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Abstract

In this paper, we introduce the concept of “self-justified equilibria” as a tractable alternative

to rational expectations equilibria in stochastic general equilibrium models with a large number

of heterogeneous agents. A self-justified equilibrium is a temporary equilibrium where, in each

period, agents trade in assets and commodities to maximize the sum of current utility and ex-

pected future utilities that are forecasted on the basis of current endogenous variables and the

current exogenous shock. Agents’ characteristics include a rule that maps the temporary equi-

librium correspondence into a set of admissible forecasts and that provides a trade-off between

the accuracy of the forecast and its computational complexity.

We provide sufficient conditions for the existence of self-justified equilibria, and we develop

a computational method to approximate them numerically. For this, we focus on a convenient

special case where we use Gaussian process regression coupled to active subspaces to model

agents’ forecasts. We demonstrate that this framework allows us to solve stochastic overlapping

generations models with hundreds of heterogeneous agents and very accurate forecasts.
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1 Introduction

The assumption of rational expectations and the use of recursive methods to analyze dynamic

economic models has revolutionized financial economics, macroeconomics, and public finance (see,

e.g., Ljungqvist and Sargent (2012)). Unfortunately, for stochastic general equilibrium models

with a large number of heterogeneous agents, rational expectations equilibria are generally not

tractable, computational methods to approximate these equilibria numerically are often ad hoc, and

a rigorous error analysis seems impossible (see, e.g., Brumm et al. (2017b), and references therein).

In this paper, we develop an alternative to rational expectations equilibria and consider temporary

equilibria with forecasting functions that depend on the temporary equilibrium correspondence,

but that might lead to imprecise forecasts at any given time. We derive simple sufficient conditions

that ensure the existence of these “self-justified” equilibria, and we show that by restricting the

complexity of agents’ forecasts one can numerically approximate them for models with very many

agents.

The basic idea of our proposed approach is as follows: In a temporary equilibrium, agents

use current endogenous variables and the exogenous shock to forecast future marginal utilities

for assets; prices for commodities and assets in the current period ensure that markets clear.

Forecasting functions are assumed to lie in a pre-specified class, and an agent chooses a function by

performing a non-parametric regression using a finite set of points on the temporary equilibrium

correspondence. Our crucial assumption is that the agent’s forecasts are stable over time in the

sense that using a larger data set or a more complicated class of functions for the regressions

does not improve the long-run average quality of the forecasts sufficiently to justify the associated

increase in computational costs.

In the temporary equilibrium, the agents might make significant mistakes, and the concept

does not require identical expectations and forecasts across agents. However, in our construction

of self-justified equilibria, we ensure that the only reason that prevents agents’ forecasts from being

arbitrarily accurate is the computational cost associated with more accurate forecasts.

We introduce the concept of self-justified equilibria in the context of an infinite horizon pure

exchange economy with overlapping generations, a single perishable commodity, and aggregate

uncertainty. This allows us to investigate the properties of a self-justified equilibrium with as little

notation as possible. An extension to production economies with several commodities (e.g., along

the lines of Brumm et al. (2017)) is conceptually straightforward.

To prove the existence of a self-justified equilibrium, we make the simplifying assumption that

accounting is finite. That is to say, we assume that beginning-of-period portfolios across agents lie

on some finite (arbitrarily fine) grid and that agents’ portfolio-choices in the current period induce a

probability distribution over this grid. This assumption can be viewed as a technical approximation

to a continuous model, but one can also think of bounded rationality justifications. For example,
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one might want to assume that at the beginning of a period, an agent cannot measure his financial

wealth with arbitrary precision and makes small errors in rounding.

To develop a tractable version of the model, we consider a specific form for the forecasting

functions and the associated non-parametric regression. We assume that each agent projects the

current endogenous variables into a relatively low dimensional subspace and approximates forecasts

over this subspace by regularized least squares with a RKHS (reproducing kernel Hilbert space)

regularization. Computationally this amounts to combining Gaussian process regression (see, e.g.,

Rasmussen and Williams (2005)) with the exploitation of active subspaces (see, e.g., Constantine

et al. (2014)). Using this combination allows us to construct a method that determines an econom-

ically intuitive projection for a fixed dimension of the subspace. For dynamic economic problems,

this method was first introduced by Scheidegger and Bilionis (2017).

This method directly gives rise to a simple algorithm that trades off complexity and simplicity of

the forecasting function and allows us to approximate self-justified equilibria numerically. Moreover,

the error analysis becomes simple since we can reverse-engineer a cost-function of computational

complexity which rationalizes the computed approximation as a self-justified equilibrium.

We demonstrate that our computational method can be applied to large-scale heterogeneous

agents models by solving for self-justified equilibria in an overlapping generations economy with

segmented financial markets. We assume that agents live for 60 periods and that there are three

types of agents per generation, resulting in 180 agents altogether. The three types distinguish

themselves by preferences, endowments and trading restrictions. We first consider the simplest case

where an agent only uses his own asset-holding (together with the exogenous shock) to forecast

future utilities (i.e., the asset holdings across all agents are projected into own asset holdings).

This turns out to work very well for some of the agents in our model economy. However, for

other agents, this simple method leads to large forecasting errors. We then exploit active subspace

methods (see Constantine et al. (2014)) to show that adding one additional explanatory variable,

that consists of a weighted mean of asset holdings across agents, reduces forecasting errors for these

agents substantially. This observation will allow us to use the methods developed here to tackle

models with hundreds to thousands of agents.

There is a large and diverse body of work exploring deviations from rational expectation (see,

e.g., Sargent (1993), Kurz (1994), Woodford (2013), Gabaix (2014), Adam et al. (2016)). Much

of this work is motivated by insights from behavioral economics about agents’ behavior or by the

search for simple economic mechanisms that enrich the observable implications of standard models.

The motivation of this paper is rather different in that we want to develop a simple alternative to

rational expectations that allows researchers to rigorously analyze stochastic dynamic models with
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a very large number of heterogeneous agents.1

As Sargent (1993) points out, “when implemented numerically ... rational expectations models

impute more knowledge to the agent within the model ... than is possessed by an econometrician”,

and a sensible approach to relax rational expectations is “expelling rational agents from our model

environment and replacing them with ‘artificially intelligent’ agents who behave like econometri-

cians.” This quote embodies the idea underlying self-justified equilibria—to construct a tractable

model of the macro-economy that takes into account substantial heterogeneity across agents one

needs to assume that the modeler can compute agents’ expectations.

There is also a large body of literature on the numerical approximation of rational expectations

equilibria in models with heterogeneous agents (see Maliar and Maliar (2014) for a comprehensive

overview). In the description of our numerical method, we will point out some relevant papers in

this literature.

Applied dynamic general equilibrium modeling has been criticized for its failure to take into

account the considerable heterogeneity in tastes and technologies across agents. Farmer and Foley

(2009) make this point forcefully and strongly advocate the use of so-called agent-based models to

understand macroeconomic dynamics. As they point out, in agent-based models, the agents can be

as diverse as needed, but behavioral rules are often arbitrary. Up to now—especially in the presence

of aggregate and idiosyncratic shocks—it seemed too complicated to incorporate substantial het-

erogeneity into large-scale dynamic general equilibrium models because existing solution methods

are not able to handle this amount of heterogeneity (see Brumm et al. (2017b), Scheidegger et al.

(2018)). Using the concept of self-justified equilibria, one can incorporate large-scale heterogeneity

into general equilibrium models, potentially improve their usefulness for applied work and bridge

the gap between agent-based modeling and applied general equilibrium.

The remainder of the paper is organized as follows. In Section 2, the general economy is

introduced, and a self-justified equilibrium is defined. In Section 3, we prove existence. In Section 4

we consider a concrete example of the concept which has the attractive features that it is tractable

and directly leads to a numerical method to compute forecasts. In Section 5 we describe our

computational strategy. In Section 6 we give a simple example to illustrate both the concept of

self-justified equilibria and our computational method.

2 A general dynamic Markovian economy

We consider a Bewley-style overlapping generations model (see Bewley (1984)) with incomplete

financial markets and a continuum of agents. Time is indexed by t ∈ N0. Exogenous shocks

zt realize in a finite set Z = {1, . . . , Z}, and follow a first-order Markov process with transition

1The methods developed in Krusell and Smith (1997) and Evans and Phillips (2014) can also be interpreted to

arise from this motivation, and there are some important similarities to our work.
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probability π(z′|z). A history of shocks up to some date t is denoted by zt = (z0, z1, . . . , zt) and

called a date event.

At each date event, a continuum of ex-ante identical agents enter the economy, live for A periods,

and differ ex-post by the realization of their idiosyncratic shocks. Each agent faces idiosyncratic

shocks, y1, ..., yA, that have support in a finite set YA. We denote by ηya(ya+1) the (conditional)

probability of idiosyncratic shock ya+1 for an agent with shock history ya, η0(y1) to denote the

probability of idiosyncratic shock y1 at the beginning of life, and, η(ya) to denote the probability

of a history of idiosyncratic shocks. We assume that the idiosyncratic shocks are independent of

the aggregate shock, that they are identically distributed across agents with the same history of

shocks and, as in the construction in Proposition 2 in Feldman and Gilles (1985), that they “cancel

out” in the aggregate, that is, the joint distribution of idiosyncratic shocks within a type ensures

that at each history of aggregate shocks, zt, for any ya ∈ Ya the fraction of agents with history

ya = (y1, ..., ya) is η(ya). This allows us to focus on equilibria for which prices and aggregate

quantities only depend on the history of aggregate shocks, zt. We denote the set of all date events

at time t by Zt and, taking z0 as fixed, we write zt ∈ Zt for any t ∈ N0 (including t = 0). At each

zt, there are finitely many different agents actively trading (distinguishing themselves by age and

history of shocks), who are collected in a set I = ∪Aa=1Y
a. A specific agent at a given node zt is

denoted by ya ∈ I.

