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1 Introduction

1.1 Motivation

Classical revealed preference analysis has yielded a fine-grained understanding of the

relationship between unobserved tastes and observed choices, and of how to infer the

former from the latter. More recently, theoretical work on bounded rationality has

extended this methodology to incorporate a range of cognitive factors that may affect

decision making.1 One drawback of such theories is that they typically presume access

to a very rich dataset—comprising a single individual’s choices from a large number

of different overlapping menus—that can be used to identify the latent components of

the cognitive model of interest. For instance, Aguiar et al. [2], Cattaneo et al. [13], and

Masatlioglu et al. [32] require data for all possible menus drawn from a universal set of

alternatives; Manzini and Mariotti [30] impose a stringent “richness” assumption on

their dataset; and Caplin and Dean [10] postulate the observability of state-dependent

stochastic choice data.2

Identification results developed using such assumptions on the choice domain are

often formally elegant, and can be particularly useful for designing and interpreting

experiments (as in Aguiar et al. [2] and Caplin and Dean [10]). They are less obviously

relevant to field data, however, especially when the type of decision arises rarely (e.g.,

choice of hospital provider for elective surgery) or the menu is slow to change (e.g.,

choice of daily newspaper). Indeed, in settings with such features many characteriza-

tion results from the literature on boundedly rational choice may appear implausibly

data-hungry. In practice there may be insufficient menu variation to infer the model

components of interest, and for this reason it is desirable to devise approaches to iden-

tification that create a direct link between theory and what may be feasible empirically.

1This literature examines cognitive factors such as computational constraints, norms and heuristics,
reference points and other framing effects, and various conceptions of attention. Contributions include
those of Apesteguia and Ballester [4], Baigent and Gaertner [6], Caplin et al. [11], Cherepanov et al. [14],
de Oliveira et al. [18], Echenique et al. [19], Manzini and Mariotti [29], Masatlioglu and Nakajima [31],
Ok et al. [35], Salant and Rubinstein [38], and Tyson [44, 45], among numerous others.

2Even stronger assumptions about data availability are commonplace in the theory of choice under
uncertainty, where the decision maker is typically imagined to express preferences over a highly struc-
tured mathematical space specifically designed to facilitate identification.
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In this paper we focus on models of limited attention, where agents consider only

a subset of the available alternatives, known as the “consideration set.”3 To address

the data-voracity issue noted above, we propose a novel framework that postulates a

minimal dataset comprising (in its basic version) a single, fixed menu from which we

observe only the aggregate choice shares of a population of decision makers.4 Members

of the population may (or may not) differ in their preferences over the alternatives, and

they may also differ in cognitive characteristics that affect the allocation of attention.

The latter “cognitive heterogeneity” is taken to be unobserved, and our principal goal

is to infer the distribution of these characteristics from the aggregate choice shares.

We stress that this paper is concerned with the extent to which the distribution of

cognitive characteristics is identified by a given model of bounded rationality per se;

that is, prior to any ancillary econometric specification that may include covariates for

the individuals or the alternatives. In this respect our primitives and objectives both

remain typical of those in conventional abstract choice theory. Indeed, this is one way

that our contribution can be distinguished from other recent work (see, e.g., Abaluck

and Adams [1] and Barseghyan et al. [7, 8]) in which identification is facilitated by the

presence of observable covariates.

1.2 Cognitive models

In our general framework, each agent has a cognitive type parameter θ ∈ Θ ⊂ < that is

distributed in the population according to a cumulative distribution function F. Given

preferences over the menu, an individual of type θ will choose alternative x with proba-

bility pθ (x), and the corresponding aggregate choice share will be p (x) =
∫

Θ pθ (x) dF.

When the cognitive type is used to capture some form of bounded rationality, the indi-

3This usage follows the marketing literature; see, e.g., Roberts and Lattin [37] and Shocker et al. [39].
While we view the consideration set as a manifestation of bounded rationality, other interpretations are
possible. Indeed, alternatives may fail to be considered due to habit formation, search costs, or other
forms of rational inattention (see, e.g., Caplin and Dean [10] and Sims [41]).

4Alternatively, the framework could model a single individual choosing repeatedly from the same
menu in different attentional states, where the variation may arise, for example, from a merchandising
strategy of the retailer designed to manipulate customers’ consideration sets. In Section 4.2 we extend
this framework to allow for richer “multi-occasion” choice data, but only after the informational value
of our basic dataset has been completely exhausted.
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vidual choice distribution will not generally assign all probability to the best available

option, and neither will the aggregate distribution even when the population has ho-

mogeneous tastes. Indeed, the very fact that suboptimal alternatives will sometimes

be chosen is what will enable us to infer features of the cognitive distribution F from

the observed aggregate shares.5

As mentioned above, we study bounded rationality in the form of limited attention,

where the cognitive parameter θ influences the formation of the decision maker’s con-

sideration set. In the “consideration capacity” model, the parameter γ ∈ {0, 1, 2, . . .}

controls the maximum cardinality of the consideration set and is interpreted as a limit

on the number of alternatives that the agent can actively investigate at any one time.

We also examine in detail an important special case, the “consideration probability”

model, in which the parameter ρ ∈ [0, 1] controls the likelihood that each option is

considered and is interpreted as the decision maker’s general awareness of the choice

environment. We hypothesize that preferences are maximized over the consideration

set, and full rationality can be restored by letting γ→ ∞ or ρ = 1, as appropriate.6

1.3 Preview of results

We begin by assuming that the population has homogeneous preferences. Under this

assumption, we find that our cognitive model is fully identified by a small number of

observed choice shares for several natural parameterizations of F. More specifically, if

the consideration capacity γ has a Poisson or Pascal distribution, or if the consideration

probability ρ has a uniform or Beta distribution, then between one and three aggregate

choice shares are needed to recover all of the parameters of the cognitive distribution

(see Examples 1–4). We then proceed to show that even in the absence of a parametric

5Note that our framework has similarities to mixed models in the discrete choice literature, where θ
would be a taste parameter such as the agent’s unobserved marginal utility of some observed character-
istic. (See Train [43] and McFadden [33].) However, since we shall use θ to control cognition instead of
tastes, our setting calls for different functional form assumptions. In particular, pθ will not have a logit
specification (see Luce [27]), as would typically be assumed in relation to tastes.

6Variants of the consideration capacity model are employed by Barseghyan et al. [7] to study discrete
choice with heterogeneous consideration sets, and by de Clippel et al. [17] to study price competition in
a setting where consumers exhibit limited attention. A version of the consideration probability model
appears in Manzini and Mariotti [30].
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specification, the cognitive distribution can for practical purposes be fully recovered

provided the menu of alternatives is sufficiently large. In the context of the consider-

ation capacity model, the choice shares identify the probabilities of all capacities less

than the cardinality n of the menu (see Proposition 2). Similarly, in the context of the

consideration probability model the choice shares identify the first n raw moments of F

(see Proposition 3), which—using maximum entropy methods and results from spar-

sity theory—can be exploited to reconstruct or to closely approximate the cognitive

distribution itself (see Propositions 4–5). In each context, identification follows from

the system of equations that define the choice shares being recursive and linear in the

relevant quantities (namely, the capacity probabilities or the raw moments), so that

closed-form expressions for these quantities can be obtained by inverting a triangular

or anti-triangular matrix.

