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Abstract

A successful security offering raises more revenue for investments that will be used

to pay distributions on the securities. This can give rise to a coordination problem

among investors, which the issuer can overcome by underpricing the security. Debt

minimizes the required underpricing and is thus optimal. Underpricing of equity can

be mitigated by share rationing or a minimum sales requirement. The theory also

yields several testable predictions and explains why the inclusion of secondary shares

lessens underpricing.
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1 Introduction

“Sometimes [an issuer in a public offering] ... is a comparatively new company, is
making the ... offering to raise the capital necessary to begin or expand its activities,
and the failure to receive it will substantially impair its ability to continue in business
or to conduct necessary operations.” (U.S. Security and Exchange Commission [82])1

Firms raise substantial capital for investments from issuing securities.2 A successful offering

will thus let an issuer invest more, leading to a higher future cash flow from which to pay

distributions on the securities. This can give rise to a coordination problem among investors,

in which it is worthwhile to subscribe only if enough others are expected to do so. We present

a new theory of underpricing and security design based on this idea.

Our first result is that standard debt is optimal as it is the least underpriced security.

Pecking order behavior à la Myers [64] thus results from an issuer’s desire to mitigate under-

pricing. This is consistent with the empirical evidence that debt is more common and less

underpriced than equity.3

We next study equity offerings. These are often rationed, which leads to oversubscription.

They may also have a minimum sales requirement (MSR): a subscription rate below which

the issuance is withdrawn. Both features can mitigate underpricing in our setting, which

helps explain their prevalence.

Our theory suggests a new explanation for why the inclusion of secondary shares in

an IPO mitigates underpricing (Ang and Brau [6, Table 7]; Habib and Ljungqvist [46]).

1This quote appears in the SEC’s announcement of rule 15c2-4, which penalizes intermediaries who fail
to distribute the proceeds of an offering to the issuer.

2Kim and Weisbach [56] find that a dollar raised in an IPO leads to increases of 78¢ in R&D and 20¢
in capital expenditures over the succeeding four years. Firms that undergo successful IPOs also hire more
workers in subsequent years (Babina, Ouimet, and Zarutskie [8]; Borisov, Ellul, and Sevilir [14]). IPOs raise
substantial revenue, ranging from 29.3% to 52.5% of pre-IPO firm value (Spiess and Pettway [80, Table 2];
Brennan and Franks [16, Table 2]). Similarly, initial public debt offerings - a firm’s first public debt offering
after an IPO - raised 19.7% of common equity in the sample of Datta, Iskandar-Datta, and Patel [27, Table
II] and 42% in that of Burnie and Ogden [18, Table 1].

3Some relevant studies are discussed in section 5.2.
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Intuitively, if the issuer receives a smaller proportion of the IPO proceeds, investors face

less strategic risk: the subscription rate has a smaller effect on the value of their shares. A

smaller discount thus suffices to induce them to subscribe.4

Our results also provide a new explanation of why underpricing is greater in best-effort

IPOs than in firm-commitment offerings. In a firm-commitment IPO, the underwriter com-

mits to buy all unsold shares. In our setting, such a commitment raises investors’ willingness

to pay by making issuance revenue less sensitive to the decisions of other investors.5 Indeed,

Ritter [70, Table 4, p, 273] finds that underpricing in firm-commitment IPOs is 14.8%, versus

47.8% in best-effort IPOs.6

We study a setting in which the dependence of a firm’s cash flow on issuance revenue gives

rise to multiple equilibria. In this setting, we require a criterion to predict which equilibrium

the investors will select. A common approach is to assume that the agents rely on a particular

criterion the researcher chooses. We instead let the agents use any criterion from a large set,

using a framework recently developed by Frankel [37]. Several robust empirical predictions

emerge. We find, e.g., that a firm with better alternative funding sources will optimally

choose a lower Minimum Sales Requirement in an IPO - a finding that has indirect support

(Welch [84, Table 5]).7

4In practice, secondary shares make up a small portion of shares sold in IPOs: 14.5% in Habib and
Ljungqvist [46, Table 1], 16.4% in Spiess and Pettway [80, Table 2], 29% in Ang and Brau [6, Table 1], and
36.2% in Huyghebaert and Van Hulle [51, Table 2]. This may be because their inclusion is interpreted as a
negative signal (Ang and Brau [6]).

5In firm-commitment offerings, the offer price is typically chosen on the eve of the offering, well after
most investors have indicated their degree of interest (Lowry, Michaely, and Volkova [60, pp. 219 ff.]). In
this way, weak interest can reduce the offer price and thus the issuance revenue which, in our theory, would
make the shares less valuable. Hence, investors in firm-commitment offerings may also face some uncertainty
about issuance revenue, which could help explain why such offerings are also underpriced (though to a lesser
extent).

6Booth and Chua [13, p. 299] argue that best-effort offerings tend to be smaller and thus require more
underpricing to entice investors to gather costly information about the firm. However, the underpricing
differential is evident within issuance size groups as well (Ritter [70, Table 4, p, 273]).

7For this and other empirical predictions, see the discussions around Claims 17 and 34.
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1.1 Related Literature

Our finding that firms issue debt to minimize underpricing gives a new foundation for Myers’

[64] pecking order hypothesis. The dominant foundation is based on asymmetric information;

see, e.g., Biais and Mariotti [11], DeMarzo [31], DeMarzo and Duffie [32], DeMarzo, Frankel,

and Jin [33], Leland and Pyle [59], Myers and Majluf [65], and Nachman and Noe [66].

However, these models also predict that any security sold in equilibrium will be fairly priced.

They thus do not explain why, in practice, underpricing is larger for equity than for debt.

In our theory, underpricing results from the risk that undersubscription will deprive the

issuer of needed capital. Relatedly, in Plantin [68], underpricing results from the risk that

undersubscription will lead to an illiquid secondary market, while in Welch [85] the issuer

underprices to encourage herding à la Scharfstein and Stein [77]. These studies also rely on

a single selection criterion and do not consider security design.8

In Allen and Faulhaber [3], Grinblatt and Hwang [44], and Welch [83], a privately in-

formed issuer may underprice to signal optimism, thus obtaining more favorable terms in

subsequent SEOs.9 Two other theories of underpricing (Rock [75] and Benveniste and Spindt

[10]) are discussed below in our section on share rationing (section 6.2).

We study the problem of raising capital for a project whose returns are used to repay

investors. Moreover, we rely on equilibrium selection criteria to predict investor behavior.

Both ingredients are also present in Allen et al [2], Chakraborty, Gervais, and Yilmaz [21]

(CGY), Goldstein and Pauzner [43] (GP), and Halac, Kremer, and Winter [47] (HKW).

However, these prior papers each use a single selection criterion and do not study security

design.10

8More precisely, Plantin restricts to bonds and uses the Laplace criterion (defined in section 3). Welch
studies stocks and obtains a unique equilibrium.

9Jegadeesh, Weinstein, and Welch [53] find weak support for signaling, while Michaely and Shaw [63]
return a negative result.

10CGY use the Pareto criterion and restrict to portfolios of equity and warrants; HKW use the Unique
Implementation criterion and study a setting (two cash flow realizations) in which debt and equity are
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2 Base Model

We focus throughout on fixed-price, best-effort issuance mechanisms. Best-effort mechanisms

and common in private placement offerings (Robbins [74, p. 2]) and were used in 35% of the

1,028 IPOs in Ritter’s dataset [70, p. 270]. Dunbar [35, p. 63] finds that fewer than 8% of

best-effort IPOs have price revisions.11

There are two periods: t = 1, 2. The players consist of a single issuer and a set I of

ex-ante identical agents. The agents may be either discrete (I = {1, ..., n}) or infinitesimal

(I = [0, 1]). They collectively have some high but finite amount p > 0 of wealth to invest, of

which each agent has an equal share.12 All players are risk-neutral and fully rational; there

is no discounting.

The issuer owns a random cash flow Y ≥ 0 that is realized in period 2. She can raise the

distribution of this cash flow by selling claims to it in period 1 in return for capital K ∈ [0, p].

The cash flow Yκ that results from raising capital K = κ is bounded and has the atomless

distribution function13

H (y|κ) d
= Pr (Yκ ≤ y) (1)

with associated survivor function

H (y|κ) d
= 1−H (y|κ) = Pr (Yκ > y) . (2)

equivalent; and Allen et al and GP use the Laplace criterion and focus on demand deposit contracts. These
criteria are defined below in section 3.

11Moreover, in our setting the issuer knows ex ante how much the agents are willing to pay so no price
revision is needed to ensure full subscription.

12The wealth constraint is assumed to be so high as to be nonbinding, except in section 6.2 where it may
bind at the optimal scheme.

13The notation “
d
=” denotes a definition. Capital K is random since it depends on the agents’ subscription

rate. The parameter κ is a generic realization of K.
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Let

y
κ
= max

 y ≥ 0 :

H (y|κ) = 0

 and yκ = min

 y ≥ 0 :

H (y|κ) = 1

 (3)

denote the lower and upper bound, resp., on the support of Yκ.
14 As H (·|κ) is bounded and

atomless,

0 ≤ y
κ
≤ yκ <∞. (4)

We assume higher capital κ raises the cash flow distribution in the following sense.

Hazard Rate Ordering (HRO)

1. For any capital levels κ′ > κ both in [0, p], the ratio H(y|κ)
H(y|κ′)

is decreasing in

y ∈
[
y
κ
, yκ

)
.

2. The bounds y
κ
and yκ on the conditional cash flow Yκ are continuous and nonde-

creasing in κ ∈ [0, p].