At each date event, there is a single perishable commodity, the individual endowments are

denoted by eya(zt) ∈ R+ and assumed to be time-invariant and functions of the current aggregate

shock.2 Aggregate (labor) endowments are e(z) =
∑

ya∈I η(ya)eya(z). Each agent who is born at

some node zt has a time-separable expected utility function

Uzt((xt+a)
A−1
a=0 ) =

A∑
a=1

∑
zt+a−1�zt

∑
ya

η(ya)π(zt+a−1|zt)uya
(
xya(zt+a−1)

)
,

where xya(zt+a−1) ∈ R+ denotes the agent ya’s (stochastic) consumption at date t+ a− 1.

There are J assets, j ∈ J = {1, . . . , J} traded at each date event. Assets can be infinitely lived

Lucas trees in positive net supply or one-period financial assets in zero net supply. The net supply

of an asset j is denoted by θ̄j ≥ 0. Assets are traded at prices q, and their (non-negative) payoffs

depend on the aggregate shock and possibly on the current prices of the assets fj : RJ+ × Z→ R+.

If asset j is a Lucas tree (i.e., an asset in positive net supply), then fj(q, z) = qj + divj(z) for some

dividends divj : Z → R+. Asset j could also be a collateralized loan whose payoff depends on the

value of the underlying collateral, or an option, or simply a risk-free asset. The aggregate dividends

of the trees are defined as div(zt) = θ̄ · f(q(zt), zt)− θ̄ · q(zt).
2As opposed to the standard formulation where an agent’s fundamentals are functions of his current idiosyncratic

shock, y, we assume that they are functions of the history of all shocks - clearly these formulations are equivalent if

one allows for a sufficiently rich set Y.
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At each zt and agent ya enters the period with a portfolio θ−ya(zt) and chooses a new portfolio

θya(zt) and consumes

xya(zt) = eya(zt) + θ−ya(zt) · f(q(zt), zt)− θya(zt) · q(zt).

The agent ya faces trading constraints θya ∈ Θya ⊂ RJ , where ΘyA = {0} for all yA ∈ YA. To

simplify notation we write ~θ = (θya)ya∈I, ~θ
− = (θ−ya)ya∈I and ~x = (xya)ya∈I.

It is useful to define the set of possible portfolio holdings with market-clearing built-in as

Θ = {~θ :
∑
ya∈I

η(ya)θya = θ̄, θya ∈ Θya for all ya−1 ∈ I}.

Similarly, let the set of all beginning-of-period portfolio holdings be

Θ− = {~θ− : θ−
y1

= 0,
∑

ya−1∈I

η(ya−1)θ−ya = θ̄ and θ−ya ∈ Θya−1 for all ya}.

We define the state space to be S = Z×Θ− with Borel σ-algebra S. The law of motion of the

exogenous shock, π, and current choices ~θ determine a probability distribution over next period’s

state - we write Q(·|z, ~θ). We will make assumptions on this probability distribution below which

turn out to simplify the analysis and allow us to prove existence.

2.1 Self justified equilibria

In a competitive environment, agents choose asset-holdings in the current period to maximize

expected lifetime utility and current prices ensure that markets clear. To understand how today’s

asset choices affect future utilities, the agent needs to form some expectations about future prices

and compute his optimal life-cycle asset-holdings under these prices. As already mentioned, it turns

out to be useful to model the forecasting of prices and the recursive solution of the agents’ problem

in one step and assume that the agent makes a current decision given expectations over the next

period’s marginal utility of asset holdings. These expectations are based on current endogenous

variables and the exogenous shock. While in a rational expectations equilibrium these expectations

are always correct, we allow them to be imprecise and heterogeneous across agents.

In a temporary equilibrium the expectations of each agent, ya ∈ I, are characterized by a

function

Mya : S× RI+ ×Θ× RJ+ → RJ+,

that predicts marginal utilities of assets in the next period on the basis of the current state, current

prices, and current consumptions and portfolio-holdings across agents. In our formulation, the

agent forecasts marginal utilities from asset holdings. It might seem more standard to assume

that the agent forecasts prices and then solves his life-cycle optimization problem on the basis of

forecasted prices. However, this turns out to be much more complicated because he has to forecast
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prices over his entire life-cycle and not just one-period ahead. Moreover, we illustrate in a simple

example below that forecasting prices might be more complicated than forecasting marginal utilities

from asset-holdings. Finally, one could argue that the agent might forecast his value function in

the next period to solve the maximization problem. This turns out to be too complicated since he

has to forecast an entire function.3

We denote by ~M = (Mya)ya∈I the forecasting functions across all agents. Throughout this

paper, we assume that MyA(·) = 0 for all yA ∈ YA, forecasts of agents of age A are irrelevant.

Assuming concavity of utility, the first order conditions are necessary and sufficient for agents’

optimality and, given prices q and beginning-of-period asset-holdings θ−ya , we can write an agent

ya’s maximization problem as

max
x∈R+,θ∈Θya

uya(x) +Mya(s, ~x, ~θ, q) · θ s.t. (1)

x+ θ · q − eya(z)− θ−ya · f(q, z) ≤ 0.

The agent takes as given current portfolio- and consumption choices across all agents, ~θ, ~x, and

current prices q. For now, the function Mya(·) is given—we endogenize this for our definition of

self-justified equilibrium below.

Given forecasting functions across agents, ~M , we define the temporary equilibrium correspon-

dence

N ~M : S ⇒ RI+ ×Θ× RJ

as a map from the current state to current prices and choices that clear markets and that are

optimal for the agents, given their forecasting functions, i.e.,

N ~M (s) = {(~x, ~θ, q) ∈ RI+ ×Θ× RJ+ : (2)

(xya , θya) ∈ arg max
x∈R+,θ∈Θya

uya(x) +Mya(s, ~x, ~θ, q) · θ s.t.

x+ θ · q − eya(z)− θ−ya · f(q, z) ≤ 0 for all ya ∈ I}.

Assuming that for a given ~M the set N ~M (s) is non-empty for all s ∈ S and that there exists a

single-valued (Borel-measurable) selection N ~M (s), we write

N ~M (s) = N(s) =
(
N~x(s), N~θ

(s), Nq(s)
)
.

The function N(s) depends on ~M , but to simplify notation, we often drop the subscript.

In what follows we assume that all agents base their forecasting functions on the selection,

N(·). In principle, one could imagine equilibria where different agents use different selections of

3It is true that one could approximate the value function by a finitely parameterized family of functions and the

agent forecasts the finite dimensional vector of parameters, but this would still be substantially more complicated

than merely forecasting a number.
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the correspondence. In that framework, “sunspots”would play an important role. In this paper, we

focus on the “spot-less”case where the possible multiplicity of temporary equilibria plays no role.

The crucial innovation of this paper is to allow for heterogeneous and possibly imprecise forecasts

across agents while still allowing for the possibility that they are rational. For this, we assume that

the agents’ ability to forecast is constrained by two factors. First, they can only use a finite

amount of information to form the forecasts. Secondly, they cannot evaluate (or store) arbitrarily

complicated functions, but instead, approximate the equilibrium forecasts by “simple” functions.

To formalize this, we denote by FN the set of all Borel-measurable functions from S to RI+ ×

Θ × RJ+, and by FM the set of Borel-measurable functions from S × RI+ × Θ × RJ+ to RJ+. We

assume that there is a collection of possible “regressions” (Rn,dya )n,d∈N, where each Rn,dya : FN → FM

uses n points on the equilibrium function, N ∈ FN to determine a forecasting-function, Mya ∈ FM

whose computational complexity is measured by d. It is often useful to denote the range of Rn,dya (·)

by Mn,d
ya and call this the set of admissible forecasting functions.

The integers n and d are chosen to trade off the complexity of the forecast, which we measure

by a cost function, cya(n, d), and the long run accuracy, which we measure by∫
s∈S

(
Mya(s,N(s))−mya(z,Nθ(s))

mya(z,Nθ(s))

)2

dQ∗(s), (3)

where Q∗(s) is an invariant measure over states and, for each ya, mya denotes the actual realized

marginal utility of assets in the subsequent period—that is,

mya(z, ~θ) =

∫
s′∈S

f(Nq(s
′), z′)

∑
ya+1∈Y

ηya(ya+1)u′ya+1(Nxya+1 (s′))dQ(s′|z, ~θ). (4)

We assume that for each agent ya, the available non-parametric regressions, (Rn,dya )n,d∈N, have

an universal approximating property in that whenever mya(z,Nθ(z, ~θ
−)) is continuous in ~θ−, for

each ε > 0, there is a n̂, d̂ such that

sup
s∈S
‖M̂ya(s,N(s))−mya(z,Nθ(s))

mya(z,Nθ(s))
‖ < ε,

where M̂ya = Rd̂,n̂ya (N). In principle, an agent can make arbitrarily accurate forecasts if the equi-

librium map is continuous. However, in a self-justified equilibrium, computational costs prevent

this.

We have the following definition.

Definition 1 A self-justified equilibrium consists of forecasts ~M , a selection N(·) of the temporary

equilibrium correspondence, N ~M (·), and measure Q∗ on (S,S), such that

1. Q∗ is invariant given the law of motion induced by N(·) and by Q(·, ·). That is to say, for all

B ∈ S

Q∗(B) =

∫
s∈S

Q(B|z,N~θ
(s))dQ∗(s).
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2. For each ya, a < A, there is some nya , dya such that

Mya = R
nya ,dya
ya (N),

and there is no (n̄, d̄) > (nya , dya) with

cya(n̄, d̄) +

∫
s∈S

(
M̄ya(s,N(s))−mya(z,Nθ(s))

mya(z,Nθ(s))

)2

dQ∗(s) <

cya(nya , dya) +

∫
s∈S

(
Mya(s,N(s))−mya(z,Nθ(s))

mya(z,Nθ(s))

)2

dQ∗(s),

where M̄ya = Rn̄,d̄ya (N).

