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Abstract

We study competitive equilibria in a signaling economy with heterogeneously informed
buyers. In terms of the classic Spence (1973) model of job market signaling, firms have
access to direct but imperfect information about worker types, in addition to observing
their education. Firms can be ranked according to the quality of their information, i.e.
their expertise. In equilibrium, some high-type workers forgo signaling and are hired
by better informed firms, which make positive profits. Workers’ education decisions and
firms’ use of their expertise are strategic complements, allowing for multiple equilibria. We
characterize wage dispersion and the extent of signaling as a function of the distribution
of expertise among firms. Our model can also be applied to a variety of other signaling
problems, including securitization, corporate financial structure, insurance markets, or
dividend policy.

1 Introduction

We study competitive markets with the following features: Sellers are privately informed about
their own type; they can take a publicly observable action that is differentially costly for different
types; buyers can directly observe imperfect information about sellers’ types; and the quality
of this information is heterogeneous across buyers. The first two features define a standard
signaling environment.1 Our objective is to move beyond the special case, studied extensively,
where buyers are completely uninformed and rely exclusively on the public signal to form beliefs
about sellers’ types. Instead, we investigate the effect of adding the third and fourth features,
buyers’ heterogeneous direct information, on equilibrium prices and allocations.

∗Email: kurlat@usc.edu, florian.scheuer@uzh.ch. We thank Adrien Auclert, Alex Bloedel, Gabriel Carroll,
Veronica Guerrieri, Patrick Kehoe, Guido Menzio, Nick Netzer, Venky Venkateswaran as well as numerous
seminar and conference participants for helpful comments and suggestions.

1Throughout, we refer to a signaling rather than a screening problem. Traditionally, which term is used
depends on which party proposes contract terms. Since in our setup there are markets for all possible contracts,
the distinction vanishes.
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Our running example is an extension of the canonical Spence (1973) model of job market
signaling: workers have private information about their own productivity; education is purely
wasteful but is more costly for less productive workers so it can be used to signal; and firms have
heterogeneous expertise in directly assessing workers’ productivities, in addition to verifying
their education. For instance, firms have access to such direct information through tests,
interviews, referrals or trial periods, and differ in their ability to extract accurate predictions
from them. We ask how differences in recruiting expertise across firms affect the equilibrium:
What wages do more- versus less-expert firms offer, which workers do they hire, how much
profit do they make, what education levels do they require, and what are the implications for
social welfare?

While we exposit our setup and results in terms of this application, our model is general and
can be used to answer these basic questions for many signaling and screening problems. How
do investors’ abilities to directly assess a company’s profitability affect IPO prices, incentives
for insiders to retain undiversified shareholdings, and the payment of positive dividends? What
are firms’ incentives to engage in costly brand-building or to offer warranties if consumers
have heterogeneous ability to find out about product quality directly, e.g. by studying product
reviews? How does the use of different risk assessment models across insurance companies affect
equilibrium deductibles and premiums? What are the effects of buyers’ heterogeneous pricing
technologies on the design and tranching of asset-backed securities?

Returning to labor markets, we focus on the most parsimonious setting with two worker
types and consider configurations for firms’ direct information that allow us to rank firms
by their expertise, i.e. their probability of making mistakes: the “false positives” case where
firms may observe good signals from low-productivity workers and the opposite case, with “false
negatives.” We assume that each firm hires a single worker; such capacity constraints are crucial
to rule out trivial solutions where the most-expert firms hire all workers.

Our first task is to define a notion of competitive equilibrium that applies to this environ-
ment. We assume that each combination of a wage and an education level defines a separate
market. Any worker is allowed to apply for a job in any market (provided he acquires the
level of education prescribed by that market) and any firm can recruit in any market. For
workers, markets are partially exclusive: naturally, they commit to a single education level but
can apply for jobs at many different wages. When hiring, firms need not hire randomly from
the pool of applicants: they can reject some applicants and only hire from among those they
find acceptable, but only to the extent that their own direct information allows them to tell
workers apart. Markets do not necessarily clear: in any given market, workers can apply for
jobs and not get them and firms may not find acceptable workers. Equilibrium requires that
workers’ expectations of their chances of finding work in each market and firms’ beliefs about
what workers they will encounter in each market be consistent with each other and with firm
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recruiting and worker education decisions.
As is common in signaling models, the set of equilibria depends on what beliefs agents

can entertain regarding markets where in equilibrium there is no trade. A crucial technical
contribution of this paper is to construct restrictions on these out-of-equilibrium beliefs that
deliver a unique and plausible equilibrium in the familiar uninformed-buyers benchmark, yet still
guarantee equilibrium existence and tractability in the general case of heterogeneous expertise.
We propose the following conditions: First, for any market where a firm has well-defined beliefs
about what acceptable workers it would encounter, these beliefs can only place weight on
workers who would find it (weakly) optimal to apply to that market. Second, if a firm does
not have well-defined beliefs about acceptable workers it would encounter, we impose that any
workers that would be acceptable to the firm must expect that, if they were to apply for a job
in that market, they would get one for sure.

For the benchmark where firms have no direct information, our definition ensures that the
least-cost separating allocation is the unique equilibrium. Our refinement implies that pooling
is inconsistent with equilibrium: at slightly higher education levels than a putative pooling
allocation, firms must believe that they will only encounter high type workers because they are
the ones most willing to choose higher education, and therefore firms could profitably deviate.

For the false positives case, the following “partial signaling” pattern emerges. Low worker
types get no education and high types get either no education or enough education to fully
separate. Firms with sufficiently accurate information recruit zero-education workers at a wage
wP that leaves high-productivity workers indifferent between signaling and not signaling, and
make positive profits. These firms face both high- and low-productivity applicants, so they can
only profit if they are able to reject a sufficient proportion of low types. Firms with less accurate
information recruit either educated workers at a wage equal to the high types’ productivity,
or zero-education workers at a wage equal to low types’ productivity, and make zero profits in
either case. Two simple conditions summarize any equilibrium: an indifference condition that
requires the marginal firm to make zero profits by hiring zero-education workers at wage wP ,
and a market clearing condition requiring high-type workers who forgo education to indeed find
jobs at wage wP . This tractable structure allows us, for instance, to study comparative statics.
We find that signaling decreases if the cost is higher, if the demand for workers increases or
if firms’ expertise improves, intuitive properties that, somewhat unappealingly, do not hold in
the standard signaling model with uninformed firms.

Our model features strategic complementarities between high-quality workers’ signaling de-
cisions and firms’ recruiting decisions. If enough high productivity workers forgo education,
the pool of applicants in zero-education markets will improve. This induces less-expert firms to
recruit zero-educated workers, which in turn allows more high type workers to forgo education.
As a result, the model may feature multiple equilibria, each with different proportions of high
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types choosing to forgo education. The least cost-separating allocation, where all high types get
enough education to separate, is always one of these equilibria: if all high types signal, there is
no hope to hire them without requiring the signal, and therefore firms’ expertise is useless—an
extreme form of coordination failure. More generally, when there are multiple equilibria, they
can be Pareto-ranked. The signal is a pure deadweight cost, and the equilibrium with less
signaling is preferred by everyone.

One feature of the classic signaling and screening model that has been criticized is a dis-
continuity as the buyers’ prior becomes degenerate. The symmetric information case involves
no signaling, but in the presence of even a minimal mass of low types, the high types must
emit a non-trivial signal to separate. Our model offers a natural way to smooth out this stark
property: there always exists an equilibrium that continuously approaches the full information
limit, both as the share of low types vanishes and as buyers’ direct information becomes perfect.
A similar discontinuity arises in the standard signaling model when the signaling costs of the
two types converge: whenever the costs differ, there is a discrete amount of signaling, but no
signaling when they are equal. We show that our model overcomes this discontinuity as well.

Finally, we characterize equilibrium in the false negatives case, which we show to be essen-
tially unique. Productive workers now make different choices depending on how transparent
they are, that is, how many firms are able to identify them as high types. Those most easily
identified forgo education and are paid their productivity. Less transparent workers also forgo
education but now earn a range of lower wages. They are hired in part by non-selective firms in
markets where low types also apply, so wages must be low enough to allow these non-selective
firms to break even on whatever pool of applicants they face. The least transparent productive
workers instead resort to education in order to separate from low types. Therefore, our model
provides a novel theory of wage dispersion among equally productive (and educated) workers
based on how easy it is to evaluate their productivities. It also predicts that higher demand for
workers leads to polarization in signaling: fewer high types signal, but those who do ought to
do so more intensely.

Related Literature. This paper introduces heterogeneous expertise among buyers into the
canonical competitive signaling and screening environments due to Spence (1973) and Roth-
schild and Stiglitz (1976). To this purpose, we develop a notion of equilibrium that builds on
concepts proposed by Gale (1996), Guerrieri et al. (2010), Guerrieri and Shimer (2014) and
Kurlat (2016), all of which are based on the idea that different contracts define different mar-
kets and the probability of trade, rather than the price, is the market-clearing variable. This
allows us to naturally incorporate capacity constraints among buyers and to study the extensive
margin of trade, which is crucial in many relevant settings, such as labor or financial markets.

The way in which we model heterogeneity of information on the buyers’ side—and hence
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their ability to distinguish between sellers based on their own direct assessment rather than
just the publicly observable signal or screening device—is borrowed directly from Kurlat (2016).
However, Kurlat (2016) studies a single-dimensional environment, where the set of contracts
is just the set of prices, so public signaling is ruled out. Our paper instead incorporates a
second dimension, allowing us to capture signaling or screening through, for example, education,
underinsurance, equity retention, dividends or advertising. On a technical side, incorporating
signaling requires us to model buyers’ beliefs associated with off-equilibrium actions, a challenge
that we tackle here but that is not present in Kurlat (2016). Similar to our paper, Gale (1996)
and Guerrieri et al. (2010) also allow for general, multidimensional contracts. Relative to them,
however, our contribution is to relax the assumption that buyers are completely and uniformly
uninformed, by introducing heterogeneous information for buyers.

The refinement on beliefs that we impose is closely related to the D1 criterion proposed by
Cho and Kreps (1987), the condition for a refined equilibrium proposed by Gale (1996), and
the conditions on beliefs imposed by Guerrieri et al. (2010) for contracts that are not traded
in equilibrium. It is based on the idea that, in markets with zero supply in equilibrium, buyers
anticipate that, if they were to place demand there, they would only attract the sellers (among
those they do not reject based on their direct assessment) who are willing to accept the low-
est probability of trade. This is the natural generalization of the infinite-tightness condition
imposed by Guerrieri et al. (2010) to our framework with heterogeneous information. The
refinement eliminates the traditional reasons for multiplicity that emerge in signaling games
when out-of-equilibrium beliefs are left unrestricted. By contrast, the multiplicity we find in
the false positives case is due to an entirely orthogonal force, namely the strategic complemen-
tary between signaling and the use of expertise, which vanishes in the classic no-information
benchmark.

More broadly, our work relates to the literature that followed Rothschild and Stiglitz (1976)
on competition in multidimensional contracts with asymmetric information (see e.g. Miyazaki,
1977; Wilson, 1977; Dubey and Geanakoplos, 2002; Bisin and Gottardi, 2006; Netzer and
Scheuer, 2014; and Azevedo and Gottlieb, 2017). Similarly, there is an extensive literature
that has applied the Spence (1973) signaling model to various settings, including corporate
finance (Leland and Pyle, 1977; Ross, 1977), dividend policy (Bhattacharya, 1979; Bernheim,
1991), security design (DeMarzo and Duffie, 1999; DeMarzo, 2005), and brand-building (Nel-
son, 1974; Kihlstrom and Riordan, 1984; Milgrom and Roberts, 1986), to name a few. None of
these two strands of literature, however, have attempted to move beyond the polar case where
sellers are informed and buyers are uninformed. Our paper provides a general analysis of how
heterogeneous information affects equilibrium in all these situations.

Daley and Green (2014) also study an environment where the possibility of signaling coexists
with direct information (“grades”), and find conditions such that the equilibrium features either
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partial or complete pooling. They assume that grades are equally observable by all firms, so they
have no role for expertise on the firm side. Feltovich et al. (2002) also consider an environment
with (homogeneous) direct information in addition to signaling, and find that—in a model with
three types—the highest types may refrain from signaling to distinguish themselves from the
medium types, a behavior they refer to as “countersignaling.” A similar feature emerges in
our model in the false negatives case, where some high types separate through signaling while
others pool with low types in terms of the signal they emit, relying instead on expert buyers
to identify them. Fishman and Parker (2015), Bolton et al. (2016) and Kurlat (2019) study
environments where buyers can differ in the quality of their information but where sellers do
not have a way to signal. Their focus is on the efficiency of buyers’ information acquisition
decision.

Board et al. (2017) share our interest in the idea that firms differ in their ability to tell apart
high- and low-quality job applicants. In their setup, however, workers do not make any decisions,
so whether or not they know their own productivity does not matter. This rules out any way
in which workers may signal their private information, or be screened other than through firms’
direct assessment of them. Instead, in our model, workers can emit a publicly observable signal,
such as education, that can be used to convey information about their productivity. In addition,
Board et al. (2017) assume that firms’ direct information is independent across firms, whereas
we work with a nested information structure where more-expert buyers know strictly more than
less-expert ones.

The rest of this paper is organized as follows. Section 2 introduces the model and briefly
illustrates a number of well-known applications. Section 3 provides our equilibrium definition
and Section 4 shows that it gives rise to a unique equilibrium in the standard signaling envi-
ronment where firms are uninformed. In Section 5, we characterize the set of equilibria with
false positives and in Section 6 the case of false negatives. Finally, Section 7 concludes. Various
extensions and all proofs are relegated to the Appendix.

2 The Economy

Our model is intended to capture a generic signaling setting. For clarity, we present our
results in terms of Spence’s original job market signaling model. However, the only critical
assumptions are perfect competition, heterogeneous information, and the existence of some
action (the signal) that is inefficient from a first-best point of view but involves different costs
for different sellers. Our results therefore apply to any setting with these features, and we
provide some alternative interpretations of the model below.
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2.1 Job Market Signaling

There is a unit measure of workers indexed by i, uniformly distributed in the interval [0, 1].
Each worker is endowed with a single unit of labor. Worker i’s productivity is

q (i) =

{
qL if i < λ

qH if i ≥ λ
(1)

with qL < qH . We refer to workers with i < λ and i ≥ λ as low and high types, respectively. A
worker’s index i is private information. Workers of the same type but different indices i all have
the same productivity; they differ only in terms of how easy it is for firms to identify them, as
specified below.

Workers can choose a publicly observable level of education e, which has no effect on their
productivity. If worker i chooses a level of education e and gets a job at a wage w, his utility
is w − c (i) e, where

c (i) =

{
cL if i < λ

cH if i ≥ λ.

We assume cL > cH , so low types experience a higher utility cost of obtaining education.
Up to here, the model coincides with the basic Spence (1973) signaling model. Our inno-

vation is to assume firms possess heterogeneous information about the workers they encounter.
Formally, there is a continuum of firms of measure greater than one, indexed by θ ∈ [0, 1].
The measure of firms over [0, 1] is denoted by F and assumed to be continuous. When firm θ

analyzes worker i, it observes a direct signal

x (i, θ) =

{
0 if i < θ

1 if i ≥ θ.
(2)

If θ = λ, this signal allows the firm to perfectly infer the worker’s productivity. If θ < λ,
the firm makes “false positive” mistakes: it observes positive signals from a subset of the low
type workers. If θ > λ, the firm makes “false negative” mistakes. We assume that firms can
be perfectly ranked by their expertise, so one of two cases applies: either F has support in
[0, λ] or it has support in [λ, 1]. We consider both configurations subsequently. Clearly, (2) is
a restrictive model of how well informed firms are: in general, firms could make both kinds
of mistakes in arbitrarily correlated ways. This formulation has the advantage of providing a
natural measure of a firm’s expertise since the closer θ is to λ, the better the firm is at correctly
identifying a worker’s productivity, as well as allowing a relatively tractable characterization of
equilibrium outcomes.

Each firm can hire at most one worker. Equivalently, we could assume that buyers have
limited funds (and are unable to borrow) to leverage their expertise, which may be more natural
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in some of our financial market applications sketched below. Either way, some form of capacity
constraints are needed to keep the problem interesting by preventing the best-informed buyers
from implementing all trades. If a firm hires worker i at wage w its profits are q (i)− w.

Thus, our key innovation compared to the canonical signaling model is that buyers have ac-
cess to direct, even though imperfect, information about sellers, rather than relying exclusively
on self-selection. Moreover, the quality of this information is heterogeneous.2 For example,
some managers have better judgement in assessing the talent of job applicants, as in Board
et al. (2017), or recruiters may run tests or interviews (see e.g. Guasch and Weiss, 1980, and
Lockwood, 1991). Another channel of direct information about workers is through referrals. For
example, Beaman and Magruder (2012) and Burks et al. (2015) show empirically that better
employees make more and better referrals, and that firms differ in the degree to which their
employees can predict the performance of their referrals.

2.2 Other Interpretations

As is common to signaling models, the crucial feature is that the signal e is costly and satisfies
a single-crossing property. For the job market signaling application, single crossing can be
verified by letting u (w, e) = w − c (i) e and computing the marginal rate of substitution:

− ∂u (w, e) /∂e

∂u (w, e) /∂w
= c (i) ,

which is higher for low types.
There are many other signaling settings that are formally isomorphic to our baseline model.

We briefly describe four of them.

Securitization. Consider first the security design problem of DeMarzo and Duffie (1999). A
continuum i ∈ [0, 1] of originators each own a pool of assets that generate future cash flow
y. The distribution of these cash flows is privately known to the originators, and given by
GL(y) if i < λ and GH(y) if i ≥ λ, where GH first-order stochastically dominates GL, and they
have common support. The originators prefer receiving cash over holding their risky assets,
for instance because they have access to other profitable investment opportunities, or because
they have superior ability in valuing assets and therefore want to raise cash to fund new asset
purchases. Formally, they value future cash flows from their unissued assets at discount factor

2Whenever there is no heterogeneity across firms (so the support of F is concentrated at a single value of
θ), our model collapses back to the standard signaling problem. If θ < λ, then all workers i ∈ [0, θ) are fully
identified as low types, and all i ∈ [θ, 1] look indistinguishable to all firms. Hence, the former group of workers
get their first-best outcome, and a standard signaling model without expertise applies to the latter population,
with a share of low types equal to (λ−θ)/(1−θ). Similarly, if θ > λ, we obtain a standard signaling environment
where the share of low types is λ/θ.
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α < 1. They face a pool of small, heterogeneously informed, buyers who do not discount, so the
efficient allocation calls for selling all assets. Of course, due to their private information, the
originators face a lemons problem when selling their assets. To raise cash, they therefore issue
a limited-liability security backed by their assets. DeMarzo and Duffie (1999) show that, under
general conditions, it is optimal to sell a high-quality, senior claim to the assets (i.e. debt) and
retain the remaining, risky equity tranche as “skin in the game,” i.e. a signal of asset quality.
Let Y denote the upper bound of Gk, k = L,H; let Y − e denote the face value of the debt
tranche, and w denote its price per unit of face value. Then issuer i’s payoff is

u (w, e) = (Y − e)w + α

ˆ
max {y + e− Y, 0} dGk (y)

with k = L if i < λ and k = H if i ≥ λ. The marginal rate of substitution is

− ∂u (w, e) /∂e

∂u (w, e) /∂w
=
w − α [1−Gk (Y − e)]

Y − e .

By first-order stochastic dominance (FOSD), this is higher for low types and therefore satisfies
single crossing. Finally, suppose each buyer demands one unit of face value of the asset-backed
security. Then the buyer’s payoff is qk(e)− w just like in our baseline model, where

qk(e) ≡
ˆ

min

{
y

Y − e, 1
}
dGk (y)

because each unit of the security has face value Y − e, so buying one unit of face value means
buying 1/(Y − e) securities.