Turning to the case of heterogeneous preferences, we first note that our identifica-

tion results continue to hold generically if the taste distribution is known (see Propo-

sitions 6–7). For heterogeneous and unknown tastes, we extend our dataset to include

the joint distribution of choices by the same population of agents on at least three dis-

tinct “occasions”. Making use of an algebraic result on the uniqueness of tensor decom-

positions, we show that joint choice share data of this sort are generically sufficient for

full identification of the cognitive capacity distribution, and also provide substantial

information about the distribution of preferences (see Proposition 8).

1.4 Related empirical literature

While remaining entirely theoretical, this paper contributes to a growing literature on

estimating consideration-set models from consumer demand or other choice data, re-

viewed briefly in this section.

Abaluck and Adams [1] construct a general econometric framework in which prod-

uct characteristics are observable, and exploit asymmetries in cross-characteristic choice

probability responses to identify consideration sets. Aguiar et al. [2] test random con-

sideration models at the population level in an online experiment, finding support

for a specification with heterogeneous preferences and logit attention. In the context
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of choice under risk, Barseghyan et al. [7] obtain partial identification of preferences

using minimal assumptions about the process of consideration-set formation, while

Barseghyan et al. [8] obtain point identification of both preferences and attention in a

discrete choice model. Cattaneo et al. [13] postulate “monotonic attention,” a restric-

tion on how stochastic consideration sets change across menus, and use this assump-

tion to derive testable restrictions on choice probabilities. Crawford et al. [16] devise

a model-free identification strategy based on reducing the menu of alternatives to a

“sufficient set” of those that are certain to be considered. Gaynor et al. [20] exploit

institutional changes to identify consideration sets in hospital choice, while Honka et

al. [23] (among others) treat consideration sets as the outcome of a search process.7

Lu [26] describes an approach to estimating multinomial choice models that employs

known upper and lower bounds on the consideration set. Sovinsky Goeree [42] stud-

ies the impact of marketing on the consideration set, using advertising data to separate

the utility and attentional components of demand. And Van Nierop et al. [46] propose

a model of brand choice accommodating both stated and revealed consideration-set

data, which they apply to an experiment on merchandising strategies.

1.5 Outline

The remainder of the paper is structured as follows. Section 2 describes our framework

and sets out both the consideration capacity model and the special case of the consid-

eration probability model. Section 3 pursues cognitive inference under the simplifying

assumption of homogeneous tastes, Section 4 extends the analysis to allow for taste

heterogeneity, and Section 5 concludes.

7The search literature typically deals with datasets that include information about the composition
of a consumer’s consideration set, although there are exceptions. For example, in Hastings et al. [22]
exposure to a sales force influences the probability that financial products are considered.
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2 Cognitive heterogeneity and consideration-set models

2.1 General framework

Let X denote the (finite) universal set of alternatives. A menu is any nonempty A ⊆ X,

with which is associated a default outcome dA /∈ A. When presented with the menu A,

an agent either chooses exactly one of the available alternatives or chooses none and

accepts dA. For example, we could have that:

(i) The menu contains retailers selling a product, and the default is not to buy.

(ii) The menu contains banks offering fixed deposits, and the default is to hold cash.

(iii) The menu contains risky lotteries, and the default is a risk-free payment.

When deriving our main theoretical results (in Sections 2–3), we shall assume that

all agents share the same linear order preferences % over X. This assumption (relaxed

in Section 4) can be interpreted as using the average utilities of the alternatives in the

population, ignoring individual variation. In this sense our approach is complemen-

tary to that of the classical stochastic-choice literature in economics, where preferences

are allowed to vary but cognitive capabilities are (implicitly) assumed to be uniform.

Note that homogeneous tastes are plausible in examples (i) and (ii) above, where pref-

erences will be determined largely by price and interest rate comparisons, as well as

in example (iii) provided all agents are approximately risk neutral over the relevant

stakes.

When imposing homogeneous tastes, we number the alternatives so that a higher

position in the preference order implies a lower index. We thus write kA for the kth

best option on A, and the full menu appears as A = {1A, 2A, . . . , nA}, where nA = |A|.

We introduce cognitive heterogeneity by assigning each agent a cognitive type θ ∈

Θ ⊂ <, drawn independently across agents from the distribution F. We write pθ (kA)

for the probability that type θ chooses alternative kA, and p (kA) =
∫

Θ pθ (kA)dF for the

overall share in the population. Similarly, we write pθ (dA) for the probability that type

θ accepts the default, and p (dA) =
∫

Θ pθ (dA)dF for the population share. For each
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θ ∈ Θ we have [∑nA
k=1 pθ (kA)] + pθ (dA) = 1, and likewise [∑nA

k=1 p (kA)] + p (dA) = 1

in aggregate. If wishing to emphasize the role of the type distribution in determining

the choice probabilities, we write p (kA; F) and p (dA; F).

The basic scenario of interest involves a large population choosing from a fixed

menu M with |M| = nM = n ≥ 2. The analyst observes the aggregate choice shares,

but knows neither the common preference order nor the distribution of cognitive types.

In this context we shall generally suppress dependence on M, writing pθ (k) and pθ (d)

for the type-specific frequencies and p (k) and p (d) for the population shares. Our goal

is to deduce information about the distribution F from 〈p (1) , p(2), . . . , p (n) , p(d)〉,

and to use this information to predict aggregate choices from menus other than M.

We proceed now to specialize this framework to a more concrete model in which the

cognitive heterogeneity relates to limited attention. Each agent will consider (i.e., pay

attention to) a subset of the alternatives, and among those considered will choose the

best option according to the common preference order. If the preference-maximizing

alternative is not in the consideration set, this will result in a sub-optimal decision.

2.2 The consideration capacity model

Let γ ∈ {0, 1, 2, . . .} = Θ denote a limit on the cardinality of the agent’s consideration

set; that is, the consideration capacity. When 1 ≤ γ < n we assume that the agent is

equally likely to consider each Γ ⊂ M with |Γ| = γ, and when γ ≥ n we know with

certainty that the entire menu M will be considered. In the former case there are (n
γ)

candidate sets, of which (n−k
γ−1) contain alternative k and do not contain any superior

alternative ` < k. For 1 ≤ γ < n, the probability of k being chosen is thus (n−k
γ−1)/(

n
γ).