Part 1 of Definition 1 is defining an invariant measure that is needed to compute the long-run

forecasting error. Part 2 ensures that each agent’s forecasting function is obtained by a non-

parametric regression and that the forecasts trade off accuracy and computational costs in that

more accurate forecasts impose prohibitively higher costs. Note that we do not require that (n, d)

minimize the sum of the forecasting error and computational cost, as we only compare the current

forecast to more complex forecasts. This is crucial for the existence of an equilibrium, but also

makes economic sense if we assume that the agents regard the costs associated with producing the

current forecasting function as sunk.

Similarly to the concept of “self-confirming” equilibrium (see e.g. Fudenberg and Levine (1993)

or Cho and Sargent (2009)), a self-justified equilibrium can be interpreted as a stationary point

of a learning process which itself is not modeled in the theory. The crucial difference is that in a

self-justified equilibrium, an agent’s forecasts can be incorrect in every step.

Both rational expectations equilibria and self-justified equilibria are special cases of a temporary

equilibrium in this model. For the special case where

mya(z,N~θ
(s)) = Mya(s,N(s)) for all s ∈ S,

we obtain a standard rational expectations equilibrium if we assume concave utility. In this case

the first order conditions that describe agents optimal choices are also necessary and sufficient

conditions for the optimziation problem (1) and agents forecast future prices perfectly.

Under the assumptions stated in the next section, as the set of admissible regressions, Rn,dya (·),

becomes sufficiently rich, a self-justified equilibrium converges to a rational expectations equilibrium

if costs are zero. The main contribution of this paper is to explore what happens if the agent is

unable to approximate mya perfectly. In this case, self-justified equilibria can be arbitrarily far

from a rational expectations equilibrium.

3 Existence

To prove the existence of simple equilibria in heterogeneous agents models with incomplete markets,

one needs to impose strong assumptions on fundamentals. Brumm et al. (2017) present one possible
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set of strong assumptions and argue that without strong assumptions, simple equilibria might fail

to exist (Kubler and Polemarchakis (2004) provide simple counterexamples). We show that under

the (strong) assumption of finite accounting, proving existence is relatively straightforward.

3.1 Assumptions

We first make a number of fairly standard assumptions on fundamentals that are used to prove the

existence of a temporary equilibrium for given forecasting functions.

Assumption 1

1. For each ya ∈ I the Bernoulli-utility function uya(·) is continuously differentiable, strictly increas-

ing, strictly concave, and satisfies an Inada condition

u′ya(x)→∞ as x→ 0.

Individual endowments are positive, i.e.,

eya(z) > 0 for all z ∈ Z.

2. The set Θ is compact, and for each ya ∈ I, the set Θya is a closed convex cone containing RJ+.

3. The payoff functions, f : RJ+ × Z→ RJ , are non-negative valued and continuous. Moreover, for

any i = 1, . . . , J and j = 1, . . . , J the payoff fj(q, z) only depends on qi if θ̄i > 0.

4. For all ya ∈ I and all θ−ya ∈ Θya

θ−ya · f(q, z) ≥ 0 for all q ∈ RJ+, z ∈ Z.

Assumption 1.4 is motivated by collateral and default. These constraints ensure that agents

cannot borrow against future endowments. In our formulation, this is true independently of prices

and could be justified if we allow for default (see Kubler and Schmedders (2003) for a detailed

motivation) or if agents face appropriate borrowing constraints.

The crucial and non-standard assumption of the paper is that accounting is finite, i.e., that

beginning of period portfolios lie in a finite set (or at least that agents perceive them to lie in

a finite set). This simplifies the analysis dramatically, and we will argue below that it has few

practical disadvantages. Formally, we make the following assumptions:

Assumption 2

1. There is a finite set Ŝ ⊂ S such that the support of the transition function Q(·|z, ~θ) is a subset

of Ŝ for all z ∈ Z and all ~θ ∈ Θ.

10



2. The measure Q(·|z, ~θ) is continuous in ~θ for all z ∈ Z, ~θ ∈ Θ.

Assuming that Ŝ contains ZG elements, we then can take Q(·|z, ~θ) to be a vector in the ZG−1

dimensional unit simplex, ∆ZG−1. Assumption 2.2 then simply states that this vector changes

continuously in ~θ.

From a practical point of view, the assumption seems innocuous. Because of finite precision

arithmetic in scientific computations, almost any numerical method will lead to ~θ− lying on a

(possibly very fine) grid. Assumption 2.2 then states that there is some randomness in the rounding

error. However, from a technical point, the assumption turns out to be crucial. It is subject to

further research to see which of our results hold in the limit as the grid becomes dense in Θ−. The

assumption will allow us to obtain simple existence results below, however, it is certainly not a

standard assumption in this strand of literature, and it is not compatible with full rationality of

individuals.

Assuming finite accounting has several economic justifications. One interpretation is that actual

portfolios lie in Θ−, but that agent cannot measure portfolios arbitrarily finely and make their

decisions based on rounded values, exhibiting some degree of bounded rationality. Our preferred

interpretation is that agents take the fact that beginning-of-period portfolios always lie on a finite

grid as a technological constraint. This viewpoint seems natural when one thinks of the grid to be

extremely fine. For this interpretation, let Θ̂− ⊂ Θ− be a finite set, and assume that given ~θ(zt),

we have

~θ−(zt+1) ∈ arg min
~θ−∈Θ̂−

‖θ̄ + εt+1 − ~θ−‖2,

with θ̄ya = θya−1 for all a = 2, . . . A, ya ∈ Ya, and θ̄y1 = 0 for all y1 ∈ Y. In this formulation,

εt should be interpreted as a (small) rounding error, and it is assumed that the support of ε(·) is

centered around zero, convex, and sufficiently small. We assume that εt is i.i.d. and that it only

affects the current rounding error. In this formulation, it is easy to verify that Assumption 2.2 holds

whenever εt has a continuous density function. Of course, the formulation of the agent’s problem

in (1) now potentially (depending on the set of admissible forecasting functions, Mya) builds in

another layer of bounded rationality, since the correct dynamic programming problem of an agent

is no longer a standard convex program.

Assumption 2 guarantees that each ma
y(z,

~θ) as defined in (4) is continuous in ~θ for any selection

of the equilibrium correspondence, N(·). Since we assume Ŝ to be finite and to contain GZ elements,

for fixed ~M ∈M, a selection of the temporary equilibrium correspondence can be viewed as a vector

N ∈
(
RI+ ×Θ× RJ+

)GZ
. We write Mn,d

ya (·;N) = Rn,dya (N), and it is useful to note that for each z,

the function Mn,d
ya (z, ·) is defined on a subset of the Euclidean space. To make this more explicit, we

sometimes write the forecasting function as Mn,d
ya (z, ~θ−, ~x, ~θ, q, ν), where ν ∈

(
RI+ ×Θ× RJ+

)GZ
.

We make the following reduced-form assumption on forecasting-functions:
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Assumption 3

1. For all n, d ∈ N, for all ν ∈
(
RI+ ×Θ× RJ+

)GZ
, all s ∈ Ŝ and all ~θ ∈ Θ, ~x ∈ RI++, q ∈ RJ++ the

function Mn,d
ya (s, ~x, ~θ, q; ν) is jointly continuous in ~x, ~θ, q, ν.

2. For each agent ya ∈ I, and all n, d ∈ N all functions in in the range of Rn,dya are uniformly bounded

above, i.e., there is some m̄ such that

Mya,j(z, ~θ
−, q, ~θ, ~x) < m̄ for all z ∈ Z, ~θ−, q, ~θ, ~x, j ∈ J and all M ∈Md,n

ya .

3. For each ya, cya(n, d) is strictly increasing in (n, d), and for any d, (cya(n, d)−cya(n−1, d))→∞

as n→∞, and for any n, (cya(n, d)− cya(n, d− 1))→∞ as d→∞.

Assumption 3.1 is relatively standard and very likely to be satisfied in applied settings. As-

sumption 3.2 might appear to be rather strong. However, with enough structure on the sets Mya ,

and with a more concrete description of the economy, one can typically find these bounds in an

overlapping-generations setting. Clearly, with strictly positive endowments and borrowing con-

straints, all functions in MyA−1 are bounded. A backward induction argument can then be used

to justify Assumption 3.2. It is clear that in a framework with infinitely lived agents, this becomes

much more difficult.

3.2 The main theoretical result

With these assumptions, the existence of a self-justified equilibrium reduces to the existence of a

finite-dimensional fixed point. The main result of this section thus reads as follows:

Theorem 1 Under Assumptions 1-3 there exists a self-justified equilibrium.

Proof. We fix (nya , dya) for all agents ya, decompose the economy into sub-economies for each

s ∈ S and construct a map from a compact and convex set of all agents’ choices, prices, probabilities,

µ, and forecasts, Ms, into itself. Using Kakutani’s theorem (see Border (1989)), we can show that

this map has a fixed point, and we finish the proof by demonstrating that for sufficiently large n

and d, this is a self-justified equilibrium.

First, we need to find a suitable, convex and compact domain for the map. Assumption 1.3

implies that there exist numbers l, r ∈ R such that whenever ~θ ∈ Θ,

l ≤ θya,j ≤ r for all ya ∈ I, j ∈ J.

Let the set of admissible asset holdings be T = [l, r]J , and let the set of admissible consumptions

be

X =

[
0, max
z∈Z,ya∈I

e(z) + div(z)

η(ya)

]
.

12



We construct a upper-hemi-continuous, non-empty and convex-valued correspondence, Φ, map-

ping choices and prices at each element in Ŝ as well as a probability measure over Ŝ, to itself, which

has a fixed point,

Φ : (XI ×TI ×∆J)GZ ×∆GZ ⇒ (XI ×TI ×∆J)GZ ×∆GZ .

For this construction, for all ya ∈ I and all s ∈ Ŝ, let

Φya,s((xt, pt, qt)t∈Ŝ
) = arg max

x∈X,θ∈Θya∩T
uya(x) + M̃ya(z, ~θ−s , ~xs,

~θs,
qs
ps

) · θ

s.t.

