

The function u(ρ(s)) is strictly increasing because ρ(s) is strictly increasing in s, because

ρ(s) ≥ ρ(sκR) > ρ∗, and because u(ρ) is strictly increasing in the interval (ρ∗,∞). Also,

the function u(ρp(s)) is strictly decreasing in s for all s ∈ [sκR, s
∗] because ρp(s) < ρ∗ for

all for all s ∈ [sκR, s
∗). Finally, to complete the argument, note that u(ρ(s)) > u(ρp(s))

for all s ∈ [s∗, 1) because u(ρ) is strictly increasing in the interval (ρ∗,∞) and because

ρ∗ ≤ ρp(s) = ρ(s)∆(s) < ρ(s) for all s ∈ [s∗, 1).

We now check that bidders will not want to deviate from the equilibrium we described.

We first argue that bidders with signals lower than sp cannot profitably deviate from the

equilibrium by choosing a bid that exceeds the pooling bid, i.e., bp = u(ρ(sp)). If a bidder

with signal s < sp deviates and bids above the pooling bid, then he wins an object with
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Figure 5: This figure depicts the functions ρ and ρp, in the range [sκR, 1]. Notice that ρ(s) ≥ ρp(s);
ρp(sκR) = 0; and ρ(1) = ρp(1).

0
ρ

Valuation

u(ρ)

ρ∗(0) ρp(sp)ρ∗(1)

ρ(0)ρ(sp)ρ(1)

Figure 6: This figure depicts the posterior beliefs of bidders with signals 0, sp, and 1 under two
cases: (i) If they bid the pooling bid and win the object. In this case, their posterior likelihood
ratios are ρ∗(0) = ρ(0)∆(sp), ρp(sp) = ρ(sp)∆(sp), and ρ∗(1) = ρ(1)∆(sp). (ii) if they bid above the
pooling bid and win a unit at the pooling price. In this case, the bidders obtain no new information,
their posterior and prior likelihood ratios coincide and are equal to ρ(0), ρ(sp), and ρ(1). A bidder
with signal 0 strictly prefers to bid the pooling bid, signal sp is indifferent between bidding the
pooling bid and above it, and signal 1 strictly prefers to bid above the pooling bid.

certainty and pays the pooling bid bp = u(ρ(sp)) > u(ρ(sκR)). In this case, his posterior and

prior likelihood ratios coincide and are equal to ρ(s). However, Assumption 3 implies that

u(ρ(s)) < u(ρ(sp)), and therefore we have u(ρ(s)) < bp = u(ρ(sp)), i.e., the auction price

exceeds the expected valuation, conditional on winning, of the bidder with signal s. See figure

6 for a depiction of this argument for the case of s = 0.

We now argue that a bidder with signal s > sp cannot profitably deviate from the equi-

librium by choosing the pooling bid. If the bidder sticks to the equilibrium strategy, then he

wins an object with certainty and his payoff is equal to u(ρ(s))−bp, a payoff which is strictly

positive. If he deviates instead and chooses the pooling bid, then, conditional on winning, his

posterior is equal to ρ∗(s) := ρ(s)∆(sp). To see that this deviation is not profitable, consider

two cases. First, suppose that ρ∗(s) ≥ ρ∗ and recall that ∆(sp) < 1. However, if ρ∗(s) ≥ ρ∗,
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then choosing the pooling bid is not a profitable deviation as u(ρ∗(s)) − bp < u(ρ(s)) − bp.

This is because ρ∗ ≤ ρ∗(s) = ρ(s)∆(sp) < ρ(s) together with the fact that u(·) is increas-

ing on [ρ∗,∞) implies that u(ρ∗(s)) < u(ρ(s)). Second, suppose that ρ∗(s) ≤ ρ∗. Note that

ρp(sp) < ρ∗(s) because ρ(sp) < ρ(s) and recall that the pooling bid is equal to u(ρp(sp)).

However, if ρ∗(s) ≤ ρ∗, then choosing the pooling bid is again not a profitable deviation as

we have u(ρ∗(s))−bp = u(ρ∗(s))−u(ρp(sp)) < 0. This is because ρ∗ ≥ ρ∗(s) > ρ(sp) together

with the fact that u(·) is decreasing on [0, ρ∗] implies that u(ρ∗(s)) < u(ρp(sp)). Also, see

figure 6.

3.4. Properties of the equilibrium. We have argued that the equilibrium price of the

equilibrium that we constructed for Theorem 1 aggregates no information even in an arbi-

trarily large market. There are a number of other novel properties of this equilibrium that

we summarize below. Note that none of these properties are present in a standard auction

where there are no ex-post actions.

(i). A strictly positive fraction of bidders take the wrong action in equilibrium. Therefore,

inefficiency persists even in a large market in which the outcome would have been

efficient if one could use all of the signals observed by the bidders. In particular,

irrespective of the state of the world, all bidders who win an object at the pooling

bid choose action l and all other bidders who win an object choose action r. Therefore,

the proportion of bidders choosing the wrong action is equal to 1−F (sp|L) and κ−(1−

F (sp|R)) when the state of the world is L and R, respectively. Both of these numbers

are strictly positive because sp ∈ (sκR, 1).

(ii). The ex-ante expected profit of each bidder is strictly positive in equilibrium. To see why

this is true in the equilibrium that we construct, note that the cutoff bidder who is

indifferent between submitting the pooling bid and submitting a higher bid, i.e., the

bidder who receives signal sp, makes zero profit by construction. Moreover, the profit

of any bidder who receives signal s < sp as well as the profit of any bidder who receives

signal s > sp strictly exceeds the cutoff bidder’s profit and therefore all bidders except

the bidder who receives signal sp make strictly positive profit. This contrasts with an

arbitrarily large auction without ex-post actions as in Pesendorfer and Swinkels (1997)

where all bidders make zero profit.

(iii). The value of information, i.e., the value of receiving a signal, is strictly positive for

the bidders. In item (i) we argue that a strictly positive fraction of bidders choose the

wrong action in equilibrium. Therefore, bidders would be willing to pay a positive sum

for a sufficiently informative signal about the state of the world after the auction is

completed as such a signal could improve the odds that an agent chooses the correct
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action. Similarly, bidders would be willing to pay for their initial signals also because

the bidders do not expect to fully learn the state from the auction and because almost

all bidders make a profit in the auction (item (ii)). This stands in contrast to an

arbitrarily large auction without ex-post actions which aggregates information (e.g.

Pesendorfer and Swinkels (1997)). In such an auction, a bidder would not be willing to

pay for a signal as he expects to learn the state perfectly from the auction price and

because he expects to make zero profit in the auction.

4. Information Aggregation Failures in Monotone Equilibria

In the previous section, we described equilibria in which no information is aggregated by

the price. A prominent property of the equilibrium we described is that equilibrium bids are

nondecreasing in the signal that a bidder receives. In this section, in order to demonstrate

the robustness of Theorem 1, we characterize all symmetric equilibria in which the bidding

function is a nondecreasing function of signals (Lemma 1). We then use our characterization

to show that information cannot be fully aggregated in equilibria in which the bidding

function is nondecreasing (Theorem 2). Moreover, we show that equilibria in which the

bidding function is nondecreasing exist under a mildly restrictive condition (Theorem 2).

Consequently, our results in this section show that i) the failure of information aggregation

is inherent in equilibria in which the bidding function is nondecreasing; and moreover, ii)

such equilibria exist for a wide range of parameter values.

Recall that our object of study is a sequence of equilibrium bidding functions b = {bz}
∞
z=m.