Note that this probability is 0 for k > n− γ + 1, since here there are fewer than γ− 1

alternatives inferior to k that can populate the consideration set in order to allow k to

be chosen. Of course, whenever the full menu is considered we know that alternative 1

will be chosen regardless of the value of γ ≥ n.8

8We have assumed that the common preference relation % is a linear order; i.e., that no two distinct
alternatives are indifferent. If we allow for indifference then, defining ωk(R) = |{j : jRk}|, for 1 ≤ γ < n
the probability of option k being chosen is [(ωk(%)

γ )− (ωk(�)
γ )][(n

γ)[ωk(%)−ωk(�)]]−1 (with Equations 1,
6, and 14 below modified accordingly). While this generalization causes no significant difficulty for the
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The type-conditional choice frequencies can now be expressed as

pγ(k) =


(n−k

n−1) if γ ≥ n,

(n−k
γ−1)/(

n
γ) if 1 ≤ γ < n,

0 if γ = 0;

(1)

pγ(d) =

0 if γ > 0,

1 if γ = 0.
(2)

Defining the probability masses

π(0) = F(0), (3)

∀γ ∈ {1, 2, . . . , n− 1} , π(γ) = F(γ)− F(γ− 1), (4)

π(n) = 1− F(n− 1); (5)

the corresponding aggregate shares are then

p(k) =
n−k+1

∑
γ=1

pγ(k)π(γ) =
n−k+1

∑
γ=1

(n−k
γ−1)

(n
γ)

π(γ), (6)

p(d) = π(0). (7)

Observe that for 1 ≤ k < n we can use Equation 6 to compute

p(k)− p(k + 1) =
π(n− k + 1)

( n
n−k+1)

+
n−k

∑
γ=2

(n−k−1
γ−2 )

(n
γ)

π(γ). (8)

This relation shows that, when we move one ordinal step up the preference scale, the

aggregate choice share increases for two reasons: Firstly, the kth best alternative can be

chosen when γ = n− k + 1, unlike the next best option. And secondly, for values of γ

smaller than this the better alternative is chosen more frequently, since there are more

derivation of choice shares, we shall nevertheless maintain the linear ordering assumption so as to avoid
our main objective of cognitive identification being hampered by a feature of preferences alone. We also
view the prohibition on indifference as relatively innocuous in the present, finite-menu setting.
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ways of populating the rest of the consideration set with inferior options.

Note also that setting k = n in Equation 6 yields p(n) = π(1)
n and hence

π(1) = np(n). (9)

Similarly, setting k = n− 1 in Equation 8 yields p(n− 1)− p(n) = 2π(2)
n[n−1] and hence

π(2) =
n[n− 1]

2
[p(n− 1)− p(n)] . (10)

Equations 9–10 prefigure the recursive method employed in Section 3 to identify the

cognitive type distribution, in which the probabilities π(1), . . . , π(n− 1) are deduced

sequentially, with one additional choice share used at each step.

Finally, using Equation 9, we can write Equation 8 in terms of probability ratios as

p(k)− p(k + 1)
p(n)

=
n

( n
n−k+1)

π(n− k + 1)
π(1)

+ n
n−k

∑
γ=2

(n−k−1
γ−2 )

(n
γ)

π(γ)

π(1)
. (11)

For instance, when k = n− 1 we find that the probability mass ratio

π(2)
π(1)

=
n− 1

2

[
p(n− 1)

p(n)
− 1
]

(12)

between the two smallest (nonzero) values of the consideration capacity depends only

on the aggregate choice share ratio between the two worst alternatives on the menu.

2.3 A special case: The consideration probability model

One special case of the consideration capacity model is a version of the consideration

probability model studied by Manzini and Mariotti [30]. To see this, denote by ρ ∈ [0, 1]

the probability that the agent considers each alternative on the menu, with considera-

tion independent across agents and alternatives. Since the same consideration proba-

bility applies independently to each alternative, all subsets of the menu of a given size

are equally likely to be the consideration set. Moreover, the probability of a considera-

tion set of size γ ≤ n is

10



π(γ) =

(
n
γ

) ∫ 1

0
ργ[1− ρ]n−γdF, (13)

and clearly π(γ) = 0 for γ > n. Adapting Equations 6–7 to this special case, we obtain

the aggregate choice shares

p(k) =
n−k+1

∑
γ=1

(
n− k
γ− 1

) ∫ 1

0
ργ[1− ρ]n−γdF =

∫ 1

0
ρ[1− ρ]k−1dF, (14)

p(d) =
∫ 1

0
[1− ρ]ndF; (15)

for the consideration probability model. As in the general case, alternative k’s choice

share is the probability that this option and nothing better is considered, and the share

of the default outcome is the probability that nothing at all is considered.

3 Inference from aggregate choices

3.1 Preference identification

In the context of our limited attention model, the agents’ common preferences over the

alternatives are fully revealed by the observed choice shares under weak conditions.

Indeed, the following result is a simple consequence of Equation 8.

Proposition 1. For the consideration capacity model, with 1 ≤ k < n:

(i) p(k) ≥ p(k + 1).

(ii) If ∑n−k+1
γ=2 π(γ) > 0 then p(k) > p(k + 1).

(iii) If π(2) > 0 then p(1) > p(2) > · · · > p(n).

Using Equation 13, we can also specialize (iii) to the consideration probability model.

Corollary 1. For the consideration probability model, if the support of F intersects (0, 1) then

p(1) > p(2) > · · · > p(n).
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We conclude that, under the homogeneous tastes assumption, the preferences are for

practical purposes fully revealed by aggregate choice data, and efforts can be focused

squarely on the cognitive identification problem. For the remainder of Section 3 we

assume tacitly that π(2) > 0, ensuring that the choice shares p(1) > p(2) > · · · > p(n)

faithfully reflect the underlying preference order.

3.2 Cognitive identification: Parametric analysis

To examine the cognitive inference problem in its most concrete manifestation, we first

consider several natural functional forms for the type distribution. Our aim here is to

show that in such cases the cognitive parameters can be revealed in a straightforward

fashion from a small number of appropriately selected choice-share observations. As

well as increasing our familiarity with the limited-attention model under investigation,

the examples below will serve to highlight non-obvious ways that aggregate choices

can convey information about the cognitive type distribution.

For both the consideration capacity model and the special case of the consideration

probability model, we consider simple one- and two-parameter distributions for the

cognitive type.

Example 1. [Poisson γ] For µ > 0, let the consideration capacity γ have the Poisson

distribution π(γ) = µγ

γ! e−µ for 0 ≤ γ < n. In this case Equation 7 yields default share

p (d) = π(0) = e−µ, and thus µ = − log p(d). Alternatively, Equation 12 yields

n− 1
2

[
p(n− 1)

p(n)
− 1
]
=

π(2)
π(1)

=
µ

2
, (16)

and so µ = [n− 1]
[

p(n−1)
p(n) − 1

]
. �

Example 2. [Pascal γ] For r ∈ {1, 2, 3, . . .} and q ∈ (0, 1), let the consideration capacity

γ have the Pascal (or “negative binomial”) distribution π(γ) = (γ+r−1
γ ) [1− q] rqγ for

0 ≤ γ < n. Equation 12 then yields

n− 1
2

[
p(n− 1)

p(n)
− 1
]
=

π(2)
π(1)

=
q[r + 1]

2
. (17)
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We have also
np(n)
p(d)

=
π(1)
π(0)

= qr, (18)

and Equations 17–18 can be solved simultaneously for the parameters

q = [n− 1]
[

p(n− 1)
p(n)

− 1
]
− np(n)

p(d)
, (19)

r =
np(n)2

p(d)[n− 1] [p(n− 1)− p(n)]− np(n)2 . � (20)

Example 3. [uniform ρ] For ρmin ∈ [0, 1), let the consideration probability ρ be dis-

tributed uniformly on [ρmin, 1]. Since F(ρ) = ρ−ρmin
1−ρmin

, Equation 14 becomes

p(k) =
1

1− ρmin

∫ 1

ρmin

ρ[1− ρ]k−1dρ. (21)

The first choice share is then p(1) = 1+ρmin
2 , yielding the parameter ρmin = 2p(1)− 1.�

Example 4. [Beta ρ] For a, b > 0, let the consideration probability have the Beta dis-

tribution F (ρ) = 1
B(a,b)