(x− eya(z)) + θ·
1

ps
qs − θ− · f(

1

ps
qs, z) ≤ 0,

where

M̃ya = R
nya ,dya
ya (ν), ν = (xs, θs,

1

ps
qs)s∈Ŝ

. (5)

Define the price-players best response as

Φ0,s(~θs, ~xs) = arg max
(p,q)∈∆J

p(
∑
ya∈I

η(ya)(xya,s − eya(z)− div(z))) + q · (
∑
ya∈I

η(ya)(θya,s − θ̄)),

and let

Φµ((~θs)s∈S, µ) = (
∑
s′∈S

µ(s′)Q(s|z′, ~θs′))s∈S.

Assumptions 1 - 3 guarantee that the mapping

Φ = ×s∈S ((×ya∈IΦya,s)×Φ0,s)×Φµ

is non-empty, convex valued, and upper hemi-continuous. By Kakutani’s fixed point theorem, there

exists a fixed point. Assumption 1 guarantees that the additional constraints imposed by forcing

choices to lie in T ×X are not binding, and hence the forecasting functions defined by (5) at the

fixed point, together with Q∗ = µ and the equilibrium values constitute a candidate self-justified

equilibrium for the given (nya , dya). Assumption 3.3 implies directly that since forecasting errors

are always finite this must be an actual self-justified equilibrium if (nya , dya) are sufficiently large. �

The discretization of the state-space enables us to prove a very simple result. Without this,

strong assumptions would be needed to ensure the existence of a recursive rational expectations

equilibrium (see Brumm et al. (2017)), and the existence of a self-justified equilibrium thus would

remain an open problem.

4 (Artificially) intelligent agents

Our definition of self-justified equilibria is very general, and it puts very little structure on agents’

forecasts. We now want to examine economies were individuals have access to very good forecasting
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technologies. We use concepts from the machine-learning literature (see, e.g., Scheidegger and

Bilionis (2017)) to specify good regressions for the artificially intelligent agents in our model.

For this, we first need to specify a flexible functional form for forecasting functions and define

our regression method R(·).

4.1 Least squares regularization

To describe a convenient family of forecasting-functions mapping some set X ⊂ Rk to the real

numbers, we call a function k : X ×X → R a (positive definite) kernel if for any finite sequence

(xj)j=1,...,n the n× n matrix Kx = (k(xi, xj)i,j) is positive semi-definite.We assume that the kernel

is “universal” in that it has the following universal approximating property. Given any compact

X ⊂ X, any continuous function f : X→ R and any ε > 0 there are finitely many (xi, ci) ∈ X×R

such that

sup
x∈X

|
∑
i

cik(x, xi)− f(x)| < ε.

To fix ideas, it is useful to give a concrete example, namely the so-called square exponential

(SE) kernel which we use in our computations below.

kSE(x, x′) = σ2 exp

{
−1

2

k∑
i=1

(xi − x′i)
2

`2i

}
. (6)

In this formulation the σ2, `1, . . . , `k ∈ R+ are so-called hyper-parameters and can be chosen de-

pending on the specific features of the data. As Micchelli et al. (2006) show, this is a universal

kernel.

Given any kernel, k, we consider the (unique) associated reproducing kernel Hilbert space Hk

(see e.g. Rasmussen and Williams (2005, Chapter 6)) endowed with an inner product 〈., .〉H which

for f =
∑s

i=1 αik(., xi) and g =
∑r

j=1 βjk(., tj) satisfies

〈f, g〉H =
∑
i

∑
j

αiβjk(xi, tj).

Given a data set {
(
x(i), y(i)

)
|i = 1, ..., n} consisting of n vectors x(i) ∈ Rd and corresponding,

potentially noisy, observations,

y(i) = f(x(i)) + εi, (7)

agents want to construct a function f̂ that trades off smoothness and approximation in an optimal

way.

Given a reproducing kernel Hilbert space, Hk, with a positive definite kernel k(x, y), classical

regularization theory (see, e.g., Evgeniou et al. (2000), and there references therein) solves the

following problem:

min
f∈Hk

1

n

n∑
i=1

(y(i) − f(x(i)))2 + λ‖f‖2k, (8)
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where ‖f‖k = 〈x, x〉Hk
is the norm defined by k(·). It can be shown that the solution to (8) can be

written as

f̂(x) =

n∑
i=1

αik(x, xi), (9)

where α solves

(K + λI)α = y, (K)ij = k(xi, xj), y = (y(1), . . . , y(n))T .

This construction gives us the first ingredient of the regression function Rn,d—that is, the agent

takes n points along an equilibrium process and solves the regression problem (8). The optimal

value of λ depends on the properties of the noise term. The determinants of this parameter are

described below.

Unfortunately, this procedure is hardly feasible if the domain of the forecasting function is very

high-dimensional. Therefore we have to use a method to reduce this dimension which will result in

the determination of the second parameter, d.

4.2 Overcoming the curse of dimensionality

To make the concept of self-justified equilibrium tractable in this setting, it is essential to find a

simple domain for agents’ forecasts. So far, we allowed forecasts to depend on all current endogenous

variables which is clearly too general to be useful in applications. In particular, the agents will face

a curse of dimensionality (Bellman (1961)) when trying to approximate and evaluate functions on

very high-dimensional domains.

The structure of the equilibrium suggests that it suffices to base forecasts only on the current

shock and on (new) portfolio-choices across agents. As we will argue in the examples below, this

often yields excellent results and is well suited for computational purposes. For the remainder of

the paper, we assume that agents’ forecasts do not depend on the current endogenous state, on

prices, or consumption choices, and we write

Mya : Z×Θ→ RJ+.

There are obvious alternatives which are not considered in this paper. For example, following

Brumm and Kubler (2014), forecasts could depend on current consumption-choices across agents.

This would make the dimension of the domain independent of the number of assets and therefore

be useful in models with many financial securities. From an economic point of view, it might

make more sense to assume that households base their forecasts on current prices, and possibly on

lagged shocks since these are easily observable. However, it is clear that current portfolio-choices

determine the (natural) endogenous state in the next period, and it is, therefore, a good choice

from the perspective of the computational modeler.

In many applications, the set of current asset holdings, Θ, will be very high dimensional (it

is a subset of RIJ). Both as a matter of realism and for tractability, it seems advantageous to
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assume that the agents only take a low dimensional subspace of the actual state-space and use this

for their forecasts. In our tractable version of the model, we assume that agents project ~θ into a

lower dimensional subspace and use the latter for the forecasts. That is to say, Mya is actually not

defined on Θ, but instead on a subset of Rd+, with d typically being much smaller than IJ .

4.2.1 What are good projections

Given a d × IJ projection matrix Wya,z,j for a given agent ya, shock z and asset j, we define the

set of admissible forecasting-functions, i.e. the range of Rn,d(·), to be

Md,n
ya,z,j ⊂ {f : ΘW

ya,z → R},

where

ΘW
ya,z = {φ ∈ Rd : φ = W T

ya,z,jθ, θ ∈ Θya}.

For each shock z̄ ∈ Z and each asset j ∈ J the agent’s regression Rn,dya then maps into Md,n
ya,z,j .

In choosing Wya,z,j , two extremes are conceivable. First, one could view the projection matrices,

Wya,z,j , y
a ∈ I, z ∈ Z, j ∈ J as fundamentals–agents have certain technologies that allow them

to observe projections of the state into lower dimensional subspaces (for example, they observe

parts of the wealth distribution). Second, one could take d as given and require that the matrices

Wya,z,j are optimal in the sense that they minimize the mean squared error in Equation (3). This

would fit our definition of a self-justified equilibrium, but unfortunately, it turns out to amount to

a non-convex optimization problem that is generally not tractable.4 The problem is so complicated

that it is not consistent with the whole idea of boundedly rational agents. Moreover, we wish to

develop a theory of optimal projections that are independent of the sets Mn,d
ya and only depend on

the function that needs to be approximated. This allows us to disentangle the methods used to

approximate a d-dimensional function from the method used to find an optimal projection of the

IJ-dimensional vector ~θ into Rd.

In the following, we take an approach that lies between the two extremes, and we believe that

it has an elegant micro-foundation and turns out to be very tractable. In that approach, agents

choose a matrix Wya,z,j to minimize the unexplained part of the variations in m̂ya,z,j as measured

by the mean squared derivative of m̂ with respect to the orthogonal complement of the variables

used for forecasting.

To this end, we assume that each agent ya uses his own portfolio as the primary factor that

influences next period’s marginal utilities. This is a natural assumption, and if asset prices would

only depend on the current and lagged shock, this would yield an optimal solution. However, in

our model, asset prices vary with the distribution of assets in the economy. We therefore write

θ−ya to denote the portfolio of all other agents in the economy besides agent ya, and we write

4In Appendix A, we describe some of the difficulties that arise if one requires the matrix to be chosen optimally.

16



~θ = (θya , θ−ya). θ−ya influences the agent’s marginal utility for assets because it influences all

future prices. We assume that the agent assesses the variability of his future marginal utility that

is caused by this variability of future prices by the mean squared gradient and chooses a projection

to ensure that the unexplained part of fluctuations is minimized.

To formalize this idea, let D = IJ − J be the dimension of other agents’ asset holdings and

write forecasts as Mya,j(z, θya ,Wya,z,jθ−ya). Without loss of generality, we assume that Wya,z,j is

an element of the d-dimensional Stiefel-manifold in RD, i.e.,

Wya,z,j ∈ Vd(RD) =
{
A ∈ RD×d : ATA = Id×d

}
,

where Id×d is the d× d identity matrix. Given a candidate d×D matrix V1 ∈ Vd(RD), there is a

V2 ∈ VD−d(RD) such that

[V1, V2]

 V T
1

V T
2

 = ID×D,

and we can write

mya,j(z, ~θ) = mya,j

z,
θya , [V1V2]

 V T
1

V T
2

 θ−ya
 = mya,j

(
z, θya , V1V

T
1 θ−ya + V2V

T
2 θ−ya

)
.