3. The function H (y|κ) is Lipschitz-continuous in κ, uniformly in y: there is a finite

constant λH such that for all y ∈
[
0, yp

]
and κ, κ′ ≥ 0,

∣∣H (y|κ′)−H (y|κ)
∣∣ ≤

λH |κ′ − κ|.

Part 1 states that a rise in issuance revenue lowers the cash flow hazard rate: the probability

that Y = y conditional on Y ≥ y.15 Part 2 states that a rise in issuance revenue does not

lower the highest and lowest possible cash flows. Part 3 is a technical continuity property.

14Since Yκ is bounded and atomless, H (y|κ) is continuous in y and satisfies H (0|κ) = 0 and, for high
enough y, H (y|κ) = 1. Thus, the definitions in (3) are well-defined.

15More precisely, if the density ∂
∂yH (y|κ) exists, then part 1 of HRO implies that for κ′ > κ,

0 >
∂

∂y

H (y|κ)
H (y|κ′)

=
H (y|κ)
H (y|κ′)

[
∂
∂yH (y|κ′)
H (y|κ′)

−
∂
∂yH (y|κ)
H (y|κ)

]
. (5)

That is, the cash flow hazard rate ∂
∂yH (y|κ)

/
H (y|κ) is decreasing in issuance revenue κ. However, HRO

is more general than (5) as it does not assume the density exists.
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HRO is weaker than the monotone likelihood ratio property16 but stronger than another

well-known property:

First Order Stochastic Dominance (FOSD) For any κ′ > κ both in [0, p] and y ≥ 0,

H (y|κ) ≤ H (y|κ′) where the inequality is strict for y ∈
(
y
κ
, yk′

)
.

Claim 1. HRO implies FOSD.

In period 1, the issuer may stay out (offer no security), raising zero capital but retaining

full rights to her cash flow: her payoff is then E [Y0]. Or she can offer a scheme s = (p, S)

where p ∈ [0, p] is the price per share and S is a monotone security:17

Definition 2. A security S is monotone if both S (y) and y − S (y) are nonnegative and

nondecreasing in y.

Since a monotone security is nonnegative, the issuer never strictly prefers to offer a scheme

with a zero price.18 We thus restrict attention to schemes (p, S) with positive prices:

p > 0. (6)

On seeing the scheme (p, S), the agents simultaneously decide whether or not to subscribe:

16See Shaked and Shanthikumar [78, theorem 1.C.1].

17A monotone security is one for which both the portion of the cash flow paid to investors and the
portion retained by the firm are nonnegative and nondecreasing in the cash flow. Monotonicity is a common
assumption in the security design literature; see, e.g., DeMarzo [31], DeMarzo and Duffie [32], DeMarzo,
Frankel, and Jin [33], Frankel and Jin [39], Hart and Moore [49], and Nachman and Noe [66]. Examples of
monotone securities include equity, standard debt, and warrants (call options). Monotonicity is justified by
supposing the issuer has free disposal over her cash flow Y and can also contribute cash to inflate it. Hence,
if her payout Y − S (Y ) were decreasing in Y , she would freely dispose of some cash in order to raise this
payout. And if, alternatively, the payout S (Y ) to the agents were falling in Y , the issuer would contribute
cash to inflate Y , thus paying the agents less and raising her payout Y − S (Y ) by more than the amount
contributed.

18Her payoff is E [Y0 − S (Y0)] from offering (0, S) versus E [Y0] from staying out. (The notation Yκ is
defined in (1).) As S ≥ 0, the former payoff is never higher than the latter.
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to pay p for a share of the security. Subscribing incurs a fixed cost19,20

c ≥ 0, (7)

which captures the time costs of due diligence, paperwork, and so on. Let L ∈ [0, 1] denote

the aggregate subscription rate: the proportion of agents who subscribe. If at least one agent

subscribes but the fraction 1 − L who don’t is positive, the firm sells the remaining 1 − L

shares at a fixed discount ρ ∈ (0, 1).21,22 Accordingly, total capital raised in the issuance is

K = Lp+ (1− L) (1− ρ) p ∈ [0, p] (8)

which equals the price p if all agents subscribe (if L = 1).

We will write a subscriber’s payoff in terms of the other-agent subscription rate ℓ ∈ [0, 1]:

the proportion of other agents who subscribe. The relation between the aggregate and

other-agent subscription rates is given by the function

L = L (ℓ)
d
=

ℓ if I = [0, 1]

1+ℓ(n−1)
n

if I = {1, ..., n}
(9)

Using (8) and (9), we can express capital K as a function of ℓ:

K = pr (ℓ) ∈ [0, p] (10)

19If the agents are discrete, each subscriber incurs a cost c/n and pays the issuer p/n for 1/n shares,
which entitle her to S (Y ) /n. If they are infinitesimal (I = [0, 1]), any set of agents of measure ε > 0 that
subscribes incurs the fixed cost cε and pays the issuer pε, for which they receive ε shares which pay them
S (Y ) ε in aggregate. (Each agent decides independently whether or not to subscribe.)

20We show in section 6.3 that a positive cost c prevents MSR schemes from eliminating underpricing. In
the two other variants of our model, the fixed cost c plays no essential role.

21Without the condition that at least one agent be willing to subscribe, an issuance would raise at least
(1− ρ) p in revenue no matter how attractive it is. The issuer could thus raise infinite revenue by letting p
go to infinity, which is absurd.

22For instance, the unsold shares might be placed with a large investor who demands a discount based
on a rule of thumb or who subsequently meddles in the firm’s decisions, lowering its cash flow à la Burkart,
Gromb, and Panunzi [17]. Alternatively, the firm may retain the unsold shares in its treasury and plan to
offer them later to a different set of investors, with the discount capturing uncertainty about the price and
timing of this sale. Importantly, no shares are sold at a discount in equilibrium as the issuer will either stay
out or offer a scheme (p, S) that induces all agents to subscribe.
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where we refer to

r (ℓ)
d
= 1− ρ+ ρL (ℓ) (11)

as the effective subscription rate: the number of shares that would have to be sold at the

price p to yield issuance revenue K. By inspection, r (·) is an increasing function from [0, 1]

to [1− ρ+ ι, 1] where

ι =

0 if I = [0, 1]

1
n

if I = {1, ..., n}
(12)

is the measure of a single agent. By (10), an agent’s expected payoff from subscribing to the

scheme s = (p, S), given the other-agent subscription rate ℓ, is23

πs (ℓ) = E
[
S
(
Ypr(ℓ)

)]
− θ (p+ c) (13)

where

θ > 0 (14)

is the gross risk-free interest rate. We assume

E [Y0] > θc, (15)

so the agents are willing to subscribe if offered a 100% equity stake at a zero price. By (6),

(7), and (14), the agents’ opportunity cost of subscribing is positive:

θ (p+ c) > 0. (16)

3 Resolving Indeterminacy

The monotonicity of S combined with FOSD implies that the payoff function defined in (13)

may be positive if and only if the other-agent subscription rate ℓ exceeds some threshold.

This can give rise to multiple equilibria: if all other agents are expected (not) to subscribe,

23By (1), Ypr(ℓ) is the random cash flow Yκ that results from issuance revenue κ = pr (ℓ).

9



it is a best response (not) to subscribe. For the issuer to choose an optimal scheme, she

must therefore predict how the agents will select an equilibria: she must have a theory of

equilibrium selection.

Frankel [37] shows that under mild single crossing properties, seven well-known equilib-

rium selection theories from the literature all lead to criteria of a common form:24

an agent (does not) subscribe if

∫ 1

ℓ=0

πs (ℓ) dΓ (ℓ) > (<) 0 (17)

for some distribution Γ that depends on the theory but not on πs. Rather than true beliefs,

the fictional beliefs Γ capture the intensity with which the choice of equilibrium depends on

different segments of the payoff function πs.

The selection theories and their associated fictional beliefs are as follows.

The Pareto theory is a heuristic argument that the agents will choose “all subscribe” if it

is a strict Nash equilibrium. This theory gives rise to the criterion (17) with fictional

beliefs Γ∗ that put all of their weight on all others subscribing: Γ∗ (ℓ) equals zero if

ℓ < 1 and one if ℓ = 1.

The Unique-Implementation (UI) theory is a heuristic argument that the agents will

choose “none subscribe” if it is a strict Nash equilibrium. This theory gives rise to

the criterion (17) with fictional beliefs ΓUI that put all of their weight on no others

subscribing: ΓUI (ℓ) equals one for all ℓ.

The MM theory (Matsui and Matsuyama [62]) is a continuous-time model in which the

subscription game is played repeatedly by randomly chosen groups of n rational agents.

The MM theory gives rise to the criterion (17) with fictional beliefs ΓLaplace under which

each other-agent subscription rate is equally likely.25

24This section presents an abridged version of Frankel [37], explaining only the concepts and findings that
we will need. Complete results, intuitions, and proofs appear in Frankel [37].

25That is, ΓLaplace (ℓ) equals ℓ when agents are infinitesimal and
∑⌊(n−1)ℓ⌋

i=0
1
n when they are discrete. The

role of the floor function is to ensure that the beliefs are defined for all ℓ ∈ [0, 1] and thus that the integral
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The Global-Games (GG) theory is a static model in which each agent sees a slightly

noisy signal of a common unobserved state. The GG theory gives rise to the criterion

(17) with the same beliefs ΓLaplace as the MM theory.26

The KMR theory (Kandori, Mailath, and Rob [55]) is a discrete-time model in which

random groups of n boundedly rational agents are selected, in each period, to play the

subscription game. Agents are more likely to play actions that had higher payoffs in

the prior period and each agent also has a small chance of “trembling”: of choosing

the unintended action. The KMR theory gives rise to the criterion (17) with fictional

beliefs ΓKMR
n (ℓ) equal to

∑⌊(n−1)ℓ⌋
i=0

 n− 1

i

(
1
2

)n−1
. As the number n of agents goes

to infinity, ΓKMR
n converges to a step function that jumps from zero to one at ℓ = 1/2.