∫ ρ
0 ta−1[1− t]b−1dt (where B is the Beta function). Here Equa-

tion 14 appears as

p (k) =
1

B(a, b)

∫ 1

0
ρa[1− ρ]b+k−2dρ =

B(a + 1, b + k− 1)
B(a, b)

. (22)

The first two choice shares are

p (1) =
B(a + 1, b)

B(a, b)
=

a
a + b

, (23)

p(2) =
B(a + 1, b + 1)

B(a, b)
=

ab
[a + b][a + b + 1]

; (24)

and we can solve for the parameters

a =
p(1)p(2)

p(1) [1− p(1)]− p(2)
, (25)

b =
[1− p(1)] p(2)

p(1) [1− p(1)]− p(2)
. � (26)
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Observe that for parameterizations of the consideration capacity γ we have used

the choice shares p(n) and p(n− 1), corresponding to the least attractive alternatives,

to elicit information about the cognitive type distribution. In contrast, for parameteri-

zations of the consideration probability ρ we have used p(1) and p(2), corresponding

to the most attractive options. This mirrors our elicitation procedure below in the non-

parametric setting, where each mass π(γ) is seen to depend on the choice shares of a

group of sufficiently unattractive alternatives (cf., Equation 28), and each moment of

the ρ-distribution is seen to depend on the shares of a sufficiently attractive group (cf.,

Equation 32).

3.3 Cognitive identification: Nonparametric analysis

3.3.1 The nonparametric inference problem

The examples in the previous section have shown a variety of ways that information

about the cognitive type distribution can be encoded in the aggregate choice shares,

depending on the specific functional form employed. With this introduction, we turn

now to the general structure of the inference problem. We shall see that identification

of the type distribution remains tractable for the consideration capacity model even

without parametric assumptions. This is because the choice shares are linear functions

of the probability masses π(γ), which are in turn linear functions of the moments mj

of F when we specialize to the consideration probability model. Moreover, each linear

system has a simple triangular structure that enables it to be solved recursively, using

one additional choice share at each step.

In view of these features of the inference problem, we can decode the information

about the cognitive capacity distribution encoded in the choice share data by inverting

a triangular n× n matrix. This will yield the probability of each capacity value strictly

less than n, and adding one more option to the menu will give us knowledge of one

additional probability mass. In the consideration-probability setting, we can then in-

vert a second triangular n× n matrix to deduce the first n raw moments of F from the

capacity probabilities. Finally, well-established tools (specifically, sparse matrix theory
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and maximum entropy methods) will permit us to approximate F from its moments

with increasing precision as the size of the menu grows (see Section 3.4).

3.3.2 Recovering n probability masses

Absent parametric assumptions, the aggregate choice shares are given by Equation 6.

These relations can be written together in matrix form as



p (1)
...

p (k)
...

p (n)


︸ ︷︷ ︸

p

=



1
n · · · γ

n · · · 1
...

...
...

1
n · · · (n−k

γ−1)

(n
γ)
· · · 0

...
...

...
1
n · · · 0 · · · 0


︸ ︷︷ ︸

C



π (1)
...

π (γ)
...

π (n)


︸ ︷︷ ︸

π

. (27)

The upper anti-triangular and left-stochastic matrix C has a lower anti-triangular in-

verse, allowing us to write π = C−1p.9 Indeed, we can calculate the components of π

explicitly as

π (γ) =

(
n
γ

) n

∑
k=n−γ+1

[−1] [γ−1]−[n−k]
(

γ− 1
n− k

)
p(k), (28)

and of course π(0) = p(d) = 1−∑n
k=1 p (k). Observe that since π(n) = 1− F(n− 1),

it is in fact the probabilities of the capacities γ = 0, 1, . . . , n− 1 that are revealed; and

γ = n cannot be disambiguated from higher values. Indeed, all capacities greater than

or equal to the number of alternatives will always be behaviorally indistinguishable.

We summarize our conclusions as follows.

Proposition 2. In the consideration capacity model, the probability masses π are uniquely

determined by the aggregate choice shares p.
9A matrix is left (resp., right) stochastic if all entries are nonnegative and all columns (resp., all rows)

sum to one.
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3.3.3 Consideration probability: Recovering n moments

Returning to the special case of the consideration probability model, let us write the

jth raw moment of the type distribution as mj =
∫ 1

0 ρjdF. The binomial in Equation 13

can then be expanded to yield

π(γ) =

(
n
γ

) ∫ 1

0
ργ

[
n−γ

∑
i=0

(
n− γ

i

)
[−ρ]i

]
dF =

(
n
γ

) n

∑
j=γ

(
n− γ

j− γ

)
[−1]j−γmj. (29)

In matrix form, these relations appear as



π (1)
...

π (γ)
...

π (n)


︸ ︷︷ ︸

π

=



n · · · n(n−1
j−1)[−1]j−1 · · · n[−1]n−1

...
...

...

0 · · · (n
γ)(

n−γ
j−γ)[−1]j−γ · · · (n

γ)[−1]n−γ

...
...

...

0 · · · 0 · · · 1


︸ ︷︷ ︸

Q



m1
...

mj
...

mn


︸ ︷︷ ︸

m

. (30)

The upper triangular matrix Q has an upper triangular inverse, so we have

m = Q−1π = Q−1[C−1p] = [CQ]−1p. (31)

Performing this calculation, the raw moments are given explicitly by

mj =
j

∑
k=1

[−1]k−1
(

j− 1
k− 1

)
p (k) . (32)

We summarize our conclusions for the special case as follows.

Proposition 3. In the consideration probability model, the raw moments m are uniquely de-

termined by the aggregate choice shares p.
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3.4 Consideration probability: Beyond moments

3.4.1 From moments to distributions

Continuing to focus on the consideration probability model, we shall throughout Sec-

tion 3.4 treat as known a finite number of raw moments of the cognitive type distribu-

tion F, appealing to Proposition 3 for justification. We proceed to outline two different

strategies for ensuring that this moment information adequately captures F itself. The

first strategy will rely on discreteness of the type distribution and ensure a unique char-

acterization of F, while the second will rely on the existence of a density and guarantee

convergence to F as n→ ∞.

3.4.2 Discrete type distributions

Suppose that F is a discrete distribution, with the consideration probability ρ taking on

values 〈ρ1, ρ2, . . . , ρL〉. The number L of cognitive types is known, though the values

themselves may be unknown. We assume, however, that the values are located on a

(known) finite grid of admissible points in [0, 1], which can be as fine as desired.

The realized values of ρ have probabilities 〈ξ (ρ1) , ξ (ρ2) , . . . , ξ (ρL)〉, each strictly

positive and together summing to one, so that the jth raw moment of F appears as

mj =
L

∑
`=1

ξ (ρ`) ρ
j
`. (33)

Treating the first n moments as known, Equation 33 supplies a system of n equalities

in 2L unknowns; namely, the values ρ` and their associated probabilities ξ(ρ`). This

system can be solved for n sufficiently large, but it is not obvious that the solution will

be unique.

Assume that the grid of admissible values for ρ is 〈0, 1
N , 2

N , . . . , 1〉, with the fineness

parameter N large relative to L.10 Then F is a discrete distribution defined entirely by

the probability masses 〈ξ( `
N )〉N`=0, of which exactly L � N are nonzero. Recovering

the distribution thus amounts to finding a solution ξ of the system

10For notational simplicity we use an evenly spaced grid of admissible values, but this is not essential
for our conclusions.
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

1

m1
...

mj
...

mn


︸ ︷︷ ︸
〈1,m〉

=



1 1 · · · 1 · · · 1

0 1
N · · · `

N · · · 1
...