We say that a bidding function is nondecreasing (nonincreasing) if b(s) is a nondecreasing

(nonincreasing) function of s; and we say that a sequence b is nondecreasing (nonincreasing) if

bz is a nondecreasing (nonincreasing) bidding function for each z. We begin by characterizing

nondecreasing equilibrium bidding functions.14

Lemma 1 (Characterization) Suppose that Assumptions 1 and 2 hold. Every equilibrium

bidding function b that is nondecreasing satisfies the following conditions:

(i) There is a cutoff signal sp ∈ [0, 1] and a pooling bid bp such that b(s) = bp for every

s < sp, and b(s) > bp for every s > sp.

(ii) The bidding function b(s) is strictly increasing in the range (sp, 1].

(iii) Bidders with signals above sp choose action r and bidders with signals below sp choose

action l when they win an object.

The characterization lemma essentially states that any nondecreasing equilibrium resem-

14A straightforward modification of the lemma delivers a characterization of all nonincreasing equilibrium
bidding functions as well.
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bles the equilibrium that we constructed in the previous section for Theorem 1. More specif-

ically, Lemma 1 shows that in any nondecreasing equilibrium, there is at most one interval,

which includes zero, over which the bidding function is constant and equal to the pooling

bid; outside of this interval, the bidding function is strictly increasing. Moreover, the bidders

who win an object choose l if they have submitted the pooling bid, and choose r if they have

submitted a bid above the pooling bid.

As we noted in the previous section, in a large market, if the bidding function is nonde-

creasing, then there must be pooling. We now provide an intuitive sketch of the remaining

arguments for Lemma 1. Bidders who bid a pooling bid choose action l if they win

an object. On the way to a contradiction, suppose that there is a bidder who bids a pooling

bid and chooses action r if he wins an object. Notice that he wins an object only when the

auction price is not more than the pooling bid. Moreover, when the price is equal to the

pooling bid, there is rationing with strictly positive probability. When the price is equal to

the pooling bid, losing a unit is a signal which is favorable for state R because of the loser’s

curse. However, if this bidder deviates from such a strategy by increasing his bid slightly,

he ensures that he wins an object whenever the auction price is equal to the pooling price.

Such a deviation is profitable, because such a bidder chose action r when he won an object

before the deviation (by the hypothesis), and after the deviation, he wins an object in those

instances when he had been losing by bidding the pooling bid.

There is only one pooling bid. If the bidders who are bidding a pooling bid choose

action l when they win an object at the price equal to the pooling bid, then they also

choose action l if the price is lower than the pooling bid, and they make strictly positive

profits when the price is lower than their bid. This is because, when the bidding strategy

is nondecreasing, lower prices indicate higher likelihood that the state is L. Therefore, the

bidder with the lowest signal (i.e., signal zero) would also have chosen action l if he were to

bid the highest pooling bid, and won an object. However, the bidder with signal zero then has

the highest valuation for the object among all bidders whose bids are less than the highest

pooling bid. This implies that the bid chosen by a bidder who receives signal zero must be

at least as large as the highest pooling bid. Therefore, the assumption that the bidders use

a nondecreasing bidding function implies that there is at most one pooling bid.15

Bidders who submit bids above the pooling bid choose action r if they win

an object. Suppose sp is the highest signal for which b(sp) equals the pooling bid. Assume

that a bidder who receives signal s′ > sp, where s′ is arbitrarily close to sp, plays l if he

wins an object and the auction price is equal to the pooling bid. We now argue that this

15This discussion suggests that there may exist equilibria with nonmonotone bidding functions, but we
have not managed to characterize such equilibria.
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assumption leads to a contradiction. A bidder who receives signal s′ prefers submitting a bid

that exceeds the pooling bid to submitting the pooling bid because s′ > sp. Suppose that the

bidder who receives signal sp deviates and submits a bid that exceeds the pooling bid by an

arbitrarily small amount and wins an object at the pooling price. In this event, the posterior

of a bidder with signal sp puts more weight on state l than the posterior of a bidder with

signal s′. Therefore, if the bidder who receives signal s′ prefers to submit a bid that exceeds

the pooling bid, then so does a bidder who receives signal sp. However, this contradicts the

fact that b(sp) equals the pooling bid.

In the theorem below, we use the characterization given by Lemma 1 to show that mono-

tone equilibria cannot fully aggregate information. Moreover, we establish that a monotone

equilibrium sequence exists if Assumption 3 holds, i.e., if ρ(0) > 0 and u(ρ(0)) < u(ρ(sκR)).

Theorem 2 Suppose that Assumptions 1 and 2 hold.

(i) If b is a nondecreasing equilibrium sequence, then b does not fully aggregate informa-

tion.

(ii) Moreover, if Assumption 3 is satisfied, then a nondecreasing equilibrium sequence b

exists.

Item (ii) of this theorem establishes existence and item (i) of this theorem shows that

information is not fully aggregated in a monotone equilibrium. The general idea for item (i)

is as follows: The price is always equal to the pooling bid in state L. Also, the probability

that the price is equal to the pooling bid in state R is bounded strictly away from zero even

as the number of bidders grows arbitrarily large. To see why, suppose that the price is equal

to the pooling bid with probability close to zero in state R. In such a case, nobody would be

willing to choose action r when the price is equal to the pooling bid. But, this contradicts

Lemma 1 which shows that all the bidders who submit a bid above the pooling bid play r

when they win an object at the price equal to the pooling bid. However, because the price

is equal to the pooling bid with strictly positive probability in both states , the observed

price is the pooling bid with strictly positive probability. Therefore, an outside observer is

uncertain about the state when he observes that the auction price is equal to the pooling

bid.

Remark 7 Lemma 1 and Theorem 2 together imply that a positive fraction of the auction’s

winners choose the wrong action. Lemma 1 shows that all bidders who bid above the pooling

bid choose action r in a nondecreasing equilibrium. Moreover, Theorem 2 implies that the

expected fraction of bidders that bid above the pooling bid is always bounded below by a positive

number. Thus, a positive fraction of winners choose the wrong action in state L even in an
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arbitrarily large market.

5. Discussion

5.1. Pooling bid, loser’s curse and nonmonotonicity of the value function A key

feature of our equilibrium construction that makes price uninformative about the state of the

world is the existence of a pooling bid. In other words, in the equilibrium that we construct,

there is an atom in the equilibrium bid distribution at bp. In sharp contrast, the existence

of such a pooling bid is not possible in the symmetric equilibria of the auction models of

Pesendorfer and Swinkels (1997) or Milgrom and Weber (1982), where there is no ex-post

action. The existence of a pooling bid in our model and the impossibility of pooling in

auctions without ex-post actions are both consequences of the loser’s curse, i.e., the fact

that the probability of winning an object at the pooling bid in state L is strictly higher than

the probability of winning an object at the pooling bid in state R. Equivalently, a bidder

is more convinced that the state is R when he does not win an object than when he does,

provided that the price is the pooling bid and he bid the pooling bid.

Intuitively, not winning an object at the pooling bid, when the auction price is equal to

the pooling bid, is a strong signal in favor of state R. Therefore, whenever the auction price

is equal to the pooling price, a bidder would rather increase his bid slightly and ensure that

he wins an object in Pesendorfer and Swinkels (1997)’s model, because any news in favor of

state R is good news.

In our framework, however, the value function is nonmonotonic in the belief of the bidder

that the state is R which is a consequence of Assumption 2. In particular, the bidders who

bid the pooling bid take action l when they win a unit. Hence, for such a bidder a signal in

favor of state R is bad news, unless this signal is overwhelmingly strong. Therefore, the loser’s

curse argument does not preclude pooling. On the contrary, deviation from the pooling bid

to a slightly higher bid makes such bidders win a unit more frequently, albeit with a different

belief about the state, which makes them worse off.