The FY theory (Foster and Young [36]) is a continuous-time model in which random

groups of n boundedly rational agents are continually selected to play the subscription

game and small shocks are added to the population subscription rate. The FY theory

gives rise to the criterion (17) with beliefs ΓFY (ℓ) equal to 3ℓ2 − 2ℓ3 when agents are

infinitesimal and
∑⌊(n−1)ℓ⌋

i=0
6(i+1)(n−i)
n(n+1)(n+2)

when they are discrete.

The FH theory (Fudenberg and Harris [41]) is like FY but the shocks are added to the

measures of agents playing the two actions and agents tremble as in KMR. The FH

theory gives rise to the criterion (17) with fictional beliefs ΓFH that put one half weight

each on other-agent subscription rates of zero and one: ΓFH (ℓ) equals one half if ℓ < 1

and one if ℓ = 1.

Sufficient conditions for each theory to apply its associated criterion are given in Table 1

from Frankel [37]. These conditions refer to the following single crossing properties from

in (17) is well-defined.

26The GG theory originates with Carlsson and van Damme [20].
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Athey [7]:

Weak SC1: For all pairs ℓ′ > ℓ, π (ℓ) > 0 implies π (ℓ′) ≥ 0.

SC1: For all pairs ℓ′ > ℓ, π (ℓ) ≥ (>) 0 implies π (ℓ′) ≥ (>) 0.

Sufficient Conditions on π for Theory to Imply Criterion
Theory Criterion Discrete Agents Infinitesimal Agents
A. Heuristic Arguments
Pareto Pareto Weak SC1 Weak SC1
UI UI Weak SC1 Weak SC1

B. Rational-Player Models
MM Laplace Weak SC1 Continuous on [0, 1] & SC1 on (0, 1)
GG Laplace Weak SC1 Weak SC1

C. Evolutionary Models
KMR KMR Weak SC1 Theory requires discrete agents
FY FY Weak SC1 Lipschitz-continuous on [0, 1] & SC1 on (0, 1)
FH FH Weak SC1 Lipschitz-continuous on [0, 1] & SC1 on (0, 1)

Table 1: Sufficient conditions for selection theories to imply associated fictional beliefs
(Frankel [37]).

We study two variants of our base model. In each, the issuer selects a scheme s from

some set Σ.27 For any scheme s ∈ Σ, let

φΓ (s) =

∫ 1

ℓ=0

πs (ℓ) dΓ (ℓ) (18)

be an agent’s expected payoff from subscribing under the fictional beliefs Γ. We will say

that s is successful if φΓ (s) > 0: if the scheme induces the agents to subscribe under (17).

As in Frankel [37], we assume the issuer will either propose a successful scheme s, getting

some payoff Us, or stay out, getting E [Y0].
28 However, an optimal successful scheme may

27E.g., in the base model, Σ will be the set of price-security pairs (p, S) for monotone securities S and a
fixed price p ∈ (0, p].

28There are three cases by (17) and (18). If φΓ (s) is positive, all agents subscribe. If φΓ (s) is negative,
no agents subscribe. As failed offerings are costly in practice (Dunbar [35]), we assume the issuer will not
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not exist as the set O = {s ∈ Σ : φΓ (s) > 0} of successful schemes is not closed. Thus, we

follow Frankel [37] in looking for a scheme with the following property.

Definition 3. (Frankel [37]) A scheme s ∈ Σ is approximately optimal if (a) there is no

successful scheme s′ ∈ Σ that satisfies Us′ > Us and (b) for any ε > 0 there is a successful

scheme s′ ∈ Σ within ε of s, such that |Us − Us′ | < ε.

An approximately optimal scheme s yields a tight upper bound Us on the issuer’s payoff Us′

from any successful scheme s′. Moreover, there are nearby successful schemes s′ that give

the principal payoffs Us′ near Us. Finally, an approximately optimal scheme always exists.29

To find such a scheme, we use the following procedure.

Heuristic Search Procedure (HSP) (Frankel [37]) (a) Specify an agent type (discrete

or infinitesimal) and let R denote the set of feasible other-agent subscription rates ℓ;

it is [0, 1] when agents are infinitesimal and

λ =

{
i

n− 1
: i = 0, ..., n− 1

}
(19)

when they are discrete. (b) Specify a nonempty set Σ of feasible schemes s and, for

each scheme s in Σ, a payoff function πs : R → ℜ for the agents and a payoff Us ∈ ℜ

that the issuer receives if all agents subscribe. (c) Specify a metric µ on Σ and verify

that the set Σ is compact and the maps s → Us and, for all ℓ ∈ R, s → πs (ℓ) are

continuous with respect to µ. (d) Show that the sufficient conditions in Table 1 for

the chosen agent type (discrete or infinitesimal) hold for any scheme s ∈ Σ. (e) If the

set O = {s ∈ Σ : φΓ (s) > 0} of successful schemes is empty, abort as the issuer cannot

propose a scheme for which φΓ (s) < 0, preferring to stay out instead. If φΓ (s) is zero, the agents’ response
is indeterminate. In two of the three versions of our model, the issuer can induce the agents to subscribe
by sweetening the proposal infinitesimally (see Claims 11 and 23). Plausibly, she will do so. In the third
version (minimum sales constraints), there are schemes s satisfying φΓ (s) = 0 that cannot be sweetened in
this way. As letting the issuer propose such schemes leads to absurd results (n. 72), we rule them out.

29One can show that a scheme is approximately optimal if and only if it it maximizes Us on the closure of
O. If, moreover, Σ is compact and Us is continuous (which we will assume), the given maximum exists by
the extreme value theorem. See Frankel [37] for details.
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induce the agents to subscribe. (f) Let Σ′ be the result of removing from Σ an arbitrary

(and possibly empty) set of schemes that are not near any successful schemes.30 (g)

Find a scheme s∗ that maximizes Us on Σ′ subject to

φΓ (s) =

∫ 1

ℓ=0

πs (ℓ) dΓ (ℓ) ≥ 0. (20)

(h) Show that for every δ > 0 there is a successful scheme s′ ∈ Σ that is within δ of s∗.

Claim 4. (Frankel [37]) Assume steps (a)-(d) of HSP are satisfied. (A) If a scheme s∗ ∈ Σ

solves steps (e)-(h), it is approximately optimal in Σ. (B) If s∗ is approximately optimal in

Σ, then there is a way to delete schemes in step (f) such that s∗ satisfies steps (e), (g), and

(h).

We apply HSP to our base model and two extensions. In each case, we simplify by showing

that step (g) implies step (h). For one variant, schemes must be deleted in step (f) for HSP

to have a solution.31

4 Underpricing: An Intuition

An intuition for underpricing is as follows. If the issuer chooses to go ahead with an of-

fering, she will offer her security at a price that the agents are willing to pay given their

fictional beliefs.32 Hence the agents will all subscribe. On the other hand, all of the fictional

beliefs except Pareto assign a positive probability to undersubscription. If the agents rely

on such “pessimistic” fictional beliefs, the issuance must be underpriced to induce them to

subscribe.33 While the price may appear to be too low ex post, it is correct ex ante: any

higher price would lead the agents to choose the bad equilibrium in which no one subscribes.

30A scheme s is not near any successful schemes if for some δ > 0 there is no scheme s′ ∈ O that is a
distance less than δ away from s under the metric µ.

31See section 6.3.

32This relies on our assumption of symmetric information.

33An exception can occur in the case of debt with a very low face value; see Theorem 16.
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This result is illustrated in Figure 1. An issuer offers a single unit of an equity security

to a unit measure of agents.34 The security entitles an agent to a proportion α ∈ [0, 1] of

a future cash flow Y whose expectation is rising in the amount of capital raised. We hold

the security price p fixed and let the issuer vary the equity share α, which appears on the

horizontal axis. The ray ABC gives the agents’ valuation of the security for each share α if all

subscribe: if the firm raises capital p. The ray AFG gives their valuation if none subscribe: if

the firm raises zero capital. Finally, the ray ADE gives their valuation when the subscription

rate is distributed according to the fictional beliefs Γ, which we assume to lie between the

first two cases.35

An agent subscribes if doing so is optimal under her fictional beliefs: if her willingness

to pay ADE is not less than the price p. The issuer naturally chooses the lowest such equity

share, denoted α∗.36 As this share induces all agents to subscribe, the security’s ex-post

market value is given by the height of point B. Since this height exceeds p, the security is

underpriced by the length of segment BD.

Now suppose the issuer tries to leave less money on the table by choosing an equity

share slightly below α∗. The agents’ willingness to pay ADE is now below p: they will not

subscribe, so the ex-post market value of the security is the height of point F. As this height

is less than the price p, the security is now overpriced by the length of segment DF. In

the model, overpricing is not observed in equilibrium as it follows a deviation. In practice,

however, negative information may emerge during the first trading day. If this information

34The equity assumption is for illustration only; the argument applies to any monotone security.

35Why do the agents’ valuations have the form of a ray? An agent’s valuation is simply the equity share
α times the present value of the firm’s expected cash flow. This expectation, in turn, depends only on
the distribution of the amount pL of capital raised where L ∈ [0, 1] denotes the proportion of agents who
subscribe. As the distribution of L is held fixed within each case, the expected cash flow does not vary with
α (although it varies across cases). Hence, an agent’s valuation is a ray whose slope is the expected cash
flow in the given case.