...
...

...

0 [ 1
N ]j · · · [ `N ]j · · · 1

...
...

...
...

0 [ 1
N ]n · · · [ `N ]n · · · 1


︸ ︷︷ ︸

V



ξ (0)

ξ( 1
N )
...

ξ( `
N )
...

ξ (1)


︸ ︷︷ ︸

ξ

, (34)

with each component ξ( `
N ) weakly positive and exactly L components strictly positive.

Here V is a Vandermonde matrix with many more columns (i.e., grid points) than rows

(known moments), implying an under-determined system.11 But the number L of grid

points actually used could in principle be larger or smaller than n.

A result of Cohen and Yeredor [15, Theorem 1] applies to precisely this situation,

stating that Equation 34 has a unique solution if n ≥ 2L. We conclude the following.

Proposition 4. In the consideration probability model, if F is a discrete distribution over L

admissible types, with n ≥ 2L, then F is uniquely determined by the aggregate choice shares p.

This result means that in practice any discrete distribution for the consideration prob-

ability ρ can be fully recovered from aggregate choice share data provided the number

of alternatives is large relative to the number of cognitive types.

3.4.3 Type distributions with a density

Now suppose that the cognitive type distribution F admits a density f . In this case we

will clearly not be able to recover F fully from a finite number n of moments. Instead,

we aim to ensure that the known moments yield a reliable approximation of the true

distribution.

Our method relies on standard techniques from the “Hausdorff moment problem”

for distributions on a closed interval. Adopting a maximum entropy approach, define

11See, e.g., Macon and Spitzbart [28] for the definition and properties of Vandermonde matrices.
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the nth approximating density f̂n as the solution to the optimization problem

max
fn

∫ 1

0
[− log fn (ρ)] fn (ρ)dρ (35)

subject to the (jth-moment) constraint

∫ 1

0
ρj fn (ρ)dρ = mj (36)

for j = 0, 1, . . . , n. Mead and Papanicolaou [34, Theorem 2] show that such a solution

exists and is unique;12 and that for each bounded, continuous ψ : [0, 1]→ < we have

lim
n→∞

∫ 1

0
ψ (ρ) f̂n (ρ)dρ =

∫ 1

0
ψ (ρ) f (ρ)dρ. (37)

Write F̂n for the distribution function associated with the approximating density f̂n.

For any menu A and each k ≤ min {n, |A|}, we now have that

p
(
kA; F̂n

)
= p

(
kM; F̂n

)
= p (kM; F) = p (kA; F) . (38)

Here the first and third equalities follow from the observation that in the consideration

probability model an alternative’s choice share depends only on its rank on the menu

according to the preference order. Moreover, in this model we have p = CQm and the

shares of the n best alternatives are determined by the first n moments. The constraints

in Equation 36 guarantee that these moments coincide for the distributions F̂n and F,

yielding the second equality in Equation 38. We summarize our findings as follows.

Proposition 5. In the consideration probability model, if F admits a density then there exists

a map m 7→ F̂n such that:

(i) The sequence 〈F̂n〉∞n=1 converges weakly to F.

(ii) For any menu A and each k ≤ min {n, |A|}, we have p
(
kA; F̂n

)
= p (kA; F).

12Indeed, the solution takes the form f̂n (ρ) = exp[−∑n
j=0 λjρ

j], where the quantities 〈λj〉nj=0 are the
Lagrange multipliers on the constraints in Equation 36.
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As already noted, the constraints in Equation 36 require each approximation F̂n to

be observationally indistinguishable from the true distribution F in the sense that they

generate the same first n moments, and hence the same aggregate choice shares over

menu M. Proposition 5 reinforces this by guaranteeing that the cognitive heterogeneity

in the population is reflected in two additional ways: Firstly, as the size of the observed

menu increases, our approximation approaches (in the sense of weak convergence) the

true distribution of the consideration probability. And secondly, each approximation

Fn matches the true F not just over M, but also over the n best alternatives on any other

menu A about which we may wish to make predictions.

3.5 Unobserved default outcome

3.5.1 Conditional choice shares

In this section we consider the prospects for cognitive identification when the default

outcome is unobserved. Under this assumption our data set consists of the aggregate

shares p(k) = p(k)
1−p(d) conditional on an active choice being made. Of course, any ratio

of aggregate shares of the form p̃(k, `) = p(k)
p(`) =

p(k)
p(`) is unaffected by the conditioning,

and so Equations 11–12 remain valid when restated in terms of the conditional shares

and the associated probability masses π(γ) = π(γ)
1−π(0) .

3.5.2 Parametric analysis

We begin by adapting each of the parametric examples introduced in Section 3.2 to the

unobserved default scenario.

Example 1. [Poisson γ; continued] Here µ = [n− 1] [ p̃(n− 1, n)− 1], as above. �

Example 2. [Pascal γ; continued] Equation 17 can be written as p̃(n− 1, n) = q[r+1]
n−1 + 1,

and similarly from Equation 11 we obtain

p̃(n− 2, n)− p̃(n− 1, n) =
2

n− 1

[
π(2)
π(1)

+
3

n− 2
π(3)
π(1)

]
=

q[r + 1]
n− 1

[
1 +

q[r + 2]
n− 2

]
. (39)
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These equations can be solved simultaneously for the parameters

q =
2p̃(n− 1, n)− [n− 1] p̃(n− 1, n)2 + [n− 2] p̃(n− 2, n)− 1

p̃(n− 1, n)− 1
, (40)

r =
2np̃(n− 1, n)− 2[n− 1] p̃(n− 1, n)2 + [n− 2] p̃(n− 2, n)− n
−2p̃(n− 1, n) + [n− 1] p̃(n− 1, n)2 − [n− 2] p̃(n− 2, n) + 1

. � (41)

Example 3. [uniform ρ; continued] From Equation 21 we have both p(1) = 1+ρmin
2 and

p(2) = [2ρmin+1][1−ρmin]
6 . Hence p̃(1, 2) = 3[1+ρmin]

[2ρmin+1][1−ρmin]
, and it follows that

ρmin =
p̃(1, 2)− 3 +

√
3[3p̃(1, 2)− 1][ p̃(1, 2)− 3]

4p̃(1, 2)
. � (42)

Example 4. [Beta ρ; continued] Equations 23–24 yield p̃(2, 1) = b
a+b+1 , and likewise we

can compute p̃(3, 2) = b+1
a+b+2 . Solving for the parameters, we obtain

a =
1− 2p̃(3, 2) + p̃(3, 1)

p̃(3, 2)− p̃(2, 1)
, (43)

b =
p̃(2, 1)[1− p̃(3, 2)]

p̃(3, 2)− p̃(2, 1)
. � (44)

3.5.3 Recovering n− 1 probability mass ratios

In the non-parametric setting, it is straightforward to adapt Equation 28 to the case of

an unobserved default outcome. Indeed, for each γ = 2, 3, . . . , n we have that

π (γ)

π(1)
=

(n
γ)

n

n

∑
k=n−γ+1

[−1][γ−1]−[n−k]
(

γ− 1
n− k

)
p(k)
p(n)