Our model thus captures the equilibrium in this classic tranching problem with the addi-
tional feature that buyers are heterogeneously informed about the quality of the asset-backed
security. This may involve differential knowledge of aspects of the underlying asset pool or,
more importantly, special expertise in the pricing of these securities (such as proprietary pricing
models). For instance, Bernardo and Cornell (1997) provide empirical evidence for significant
variation in valuations of mortgage-backed securities (with the winning bid exceeding the me-
dian bid by over 17% on average) even though all buyers were sophisticated investors or interme-
diaries. They conclude that this variability is due to differences in pricing technology. Mattey
and Wallace (2001) document heterogeneity of this variability across different mortgage-backed
securities, suggesting that some securities are easier to price than others.

Financial Structure of Firms. Our next example is a variant of the corporate finance prob-
lem studied by Leland and Pyle (1977). Each entrepreneur i owns a project whose future payoff,
privately known, is given by (1). As in the previous example, entrepreneurs are impatient, so
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their own valuation for their project’s return is αq (i), and they wish to sell their project to
heterogeneously informed investors. To signal the quality of their project, entrepreneurs can
publicly announce that they will retain a fraction e of the equity of their firm. If an entrepreneur
sells a fraction 1−e of his firm at a price per unit of w then his utility will be w (1− e)+αq (i) e.
The marginal rate of substitution is

− ∂u (w, e) /∂e

∂u (w, e) /∂w
=
w − αq (i)

1− e ,

which, again, is higher for low types. If an investor buys one unit of firm i at a unit price
w his profits are q (i) − w. Heterogeneous information among investors could be the result
of differential experience in this particular industry, differential contacts with company insid-
ers, or differential access to analyst reports, which make some investors better than others at
distinguishing good from bad projects.3

Insurance. Our model can also be mapped into the Rothschild and Stiglitz (1976) insurance
problem. A continuum i ∈ [0, 1] of risk-averse households each have wealth X and will suffer a
loss of d with probability 1− q (i). q (i) is given by (1) and is privately known to the household.
They face a pool of small, risk-neutral, heterogeneously informed insurance companies, so the
efficient allocation calls for households to be fully insured. Insurance companies offer policies
that cover the loss d minus a deductible e, in exchange for an up-front premium (1− w) (d− e),
so that 1 − w is the implicit probability of loss that makes the insurance contract actuarially
fair. If a household gets contract (w, e), its utility is

u (w, e) = qv (X − (1− w) (d− e)) + (1− q) v (X − (1− w) (d− e)− e) ,

where v (·) is the household’s von Neumann-Morgenstern utility function. The marginal rate
of substitution is

− ∂u (w, e) /∂e

∂u (w, e) /∂w
=

1

d− e

(
w − q

q + (1− q) v′(X−(1−w)(d−e)−e)
v′(X−(1−w)(d−e))

)
.

It is straightforward to show that this is decreasing in q and therefore satisfies single crossing.
If an insurance company covers one unit of losses from household i at an implicit probability

3Leland and Pyle (1977) model the cost of retention as risk-bearing by a risk-averse entrepreneur, rather than
reduced investment by an entrepreneur who can reinvest his proceeds from selling the project at an above-market
rate of return r = 1/α− 1 > 0, as we do here following DeMarzo and Duffie (1999). Though the interpretation
is similar, the mechanics in Leland and Pyle’s model are therefore closer to the Rothschild and Stiglitz (1976)
insurance application we sketch below.
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1 − w, then its profits are 1 − w − (1− q (i)) = q (i) − w.4 Heterogeneous information among
insurance companies could be the result of some of them having larger actuarial databases or
more sophisticated predictive models that allow them to tell apart riskier from safer types.

Dividend Policy. Finally, consider the dividend puzzle, which observes that firms pay div-
idends even though their tax treatment is less favorable than that of share repurchases. The
dividend signaling hypothesis (going back to Bhattacharya, 1979) explains this corporate payout
policy by viewing dividends as a costly signal to convey private information about profitability
(see e.g. Bernheim and Wantz, 1995, for empirical evidence). Formally, suppose a continuum
i ∈ [0, 1] of firms will each produce a random, i.i.d. stream of cash flows {yt}∞t=1. The distri-
bution of y is privately known to the incumbent shareholder and given by GL(y) if i < λ and
GH(y) if i ≥ λ, where GH first-order stochastically dominates GL. The conditional means are
Ei (y) = rq (i), where r is the interest rate and q (i) is given by (1). The incumbent shareholder
announces a dividend e to be paid at t = 1 and then sells all its shares (cum-dividend) to
heterogeneously informed outside investors. Dividends are taxed at a rate τ . Furthermore,
following Bhattacharya (1979), if the cash flow y1 is less than the announced dividend e, the
incumbent agrees to provide the firm with a loan to finance the shortfall, at a cost β (e− y1).
Letting w − τe denote the price paid by investors, the payoff for the incumbent shareholder is

u (w, e) = w − τe− β
eˆ

0

(e− y) dGk (y)

with k = L if i < λ and k = H if i ≥ λ. The marginal rate of substitution is

− ∂u (w, e) /∂e

∂u (w, e) /∂w
= τ + βGk (e) .

By FOSD, this is higher for low types and thus satisfies single crossing. An outside investor’s
profit is given by the net present value of the firm’s cash flows q (i) minus the dividend tax τe
minus the price paid w − τe, for a total of q (i)− w, just like in the benchmark model.

3 Equilibrium

Since our model inherently requires some form of capacity constraints on the firm side, it is
convenient to adopt a Walrasian approach similar to the notion of competitive search equilib-
rium. There are many markets m ∈M open simultaneously. Each market is defined by a wage
w (m) and an education level e (m) required. Workers choose what markets to apply to and

4Since each contract covers d− e losses, covering one unit of losses means that the insurance company enters
into 1/(d− e) contracts.
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firms choose in which markets to recruit and how to use their information to screen applicants.
There is no guarantee for either workers or firms of finding a counterparty in market m; in any
given market, workers may face rationing and firms may (correctly) believe that there are no
acceptable applicants.

Markets are assumed to be non-exclusive: both workers and firms may visit many markets.
However, workers are committed to a single education level, so they can only apply for jobs in
markets that correspond to their chosen education. This aligns well with the natural timing,
where education is determined before entering the labor market. Similarly, in the corporate
finance applications, it corresponds to situations where the design of the security (the size of
the junior tranche), the financial structure of the firm (the retained equity) or the amount of
dividends to be paid out are determined first, and then the securities or firm shares are offered
in potentially multiple markets with different unit prices.

3.1 Worker’s Problem

Worker i chooses a level of education e and applies for jobs at all possible wage levels. He
takes as given a distribution over possible wage offers with c.d.f. denoted by µ (·; e, i), which is
determined in equilibrium as will be explained below (not receiving a job offer at all is equated
to receiving an offer at wage 0). The worker’s problem is

max
e
w̄ (e, i)− c (i) e (3)

where
w̄ (e, i) =

ˆ
wdµ (w; e, i)

is the expected wage. We will allow for the possibility that workers randomize over education
levels (or that identical workers choose different signals), and denote by πi (e) the probability
that a worker i chooses education level e.

3.2 Firm’s Problem

When a firm observes applicants, it may use its information to select which ones to hire, to the
extent that it can tell them apart. A feasible hiring rule for firm θ is a function χ : [0, 1]→ {0, 1}
that is measurable with respect to its information set, that is:

χ (i) = χ (i′) whenever x (i, θ) = x (i′, θ) .

A firm will reject applicants with χ (i) = 0 and hire from among those i for whom χ (i) = 1,
which we describe as χ-acceptable. Let X denote the set of possible hiring rules.
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In order to decide what market to hire from and what hiring rule to apply, a firm needs
to form beliefs G (·;m,χ) about what workers it will be drawing from should it choose to
hire in market m with hiring rule χ. If the firm thinks it will find χ-acceptable workers in
market m, then G (·;m,χ) is a well-defined probability distribution on the set of χ-acceptable
workers; otherwise G (·;m,χ) = ∅. Let g denote the density or p.m.f. of G, which we assume
is well-defined.

Firm θ’s problem is

max
m,χ

ˆ
[q (i)− w (m)] dG (i;m,χ) s.t. χ feasible for θ. (4)

As with workers, we allow for firms to randomize over hiring decisions (or identical firms
to make different choices). We denote by the measure δθ on M ×X the distribution of choices
by firms of type θ across markets and hiring rules. Each firm can hire at most one worker, so
δθ (M,X) ≤ 1.

3.3 Consistency

We assume that, for any given signal e, markets at different wages clear sequentially, starting
from the highest wage, as in the “buyer’s equilibrium” studied by Wilson (1980). At each wage,
firms hire workers from among those they find acceptable. Workers who are hired withdraw
their application from lower-wage markets. This continues until all workers have been hired or
w = 0 is reached. Firms’ beliefs about which workers they will hire and workers’ probability
distribution over possible wages must be consistent with this assignment procedure.

For any set of markets M0 ⊆M and hiring rules X0 ⊆ X, define demand as:

D (M0, X0) ≡
ˆ
δθ (M0, X0) dF (θ) . (5)

δθ (M0, X0) is the number of workers that firms of type θ want to hire in markets in the set M0

using a hiring rule in the set X0. D (M0, X0) sums this number across all firms. Let:

M (w, e) ≡ {m ∈M : e (m) = e, w (m) ≤ w}

be the set of markets that specify an education level of exactly e and a wage of at most w.
We impose the following consistency condition between firms’ beliefs and recruiting decisions
on the one hand, and workers’ education decisions and the wage distributions they perceive on
the other hand:

µ (w; e, i) πi (e) =

ˆ

M(w,e)×X

g (i;m,χ) dD (m,χ) for all w, e, i. (6)
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Consider the left-hand side of equation (6) first. πi (e) is the number of i-type workers who
choose education e; µ (w; e, i) is their probability of getting a wage at most w. Hence, the
left-hand side is the total number of i-type workers with education e who will obtain wages at
most w. Now turn to the right-hand side. We assume that firms’ beliefs are rational, so the
distribution of workers they hire is consistent with their beliefs. A firm imposing hiring rule χ
in market m will hire g (i;m,χ) workers of type i. Adding these hires across hiring rules and
markets according to firms’ demand results in the right-hand side of (6), which is the total
number of i-type workers who get hired in markets with signal e and wages at most w.

Example. The consistency condition simplifies when there are type-i workers who face a
strictly positive probability of finding a job in a given market, so the c.d.f. µ makes a discrete
step of size dµ(w; e, i) at a given w. Then equation (6) can be written as:

dµ(w(m); e(m), i) =

´
X
g(i;m,χ)dD(m,χ)

πi(e(m))
. (7)

This has the interpretation of a simple rationing rule, which says that the probability dµ for i-
type workers to find a job in a given market is equal to the ratio of the number of i-type workers
hired in that market (according to firms’ rational beliefs and demand decisions) relative to the
supply of i-type workers in that market. The more general formulation of the consistency
condition in equation (6) also deals with cases where µ may increase continuously over some
interval of wages, so the probability of being hired in any single market is zero but there is an
associated probability density. Both situations will occur in the equilibria we find below.

3.4 Equilibrium Definition and Refinement

Definition 1. An equilibrium consists of (i) an education decision πi for each worker i; (ii) a
demand decision δθ for each firm θ; (iii) probabilities µ (·; e, i); and (iv) beliefs G (·;m,χ) such
that:

1. Worker optimization. For every i, e such that πi (e) > 0, e solves worker i’s problem (3),
taking µ as given.

2. Firm optimization. Every (m,χ) in the support of δθ (·) solves firm θ’s problem (4), taking
G as given, and δθ (M,X) ≤ 1 .

3. Consistency. µ, G, δθ and πi satisfy condition (6), and µ (w; e, i) is weakly decreasing in
i for every (w, e).

4. Belief consistency. Beliefs satisfy:
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(a) For any market m = (e, w) with
´
i
χ (i) πi (e)µ (w; e, i) di > 0,ˆ

i

q (i) dG (i;m,χ) =
´
i q(i)χ(i)πi(e)µ(w;e,i)di´
i χ(i)πi(e)µ(w;e,i)di

. (8)

(b) If G (·;m,χ) 6= ∅ then for any i in the support of G (·;m,χ)

i. χ (i) = 1

ii. e (m) solves worker i’s problem

iii. µ (w(m); e (m) , i) > 0

(c) If G (·;m,χ) = ∅, then µ (w (m) ; e (m) , i) = 0 for all i such that χ (i) = 1.

The worker and firm optimization requirements are standard: workers choose education and
firms choose markets and acceptance rules to maximize their payoffs.

The consistency requirement (6) imposes consistency between firms’ beliefs about which
workers they will hire and worker’s beliefs about the wages they will be paid. When πi (e) = 0,
(6) imposes no constraints on µ, i.e. no constraints on i-workers’ chances of being hired in
markets where there are no i-applicants. In addition to (6), we impose that µ must be weakly
decreasing in i, so that higher-i workers expect higher wages in a FOSD sense. This rules out
low types being more optimistic than high types about the wages they would obtain at some
off-equilibrium levels of education, which would be inconsistent with any rational conjecture
about what firms might be doing in off-equilibrium markets.

The belief consistency requirement (4a) just imposes Bayes’ Rule for the expected produc-
tivity of workers for positive-supply markets. It says that in any market with a positive supply
of χ-acceptable workers, firms expect the average productivity to correspond to a representa-
tive sample of them.5 This sample consists of all the acceptable workers who have chosen the
education level associated with this market and who have not already been hired at markets
with higher wages, which is reflected in (8) through the probability πi(e)µ(w; e, i).

Belief Refinement. The key challenge in constructing a tractable equilibrium notion in our
model with signaling is how to discipline firms’ beliefs in zero-supply markets. We propose the
following refinement, which guarantees equilibrium uniqueness in the no-information benchmark
(and at the same time preserves equilibrium existence throughout). Condition (4b) (which is
automatically satisfied in positive-supply markets) says that beliefs can only place weight on
χ-acceptable workers that would be willing to look for a job in market m. In other words, a
firm can never expect to find in market m a worker who could obtain higher utility by choosing
a different level of education, or who can find a job for sure at the same level of education

5As we discuss below, this can be derived formally by assuming there are different markets in which firms
pick applicants in different sequences and letting firms and workers self-select.
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but a higher wage (which would imply µ (w(m); e (m) , i) = 0). Condition (4c) says that if
a firm is certain that it cannot find χ-acceptable workers in market m, then it must be that
χ-acceptable workers are certain to find a job at a wage at least w (m) if they choose education
e (m). In other words, firms can only believe that a market is empty of acceptable workers if
being guaranteed a job at wage w (m) is not sufficient to persuade them to choose this market.

Condition (4c) is closely related to the infinite-tightness condition in Guerrieri et al. (2010)
and Guerrieri and Shimer (2014). In their setup, for every market there either is at least one
worker type who finds that market optimal, or the market tightness is infinite. In the first case,
this allows firms to have well-defined beliefs about which workers they would encounter; in the
second, workers would match for sure. Condition (4c) generalizes this idea. There is no unique
tightness measure for each market because the same market may be tight for some workers but
not others, depending on whether firms who hire in this market find them acceptable. The
requirement that workers must expect to match for sure if firms think they cannot find them
must therefore be imposed separately for the workers in each χ-acceptance group.

Relationship with the Definition in Kurlat (2016). Our equilibrium concept builds on
Kurlat (2016), who also assumes that each contract defines a market and buyers/firms use their
information to choose among heterogeneous sellers/workers. Kurlat (2016) emphasizes that if
firms with different hiring rules hire in the same market, the allocation will depend on the order
in which they choose workers, as early firms may skew the sample that later firms draw from.
He assumes that there are separate markets not just for each contract but for each contract
combined with each possible way to order hiring rules, and shows that under a “false positives”
information structure, trade will take place in markets where the less-selective firms hire first.
This implies that no one’s sample is skewed by earlier firms, so it is as if all firms were drawing
from the entire pool of χ-acceptable applicants. If this is so, then Bayes’ Rule implies that:

g (i;m,χ) =
χ (i) πi (e)µ (w; e, i)´

i
χ (i) πi (e)µ (w; e, i) di

, (9)

and therefore condition (8) holds. Kurlat (2016) also shows that under “false negatives” in-
formation, more selective firms may hire first in some markets, so allocations are not as if all
firms were drawing from the entire pool, and (9) does not hold. However, only firms who only
accept high types end up hiring after more selective firms, so even though the distribution
across different high types is skewed, its mean is unaffected and condition (8) holds in this case
too. Rather than re-derive these results, we incorporate them directly into our definition of
equilibrium, and simply impose (8) as an equilibrium condition.

Kurlat (2016) only studies unidimensional contracts, where the price is the only contract
dimension. This rules out the possibility of signaling, and consequently there are no markets
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Figure 1: The least-cost separating allocation.

corresponding to off-equilibrium signals, and no need to specify how beliefs react to these off-
equilibrium signals. Hence, the refinement we construct here in order to discipline beliefs in
zero-supply markets has no equivalent in his equilibrium definition. In our model with signaling,
the novel conditions (4b) and (4c) are crucial in order to constrain the equilibrium set while
still guaranteeing equilibrium existence.

4 The No-Information Benchmark

We now characterize equilibrium for the case where F is a point mass at θ = 0 (or equivalently
at θ = 1), i.e. when all firms are completely uninformed. This corresponds to the classic
signaling environment. For this case, the least-cost separating allocation emerges as the unique
equilibrium. In this allocation, low types get no education, high types get just enough education
to separate with

e∗ =
qH − qL
cL

, (10)

and each type is paid their own productivity, as illustrated in Figure 1.

Proposition 1. If F is a point mass at θ = 0, there is a unique equilibrium, given by:

1. Education decisions:

πi (e) =


1 if i < λ and e = 0

1 if i ≥ λ and e = e∗

0 otherwise
(11)
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2. Demand decisions:

δ (m) =


λ/F (0) if w (m) = qL and e (m) = 0

(1− λ)/F (0) if w (m) = qH and e (m) = e∗

0 otherwise
(12)

3. Probabilities:
µ (w; e, i) = I (w ≥ min {qL + cLe, qH + cH (e− e∗)}) (13)

4. Beliefs:

g (i;m) =


1
λ
I (i < λ) if e (m) < e∗, w ≥ qL + cLe (m)

1
1−λI (i ≥ λ) if e (m) ≥ e∗, w ≥ qH + cH (e (m)− e∗)

∅ otherwise
(14)

The equilibrium is constructed by setting the distribution µ as a step function at the lower
envelope of the indifference curves of both types, which makes low types indifferent between
any e ∈ [0, e∗] and high types indifferent between any e ≥ e∗. Therefore, e = 0 for low types
and e = e∗ for high types is indeed optimal. This is then sustained by firms’ belief that in
the range [0, e∗] they will only encounter low types above the lower envelope and no one at all
below, and similarly for high types above e∗. Hence there are no profits in any market, so firms
are trivially optimizing.

The key step in establishing uniqueness is to rule out pooling, i.e. markets with positive
supply of both high and low types. This follows the standard logic based on single-crossing. If
there was pooling at a level of education e′, then high types would require a lower wage than
low types to be willing to choose e = e′ + ε. Hence firms that consider hiring in a market
with e = e′ + ε and a wage that leaves high types indifferent must believe that they will only
encounter high types, which for small ε must be more profitable than hiring at e′.

The types of deviations to pooling contracts that may lead to non-existence of a pure-
strategy equilibrium in Rothschild and Stiglitz (1976) are not profitable because each firm
perceives itself to be small.6 A job with e = 0 and w = qH − cHe∗+ ε is strictly preferred to the
equilibrium by all workers and if a firm was large and could hire the entire population it could
break the equilibrium by offering to hire everyone in this market, which would be profitable for
low values of λ. Here, if a small firm tries to hire in this market, it will not attract any high
types, because they know that they will be competing with all the low types for an infinitesimal
chance to be hired and will have to settle for w = qL if they are not. Formally, this is captured
by the assumption that beliefs do not depend on whether a firm decides to recruit in a particular
market. This is the same logic that leads to existence and uniqueness in Guerrieri et al. (2010).