36This example assumes the agents subscribe if the issuer chooses α = α∗ despite being indifferent under
their fictional beliefs. As noted in section 3, our results do not rely on this assumption.
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Figure 1: illustration of equilibrium underpricing result.

is large enough, it may push a share’s fair value below its offer price: the issuance appears

to have been overpriced. This fits the findings of Ritter and Welch [72, p. 1806], in which

both negative and positive first-day returns occur while the latter are more prevalent.

5 Solving the Base Model

As noted above, we assume the issuer will either stay out, getting E [Y0], or propose a

successful scheme s = (p, S). Since such a scheme s induces all agents to subscribe (L = 1), it

raises capital K = p by (8). The issuer’s payoff from a successful scheme s is the expectation

Us = E [Yp − S (Yp)] (21)

of the resulting cash flow Yp less the security payout S (Yp). By (13), a subscriber’s payoff

πs (1) if all others subscribe (ℓ = 1) equals the expected security payout E [S (Yp)] less the
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opportunity cost θ (p+ c) of subscribing. We will say that the scheme is fairly priced if this

payoff is zero: if

p = Vs
d
=

1

θ
E [S (Yp)]− c. (22)

We refer to Vs as the fair price of s and to

Vs − p (23)

as the underpricing of s: the gap between the scheme’s fair price and its offer price p. For a

fixed capital target p, maximizing the issuer’s payoff is equivalent to minimizing underpricing:

Claim 5. Let s = (p, S) and s′ = (p, S ′) be two schemes with the same price p. Then

Us > Us′ if and only if Vs − p < Vs′ − p. Moreover, if s and s′ are both successful, then the

issuer prefers the scheme that is less underpriced.

Proof. Immediate from (21) and (22).

For any fictional beliefs Γ, let the fictional cash flow Y Γ
p be the random cash flow under

the counterfactual belief that the other-agent subscription rate ℓ has the distribution Γ. It

is defined by

Pr
(
Y Γ
p ≤ y

)
= GΓ (y|p)

d
=

∫ 1

ℓ=0

Pr
(
Ypr(ℓ) ≤ y

)
dΓ (ℓ) =

∫ 1

ℓ=0

H (y|pr (ℓ)) dΓ (ℓ) (24)

by (1). Intuitively, GΓ (y|p) is the expectation, conditional on ℓ ∼ Γ, of the distribution

function of the cash flow Ypr(ℓ) that results when capital pr (ℓ) is raised. By (24), the

survival function of Y Γ
p is given by

GΓ (y|p)
d
= 1−GΓ (y|p) =

∫ 1

ℓ=0

H (y|pr (ℓ)) dΓ (ℓ) (25)

where H is defined in (2). More optimistic fictional beliefs weakly raise this function:

Claim 6. Fix a capital target p ∈ (0, p]. If Γ′ first-order stochastically dominates Γ, then Y Γ′
p

first-order stochastically dominates Y Γ
p : if Γ′ (ℓ) ≤ Γ (ℓ) for all ℓ ∈ [0, 1], then GΓ′ (y|p) ≥

GΓ (y|p) for all y.
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Finally, the fictional cash flow Y Γ
p that corresponds to Pareto beliefs Γ = Γ∗ is simply the

cash flow that results if capital p is raised for sure:37

Y Γ∗

p = Yp. (26)

We now write a security’s expected payout E
[
S
(
Y Γ
p

)]
under the fictional beliefs in terms

of the survival function GΓ and show that more optimistic fictional beliefs Γ weakly raise

this expected payout:

Claim 7. For any price p and monotone security S,

1. the security’s expected security payout E
[
S
(
Y Γ
p

)]
under the fictional beliefs Γ can be

written as
∫ yp
y=0

GΓ (y|p) dS (y), which equals
∫ yp
y=0

H (y|p) dS (y) under Pareto beliefs

Γ = Γ∗; and

2. if Γ′ first-order stochastically dominates Γ, then E
[
S
(
Y Γ′
p

)]
is not less than E

[
S
(
Y Γ
p

)]
.

We now carry out the steps of HSP. For HSP(a), we allow both discrete or infinitesimal

agents so R = [0, 1]. For HSP(b), we fix a price p ∈ (0, p] and let Σ denote the set Σp
0 =

{p} ×M of schemes with price p where

M
d
=

{
S :

[
0, yp

]
→

[
0, yp

]
: S (y) & y − S (y) are nonnegative & nondecreasing

}
(27)

is the set of monotone securities. Further, let πs and Us be as given in (13) and (21). For

HSP(c), we define the distance between any two schemes s = (p, S) and s′ = (p, S ′) to be

µ (s, s′) = sup
y∈[0,yp]

|S (y)− S ′ (y)| . (28)

We now verify the conditions of HSP(c):

Claim 8. The set Σp
0 is compact and the functions Us and, for all ℓ ∈ R, s → πs (ℓ) are

continuous with respect to µ.

Turning to HSP(d), the conditions of Table 1 hold for both agent types:

37This is because Pareto beliefs Γ∗ put all of their weight on ℓ = 1 and pr (1) equals p by (9) and (11).
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Claim 9. For any scheme s in Σp
0, πs is Lipschitz-continuous and satisfies SC1 on [0, 1].

For HSP(e), let O be the set Op
0 ⊆ Σp

0 of schemes s for which φΓ (s) > 0. By (13) and

(24), for any scheme s = (p, S) ∈ Σp
0 we can rewrite (18) as

φΓ (s) = E
[
S
(
Y Γ
p

)]
− θ (p+ c) . (29)

By monotonicity, S (y) ≤ y. Thus, by (29), Op
0 is nonempty if and only if the agents would

pay p for a 100% equity stake:

Claim 10. Op
0 is nonempty if and only if

p <
1

θ
E
[
Y Γ
p

]
− c. (30)

To satisfy HSP(e), we assume (30).

We remove no schemes in HSP(f). Next we show that HSP(g) implies HSP(h).

Claim 11. If the scheme s = (p, S) satisfies (20) then for any δ > 0 there is a successful

scheme s′ within δ of s.

To find an approximately optimal scheme, it thus suffices to solve HSP(g). We can rewrite

the constraint (20) in HSP(g) as

p ≤ 1

θ
E
[
S
(
Y Γ
p

)]
− c (31)

by (29): the price p does not exceed the security’s value under the fictional beliefs. Since,

moreover, the issuer prefers less underpriced schemes, HSP(g) is equivalent to minimizing

underpricing subject to (31):

Claim 12. A scheme s satisfies HSP(g) if and only if there is no alternative scheme s′ that

satisfies (31) and has lower underpricing (23).

Furthermore, the best one can hope for is fair pricing:38

38Intuitively, (31) states that the price p does not exceed the security’s value under the fictional beliefs
which, in turn, does not exceed the scheme’s fair price by (22) and part 2 of Claim 7.
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Claim 13. For any scheme s that satisfies (31), underpricing (23) is nonnegative.

Finally, the constraint (31) must bind at any approximately optimal scheme:

Claim 14. For any scheme s = (p, S) that solves HSP(g), the constraint (31) binds:

p =
1

θ
E
[
S
(
Y Γ
p

)]
− c. (32)

Intuitively, if (31) holds strictly at (p, S) then the issuer can replace S with (1− ε)S. For

small enough ε > 0, (31) will still hold but the issuer’s payoff Us will be higher.

5.1 The Pareto Case

We will say that a scheme s = (p, S) is fairly priced if underpricing Vs − p is zero. By (22),

this means that the expected payout of the security under full subscription equals the agents’

opportunity cost of subscribing:

E [S (Yp)] = θ (p+ c) . (33)

Fair pricing suffices for approximate optimality in the Pareto case:39

Claim 15. Assume Γ = Γ∗. Then s = (p, S) is approximately optimal if and only if it is

fairly priced.

Intuitively, agents who rely on the Pareto criterion play a best response to the correct

belief that all others will subscribe. Thus, they will buy any fairly priced security. And, by

Claim 5, the issuer is indifferent among all fairly priced securities as well.

5.2 The Non-Pareto Case

We now turn to the non-Pareto case: Γ ̸= Γ∗. We show that standard debt is approximately

optimal and thus minimizes underpricing among schemes that satisfy (31).40 Intuitively,

39The proof relies on the fact that, in light of our prior results, approximate optimality is equivalent to
HSP(g) by Claim 4.

40By Claim 12, solving HSP(g) is equivalent to minimizing underpricing subject to (31).
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debt minimizes the investors’ strategic uncertainty as its payout is constant except in the

rare case of default. Hence, it is the least underpriced security. We show, further, that a

debt issuance can be fairly priced if it is not too large. These predictions are consistent

with the literature: stock IPOs are underpriced (Ritter and Welch [72]), while the average

IPDO is more or less fairly priced (Datta, Iskandar-Datta, and Patel [27]). Moreover, debt

is indeed more prevalent than equity: nonconvertible debt made up 82% of all new capital

raised worldwide from 1990 to 2001 (Henderson, Jegadeesh, and Weisbach [50, Table 2, p.

69]).41,42

Let yΓ
p
denote the lower bound of the cash flow support under the fictional beliefs Γ.43

We will say that a debt security S (y) = min {y,D} is risk-free if it will surely be repaid if

all subscribe: if D ≤ y
p
. Otherwise we will say that it is risky. With this terminology, we

can now state the main result of this section:44

Theorem 16. Fix a price p ∈ (0, p] that satisfies (30). Let

S (y) = min {D, y} (34)

be the standard debt contract with face value D given implicitly by

p =
1

θ
E
[
min

{
D, Y Γ

p

}]
− c. (35)

The scheme (p, S) is approximately optimal and minimizes underpricing. Moreover:

1. If D ≤ yΓ
p
, the security S is risk-free and fairly priced.

41Debt also rises during investment spikes, suggesting that firms prefer to use debt to fund new investments
(Bargeron, Denis, and Lehn [9]; DeAngelo, DeAngelo, and Whited [29, pp. 255-7]; DeAngelo and Roll [30,
p. 405]; Denis and McKeon [34]; Im, Mayer, and Sussman [52, Table 4]).