=
(n

γ)

n

n

∑
k=n−γ+1

[−1][γ−1]−[n−k]
(

γ− 1
n− k

)
p(k)
p(n)

. (45)

Thus we can use the conditional choice shares to recover n− 1 probability mass ratios,

though without knowledge of the default share p(d) = π(0) we are of course unable

to determine the masses themselves.
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3.5.4 Consideration probability: Recovering n− 1 moment ratios

For the special case of the consideration probability model, Equation 32 can likewise

be adapted to the unobserved default scenario. Here, for each j = 2, 3, . . . , n, we have

mj

m1
=

j

∑
k=1

[−1]k−1
(

j− 1
k− 1

)
p (k)
p (1)

=
j

∑
k=1

[−1]k−1
(

j− 1
k− 1

)
p(k)
p(1)

. (46)

This yields n− 1 ratios of raw moments, and we could proceed to use methods such as

those in Section 3.4 above to approximate the shape of the cognitive type distribution F

(the mean m1 of which would remain undetermined without knowledge of the default

share).13

4 Preference heterogeneity

4.1 Known taste distribution

Section 3 has studied the identification properties of our model of consideration set for-

mation under the assumption that preferences are homogeneous. We now aim to show

that the preceding analysis can be extended to allow for heterogeneous preferences,

provided the taste distribution is known and statistically independent of the cognitive

(type) distribution.14 We then proceed (in Section 4.2) to investigate the prospects for

identification when both the taste and cognitive distributions are unknown.

To incorporate preference heterogeneity into the present framework, we order the

alternatives arbitrarily as M = {1, 2, . . . , n} and write ϕ : M → {1, 2, . . . , n} for the

map that associates each option with its preference rank.15 We enumerate the possible

rankings as 〈ϕh〉n!
h=1, write τh for the probability of ϕh, and denote by P(h) the n × n

13Horan [24] considers an unobserved default outcome in the context of a dataset with choices from
multiple menus, showing that the identification properties of Manzini and Mariotti’s [30] independent
random consideration model remain largely intact.

14The distribution of taste parameters—such as discount factors or risk-aversion coefficients—may be
treated as known for our purposes if these characteristics can be elicited from agents separately, in a
setting (e.g., a laboratory experiment) where limited attention is thought to be irrelevant or controllable
to an acceptable degree.

15This formulation maintains the assumption of linear order preferences imposed in Section 2.
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permutation matrix corresponding to ϕh.16 With preference heterogeneity, Equation 27

then becomes

p =
n!

∑
h=1

τh[P(h)C]π =

[
n!

∑
h=1

τhP(h)

]
Cπ. (47)

Provided the “average preference permutation matrix” B = ∑n!
h=1 τhP(h) has full rank,

it follows that π = [BC]−1p, and similarly Equation 31 becomes m = [BCQ]−1p for

the special case of the consideration probability model. We conclude that the aggregate

choice shares can still be used to find the probability masses in π and the raw moments

in m, as long as the taste distribution yields a nonsingular matrix B.

As a convex combination of permutation matrices, the average preference permu-

tation B is always bistochastic.17 Clearly there exist taste distributions τ = 〈τh〉n!
h=1 for

which this matrix is not invertible; e.g., the uniform distribution (with each τh = 1
n! )

yields a singular B (with each entry equal to 1
n ). However, invertibility is the generic

situation, implying the following extensions of Propositions 2–3.18

Proposition 6. In the consideration capacity model with known preference heterogeneity, for

almost all taste distributions τ the probability masses π are uniquely determined by the aggre-

gate choice shares p.

Proposition 7. In the consideration probability model with known preference heterogeneity, for

almost all taste distributions τ the raw moments m are uniquely determined by the aggregate

choice shares p.

The following example illustrates the handling of known preference heterogeneity

in the context of the consideration capacity model.

Example 5. [exploded logit] Let n = 3, define u : M → < by u(k) = log k, and sup-

pose that the distribution of tastes is determined by an exploded logit based on u. For

16More explicitly, the permutation matrix P(h) translates the kth row of an n× n target matrix A into
the ϕh(k)th row of the product P(h)A. Similarly, postmultiplying by P(h) permutes the columns of A.

17A matrix is bistochastic if it is both left and right stochastic. The Birkhoff-von-Neumann Theorem
states that the class of n × n bistochastic matrices is the convex hull of the set of n × n permutation
matrices.

18Observe that det(B) is a polynomial function of τ ∈ <n!, and recall that any real-valued polynomial
function on a Euclidean space is either identically zero or nonzero almost everywhere (see, e.g., Caron
and Traynor [12]). Since det(B) is nonzero for the case of homogeneous preferences, it is not identically
zero, and thus B is generically invertible.
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instance, the probability assigned to the ranking ϕ2 given by 2 � 3 � 1 is calculated as

τ2 =
eu(2)

eu(1) + eu(2) + eu(3)
× eu(3)

eu(1) + eu(3)
× eu(1)

eu(1)
=

2
6
× 3

4
× 1

1
=

1
4

. (48)

The average preference permutation matrix is then

B =
n!

∑
h=1

τhP(h) =
1
3


0 0 1

0 1 0

1 0 0


︸ ︷︷ ︸

ϕ1: 3�2�1

+
1
4


0 0 1

1 0 0

0 1 0


︸ ︷︷ ︸

ϕ2: 2�3�1

+
1
6


0 1 0

0 0 1

1 0 0


︸ ︷︷ ︸

ϕ3: 3�1�2

· · ·

+
1
10


1 0 0

0 0 1

0 1 0


︸ ︷︷ ︸

ϕ4: 1�3�2

+
1

12


0 1 0

1 0 0

0 0 1


︸ ︷︷ ︸

ϕ5: 2�1�3

+
1

15


1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

ϕ6: 1�2�3

=
1
60


10 15 35

20 24 16

30 21 9

 , (49)

which is nonsingular (with det(B) = − 1
30 ). Now it is straightforward to compute


π(1)

π(2)

π(3)

 = π = [BC]−1p =


15
2 p(1)− 6p(2) + 3

2 p(3)

−15p(1) + 30p(2)− 15p(3)
17
2 p(1)− 23p(2) + 29

2 p(3)

 , (50)

and as always π(0) = p(d). �

4.2 Unknown taste distribution

Continuing to allow for heterogeneous preferences, we next consider the problem of

identifying the cognitive distribution when the taste distribution too is unknown. Here

the information in a single observation of aggregate choices is clearly insufficient to re-

veal both distributions nonparametrically. Indeed, Propositions 2–3 already consume

all n degrees of freedom in order to infer probability masses or raw moments of F. The

impracticality of deducing cognition and tastes simultaneously from our basic dataset

is illustrated in the following simple example.
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Example 6. Let n = 2 and ϕ1(1) = 1, so that τ1 is the probability of the ranking 1 � 2.

Equation 47 then takes the form

 p(1)

p(2)

 = p = [BC]π =

1
2 τ1

1
2 1− τ1

 π(1)

π(2)

 , (51)

an underdetermined system in which the cognitive distribution 〈π (1) , π(2)〉 and the

taste distribution τ1 cannot be disambiguated. �

To gain some leverage on the unknown tastes scenario it will be necessary to relax

the stringent assumption that our dataset consists of aggregate choice shares from a

single menu, and a variety of relaxations are possible.19 The approach we shall adopt

here is to suppose that the researcher has access to choice data from the same popula-

tion of agents on multiple “occasions” across which the cognitive distribution is stable.