6Rosenthal and Weiss (1984) and Dasgupta and Maskin (1986) show that mixed-strategy equilibria do exist.
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Figure 2: Active markets in no-signaling and partial signaling equilibria

5 False Positives

In this section, we turn to the case where F has full support on the interval [0, λ], so firm
θ misperceives all applicants i ∈ [θ, λ] as high types even though they are in fact low types.
For this case, all equilibria are of one of three types, which we label “no signaling,” “partial
signaling” and “pure signaling.” The first two are illustrated in Figure 2; the third coincides
with the least-cost separating allocation from the no-information benchmark. We describe each
of these possible equilibria, show that any equilibrium must belong to one of these three classes,
and then find conditions for each of them to arise.

5.1 Description

No-Signaling Equilibria. In a no-signaling equilibrium, all workers choose e = 0. All high-
type workers (and some low-type workers) are hired in market

(
0, wN

)
(which we label market

mN); the low-type workers who fail to find a job in market mN are hired in market (0, qL).
If firm θ hires in market mN it will face a mix of 1−λ high-type and λ low-type applicants.

By imposing hiring rule χθ (i) = I [i ≥ θ], it will screen out as many low types as it can,
leaving only a measure λ− θ of χ-acceptable ones. Therefore it ends up hiring a low type with
probability λ−θ

1−θ and a high type with probability 1−λ
1−θ . Its expected profits will be:

Π (θ) =
(λ− θ) qL + (1− λ) qH

1− θ − wN .

Profits are increasing in θ; firms whose information enables them to screen out a higher pro-
portion of low types will be hiring a better pool of workers. Only firms that are sufficiently
confident in their ability to tell workers apart will be willing to hire in market mN ; they will
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make profits if and only if they are above cutoff θN , defined by:

θN =
wN − (λqL + (1− λqH))

wN − qL
. (15)

For all 1− λ high-type workers to be hired in market mN , it must be that there are enough
firms in the range

[
θN , λ

]
to hire all of them. Given that firm θ hires in expectation 1−λ

1−θ
high-type workers, this requires:

λˆ

θN

1

1− θdF (θ) = 1. (16)

Note that low-type workers do not guarantee themselves a job at wage wN since some of the
firms hiring in market mN will reject them; only firms θ ∈

[
θN , i

]
hire in market mN and accept

worker i. Therefore his probability of finding a job at wage wN is:

dµ
(
wN ; 0, i

)
=

iˆ

θN

1

1− θdF (θ) for i ∈
[
θN , λ

]
.

This probability is increasing in i since higher-i low types mislead more firms into hiring them
in market mN .7 It is equal to zero for workers i < θN since no firm that would accept them
hires in market mN . Low types who are rejected will be hired at w = qL, by firms with θ ≤ θN ,
who make zero profits.

Equation (16) uniquely pins down the threshold firm θN ; together with equation (15), this
uniquely determines the wage wN . Finally, for this to be an equilibrium, it must be that high
type workers prefer choosing e = 0 and obtaining wage wN over choosing e = e∗, which is
enough to separate from low types and guarantee themselves a wage qH . Therefore, it must be
that wN ≥ qH − cHe∗. Hence, there is at most one no-signaling equilibrium.8

Partial Signaling Equilibria. In a partial signaling equilibrium, low-type workers choose
e = 0. They are hired with some probability in market

(
0, wP

)
, which we label mP , where:

wP = qH − cHe∗. (17)

and otherwise in (0, qL). High-type workers choose either e = 0 (and are hired for sure in
market mP ) or e = e∗ (and are hired for sure in market (e∗, qH), which gives them the same
utility).

7The probability also satisfies the consistency condition (7): Each firm θ ∈ [θN , λ] expects to hire one worker
at random from all those in market mN that it cannot reject, so g(i;mN , χ) = I(i ≥ θ)/(1 − θ). Moreover,
πi(0) = 1. Hence, dµ(wN ; 0, i) =

´ λ
θN
g(i;mN , χ)dF (θ).

8As we discuss in Section 5.2, the no-signaling equilibrium corresponds to the equilibrium in Kurlat (2016).
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Let πP be the fraction of high types that choose e = 0. If firm θ hires in market mP with
hiring rule χθ (i) = I [i ≥ θ], it will hire a high type with probability πP (1−λ)

λ−θ+πP (1−λ)
, so its profits

will be:
Π (θ) =

(λ− θ) qL + πP (1− λ) qH
λ− θ + πP (1− λ)

− wP . (18)

This defines a cutoff θP such that firms can make profits in market mP if and only if θ > θP :

θP = λ− πP (1− λ)
qH − wP
wP − qL

. (19)

Firms with θ < θP are indifferent between hiring in market (0, qL), where there are only low-
type applicants; in market (e∗, qH), where there are only high-type applicants, or not hiring at
all, since they make zero profits in any case.

The calculations above assume that some high types are indeed willing to apply to market
mP . For this to be true, it must be the case that they are sure they will find a job, since they
can always guarantee themselves the same utility by choosing e = e∗ and getting a job that
pays w = qH . This means that there must be enough firms above θP to hire all πP (1− λ) high
types who forgo education and apply to market mP . By the arguments above, each firm θ ≥ θP

hires πP (1−λ)
λ−θ+πP (1−λ)

high types, so in equilibrium we need

λˆ

θP

1

λ− θ + πP (1− λ)
dF (θ) = 1. (20)

By the same reasoning as in the no-signaling case, low types are hired in market mP with
probability

dµ
(
wP ; 0, i

)
=

iˆ

θP

1

λ− θ + πP (1− λ)
dF (θ) .

The indifference condition (19) and the market clearing condition (20) define two relation-
ships between the cutoff firm θP and the fraction of high types πP that forgo signaling. Both
of these relationships are downward sloping, as shown in Figure 3.

The indifference condition (19) is downward-sloping because if more high types decide to
forgo education, they improve the pool of workers available for hire in market mP , allowing
less-informed firms to earn profits. The same is true for the market clearing condition (20)
because if more high types decide to forgo education, they can only find jobs in market mP

if additional firms decide to hire there. In other words, high type workers’ decision to forgo
education and firms’ decision to hire in market mP are strategic complements. The more high
types forgo education, the more profitable it is for any given firm to hire in mP ; the more firms
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Figure 3: Indifference and market clearing conditions for the false positives case.

hire in mP , the more attractive it is for high type workers to refrain from signaling.
The strategic complementarity implies that there can be multiple intersections of (19) and

(20), and possibly multiple partial signaling equilibria. This source of multiplicity is different
from the forces that may lead to multiplicity in Akerlof (1970) (where adverse selection depends
on the price) or in canonical signaling models (where different off-equilibrium beliefs can be
self-sustaining). Indeed, with our refinement on beliefs, the uninformed-firms benchmark has a
unique equilibrium. The multiplicity we identify here relies on the presence of both signaling
and heterogeneous information among firms.

It is also instructive to note that a no-signaling equilibrium corresponds to a situation where
the market clearing condition is above the indifference condition at π = 1, as in Figure 3. This
means that if π = 1 (no high types signal) there are more firms willing to hire at wP than
the total mass of workers they would accept. As a result, high-θ firms “bid up” the wage to
wN > wP , leading some firms to drop out until the number of firms willing to pay this wage
equals the number of high-type workers.

Pure Signaling Equilibria. The point πP = 0, θP = λ, which results in the least-cost sepa-
rating allocation, is always an intersection of (19) and (20). This corresponds to pure signaling,
which is in fact just a corner case of a partial signaling equilibrium. In this equilibrium, an
extreme form of “coordination failure” emerges: No firm uses its expertise because there are no
high-quality workers among those who do not signal, and no high types forgo signaling because
there are no firms in e = 0-markets with wages above qL.9

9Only firms with perfect expertise (θ = λ) are willing to recruit in markets with e = 0 and w > wP . Since
we assume F to be continuous, they are of measure zero, so the probability for high types of finding a job in
these markets is zero.
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Figure 4: Ruling out pooling at e > 0.

Summary: Candidate Equilibria. The following result establishes that any equilibrium
must belong to one of the three cases described above.

Proposition 2. Any equilibrium is of one of the three following types:

1. No signaling. All workers choose e = 0. Firms’ decisions satisfy:

δθ
(
mN , χ

)
= 1 if and only if θ ≥ θN and χ(i) = I(i ≥ θ)

where mN = (0, wN) and θN and wN satisfy (15) and (16) with wN ≥ wP .

2. Partial signaling. Low types choose e = 0; high types’ decisions are:

πi (e) =

{
πP if e = 0

1− πP if e = e∗.
(21)

Firms’ decisions satisfy:

δθ
(
mP , χ

)
= 1 if and only if θ ≥ θP and χ(i) = I(i ≥ θ)

where mP = (0, wP ) and πP and θP satisfy (19) and (20).

3. Pure signaling. Low types choose e = 0 and high types choose e = e∗.

The key to proving Proposition 2 is to establish that high and low types cannot coexist at
any level of education other than e = 0, so there is no pooling at positive signaling levels. The
logic is similar, though somewhat subtler, than in the uninformed-firms benchmark.

Suppose that low and high types coexisted in some market m with e (m) > 0, as illustrated
in Figure 4. With differentially informed firms, the standard argument that rules this out by
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considering market m′ does not go through. Some firms hiring in market m may be screening
out low types, so low types’ expected wage at e = e (m) could be lower than that of high types.
Thus, it is possible that both high and low types find m′ more attractive than m. Instead,
we can rule out pooling in market m as follows. Suppose first that the highest firm that hires
in market m has θ = λ (i.e. it can tell workers apart perfectly). In this case, we can rule
out pooling by considering this firm’s beliefs about market m′′. Since this firm’s beliefs can
only include high types, it only cares about the wage it pays and therefore finds market m′′

preferable over market m. If instead the highest firm that hires in market m has θ < λ , then
there are low types i ∈ (θ, λ) whose chance of getting a job in market m is just as good as the
high types, and firm θ can rule them out in the usual way by hiring in market m′.

Existence. So far we have described the possible candidates for equilibria but we have not
proved that any of them is actually an equilibrium. We now show that the candidate equilib-
ria described above may or may not actually be equilibria. We construct a class of possible
deviations and derive an easy-to-verify condition to determine whether these deviations are
profitable. We then show that checking this condition is sufficient to establish an equilibrium,
and prove that at least one equilibrium always exists.

Consider a candidate partial signaling equilibrium. Define mD
θ as the lowest-wage market

where equilibrium requires that the beliefs of firm θ ∈
(
θP , λ

)
only include high types. For this

to actually be an equilibrium, it must be that firm θ cannot increase its profits by recruiting in
market mD

θ instead of market mP .
The location of market mD

θ is illustrated in Figure 5. Worker i = θ is the lowest-i low type
worker that firm θ cannot filter out. In equilibrium, this worker obtains expected utility

u (θ) = qL +
´ θ
θP

1
πP (1−λ)+λ−tdF (t)

(
wP − qL

)
(22)

by getting a wage of either wP or qL with the equilibrium probabilities. For small but positive
levels of education e, it is consistent with equilibrium for firm θ to believe that it will only
encounter low types in e-markets. The reason is that since u (θ) < wP , worker i = θ will be
willing to choose e for a lower wage than high types would. Hence one can specify beliefs such
that firm θ does not want to recruit at education level e. However, for large e that is no longer
the case because education is more costly for low types. mD

θ is defined by the intersection of
the equilibrium indifference curves of worker i = θ and high types. At education levels higher
than e

(
mD
θ

)
, firm θ can only believe that it will encounter exclusively high types, because high

types would be willing to choose these education levels for a lower wage than worker i = θ.
Hiring in a market like mD

θ is similar to the cream-skimming deviations that are used to
break putative pooling equilibria in Rothschild and Stiglitz (1976) and related models, including
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Figure 5: Beliefs for firm θ

the uninformed-firms benchmark of Section 4. In candidate equilibria where some high types
choose e = 0, they end up being hired in market mP , where they are pooled with low types.
Just like in the benchmark, the possible deviation involves peeling off high types from market
mP by requiring an action that is more costly for low types than for them. However, there are
two important differences.

First, unlike in the Rothschild and Stiglitz (1976) model, purely local deviations do not
work. A firm cannot cream-skim the high types off a pooling contract by requiring a small
amount of extra education. Since low types are hired from the mP -pool at lower rates than
high types, they obtain lower utility. Therefore, they find deviations more attractive than high
types as long as they involve only a small amount of extra signaling. In order to repel the low
types, the deviating firm must require a sufficiently larger signal.

Second, in order to profit, the deviating firm must use both sources of information in com-
bination: direct assessment and signaling. A completely uninformed firm cannot profitably
deviate because in order to repel the lowest-i low types (who cannot get jobs at mP at all) it
must require e = e∗ and therefore pay at least qH to attract high types, at which point the
deviation is no longer profitable. In order to profitably deviate, a firm must possess sufficient
expertise to be able to reject the lowest-i low types directly and then rely on the signal to screen
out the higher-i low types.

A candidate partial pooling equilibrium can only be an equilibrium if, for every θ ∈ (θP , λ),
the profits it can obtain in market mD

θ by hiring only high types are weakly lower than those it
obtains in market mP by hiring a mixture of workers at a lower wage. A similar logic applies to
the case of a no-signaling equilibrium. The following result determines when this condition is
satisfied in either case and establishes that checking against this possible deviation is a sufficient
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condition for equilibrium existence.

Proposition 3. 1. Suppose θN and wN ≥ wP satisfy equations (15) and (16) for a no-
signaling candidate equilibrium. Then the worker and firm decisions described in Propo-
sition 2 part 1 are part of an equilibrium if and only if:

λ− θ
1− θ ≤

cH
cL − cH

1− λ
1− θN

λˆ

θ

1

1− tdF (t) for all θ ∈
(
θN , λ

)
. (23)

2. Suppose πP and θP satisfy equations (19) and (20) for a partial signaling candidate equi-
librium. Then the worker and firm decisions described in Proposition 2 part 2 are part of
an equilibrium if and only if

λ− θ
πP (1− λ) + λ− θ ≤

cH
cL

λˆ

θ

1

πP (1− λ) + λ− tdF (t) for all θ ∈
(
θP , λ

)
. (24)

3. The pure signaling candidate equilibrium described in Proposition 2 part 3 is always an
equilibrium.

In sum, the pure signaling equilibrium, which coincides with the no-information benchmark,
always exists in our model. The reason is that πP = 0, θP = λ always satisfies equations (19)
and (20) and condition (24) holds for θ = λ. Depending on parameters, additional equilibria
may exist where firms use their expertise.

It is easy to construct examples where a partial or no-signaling equilibrium does exist. Figure
6 shows an economy with multiple candidate equilibria. For the candidate equilibrium

(
πP1 , θ

P
1

)
,

condition (24) holds, so it is indeed a partial signaling equilibrium. Instead, for candidate
equilibrium

(
πP2 , θ

P
2

)
, condition (24) fails for some θ > θP2 , so it is not an equilibrium.10

5.2 Properties of the Equilibrium

Equilibrium Regions. Figure 7 illustrates what type of equilibrium arises in different regions
of the parameter space. Both panels plot the equilibrium regions as a function of a parameter
A on the vertical axis that shifts the distribution of firms F towards more expertise.11 We
know from Proposition 3 that the pure signaling equilibrium always exists, and it is indeed
the only equilibrium for low enough levels of expertise as captured by the parameter A. As

10The example uses qH = 1, qL = 0.4, cH = 0.9, cL = 0.15, λ = 0.6, f (θ) = 0.5[sin(13.3 (θ − λ)
0.4

+2.2π)+1]2.8.
11Specifically, we use the linear density f(θ) = A(θ− λ/2) +B/λ, so the total measure of firms always equals

B. We choose B = 1.2.
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Figure 6: Candidate equilibria that do or do not satisfy condition (24).

the distribution of expertise improves (in a FOSD sense), holding the other parameters fixed,
first a partial signaling and finally a no-signaling equilibrium emerges in addition. Hence, as
firms become better informed, less costly signaling is required. Moreover, we show formally in
Appendix A that, in the region with a partial signaling equilibrium, the share of high types
1 − πP who signal also decreases with a FOSD shift in expertise. Better tools for directly
evaluating job applicants, firm shares, asset-backed securities or insurance applicants reduce
the need to signal through education, dividends, retained equity tranches, or high deductibles,
respectively. In this way, direct information substitutes for traditional signaling.

A FOSD increase in F is isomorphic to an increase in demand where each firm hires ∆

workers instead of just one. This is because making firms more expert is equivalent to letting
the more expert firms hire more workers. Our model thus generates the plausible prediction
that more high types forgo signaling through education (or that the amount of retained equity
falls) in boom times (see Gee (2018) for descriptive evidence of this effect). This intuitive
property is absent when buyers are uninformed: in that case, pure signaling is always the only
equilibrium independent from demand.

The left panel shows that increasing the relative cost of signaling cH/cL has the same effects
as improving expertise on the type of equilibrium we find, holding the other parameters fixed
(including A).12 Moreover, we show in Appendix A that, within the class of partial signaling

12The example in the graph uses qH = 1, qL = 0.4, λ = 0.55 in addition to the linear specification of f(θ)
from above.
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Figure 7: Types of equilibria depending on parameters

equilibria, the amount of signaling 1−πP decreases with signaling costs. Hence, as signaling gets
more expensive, fewer high types signal. Note that the no-information benchmark, somewhat
unappealingly, does not have this property: all high types choose e = e∗ and e∗ does not depend
on cH , so high types do not respond to a higher cost of signaling by signaling less. Allowing
for heterogeneously informed firms overturns this counterintuitive feature: equilibrium forces
do lead workers to respond on the extensive margin.

Finally, in the right panel, we vary the share of low types on the horizontal axis. To do so in
a clean way, we reparametrize the model by assuming that the mass of low-type workers is λ̂,
distributed uniformly in the interval [0, λ], with a density λ̂

λ
; correspondingly, the mass of high

types is 1− λ̂, distributed uniformly in the interval [λ, 1] with a density 1−λ̂
1−λ . Changes in λ̂ have

the interpretation of changes in the fraction of low types, leaving their relative detectability in
the eyes of firms constant. We see that reducing the share of low types this way moves the
equilibrium from pure signaling to partial equilibrium and finally to no signaling.13 Indeed, we
show formally below that, as the share of low types becomes sufficiently small, a no-signaling
equilibrium must always emerge.

Continuity in the Symmetric Information, No-Signaling and No-Information Limits
One counterintuitive feature of the uninformed-firms benchmark is that it is discontinuous in
the buyers’ prior. If all workers have the same productivity there is no information asymmetry
and no signaling in equilibrium. However, as soon as there is even an infinitesimal mass of
low types, high types will signal enough to separate. The following result shows that this
unappealing property vanishes in our model, as in Daley and Green (2014) where the presence
of exogenous information also avoids equilibrium discontinuity.

Proposition 4. 1. For low λ̂ there is a no-signaling equilibrium with limλ̂→0w
N = qH .

13The example uses qH = 1, qL = 0.4, λ = 0.55, cH = 0.1, cL = 0.3.
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2. Let F ∗ be a mass point at θ = λ. For any continuous F sufficiently close to F ∗ (under the
total variation distance), there exists a no-signaling equilibrium, and limF→F ∗ wN = qH .

One way to approach the symmetric information limit is by taking λ̂ → 0, since λ̂ = 0

implies symmetric information. As λ̂ → 0, there is always a no-signaling equilibrium, and
wN → qH . Hence, this equilibrium smoothly approaches the first-best outcome. Pure signaling
is also an equilibrium for any positive λ̂, so the discontinuity does not go away entirely, but the
set of equilibria is lower hemi-continuous in λ̂. A second direction to approach the symmetric
information limit is making the distribution F approach a mass point at θ = λ, since that limit
also implies symmetric information. Again, a no-signaling equilibrium always exists sufficiently
close to the limit, so the set of equilibria is lower hemi-continuous in this dimension as well.14

A second form of discontinuity in the uninformed-firms benchmark arises with respect to the
cost of signaling. For any cH/cL < 1, high types will signal enough to fully separate, whereas
when cH/cL = 1 the signal does not allow high types to separate and pooling allocations result.
The current model, instead, is lower hemi-continuous as cH/cL → 1. In the opposite limit, as
signaling becomes cheap, the model reduces to the uninformed-firms benchmark.