To see why information could be aggregated if Assumption 2 is not satisfied and if the

value function is monotonic, suppose that v(r, R) > v(l, L) = v(r, L) = 0 ≥ v(l, R), that

is, action l is weakly dominated by action r. In this case, v does not satisfy inequality (1)

and our model coincides with Pesendorfer and Swinkels (1997)’s model with two states of

the world Ω = {L,R} where the value of the object is equal to zero in state L and equal to

v(r, R) in state R. In the unique symmetric equilibrium of the auction with z bidders and k

objects, the bidding function bz(s) = v(r, R) Pr(ω = R|s1 = s, Y k
z−1 = s) for every s ∈ (0, 1).

This function is strictly increasing in s because the signal distribution satisfies MLRP. Notice

that as z gets larger, bidders who receive signals sκR and sκL determine the equilibrium prices
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Figure 7: This figure depicts the equilibrium bidding functions in Pesendorfer and Swinkels (1997).
These functions converge to a step function that has a jump at a signal sc that satisfies sκL < sc < sκR.

in states R and L respectively. A key observation that delivers information aggregation is

that limz→∞ bz(s
κ
R) = v(r, R) and limz→∞ bz(s

κ
L) = 0, i.e., prices converge to v(r, R) and 0 in

states R and L respectively. Intuitively, the bids of sκR and sκL are distinct from each other,

and hence prices reveal which of these types won the last unit, and hence set the price (see

also Figure 7).

In contrast, in the equilibrium that we construct in Theorem 1 there is a pooling bid that

is chosen by bidders who receive signals in [0, sp]. Moreover, sp > sκR, and therefore the price

is equal to the pooling bid in both states and hence is uninformative. The key is that the

bidder with signal sκR and sκL bid the same price, and hence price cannot distinguish the

identity of the signal that determined the price.

For completeness, we note that if inequality (1) is satisfied but if inequality (2) is not

(e.g., if v(r, R) > v(l, R) > v(l, L) > v(r, L)), then the value function is again strictly

increasing in ρ and the auction price aggregates information. Although this configuration

does not directly fit into Pesendorfer and Swinkels (1997)’s framework, a slight modification

of their arguments would show that the symmetric equilibrium bidding function is given by

bz(s) = u(ρ(s1 = s, Y k
z−1 = s)) for every s ∈ (0, 1). It is then straightforward to show that

the equilibrium price converges to v(r, R) and v(l, L) in states R and L, respectively.

5.2. Discussion of the assumptions and the limitations of the results. There are

three important limitations for the results that we presented in this paper. First, we lim-
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ited our attention to a model with only two states. Second, we focused only on monotone

equilibria and our results do not rule out the possibility that information is aggregated in

other nonmonotone equilibria of the auction which we have not characterized. We focused

on monotone equilibria because, when taken together with MLRP, monotonicity allows us to

use the standard auction theory results related to order statistics. Third, we constructed a

monotone equilibrium for the large auction only under a restrictive assumption (Assumption

3).

We focused on two states because this allows us to conveniently summarize a posterior by

just one number. In a model with more states, beliefs need to be specified using a measure

which is a multidimensional vector. This makes it more difficult to compare beliefs obtained

by updating after various events. For example, comparing the value given the posteriors

after winning at the pooling bid with the value given the posterior if one deviates and wins

with certainty is not straightforward. In a model without actions but with many states

(e.g., Pesendorfer and Swinkels (1997)), the posterior beliefs are important only up to the

expectation of a bidder’s value given the posterior. This is because the agent only cares about

the posterior expectation of the object’s value. In such a case, MLRP characterizes how the

expectation behaves in a tractable manner. In our case with actions, the whole posterior

distribution could be potentially relevant because the agent needs to choose an action and

the value from the action can depend on the state in a nonlinear fashion.

We constructed a monotone equilibrium for the large auction under Assumption 3 and

a monotone equilibrium may fail to exist in our model if Assumption 3 is not satisfied.16

However, equilibrium nonexistence is a known problem for auctions where the bidders’ private

information cannot be ordered in a natural way (see Jackson (2009)). In fact, a stronger

version of Assumption 3, which requires that all buyers would choose action r if they acted

solely on their private signal, is one way to ensure that a bidder’s pre-auction value is

increasing in his signal.

Too see why we require an appropriate assumption to construct a nondecreasing equi-

librium consider the following example: Suppose that signal zero perfectly reveals that the

state is L, i.e., u(ρ(0)) = u(0) = v(l, L). This implies that the pooling bid bpz must be equal

to v(l, L) in a sufficiently large market. This is because the agent with signal 0, who sub-

mits the pooling bid, would otherwise increase his bid slightly to avoid rationing. However,

bpz = v(l, L) cannot be the equilibrium pooling bid because types with any positive signal

that is close to zero in any finite market can not be entirely sure that the state is L even

16Assumption 3 can possibly be relaxed further. In the equilibrium that we construct, we require that
the bidder with the cut-off signal sp earns zero profit. It is also possible to construct monotone equilibria
without this zero-profit requirement and the condition needed for the existence of an equilibrium without
the zero-profit requirement would be weaker than Assumption 3.
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conditional on winning the object. Hence, their value for the object is strictly less than bpz,

which contradicts that they submit the pooling bid. Thus, in order to sustain a monotone

equilibrium, we need to put a restriction on the magnitude of information conveyed by signal

0 (such as Assumption 3).

6. Conclusion

In this paper, we explored the role of market prices in aggregating information about

the correct use of objects. In our set-up, multiple homogeneous goods are allocated among

multiple bidders via a Vickrey-type auction. Our main finding is that, when prices contain

information about the ex-post actions that the owners of the object will take, then prices

may not reveal all the information available in the market. In the extreme case, prices reveal

no information about the state of the world, and a non-negligible fraction of the objects are

thus used incorrectly. We interpret our results as suggesting that it is too much to expect

prices alone to reveal the state of the world perfectly. Also, our results highlight that markets

have several statistics other than price, such as the amount of rationing, volume of trade,

and bid distributions, that are relevant for aggregating information.

A. Organization of the Appendix

We start by proving Theorem 2, item (ii) instead of Theorem 1, because the construction

we use for the former is used for the latter theorem. Later we prove Theorem 1, Lemma 1 and

then we prove Theorem 2 item (i), using Lemma 1. We present the proofs of some technical

lemmata that we use in the proofs of our theorems and Lemma 1 in the online Appendix.

B. Proof of Theorem 2, item (ii)

B.1. Method used for the construction The construction has two main steps. In the

first step, we show that in a large market with size z, there exists a cutoff signal, spz, such that

in a monotonic bidding profile bz where all types below spz bid a pooling bid, the following

two properties are satisfied: i) The value of the object to bidders with signals s < spz, who

win a unit by bidding the pooling bid, is not less than the value of the object to such bidders

if they were to win a unit by bidding above the pooling bid, and when the price is equal

to the pooling bid, ii) the value of the object to bidders with signals s > spz when they bid

above the pooling bid and the price is equal to the pooling bid is not less than if such bidders

were to bid the pooling bid and win a unit. In this step, we also determine the value of the

pooling bid.

The second step shows that under Assumption 3, when z is sufficiently large, no bidder has

a profitable deviation from the bidding profiles constructed in step 1 and thus the bidding

profile constitutes an equilibrium of the auction game.
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B.2. Step 1: Cutoff type For any s ∈ (0, 1), s′ ∈ S and z ∈ Z define the following:

ρ−z (s
′, s) :=

Pr
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|R

)

Pr
(

Y κz
z−1 ≤ s, s1 = s′, 1 wins the lottery|L

) ,

ρ+z (s
′, s) :=

Pr
(

Y κz
z−1 ≤ s, s1 = s′|R

)

Pr
(

Y κz
z−1 ≤ s, s1 = s′|L

) .