Defining φ1 = V T
1 θ−ya and φ2 = V T

2 θ−ya , we obtain a function

m̂ya,j(z, θya , φ1, φ2) = mya,j (z, θya , V1φ1 + V2φ2) .

Strengthening Assumption 2.2, assume for now that m̂ya is continuously differentiable in θ−ya

(Q∗-a.e.). Given our justification for finite accounting, this simply amounts to assuming that

the transition probability Q(·|z, ~θ) is continuously differentiable in θ and therefore does not seem

substantially stronger than the original assumption. Nevertheless we will relax the assumption

below.

We assume that the agent approximates the function m̂ya,j using only (θya , φ1). For simplicity

assume for now that Mya,j consists of all (Borel-measurable) functions. For his case, we obtain

Mya,j(z, θya , φ1) =

∫
φ2

m̂ya,j(z, φ1, φ2)dQ∗(φ2|z, θya , φ1),

where Q̂∗(z, (θya , φ1, φ2)) denotes the invariant distribution over

(z, (θyaφ1, φ2)) = (z,Nθya (s), V1Nθ−ya
(s), V2Nθ−ya

(s)),

which is induced by Q∗, and Q̂∗(φ2|θya , φ1, z) denotes the invariant distribution of φ2 conditional

on z, θya , and φ1.

This approximation is justified if the impact of φ2 on the function m̂ya,j is relatively small. How

do agents decide that the effect of φ2 on next period’s marginal utility is small? We assume in
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this paper that they use the squared derivative with respect to φ2, averaged along the stationary

distribution, to measure the variability5 with respect to φ2, and define

ξya,z,j(V1, V2) =

∫
(θya ,φ1,φ2)

(∇φ2m̂ya,j (z, θya , φ1, φ2))T (∇φ2m̂ya,j (z, θya , φ1, φ2)) dQ̂∗(θya , φ1, φ2|z),

where for x ∈ RD,

∇xf(x, y) =


∂f
∂x1
...

∂f
∂xD

 ,

and the partial derivatives are taken to be one-sided derivatives at the boundary of the domain.

We assume that Wya,z,j = V1 solves

min
(V1V2)∈VIJ−J (RIJ−J )

ξya,z,j(V1, V2). (10)

It turns out that there is a straightforward characterization of an optimal solution to this

minimization problem—in stark contrast to the case where the projection is chosen to minimize

the mean squared average forecasting error. In computational sciences, this is used in the “classical”

active subspace approach (see Constantine et al. (2014)) which we discuss in detail in Section 5.

Note that

∇φ2m̂ya,j(z, θya , φ1, φ2) = ∇φ2mya,j (z, θya , V1φ1 + V2φ2) = V T
2 ∇θ−ya

mya,j(z, θya , θ−ya),

and that∫
(θya ,φ1,φ2)

(∇φ2m̂ya,j (z, θya , φ1, φ2))T (∇φ2m̂ya,j (z, θya , φ1, φ2)) dQ̂∗(θya , φ1, φ2|z) =∫
(θya ,φ1,φ2)

tr
(

(∇φ2m̂ya,j (z, θya , φ1, φ2))T (∇φ2m̂ya,j (z, θya , φ1, φ2))
)
dQ̂∗(θya , φ1, φ2|z) =∫

(θya ,φ1,φ2)
tr
(

(∇φ2m̂ya,j (z, θya , φ1, φ2)) (∇φ2m̂ya,j (z, θya , φ1, φ2))T
)
dQ̂∗(θya , φ1, φ2|z).

Therefore, solving (10) amounts to solving

min
V2∈VD−d(RD)

tr
(
V T

2 Cya,z,jV2

)
,

where

Cya,z,j =

∫
(θya ,θ−ya )

(
∇θ−ya

mya,j (z, θya , θ−ya)
) (
∇θ−ya

mya,j (z, θya , θ−ya)
)T
dQ̂∗(~θ|z). (11)

Denoting λ1 ≥ λ2 ≥ . . . ≥ λD as the eigenvalues of Cya,z,j , it follows from the Courant-Fischer

Theorem (see, e.g., Horn and Johnson (1985), Theorem 4.2.11) that since Cya,z,j is a symmetric

5Sobol and Kucherenko (2009) discuss several different approaches to estimate the influence of individual factors

and groups of factors and show that many of them can be effectively bounded by the average squared gradient of the

function.
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matrix the minimum is given by
∑D

i=d+1 λi and one (not unique) minimizer is given by the matrix

of associated eigenvectors.

This suggests the following construction of projection-matrices: Since Cya,z,j is symmetric pos-

itive definite, it admits the form

Cya,z,j = V ΛV T , (12)

where Λ = diag(λ1, · · · , λD) is a diagonal matrix containing the eigenvalues of C in decreasing

order, λ1 ≥ · · · ≥ λD ≥ 0, and V ∈ VD(RD) is an orthonormal matrix whose columns correspond

to the eigenvectors of C, separating the d largest eigenvalues from the rest,

Λ =

Λ1 0

0 Λ2

 , V =
[
V1 V2

]
, (13)

(here Λ1 = diag(λ1, . . . , λd), V1 = [v11 . . . v1d], and Λ2, V2 are defined analogously), and setting the

projection matrix to

Wya,z,j = V1. (14)

Intuitively, Wya,z,j rotates the input space in such a manner that the directions associated with

the largest eigenvalues correspond to directions of maximal function variability (see Constantine

(2015)).

Above’s discussion gives directly rise to the following proposition (which is Lemma 2.2 in Con-

stantine et al. (2014)), which makes the active subspace method very attractive for our model.

Proposition 1 The mean squared gradients of m̂ with respect to φ1 and φ2 satisfy∫
(θya ,φ1,φ2)

(∇φ1m̂ya,j (z, θya , φ1, φ2))T (∇φ1m̂ya,j (z, θya , φ1, φ2)) dQ̂∗(θya , φ1, φ2|z) ≤ λ1 + . . .+ λd

and∫
(θya ,φ1,φ2)

(∇φ2m̂ya,j (z, θya , φ1, φ2))T (∇φ2m̂ya,j (z, θya , φ1, φ2)) dQ̂∗(θya , φ1, φ2|z) ≥ λd+1+. . .+λIJ−J .

Both inequalities hold with equality if (V1, V2) are chosen according to (12) and (13).

As mentioned, the matrix consisting of the eigenvectors associated with the d largest eigenvalues

is not the unique solution to (10). Nevertheless, we will assume in the following that each projection

matrix Wya,z,j , y
a ∈ I, z ∈ Z, is determined by (12) and (13).

4.3 Self-justified equilibrium with (artificially) intelligent agents

The regression of an agent, Rn,d now consists of two steps. First, the agent needs to estimate the

matrices Cya,z,j in Equation (11) using a finite number of observations. Then, the agent undertakes

a regularized least square regression using a subset of these finite number of observations.
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For the first step, it is natural to assume that the integral (11) is approximated via Monte Carlo,

that is, assuming that the observed inputs are drawn from a simulated path of the economy, and

to assume that one approximates the gradients via finite differences—that is,

Ĉya,z,j =
1

N

N∑
i=1

g(i)
(
g(i)
)T

, (15)

where

g(i) =

mya,j

(
z, θiya , θ

i
−ya
)
−mya,j

(
z, θiya , θ

i
ỹa

+ h, θi−(ya,ỹa)

)
h


ỹa 6=ya

Given d and d × IJ projections Wya,j,z the agent uses a regularized least squares method to

find a good fit for x(i) =
(
θya(zt(i)),Wya,z,j

~θ−ya(zt(i))
)

and y(i) = mya,j(z, ~θ(z
t(i))), i = 1, . . . , n,

where (zt(i)) are nodes with the current shock zt(i) = z. Due to our projection, there is now a

noise-component which determines the parameter λ in (8). In our computational examples below,

we determine this by maximum-likelihood.

To prove existence for fixed d, n, a version of the proof of Theorem 1 can be used. An impor-

tant point to note is that the eigenvectors of C will change continuously as elements of C change

continuously (keeping the matrix symmetric and definite)—see Horn and Johnson (1985). Unfortu-

nately, the eigenvector associated with the largest eigenvalue will not change continuously at points

where eigenvalues coincide. To prove existence, we, therefore, need to define the projections to stay

constant outside of a region where the largest eigenvalue switches—a case that in practice never

occurs.

5 Computation

To numerically approximate a self-justified equilibrium in a model where agents use optimal projec-

tions to form their forecasts, the main computational issues are (i) how to solve for the projection

matrices Wya and for the forecasting functions Mya , and (ii) how to determine the parameters n

and d of each agents’ regression.

Clearly, the specification of the cost-function cya(·) crucially determines how difficult it is to

compute a self-justified equilibrium. For very high costs, computations become (almost) trivial,

for very low costs they become impossible. The average error in Equation (3) can only become

arbitrarily low in the limit as agents evaluate their forecasts using all other agents’ asset holdings

and as n becomes very large.

As mentioned above, our computational strategy is to solve for the parameters n and d that

ensure a relatively low forecasting error and that have the property that a small increase in d does

not change the quality of the forecast significantly. It turns out that Proposition 1 above often

gives a simple rule for the determination of d, which is merely the dimension of the active subspace
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(Constantine et al. (2014)). Furthermore, our representation of forecasting functions, M , can also

be obtained as the posterior mean of a Gaussian process (see Rasmussen and Williams (2005)).

The advantages of that formulation are that it naturally leads to systematic ways for choosing the

hyper-parameters of the kernel, k(·), as well as the regularization parameter λ in (8). Moreover,

as it will become clear below, the standard deviation of the Gaussian process can be used as an

indication of goodness of fit. This can give some indication on whether a higher value of n can lead

to much higher accuracy.