42The prevalence of debt supports not only our model, but also prior explanations such as adverse selection
(section 1.1) and costly state verification (Townsend [81]). Further research is needed to determine the relative
importance of these various theories.

43It equals the lower bound y
pr(ℓΓ)

of the cash flow when revenue pr (ℓΓ) is raised, where ℓΓ is the lower

bound of the support of Γ. Under the five non-Pareto beliefs Γ surveyed in section 3, ℓΓ equals zero so yΓ
p

equals y
0
.

44The comment in n. 39 applies also to Theorem 16.
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2. If D ∈
(
yΓ
p
, y

p

]
, the security S is risk-free and underpriced.

3. If D > y
p
, the security S is risky and underpriced.

Intuitively, in case 1 the face value D lies below the lowest cash flow y
p
that can occur

under the true beliefs Γ∗: the security is risk-free. Moreover, the face value also lies below

the lowest cash flow yΓ
p
that can occur under the fictional beliefs Γ. Hence, the agents’

selection criterion also treats the security as risk-free: the agents fairly price the security. In

case 2, the security is still risk-free since D < y
p
. However, as D now exceeds yΓ

p
, the agents’

fictional beliefs place positive weight on default, leading them to value the security as if it

were risky and thus to undervalue it. Finally, in case 3, D exceeds y
p
so the security is risky.

Moreover, while default is possible under both Γ and Γ∗ (as D > y
p
≥ yΓ

p
), it is more likely

under Γ: the security is undervalued as in case 2.

We conclude with two empirical predictions regarding the yield spread D
p
−θ in new bond

issuances. We show that this spread is increasing in due diligence costs, as proxied by the

time cost c, but decreasing in the availability of alternative funding sources - which we proxy

by a rise in the sensitivity of the future cash flow to revenue shortfalls in the issuance.

More precisely, let H ′ (y|κ) be an alternative distribution that satisfies HRO and let

H ′ = 1−H ′ be the corresponding survival function. We focus on distributions H ′ that are

more sensitive to the cash flow in the following sense. First, the hazard ratio is weakly more

sensitive to issuance revenue under H ′ than H:

H ′ (y|κ′)H (y|κ) ≤ H (y|κ′)H ′ (y|κ) for any κ′ > κ and y ≥ 0, (36)

which is equivalent to H′(y|κ)
H′(y|κ′)

≤ H(y|κ)
H(y|κ′)

when both ratios are well-defined. Second, the shift

from H to H ′ is not “good news” (in a FOSD sense) for the cash flow conditional on full

subscription:

H ′ (y|p) ≤ H (y|p) for all y ≥ 0. (37)
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Claim 17. Fix the capital target p. Let c′ ≥ c and let H and H ′ be two distributions that

satisfy HRO, (37), and (36). Then the yield spread D
p
− θ given by the face value D in (35)

is weakly higher under (c′, H ′) than under (c,H), and is strictly so if c′ > c.

The empirical literature indeed suggests that bond yields in new issuances are rising in the

cost of due diligence (Andres, Betzer, and Limbach [5]; Datta, Iskandar-Datta, and Patel

[28]; Fridson and Garman [40]). However, we can find no test of the effect of a higher need

for issuance revenue.

6 How to Sell Equity if You Must

Many firms do sell equity, despite the fact (both empirically and in our model) that equity

leads to more underpricing.45 Reasons may include diversification (Zingales [86]; Chem-

manur and Fulghieri [23]), inducing information production (Chemmanur [22]), exploiting

stock overvaluation (Lucas and McDonald [61]; Ritter [71]), creating public shares to pay for

acquisitions (Brau and Fawcett [15]), and preserving borrowing capacity (DeAngelo, DeAn-

gelo, and Whited [29]). For issuers to leave so much money on the table, they must have a

strong incentive to issue equity that is unrelated to issuance revenue. Thus, we now study

two common devices that can mitigate underpricing in equity issuances. As equity is fairly

priced in the Pareto case (Claim 15), we restrict to the non-Pareto case.

In the first device, the issuer can raise the number of shares an investor can request so that

shares must be rationed once the subscription rate surpasses a given threshold.46 Once this

occurs, a further rise in the subscription rate entails a fall in each subscriber’s allotment such

that issuance revenue is unchanged. This insurance effect mitigates underpricing. However,

45See Datta, Iskandar-Datta, and Patel [27] and Ritter and Welch [72] for empirical support.

46In our base model, (a) there is a unit number of shares and investors and (b) each investor demands
either zero or one shares: oversubscription cannot occur. In the extension, we relax (b): an investor demands
either zero or z > 1 shares, so oversubscription occurs if more than 1/z investors subscribe.
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there is an offsetting effect: when the subscription rate is low enough to avoid rationing, a

subscriber receives her full share request but - as the issuance raises less capital in this event

- the shares are not worth as much. While this effect worsens underpricing, it is smaller than

the first effect for all but one of the selection criteria we consider.47 This may help explain

the empirical prevalence of ex-post share rationing.48

In the second device, the issuer specifies a minimum sales requirement (MSR): a minimum

subscription rate below which the issuance is withdrawn. By ensuring that subscribers

are not forced to buy shares when issuance revenue is low, such a scheme can mitigate

underpricing. In the extreme case of a zero time cost (c = 0), the issuer can eliminate

underpricing by setting the MSR to 100%.49 With a positive time cost c, in contrast, a rise

in the MSR has a second effect: it leads an investor to defray her fixed, positive time cost

over a shrinking set of subscription rates at which the issuance goes through. Because of

this effect, underpricing remains under an MSR. Moreover, an MSR below 100% is typically

optimal as the time cost effect grows as the MSR rises. This is consistent with the empirical

literature: most MSRs are positive but below 100% (Cho [24, Table 3]; Welch [84, Figure

1]).

For the second device, we also show two comparative statics results: if the issuer’s cash

flow is less sensitive to issuance revenue and/or the agents’ time cost is higher, a lower MSR

is optimal. These predictions are supported by two findings in Welch [84]. The first is

that issuers with higher sales revenue tend to choose lower MSRs (Welch [84, Table 5]). As

Welch notes, an issuer with higher sales revenue depends less on issuance revenue to fund its

projects. In our setting, this means that the cash flow is less sensitive to issuance revenue, so

the insurance effect of a higher MSR is smaller - leading the issuer to choose a lower MSR.

47Even for the criterion that is an exception, share rationing mitigates underpricing if the fixed subscription
cost is small enough; see section 6.2.

48See Amihud, Hauser, and Kirsh [4, p. 146] and Cornelli and Goldreich [26, p. 1419].

49This assumes that the upper bound of the support of the agents’ fictional beliefs is one, which holds for
all of the criteria of section 3 except Unique Implementation.
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The second finding is a positive association between the issuer’s MSR and the compen-

sation paid to the underwriter (Welch [84, Table 6]). This can be reconciled with our model

via the omitted variable of underwriter reputation. Intuitively, reputable underwriters both

charge high fees and certify the issuer, lowering an investor’s time costs (which include due

diligence).50 And as noted, a lower due time cost leads the issuer to raise her MSR. Our

model thus predicts that underwriter compensation and MSRs will be positively related.

6.1 Preliminaries

In the base model, the issuer proposes a price p and a monotone security S. The “base

model with equity” will refer to the restriction of this model to equity securities:

S (y) = αy for some contant α ∈ (0, 1) . (38)

In this restricted version, the agents’ participation constraint in step (g) of HSP can be

written as

p ≤ α

θ
E
[
Y Γ
p

]
− c. (39)

If the agents do not rely on the Pareto criterion, equity is always underpriced - in contrast

to debt (Theorem 16):51

Claim 18. Assume Γ ̸= Γ∗ and p > 0. 1. The true expected cash flow E [Yp] exceeds the

cash flow E
[
Y Γ
p

]
that is expected under the fictional beliefs. 2. Any equity security S that

solves HSP(g) is underpriced.

To mitigate the underpricing of Claim 18, we modify the base model with equity in two

ways. In each extension, the model is changed if all agents subscribe: each agent simply

50Evidence for certification comes from Lee and Masulis [58], who find that underwriter reputation is
negatively associated with earnings management by the issuer.

51Intuitively, the increment dS (y) = αdy in the payout of equity is positive at all realizations y as α > 0.
For y above the lower bound yΓ

p
on the cash flow given Γ, the agents require a discount to purchase such

increments since (by FOSD) their fictional beliefs Γ place a lower probability on cash flows above such y
than do the correct beliefs Γ∗. (The notation yΓ

p
is defined in section 5.2.)
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pays p for one share of the security. Reasoning as at the start of section 2 and using (38),

each extension thus has the following properties.

1. The issuer’s realized payoff Us from proposing a successful scheme s is

Us = (1− α)E [Yp] . (40)

2. A subscriber’s payoff if all others subscribe is πs (1) = αE [Yp]− θ (p+ c).

3. The scheme s is fairly priced if πs (1) is zero or, equivalently, if underpricing Vs − p is

zero where

Vs =
α

θ
E [Yp]− c (41)

is the security’s fair price.

As Us and Vs depend only on p and α and Us (resp., Vs) is increasing (decreasing) in α, an

optimal scheme minimizes underpricing:

Claim 19. In the base model with equity and each extension thereof, a scheme s maximizes

the issuer’s payoff Us over a set if and only if it minimizes underpricing Vs−p over the same

set.