The event that “1 wins the lottery” corresponds to the event that bidder 1 wins a prize (or

equivalently one unit of the object) in the following auxiliary lottery whose odds depend on

the signal distribution across the bidders. The lottery has q prizes allocated equally likely

to o people, where the number of prizes q = max {0, κz − |j ∈ {2, ..., z} : sj > s|} and the

number of people is o = 1 + |j ∈ {2, ..., z} : sj ≤ s|.17

Intuitively, ρ−z (s
′, s) is the posterior likelihood ratio for type s′, when he bids the pooling

bid and wins a unit, where the bidders who bid the pooling bid are those with signals less

than s. The second function, ρ+z (s
′, s) is the posterior likelihood ratio for type s′, when he

bids above the pooling bid and wins a unit at a price equal to the pooling bid, where the

bidders who bid the pooling bid are those with signals less than s.

Remark 8 Observe that both ρ−z (s, s
′) and ρ+z (s, s

′) are continuous in both arguments. This

is because the cdf F (s|ω) admits a continuous density function f(s|ω) for each ω.

Abusing notation,18 we make the following definitions:

ρ−z (s) := ρ−z (s, s) and ρ+z (s) := ρ+z (s, s).

Intuitively, ρ−z (s) is the posterior likelihood ratio of a cutoff type s when he bids a pooling

bid that only types in the range [0, s] bid, and when he wins an object with such a bid.

Remark 9 From Pesendorfer and Swinkels (1997, Lemma 7, page 1272) and f(0|L) 6=

f(0|R) we know that i) ρ−z (s) < ρ+z (s) for any s ∈ (0, 1), and ii) ρ−z (s
′, s) < ρ+z (s

′, s) for any

s, s′ ∈ (0, 1). This is called the loser’s curse. Moreover, as we later show in Lemma O.2 in

the online appendix, ρ−z (s, s
′) and ρ+z (s, s

′) are both strictly increasing in s and s′ because of

MLRP.

Since ρ−z (s) and ρ+z (s) are both increasing functions, u(ρ−z (s)) and u(ρ+z (s)) are both at

most single-troughed functions. Now we make two observations about values of the functions

17The index sets exclude the number 1 since it is reserved for the bidder who is doing these calculations
for his best response.

18We use the same notation for both functions although they take different number of arguments.
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ρ−z (s) and ρ+z (s) when s is close to zero and when s is close to one.

Remark 10 Note that the inequality u(ρ(0)) < u(ρ(sκR)), which we assume in Assumption

3, implies that ρ(sκR) > ρ∗. We will use the fact that ρ(sκR) > ρ∗ in many of our arguments.

Lemma 2

1. ∃ε > 0 and a Z1 such that ρ−z (s) < ρ∗, ρ+z (s) < ρ∗, and u(ρ−z (s)) > u(ρ+z (s)) for every

s ≤ ε and every z > Z1.

2. ∃ε > 0 and a Z2 such that ρ−z (s) > ρ∗, ρ+z (s) > ρ∗, and u(ρ−z (s)) < u(ρ+z (s)) for every

s ≥ 1− ε and every z > Z2.

Proof:

1. ∃ε > 0 such that limz→∞ ρ+z (ε) = 0, because of MLRP. Since ρ−z (s) < ρ+z (s) for s ∈ (0, 1),

limz→∞ ρ−z (ε) = 0, and since u(ρ) is strictly decreasing in the range [0, ρ∗], we have that

u(ρ−z (s)) > u(ρ+z (s)) for s ≤ ε when z > Z1 for some integer Z1.

2. For any s > sκR, limz→∞ ρ−z (1−ε) = ρ0
κ−(1−F (s|R))
κ−(1−F (s|L))

as we show in Lemma O.1 in the online

appendix. This, together with Assumption 3 imply that ∃ε > 0 such that limz→∞ ρ−z (1−ε) >

ρ∗. Since ρ−z (s) < ρ+z (s), and ρ−z (s) and ρ+z (s) are strictly increasing functions, we have that

ρ−z (s) > ρ∗ and ρ+z (s) > ρ∗ for every s ≥ 1 − ε when z is sufficiently large. Since u(ρ) is

strictly increasing in the range [ρ∗, 1], we have that u(ρ−z (s)) < u(ρ+z (s)) for s ≥ 1− ε. �

Lemma 3

1. For every z > max{Z1, Z2}, there is a unique spz ∈ (ε, 1− ε) that satisfies the equality

u (ρ−z (s)) = u (ρ+z (s)).

2. When such an spz exists, ρ+z (s
p
z) > ρ∗, and ρ−z (s

p
z) < ρ∗.

Proof: 1. Let s1z and s2z be the unique signals that solve the equalities ρ−z (s) = ρ∗ and

ρ+z (s) = ρ∗, respectively. Note that s1z, s
2
z ∈ (0, 1) and are well-defined when z > max{Z1, Z2}

from Lemma 2, and because ρ−z and ρ+z are both continuous and strictly increasing. Moreover,

because ρ−z (s) < ρ+z (s), s
1
z > s2z. In the range [0, s2z], u(ρ

−
z (s)) > u(ρ+z (s)), and in the range

[s1z, 1), u(ρ
+
z (s)) > u(ρ−z (s)).

In the range [s2z, s
1
z], u(ρ

−
z (s)) is strictly decreasing and u(ρ+z (s)) is strictly increasing.

Therefore, u(ρ−z (s))−u(ρ+z (s)) is strictly negative in [0, s2z], strictly increasing in [s2z, s
1
z], and

strictly positive in [s1z, 1). Therefore, by the intermediate value theorem, there is a unique

signal spz, in the range (s2z, s
1
z) that satisfies the equality u (ρ−z (s)) = u (ρ+z (s)).

2. As we argued above, such a signal is in the range (s2z, s
1
z), and hence ρ+z (s

p
z) > ρ∗ and

ρ−z (s
p
z) < ρ∗ from the definition of s1z, s

2
z, and from the monotonicity of ρ−z and ρ+z . �
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B.3. Setting the pooling bid and its properties We now determine the bidding

function, bz, for z > max{Z1, Z2}. The bidding function bz(s) is constant and equal to

bpz := u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)) for bidders with signals in the interval [0, spz] and is strictly

increasing and equal to u(ρ(s1 = s, Y κz
z−1 = s)) in the region (spz, 1]. Notice that, the part of

the bidding function that is strictly increasing coincides with the Pesendorfer and Swinkels

(1997) equilibrium bidding function, in the case where bidders are taking action r. Moreover,

u(ρ(s1 = s, Y κz
z−1 = s)) > u(ρ(s1 = spz, Y

κz
z−1 ≤ spz)) = u(ρ+z (s

p
z)) = bpz for every s ≥ spz. This

follows from MLRP together with ρ+z (s
p
z) > ρ∗ (Lemma 3). The following corollary follows

from Lemma 3, and we use it frequently while checking that bidders have no profitable

deviations.

Corollary 1 The posterior likelihood ratio of types lower than spz, conditional on winning

at price bpz is less than ρ∗, and types higher than spz, conditional on the price being bpz has a

posterior likelihood ratio that is more than ρ∗. In particular,

ρ(s1 = s, Y κz
z−1 ≤ spz, 1 wins with bpz) < ρ∗ for s ≤ spz and ρ(s1 = s, Y κz

z−1 ≤ spz) > ρ∗ for s ≥ spz.