To explain these two methods in some detail, we briefly discuss active subspace methods in

Section 5.1, and Gaussian process regression in Section 5.2. Illustrative examples of their joint

workings are provided in Appendix B. In Section 5.3 we then discuss our solution algorithm which

combines active subspaces and GP-regression with a fairly standard, simulation-based technique to

solve for the relevant points on the temporary equilibrium correspondence.

5.1 Active subspaces

As explained in detail above, for given d we compute optimal projections from the eigenvectors of

Cya,z,j (cf. (11)). Just like our economic agents, we cannot evaluate the matrices Cya,z,j exactly.

Instead, the usual procedure is to approximate the integral in (11) via Monte Carlo methods, and

the gradients by finite differences.6

Computing the eigenvalues of Cya,z,j often gives a simple way to determine d. If we observe sharp

drops in the magnitude of the eigenvalue at the d-th largest eigenvalue, then this is a good candidate

for a dimension that trades off accuracy and complexity. Active subspace methods are attractive

in practice because it turns out that for many multivariate functions that occur for example in

engineering models and the natural sciences, one observes such sharp drops in the spectrum of

C at relatively small values of d (see, e.g., Constantine (2015), and the references therein). The

active subspace is then a subspace of the input space which suffices for a good approximation of

the underlying function.

In our iterative computational strategy described below, we start with Wya,z = 0, i.e., the agents

only use their own asset holdings to forecasts future marginal utilities. If the resulting forecasting

errors are large, we determine a sharp drop in the spectrum of C and increase d accordingly. In

our computational examples, the first eigenvalue turns out to be several orders of magnitude large

than all others. Accordingly, we project ~θ−ya into a one-dimensional space. This results in a

two-dimensional active subspace consisting of θya ,Wθ−ya .

Using active subspaces as a dimension-reduction technique turns out to fit well our economic

model and produces excellent results in our examples below. Reiter (2010) considers an alternative

6Alternatively, one may use the Bayesian information criterion to discover the active subspace. For the latter, see

Tripathy et al. (2016).
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approach which is better suited for models with 100,000 agents which differ only in their asset

holdings, but it does not fit well into our framework where we target models with 100 - 1000

heterogeneous agents. Building on Reiter (2010), Ahn et al. (2017) solve heterogeneous agent

macro models in continuous time by applying dimension reduction techniques to reduce the linear

system of PDEs that characterizes their equilibrium—a setting that substantially differs from the

one we are targeting here.

5.2 Gaussian process regression

We provide a very brief introduction to Gaussian process regression based on Rasmussen and

Williams (2005) (see also Scheidegger and Bilionis (2017) for a more detailed introduction). Gaus-

sian process (GP) regression is a method from Bayesian statistics (see, e.g., Barry (1986)) and now

often used in supervised machine learning (see, e.g., Rasmussen and Williams (2005)). There are

many examples in the literature where the combination of GPs and active subspaces proves very

fruitful (see, e.g., Tripathy et al. (2016), or Scheidegger and Bilionis (2017)).

A GP is a collection of random variables, any finite number of which have a joint Gaussian

distribution. We say that f(·) is a GP with mean function m(·) and covariance function k(·, ·),

and write

f(·) ∼ GP (m(·), k(·, ·)) (16)

As mentioned above, we use a squared exponential kernel as defined in Equation (6). The numbers

`i > 0 and σ > 0 in the formula for the kernel denote the characteristic length-scale of the i-th

input, and the signal strength. The “hyper-parameters” of the covariance function are typically

estimated by maximum-likelihood (see Scheidegger and Bilionis (2017)). In our implementation,

we use a self-customized version of the software package Limbo (see Cully et al. (2018)), which

provides several options for this step.

The specification of the mean function m(·) is similar to the specification of a prior in Bayesian

statistics. In our numerical examples below, we set m(·) = 0. Note that this does not imply that

the posterior mean (which we use as our approximating function) is zero. Rasmussen and Williams

(2005, Chapter 2.7) discuss several ways to model a mean function.

Let us define the matrix of so-called “training inputs” as

X =
{
x(1), . . . , x(n)

}
. (17)

Given X, we have a Gaussian prior on the corresponding response outputs,

~f =
{
f
(
x(1)

)
, . . . , f

(
x(n)

)}
.

In particular,

~f |X ∼ N (m,K) , (18)
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where m := m(X) ∈ Rn being the mean function evaluated at all points in X, and K ∈ Rn×n is

the covariance matrix with

Kij = k(x(i), x(j)), (19)

and k(x(i), x(j)) given by (6).

In order to derive an explicit expression for the likelihood, we assume that the noise-terms εi

in (7) are i.i.d. normal with mean zero and variance s2. This assumption is not going to be satisfied

in our application. However, it turns out that the method works well even if the noise is not i.i.d.

normal. Using the independence of the observations, we obtain

y|~f, s ∼ N
(
y
∣∣∣~f, s2In

)
. (20)

The likelihood -function of the observations is then given by

y|X, s ∼ N
(
y
∣∣m,K + s2In

)
. (21)

Bayes’ rule combines the prior GP (see (16)) with the likelihood (see (21)) and yields the posterior

GP

f(·)|X, y, s ∼ GP
(
f(·)

∣∣∣m̃(·), k̃(·, ·)
)
, (22)

where the posterior mean and covariance functions are given by

m̃(x) = m(x) +K(x,X)
(
K + s2In

)−1
(y −m) (23)

and

k̃(x, x′) := k̃(x, x′; , s)

= k(x, x′)−K(x,X)
(
K + s2In

)−1
K(X,x),

(24)

respectively.

To carry out interpolation tasks when iterating on policies, one has to work with the predictive

(marginal) distribution of the function value f(x∗) for a single test input x∗. That is, given our

posterior for the GP f(·), we can derive the marginal distribution of f(·) at any point. It reads

f(x∗)|X, y, s ∼ N (m̃(x∗), σ̃(x∗)) , (25)

where m̃(x∗) = m̃(x∗) is the predictive mean given by (23), and σ̃2(x∗) := k̃(x∗, x∗; s) is the

predictive variance.

Throughout our computations, we use the predictive mean as the value of the unknown function.

Hence, we derive the same formula as in (9). As mentioned above, the advantage of this procedure

is that we can use the maximum likelihood to estimate the hyper-parameters and s2 from our

training data. It can be shown (see Rasmussen and Williams (2005, Chapter 5.2)) that in the

Gaussian setting, the marginal likelihood has the following form:

logL(y|X, ξ) =
1

2
yT (Kf + s2I)y − 1

2
log |(Kf + s2I)| − n

2
log 2π.

23



The latter can me maximized with respect to ξ.

Standard GPs are not able to deal with very high input dimensions because they rely on the

Euclidean distance to define input-space correlations. Since the Euclidean distance becomes unin-

formative as the dimensionality of the input space increases, the number of observations required

to learn the function grows exponentially. To this end, following Scheidegger and Bilionis (2017),

we couple GPs to active subspaces, which is consistent with our economic modeling.

5.3 The basic computational strategy

In our setup, the computation of self-justified equilibria is straightforward and reduces to GP

regression and the repeated solution of non-linear systems of equations. In particular, we employ

an iterative simulation scheme to solve for the optimal forecasting functions. In many respects, our

method is very close to standard stimulation based projection-methods pioneered by den Haan and

Marcet (1990) (see also Judd et al. (2011)). The basic steps of the algorithm are the following:

1. Fix a stopping criterium, η, the size of the training sample, an upper bound on iteration iter,

as well as the number of samples used for estimating CN—that is, N .

The initial guess for each agent’s forecasting:

Fix an initial size of the training sample, n. Assume that agents only use own asset holdings

to forecast, i.e., d = J and each IJ × d projection matrix Wya,z project on agent ya’s asset

holdings. Next, construct the GP whose posterior means approximate

M0
ya,z′ : Z× Rd → R+.

Then, choose an approximation accuracy ξ and choose an initial condition z0, ~θ(z
−1).

2. Iteration step:

Simulate a temporary equilibrium path for given forecasts ~M0.

For i = 1, n

(a) Solve numerically for a temporary equilibrium, set ~xi, ~θi, qi to the equilibrium values and

set zi = z.

(b) Using pseudo random numbers, draw a new z′ and set θ−ya = θya−1 for all agents ya.

3. For each ya, regress the equilibrium values of f(qi, zi)u
′(xya+1,i) on Wya,zi−1

~θi−1 and zi−1 to

obtain a new GP whose posterior mean gives a new forecasting function M1
ya .

4. If

‖M1 −M0‖ < η

then set M∗ = M1. Elseif number of iteration steps below iter set M0 = M1 and repeat time

iteration step 2. Else increase n and repeat iteration step 2.
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5. Compute on a test-sample with nt � n an equilibrium sequence of length nt and the realized

forecasting error for all agents. If the average error is below some threshold, exit. Else

6. Compute CN,ya as defined in Equation 15 and its eigenvalues, λ. At sharp drops of the

spectrum, form an active subspace and check if the improvement in accuracy is large given

the old sample of points. If no, exit. Else, include the relevant eigenvectors of CN into the

projection matrix, Wya , make a new initial guess for GPs and go to time iteration step 2.

The computation of the temporary equilibrium is done using a simple Newton-method, the

derivatives needed for the computation of CN (cf. (15)) are approximated using one-sided finite

differences, and a self-customized version of Limbo (Cully et al. (2018)) is employed for the GP

regressions.

6 An example

To illustrate the concept of self-justified equilibria and our general computational strategy, it is

useful to focus on a specific simple example. Concretely, we assume that all agents live for A = 60

periods, that aggregate shocks take two values, z = 1, 2, and that an idiosyncratic shock only occurs

in the first period of an agent’s life. We assume that this initial idiosyncratic shock can take three

values y = 1, 2, 3 and that η0(y) = 1
3 , y = 1, . . . , 3. The initial shock can be interpreted as the

type of the agent. The types of agents distinguish themselves by trading constraints, endowment

risk over the life-cycle, and preferences. An agent is then characterized by (y, a), where y = 1, 2, 3

denotes the initial shock, and a = 1, . . . , 60 denotes an agent’s age. Taken together, there are

3 · 60 = 180 agents trading in commodity- and asset markets in each period.