Proposition 5. 1. For cH/cL sufficiently close to 1, there is a no-signaling equilibrium.

2. For cH/cL sufficiently close to 0, only the pure signaling equilibrium exists.

Part 1 of Proposition 5 establishes that if signaling is sufficiently expensive, there is an
equilibrium with no signaling, where all workers pool at e = 0. If within this limiting case
one takes the limit as F becomes degenerate at 0 (meaning firms have no information), then
this reduces to the pooling allocation in Akerlof (1970). Conversely, part 2 establishes that if
signaling is sufficiently cheap, then the only equilibrium allocation is the benchmark least-cost
separating allocation and firms’ expertise is not used.

Relationship with the Results in Kurlat (2016). The no-signaling equilibrium, which
we obtain for some regions of the parameter space, has the same structure as the equilibrium in
Kurlat (2016). Since he rules out signaling in his model, his equilibrium can be summarized by
a marginal buyer and a price that satisfy a marginal buyer indifference condition and a high-
type seller market clearing condition. Conditions (15) and (16) are the analogues of conditions
(20) and (19), respectively, in his characterization of equilibrium.15 Just like in our model there
can be at most one no-signaling equilibrium, the equilibrium in Kurlat (2016) is unique.

14By contrast, in the degenerate case where F has full mass at some θ < λ, a no-signaling equilibrium never
exists. The right-hand side of (23) is zero at θ in this case, so there is always a profitable deviation. Intuitively,
when all firms are equally well informed, our model collapses to standard signaling model and only the pure
signaling equilibrium exists. Hence, heterogeneity of information is crucial to obtain the continuity results in
this section.

15There are four minor differences. First, Kurlat (2016) assumes that assets are divisible and the law of large
numbers applies, so he has exact pro-rata rationing instead of probabilistic rationing. Under risk neutrality, this
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By contrast, there is no equivalent in Kurlat (2016) of the partial (and pure) signaling equi-
libria that can emerge in our model. The strategic complementarity underlying the indifference
and market clearing conditions (19) and (20), which produces the potential for equilibrium mul-
tiplicity, arises only when both heterogeneous expertise and the signal are present, and so does
the condition for equilibrium existence in Proposition 3. Moreover, the welfare implications of
a potential “coordination failure” in the use of expertise, which we study in the next subsection,
are specific to our equilibria with signaling. Only when signaling becomes very costly do these
issues disappear and we converge, by Proposition 5, back to the model in Kurlat (2016).

In sum, the outcomes from our model span the range between the no-signaling allocations
from Kurlat (2016) and the pure signaling allocation in the no-information benchmark. This
allows us to ask under what conditions there is signaling in equilibrium and how the amount
of signaling depends on expertise and other features of the economy.

5.3 Welfare

The only reason why allocations in the model are not first-best efficient is that signaling is
socially wasteful; since workers’ productivity is the same in any firm and they never end up
unemployed, their allocation across firms is irrelevant. Total payoffs are just output minus the
cost of education:

W = λqL + (1− λ) qH − (1− λ) (1− π) cHe
∗. (25)

Therefore, from a total surplus perspective, equilibria with higher π are better. This does
not immediately imply that they are Pareto superior; expected wages for different workers are
different across equilibria so it is possible that there could be winners and losers from shifting
from one equilibrium to another. The following result establishes that partial signaling equilibria
can indeed be Pareto-ranked against each other (as well as the pure signaling equilibrium), but
cannot be Pareto-ranked against a no-signaling equilibrium if it exists:

Proposition 6. 1. Suppose there is a partial signaling equilibrium with πP1 > 0.

(a) It Pareto dominates the pure signaling equilibrium in the same economy.

(b) If there is another partial signaling equilibrium with πP1 > πP2 in the same economy,
the first equilibrium Pareto dominates the second.

distinction does not matter. Second, he allows some sellers to have a positive value for retaining the good, while
we assume it to be zero so workers sell all their labor endowment in equilibrium. Third, he assumes qL = 0,
so the one-price equilibrium he finds is equivalent to the two-price equilibrium we have, where some low types
trade at price qL. Finally, he models buyers’ capacity constraints in terms of dollars rather than in terms of
quantities, so the price appears in the market-clearing condition.
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2. Suppose there is a no-signaling equilibrium.

(a) It Pareto dominates the pure signaling equilibrium in the same economy.

(b) If there is also a partial signaling equilibrium with πP > 0 in the same economy,
neither equilibrium Pareto dominates the other.

In comparing partial signaling equilibria, it is straightforward to show that firms are better
off in the higher-πP equilibrium, since wages are the same and there is a better pool of workers
at mP . High-type workers are indifferent because their payoff is wP . The critical step is to show
that low-type workers are also better off. They gain from the fact that more firms are hiring
in market mP , which (other things being equal) increases their chances of earning wP but lose
from the fact that there are more high-type workers looking for work at mP , which lowers their
chance of being hired by any given firm. However, using the fact that in both equilibria high
types must be hired for sure it is possible to show that the first effect dominates, so low types
also prefer the higher-πP equilibrium.

A no-signaling equilibrium (if it exists) cannot be Pareto ranked against partial signaling
equilibria. Since the wage is higher and the cutoff firm is lower, workers are better off in the
no-signaling equilibrium. However, the best firms are worse off since they have to pay higher
wages and their accurate signals mean they benefit little from the improved pool of workers.
Intermediate firms with θ ∈

(
θN , θP

)
are better off in the no-signaling equilibrium while they

would make zero profits in the partial signaling equilibrium.
The model also makes it possible to ask, assuming there is a technology for firms to choose

θ at some cost, whether they have the right incentives to invest in acquiring expertise, such as
improving assessment models for job applicants, risk scoring models in insurance markets or
pricing models for stocks and financial derivatives. In Appendix B, following the approach in
Kurlat (2019), we show that in general the answer is ambiguous: firms may have incentives to
either over-invest or under-invest in expertise. We also provide a simple formula to quantify
the ratio of the social and private returns to expertise based on observable properties of the
equilibrium.

6 False Negatives

We now turn to the case with “false negative” mistakes, where the support of F is [λ, 1]. Higher-i
workers are relatively transparent, since most firms can tell (with certainty) that they are high
types, while lower-i high types are relatively obscure, since they can only be identified as high
types by the smarter, lower-θ firms. For expositional purposes, assume that the density of firms
f (θ) is strictly increasing, meaning that there is a higher density of less informed firms. The
general case, which involves an “ironed” density, is treated in Appendix D.
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Unlike the false positives case, firms face a nontrivial decision as to what hiring rule to use.
There may be markets where a firm θ observes x (i, θ) = 0 for all the workers that apply (so if
it insisted on hiring only workers with a positive signal it would not be able to hire at all) but
it knows that in equilibrium some high-type workers with i ∈ [λ, θ) do apply, so it may want
to hire from the pool of all applicants. We refer to this as non-selective hiring.

Description. In equilibrium, only the less transparent high-type workers signal. Letting uL
denote the low types’ payoff, there is a cutoff iS such that workers in the interval i ∈ [λ, iS]

signal by choosing:
eS =

qH − uL
cL

, (26)

while everyone else chooses e = 0. Signaling markets with e = eS are straightforward: all
the applicants are high types, so less informed firms compete for them and hire them (non-
selectively) at a wage w = qH .

No-signaling markets, with e = 0, are more interesting. Define iH by:

f (iH) = 1. (27)

Since f (θ) is assumed to be increasing, this means that for all i > iH there are more firms who
can detect high-type workers than there are workers. Hence, firms compete for them and hire
them (selectively) at wage w = qH .

Conversely, for i ∈ (iS, iH), there are more workers than firms who can identify them as
high types. Therefore, some of them have to be hired non-selectively, at wages sufficiently low
to attract non-selective firms. At each wage w ∈ (qL, qH) where there is active hiring, two types
of hiring take place: some workers are hired non-selectively, and in addition all the highest
remaining i-types are hired selectively and thus drop out of subsequent, lower-wage markets.
Let w (0, i) be the wage such that all worker types above i have already been hired. The pool
of applicants at w (0, i) consists of all the low types plus high types in the interval (iS, i] who
have not been hired non-selectively at higher wages. As a result, non-selective firms break even
at a wage of:

w (0, i) =
(i− iS) qH + λqL

i− iS + λ
. (28)

Firms with θ = i hire f (i) workers selectively in this market since it involves the cheapest
wage at which they can identify high-type workers. Therefore, it must be that the remaining
1− f (i) workers of type i were already hired non-selectively at wages above w (0, i). Since this
is true for any i, the probability density for any worker of being hired non-selectively in market
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(0, w (0, i)) must be f ′ (i). Hence, the expected utility obtained by worker i is:

u (i) = f (i)w (0, i) +

iHˆ

i

w (0, i′) df (i′) . (29)

This defines a cutoff worker i∗ who is indifferent between signaling (which gives a payoff qH −
cHeS) and not signaling:

f (i∗)w (0, i∗) +

iHˆ

i∗

w (0, i′) df (i′) = qH − cHeS. (30)

Market (0, w (0, i∗)) is the lowest-wage market at which there is a chance of being hired non-
selectively. Low-type workers who have not found a job at or above this wage end up getting
hired at w = qL. Therefore, the expected utility of low types is

uL = f (i∗) qL +

iHˆ

i∗

w (0, i′) df (i′) . (31)

Replacing (26), (28) and (31) into (30) and simplifying gives the following indifference condition
for the marginal worker i∗:

Γ(i∗, iS) = f (i∗)

(
cH
cL
− λ

i∗ − iS + λ

)
− λ

(
1− cH

cL

) ˆ iH

i∗

1

i− iS + λ
df(i) = 0. (32)

Equation (32) defines a positive relationship between i∗ (the worker who is indifferent be-
tween signaling and not signaling) and iS (the cutoff for actually signaling). In general, i∗ and
iS are not equal; there is a range of workers i ∈ (iS, i

∗) who are indifferent between signaling
and not signaling but choose not to. It is straightforward to show that i∗ is increasing in iS.
Workers who signal do not apply for jobs in e = 0 markets. Higher iS (more signaling) means
the pool of applicants for non-selective firms worsens, so in order to maintain zero-profits the
wage must fall (equation (28)). In turn, this means that the utility of both high- and low-type
workers falls (equations (29) and (31)). It falls more for high types because low types sell a
fraction of their labor in market (0, qL), where the wage is unaffected by higher iS. Hence, other
things equal, higher iS makes signaling more attractive, so the indifferent type i∗ rises.

A fraction 1 − f (i∗) of workers in the range i ∈ (iS, i
∗) are hired at wages above w (0, i∗),

so the remaining f (i∗) (i∗ − iS) workers must be hired at wage w (0, i∗). The measure of firms
who are capable of detecting them is F (i∗), so in equilibrium the following market clearing
condition must hold:

F (i∗) = f (i∗) (i∗ − iS) . (33)
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Figure 8: Equilibrium signals and wages for different workers.

Equation (33) defines another positive relationship between iS and i∗. If more of the obscure
workers decide to signal, then the most informed firms will work their way up to hire slightly
less obscure workers. Figure 8 summarizes the equilibrium signals and wages.

Corner Equilibrium. Equations (32) and (33) hold for an interior equilibrium where some
range of workers are indeed hired by non-selective firms. However, it is possible that all workers
below iH prefer to signal rather than being hired at a wage low enough to attract non-selective
firms, which would result in a corner equilibrium with i∗ = iH . For this corner equilibrium,
the market clearing condition (33) and definition (27) imply iS = iH − F (iH) . Also, in this
corner equilibrium, there is no non-selective hiring, so uL = qL and eS = e∗. This will be an
equilibrium if workers just below iH indeed prefer to signal:

qH − cHe∗︸ ︷︷ ︸
utility of signaling

>
F (iH) qH + λqL
F (iH) + λ︸ ︷︷ ︸

wage for non-selective firms to break even

so, using (10),
1− cH

cL
>

F (iH)

F (iH) + λ
, (34)

which is equivalent to Γ (iH , iH − F (iH)) < 0. In Appendix D, we show that an equilibrium,
characterized by either a solution to equations (32) and (33) or by condition (34), exists,
is generically unique, and behaves continuously in the symmetric information and expensive
signaling limits.

Properties. This model generates dispersion in expected wages among workers who are
equally productive and educated, depending on how transparent they are. In particular, the ex-
pected wages of high types i ∈ [i∗, iH), who all select e = 0, are increasing in i.16 Similarly, the
model can explain, for instance, different prices for asset-backed securities for which both the
structure of tranches and the underlying cash flows are similar, but which differ in how many
buyers have access to accurate pricing models to evaluate them. Interestingly, this dispersion
is driven by break-even conditions of firms that are not making use of expertise.

The structure of equilibrium is similar to the pattern of signaling and “countersignaling”
16In contrast, in the partial or no-signaling equilibria in the “false positives” case there is dispersion in expected

wages among low types depending on their chances of being hired at wP or wN versus qL.
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(Feltovich et al., 2002): it is the hard-to-identify high types who must use the costly signal
in order to differentiate themselves from low types. By contrast, the most obvious high types
can be confident that expert buyers are able to tell them apart, thus eliminating the need
for signaling. The setup in Feltovich et al. (2002) features three different levels of worker
productivity; in our two-type model, countersignaling instead emerges because high types differ
in their transparency. Moreover, our model generates the intuitive prediction that expected
wages of those high types who “countersignal” increase in their transparency.

We can also ask how the intensive and extensive margins of signaling, measured by eS

and iS − λ respectively, depend (locally) on parameters around an interior equilibrium. In
Appendix A, we show that an increase in the ratio cH/cL reduces signaling along both margins.
For example, an increase in dividend taxes leads to both a smaller fraction of firms paying
dividends and a lower dividends per dividend-paying firm. We also show that an increase in
demand leads to polarization in signaling: fewer workers choose positive education but those
who do choose a higher quantity.

7 Conclusion

We have developed a general theory to analyze competitive equilibria in economies where buyers
possess heterogeneous information about sellers and contracts are multidimensional, specifying
both a price and a signal. These information and contracting patterns are the feature of many
markets, including labor, asset and insurance markets, as we have illustrated through a series
of examples. Our notion of equilibrium allows us to obtain strong results: we prove that
an equilibrium always exists, it may not be unique in the false-positives case but is generically
unique in the false-negatives case, and it may not be efficient. Moreover, we uncover a tractable
structure to characterize it in both cases, based on the intersection of an indifference and a
market clearing condition. This allows us to provide results on comparative statics. Our model
predicts intuitive and continuous equilibrium responses to, for instance, changes in the prior,
demand, signaling costs or expertise that cannot be generated in the canonical model with
uninformed buyers.

We expect that our framework can be extended to study other structures of buyers’ direct
information, including ones where firms cannot be perfectly ranked by their expertise, such as
when both false positive and negative errors occur. In this case, we conjecture the equilibrium
to feature a combination of the two pure cases we have analyzed: high types are hired in
a similar way as in the false-negatives case, except that those in [iS, iH) are partly hired by
selective false-positive firms, because those firms have an advantage over non-selective firms by
being able to screen out some low types.

Our model may also be a useful starting point to study a number of richer environments.
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First, a market for information may arise, where better informed firms sell their information to
less informed ones (e.g. in the form of analyst reports), instead of just trading on it themselves.
To prevent the price of information from dropping to zero, some form of capacity constraints
would again be required, which would effectively change the distribution of expertise in our
model. Second, many of our applications have a dynamic aspect, where the costly signal
involves a delay in trading. Our approach could be used to consider settings where some direct
information is revealed to buyers gradually at heterogeneous rates, and one could explore how
this affects the timing pattern of trades. These issues are left for future research.
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A Comparative Statics

A.1 False Positives

We compute how the amount of signaling 1− πP in a partial signaling equilibrium depends on param-
eters. We focus on cases where the locus of the market clearing condition (20) is steeper than of the
indifference condition (19), which corresponds to a heuristic notion of stability of the equilibrium.

Proposition 7. 1. Signaling decreases with the cost ratio cH/cL.

2. Signaling decreases with a FOSD increase in the expertise distribution F or an increase in the
demand for workers ∆.

3. Signaling does not change with productivities qH and qL.

The logic of part 1 is as follows. The ratio cH/cL governs how much utility high types obtain if
they separate by choosing e∗ . Since wP is the wage that makes them indifferent, higher cH/cL means
a lower wage. This attracts lower-θ firms, so more high types can forgo signaling and still find a job.
As for part 2, a FOSD increase in the distribution of θ means that firms are able to screen out more
low types, and therefore hire more high types (and an increase in ∆ has the same effect). Therefore,
more high types are able to forgo education and still find a job. Finally, productivities have no effect
on equilibrium signaling. The wage in market mP is a weighted average of qH and qL. Therefore, no
matter what these productivities are, the indifferent firm θP will be the one whose pool of acceptable
workers includes a proportion of exactly cH/cL low types. If, say, the productivity of low types was
lower, the wage that defines market mP adjusts exactly so as to leave firm θP indifferent and the
fraction of high types who signal unchanged.

Proof. Using the reparametrization of the model where each firm demands ∆ workers rather than just
one, it is straightforward to show that equations (19) and (20) become

θP = λ− πP (1− λ)
qH − wP
wP − qL

(35)

λˆ

θP

∆

(λ− θ) + πP (1− λ)
dF (θ) = 1. (36)

Replacing (10) and (17) into (35), the indifference condition reduces to:

θP = λ− πP (1− λ)
1

cL
cH
− 1

. (37)

Let θI
(
πP , p

)
and θM

(
πP , p

)
represent the solutions to (37) and (36) respectively, where p is a param-

eter. The equilibrium value of πP is given by a solution to the equation θI
(
πP , p

)
− θM

(
πP , p

)
= 0.

Using the implicit function theorem, the derivative of πP with respect to parameter p is given by:

dπP

dp
=

∂θM

∂p − ∂θI

∂p

∂θI

∂πP
− ∂θM

∂πP

. (38)
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By assumption, the denominator of (38) is positive, and equation (37) implies that ∂θI

∂πP
is negative.

1. (37) implies that θI is decreasing in cH
cL

, whereas cH
cL

does not appear in equation (36). Using
this in equations (38) gives the result.

2. The distribution F does not appear in equation (37). Rewrite equation (36) as

λˆ

0

I
(
θ ≥ θP

)
(λ− θ) + πP (1− λ)

dF (θ) = 1.

The term inside the integral is an increasing function of θ. Therefore a FOSD increase in F
implies that the left-hand side of (36) increases, so θP must rise to maintain equality. Using this
in equation (38) gives the first part of the result. (36) implies that θM is increasing in ∆, and ∆
does not appear in equation (37). Using this in equation (38) gives the second part of the result.

3. This follows because neither qH nor qL appear in equation (38).

A.2 False Negatives

We compute how the intensive and extensive margins of signaling depend on parameters around an
interior equilibrium.

Proposition 8. 1. Both the intensive and extensive margins of signaling decrease with the cost
ratio cH/cL.

2. The intensive margin of signaling increases but the extensive margin decreases with the demand
for workers ∆.

3. The extensive margin of signaling is invariant with respect to productivities qH and qL; the
intensive margin eS increases with qH − qL.

Higher cH/cL makes separation more costly, so fewer high types signal. This improves the pool
of workers in no-signaling markets, so non-selective firms pay higher wages. This raises the utility of
low types, so less intense signaling is required to separate from them. An increase in demand means
that at every level of expertise there are more selective hires, and therefore fewer non-selective hires,
so it is harder for low types and obscure high types to get hired nonselectively. This makes low types
worse off; therefore a more intense signal is needed to successfully separate, so fewer high types do so.
As in the false-positives case, qH and qL drop out of equations (32) and (33), so the extensive margin
is unchanged. However, a greater gap between qH and qL makes it more attractive for low types to
mimic high types, so separation requires a more intense signal.