We will also make use of the notation

Υp
ℓ = E

[
Ypr(ℓ)

]
, (42)

which denotes the expected cash flow conditional on the price p and the other-agent sub-

scription rate ℓ. A higher subscription rate is good news for this quantity and thus for the

fair value of any equity security:

Claim 20. For any price p > 0, the conditional expected cash flow Υp
ℓ is positive and

continuous, and is increasing in ℓ.

We now turn to the two extensions. In each, a 100% equity stake for the price p will be

feasible and will induce subscription under (30), which we henceforth assume. Thus, HSP(e)

is satisfied in each extension.
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6.2 First Device: Ex-Post Share Rationing

Many IPOs are oversubscribed, leading to share rationing (n. 48). Underwriters seem to

view rationing as desirable:

“Discussions with investment bankers indicate that they perceive that an offer should
be two to three times oversubscribed to create a ’good IPO’.” (Lowry, Michaely, and
Volkova [60, p. 223])

What is the advantage of rationing? Our model suggests an answer: the prospect of ex-post

rationing reduces ex-ante strategic uncertainty among the investors. Intuitively, once the

subscription rate is high enough that shares must be rationed, a further rise in this rate has

no effect on the amount of capital raised by the issuance. This can mitigate underpricing,

helping the issuer. This theory supplements two answers from the prior literature:52

• In Rock’s [75] winner’s-curse theory, the anticipation that high-quality issuances will

be rationed lowers the willingness to pay of uninformed traders. In order to elicit

the participation of these traders, issuers must underprice. This theory has empirical

support53 but raises the question of why issuers do not take steps to mitigate the

winner’s curse - e.g., by capping share requests ex ante.54

• In Benveniste and Spindt [10] and Sherman [79], issuers use underpricing to induce

investors to reveal private information about the firm, rewarding those who do so

52We focus here on models of share rationing. While these overlap with models of underpricing, they do not
coincide. For instance, the security in our base model is underpriced but not rationed. Other underpricing
theories are discussed below in section 1.1.

53See Aggarwal, Prabhala, and Puri [1], Amihud, Hauser, and Kirsh [4], and Michaely and Shaw [63].

54Brennan and Franks [16] suggest that issuers use ex-post rationing to prevent the formation of large
external blockholders and thus to avoid monitoring. Indeed, dispersed ownership may also strengthen in-
centives for managerial initiative (Burkart, Gromb, and Panunzi [17]) and lead to greater liquidity in the
secondary market (Plantin [68]). However, ex-ante caps would also give these benefits while avoiding the
winner’s curse. Moreover, external blockholders can act as a useful check on managers (Bolton and von
Thadden [12]), so a founder might welcome them as a way to commit to good management.
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with larger share allocations. While this theory has empirical support,55 there is also

evidence that underwriters allocate underpriced shares to their own profitable clients

and mutual funds.56 Moreover, there is an alternative mechanism - auctions - that

aggregates information efficiently without the need for underpricing (Pesendorfer and

Swinkels [67]).57

In the base model, each subscriber requests a single share; since the numbers of shares and

agents are equal, rationing cannot occur. To permit rationing, we now let each investor

ask for z ≥ 1 shares, where the cap z is announced by the issuer prior to the issuance.

If more than 1/z investors subscribe, demand exceeds supply: shares must be rationed.

Since issuance proceeds in this range are fixed, strategic uncertainty is reduced. However,

rationing also introduces a winner’s curse: a subscriber gets more shares when issuance

revenue is lower. The net effect of such a scheme is to worsen underpricing under the FH

criterion but to lessen it under the four other non-Pareto criteria of section 3.

In addition to a price p and equity stake α, the issuer now chooses a number z ∈ [1, p/p]

of shares to offer to each agent.58,59 We focus on the case of infinitesimal agents: L = ℓ.60

If total share demand ℓz does not exceed the unit supply of shares, each subscriber gets z

shares. Else shares are rationed: each subscriber gets 1
ℓ
shares, so the total number ℓ× 1

ℓ
of

55For instance, Hanley [48] finds that offer price rises are followed by greater underpricing. Cornelli and
Goldreich [25, 26] find that bidders who include limit prices receive more shares and that these limit prices
affect the issue price.

56Goldstein, Irvine, and Puckett [42], Jenkinson, Jones, and Suntheim [54], and Reuter [69] find that
issuers sell underpriced shares to their profitable clients, while Ritter and Zhang [73] find that they place
the shares with their own mutual funds.

57This point is made also by Ritter and Welch [72, n. 10 (p. 1810)] and Lowry, Michaely, and Volkova
[60, p. 241].

58The upper bound on z is from the agents’ wealth constraint: a subscriber’s wealth p must suffice to pay
p per share for z shares.

59An equivalent way to model rationing is to reduce the number of shares below one, while continuing to
let each investor request one share; details available on request.

60The assumption merely simplifies notation; the results hold qualitatively in the discrete case as well.
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shares sold is one. Let

q =

ℓz if ℓ ≤ 1/z

1 if ℓ ≥ 1/z

(43)

denote the aggregate number of shares that the subscribers get. As in the base model, the

remaining shares are sold at a discount ρ: revenue K equals pr (q) where r (q) is defined in

(11). Thus by (42), the expected cash flow conditional on q is Υp
q . Let

ψs (q) = αΥp
q − pθ (44)

denote the expected payoff per share purchased, gross of the time cost. The payoff πs (ℓ)

from subscribing to a scheme s is simply the payoff ψs (q) per share, evaluated at the number

q of shares sold given in (43), times the number of shares

q

ℓ
=

z if ℓ ≤ 1/z

1
ℓ

if ℓ ≥ 1/z

(45)

that a subscriber actually receives, minus the opportunity cost cθ of her time:

πs (ℓ) =

zψs (ℓz)− cθ if ℓ ≤ 1/z

1
ℓ
ψs (1)− cθ if ℓ ≥ 1/z,

(46)

which can be written succinctly as

πs (ℓ) =

(
z ∧ 1

ℓ

)
ψs (ℓz ∧ 1)− cθ (47)

where “a ∧ b” denotes min {a, b}. The base model corresponds to a cap z of one, which in

(47) yields

π(p,α,1) (ℓ) = ψs (ℓ)− cθ. (48)

Comparing (47) to (48) reveals the three effects of an ex-post rationing scheme. The first

two mitigate underpricing while the third worsens it:

1. The expected payoff per share is higher for each ℓ < 1: it is ψs (ℓz ∧ 1) in (47) versus

ψs (ℓ) in (48). Intuitively, the higher cap z allows the issuer to reach its capital target

29



p more rapidly as ℓ rises, so the expected cash flow is higher for all ℓ < 1 (and is the

same at ℓ = 1). Thus, an agent with fictional beliefs Γ relies on a higher valuation to

make her subscription decision.

2. The number of shares purchased is higher for each ℓ < 1 under the scheme: it is z ∧ 1
ℓ

in (47) versus one in (48). The scheme thus leads an agent to defray her time cost c

over a larger number of shares purchased in making her decision.

3. The number (45) of shares that a subscriber buys is constant on ℓ ≤ 1/z and declining

on ℓ ≥ 1/z: she buys more shares when they are less valuable. This “winner’s curse”

is due not to asymmetric information as in Rock [75], but rather to the form (17) of

agents’ equilibrium selection criterion.

Effects 1 and 2 raise an agent’s willingness to pay while effect 3 lowers it. Thus, whether the

scheme lessens underpricing depends on the relative strengths of the three effects.

We now carry out the steps of HSP. For HSP(a), the agents are infinitesimal so R = [0, 1].

For HSP(b), fix a price p ∈ (0, p] that satisfies (30) and let Σ denote the set Σp
1 of all schemes

s = (p, α, z) that satisfy α ∈ [0, 1], z ∈ [1, p/p], and the following condition:61

πs (1) ≥ 0 or, equivalently, p ≤ α

θ
Υp

1 − c, (49)

which states that all-subscribe is a Nash equilibrium - or, equivalently, that the issuance is

not overpriced under full subscription.62

Let the payoff functions Us and πs be given by (40) and (46), respectively. For HSP(c),

let the distance µ (s, s′) between s and any scheme s′ = (p, α′, z′) be the maximum difference

between the parameters, max {|α− α′| , |z − z′|}.

Claim 21. The set Σp
1 is compact and the functions Us and, for all ℓ ∈ R, s → πs (ℓ) are

continuous with respect to µ.

61The equivalence in (49) is by (44) and (47).

62We rely on (49) to show that πs satisfies SC1. It holds automatically if c = 0.
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For HSP(d), we show:

Claim 22. For s ∈ Σp
1, πs is Lipschitz-continuous on [0, 1] and satisfies SC1 on (0, 1).

For HSP(e), by (30) the 100% equity scheme (p, 1, 1) is successful. We remove no schemes

in HSP(f). We next show that HSP(g) implies HSP(h).

Claim 23. Let s solve HSP(g). For any δ > 0 there is a successful scheme s′ within δ of s.

To find an approximately optimal scheme, it thus suffices to solve HSP(g). We first

transform (20) to ease its interpretation:

Claim 24. The constraint (20) holds if and only if

p ≤ α

θ
E
[
Y Γz

p

]
− c

Qz
(50)

where Y Γz

p is the fictional cash flow that results when the aggregate number q of shares sold

has the distribution Γz given by63

Γz (q) =


zΓ(q/z)

Qz if q < 1

1 if q = 1

(51)

and

Qz =

∫ 1

ℓ=0

min

{
z,

1

ℓ

}
dΓ (ℓ) ∈ [1, z] (52)

is the expected number of shares that a subscriber will receive under the fictional beliefs Γ.