B.4. Step 2: Checking deviations In this step, we will show that the bidding function

we constructed in step 1 is an equilibrium when z is large (i.e., when z > Z ′ for some integer

Z ′) by showing that no type has a profitable deviation from the proposed bidding strategy

profile. In the following we assume that z is large enough that spz exists, i.e., z > max{Z1, Z2}.

B.4.1. Bidders with signals above spz. Pick a type s > spz. We will first show that for any

type s′ ∈ (spz, s) the following inequality holds:

(4) u(ρ(s1 = s, Y κz
z−1 = s′)) > bz(s

′) = u(ρ(s1 = s′, Y κz
z−1 = s′))

This inequality follows because ρ(s1 = s, Y κz
z−1 = s′) > ρ(s1 = s′, Y κz

z−1 = s′) by MLRP and

because ρ(s1 = s′, Y κz
z−1 = s′) > ρ(s1 = s′, Y κz

z−1 ≤ s′) = ρ+z (s
′) ≥ ρ∗, again by MLRP and

Lemma 3. Therefore, type s has no profitable deviation to bid in the interval (bpz , b(s)). A

similar calculation shows that such a type has no profitable deviation to bid above b(s).

Next, we will argue that such a type does not find it profitable to bid bpz. To show this, we

will prove two inequalities:

u(ρ+z (s, s
p
z)) > bpz(5)

u(ρ+z (s, s
p
z)) ≥ u(ρ−z (s, s

p
z)).(6)

To see that these inequalities suffice to prove that bidding bpz is not a profitable deviation,

notice that, first, such a type makes a strictly positive profit when the price is above bpz

and below bz(s). The first inequality above says that, when bidding above bpz, type s has a
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positive payoff when the price is equal to bpz. The second inequality says that, the payoff to a

bidder when he bids above bpz and the price is bpz is not less than when he bids bpz and wins a

unit. Moreover, the probability of winning a unit by bidding above bpz is strictly larger than

winning by bidding bpz . Hence, bidding bpz cannot not be a profitable deviation. Below we

prove these two inequalities:

The first inequality follows because ρ+z (s, s
p
z) > ρ+z (s

p
z) ≥ ρ∗ by MLRP and Lemma 3.

Now we prove that the second inequality holds. There are two cases to consider. Either

ρ−z (s, s
p
z) ≥ ρ∗ or ρ−z (s, s

p
z) < ρ∗. In the former case, ρ+z (s, s

p
z) ≥ ρ−z (s, s

p
z) together with the

facts that both are at least ρ∗ and u is increasing when ρ ≥ ρ∗ deliver the desired inequality.

In the latter case, ρ−z (s, s
p
z) > ρ−z (s

p
z). Since both are less than ρ∗, and since u(ρ) is decreasing

in that range, u(ρ−z (s, s
p
z)) < u(ρ−z (s

p
z)) = bpz < u(ρ+z (s, s

p
z)).

B.4.2. Bidders with signals below spz. In this part of the proof, we will take z sufficiently

large and use Assumption 3. The next lemma shows that bidders with signals below spz have

a nonpositive payoff if they bid above bpz and if the price is equal to bpz.

Lemma 4 ∃Z3 ∈ Z such that u(ρ+z (s, s
p
z)) ≤ bpz for every s < spz, every z > Z3.

The proof of Lemma 4 is given further below. Now we argue that bidders with signals less

than spz do not have profitable deviations to bid strictly above bpz if the hypothesis of Lemma

4 is satisfied. As shown in Lemma 4, such types lose money if they bid above bpz and if the

price is equal to bpz. If a type s < spz bids strictly above b(s′) for some s′ > spz, we will now

argue that he loses money when the price is equal to b(s′). If ρ(s1 = s, Y κz
z−1 = s′) ≥ ρ∗, then

u(ρ(s1 = s, Y κz
z−1 = s′)) < b(s′) = ρ(s1 = s′, Y κz

z−1 = s′). If ρ(s1 = s, Y κz
z−1 = s′) < ρ∗, then

bz(s
′) > bpz ≥ u(ρ+z (s, s

p
z)) = u(ρ(s1 = s, Y κz

z−1 ≤ spz)) > u(ρ(s1 = s, Y κz
z−1 = s′)), where the

second inequality follows from Lemma 4, and the third inequality follows from MLRP.

proof of Lemma 4: If ρ+z (s, s
p
z) ≥ ρ∗, then u(ρ+z (s

p
z)) = bpz > u(ρ+z (s, s

p
z)) because of

MLRP and because u(ρ) is increasing when ρ ≥ ρ∗. The rest of the proof shows either

directly that u(ρ+z (s, s
p
z)) ≤ bpz or indirectly by showing that ρ+z (s, s

p
z) ≥ ρ∗ for every s < spz

when z is sufficiently large. In the latter case proving that ρ+z (0, s
p
z) ≥ ρ∗ suffices because,

ρ+z (0, s
p
z) ≤ ρ+z (s, s

p
z).

At this point, we would like to remind the reader that spz is the unique solution to the

equality u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)), and bpz = u(ρ−z (s

p
z)). Also, Recall that s

κ
R is the signal such

that F (sκR|R) = 1−κ. We’ll make our argument in the following steps under the assumption

that the limit of the sequence {spz, b
p
z}

∞
z=1 = (sp, bp) exists and then we will verify this in

Lemma O.1 in the online appendix. The next three claims are the steps of the proof of

Lemma 4.
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Claim 1 sp ≥ sκR.

Proof: On the way to a contradiction, suppose that sp < sκR. Then, limz→∞ ρ+z (s
p
z) = 0,

because limz P
(

Y κz
z−1 ≤ spz|L

)

= 1 and limz P
(

Y κz
z−1 ≤ spz|R

)

= 0 if sp < sκR. This contradicts

the assertion in Corollary 1 that ρ(s1 = s, Y κz
z−1 ≤ spz) > ρ∗ for s > spz. �

Claim 2 If sp > sκR, then ∃Z4 ∈ Z such that u(ρ+z (s, s
p
z)) < bpz, for every z > Z4.

Proof: Since F (sp|ω) > 1 − κ for ω ∈ Ω, limz→∞ Pr(Y κz
z−1 ≤ spz) = 1 for ω ∈ Ω. Hence,

limz→∞ ρ(s1 = 0, Y κz
z−1 ≤ spz) = ρ(s1 = 0). Moreover, the same argument delivers that

limz→∞ ρ+z (s
p
z, s

p
z) = u(ρ(sp)). By Assumption 3, u(ρ(0)) < u(ρ(sκR)), and if sp > sκR, then

ρ(sp) > ρ∗ and hence u(ρ(0)) < u(ρ(sp)) = bp. It follows then that ∃Z4 ∈ Z such that

u(ρ+z (s, s
p
z)) < bpz, for every s < spz, for every z > Z4. �

Claim 3 If sp = sκR, then ∃Z5 ∈ Z such that u(ρ+z (s, s
p
z)) < bpz, for every z > Z5.

Proof: This is the case when prices may indeed reveal some information. We’ll start by

arguing that the pooling bids, bpz, converge to u(0).

The crucial observation in this case is that limz→∞ Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.

Intuitively, this is because in state R there are few goods left to be delivered among the

bidders who bid the pooling bid whereas in state L there is a significant number of goods

left to be delivered among such bidders. Formally, fix an ǫ > 0. Then, limz→∞ Pr(Y
(κ−ǫ)z
z−1 >

spz|ω = R) = 0. Therefore, limz→∞ Pr(pz = bpz, 1 wins with bpz|ω = R) ≤ ǫ
1−κ+ǫ

. Since this is

true for every ǫ > 0, it has to be that

(7) lim
z→∞

Pr(pz = bpz , 1 wins with bpz|ω = R) = 0.