Proof. Let i∗I (iS , p) and i∗M (iS , p) represent the solutions to (32) and (33) respectively, where p is a
vector of parameters. The equilibrium value of iS is given by a solution to the equation i∗I (iS , p) −
i∗M (iS , p) = 0. Using the implicit function theorem, the derivatives of i∗ and iS with respect to
parameter p are given by:

diS
dp

=

∂i∗M

∂p − ∂i∗I

∂p

∂i∗I

∂iS
− ∂i∗M

∂iS

(39)

di∗

dp
=
∂i∗I

∂p
+
∂i∗I

∂iS

∂iS
∂p

. (40)
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The denominator of (39) is negative, and equation (32) implies that ∂i∗I

∂iS
is positive. Furthermore, the

implicit function theorem implies that

∂i∗I

∂p
= −

∂Γ(i∗,iS ;p)
∂p

∂Γ(i∗,iS ;p)
∂i∗

(41)

and equation (32) implies that ∂Γ(i∗,iS ;p)
∂i∗ is positive.

1. Using (32),

∂Γ(i∗, iS ; cHcL )

∂ cHcL
= f (i∗) + λ

ˆ iH

i∗

1

i− iS + λ
df(i) ≥ f (i∗) + λ

[f (iH)− f (i∗)]
iH − iS + λ

> 0

so using (41) ∂i∗I

∂
cH
cL

< 0. Since ∂i∗M

∂
cH
cL

= 0, using this in (39) and (40) implies that ∂i∗

∂
cH
cL

< 0 and
∂iS
∂
cH
cL

< 0. In turn, (31) implies that:

∂uL
∂ cHcL

= −f ′ (i∗) ∂i
∗

∂ cHcL
(w (0, i∗)− qL) > 0

and (26) then implies that ∂eS
∂
cH
cL

< 0.

2. Introducing variable demand ∆ leaves equations (32) and (33) unchanged except that equation
(27) generalizes to ∆f (iH) = 1, so

∂iH
∂∆

∣∣∣∣
∆=1

= − 1

f ′ (iH)
(42)

Therefore

∂Γ(i∗, iS ; ∆)

∂∆

∣∣∣∣
∆=1

= −∂iH
∂∆

λ

iH − iS + λ
f ′ (iH)

(
1− cH

cL

)
=

λ

iH − iS + λ

(
1− cH

cL

)
> 0

so using (41) ∂i∗I

∂∆ < 0. Since ∂i∗M

∂∆ = 0, using this in (39) and (40) implies ∂iS
∂∆ < 0 and ∂i∗

∂∆ < 0.

Now assume towards a contradiction that eS falls. This implies that the utility of the marginal
high type i∗, given by u (i∗) = qH − cHeS , must rise. Equation (29) generalizes to:

u (i) = ∆f (i)w (0, i) +

iHˆ

i∗

∆w
(
0, i′
)
df
(
i′
)
,

so evaluating at i∗ and taking the total derivative with respect to ∆ yields:

du (i∗)
d∆

=
∂u (i∗)
∂∆

+
∂u (i∗)
∂i∗

∂i∗

∂∆
(43)

with

∂u (i∗)
∂∆

= f (i∗)w (0, i∗) +

iHˆ

i∗

w
(
0, i′
)
df
(
i′
)
− ∂iH
∂∆

w (0, iH) f ′ (iH) = − [w (0, iH)− u (i∗)] < 0
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(using (42) to replace ∂iH
∂∆ ), and ∂u (i∗) /∂i∗ = f (i∗) ∂w (0, i∗) /∂i∗ > 0. Replacing in (43) and

using the assumption that du(i∗)
d∆ ≥ 0, this implies

− [w (0, iH)− u (i∗)] + f (i∗)
∂w (0, i∗)

∂i∗
∂i∗

∂∆
≥ 0⇒ ∂i∗

∂∆
≥ w (0, iH)− u (i∗)

f (i∗) ∂w(0,i∗)
∂i∗

> 0,

which contradicts the first part of the result.

3. The fact that i∗ and iS do not depend on qH and qL follows because neither qH nor qL appear
in equations (32) and (33). Using (26), (30) and (31):

eS =
qH − qL
cL

f (i∗)
i∗ − iS

i∗ − iS + λ
,

which is increasing in qH − qL.

B Expertise Acquisition

Following the approach in Kurlat (2019), we ask whether firms have the correct incentives to acquire
expertise. Consider an individual firm j and suppose it could invest in becoming better at screen-
ing workers. This will affect its profits and also, by affecting the equilibrium, the economy’s total
deadweight cost of education. Denote by θj the level of expertise that firm j chooses to acquire.

Let Π (θj , F ), given by equation (18), denote the individual firm’s profits, where we have made
explicit that these depend on the firm’s choice θj and the distribution of expertise of all other firms F ,
which this firm takes as given. Furthermore, let W (θj , F ) denote the equilibrium total payoffs given
by equation (25) (ignoring their distribution across workers and firms). W depends on θj because firm
j’s choice of expertise affects equilibrium allocations.

Assume the firm’s cost of acquiring its screening technology is cj (θj), where cj (·) is increasing and
sufficiently convex such that Π (θj , F ) − cj (θj) is concave in θj . The function cj (·) can be different
for different firms, leading to different equilibrium expertise choices. Taking the equilibrium as given,
firm j will invest until the marginal cost of better screening equals the marginal benefit: c′j (θj) =
∂Π (θj , F ) /∂θj . A social planner interested in minimizing deadweight costs would instead want the
firm to invest up to the point where c′j (θj) = ∂W (θj , F ) /∂θj . Using the model, we can compute the
ratio

r (θj) =
∂W (θj , F ) /∂θj
∂Π (θj , F ) /∂θj

. (44)

If r (θj) > 1, the marginal social value of better screening is greater than the marginal cost, which
would provide a rationale for subsidizing investments expertise. Conversely, if r (θj) < 1, there would
be a case for taxing those investments.

The following proposition provides a formula for r(θ) that relates it to equilibrium objects which,
in principle, could be measured, and places a lower bound on it. Denote by

η ≡ 1

πP
∂πP

∂∆

∣∣∣∣
∆=1

(45)

the elasticity of the share of high types who do not signal (in a partial signaling equilibrium) with
respect to an increase in demand.

Proposition 9. 1. The ratio of social to private marginal value of expertise is r (θj) = cH
cL
η.
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2. The elasticity η is greater than 1.

First, Proposition 9 establishes, perhaps surprisingly, that r (θj) does not depend on θj . One might
have conjectured that the misalignment of incentives would be different for firms that, e.g. due to
different cost functions cj (·), choose different θ in equilibrium. Yet, it turns out that, if the market
under- or over-provides incentives to improve direct screening, it does so uniformly for all firms.

Second, Proposition 9 shows that r can be written as the product of the signaling cost ratio and
the demand elasticity of πP . The ratio cH/cL enters the formula because, by equation (25), it governs
the deadweight cost of signaling for a high type that chooses e∗.

To understand the role of the elasticity of πP with respect to demand, observe that, again by (25),
∂W (θj , F ) /∂θj crucially depends on how the equilibrium πP changes in response to an individual
firm’s screening technology θj . If a firm improves its screening technology, it will reject more low type
applicants and therefore hire more high types, so the market clearing condition shifts outwards. Recall
from Section 5.2 that demand affects the equilibrium through exactly the same channel: by producing
an outward shift in the market clearing condition. Hence, η precisely summarizes the effect of a firm’s
expertise on πP . In particular, we show in the proof of Proposition 9 that the overall effect on πP

depends on the size of the shift to the market clearing condition and on the difference between the
slopes of the indifference and market clearing conditions. For example, when these slopes are very
similar, πP will respond strongly to a firm’s expertise and η will be large.

Overall, the result implies that it is desirable to encourage investments in direct screening if the
cost of signaling is relatively similar for high and low types (which makes the deadweight cost of
signaling high) and if the signaling decisions of high types are highly sensitive to demand (which would
make them highly sensitive to improved screening as well). For example, higher dividend taxes make
the signaling costs of different types more similar, thereby making an underinvestment in expertise
more likely. Moreover, the cost ratio and the demand elasticity of πP are sufficient to determine the
magnitude of r. Conditional on these two statistics, knowledge of other parameters, such as the shape
of the cost function c(·), are not required. As usual with sufficient statistics though, η is of course
endogenous to the equilibrium.

The second part of Proposition 9 establishes a lower bound of 1 on the elasticity η, which in turn
implies a lower bound of cH/cL on r. To understand this, suppose there is an increase in demand of
∆%. If the mix of workers in market mP remained constant, each firm in

[
θP , λ

]
would hire ∆% more

high types, implying an elasticity of 1. However, precisely because πP increases, the mix of workers
available in market mP improves, so each firm increases its hiring of high types by more than ∆%.
Furthermore, higher πP means that marginal firms enter market mP , further increasing demand. The
strength of this last effect depends on the density f

(
θP
)
of firms near the cutoff θP . Since this density

could be very high (to the point where the slopes of the indifference and market clearing conditions
are the same, leading to an unbounded response of πP to ∆), there is no upper bound on r.

The magnitude of r depends on the relative importance of the various externalities from a firm
choosing its screening technology. First, in an interior partial signaling equilibrium, improved screening
always helps other firms, since it leads more high types to forgo education and improves the mix of
workers available at mP . Second, it is neutral for high type workers since they get a payoff of wP

regardless. Third, the effect on low types with i > θ is also positive. In principle, there are offsetting
effects: these workers benefit from having more firms hiring in market mP and lose from having more
high type workers looking for work in mP . However, just like when one compares across equilibria,
the market clearing condition implies that the first effect dominates. Lastly, for low types with i < θ
the effect is ambiguous, because better screening increases their chances of being rejected. If this last
effect is negative and strong enough, the sum of the externalities could be negative, which would lead
to r < 1.

If instead of being in a partial signaling equilibrium the economy is at a no-signaling equilibrium,
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it is immediate that improved screening has no marginal social value, since no worker is signaling. It
would still have a positive marginal private value, so r = 0. In this region, better screening by one
firm has a negative effect on other firms, since it does not improve the pool of workers in market mN

but drives up the wage wN .

Proof. 1. Using (18) yields

∂Π (θj , F )

∂θj
=

πP (1− λ)

[λ− θj + πP (1− λ)]2
(qH − qL) (46)

and using (25)
∂W (θj , F )

∂θj
= (1− λ) cHe

∗∂π
P

∂θj
. (47)

Around a partial signaling equilibrium, equations (19) and (20) imply

∂πP

∂θj
=

Sensitivity of market clearing to expertise of one firm︷ ︸︸ ︷(
λ− θP

)
+ πP (1− λ)

[λ− θj + πP (1− λ)]2 f (θP )´ λ
θP (1− λ)

[
(λ− θ) + πP (1− λ)

]−2
dF (θ)

[(
λ− θP

)
+ πP (1− λ)

]
f (θP )︸ ︷︷ ︸

Slope of market clearing

− (1− λ)
1

cL
cH
− 1︸ ︷︷ ︸

Slope of indifference

.

(48)
Replacing (46), (47) and (48) into (44), we obtain

r (θj) =

cH
cL

πP (1− λ)

[´ λ
θP [(λ− θ) + πP (1− λ)]−2 dF (θ)− f(θP )

πP (1−λ)+λ−θP
1

cL
cH
−1

] . (49)

Applying formula (38) and definition (45) yields

η =

[
λ− θP + πP (1− λ)

]
/
[
πP f

(
θP
)]

´ λ
θP (1− λ) [(λ− θ) + πP (1− λ)]−2 dF (θ) [(λ− θP ) + πP (1− λ)] /f (θP )− (1− λ) /

(
cL
cH
− 1
) .

(50)
Replacing (50) into equation (49) and simplifying gives the result.

2. Rearranging (50) and using that f
(
θP
)
≥ 0:

η ≥ 1

πP (1− λ)
´ λ
θP [(λ− θ) + πP (1− λ)]−2 dF (θ)

(51)

Now rearrange the market clearing condition (20) as

λˆ

θP

[
πP (1− λ)

]−1 [
(λ− θ) + πP (1− λ)

]−1
dF (θ) =

[
πP (1− λ)

]−1
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Since
[
(λ− θ) + πP (1− λ)

]−1 is increasing in θ, this implies

πP (1− λ)

λˆ

θP

[
(λ− θ) + πP (1− λ)

]−2
dF (θ) ≤ 1

Replacing in equation (51) gives the result.

C Omitted Proofs

Proof of Proposition 1

1. The proposed {π, δ, µ,G} is an equilibrium.

(13) implies that low types are indifferent between any e ∈ [0, e∗] and high types are indifferent
between any e ≥ e∗, so education decisions (11) solve the workers’ problem. (14) implies that
firms can make zero profits by hiring in market (0, qL) (where there are only low types) or (e∗, qH)
(where there are only high types), and any other market has either G (·;m) = ∅ or results in
losses. Therefore (12), which places demand only in markets (0, qL) and (e∗, qH) and yields zero
profits, is an optimal choice. Furthermore, (12) implies δθ (M,X) = 1/F (0) < 1, so no firm hires
more than one worker. Replacing (12) in (5) implies that demand is:

D(m) =


λ if e(m) = 0, w(m) = qL

1− λ if e(m) = e∗, w(m) = qH
0 otherwise.

(52)

Equations (14) and (52) imply that (6) holds. Finally, (13) and (11) imply that beliefs (14)
satisfy the consistency condition (8) from Definition 1 in nonempty markets. Since low types
find e ∈ [0, e∗] optimal and high types find e ≥ e∗ optimal, (13) implies that beliefs satisfy
condition (4b) when they are well defined, and they are not well defined only at wages where
µ (w; e, i) = 0 for all i, so condition (4c) is satisfied as well.

2. The above equilibrium is unique.

(a) In any equilibrium, each firm makes zero profits in each market m where it places demand
δ(m) > 0. If there was a firm that made strictly negative profits in some market m with
δ(m) > 0, it could increase profits by setting δ(m) = 0. On the other hand, suppose there
is a firm that makes strictly positive profits in some market m. Recall that F (1) > 1, so
there must exist a strictly positive measure of firms that each hire strictly less than one
worker. Any firm who hires less than one worker could increase its profits by raising δ (m),
so it cannot be optimizing.

(b) In any equilibrium, there does not exist a marketm such that πi (e (m))µ (w (m) ; e (m) , i) >
0 both for some i < λ and some i′ ≥ λ. Otherwise, pick such a market m with a positive
supply of both high and low types. Consider a market m′ with e (m′) = e (m) + ε and
w (m′) ∈ (w̄ (e (m) , i′) + cHε, qH). Suppose type i < λ is in the support of G (·;m′). This
requires

w̄
(
e
(
m′
)
, i
)
− cLe

(
m′
)
≥ w̄ (e (m) , i)− cLe (m)
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Rearranging gives w̄ (e (m′) , i) − w̄ (e (m) , i) ≥ cLε. Since firms cannot discriminate, it
follows that w̄ (e (m) , i) is the same for all i. Also, since µ(w (m′) , i, e (m′)) is constrained
to be increasing in i, w̄ (e (m′) , i) is also weakly increasing in i. Therefore:

w̄
(
e
(
m′
)
, i′
)
− w̄

(
e (m) , i′

)
≥ cLε

which implies w̄ (e (m′) , i′) − w̄ (e (m) , i′) > cHε. This contradicts the premise that type
i′ finds e (m) optimal. Hence, no i < λ can be in the support of G (·;m). If the support
of G (·, ;m) only includes i ≥ λ, then firms could make profits by hiring in market m′,
which contradicts part (2a). Therefore it must be that G (·;m′) = ∅. This implies that
µ (w (m′) , e (m′) , i′) = 0, which in turn implies w̄ (e (m′) , i′) > w̄ (e (m) , i′) + cHε, which
contradicts the premise that type i′ finds e (m) optimal.

(c) In any equilibrium, all low types obtain a payoff of qL. Suppose that they obtained a
payoff q′L > qL. This implies that they are hired with positive probability in a market with
w (m) > qL. By part (2b), the supply in this market only includes low types, which implies
negative profits for firms, contradicting part (2a). Suppose that they obtained a payoff
q′L < qL and consider a market m with e (m) = 0 and w (m) ∈ (q′L, qL). If G (·;m) 6= ∅,
then firms can make profits by hiring in this market; otherwise, µ (w (m) , e (m) , i) = 0,
which means low type workers can obtain a payoff w (m) > q′L by choosing e = 0.

(d) In any equilibrium, all high types obtain payoff qH−cHe∗. Suppose first that they obtain a
payoff uH > qH−cHe∗. If they do so by selecting e′ < e∗, then this implies w̄ (e′, i)−cHe′ >
qH − cHe∗, which in turn implies w̄ (e′, i)− cLe′ > qL and since w̄ (e′, i) is the same for all i,
this implies that low types can obtain a payoff higher than qL. If instead e′ ≥ e∗, this implies
they are hired with positive probability at a wage w > qH and hence strictly negative profits
for firms, contradicting (2a). Second, suppose they obtain a payoff uH < qH − cHe∗. This
means that for any i ≥ λ it must be that w̄ (e∗, i) < qH , and therefore w̄ (e∗, i) < qH
for i < λ as well. Consider a market m with e (m) = e∗ and w (m) ∈ (uH + cHe

∗, qH).
G (·;m) must be well defined because otherwise µ (w (m) , e∗, i) = 0, so high types can
obtain a payoff of at least w (w)− cHe∗ > uH by choosing education e∗. But the support of
G (·;m) cannot include low types because choosing e∗ implies a payoff of w̄ (e∗, i)− cLe∗ <
qH − cLe∗ < qL; and the support of G (·;m) cannot include only high types because then
firms could make profits by hiring in market m.

(e) Step (2c) implies that all low types select e = 0 and get hired for sure in market (0, qL).
Step (2d) implies that all high types must select e = e∗ and get hired for sure in market
(e∗, qH). This determines (11) as well as(13) and (14) in these markets. It also requires
that there is total demand λ in market (0, qL) and demand 1−λ in (e∗, qH), thus (12) must
hold. For all other markets, (13) and (14) then follow from the equilibrium definition.

Proof of Proposition 2

We first show that, in any equilibrium, all low types choose e = 0 and get hired at least at wage w = qL.
Some fraction π ∈ [0, 1] of the high types choose e = 0 and find a job for sure at wage w = wP (if
π < 1) or w ≥ wN (if π = 1). The rest of the high types choose e = e∗ and get hired with certainty at
wage w = qH . We prove this claim based on the following sequence of steps:

1. By the same argument as in the proof of Proposition 1, all firms make non-negative profits in all
markets m where they place positive demand δθ(m) > 0.

2. Firms’ profits must be weakly increasing in θ. To see this, suppose that θ′ > θ but firm θ makes
strictly higher profits than θ′, and let m be such that δθ (m) > 0. But by hiring in market m,
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firm θ′ must make profits at least as high as firm θ since both firms accept all the high types but
firm θ′ rejects more low types.

3. There exists some θ̄ such that all firms θ ≤ θ̄ make zero profits, and F (θ̄) > 0. To see this, recall
that at least a measure F (1) − 1 > 0 of firms must hire less than one worker. If any of these
firms make profits in some market, then as in the proof of Proposition 1 they could increase their
profits by increasing their hiring. Hence, there is a strictly positive measure of firms that make
zero profits. The claim then follows from the monotonicity of profits in θ.

4. In any equilibrium, low types obtain a payoff of at least qL. Suppose that they obtained a payoff
q′L < qL and consider a market m with e (m) = 0 and w (m) ∈ (q′L, qL). If G (·;m) 6= ∅, then
firms θ < θ̄ can make profits by hiring in this market; otherwise, µ (w (m) , e (m) , i) = 0, which
means low-type workers can obtain a payoff w (m) > q′L by choosing e = 0.