Type 1 agents (y = 1) can trade in a single Lucas-tree and a full set of Arrow securities (or

options on the tree). In our framework, it is useful to assume that the Arrow-securities pay in the

Lucas-tree (as in Gottardi and Kubler (2015)). Type 2 and 3 agents (y = 2, 3) can only trade in

the Lucas tree. All agents face borrowing constraints, which (in this simple model) are equivalent

to short-sale constraints. The model is a simplified OLG-version of Chien et al. (2011).

We assume that agents have CRRA utility functions with

uy,a(c) = βa
c1−γy

1− γy
.

We choose β = 0.98, γ1 = 0.5, and γy = 1.5 for y = 2, 3. Individual endowments are

e1,a(z) = 0.4 + a/500, for a < 50, e1,a(z) = 0.3 for a ≥ 50, z = 1, 2,

e2,a(1) =
e1,a

1.2
, e2a(2) = 1.2e1,a for a = 1, . . . , A,

e3,a(1) = 1.2e1,a, e2a(2) =
e1,a

1.2
for a = 1, . . . , A.
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The dividends of the single tree are given by div(z) = 3 for z = 1, 2, and we take its supply

to be θ̄ = 7 – since the number of agents who hold the tree is fairly large this turns out to be

numerically more stable than the standard value θ̄ = 1.

We assume that the Markov transition matrix for the aggregate shock is

π =

 0.95 0.05

0.05 0.95

 .

For concreteness, it is useful to define the temporary equilibrium system of inequalities as the

system of all agents’ KKT-conditions together with the market clearing conditions, i.e.,

−u′1,a(e1,a(z) + θ−(1,a−1),z(
∑
z′∈Z

qz′ + div(z))− q · θ1,a) + βM1,a(z, z
′,W1,a

~θ) + κ1,a, for all a, z′

κ1,a · θ1,a

−u′y,a(ey,a(z) + θ−y,a−1(
∑
z′∈Z

qz′ + div(z))−
∑
z′∈Z

qz′θy,a) + βMy,a(z,Wy,a
~θ) + κy,a for all a; y = 2, 3

κy,aθy,a, y = 2, 3, a = 1, . . . , A∑
a

(θ(1,a),z + θ2,a + θ3,a)− θ̄, for all z ∈ Z.

We can combine κy,a and θy,a into one variable and obtain a system with (A−1)Z+2(A−1)+Z = 238

equations and unknowns. This system has to be solved at every simulation step 2(a) in our algorithm

(see. Sec. 5.3).

6.1 A simple self-justified equilibrium

As mentioned above, we start by assuming that agents only use their own asset holdings to forecast

future marginal utilities. It is natural to assume that agent 1 (who can trade in two assets) assumes

that his holdings in asset z (that pays if shock z realizes) only affects marginal utility in shock z

for each z = 1, 2. Agents 2 and 3 base their forecasts on their Lucas-tree holdings. For all three

agents, forecasts are therefore a function of the current shock and a single continuous variable. This

is the simplest candidate self-justified equilibrium in our framework, and the question is how high

do costs of a more accurate approximation have to be to rationalize this as an equilibrium.

With this specification, forecasts are, somewhat surprisingly, very good for most agents. This

is somewhat reminiscent of the results in Krusell and Smith (1998) and Storesletten et al. (2007)

where very simple forecasts also turn out to be very accurate in the calibrated model. It also fits

with the results in Chien et al. (2011) who show that asset prices can often be forecasted accurately

by a small number of lagged shocks.

Figure 1 depicts the forecasts for the marginal utility of the Lucas tree of a 59-year-old agent

of type 2 plotted against the average realized marginal utility of the tree for the exogenous shock

being z = 1. As can be seen in this figure, there is almost perfect overlap between forecasted values
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Figure 1: This figure shows the forecasts (red crosses) for the marginal utility of asset 1 of a 57-

year-old agent of type 2 plotted against the average realized marginal utility (black bullets) of the

tree for the exogenous shock being z = 1. Clearly, the own asset-choice gives an excellent forecasts.

and realized values. The mean-squared forecasting errors are below 5×10−4 for all agents of types 2

and 3 and all ages. The forecasting functions are obtained by a GP regression using approximately

200 points7. Despite the fact that the asset holdings of all other agents will affect prices and hence

the marginal utility of the tree, these seem to play almost no role for accurate forecasts.

Asset prices certainly do vary as the wealth-distribution varies along the equilibrium path.

Figure 2 shows the variation of the tree price, given the current shock is 1 and the previous shock

also was 1. This must be caused by changes in the wealth distribution over time. Why does it not

affect the forecasts of type 2 and 3 agents? Note, that the variation in prices is relatively small,

and while this variation does affect forecasts, the effects are quantitatively tiny. The reason for

this is that the marginal utility of agents of types 2 and 3 (which needs to be forecasted) is given

by q+div
c1.5

which turns out to vary much less than the price q. A relative increase of the price by a

factor of 1+ε for some small ε > 0 will lead to a much smaller increase of consumption (for younger

agents because they save more, for the old agents because they have labor income) and therefore

to a variation in marginal utility that is significantly smaller than
√

1 + ε. This can be seen easily

for the agents of age 60, where c = e60,a(zt) + θ−(q + div) and magnitude of θ−(q + div) is about

the same as of ey,60.

For agents of type 1, however, the situation is different. Figure 3 depicts the forecasts of a 59-

year-old agent of type 1 plotted against the (average) realized marginal utilities of the 60-year-old

7In our simulation approach, the actual number of points varies in each iteration.
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Figure 2: This figure depicts the variation in prices (given the current shock is 1 and the previous

shock also was 1) which is not explained by shocks.

agent. There are variables in addition to the own asset holdings that have significant effects on the

marginal utilities8

The average (squared) forecasting error is around 4 × 10−3 for agents of ages 58 and 59 and

type 1 and therefore about an order of magnitude larger than for agents of types 2 and 3.

In particular, the variation in marginal utilities for the 59-year-olds of type 1 is relatively large

compared to type 2 agents because of the utility function: the marginal utility is given by q+div
c0.5

and, as for the agents of types 2 and 3, a relative increase in the price by 1 + ε will lead to a much

smaller increase in consumption. However, this means that marginal utility will vary by much more

than
√

1 + ε. The variation in prices, therefore, causes significant variations in the marginal utilities

of the old agents of type 1. This is what is depicted in Figure 3. A similar effect comes into play

for agents of ages 55-58, but it becomes quantitatively small for younger agents. In particular, it is

important to note that for younger agents, this problem is much less severe—that is, the average

(squared) forecasting errors of agents under the age of 55 are below 6× 10−4.

6.2 Finding the active subspaces

Suppose that the costs of moving from a one-dimensional to a higher dimensional domain of forecast-

ing functions are relatively low. In particular, let us assume that agents whose average forecasting

errors are above 10−3 search for a higher-dimensional active subspace.

8One should note the scale; the variation in own asset holdings is rather small, the overall variation of marginal

utilities is also relatively small.

28



0.0152 0.0154 0.0156 0.0158 0.016 0.0162 0.0164

ya

56

56.5

57

57.5

58

58.5

M
(

ya)

forecasts
realized values

Figure 3: Forecasts of a 59-year-old agent of type 1 (red crosses) plotted against the average realized

marginal utilities (black bullets) of the 60-year-old agent. It becomes obvious from this figure that

the own asset-choice is insufficient for a good forecast.

It turns out that for this specification, there exists a two-dimensional active subspace for agents

of type 1 and ages 55-60. In addition to an agent’s own asset holding, a single one-dimensional

variable is needed to obtain accurate forecasts. The additional variable turns out to be a weighted

sum of asset holdings across all agents, (roughly) weighted by the agents’ marginal propensity to

consume. Employing a higher-dimensional (d > 2) space to forecast future marginal utilities turns

out to improve the accuracy of the forecasts by very little.

For the agents y = 1, a > 54 we compute the matrix CN (cf. (15)) by employing Monte-

Carlo draws and finite differences, and we find that one single eigenvalue (in addition to the ones

associated with own asset holdings) dominates all others. In Figure 4, we plot the 18 largest

eigenvalues on a log10-scale (for the agent (1,59) whose realized marginal utilities are plotted in

Figure 3 above). The figure confirms that all other eigenvalues are negligibly small compared to the

one that corresponds the weighted sum of asset holdings across agents – the jump from the largest

to next largest eigenvalue is in the order of 10,000. This suggests that there is a two dimensional

active subspace. We, therefore, re-compute a self-justified equilibrium with agents of type 1 and

ages 55 to 60 using a two-dimensional active subspace. The optimal projection matrices Wya,j will

obviously change since the equilibrium prices and allocations change with better forecasts. We

start using the active subspace resulting from the computation of CN in the old equilibrium and

recompute the matrix CN twice as we iterate towards the new equilibrium.

In the new equilibrium, the one-dimensional subspace continues to work very well for all agents
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Figure 4: This figure depicts the largest eigenvalues for agent (1,59) and shock 2.

of types 2 and 3—the error for those types is almost the same as above. In addition, the average

forecasting errors of type 1 agents are now uniformly below 5×10−4. Figure 5 depicts the analog of

Figure 3 for the case of a two-dimensional active subspace. As can be seen, also for the 59-year-old

agents of type 1 the forecasts are now almost exact. Forecasts of agents of types 2 and 3 look

almost the same as the ones depicted in Figure 1.

