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Abstract

In many applied settings, an activity or project requires a critical mass of

participants to be worthwhile. This property can give rise to multiple equilib-

ria. We study seven well-known equilibrium selection theories: two heuristic

arguments, two models with rational players, and three from the evolutionary

literature. With one exception, each relies on strategic complementarities. We

weaken this to a mild single crossing property and show that the theories’ pre-

dictions have a common form: an agent plays a best response to some fictional

distribution of the participation rate of her opponents.
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1 Introduction

Many activities offer benefits that depend on the number of others who participate.

Examples include investing in a project; joining an online platform; leaving one’s

deposits in a bank; and buying an electric vehicle.

If participating is worthwhile only if enough others participate, then both all-

participate and none-participate are self-fulfilling prophecies. This multiplicity poses

a challenge for game theory. Economists have responded with a number of theories of

how agents might select an equilibrium. These include heuristics such as the Pareto

criterion, as well as the predictions of evolutionary and global games.

In applied work, most researchers have assumed that the agents use a particular

selection criterion that the researcher chooses. A concern is that the resulting pre-

dictions may depend nontrivially on this choice. A more robust approach would be

to prove results that hold for any selection criterion in some large set. However, a

researcher who undertook this approach would need not only to grasp a variety of

notational systems, but also to allocate scarce space in her paper to explaining and

analyzing the various criteria. Unsurprisingly, most researchers have not done so.

In addition, many selection results rely on restrictive payoff assumptions that

hamper their application. The most common is strategic complementarities: the

payoff from participating is nondecreasing in the overall participation rate. This

can easily be violated when a principal devises a scheme to induce the agents to

participate.1

In summary, in order for a multi-criterion approach to be practical, two advances

are needed. First, one must identify a class of criteria that have a common, par-

simonious form that can be easily embedded in a larger model. Second, one must

replace strategic complementarities with a weaker property that is easier to satisfy.

This paper provides both such advances.

1Examples appear in Frankel [26, 27].
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We study seven iconic selection theories from the literature and show that they

all yield criteria of the same basic form: an agent plays a best response to some

distribution of the proportion of others who participate. This distribution is common

across the agents and does not depend on the game’s payoffs. We refer to it as the

agents’ fictional beliefs as it need not coincide with the true distribution or with the

agents’ actual beliefs.

Furthermore, we assume only a weak single crossing property that Athey [5] calls

“weak SC1”: if the payoff from participating is positive for one other-agent partici-

pation rate, then it is not negative for any higher rate. This strengthens most of the

theories we study, which have relied on the stronger property of strategic complemen-

tarities.

In particular, for the evolutionary theories of Foster and Young [23] and Kandori,

Mailath and Rob [48], as well as the dynamic rational-player theory of Matsui and

Matsuyama [53], the n ≥ 2 player case was previously studied by Kim [50] under the

assumption of strategic complementarities. We replace this with weak SC1. For the

evolutionary theory of Fudenberg and Harris [32], we extend their two-player result

to n ≥ 2 players relying only on weak SC1.

Our results also contribute to the theory of global games. Goldstein and Pauzner

[34] (GP) show that there is a unique Nash equilibrium if signal errors are uniformly

distributed and payoffs satisfy a strict single crossing property that Athey [5] calls

“strict SC1”. Morris and Shin [55, p. 70] (MS) find a unique threshold equilibrium for

general signal errors under strict SC1. Szkup [66] finds a unique threshold equilibrium

for uniform signal errors, for a specific payoff function that satisfies only weak SC1.

Finally, we find a unique threshold equilibrium for general signal errors and a general

payoff function under weak SC1.

In section 8, we provide an algorithm - the Heuristic Search Procedure (HSP) - for

finding an optimal scheme to induce a group of agents to participate in a joint activity.

Frankel [27] applies HSP to three different variants of a security design model. In two
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of these variants, the payoff functions violate strategic complementarities yet satisfy

weak SC1. Frankel’s main results, including the optimality of debt, are proved for

general fictional beliefs. They thus hold not only for our six selection criteria, but

also for any other criteria of the given form - including those not yet identified.

An assumption of HSP is that the agents’ fictional beliefs do not vary with the

scheme offered. Intuitively, the literature typically derives a given selection criterion

from an explicit context in which the participation game is played. In practice, a

principal would know this context and hence be able to predict the agents’ behavior.

The argument is thus no different from a situation in which a single criterion is derived

from an explicit model: the principal knows the model and thus which criterion the

agents will use.