However, limz→∞ Pr(pz = bpz|ω = L) = 1 because 1 − F (sκR|ω = L) < κ. Moreover, there is

an ǫ > 0 such that Pr(|{signals above sκR}| ≤ (κ− ǫ)z|ω = L) = 1. Therefore,

(8) lim
z→∞

Pr(pz = bpz , 1 wins with bpz|ω = L) > 0.

Combining equation (7) and inequality (8) delivers that

(9) lim
z→∞

Pr(ω = L|pz = bpz, 1 wins with bpz) = 1.

Since by the assumption of the claim spz → sκR, and since ρ(sκR) < ∞ by strict MLRP, we

have limz→∞ bpz = limz→∞ u (ρ−z (spz, s
p
z)) = u(0), which follows from equality (9).

30



Note that there is an ǫ ∈ (0, ρ∗) such that limz→∞ ρ+z (0, s
p
z) > ǫ and u(ρ∗ + ǫ) < u(ǫ). This

inequality follows because, ρ+z (s, s
p
z) ≥ ρ∗ for every s > spz (by Lemma 3 and because of the

part of Assumption 3 that ρ(0) > 0).

The sequence ρ+z (0, s
p
z) has a limit. If this limit is strictly less than ρ∗ + ǫ then we have

the following: limz→∞ u(ρ+z (0, s
p
z)) < u(ǫ) < u(0). Since we have shown that limz b

p
z = u(0),

limz→∞(u(ρ+z (0, s
p
z)) − bpz) < 0. If the limit of the sequence ρ+z (0, s

p
z) is greater than ρ∗,

then limz→∞(u(ρ+z (0, s
p
z)) − bpz) < 0 by strict MLRP and because limz→∞ ρ+z (0, s

p
z)) <

limz→∞ ρ+z (s
p
z, s

p
z)). Hence, there is an integer Z5 such that u(ρ+z (0, s

p
z)) − bpz < 0 for ev-

ery z > Z5. To complete the proof of the claim, suppose that z > Z5, and pick any s < spz. If

ρ+z (s, s
p
z) ≥ ρ∗, then u(ρ+z (s, s

p
z))− bpz < 0. If ρ+z (s, s

p
z) < ρ∗, then u(ρ+z (s, s

p
z)) < u(ρ+z (0, s

p
z))

by MLRP, and therefore u(ρ+z (s, s
p
z))− bpz < 0. �

Let Z3 := max{Z4, Z5}, then Claims 1, 2, and 3 together establish Lemma 4. �

C. Proof of Theorem 1

Proof: We will prove this theorem by using the same construction that we used to prove

Theorem 2. Since Assumption 3 is assumed, the hypothesis of Theorem 2 is satisfied, and

hence the constructed bidding strategies constitute an equilibrium when z is sufficiently

large.

We will now show that if Assumption 4 is satisfied, i.e, if u(0) > u(ρ(sκR)), then the limit

of the cutoff types as z goes to infinity, which we denote by sp is strictly larger than sκR. The

implication of this inequality is that equilibrium prices become the pooling bid in both states

of the world with probabilities approaching one, and hence prices reveal no information as

the market gets arbitrarily large.

In Lemma 4, Claim 1, we showed that any limit point of the cutoffs is at least sκR. Thus it

remains to show that sκR is not a limit point of the cutoff types constructed in the sequence

of bidding functions. On the way to a contradiction, suppose our claim is not true, i.e.,

Assumption 4 holds (u(0) > u(ρ(sκR))) and sκR is the limit point of the cutoff types. Then, as

we argued in Lemma 4, Claim 3, the pooling bid converges to u(0), i.e., limz→∞ bpz = u(0).

Also, we have ρ+z (s
p
z) ≥ ρ∗ from Lemma 3 and we know that ρ+z (s

p
z) < ρ(spz).

19 Hence,

bpz = u(ρ+z (s
p
z)) < u(ρ(spz)). However, u(0) = limz→∞ bpz ≤ limz→∞ u(ρ(spz)) = u(ρ(sκR)) which

contradicts to Assumption 4 that u(0) > u(ρ(sκR)). �

19To see why ρ+z (s
p
z) < ρ(spz) note that the probability that the price is equal to the pooling bid in state

L is at least as great as the probability of the same event in state R. This is because, ρ(s1 = s, Y κz
z−1 ≤ a) <

ρ(s1 = s, Y κz
z−1 ≤ 1) for any a < 1, due to MLRP.
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D. Proof of Lemma 1

Proof: There are two cases to consider, either b is strictly increasing or there is an atom

in the bid distribution.

Case 1: If b is strictly increasing, then the first part of the lemma is true by picking sp = 0.

The second part of the lemma for this case claims that b is a la Pesendorfer and Swinkels

(1997). This follows from a slight modification of the argument in Pesendorfer and Swinkels

(1997, Second part of the proof of Proposition 1, page 1272).

Case 2: Suppose that the bidding function has an atom at some bid bp. Then the mono-

tonicity of the bidding function implies that b(s) = bp for an interval of signals, S(bp) = (s′, sp)

with s′ < sp and b(s) = bp for every s ∈ S(bp) and b(s) > bp for every s > sp. Below we will

show that there can be at most one atom in the bid distribution and that s′ = 0.

Step 1: The first step is to show that ρ(s1 = sp, p = bp, 1 wins with bp) < ρ∗ when the

bidding function b is increasing. On the way to a contradiction, suppose that it’s not true.

Then due to winner’s and loser’s curse (see Pesendorfer and Swinkels (1997, page 1272)),

types in S(bp) would deviate and bid slightly above bp.20

Step 2: We show that ρ(s1 = s, p, 1 wins with b(s)) < ρ∗ for every s < sp and p ≤ b(s).

We first claim that the following is true for every p′ < bp which is in the range of b:

ρ(s1 = s, p′) < ρ(s1 = s, p = bp, 1 wins with bp).

This is a non-trivial claim and the proof is in Lemma O.3 in the online appendix. Moreover,

ρ(s1 = s, p, 1 wins with p) ≤ ρ(s1 = s, p). This inequality follows from Pesendorfer and Swinkels

(1997, Lemma 7, page 1272). Combining the two inequalities in this step with the result in

step 1 delivers the claim.

Step 3: We will now argue that all types below sp bid bp, i.e., there is at most one atom.

On the way to a contradiction, assume that a positive measure of types bid strictly below

bp and let s′′ < s′ be such a type. By Lemma O.3 in the online appendix, the probability

that type s′′ puts on state L were he to bid bp and the price is any price between his bid and

bp is weakly higher than that of types who are bidding bp. Formally, for any p′ ≤ bp that is

20Obviously it could be the case that every neighborhood of bp higher than bp may be bid by a positive
measure of types. If this is the case, the measure of types whose bids are in (bp, bp+ǫ) can be made arbitrarily
small by picking ǫ arbitrarily small. Hence, a deviation to a bid less than bp+ ǫ which does not have an atom
can cause a payoff loss when the price is in (bp, bp + ǫ). However this potential loss becomes arbitrarily small
as ǫ disappears. On the other side, the payoff gain of this deviation when the price is equal to bp is strictly
positive, due to the loser’s curse. Moreover, since the bid distribution has an atom at bp, the probability that
the price is equal to bp is strictly positive.
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in the range of b, the following holds:

Pr(ω = L|s1 = s′′, p′, 1 wins by bidding bp) ≥ Pr(ω = L|s1 = s′, p′, 1 wins by bidding bp).