It turns out that the variation in prices is well explained by weighting all agent’s asset holdings

by their marginal propensities to consume. Asset prices are high if the young agents are relatively

wealthy, and asset prices are low if the old agents are relatively wealthy. Moreover, we find that

the projection matrix W obtained through the eigenvector associated with the largest eigenvalue of

the matrix CN captures this mechanism almost perfectly. It remains to be the case that all other

eigenvalues of CN are several orders of magnitude smaller than the largest eigenvalue, confirming

that we have found the active subspace.

Note that in the computed equilibrium the forecasting errors are so small that one might

be tempted to view it as an approximation to a rational expectations equilibrium. To defend

their computational strategy, Krusell and Smith (1998) write “the calculated object satisfies all

the standard equilibrium conditions except the agents ability to make perfect forecasts. . . The

accuracy is so high that we find it very hard to argue on the basis of the irrationality’ of the

agents in our model that our approximate equilibrium is a less satisfactory economic model than

an exact equilibrium”. Unfortunately, there is no formal way to relate the computed equilibrium

to a rational expectations equilibrium. This is why it is important to define the requirements of a

self-justified equilibrium formally. Our analysis shows that increasing the dimension of the domain

of forecasting functions further will lead to a tiny improvement in the quality of the forecasts. Even

tiny costs suffice to rationalize the computed solution as a self-justified equilibrium.
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Figure 5: Forecasts of a 59-year-old agent of type 1 (red crosses) plotted against the average realized

marginal utilities (black bullets) of the 60-year-old agent as a function of the two-dimensional active

subspace. The forecasts based on a two-dimensional active subspace are now extremely accurate.

In this example, it was sufficient to consider forecasting functions which map from a two-

dimensional domain. Increasing the number of assets will naturally increase the dimension of the

domain of forecasting functions but it is important to note that in practical applications, standard

GPs easily scale up to about 10 dimensions. The computation of the matrices CN turns out to be

relatively costly, but this does not have to be done in every iteration. Thus, the example in this

section implies that GPs in conjunction with active subspaces are powerful enough to deliver very

accurate forecasts in much more complicated models, where active subspaces might be substantially

larger than one or two dimensions.

7 Conclusion

This paper makes three contributions. First, we define the concept of self-justified equilibria as a

natural generalization of rational expectations equilibrium, and we provide sufficient conditions for

their existence. Second, we argue that active subspace methods provide a natural way to formalize

bounded rationality in very high dimensional models. Third, we provide an implementation to

approximate self-justified equilibria numerically. In a relatively small model with 180 agents, we

show that the method can potentially be used for large-scale applications.

We allow for the possibility of idiosyncratic shocks and a continuum of agents. However, in
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our current implementation, when solving for the temporary equilibrium, we compute the optimal

demand for each agent in the economy. If there is a continuum of agents (that differ ex-post by the

realization of an idiosyncratic shock), one needs to aggregate groups of agents with similar wealth

levels into one type of agent to make this step feasible. This adds another layer of approximation

to our method but is very simple in practice.

In future research, we plan to consider production economies as well as economies with several

consumption goods. While this is conceptually straightforward, it is not clear if the dimension of

the active subspace is as low as in the example in Section 6.
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Appendix A: Optimal ridge approximation and active subspaces

In our economic model, agents do not search for the optimal projection but are satisfied with

finding an active subspace that reduces most of the “noise” from the forecasts. It turns out that

the problem of finding an optimal projection is a difficult non-convex problem, but that the active

subspace methods our agents use often provide reasonable approximations to an optimal projection.

Constantine et al. (2014) have the following theoretical result which makes concrete how well

active subspace methods lead to a good approximation. Let ρ̃(y, z) = ρ(V1y + V2z) and define the

conditional expectation of the function value, given y as

G(y) =

∫
z
f(V1y + V2z)ρ̃(z|y)dz.

Theorem 3.1 in Constantine et al. (2014) now states that∫
x
(f(x)−G(V T

1 x))2ρ(x)dx ≤ C(λd+1 + . . .+ λD),

where C is the Poincaré constant that depends on the probability density ρ.

Unfortunately, in this framework, Poincaré bounds are known to be far away from tight up-

per bounds (the exception being the standard normal distribution). Therefore, Theorem 3.1 in

Constantine et al. (2014) does not tell us much about how far we are from an optimal projection.

The situation is slightly different if ρ is standard normal. In this case, the Poincaré constant is

known to be 1, and it is easy to see that it can be obtained in a worst-case scenario. As Zahm et

al. (2018) point out, this can be extended to non-standard normal densities. Assuming that the

normal density has covariance matrix Σ, they show that If one takes as projection matrix

P = (
∑
i

viv
T
i )Σ−1,

where (λi, vi) solves

Cvi = λiΣ
−1vi,

one can obtain to following upper bound:∫
x
(f(x)−G(P Tx))2ρ(x)dx ≤ (λd+1 + . . .+ λD).

While our ergodic distributions are unlikely to be normal, the result is useful, since mixture of

normal distributions typically can describe the distributions in our model.

An optimal projection can easily be defined, but hardly ever computed in higher dimensions.

Suppose that for a given function f : Rd → R and a given n� d, one wants to find a a n×d matrix

V1 ∈ Vn(Rd) that allows for an “optimal ”approximation of f(·) by a function g : Rn → R, setting

f(x) ' g(V1x).
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We want to define optimality as minimizing the L2 norm with respect to a probability density over

Rd, ρ(x). For given V1, we can define V2 = I − V1V
T

1 and write x = V T
1 y + V T

2 z for y = V T
1 x,

z = V T
2 y. We can define ρ̃(y, z) = ρ(V1x + V2y) and marginal and conditional densities by the

standard equations. The conditional expectation is

E (f(x)|y) =

∫
f(V1y + V2z)ρ̃(z|y)dz.

The optimal V1 solves the following optimization problem:

min
V1∈Vn(Rd)

∫
x
(f(x)− E(f(x)|V T

1 x))2ρ(x)dx. (26)

Unfortunately, this is a very complicated, non-convex optimization problem, and even the search

for a stationary point turns out to be very costly in high dimensions (see e.g. Cohen et al. (2012)).

Constantine et al. (2017) propose to use active subspace methods to obtain an approximation for

a stationary point. Since the problem is non-convex, there is, unfortunately, no guarantee that the

stationary point is, in fact, a minimum. However, Constantine et al. (2017) also provide various

examples to illustrate that one can sometimes expect to obtain a good approximation from active

subspaces.

Appendix B: Analytic examples

In this Appendix, we provide three instructive, synthetic examples to demonstrate the joint work-

ings of Gaussian process regression and active subspaces.

As a first test case, we choose a function f : Ω → R with Ω = [−1, 1]2, observe it at a

finite number of points, discover the active subspace, and then fit the GP hyper-parameters by

maximizing the likelihood. Subsequently, we use the active subspace posterior mean as a surrogate

of f (x). Then, we randomly generate N = 1, 000 test points uniformly drawn from Ω, denoted by

X = {x(i) : i = 1, . . . , N}, and finally compute the average error, which we define as

e =

√√√√ N∑
i=1

(
f
(
x(i)
)
− m̃

(
x(i)
))2

/f
(
x(i)
)2
. (27)

Following [17], we choose a 2-dimensional function, namely,

f(x, y) = exp(0.3x+ 0.7y). (28)

The analytical function given by (28) is depicted in the left panel of Figure 6. The arrows in the

right panel of Figure 6 indicate that [0.3, 0.7] is the direction in which this function varies the most,

whereas in its orthogonal direction [−0.7, 0.3], f(·) it is constant. The projection matrix W of the
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Figure 6: The left panel shows f(x, y) = exp(0.3x+0.7y). The right panel displays arrows indicating

that the test function given by (28) varies the most in the direction [0.3, 0.7] and is constant in the

orthogonal direction.
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Figure 7: The left panel shows the projection matrix W of the 1-dimensional active subspace.

The right panel displays a comparison of the interpolation error for 2-dimensional GPs (labelled as

“GP” in the legend) and an 1-dimensional active subspace (labelled as “ASGP” in the legend) of

varying resolution, respectively.

underlying 1-dimensional active subspace is shown in the left panel of Figure 7. The right panel of

Figure 7 illustrates how the convergence of the interpolator constructed jointly by active subspaces

and GPs compares to the performance of pure GPs with an increase in the number of sampling

points. We see that the GPs in conjunction with active subspaces yield very competitive results

with a considerably reduced computational burden. As a second example, we construct with active

subspaces and GPs an interpolator of f : [−1, 1]10 → R

f(x1, ..., x10) = exp(0.01x1 + 0.7x2 + 0.02x3 + 0.03x4 + 0.04x5

+ 0.05x6 + 0.06x7 + 0.08x8 + 0.09x9 + 0.1x10). (29)

Note that we deliberately put substantially more weight on the second dimension x2. The left panel

of Figure 8 shows the sorted eigenvalues of the matrix CN . The gap after the first eigenvalue reveals
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Figure 8: The left panel shows the sorted eigenvalues of CN (see (15)), whereas the right panel

displays the components of the projection matrix W of a 1-dimensional AS.

that f(·) has a 1-dimensional AS. In the right panel of Figure 8, we display again the projection

matrix W of the 1-dimensional AS. It can be seen that, as one would expect from (29), the most

dominant dimension is the second one. Third, we construct with active subspaces and GPs an

interpolator of f : [−1, 1]10 → R

f(x1, ..., x10) = x2 · x3 · exp(0.01x1 + 0.7x2 + 0.02x3 + 0.03x4 + 0.04x5

+ 0.05x6 + 0.06x7 + 0.08x8 + 0.09x9 + 0.1x10). (30)

The left panel of Figure 9 displays the sorted eigenvalues of the matrix CN . One can see that the

gap in the spectrum only occurs after the third eigenvalue, indicating that the active subspace is a

3-dimensional space. The right panel of Figure 9 illustrates how the convergence (see (27)) of the

interpolator with active subspace dimensions d = {1, 2, 3} performs with an increasing number of

training inputs. We can see that only the interpolator with an active subspace dimension 3 quickly

converges to a satisfactory level of accuracy.
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