While we assume for convenience that the size of the menu is constant, the alterna-

tives themselves need not be identical across occasions. For instance, the objects of

choice could be interpreted as the same physical items at time-varying prices; the cur-

rent model of a product offered in successive periods by a fixed set of suppliers; or the

options available in an experiment with multiple rounds or treatments.

We assume further that our dataset consists of the joint distribution of choices across

occasions; as arising, for example, from discrete choice panel data or from a sequence

of discrete choice experiments. Although joint choice shares of this sort comprise “ag-

gregate” data only from a somewhat literalist point of view, the agents in the popula-

tion can remain anonymous in the sense that no observations on individuals will be

required for our analysis other than their observed choices.20

The advantage of this new multi-occasion setting is that it will allow us to deploy

a powerful mathematical result on tensor decompositions to determine the cognitive

19One strategy would be to supply the researcher with aggregate data on choices from multiple sub-
sets of the menu (cf. Geng and Ozbay [21]), while assuming stable tastes. Another strategy—explored
in an earlier version of this paper—would be to supplement the dataset with covariates and estimate a
random utility model of preference determination.

20With I occasions and n alternatives, a single agent’s joint choice can be described by a unit vector in
nI-dimensional space. The aggregate choice frequencies for the population are then given by the sum of
these vectors, which is equivalent to the aggregate joint distribution of choices in our dataset.
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distribution even in the context of unknown and possibly changing tastes. Indeed, we

shall find (in Proposition 8) that joint choice share data from as few as three occasions

suffices generically to infer the consideration capacity distribution in full as well as

substantial information about the distribution of tastes.

Formally, we index the occasions by i = 1, . . . , I and suppose that on each occasion

our population of agents chooses from a menu M = {1, . . . , n} with default d /∈ M.

Here neither k ∈ M nor the default d need represent the same economic outcome on

different occasions, but the cardinality n of the menu is assumed to be constant.21 The

taste distribution on occasion i is denoted by τi = 〈τih〉n!
h=1, and agents are assumed

to retain their cognitive types across occasions so that the distribution F is stable. We

write pθ(k1 · · · kI) for the joint probability that on each occasion i an individual of type

θ chooses alternative ki. Our dataset then consists of the corresponding population

shares p(k1 · · · kI) =
∫

Θ pθ(k1 · · · kI)dF, and as before our objective is to use this data

to deduce information about the underlying cognitive distribution F.

In the context of the consideration capacity model, we assume that the realizations

of the consideration set Γ and the preference ranking ϕh are independent across occa-

sions conditional on the (capacity) type γ. The analog of Equation 1 is then

pγ(k1 · · · kI) =


∏I

i=1 ∑h:ϕh(ki)=1 τih if γ ≥ n,

∏I
i=1 ∑n−γ+1

r=1
(n−r

γ−1)

(n
γ)

∑h:ϕh(ki)=r τih if 1 ≤ γ < n,

0 if γ = 0;

(52)

where (for 1 ≤ γ < n) the product is over the various occasions i, the outer sum is over

the possible ranking positions r of the chosen alternative ki, and the inner sum is over

the rankings that place ki in position r. Now the analog of Equation 6 appears as

p(k1 · · · kI) =
n

∑
γ=1

π(γ)pγ(k1 · · · kI) =
n

∑
γ=1

π(γ)
I

∏
i=1

n−γ+1

∑
r=1

(n−r
γ−1)

(n
γ)

∑
h:ϕh(ki)=r

τih, (53)

showing explicitly how the population choice shares are determined by the cognitive

21This assumption simplifies our notation considerably, but is not essential for the analysis below.
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distribution π in conjunction with the taste distributions 〈τi〉Ii=1.

The following example illustrates the multi-occasion framework and demonstrates

how joint choice share data can be used to infer the cognitive and taste distributions.

Example 7. Let n = 2, I = 3, and each ϕi1(1) = 1. The joint probabilities are the

weighted sums of the two type-conditional joint probabilities, that is:

p(111) =
π(1)

8
+ π(2)τ11τ21τ31, (54)

p(112) =
π(1)

8
+ π(2)τ11τ21[1− τ31], (55)

p(121) =
π(1)

8
+ π(2)τ11[1− τ21]τ31, (56)

p(122) =
π(1)

8
+ π(2)τ11[1− τ21][1− τ31]; (57)

and so on. For τ11, τ21, τ31 ∈ (0, 1), we can combine the four equations above to yield

8p(111)− π(1)
8p(112)− π(1)

=
τ31

1− τ31
=

8p(121)− π(1)
8p(122)− π(1)

, (58)

enabling recovery of the probability mass

π(1) =
8[p(111)p(122)− p(112)p(121)]

p(111)− p(112)− p(121) + p(122)
. (59)

Equation 58 and two analogous relations then yield the three taste distributions

τ11 =
p(111)− p(112)

p(111) + p(211)− p(112)− p(212)
, (60)

τ21 =
p(111)− p(112)

p(111) + p(121)− p(112)− p(122)
, (61)

τ31 =
p(111)− p(121)

p(111) + p(112)− p(121)− p(122)
. (62)
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Finally, from Equation 54 (or any of the other joint probability expressions) we obtain

π(2) =
[p(111)− p(122)]2 − [p(121)− p(112)]2

p(111)− p(112)
· · ·

· · · × p(111)− p(112) + p(211)− p(212)
p(111)− p(112)− p(121) + p(122)

. � (63)

We aim now to demonstrate that the cognitive identification seen in Example 7 is

a generic feature of the multi-occasion setting. To this end, we condition on the event

γ > 0 and represent our dataset as a tensor S of order I with dimensions n× · · · × n

and entries Sk1,...,kI =
p(k1···kI)

1−p(d···d) .22 Writing Bi = ∑n!
h=1 τihP(h) for the average preference

permutation matrix on occasion i, we can then express Equation 53 more compactly as

S =
n

∑
γ=1

π(γ)⊗I
i=1 [BiC]1γ, (64)

where ⊗ is the outer product operator and 1γ the unit vector for component γ.23

Equation 64 decomposes the joint shares into a linear combination of n rank-1 ten-

sors. The uniqueness properties of such decompositions have been studied extensively,

with Kruskal [25, Theorem 4a] supplying a fundamental theorem that has been eluci-

dated and refined by Sidiropoulos and Bro [40], Allman et al. [3], and Rhodes [36],

among others. We shall use a special case of the result due to Rhodes [36, Corollary 2],

adapted for our setting as follows.

Lemma 1. [Kruskal; Rhodes] Given any collection 〈Z1, Z2, Z3〉 of invertible n× n matrices,

the tensor T = ∑n
γ=1[Z11γ ⊗Z21γ ⊗Z31γ] uniquely determines each Zi up to column rescal-

ing and permutation. That is, for any 〈Ẑ1, Ẑ2, Ẑ3〉 such that ∑n
γ=1[Ẑ11γ⊗ Ẑ21γ⊗ Ẑ31γ] = T

there exist invertible diagonal matrices 〈D1, D2, D3〉 and a permutation matrix P such that

D1D2D3 = In and each Ẑi = ZiDiP.24

22A tensor is a multidimensional array that generalizes the concept of a matrix to allow for an arbitrary
number of indices—this number being the order of the tensor. The dimensions of a tensor indicate the
number of possible values of each index, generalizing the number of rows and columns of a matrix.