Since bidding slightly below bp is a feasible strategy, we have that,

u(ρ(s1 = s′, bp, 1 wins by bidding bp)) ≥ bp.

Therefore, bp is weakly less than the value of the object to types who bid bp conditional on

the price being bp and they winning the object. Since this value is strictly less than the value

when the price is strictly lower than bp, these types make strictly positive profits when the

price is strictly less than bp.

We will now argue that the bid of s′′ cannot be an atom. Intuitively, this is because, the

value of the object conditional on losing when the price is his bid is strictly larger than the

value if the price was strictly above his bid but not higher than bp, which contradicts his bid

being an atom (by Lemma O.3 in the online appendix). More precisely, if b(s′′) is an atom,

then for any p′ ∈ (b(s′′), bp] such that b(s) = p′ for some s ∈ (s′′, sp),

Pr(ω = L|s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′)) ≥ Pr(ω = L|s1 = s, p′, 1 wins by bidding p′)

Therefore,

u(ρ(s1 = s′′, p = b(s′′), 1 loses by bidding b(s′′))) ≥ u(ρ(s1 = s, p′, 1 wins by bidding p′)) ≥

p′ > b(s′′).

Therefore, type s′′ would have an incentive to bid strictly above b(s′′), yielding a contradiction

to b(s′′) being an atom.

Since b(s′′) is not an atom, and since s′′ can make strictly positive profits when the price

is in (b(s′′), bp] by bidding bp, s′′ has a strict incentive to bid bp, yielding the contradiction

that b(s′′) < bp.

Step 4: Now we consider bids above bp and will show that ρ(s1 = sp, p = bp) > ρ∗

Since we have shown that there can be at most one atom, b does not have a constant part

above sp. Now we will argue that ρ(s1 = sp, p = bp) > ρ∗. This is because, otherwise type 0

would have a profitable deviation to bid above bp, since if a type above sp is playing l when

the price is bp, and preferring not to bid bp, then type 0 would strictly prefer to bid above

bp. Finally, ρ(s1 = s, p = b(s′)) > ρ∗ for s, s′ > sp from MLRP.

We now conclude that b has to be a la Pesendorfer and Swinkels (1997) for types above sp,

i.e., for s > sp , b(s) = u(ρ(s1 = s, Y k
z−1 = s)). This follows from Pesendorfer and Swinkels
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0

g(F (s|ω))

g(F (s|R))

g(F (s|L))

ssc

sκL sκR

Figure 8: In this figure, g(t) := t(1−κ)(1− t)κ and sc is the unique signal s′ such that g(F (s′|R)) =
g(F (s′|L)). The function g(t) is concave and is maximized at t∗ = 1− κ. Concavity of the function
g implies that sκR > sc > sκL.

(1997), because the value of the object is strictly increasing in the probability that the bidder

assigns to state R for types above sp. �

E. Proof of Theorem 2, item (i)

Proof: If the market size z is sufficiently large, then an equilibrium bidding function

cannot be strictly increasing. Because otherwise types that are arbitrarily close to zero would

have a profitable deviation to submit bids of higher types. Therefore, due to Lemma 1, such

bidding functions have exactly one pooling bid. Let bpz be the pooling bid, and let spz be the

highest bidder type that bids the pooling bid in the monotonic bidding function bz. Based

on Lemma 1, our first observation is that ρ(Y zκ
z−1 ≤ spz, s1 = spz) ≥ ρ∗.

Let g(t) := t(1−κ)(1 − t)κ and let sc ∈ (0, 1) be the unique signal such that g(F (sc|L)) =

g(F (sc|R)). See Figure 8 for a depiction of sc. Note that

ρ(Y zκ
z−1 ≤ spz, s1 = spz) < ρ(Y zκ

z−1 = spz, s1 = spz) =

ρ0

(

g(F (spz|R))

g(F (spz|L))

)z (
f(spz|R)

f(spz|L)

)2(
F (spz|L)(1− F (spz|L))

F (spz|R)(1− F (spz|R))

)

.

We will now argue that any limit point of the sequence {spz}z≥1 is at least sc. On the way

to a contradiction, suppose not. Then, there is an integer Z ′ such that spz < sc for every

z > Z ′. Note that if spz < sc, then g(F (s′|R)) < g(F (s′|L)) (as depicted in Figure 8).

Therefore, limz→∞ ρ(Y zκ
z−1 ≤ spz, s1 = spz) = 0. But this contradicts to the property that

ρ(Y zκ
z−1 ≤ spz, s1 = spz) ≥ ρ∗.

Since F (sc|L) > 1−κ, by theWeak Law of Large Numbers it follows that limz→∞Pr(Y zκ
z−1 ≤

spz|L) = 1. Combining this with our initial observation that ρ(Y zκ
z−1 ≤ spz, s1 = spz) ≥ ρ∗, we

obtain that lim infz→∞Pr(Y zκ
z−1 ≤ spz|R) > 0. This is because, otherwise we would have that
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lim infz→∞ ρ(Y zκ
z−1 ≤ spz, s1 = spz) = 0, which would be a contradiction to the property that

ρ(Y zκ
z−1 ≤ spz, s1 = spz) ≥ ρ∗.

Hence, the price in state L is equal to the pooling price with a probability that approaches

one, and the price in state R is equal to the pooling price with a probability that stays

bounded away from zero. Therefore, the pooling price doesn’t reveal the state of the world

with strictly positive probability in the limit as z → ∞. �
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O. Online Appendix

Lemma O.1 For any s > sκR, limz ρ
−
z (s) = ρ(s)κ−(1−F (s|R)))

F (s|R)
F (s|L)

κ−(1−F (s|L)))
. There is a unique

signal sp which is a limit point of the cutoffs {spz}z≥1. Moreover either sp = sκR or sp is

the unique signal with the property that satisfies for ρ̄(s) := ρ(s)κ−(1−F (s|R)))
F (s|R)

F (s|L)
κ−(1−F (s|L)))

,

u(ρ̄(s)) = u(ρ(s)).

Proof: Pick any convergent sequence of signals {spz}z≥1 with a limit sp > sκR. Let objects

taken denote the random variable which is equal to the minimum of κz and the number

of bidders with signals higher than spz. We first note that, ρ−z (s
p
z) can be more conveniently

expressed by the following equality:

ρ−z (s
p
z) = ρ(spz)

E
[

κz−(objects taken)
z−(objects taken)

|R
]

E
[

κz−(objects taken)
z−(objects taken)

|L
] .

Our first observation is the following: Conditional on state ω, objects taken
z

→ 1 − F (sp|ω) in

probability as z → ∞. Therefore, as z → ∞,

E

[

κz − (objects taken)

z − (objects taken)
|ω

]

→
κ− (1− F (sp|ω))

F (sp|ω)
,

and hence,

E
[

κz−(objects taken)
z−(objects taken)

|R
]

E
[

κz−(objects taken)
z−(objects taken)

|L
] →

κ−(1−F (sp|R))
F (sp|R)

κ−(1−F (sp|L))
F (sp|L)

.

Therefore as z → ∞, ρ−z (s
p
z) → ρ(sp)

κ−(1−F (sp|R))
F (sp|R)

κ−(1−F (sp|L))
F (sp|L)

. This proves the first claim of the lemma,

by taking {spz}z≥1 to be the constant sequence whose elements are equal to s > sκR. Now let

the sequence {spz}z≥1 be the sequence of cutoffs, and let sp be a limit point of the sequence,

and renumber the new sequence so that its limit is sp. We have already shown that sp ≥ sκR

in claim 1 in the proof of Lemma 4. So now assume that sp > sκR. Since sp > sκR, as z → ∞,

ρ+z (s
p
z) → ρ(sp).