We refer to Γz as the effective fictional beliefs as they play the same role in (50) as the

agents’ fictional beliefs Γ do in (39). An intuition for (51) is as follows. If q < 1, there is

no ex-post rationing: each of the ℓ subscribers gets z shares whence ℓz = q or, equivalently,

ℓ = z/q. Hence Γ (z/q) is the probability under Γ that at most q shares are sold. But we

must also take account that a subscriber receives an above-average number of shares in this

63Importantly, Γz is not the distribution of the number q of shares sold under Γ. Rather, as discussed after
the claim, it is the result of weighting that distribution by the number of shares purchased by an individual
subscriber when q shares are sold in aggregate.
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case: z rather than the unconditional expected number of shares, Qz ∈ [1, z]. The weight

dΓz (q) that an agent assigns to the per-share payoff ψs (q) for a quantity q < 1 is simply

equal to the probability dΓ (q/z) under Γ that q shares are sold times the relative number

z/Qz of shares that she receives when q < 1. This completes the intuition.64

A rise in the cap z has three effects on the constraint (50). First, Γ (q/z) falls: there is

now a higher chance that more than q shares will be sold under Γ. This is effect #1 above;

it lessens underpricing. Second, Qz rises, which shrinks c/Qz: the time cost c is defrayed

over a larger mean number Qz of shares purchased under the fictional beliefs. This is effect

#2 above; it also lessens underpricing. Finally, the weight z/Qz on quantities q < 1 rises: a

subscriber now buys more shares when they are not rationed.65 This is effect #3 above; it

worsens underpricing.

If the right hand side of the constraint (50) is monotone in z, a corner solution is optimal:

Claim 25. If, for fixed p and α, the right hand side of (50) is everywhere rising (falling) in

z, then z = p/p (resp., z = 1) at any solution to HSP(g).

Intuitively, by (21), HSP(g) involves maximizing Us = (1− α)E [Yp] subject to (50). At a

solution s, the constraint (50) must bind since otherwise the issuer could lower α, raising Us.

If, moreover, the right hand side of (50) is rising in z, the issuer can raise her payoff Us by

raising z while lowering α. This also lowers underpricing by Claim 5. Hence, it is optimal to

set z at its maximum (minimum) if the right hand side of (50) is everywhere rising (resp.,

falling) in z.

For each non-Pareto selection criterion of section 3, Figure 2 shows the fictional beliefs

64The weight dΓz (1) that an agent assigns to the per-share payoff ψs (1) when all shares are sold is simply
the residual 1− limq↑1 Γ

z (q). It equals the probability that ℓ ≥ 1/z times the mean relative number of shares

received in this case. It can be written explicitly as
∫ 1

ℓ=1/z
1

ℓQz dΓ (ℓ): the integral, over subscription rates ℓ

at which shares are rationed, of the probability dΓ (ℓ) that exactly ℓ others will subscribe under the fictional
beliefs, times the relative number (1/ℓ)/Qz of shares that a given subscriber gets when ℓ others subscribe.

65This holds since, by (52), Qz/z equals
∫ 1

ℓ=0
min

{
1, 1

ℓz

}
dΓ (ℓ) which is decreasing in z.
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Γ which, by (51) and (52), are equal to the effective fictional beliefs Γz with cap z = 1.66

In contrast, Figure 3 shows Γz with the higher cap z = 1.5: shares are rationed if over two

thirds of the agents subscribe. This comparison suggests that a rise in z lowers the function

Γz under the Laplace, KMR, and FY criteria, raises it under the FH criterion, and has no

effect under the UI criterion. In the proof of Proposition 26, we show that these observations

generalize to any rise in z.

Moreover, if a rise in z lowers Γz, then it mitigates underpricing as it lowers both terms

on the right side of (50). If it raises Γz, then it lowers the first term but raises the second.

Hence, it mitigates (worsens) underpricing if the time cost c is sufficiently high (low). Finally,

if it leaves Γz unchanged, then it has no effect on underpricing if c = 0 but lowers it if c > 0.

These intuitions underlie the main result of this section:67

Proposition 26. The effects of a rise in z on underpricing in an approximately optimal

scheme are as follows, for each non-Pareto selection criterion.

1. UI criterion: mitigates underpricing if c > 0; no effect if c = 0.

2. Laplace criterion: always mitigates underpricing.

3. KMR criterion in limit as n → ∞: underpricing falls to zero as z rises from 1 to 2

and is zero for z ≥ 2.68

4. FY criterion: always mitigates underpricing.

5. FH criterion: mitigates (worsens) underpricing if c exceeds (is less than) the positive

threshold
Υp

1−Υp
0

2Υp
0
p.

66Intuitively, a subscriber’s allotment is capped at one share in the base model.

67The comment in n. 39 applies here as well.

68While this section assumes infinitesimal agents, there is continuity in the limit as n → ∞. Thus, the
results of this section apply also to the case of an arbitrarily large number of discrete agents.
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gets

Figure 2: Fictional beliefs Γ in the base model (equal to Γz with z = 1).

Figure 3: Effective fictional beliefs Γz with cap z = 1.5.
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Claim 27. The effects on the issuer’s payoff are opposite to those on underpricing.

For most criteria, rationing mitigates underpricing or at least leaves it unchanged. For

the FH criterion, it may worsen underpricing but only if the time cost c is small. Thus,

rationing usually helps the issuer by letting her sell equity at a higher price. This may help

explain the empirical prevalence of this practice.

6.3 Second Device: a Minimum Sales Requirement (MSR)

In the vast majority of best-effort equity offerings, there is a minimum share requirement

(MSR): a subscription rate below which the issuance is canceled (Cho [24, Table 3]; Welch

[84, Fig. 1]). We now extend the base model with equity to include this feature.

If the time cost c is zero and the upper bound of the support of the fictional beliefs Γ

is one,69 then underpricing shrinks as the MSR rises and reaches zero at an MSR of 100%.

This is not so with a positive time cost c, as this cost must now be defrayed over a shrinking

set of subscription rates at which the issuance goes through. In this case, an MSR below

100% is typically optimal and the scheme does not eliminate underpricing. We also derive

two comparative statics results: the MSR is decreasing in the time cost c and rising in the

sensitivity of the expected cash flow E [Yκ] to issuance revenue κ. The findings of Welch [84]

support these two predictions.

As the payoff function πs in an MSR scheme can be discontinuous, we must assume agents

are discrete (see Table 1). In addition to a price p and an equity share α, the issuer now

chooses a subscription rate L0 ∈ Λ below which the issuance is withdrawn where

Λ
d
=

{
k

n
: k = 1, ..., n

}
(53)

is the set of aggregate subscription rates L that can occur if at least one agent subscribes.70

69This is so for five of the six criteria of section 3. The exception is UI, for which the upper bound is zero.

70If L0 = 0, the issuance is never withdrawn, which is equivalent to the base model with equity.
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Let ℓ0 ∈ λ be the other-agent subscription rate that corresponds to L0; it is given by

L0 = L (ℓ0).

As in (44), let ψs (ℓ) = αΥp
ℓ − pθ denote the expected payoff from subscribing, gross

of the time cost, if ℓ others subscribe and the issuance is not withdrawn. This function is

increasing in ℓ by Claim 20. If the issuance goes through, a subscriber incurs the time cost

cθ in return for the benefit ψs (ℓ) of buying a share. If it is canceled, she incurs the time cost

for no benefit. Hence, the agents’ payoff function is

πs (ℓ) =

−cθ if ℓ < ℓ0;

ψs (ℓ)− cθ if ℓ ≥ ℓ0.

(54)

We now step through HSP. For HSP(a), the agents are discrete so R = λ. For HSP(b),

fix a price p ∈ (0, p] and let Σ denote the set Σp
2 of all schemes s = (p, α, ℓ0) for (α, ℓ0) ∈

[0, 1]× λ.71 Let the payoff functions Us and πs be given by (40) and (54), respectively. For

HSP(c), let the distance µ (s, s′) between s and any scheme s′ = (p, α′, ℓ0) be the maximum

distance between parameters, max {|α− α′| , |ℓ0 − ℓ′0|}. We have:

Claim 28. The set Σp
2 is compact and the functions Us and, for all ℓ ∈ R, s → πs (ℓ) are

continuous with respect to µ.

For HSP(d) we show:

Claim 29. For any scheme s in Σp
2, the function πs (ℓ) satisfies weak SC1.

For HSP(e), we assume (30) so the set of successful schemes is nonempty: it includes

(p, 1, 0). A difference comes in HSP(f) where - unlike in the other two variants of the model

- we must delete schemes for HSP to produce a result. Let

ℓΓ = min {ℓ′ ∈ [0, 1] : Γ (ℓ′) = 1} (55)

71We can let the issuer choose ℓ0 rather than L0 since, by (9), the map L0 = L (ℓ0) is a bijection between
ℓ0 ∈ λ and L0 ∈ Λ.
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be the highest other-agent subscription rate that can occur under the fictional beliefs Γ.

Since the agents are discrete, Γ puts positive weight on ℓΓ. In HSP(f), we eliminate any

scheme s = (p, α, ℓ0) for which ℓ0 > ℓΓ.
72 For any scheme s = (p, α, ℓ0) that survives HSP(f),

let

Qℓ0
d
= 1− lim

ℓ′↑ℓ0
Γ (ℓ′) (57)

denote the probability, under Γ, that ℓ ≥ ℓ0: that the issuance will not be withdrawn or,

equivalently, the expected number of shares that a subscriber receives under Γ. It is positive:

Claim 30. If s = (p, α, ℓ0) survives HSP(f), then Qℓ0 > 0.