5. In any equilibrium, high types obtain a payoff of at least wP = qH−cHe∗. Suppose they obtained
a payoff uH < qH − cHe∗. This means that for any i ≥ λ it must be that w̄ (e∗, i) < qH , and
therefore w̄ (e∗, i) < qH for i < λ as well. Consider a market m with e (m) = e∗ and w (m) ∈
(uH + cHe

∗, qH). G (·;m,χθ) must be well defined for all θ because otherwise µ (w (m) , e∗, λ) = 0
so high types can obtain a payoff of at least w (m)− cHe∗ > uH by choosing education e∗. But
the support of G (·;m,χθ) cannot include low types for any θ because choosing e∗ implies a
payoff of w̄ (e∗, i)− cLe∗ < qH − cLe∗ = qL; and the support of G (·;m,χθ) cannot include only
high types for θ < θ̄ because then firms θ < θ̄ could make profits by hiring in market m.

6. For any i ≥ λ and any e, µ (·, e, i) has a point mass at a single wage. To see this, consider two
wage levels w′ > w and suppose that high types are hired with positive probability in both of
them if they choose e. Let θ′ be the highest type firm that hires at wage w′. Equations (6) and
(8) imply that the expected productivity of workers that firm θ′ will find in markets (e, w′) and
(e, w) is the same, and therefore it cannot be optimal for firm θ′ to hire at wage w′. Therefore
it must be that all high types are hired at the same wage, which implies that µ (·, e, i) is a step
function for every i.

7. In any equilibrium, all low types get education e = 0. To see this, assume to the contrary that
some i < λ chooses e = ẽ > 0. By (4), we have that w̄ (ẽ, i) ≥ qL+ cLẽ > qL. Together with step
(1), this implies that in every market (w, ẽ) with w > qL where type i has some chance of being
hired, there are also high-type applicants, because otherwise firms would make losses by paying
more than qL. Step (6) implies that there can be only one such market; label it m̃. Letting uH
be the utility obtained by high types in equilibrium, this implies w (m̃) = uH +cH ẽ. Let θ be the
lowest firm type that hires in market m̃ and πH be the measure of high types that choose e = ẽ.
Using the fact that all high types that choose e = ẽ are hired in market m̃, the probability that
type i < λ is hired in market m̃ is bounded above by

´ i
θ

1
πH

. Since not being hired in market m̃
implies getting a wage qL, this implies that the payoff from choosing e = ẽ is bounded above by:

ūi (ẽ) = qL +

iˆ

θ

1

πH
dF (θ) (w (m̃)− qL)− cLẽ,

which is lower than qL for i sufficiently close to θ. Let i be the lowest worker type such that
there is a δ1 > 0 such that all workers i ∈ [i, i+ δ1] choose e = ẽ. We know that i > θ.

Assume that some firm θ̃ ∈ [θ, i] prefers to hire in some market m′′ 6= m̃. This implies firms
θ ∈

(
θ̃, i
)

also prefer m′′ over m̃, since they hire from the same pool of workers as firm θ̃ in
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market m̃ but from a more selected pool in other markets. But then the fact that worker i = θ̃
does not choose ẽ implies that worker i does not want to choose ẽ either, since he obtains the
same payoff as worker i = θ̃ upon choosing ẽ but weakly higher in every other market. This
contradicts the assumption that worker i chooses ẽ. Therefore it must be that all firms in the
interval [θ, i] hire in market m̃.

Since there are no workers with i < i in market m̃, then upon hiring in market m̃, any firm
θ ≤ i hires from the entire pool of applicants, without rejecting any. Since this hiring rule is
available to all firms, part (3) implies that all θ ≤ i firms must make zero profits by hiring in
market m̃. For this to be true, it must mean that they cannot make profits in any other market,
including any markets with e = 0. But any firm with θ > i will be able to reject some workers
in the interval [i, i+ δ], which implies it can make strictly positive profits by hiring in market
m̃. Therefore, all firms in the interval (i, i + δ1] hire in market m̃. This in turn implies that if
worker i is willing to choose ẽ, then worker i + δ1 strictly prefers ẽ , since, compared to worker
i, he has a higher chance of being hired in market m̃ and the same chance of being hired in any
other market. By continuity, this implies that there is a number δ2 > δ1 such that all workers
in [i, i+ δ2] choose e = ẽ. Repeating the same reasoning, this implies that there is a strictly
increasing sequence {δn} such that all workers in [i, δn] choose ẽ. Therefore all workers i ∈ [i, λ]
choose e = ẽ.

Let θ̂ be the highest firm type that hires in market m̃.

(a) Assume θ̂ = λ . Consider market m′′ with e (m′′) = 0 and w (m′′) = uH + ε. If conditional
beliefs G

(
·;m′′, χθ̂

)
are well defined, then they can only include high types because firm θ̂

only accepts high types. For sufficiently small ε, this implies that firm θ̂ could make higher
profits in market m′′ than in market m̃, a contradiction. Instead, if G

(
·;m′′, χθ̂

)
= ∅, this

requires µ (uH + ε, 0, i) = 0 for all i ≥ λ, which implies that e = 0 is a better choice than ẽ
for high types, again a contradiction.

(b) Assume instead that θ̂ ≤ λ. This implies that all firms that hire in market m̃ accept workers
i ∈
[
θ̂, λ
]
. Since high-type workers are hired for sure in market m̃, this implies that workers

i ∈
[
θ̂, λ
]
are hired for sure as well, and therefore obtain utility uH − (cL − cH) ẽ. Now

consider a market m′ with e (m′) = ẽ+ε and w (m′) ∈ (w (m̃)+cHε, w (m̃)+cLε). Suppose
type i′ ∈

[
θ̂, λ
]
is in the support of G (·;m′, χθ). This requires:

w̄
(
e
(
m′
)
, i′
)
− cLe

(
m′
)
≥ uH − (cL − cH) ẽ ⇒ w̄

(
e
(
m′
)
, i′
)
− [uH + cH ẽ] ≥ cLε

Since w̄ (e (m′) , i) must be increasing in i, this implies that for any high type worker i′′:

w̄
(
e
(
m′
)
, i′′
)
− [uH + cH ẽ] ≥ cLε ⇒ w̄

(
e
(
m′
)
, i′′
)
− [uH + cH ẽ] > cHε,

which contradicts the premise that i′′ finds ẽ optimal. Hence, no i′ ∈
[
θ̂, λ
]
can be in the

support of G (·;m′, χθ). If the support of G (·;m′, χθ) only includes i ≥ λ, then for small
enough ε, firm θ would find it more profitable to hire in market m′ than in market m̃.
Therefore it must be that G (·;m′, χθ) = ∅. This implies that µ (w (m′) , e (m′) , i′′) = 0,
which in turn implies that high types prefer e (m′) to ẽ, a contradiction.

8. In any equilibrium, the high types select either e = 0 or e = e∗. If some types selected e > e∗,
then by step (5) this would require paying them w > qH and therefore involve negative profits
for firms. On the other hand, suppose some high type i′ sets e′ ∈ (0, e∗) and let w be such that
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µ (w, e′, i′) = 0. For any w ≥ w, beliefs can only place weight on high types since by part (7),
no low types choose e′. This implies that if w < qH , any firm, including those with θ < θ̄, could
make profits by hiring in market (e′, w), which contradicts part (1). Therefore we must have
w = qH . Note that this implies that there can only be a single e ∈ (0, e∗] such that πi (e) > 0
for some i ≥ λ since otherwise the high types would only select the lowest such e. Let π be the
fraction of high types who choose e = 0 and 1 − π the fraction who choose e = e′. Since they
must be indifferent, it follows that high types who choose e = 0 get a wage of w′ = qH − cHe′.
Since all low types choose e = 0, firms will find it profitable to hire in market (e = 0, w = w′) iff

π (1− λ) qH + (λ− θ) qL
π (1− λ) + (λ− θ) > qH − cHe′.

This defines the cutoff firm θ′ such that firms with θ < θ′ make zero profits. Furthermore, this
implies that all workers with i < θ′ do not get hired in market (0, w′) and therefore obtain a
payoff of qL. Let Θ ⊆ [0, θ′] be the set of firms who hire workers in market m′ = (e′, qH). Since
all high types who choose e′ get a job at w = qH it follows that F (Θ) = 1− π. Suppose worker
i′ < θ′ chooses e = e′. His chance of finding a job at wage qH will be given by:

1− µ
(
qH , e

′, i′
)

=
F (Θ ∩ [0, i′])

1− π =
F (Θ ∩ [0, i′])

F (Θ)
.

Since F is continuous, then for i′ sufficiently close to θ′ , µ (qH , e
′, i′) will be arbitrarily close to

0, and therefore (since e′ < e∗), (1− µ (qH , e
′, i′))qH − cLe′ > qL. Thus, there is a low type who

would prefer e = e′ to e = 0, which contradicts step (7).

To complete the proof, let uH be the equilibrium payoff of high types.

1. If uH > wP , then it must be that all high types choose e = 0 and get hired at a wage w = uH .
Firms will find it profitable to hire in this market if

(1− λ) qH + (λ− θ) qL
(1− λ) + λ− θ > uH

This defines a cutoff θ̄, so (15) holds. Furthermore, since all high types must be hired at this
wage, (16) must hold.

2. If uH = wP , then high types are indifferent between choosing e = 0 and getting hired at wage
wP and choosing e = e∗ and getting hired at a wage qH . Let π be the fraction that choose
e = 0. Firms will find it profitable to hire in market

(
0, wP

)
iff

π (1− λ) qH + (λ− θ) qL
π (1− λ) + (λ− θ) > wP

This defines the cutoff θ̄, so (19) holds. Furthermore, since all high types who choose e = 0 must
be hired at w, (20) must hold too.

Proof of Proposition 3

Partial Signaling Equilibrium.

1. Necessity of condition (24).

49



Let w̃ (e, i) be the wage that would make worker i indifferent between their equilibrium payoff
and choosing education e, given by:

w̃ (e, i) =

{
u (i) + cLe if i < λ
u (i) + cHe if i ≥ λ. (53)

where u(i) is given by (22). Suppose firm θ considers hiring in market m. For it to believe that
it will find χθ-acceptable low types, i.e. workers with i ∈ [θ, λ), it must be that:

w̃ (e (m) , θ) ≤ w̃ (e (m) , i) = w̄ (e (m) , i) ≤ w̄ (e (m) , λ) ≤ w̃ (e (m) , λ) . (54)

The first inequality follows from the fact that u (i) and therefore w̃ (e, i) is increasing in i. The
second step follows from the requirement that if beliefs place weight on type i, then i must be
indifferent between e (m) and his equilibrium choice. The third follows from monotonicity of µ
in i, which implies that w̄ is also monotonic in i. The last inequality follows from the fact that
otherwise worker λ could exceed his equilibrium payoff by choosing e (m). Therefore, the only
markets where firm θ can place beliefs on χθ-acceptable low types are those with education levels
that worker i = θ is willing to choose for weakly lower wages than high types.

Moreover, for firm θ not to have well-defined beliefs about market m it must be that:

w (m) ≤ w̃ (e (m) , θ) , (55)

since otherwise the requirement that µ (w (m) , e (m) , θ) = 0 implies that some χθ-acceptable
worker could exceed his equilibrium payoff by choosing e (m).

Together, conditions (54) and (55) imply that for any market m such that w̃ (e (m) , λ) <
w̃ (e (m) , θ) and w (m) > w̃ (e (m) , λ), firm θ’s beliefs G (·;m,χθ) can only place weight on
high types.

Denote by mD
θ the lowest-wage market where firm θ’s beliefs are guaranteed to only include high

types, which satisfies

w
(
mD
θ

)
= w̃

(
e
(
mD
θ

)
, λ
)

= w̃
(
e
(
mD
θ

)
, θ
)
.

Using (10), (17), (22) and (53) and rearranging, the profits that firm θ can obtain by hiring in
market mD

θ are

ΠD (θ) = qH − w
(
mD
θ

)
=
cH
cL

θˆ

θP

1

πP (1− λ) + λ− θdF (θ) (qH − qL) .

By (18), profits in market mD
θ exceed those that firm θ obtains in equilibrium if condition (24)

is violated, which implies it cannot be an equilibrium.

2. Sufficiency of condition (24). We construct the equilibrium objects {π, δ, µ,G}.

(a) Worker decisions:

πi (e) =


1 if i < λ and e = 0
πP if i ≥ λ and e = 0

1− πP if i ≥ λ and e = e∗

0 otherwise

(56)
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(b) Firm decisions:

δθ (m,χ) =


1 if θ ≥ θP , w (m) = wP , e (m) = 0 and χ(i) = I(i ≥ θ)

λ−ϕP
F (θP )

if θ < θP , w (m) = qL, e (m) = 0 and χ(i) = 1∀i
(1−λ)(1−πP )

F (θP )
if θ < θP , w (m) = qH , e (m) = e∗ and χ(i) = 1∀i

0 otherwise

(57)

where

ϕP =

λˆ

θP

λ− θ
πP (1− λ) + λ− θdF (θ)

(c) Probabilities:

µ (w; e, i) =


1 if e = 0, w ≥ wP

1−
´ min{i,λ}
θP

1
λ−θ+πP (1−λ)

dF (θ) if e = 0, wP > w ≥ qL
I (w ≥ min {w̃ (e, i) , w̃(e, λ)}) otherwise

(58)

where we used (53).

(d) Beliefs: for selection rule χ(i) = I(i ≥ θ),

g (i;m,χ) =



I(i∈[θ,λ))+πP I(i≥λ)
πP (1−λ)+λ−θ if e (m) = 0, w (m) ≥ wP

I(i∈[θ,λ])µ(w(m);e(m),i)´ λ
θ µ(w(m);e(m),i)di

if e (m) = 0, wP > w (m) ≥ qL
I(i = θ) if e (m) ∈

(
0, e
(
mD
θ

))
, w (m) ≥ w̃ (e (m) , θ)

I(i≥λ)
1−λ if e (m) ≥ e

(
mD
θ

)
, w (m) ≥ w̃ (e (m) , λ)

∅ for any other m

(59)

and for selection rule χ(i) = 1∀i,

g (i;m,χ) =



I(i<λ)+πP I(i≥λ)
πP (1−λ)+λ

if e (m) = 0, w (m) ≥ wP
µ(w(m);e(m),i)´ 1

0 µ(w(m);e(m),i)di
if e (m) = 0, wP > w (m) ≥ qL

I(i<θP )
θP

if e (m) ∈ (0, e∗) , w (m) ≥ w̃ (e (m) , 0)
I(i≥λ)
1−λ if e (m) ≥ e∗, w (m) ≥ w̃ (e (m) , λ)

∅ for any other m

(60)

We now verify that {π, δ, µ,G} satisfies all the equilibrium conditions from Section 3.4. (58)
implies that low types i ∈ [0, λ) are indifferent between any e ∈

[
0, e(mD

i )
]
and high types

are indifferent between any e ≥ 0, so the education decisions (56) solve the workers’ problem.
The beliefs (59) and (60) together with the fact that condition (24) holds implies that firms
θ ≥ θP maximize profits by hiring selectively in market (0, wP ). All other firms make zero
profits by hiring non-selectively either in market (0, qL) or (e∗, qH), and any other market has
either G (·;m,χθ) = ∅ or results in losses. Therefore the demands (57) are an optimal choice.
Furthermore, (57) is constructed such that δθ(M,X) = 1 for all θ ≥ θP and δθ (M,X) ≤ 1 for
all θ < θP as required by equilibrium. Replacing (57) in (5) implies that demand in market m
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for a set of selection rules X0 (θ′) = {χ (i) = I (i ≥ θ) : θ ∈ [0, θ′]} is:

D(m,X0

(
θ′
)
) =


λ− ϕP if e(m) = 0, w(m) = qL

max
{
F (θ′)− F

(
θP
)
, 0
}

if e(m) = 0, w(m) = wP

(1− πP )(1− λ) if e(m) = e∗, w(m) = qH
0 otherwise

Together with (60), this implies that (6) holds. Finally, (56) and (58) imply that beliefs (59)
and (60) satisfy the consistency condition (8) from Definition 1 in nonempty markets. Since
low types i find e ∈

[
0, e(mD

i )
]
optimal and high types find any e ≥ 0 optimal, beliefs satisfy

condition (4b) when they are well defined, and they are not well defined only at wages where
µ (w; e, i) = 0 for all i such that χ(i) = 1, so condition (4c) is satisfied as well.

Pure Signaling Equilibrium. The above analysis applies for the special case with πP = 0.

No-Signaling Equilibrium. Necessity and sufficiency of condition (23) are proved by the same
steps as for the Partial Signaling Equilibrium. For completeness, we state the equilibrium objects
{π, δ, µ,G}.

(a) Worker decisions:

πi (e) =

{
1 e = 0
0 otherwise (61)

(b) Firm decisions:

δθ (m,χ) =


1 if θ ≥ θN , w (m) = wN , e (m) = 0 and χ(i) = I(i ≥ θ)

1−F (λ)+F(θN)
F (θN )

if θ < θN , w (m) = qL, e (m) = 0 and χ(i) = 1∀i
0 otherwise

(62)

(c) Probabilities:

µ (w; e, i) =


1 if e = 0, w ≥ wN

1−
´ min{i,λ}
θN

1
1−θdF (θ) if e = 0, wN > w ≥ qL

I (w ≥ min {w̃ (e, i) , w̃(e, λ)}) otherwise
(63)

(d) Beliefs: for selection rule χ(i) = I(i ≥ θ),

g (i;m,χ) =



I(i≥θ)
1−θ if e (m) = 0, w (m) ≥ wN

I(i∈[θ,λ])µ(w(m);e(m),i)´ λ
θ µ(w(m);e(m),i)di

if e (m) = 0, wN > w (m) ≥ qL
I(i = θ) if e (m) ∈

(
0, e
(
mD
θ

))
, w (m) ≥ w̃ (e (m) , θ)

I(i≥λ)
1−λ if e (m) ≥ e

(
mD
θ

)
, w (m) ≥ w̃ (e (m) , λ)

∅ for any other m

(64)
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and for selection rule χ(i) = 1∀i,

g (i;m,χ) =



1∀i if e (m) = 0, w (m) ≥ wN
µ(w(m);e(m),i)´ 1

0 µ(w(m);e(m),i)di
if e (m) = 0, wN > w (m) ≥ qL

I(i<θN)
θN

if e (m) ∈
(
0, eN

)
, w (m) ≥ w̃ (e (m) , 0)

I(i≥λ)
1−λ if e (m) ≥ eN , w (m) ≥ w̃ (e (m) , λ)

∅ for any other m

(65)

with eN = (wN − qL)/(cL − cH)

Proof of Proposition 4

1. Using the reparametrization of the model in terms of λ̂, equation (15) generalizes to

wN =

(
λ− θN

)
λ̂
λqL +

(
1− λ̂

)
qH

(λ− θN ) λ̂λ +
(

1− λ̂
) (66)

For λ̂ low enough, wN > wP so there is a candidate corner equilibrium. Condition (23) generalizes
to

(λ− θ) λ̂
λ

(
λ− θN

)
λ̂
λ +

(
1− λ̂

)
[
(λ− θ) λ̂λ +

(
1− λ̂

)] > cH
cL − cH

(
1− λ̂

) 1ˆ

θ

1

(λ− t) λ̂λ +
(

1− λ̂
)dF (t)

 ,

which cannot hold for sufficiently low λ̂, so the candidate equilibrium is indeed an equilibrium.
Furthermore, taking the limit in (66) we obtain limλ̂→0w

N = qH .

2. Equation (16) implies that limF→F ∗ θN = λ, which implies, using (15), that limF→F ∗ wN = qH
for F sufficiently close to F ∗, so a candidate equilibrium with the desired properties exists.
Furthermore, as θN → λ, condition (23) cannot hold so the candidate equilibrium is indeed an
equilibrium.

Proof of Proposition 5

1. Using (17) and (10):

wP =

(
1− cH

cL

)
qH +

cH
cL
qL,

and therefore lim cH
cL
→1w

P = qL. Using (15) we have wN > wP , so there is a candidate corner

equilibrium. Furthermore, as cH/cL → 1, condition (23) holds so the candidate equilibrium is
indeed an equilibrium.

2. Taking the limit, lim cH
cL
→0w

P = qH . Using (19), this implies θP → λ, so condition (20) cannot

hold for any πP > 0.