Since each spz has the feature that u(ρ−z (s
p
z)) = u(ρ+z (s

p
z)), and since for each s > sκR,

ρ−z (s) → ρ(s)
κ−(1−F (s|R))

F (s|R)
κ−(1−F (s|L))

F (s|L)

, we have that for s ∈ (sκR, 1),

∆(s) := u

(

ρ(s)

(

κ− (1− F (s|R)))

F (s|R)

F (s|L)

κ− (1− F (s|L)))

))

− u (ρ(s))
(≥)

≤ 0 for s
(≤)

≥ sp.

1



The term ρ(s)
(

κ−(1−F (s|R)))
F (s|R)

F (s|L)
κ−(1−F (s|L)))

)

is strictly increasing and is always strictly less than

ρ(s) in the interval [sκR, 1), and is strictly negative when s is close to 1, therefore, there should

be at most one signal sp that can be a limit point in the range (sκR, 1).

Now suppose that sκR is a limit point. We will show that no signal s > sκR can be a limit

point. If sκR is a limit point of the sequence, then it should be that limz u(ρ
−
z (s

p
z)) = u(0),

and lim supz u(ρ
+
z (s

p
z)) ≤ u(ρ(sκR)). Since u(ρ−z (s

p
z)) = u(ρ+z (s

p
z)), it has to be that u(0) ≤

u(ρ(sκR)). But then, for every s > sκR, ∆(s) < 0.

Hence we have shown that if sκR is a limit point, then it is the unique limit point, and if

it is not, and if an s > sκR is a limit point, then it is unique. This completes the argument

that the sequence has a unique limit point. �

Lemma O.2 If f(0|L) 6= f(0|R), then ρ−z (s) > ρ+z (s) for any s ∈ (0, 1). Moreover both of

these functions are strictly increasing in s.

Proof: The first claim in this lemma is identical to the argument in Pesendorfer and Swinkels

(1997, Lemma 7, page 1272), and is called loser’s curse. The claim that ρ+z (s) and ρ−z (s) are

strictly increasing is standard and follows from the MLRP assumption. The proof can be

found in the technical appendix of Milgrom and Weber (1982). �

Lemma O.3 In an increasing equilibrium bidding function b, if there is an atom at bid bp,

then Pr(ω = L|s1 = s, p) > Pr(ω = L|s1 = s, p = bp, 1 wins with bp) for any p < bp. Also

Pr(ω = L|s1 = s, p) < Pr(ω = L|s1 = s, p = bp, 1 loses with bp) for any p > bp.

Proof: The two claims are proven in a very similar way, so we will only prove the first

one, i.e., Pr(ω = L|s1 = s, p) > Pr(ω = L|s1 = s, p = bp, 1 wins with bp) for any p < bp.

This inequality is very intuitive, but we could not find it in any source, so we are proving it

directly using the standard combinatorial techniques.

Let the interval of types who are bidding at the atom bid be (s′, s′′). Then Pr(ω = L|s1 =

s, p) > f(ω = L|s1 = s) Pr(ω = L|Y k
z−1 = s′). The term Pr(ω = L|s1 = s, p = bp, 1 wins with

2



bp) is calculated using the following steps:

1− Ft(s
′, s′′|ω) :=

F (s′′|ω)− F (s′|ω)

F (s′′|ω)

Cn−1−i
j (ω) :=

(

z − 1− i

j

)

(1− Ft(s
′, s′′|ω))j (Ft(s

′, s′′|ω))
z−1−i−j

Di(ω) :=

(

z − 1

i

)

(1− F (s′′|ω))i(F (s′′|ω))z−1−i
∑

z−1−i≥j≥k−i

Cz−1−i
j (ω)

k − i

j + 1

Pr(s1 = s, p = bp, 1 wins with bp|ω) = f(s|ω)
∑

0≤i≤k−1

Di(ω)

Pr(ω = L|s1 = s, p = bp, 1 wins with bp) =
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

Explanation: The probability that 1 wins with bp, the price is bp conditional on ω can be

calculated as the sum of the probabilities of winning in each of the following events, wi,j

where i ≤ k − 1 bidders bid above s′′, and k − i ≤ j ≤ z − 1 − i bidders bid the pooling

bid. The probability of winning conditional on event wi,j is k−i
j+1

, since there are k− i objects

remaining for the j+1 bidders bidding the pooling bid. The above expressions calculate the

probability of each event wi,j in each state and calculate the total winning probability in

each state. Similarly the term f(ω = L|s1 = s) Pr(ω = L|Y k
z−1 = s′) is calculated using the

following steps:

Pr(Y k
z−1 = s′|ω) =

(

z−1
1

)

f(s′|ω)
∑

0≤i≤k−1

(

z−2
i

)

(1− F (s′′|ω))i(F (s′′|ω))z−2−iCz−2−i
k−i−1(ω)

f(ω = L|s1 = s) Pr(ω = L|Y k
z−1 = s′) =

f(s|L) Pr(Y k
z−1=s′|L)

f(s|R) Pr(Y k
z−1=s′|R)

.

We will now show the following:

f(s|L) Pr(Y k
z−1 = s′|L)

f(s|R) Pr(Y k
z−1 = s′|R)

>
f(s|L)

∑

0≤i≤k−1D
i(L)

f(s|R)
∑

0≤i≤k−1D
i(R)

,

or equivalently the following,

(

z−1
1

)

f(s′|L)
∑

0≤i≤k−1

(

z−2
i

)

(1− F (s′′|L))i(F (s′′|L))z−2−iCz−2−i
k−i−1(L)

(

z−1
1

)

f(s′|R)
∑

0≤i≤k−1

(

z−2
i

)

(1− F (s′′|R))i(F (s′′|R))z−2−iCz−2−i
k−i−1(R)

>

∑

0≤i≤k−1D
i(L)

∑

0≤i≤k−1D
i(R)

.

Let, Ei(ω) :=
(

z−1
1

)

f(s′|ω)
(

z−2
i

)

(1 − F (s′′|ω))i(F (s′′|ω))z−2−iCz−2−i
k−i−1(ω). We first obtain the

following identity by direct algebra:

Di(ω)

Ei(ω)
=

(1− Ft(s
′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

k−i≤j≤z−i−1

(k − i)!(z − k − 1)!

(j + 1)!(z − j − i− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)j+i−k

.

3



A simplification of the above identity via a change of variables by letting u := j − k + i

delivers the following:

Di(ω) = Ei(ω)
(1− Ft(s

′, s′′|ω))F (s′′|ω)

f(s′|ω)

∑

0≤u≤z−k−1

(k − i)!(z − k − 1)!

(k − i+ u+ 1)!(z − k − u− 1)!

(

1− Ft(s
′, s′′|ω)

Ft(s′, s′′|ω)

)u

.

The following are consequences of MLRP: (1−Ft(s′,s′′|L))F (s′′|L)
f(s′|L)

< (1−Ft(s′,s′′|R))F (s′′|R)
f(s′|R)

, and,

for any positive integer u,
(

1−Ft(s′,s′′|L)
Ft(s′,s′′|L)

)u

<
(

1−Ft(s′,s′′|R)
Ft(s′,s′′|R)

)u

. Also, for any fixed u ∈ {0, ..., z−

k − 1}, the term (k−i)!(z−k−1)!
(k−i+u+1)!(z−k−u−1)!

is strictly increasing in i.

Our final observation is that Ei(L)
Ei(R)

is strictly decreasing in i. This observation also follows

from the MLRP assumption by doing some algebraic manipulations. Putting these observa-

tions together yields the desired result. �
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