23Recall that the outer product of a pair of vectors is the first multiplied by the transpose of the second,
and similarly each further outer product operation adds another dimension to the resulting array. A
tensor is said to be of rank 1 if it is an outer product of vectors.

24Here In denotes the n× n identity matrix. Note that the actual result in Rhodes [36] is substantially
more general than this statement, since he allows the Zi matrices to have different numbers of rows and

28



Setting I = 3 and applying this tool to our joint choice share tensor S, we can show

generic cognitive identification in the multi-occasion environment.

Proposition 8. In the consideration capacity model with unknown preference heterogeneity

and three occasions, if π � 0 then for almost all taste distributions 〈τ1, τ2, τ3〉 the probability

masses π and average preference permutation matrices 〈B1, B2, B3〉 are uniquely determined

by the joint choice shares p(k1k2k3) for 1 ≤ k1, k2, k3 ≤ n.25

Proof. Writing D(π) for the diagonal matrix with entries π = 〈π(γ)〉nγ=1 � 0, we can

(following [3, p. 3118]) set Z1 = [B1C]D(π), Z2 = B2C, and Z3 = B3C, whereupon

n

∑
γ=1

[Z11γ ⊗ Z21γ ⊗ Z31γ] =
n

∑
γ=1

π(γ)⊗3
i=1 [BiC]1γ = S. (65)

Here each BiC has full rank for almost all taste distributions τi (see Footnote 18), and

since π � 0 it follows that each Zi is invertible. For duplicate parameters 〈B̂1, B̂2, B̂3〉

and π̂ � 0 such that the corresponding ∑n
γ=1[Ẑ11γ ⊗ Ẑ21γ ⊗ Ẑ31γ] = S, Lemma 1

ensures that there exist rescalings 〈D1, D2, D3〉 and a permutation P such that

[B̂1C]D(π̂) = Ẑ1 = Z1D1P = [B1C]D(π)D1P, (66)

B̂2C = Ẑ2 = Z2D2P = [B2C]D2P, (67)

B̂3C = Ẑ3 = Z3D3P = [B3C]D3P. (68)

Writing the vector of ones as 1 = ∑n
γ=1 1γ, we have 1>B̂iC = 1>[BiC]DiP for i = 2, 3

from Equations 67–68. Since Bi and B̂i are bistochastic and C is left stochastic, it follows

that 1> = 1>DiP and thus 1> = 1>P> = 1>Di. We conclude that D2 = D3 = In, and

hence D1 = [D2D3]
−1 = In as well.

Similarly, we have π̂
>
= 1>D(π̂) = 1>D(π)P = π>P from Equation 66 and hence

one of them to have linearly dependent columns. This necessitates an additional hypothesis imposing a
lower bound on the “Kruskal rank” (see [36, p. 1819]) of the Zi matrix in question—a hypothesis that is
trivially satisfied in the square, full-rank case.

25Our result shows that three occasions suffice (generically) for determination of π, and data from ad-
ditional occasions will neither help nor hinder cognitive identification. Extensions of Kruskal’s theorem
to tensors of order higher than three have been studied; e.g., by Sidiropoulos and Bro [40, Theorem 3].
We do not pursue this extension at present, since it is orthogonal to our main goal of inferring cognitive
heterogeneity from minimal data.
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π̂ = P>π. It follows that D(π̂) = D(P>π) = P>D(π)P, so that Equation 66 yields

[B̂1C]P>D(π)P = [B1C]D(π)P and [B̂1C]P> = B1C. Together with Equations 67–68,

this shows that each B̂i = Bi[CPC−1]. The duplicate parameters 〈B̂1, B̂2, B̂3〉 and π̂ are

thus seen to result from label swapping; i.e., a garbling of the type distribution π (via

the permutation P>) that is reversed by adjustments to the taste distributions Bi. When

labels are assigned correctly we have P = In, so that π̂ = π and each B̂i = Bi.

Observe that the joint choice share data do not fully determine the taste distribu-

tions 〈τ1, τ2, τ3〉. Indeed, factorial explosion of the number of rankings of n alternatives

makes it obvious that such identification cannot be possible in general. In relation to

tastes, what the joint choice shares determine are the average preference permutation

matrices 〈B1, B2, B3〉, which record the probabilities ∑h:ϕh(ki)=r τih of alternative ki be-

ing ranked in position r on occasion i. Thus the remaining scope for non-uniqueness is

limited to shifts between rankings that preserve these marginal position probabilities.

The identification of the cognitive distribution and the average preference permu-

tations in Proposition 8 requires no parametric assumptions on the primitives of the

consideration capacity model. Introducing such assumptions may enable us to refine

the taste distribution beyond the probabilities in each Bi; a task that is simplified by the

problem now amounting to one of determining the preferences of agents with known

cognitive type. In fact, since the type-conditional choice distributions have already

been recovered, we could simply focus on the behavior of full-attention types (with

γ ≥ n) and apply known techniques to elicit the distribution of preferences on each

occasion. For instance, we could assume that the type-conditional choices result from

a random utility model (RUM) with a known error distribution, or by a single-crossing

RUM as defined in Apesteguia et al. [5]. In any event, such parametric assumptions

would be unrelated to the limited-attention aspects of the model and unnecessary for

achieving our primary goal in this section, which is to identify the cognitive distribution

in the presence of unknown taste heterogeneity.
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5 Conclusion

In this paper we have shown how aggregate choice shares can identify the distribution

of cognitive characteristics in a population of agents exhibiting limited attention. A key

advantage of our theory is that it uses minimal data: either choice shares from a single

menu (for a known taste distribution), or joint shares from as few as three menus (for

an unknown taste distribution). This contrasts with prior theoretical work on bounded

rationality, much of which uses individual choices from a family of overlapping menus.

Both approaches can be brought to bear on data, but in our view the present framework

is better suited to the practice of empirical research on discrete choice.

Under homogeneous tastes, we find that both the consideration capacity model and

the special case of the consideration probability model are highly tractable in terms of

cognitive identification. In each model the aggregate choice shares are seen to be linear

in quantities that are highly informative about the cognitive distribution; respectively,

small capacity probabilities and low-order raw moments. The resulting linear systems

are recursive and easily solved for the quantities in question. Indeed, our main find-

ings demonstrate that for large menus the cognitive distribution is essentially fully

identified, and even for smaller menus we can infer important features of this distribu-

tion (Propositions 2–5). These findings extend generically to heterogeneous tastes with

a known distribution, and when the taste distribution is unknown a parsimonious ex-

tension to our dataset ensures generic cognitive identification (Propositions 6–8).

Finally, we mention three possible ways to build on the work reported in this paper.

One is to generalize the models of consideration set formation that we have studied;

for instance, by relaxing the assumption that each Γ with |Γ| = γ is equally likely to

occur in the consideration capacity model, or by allowing ρ to vary by alternative in

the consideration probability model (see Brady and Rehbeck [9]). A second is to bring

additional models of bounded rationality—incorporating phenomena such as framing

effects or satisficing—into the present setting. And a third is to develop a complete

econometric specification of the multi-occasion environment in Section 4.2 that can be

used to estimate preference and attention characteristics from joint choice share data.
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