Proof of Proposition 6

1. It is sufficient to prove claim (b) because claim (a) is a special case with πP2 = θP2 = 0. By
equation (18), firm profits are increasing in πP , and since wP is the same across equilibria, firms
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are better off in the higher-πP equilibrium. High-type workers obtain a payoff of wP in both
equilibria, so they are indifferent. Using (22), workers with i ≤ θP2 get a payoff of qL in both
equilibria, so they are also indifferent. Workers with i ∈ (θP2 , θ

P
1 ] get qL in the first equilibrium

and more than qL in the second, so they are better off in the second. For workers with i ∈ (θ1, λ),
their payoff is:

u (i) = qL +

iˆ

θP

1

πP (1− λ) + λ− θdF (θ)
(
wP − qL

)

= wP −
λˆ

i

1

πP (1− λ) + λ− θdF (θ)
(
wP − qL

)
where we used (20). This is increasing in πP , so they are also better off in the second equilibrium.

2. (a) In the first equilibrium, all firms make zero profits, so they are better off in the second
equilibrium. Low-type workers get a payoff of qL in the first equilibrium, but those with
i > θN get more in the second equilibrium. High-type workers get a payoff of wP in the
first equilibrium but wN in the second, so they are also better off.

(b) By equation (18), for θ sufficiently close to λ, firm θ’s profits approach qH−w, so wP < wN

implies they are higher in the first equilibrium. High-type workers get a payoff of wP in
the first equilibrium but wN in the second, so they are better off in the second.

D False Negatives

Uniqueness in case f (θ) is strictly increasing

Proposition 10. If condition (34) holds, the system of equations (32), (33) has no solution. Otherwise,
it has a unique solution.

Proof. Solving (33) for iS and replacing in (32), a solution requires:

∆ (i∗) ≡ f (i∗)

[
cH
cL
− λ

(
F (i∗)
f (i∗)

+ λ

)−1
]
−
(

1− cH
cL

)ˆ iH

i∗

λ

i− i∗ + F (i∗)
f(i∗) + λ

df(i) = 0 (67)

Taking the derivative and rearranging:

∂∆

∂i∗
= f ′ (i∗)

cH
cL

(
1− λ

(
F (i∗)
f (i∗)

+ λ

)−1
)

+ λ

[
f (i∗)

(
F (i∗)
f (i∗)

+ λ

)−2(
1− F (i∗) f ′ (i∗)

f (i∗)2

)

−
(

1− cH
cL

) ˆ iH

i∗

(
i− i∗ +

F (i∗)
f (i∗)

+ λ

)−2

df(i)

(
F (i∗) f ′ (i∗)

f (i∗)2

)]

≥ f ′ (i∗) cH
cL

(
1− λ

(
F (i∗)
f (i∗)

+ λ

)−1
)

+ λ

[
f (i∗)

(
F (i∗)
f (i∗)

+ λ

)−2(
1− F (i∗) f ′ (i∗)

f (i∗)2

)

−
(

1− cH
cL

) ˆ iH

i∗

(
i− i∗ +

F (i∗)
f (i∗)

+ λ

)−1

df(i)

(
F (i∗) f ′ (i∗)

f (i∗)2

)(
F (i∗)
f (i∗)

+ λ

)−1
]
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where the inequality follows because i > i∗. If i∗ satisfies (67), then:

∂∆

∂i∗
≥ f ′ (i∗) cH

cL

(
1− λ

(
F (i∗)
f (i∗)

+ λ

)−1
)

+ λ

[
f (i∗)

(
F (i∗)
f (i∗)

+ λ

)−2(
1− F (i∗) f ′ (i∗)

f (i∗)2

)

−f (i∗)

[
cH
cL
− λ

(
F (i∗)
f (i∗)

+ λ

)−1
](

F (i∗) f ′ (i∗)

f (i∗)2

)(
F (i∗)
f (i∗)

+ λ

)−1
]

= λf (i∗)
(
F (i∗)
f (i∗)

+ λ

)−2

> 0

so the function ∆ (i∗) is increasing at any i∗ such that ∆ (i∗) = 0. Condition (34) is equivalent to
∆ (iH) < 0. Furthermore,

∆ (λ) = −
(

1− cH
cL

)[
f (λ) +

ˆ iH

i∗

λ

i
df(i)

]
< 0

Therefore, if (34) holds, there can be no i∗ ∈ [λ, iH ] that satisfies ∆ (i∗) = 0 because ∆ (λ) < 0
and ∆ (iH) < 0 and ∆ must be increasing at any solution. Instead, if condition (34) does not hold,
∆ (iH) ≥ 0, so by continuity and using the fact that ∆ is increasing at any solution, there is exactly
one i∗ ∈ [λ, iH ] that satisfies ∆ (i∗) = 0.

Continuity in the Limit

Proposition 11. 1. limλ̂→0w(0, i) = qH , limλ̂→0 i
∗ = λ, and limλ̂→0 iS = λ, for all i ∈ [i∗, iH).

2. Let F ∗ be a mass point at θ = λ. limF→F ∗ iH = λ.

3. lim cH
cL
→1 iS = λ.

Proof.

1. Letting the fraction of low types be λ̂, equations (27), (28) and (32) generalize, respectively, to:

f
(
iH
)

=
1− λ̂
1− λ, w (0, i) =

1−λ̂
1−λ (i− iS) qH + λ̂qL

1−λ̂
1−λ (i− iS) + λ̂

, and (68)

Γ (i∗, iS) =
cH
cL
f (i∗)− λ̂

(
1− cH

cL

) iHˆ

i∗

[
1

1−λ̂
1−λ (i− iS) + λ̂

]
df
(
i′
)
− f (i∗) λ̂

1

1−λ̂
1−λ (i∗ − iS) + λ̂

= 0

(69)

while the market clearing condition is unchanged. The first statement follows directly from
equation (68), the second from equation (69) and the last from equation (73).

2. Since the measure of firms is assumed to be greater than 1, for F sufficiently close to F ∗, then
f (i) > 1 for all i, which implies iH = λ.

3. Equation (32) implies lim cH
cL
→1 i

∗−iS = 0. Using this and equation (33), we have lim cH
cL
→1 F (i∗) =

0, which implies lim cH
cL
→1 i

∗ = λ and therefore lim cH
cL
→1 iS = λ.
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By part 1, as the fraction of low types goes to zero, nobody signals and everyone is paid qH . Part 2
says that as firms become fully informed, again nobody signals and all high types are paid qH . Finally,
part 3 shows that if signaling is sufficiently expensive, no workers signal in equilibrium. In all cases
the equilibrium allocations are continuous in the limit.

General Case

For the case where f (i) is not monotone, the argument in Section 6 needs to be modified. Consider
two workers, i and i′ with i∗ < i < i′ < iH and assume f (i) > f (i′). The argument above, unmodified,
implies that any worker will be able to sell a fraction 1 − f (i′) of his labor to non-selective firms at
wages above w (0, i′). This means that only f (i′) of i-workers will be available for hire in market
(0, w (0, i)), which is less than the f (i) workers that firms with θ = i want to hire. Realizing this, firms
would bid up the wage, displacing non-selective firms. To characterize exactly what will happen, it is
useful to define F̄ (θ) as the convex hull of F (θ), i.e. the highest convex function on [λ, 1] such that
F̄ (θ) ≤ F (θ):

F̄ (θ) ≡ min
ω,θ1,θ2

{ωF (θ1) + (1− ω)F (θ2)}

s.t. ω ∈ [0, 1], θ1, θ2 ∈ [λ, 1] and ωθ1 + (1− ω)θ2 = θ.

The corresponding density f̄(θ), which is weakly increasing, is the “ironed” version of the original
density f(θ). We now show how the analysis in Section 6 extends to this general case, replacing F
with F̄ . Let iH be defined as iH ≡ min

i∈[λ,1]

{
i : f̄(i) ≥ 1

}
.

This generalizes the definition of iH in (27), allowing both for the possibility of ironing and the case
where f(i) > 1 for all i (in which case trivially iH = λ). Let the reservation wage for type i ∈ [i∗, iH)
be given by

w(0, i) = max
i′

(i′ − iS)qH + λqL
i′ − iS + λ

s.t. f̄
(
i′
)

= f̄ (i) . (70)

Hence, when f̄ is strictly increasing, this coincides with (28), but in a flat region (due to ironing),
w(0, i) equals the value for the top of the ironing range. In other words, in intervals [i0, i1] where
the ironed density f̄ is constant, there will be “bunching:” all remaining workers who are not hired
non-selectively at higher wages are are hired at the same wage w̄ (0, i1) by firms θ ∈ [i0, i1]Based on
the same steps as underlying (32) but using (70) instead of (28), we obtain

Γ(i, iS) = f̄ (i)

(
cH
cL
− λ

ib(i)− iS + λ

)
− λ

(
1− cH

cL

) ˆ iH

i

1

i′ − iS + λ
df̄(i′) (71)

where ib(i) = max
{
i′ : f̄(i′) = f̄(i)

}
. Let i∗ and iS solve

i∗ = min
i∈[λ,1]

{i : Γ(i, iS) ≥ 0} (72)

and F̄ (i∗) = f̄ (i∗) (i∗ − iS) . (73)

Equation (72) generalizes the indifference condition (32) to account for the fact that, with bunching,
the reservation wage function (70) and hence Γ(i, iS) can be discontinuous in i. Note that, by (72),
whenever i∗ falls into a bunching region, it corresponds to the lower end of it.

These definitions allow us to state the following general existence and uniqueness result:

Proposition 12. There exists a generically unique equilibrium:

1. All low types i ∈ [0, λ) choose e = 0.
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2. All high types i ∈ [iH , 1] choose e = 0.

3. For i ∈ [λ, iH), the equilibrium takes one of the following two possible forms:

(a) An interior equilibrium where iS and i∗ solve (72) and (73) and:

i. A measure iS − λ of high types with i ∈ [λ, i∗) choose e = eS.
ii. All other high types with i ∈ [λ, i∗) choose e = 0.

(b) A corner equilibrium where Γ(iH , iH − F (iH)) < 0 and:

i. A measure F (iH) of high types with i ∈ [λ, iH) choose e = 0.
ii. All other high types with i ∈ [λ, iH) choose e = e∗.

The corner equilibrium is of the same form as described in Section 6. If the equilibrium is interior,
the proposition encompasses two cases. Either there is no bunching at i∗, in which case our previous
analysis goes through: the indifference condition Γ(i∗, iS) = 0 implies that type i∗ is just indifferent
between signaling or not, and all high types below i∗ who do not signal are hired at least at wage
wS = w(0, i∗). The other case allows for i∗ to be in a bunching region. Because there is a discontinuity
in u(i) at i∗ in this case, i∗ is given by the smallest i that still prefers choosing e = 0 over signaling (so
u(i∗) > qH − cHeS and hence Γ(i∗, iS) > 0). All high types i < i∗ are indifferent between signaling or
not. All firms’ decisions are described in the proof below.

When there is bunching at the bottom (i.e. on the interval [λ, i∗]), the market clearing condition
(73) implies iS = λ, so there is no signaling whatsoever in equilibrium. This occurs when there is a
high density of precisely informed buyers relative to less informed ones.

We now provide a proof of Proposition 12, establishing first the uniqueness and then the existence
of the stated equilibrium.

Uniqueness. We prove uniqueness based on the following sequence of steps:

1. By the same arguments as in the proof of Proposition 2:

(a) all firms make non-negative profits in each market

(b) profits are decreasing in θ

(c) all firms θ ≥ θ̄ make zero profits in equilibrium, with θ̄ ∈ [λ, 1) and F (1)− F (θ̄) > 0

(d) low types obtain a payoff of at least qL
(e) high types obtain a payoff of at least wP = qH − cHe∗.

2. Because all low types are indistinguishable for all firms, all low types must obtain the same
utility. Denote this by uL.

3. Utility for workers is weakly increasing in i. This follows immediately from the fact that µ (w; e, i)
is weakly increasing in i.

4. In any equilibrium, all low types choose e = 0. Suppose some low types choose e′ > 0. By step
(1d), we have w̄ (e′, i) ≥ qL + cLe

′ for all i < λ. Consider all markets m with e(m) = e′ and
w(m) > qL where low types are hired with positive probability. For low types to be hired, in
any such market m there must be firms that hire non-selectively, setting χ(i) = 1 for all i. By
step (1a), there must be high type applicants in all these markets m.
Let w′ be the highest wage where anyone choosing e′ is hired with positive probability and let
m′ = (e′, w′). Suppose first that some high types i′ ≥ λ are hired in market m′ by selective
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firms θ ≤ i′ setting selection rule χθ(i) = I(i ≥ θ). The equilibrium payoff of these high types
must be u′H ≤ w′ − cHe′. Consider a market m̃ with e(m̃) = 0 and w(m̃) ∈ (w′ − cHe′, w′).
Then G(·; m̃, χθ) must be well defined since otherwise µ(w(m̃), 0, i′) = 0, so type i′ could obtain
a payoff of at least w(m̃) > u′H by choosing e = 0. The support of G(·; m̃, χθ) can only include
high types by construction of χθ. But this would imply that firm θ could increase its profits by
hiring high types in market m̃ instead of market m′ at wage w(m̃) < w′. Hence, everyone in
market m′ must be hired by non-selective firms. Since this is feasible for any firm and by step
(1a), all firms must make zero profits in market m′. This implies w′ < qH .
Because all firms hire non-selectively in market m′, µ(w′, e′, i) = µ′ is the same for all i. Suppose
first that µ′ < 1. Consider a market m′′ = (e′, w′ − ε). Then for sufficiently small ε > 0, the
applicant pool is the same in markets m′′ and m′. Since profits are zero in market m′, all firms
could make positive profits by hiring in marketm′′, contradicting (i). Hence we must have µ′ = 0.
This implies that the equilibrium payoff of the low types is u′L = w′ − cLe′ and the equilibrium
payoff of those high types who choose e = e′ is u′H = w′ − cHe′.
Consider a market m′′ such that e(m′′) = e′ + ε and w(m′′) ∈ (w′ + cHε, w

′ + cLε). Suppose
χ(i) = 1 for all i. Then G(·;m′′, χ) must be well defined since otherwise µ(w(m′′), e(m′′), i) = 0
for all i, so all high types who choose e′ could obtain payoff w(m′′)− cHe(m′′) > w′− cHe′ = u′H ,
a contradiction. The support of G(·;m′′, χ) cannot include low types since w(m′′)− cLe(m′′) <
w′ − cLe′ = u′L. The support of G(·;m′′, χ) cannot include only high types since then any firm
θ > θ̄ could make strictly positive profits in market m′′ for ε ∈ (0, (qH − w′)/cL). This delivers
the final contradiction.

5. Any high type who chooses e > 0 is hired with probability 1 at w = qH . Suppose otherwise, then
there exists a market m with e(m) = e and w(m) < qH such that there are high type applicants.
Since there are no low types in market m by step (4), any firm θ > θ̄ could then make positive
profits by hiring non-selectively in market m, contradicting step (1c).

6. No firm hires high types selectively at any e > 0. Suppose there was a high type i > λ who
is hired in market m with e(m) > 0 and w(m) = qH by a firm θ < i that sets selection rule
χθ(i) = I(i ≥ θ). Consider market m′ with e(m′) = 0 and w(m′) ∈ (qH − cHe(m), qH). Then
G(·;m,χθ) 6= ∅ since otherwise µ(w(m), 0, i) = 0, so type i could obtain a payoff w(m′) >
qH − cHe(m) by choosing e = 0. Since by construction the support of G(·;m,χθ) only includes
high types and since w(m′) < qH , firm θ can increase its profits by hiring high types in market
m′ rather than m, a contradiction. Hence, all high types selecting e > 0 are hired by firms using
selection rule χ(i) = 1 for all i.

7. If any high types choose some education eS > 0, it must satisfy qH − cLeS = uL. To see this,
suppose first that some high types choose e ∈ (0, eS). By step (5), they are hired at wage qH
and by step (6) they are hired by non-selective firms. However, this implies that the low types,
by choosing e, could obtain qH − cLe > uL, a contradiction. Suppose next that some high types
choose e > eS . Consider some market m with e(m) = eS and w(m) = qH − ε and selection
rule χ(i) = 1 for all i, which is feasible for all firms. For sufficiently small ε, the support of
G(·;m,χ) must be well defined, since otherwise µ(w(m), e, i) = 0 and those high types choosing
e could do better by choosing education eS . The support cannot include low types because
qH − cLe < uL. Since w(m) < qH , firms θ ≥ θ̄ could therefore make strictly positive profits in
market m, contradicting step (1c).

8. Define
w̄S ≡ qH − cHeS =

(
1− cH

cL

)
qH +

cH
cL
uL. (74)
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There exists a cutoff i∗ such that: for i < i∗, high types’ utility is u (i) = w̄S and for i ≥ i∗,
utility is u (i) ≥ w̄S and e = 0. Steps (5) and (7) imply that high types who choose e > 0 must
obtain utility equal to w̄S . Therefore the only possible way to obtain higher utility is to choose
e = 0. The result then follows from step (3).

9. For workers i ≥ i∗ (who choose e = 0) the minimum wage in their support w(0, i) is weakly
increasing in i. This follows from the fact that w(0, i) solves µ(w, 0, i) = 0, and µ(w, 0, i) is
weakly increasing in w and weakly decreasing in i.

10. If some type i ≥ 0 who chooses e = 0 is hired by a selective firm, this can only occur at the
minimum wage in worker i′s support w(0, i). To see this, consider a market m = (0, w) where
a high type i ≥ λ is hired by a selective firm θ < i setting χθ(i) = I(i ≥ θ), and suppose
µ(w, 0, i) > 0. This implies that there are i-type applicants in some market m′ = (0, w− ε). As a
result, firm θ could increase its profits by shifting demand to market m′ using the same selection
rule.

11. There does not exist a market m with e(m) = 0 and w(m) > qL where all firms hire non-
selectively. Suppose there were such a market and let m be the highest-wage market where all
firms hire non-selectively. All firms must make zero profits in m and µ(w(m), 0, i) = µ̄ for all i.
Suppose µ̄ > 0. Consider a market m′ = (0, w(m) − ε). For sufficiently small ε > 0, the pool
of applicants is the same in markets m′ and m. Then all firms could make positive profits by
hiring in market m′, contradicting (i). Hence we must have µ̄ = 0. This implies that there can
only be a single such market m, and that all workers must obtain utility of at least w(m) in
equilibrium. Let ī denote the highest i ∈ [λ, 1] that applies to market m. By zero profits and
w(m) > qL, we must have ī > λ. To ensure that no firm wants to hire selectively in market m,
all firms θ ≤ ī must at least make profits qH − w(m) in equilibrium, i.e. they must hire high
types in some market m′ 6= m with w(m′) ≤ w(m). However, because all workers obtain utility
of at least w(m), there cannot be any supply of workers in market m′.

12. All types i > iH , who select e = 0 by step (8), must be hired with probability 1 at w = qH .
They cannot be hired with positive probability above qH because no firm would hire at such a
wage. Suppose some ĩ > iH is not hired with probability 1 at w = qH . This implies that all firms
θ ∈

(
iH , ĩ

)
maximize profits by hiring selectively at the lower bound of the support of the wages

of worker i = θ, which is below qH by step 9. The total number of workers these firms would
hire is F

(̃
i
)
− F (iH) ≥ F̄

(̃
i
)
− F̄ (iH) ≥ ĩ− iH . The first inequality follows from the fact that

F (θ) ≥ F̄ (θ) for all θ by construction of F̄ , and F (iH) = F̄ (iH) by definition of iH . The second
follows from the fact that f̄ (θ) ≥ 1 for all θ ≥ iH . Moreover, generically the second inequality
is strict. This implies that µ (w, 0, i) < 0 for some worker i in this interval, a contradiction.

13. Consider first the case where the equilibrium is interior with i∗ < iH and let iS − λ denote the
measure of high type workers who choose e = eS . For all other i ∈ [λ, iH ], the lower bound on
their wage distribution wS must satisfy:

f̄(i∗)wS +

ˆ iH

i∗
w(0, i′)df̄(i′) = w̄S (75)

with the cutoff i∗ is defined in step (8) given by (72).