As a result of the deletions in HSP(f), HSP(g) implies HSP(h):

Claim 31. Let s solve HSP(g). For any δ > 0 there is a successful scheme s′ within δ of s.

To find an approximately optimal scheme, it thus suffices to solve HSP(g). Let the

truncated beliefs

Γℓ0 (ℓ) =

0 if ℓ < ℓ0

Γ(ℓ)−[1−Qℓ0 ]
Qℓ0

if ℓ ≥ ℓ0

(58)

be the posterior over the subscription rate ℓ for an agent with prior Γ who learns that the

issuance is not canceled: that ℓ ∈ [ℓ0, 1].
73

We now rewrite the participation constraint in terms of the truncated beliefs:

72Such a scheme s can be eliminated as it is not near any successful scheme: for any ε < ℓ0−ℓΓ, no scheme
s′ that is within ε of s is successful as the withdrawal threshold of s′ exceeds ℓΓ and thus

φΓ (s
′) = −cθ ≤ 0 (56)

by (18) and (54). To see why we must remove such schemes, suppose the time cost c is zero and let s equal
(p, 0, ℓ0) for some ℓ0 > ℓΓ. The scheme asks the agents to give the issuer p for nothing. It thus maximizes
the issuer’s full-subscription payoff Us in Σp

2. And since c = 0, the scheme satisfies (20) by (56). However,
it is absurd that investors would agree to pay p > 0 for nothing. Moreover, if not dropped in HSP(f), the
scheme s would be selected in HSP(g) but fail HSP(h): the procedure would not produce a solution.

73Equation (58) follows from Bayes’s Rule.
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Claim 32. The constraint (20) can be written as

p ≤ α

θ
E
[
Y

Γℓ0
p

]
− c

Qℓ0

. (59)

Comparing (59) to (39), the benefit of an MSR is to raise the fictional cash flow Y
Γℓ0
p

that the agents use to value the shares. The cost of the scheme, captured by c/Qℓ0 , is the

agents’ need to defray the time cost c over a dwindling number of shares Qℓ0 that they will

be allowed to purchase under their fictional beliefs.

We now characterize the approximately optimal scheme when the time cost is zero, and

derive some properties of underpricing in such a scheme when the time cost is positive.74

Let ηΓ (p) denote the expected cash flow E
[
Ypr(ℓΓ)

]
when the other-agent subscription rate

equals the upper bound ℓΓ of the support of the fictional beliefs.

Proposition 33. The following holds in any approximately optimal MSR scheme s =

(p, α, ℓ0).

1. If c = 0, then ℓ0 = ℓΓ,

α =
θp

ηΓ (p)
> 0, (60)

and underpricing Vs − p equals

p

[
E [Yp]

ηΓ (p)
− 1

]
(61)

which is zero (resp., positive) if ℓΓ = (<) 1.

2. If c > 0, then underpricing Vs − p is positive and decreasing in c. It is bounded below

by

ucp = (p+ c)

[
E [Yp]

ηΓ (p)
− 1

]
≥ 0 (62)

and above by

ucp = p

[
E [Yp]

ηΓ (p)
− 1

]
+ c

[
E [Yp]

QℓΓ
ηΓ (p)

− 1

]
> 0. (63)

74The comment in n. 39 applies to Proposition 33 as well.
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As c shrinks to zero, both bounds converge to (61).

For all of the non-Pareto fictional beliefs in section 3 except UI, the upper bound ℓΓ of

the support of Γ is one and thus ηΓ (p) = E [Yp]. By Proposition 33, underpricing is zero

for such fictional beliefs if c = 0. However, even for such beliefs, underpricing cannot be

eliminated if c > 0 because the c/Qℓ0 term in (59) exceeds the corresponding c term in (39).

Moreover, as this term can become large as ℓ0 → 1, a threshold below one will typically be

optimal. This is consistent with empirical patterns (Cho [24, Table 3]; Welch [84, Fig. 1]).

Welch [84, Table 5] also finds that in best-effort offerings, firms with higher sales revenue

tend to choose lower MSRs. His explanation is that such firms do not rely as much on

issuance revenue to fund their projects. This suggests that if the sensitivity of the issuer’s

cash flow E [Yκ] to the issuance revenue κ is lower, the issuer should choose a lower MSR.

We now derive this result formally in our setting. We show, moreover, that a higher cost of

due diligence (as proxied by the time cost c) also make a lower MSR optimal and link this

to another finding in Welch [84].

Formally, we study the effect of replacing the parameters (c,H) with alternative parame-

ters
(
ĉ, Ĥ

)
where the conditional distribution function Ĥ also satisfies HRO. For each κ ≥ 0,

let Ŷκ be the conditional cash flow corresponding to Ĥ; that is, Pr
(
Ŷκ ≤ y

)
= Ĥ (y|κ). We

assume that under the new parameters, the time cost is weakly higher and the expected cash

flow is weakly less sensitive to issuance revenue:

P1 ĉ ≥ c ≥ 0 and, for any pair κ′ ≥ κ both in [0, p],
E[Ŷκ′ ]
E[Ŷκ]

≤ E[Yκ′ ]
E[Yκ]

.

Fix a price p ∈ (0, p]. For an issuer with parameters (c,H), let η denote the set of MSRs ℓ0

that occur in approximately optimal schemes.75 Let η̂ denote the analogous set for an issuer

with parameters
(
ĉ, Ĥ

)
. If an issuer is willing to choose ℓ0 over the higher ℓ

′
0 with when her

parameters are (c,H), then she is also willing to choose ℓ0 over ℓ′0 under
(
ĉ, Ĥ

)
:

75More precisely, let A denote the set of approximately optimal schemes of an issuer with parameters
(c,H) and let η be the set of all MSRs ℓ0 for which there is an α ∈ [0, 1] such that (p, α, ℓ0) is in A.
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Claim 34. Let ℓ0 ∈ η and let ℓ′0 > ℓ0. Under P1, if ℓ′0 is in η̂ then so is ℓ0.

Intuitively, raising the MSR ℓ0 has a cost and a benefit for the issuer. The cost is captured

by the c
Qℓ0

term in (59): the agents must defray their fixed time cost c over a smaller chance

Qℓ0 that the issuance will go through under the fictional beliefs.76 This cost is increasing in

the time cost c. On the other hand, a higher MSR ℓ0 benefits the issuer by raising the cash

flow E
[
Y

Γℓ0
p

]
that the agents expect under their fictional beliefs, conditional on the issuance

going through. This benefit is increasing in the sensitivity of the cash flow Ŷκ to issuance

revenue κ. A switch from (c,H) to
(
ĉ, Ĥ

)
thus raises the cost of a higher MSR and lowers

the benefit, leading the issuer to choose a weakly lower MSR.

Claim 34 indicates that a lower time cost c leads an issuer to choose a weakly higher MSR.

This can explain Welch’s [84] finding that the MSR is positively related to underwriter fees.

Intuitively, a higher quality underwriter both certifies issuer quality better (leading to a

lower time cost c of subscription) and charges a higher fee. By Claim 34, the lower time cost

leads to a higher MSR: the association between underwriter fees and the MSR is positive as

in Welch [84, Table 6].

7 Discussion

Firms raise substantial capital from selling primary securities. This capital can be invested

to raise the firms’ future cash flows which, in turn, leads to higher distributions on the same

securities. Thus, investors in a public offering face strategic uncertainty. In this setting,

which securities are best for the issuer? And if equity must be sold, how best to structure

the offering?

We study these questions in a stylized setting. An issuer owns a stochastic cash flow.

She designs and sells a monotone security whose distributions are funded by the cash flow.

76This harms the issuer by raising the equity share α needed to satisfy the participation constraint (59).
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If the issuance raises more capital, the distribution of the cash flow is higher, which makes

the securities more valuable. This leads to strategic complementarities in the decision to

subscribe. In order to select among multiple equilibria, investors can use any criterion from

a large set.

We show that investors who face strategic uncertainty require a discount in order to be

willing to subscribe.77 Standard debt is optimal as it minimizes this underpricing. Intuitively,

as long as an issuer of debt does not default, the security payout does not depend on her

cash flow. Debt thus minimizes the negative impact of strategic uncertainty on the agents’

valuation of the security. Indeed, empirical studies have found that public debt offerings

are less underpriced than stock IPOs which, in turn, are less underpriced when they contain

more secondary shares (whose proceeds accrue to insiders rather than to the firm). We show,

moreover, that the optimal yield spread on new bond issuances is increasing in due diligence

costs but decreasing in the availability of alternative funding sources.

We also study two common devices in equity offerings. The first is ex-post share ra-

tioning: if too many investors subscribe, the issuance is deemed “oversubscribed” and each

subscriber’s share allotment is reduced proportionally. Rationing reduces uncertainty over

issuance revenue but introduces a winner’s curse: a subscriber gets more shares when is-

suance revenue is lower. The net effect of such a scheme is to mitigate underpricing under

all but one of the selection criteria that we study.

The second is the minimum sales requirement (MSR): if the subscription rate falls below

some threshold, the issuance is canceled. This device presents a trade off: while a higher

MSR lowers an agent’s uncertainty about the revenue she will receive conditional on the

sale going through, it shrinks the set of subscription rates over which the agent can defray

any time costs of subscription (such as due diligence). Accordingly, such a scheme cannot

eliminate underpricing unless the agents’ time costs are zero. In the general case, we show

77Under limited conditions, a security may be fairly priced (see Theorem 16).
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that the optimal MSR is decreasing in investors’ due diligence costs and in the availability

of alternative funding sources.
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