Suppose first that there exist workers in [λ, iH ] with lower bounds on wages lower than those
defined by (75), and let ĩ be the highest worker such that for some ε > 0, the lower bound is
higher for all i ∈

(̃
i− ε, ĩ

)
.
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(a) If ĩ ∈ (i∗, iH ] is in a region where f̄ (i) is strictly increasing, let w̃(0, i) be the lower bounds
on the wages of i ∈ (̃i− ε, ĩ). Define markets M

(̃
i
)

= {m : e (m) = 0, w (m) = w̃(0, i), i ∈
(̃i−ε, ĩ)}. Firms θ ≤ ĩ−ε can find high types in markets with wages below w̃(0, i−ε), so they
don’t want to hire selectively in any market m ∈M

(̃
i
)
. Therefore total selective hiring in

markets m ∈M
(̃
i
)
will be

´ ĩ
ĩ−ε dF̄ (i). By construction of ĩ, all workers ĩ+ε for ε > 0 have

lower bounds on wages w
(
0, ĩ+ ε

)
given by (70). By step (11), a fraction f̄

(̃
i+ ε

)
of them

are hired by selective firms, and step (10) implies that the selective hiring occurs at the
lower bound of their wage w(0, ĩ+ε). (Since ĩ ≤ iH , we have f̄ (̃i+ε) ≤ 1.) Taken together,
this implies that a share 1− f̄

(̃
i+ ε

)
of workers ĩ+ε must be hired by nonselective firms at

or above w(0, ĩ+ε). Continuity of f̄ then implies that a fraction 1− f̄
(̃
i
)
of workers of type

ĩ will be hired by nonselective firms at wages at or above w(0, ĩ). Suppose first that w̃(0, i)
is strictly increasing in (̃i− ε, ĩ). For each i ∈ (̃i− ε, ĩ), all workers i′ > i have lower bounds
on wages w̃(0, i), so the supply of workers in market m̃(i) includes i− iS high types and λ
low types. Therefore (70) and the fact that w̃(0, i) > w (0, i) imply that no firms want to
hire non-selectively in any market m̃(i). Alternatively, suppose w̃(0, i) is flat in (̃i − ε, ĩ)
at level w(0, ĩ). Since a fraction 1− f̄

(̃
i
)
of workers of type ĩ will be hired by nonselective

firms at wages at or above w(0, ĩ), the same must then be true for all i ∈ (̃i− ε, ĩ]. In both
cases, the total measure of workers in (̃i − ε, ĩ] not hired at wages at or above w(0, ĩ) by
nonselective firms is f̄

(̃
i
)
ε. Since f̄ (i) is strictly increasing, f̄

(̃
i
)
ε >
´ ĩ
ĩ−ε dF̄ (i) , which

implies that µ(w̃(0, i), 0, i) < 1 for some workers i ∈ (̃i−ε, ĩ), and the lower bound on wages
must be lower than w̃(0, i).

(b) If ĩ ∈ (i∗, iH ] is in a region where f̄ (i) is constant or if ĩ < i∗ then this implies that the
lower bound on the wages of worker ĩ is higher than that of some worker i′ > ĩ, which
would violate step (9).

(c) If ĩ = i∗, this would imply that some workers i ∈ [λ, i∗] have a lower bound on their wage
w̃(0, i) > wS . This can only occur without violating step (9) when i∗ corresponds to the
lower end of a bunching region and wS < w(0, i∗). Let i′ be the lowest i ∈ [λ, i∗] such that
w̃(0, i) > wS for all i > i′. We must have i′ > λ since otherwise no-one signals by (75). No
firm θ < i′ wants to hire any type i > i′ since they maximize profits by hiring in market
(0, wS). Hence, total selective hires in (i′, i∗) are given by F (i∗)− F (i′) ≤ F̄ (i∗)− F̄ (i′) <
i∗−i′. The first inequality follows from the fact that, since i∗ is the lower end of a bunching
region, we have F (i∗) = F̄ (i∗). The second follows from the definition of iH and the fact
that i∗ < iH . Since there is no non-selective hiring (if there was, step (13a) would apply),
this implies that µ(w̃(0, i), 0, i) < 1 for some workers i ∈ (i′, i∗), and therefore the lower
bound on wages must be lower than w̃(0, i).

Suppose next that there exist workers with lower bounds on wages lower than those defined by
(75), and let ĩ be the highest worker such that for some ε > 0, lower bounds on wages are lower
than those defined by (75) for all i ∈

(̃
i− ε, ĩ

)
.

(a) If ĩ ∈ [i∗, iH ] is in a region where f̄ (i) is strictly increasing, take some i′ ∈
(̃
i− ε, ĩ

)
with

a lower bound on wages w′ < [(i′ − iS)qH + λqL] / [i′ − iS + λ] and consider the market m′

with e(m′) = 0 and w(m′) = w′. The supply of workers in this market includes all low
types (a measure λ) and at least the high types i ∈ [λ, i′] who do not signal (a measure at
least i′− iS). Therefore, a firm that hired non-selectively in market m′ would make profits
of at least

(i′ − iS)qH + λqL
i′ − iS + λ

− w′ > 0
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Since this is feasible for all firms, it contradicts (1c).

(b) If ĩ ∈ [i∗, iH ] is in a region [i0, i1] where f̄ (i) is constant, then a fraction 1 − f̄ (i1) of all
workers i < i1 are hired by nonselective firms at wages at least w (0, i1). The measure of
firms in

(
i0, ĩ
)
is F

(̃
i
)
− F (i0) ≥ F̄ (̃i) − F̄ (i0) = f̄ (i1)

(̃
i− i0

)
, with strict inequality in

the generic case where the original density f is not exactly constant and equal to f̄ (i1).
For all these firms, it is profit maximizing to hire selectively at the lower bound on wages
of worker i = θ, which implies that µ (w, 0, i) < 0 for some i in this interval, and which
therefore cannot be part of an equilibrium.

(c) If ĩ < i∗ then equation (72) implies that the utility of all workers i ≤ ĩ is below w̄S . By
(75) and (74), they would be better off choosing e = eS .

14. In any interior equilibrium, the cutoff i∗ defined in step (8) must also satisfy (73). To see this,
observe first that it cannot be that all workers i ∈ [λ, i∗] signal. If this were the case, consider the
beliefs of a firm θ ∈ [λ, i∗) in a marketm with e(m) = 0 and w(m) = wS+ε. ThenG(·;m,χθ) 6= ∅
since otherwise µ(w(m), 0, i) = 0 for i ∈ [λ, i∗), so these workers could get payoff in excess of w̄S
by choosing e = 0 instead of signaling. Moreover, the support of G(·;m,χθ) cannot include high
types since otherwise some firms could increase their profits by shifting demand to market m for
ε sufficiently small. Hence, for all firms θ ∈ [λ, i∗), it is profit maximizing to hire selectively in
market m with e(m) = 0 and w(m) = wS , so total selective hires will be F (i∗) = F̄ (i∗), where
the equality follows from the fact that, by (72), if i∗ falls in a bunching region, it corresponds to
the lower end of it. On the other hand, the measure of workers who are not hired by nonselective
firms at higher wages is f̄ (i∗) (i∗ − iS). Hence, if F̄ (i∗) > f̄(i∗)(i∗ − iS), then µ (w, 0, i) < 0 for
some i in this interval, which is a contradiction. If F̄ (i∗) < f̄(i∗)(i∗− iS), then µ (w, 0, i) > 0 for
some i in this interval, so wS cannot be the lower bound on wages.

15. For the case of a corner equilibrium, note first that Γ(iH , iH−F (iH)) < 0 implies w(0, iH) < wP ,
where we used f̄(iH) = 1 (abstracting from the trivial case iH = λ, which is fully characterized
by step (12)). Together with steps (1e) and (9), this means that there cannot be any non-
selective hiring. Hence, uL = qL and eS = e∗. Moreover, since there are only F (iH) firms with
θ < iH that can hire selectively at e = 0, this immediately implies that at least a measure
iS − λ = iH − λ− F (iH) of workers must signal. All other workers in [λ, iH ] must have a lower
bound on wages wP . The bound cannot be lower than wP by step (1e). Suppose for some
workers the bound is higher and let i′ be the lowest i ∈ [λ, iH) such that w(0, i) > wP for all
i > i′. We must have i′ > λ since otherwise no-one would signal. No firm θ < i′ wants to hire
any type i > i′ since they maximize profits by hiring in market (0, wP ). Hence, total selective
hires in (i′, iH) are given by F (iH)−F (i′) ≤ F̄ (iH)− F̄ (i′) < iH − i′. The first inequality follows
from F (iH) = F̄ (iH) and the second from the definition of iH . Since there is no non-selective
hiring, this implies that µ(w(0, i), 0, i) > 0 for some workers i ∈ (i′, iH), and therefore wage
w(0, i) cannot be the lower bound on their wages.

16. By the same argument as in step (14), in the corner equilibrium not every worker with i < iH
can signal. Moreover, again by the same argument as in step (14), it is not possible that the
measure iS −λ of workers who signal exceeds iH −F (iH)−λ. Hence, together with the previous
step, we must have iS = iH − F (iH).

17. Finally, we show that there is a unique solution to equations (72) and (73). The argument in
the proof of Proposition (10) applies, except that, with bunching, the function ∆(i∗) is no longer
continuous. From (71) we see that Γ is still continuous in iS but, as i increases, jumps up at the
lower end of each bunching interval. This is because when i enters a bunching region, ib(i) jumps
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to the upper end of that region. As a result, ∆(i) ≡ Γ(i, i− F̄ (i)/f̄(i)) is continuous in i except
when i is the lower end of a bunching interval, in which case ∆(i) discontinuously jumps up at
that point as i increases. Recall that the solution to (72) and (73) is i∗ = mini∈[λ,iH ] {i|∆(i) ≥ 0}.
Together with the result from Proposition 10 that ∆′(i) > 0 when i is not in a bunching region
and ∆ = 0, this implies the following:

(a) If ∆(iH) < 0, then ∆(i) < 0 for all i ∈ [λ, iH ], so there cannot be any solution to (72) and
(73) and the corner equilibrium is the unique equilibrium.

(b) If ∆(iH) ≥ 0, then either ∆(i) > 0 for all i ∈ [λ, iH ], in which case i∗ = λ, or there exists
a unique solution i∗ ∈ (λ, iH ]. Hence, if there is an interior equilibrium, it is also unique.

Existence. We have already established the existence of a solution to equations (72) and (73). We
now provide the equilibrium decisions, probabilities and beliefs, and verify that all demand decisions
maximize firms’ profits and all workers maximize utility.

Interior Equilibrium.

(a) Education decisions:

πi (e) =


1 if


i ≥ iS and e = 0

i ∈ [λ, iS) and e = eS

i < λ and e = 0

0 otherwise

(b) Probabilities:

µ (w; e, i) =



I (w ≥ qH) if e = 0, i ≥ iH

f̄(ir(w)) if


e = 0, i ∈ [i∗, iH), w ∈ [w(0, i), w(0, iH))

e = 0, i ∈ [λ, i∗), w ∈ [wS , w(0, iH))

e = 0, i ∈ [0, λ), w ∈ [qL, w(0, iH))

0 if


e = 0, i ∈ [i∗, iH ] , w < w(0, i)

e = 0, i ∈ [λ, i∗), w < wS
e = 0, i ∈ [0, λ), w < qL

1 if e = 0, i ≤ iH , w ≥ w(0, iH)
I(w ≥ w̃(e, i)) if e > 0, i ≥ λ

I (w ≥ min {w̃(e, i), w̃(e, λ)}) if e > 0, i < λ

where
ir(w) = min

i∈[i∗,iH ]
{i : w(0, i) ≥ w} ,

w̃(e, i) is given by (53) and

u (i) =


qH if i > iH

f̄(i)w(0, i) +
´ iH
i w(0, i′)df̄(i′) if i ∈ [i∗, iH ]

f̄(i∗)wS +
´ iH
i∗ w(0, i)df̄(i) if i ∈ [λ, i∗)

f̄(i∗)qL +
´ iH
i∗ w(0, i)df̄(i) if i < λ
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(c) Demand decisions:

δθ (m,χ) =


1 if


θ ∈ [λ, i∗), w(m) = wS , e(m) = 0 and χ(i) = I(i ≥ θ)
θ ∈ [i∗, iH), w(m) = w(0, θ), e(m) = 0 and χ(i) = I(i ≥ θ)
θ ∈ [iH , θ

∗), w(m) = qH , e(m) = 0 and χ(i) = I(i ≥ θ)
λ(1−f̄(i∗))
F (1)−F (θ∗) if θ ≥ θ∗, w(m) = qL, e(m) = 0 and χ(i) = 1∀i

iS−λ
F (1)−F (θ∗) if θ ≥ θ∗, w(m) = qH , e(m) = eS and χ(i) = 1∀i

where θ∗ is such that F (θ∗)− F (iH) = 1− iH .
The non-selective demand in markets m with e(m) = 0 and w(m) = w(0, i) with i ∈ [i∗, iH)
and f̄ ′(i) > 0 remains to be specified. For a small interval of types [i0, i0 + ∆] the change in the
probability of being hired non-selectively is:

f̄ (i0 + ∆)− f̄ (i0) ≈ f̄ ′ (i0) ∆

Using that in a no-bunching region ir (w) = iS(qH−w)+λ(w−qL)
qH−w , this implies that total non-

selective hires over an interval of wages [w,w + ε] are

ε
λ (qH − qL)

(qH − w)2 [ir (w)− (iS − λ)] f̄ ′ (ir (w)) .

Hence, the total measure of demand of each firm θ ≥ θ∗ using the non-selective hiring rule
χ(i) = 1∀i placed on any set of markets M where e(m) = 0 for all m ∈ M and w(M) =
(w0, w1) ⊂ [w(0, i∗), w(0, iH)] must be

δθ(M,χ) =

´ w1

w0

λ(qH−qL)

(qH−w)2
[ir (w)− (iS − λ)] f̄ ′ (ir (w)) dw

F (1)− F (θ∗)
.

Finally, δθ(m,χ) = 0 otherwise.

(d) Beliefs: for selection rule χ(i) = I(i ≥ θ),

g (i;m,χ) =



I(i≥max{θ,iS})
1−max{θ,iS} if e(m) = 0, w(m) ≥ qH

I(i∈[max{θ,iS},iH))
iH−max{θ,iS} if e(m) = 0, w(m) ∈ [w(0, iH), qH), θ < iH

I(i∈[max{iS ,θ},ir(w(m))])
ir(w(m))−max{iS ,θ} if e(m) = 0, w(m) ∈ [wS , w(0, iH)), θ < iH

I(i∈[θ,ir(w(m)−cHe(m))))
ir(w(m)−cHe(m))−θ if

{
e(m) > 0,

w(m)− cHe (m) ∈ [w̃(e(m), λ), w̃(e(m), iH)) , θ < iH
I(i≥θ)
1−θ if e(m) > 0, w(m)− cHe (m) ≥ w̃(e(m), iH)

∅ otherwise
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and for selection rule χ(i) = 1∀i,

g (i;m,χ) =



I(i<λ)+I(i≥iS)
1−iS+λ if e(m) = 0, w(m) ≥ qH

I(i<λ)+I(i∈[iS ,iH))
λ+iH−iS if e(m) = 0, w(m) ∈ [w(0, iH), qH)

I(i<λ)+I(i∈[iS ,i
r(w(m))])

λ+ir(w(m))−iS if e(m) = 0, w(m) ∈ [wS , w(0, iH))
1
λI(i < λ) if e(m) = 0, w(m) ∈ [qL, wS)
1
λI (i < λ) if e(m) ∈ (0, eS), w(m) ≥ w̃(e(m), 0)
I(i∈[λ,iS ])
iS−λ if e(m) ≥ eS , w(m) ≥ w̃(e(m), λ)

∅ otherwise

To see that the proposed {π, δ, µ,G} is an equilibrium, note first that the probabilities defined in (b)
imply that low types are indifferent between any e ∈ [0, eS ] and high types are indifferent between
any e, so the education decisions defined in (a) solve the workers’ problem. The beliefs defined in (d)
imply that it is profit maximizing for firms θ ≤ i∗ to hire selectively in market (0, w = wS) and for
firms θ ∈ (i∗, iH) to hire in market (0, w(0, θ)). Firms θ ≥ iH make zero profits by hiring selectively in
market (0, qH). Moreover, firms θ ≥ iH make zero profits by hiring non-selectively in markets (0, qL),
(eS , qH) or (0, w(0, i)), i ∈ [i∗, iH). Any other market has either G (·;m,χθ) = ∅ or results in losses.
Therefore the demands defined in (c) are an optimal choice. They also satisfy δθ (M,X) ≤ 1 for all θ
(with equality for θ ≤ iH), so no firm hires more than one worker. Finally, using the above-specified
demand and beliefs, (6) holds. Also, beliefs satisfy the consistency condition (4b) from Definition 1 in
nonempty markets. In zero supply markets, beliefs are also constructed to satisfy condition (4b) when
they are well defined, and they are not well defined only at wages where µ (w; e, i) = 0 for all i such
that χ(i) = 1, so condition (4c) is satisfied as well.

Corner equilibrium. We state the equilibrium objects {π, δ, µ,G}. Verifying that this is an
equilibrium is analogous to the interior equilibrium case.

(a) Education decisions:

πi (e) =


1 if


i ≥ iH − F (iH) and e = 0

i ∈ [λ, iH − F (iH)) and e = e∗

i < λ and e = 0

0 otherwise

(b) Demand decisions:

δθ (m,χ) =


1 if

{
θ < iH , w(m) = wP , e(m) = 0 and χ(i) = I(i ≥ θ)
θ ∈ [iH , θ

∗), w(m) = qH , e(m) = 0 and χ(i) = I(i ≥ θ)
λ

F (1)−F (θ∗) if θ ≥ θ∗, w(m) = qL, e(m) = 0 and χ(i) = 1∀i
iH−F (iH)−λ
F (1)−F (θ∗) if θ ≥ θ∗, w(m) = qH , e(m) = e∗ and χ(i) = 1∀i

0 otherwise

where θ∗ is such that F (θ∗)− F (iH) = 1− iH
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(c) Probabilities:

µ (w; e, i) =


I (w ≥ qH) if e = 0, i > iH
I
(
w ≥ wP

)
if e = 0, i ∈ [λ, iH ]

I (w ≥ qL) if e = 0, i < λ
I(w ≥ w̃(e, i)) if e > 0, i ≥ λ

I (w ≥ min {w̃(e, i), w̃(e, λ)}) if e > 0, i < λ

where w̃(e, i) is given by (53) and

u (i) =


qH if i > iH
wP if i ∈ [λ, iH ]
qL if i < λ

(d) Beliefs: for selection rule χ(i) = I(i ≥ θ),

g (i;m,χ) =



I(i≥max{θ,iH−F (iH)})
1−max{θ,iH−F (iH)} if e(m) = 0, w(m) ≥ qH

I(i∈[max{iH−F (iH),θ},iH ])
min{F (iH),iH−θ} if e(m) = 0, w(m) ∈ [wP , qH), θ < iH

I(i∈[θ,iH))
iH−θ if e(m) > 0, w(m) ∈ [w̃(e(m), λ), w̃(e(m), iH)) , θ < iH
I(i≥θ)
1−θ if e(m) > 0, w(m) ≥ w̃(e(m), iH)

∅ otherwise

and for selection rule χ(i) = 1∀i,

g (i;m,χ) =



I(i<λ)+I(i≥iH−F (iH))
λ+1−iH+F (iH) if e(m) = 0, w(m) ≥ qH

I(i<λ)+I(i∈[iH−F (iH),iH))
λ+F (iH) if e(m) = 0, w(m) ∈ [wP , qH)

1
λI (i < λ) if e(m) = 0, w(m) ∈

[
qL, w

P
)

1
λI (i < λ) if e(m) ∈ (0, e∗), w(m) ≥ w̃(e(m), 0)

I(i∈[λ,iH−F (iH)])
iH−F (iH)−λ if e(m) ≥ e∗, w(m) ≥ w̃(e(m), λ)

∅ otherwise
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