2 The Model

The game is played by a set I of ex-ante identical agents. The agents may be either

discrete (I = {1, ..., n}) or infinitesimal (I = [0, 1]). They have aggregate measure

one, so the measure of a single agent is 1/n in the discrete case.2

The decision of each agent is whether or not to participate. From the perspective

of a given agent, we define ℓ ∈ [0, 1] to be the other-agent participation rate: the

proportion of the agent’s opponents who participate. An agent’s payoff is given by

a utility function u (i, ℓ) where the agent’s action i is either 1 (participate) or 0 (not

participate). We define

π (ℓ) = u (1, ℓ)− u (0, ℓ) (1)

to be the net payoff from participating given the other-agent participation rate ℓ. We

2We must remain vague for now about the context in which the game of I agents is played, as
well as the agents’ information sets and degrees of rationality. For instance, in evolutionary games,
the game is repeatedly played by random sets I of symmetrically informed but boundedly rational
players who are drawn from a larger population. In global games, the game is played once with a
fixed set I of imperfectly informed but fully rational players.
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will refer to π as the payoff function.

Let R be the set of feasible other-agent participation rates; it equals [0, 1] in the

infinitesimal case and λ =
{

i
n−1

: i = 0, ..., n− 1
}

in the discrete case. Let Π =

{π : R → ℜ} be the set of all payoff functions π on R. A selection criterion (or

“criterion” for brevity) is a rule that partitions Π into three sets. In one set, the agents

participate; in another, they do not; and in a third (which typically has measure zero),

the criterion makes no prediction:

Definition 1. A selection criterion is a real-valued function Ξ on Π. Agents with

payoff function π who follow the criterion Ξ do (not) participate when Ξ (π) is positive

(resp., negative); they may do anything if it is zero.

We define a selection theory to be a rationale for a selection criterion. We study

seven such theories. Two are heuristic arguments, two are based on rational players,

and three come from the evolutionary literature. We will show that under each

such theory, an agent chooses a best response to the belief that the other-agent

participation rate ℓ has some fixed distribution. That is, each theory yields a selection

criterion of the form

the agents (do not) participate if Ξ (π) =

∫ 1

ℓ=0

π (ℓ) dΓ (ℓ) > (<) 0 (2)

for some distribution Γ that depends on the theory. We refer to Γ as the agents’

fictional beliefs.

In general, the distribution Γ does not coincide with the true distribution of other-

agent participation rates.3 Neither does it reflect the agents’ beliefs over this distri-

bution. Rather, it merely measures the relative importance of different segments of

the payoff function π in determining which equilibrium the agents will select.

3For generic payoffs π, the integral in (2) will be either positive or negative: either all agents will
participate, or none will. The true distribution thus puts all of its weight on one or zero. While
there are fictional beliefs with this property, most put positive weight on intermediate other-agent
participation rates.
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3 Single Crossing Properties

If agents are discrete, it will suffice that the payoff function π satisfy a weak single

crossing property: if it is positive for some ℓ, then it is not negative for any higher ℓ.

Letting S be any subset of ℜ, the definition is as follows.

Definition 2. (Athey [5]) A function h : S → ℜ satisfies weak single crossing in a

single variable (“weak SC1”) on S if for all sH > sL both in S, h (sL) > 0 implies

h (sH) ≥ 0.

For a continuum of agents, we will typically require a stronger condition:

Definition 3. (Athey [5]) A function h : S → ℜ satisfies single crossing in a single

variable (“SC1”) on S if for all sH > sL both in S, h (sL) ≥ 0 implies h (sH) ≥ 0 and

h (sL) > 0 implies h (sH) > 0.

Some results from the literature rely on an even stronger property:

Definition 4. (Athey [5]) A function h : S → ℜ satisfies strict single crossing in a

single variable (“strict SC1”) on S if for all sH > sL both in S, h (sL) ≥ 0 implies

h (sH) > 0.

These properties are illustrated in Figure 1. In the left panel, weak SC1 holds:

negative values do not follow positive ones. However, SC1 fails since (a) negative

values follow zeroes and (b) zeroes follow positive values. In the middle panel, SC1

holds but strict SC1 fails as zeroes follow zeroes. (Under strict SC1, only positive

values can follow a zero.) In the third panel, all three properties hold.4

By and large, our results assume weak SC1 when agents are discrete and SC1

when they are infinitesimal. In contrast, the prior literature relies largely on strategic

4As the names suggest, strict SC1 implies SC1 which, in turn, implies weak SC1.
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complementarities, which are stronger than any of the three versions of SC1.5,6 Hence,

our results constitute a substantial increase in flexibility.

Figure 1: Sample functions h : [0, 1] → ℜ that satisfy the three types of single crossing
properties defined by Athey [5] and used in this paper.

We next prove a key technical result. Assume an agent plays the participation

game against n−1 opponents, each of whom has an independent probability z ∈ [0, 1]

of participating. The probability that the other-agent participate rate faced by the

given agent is ℓ ∈ λ is then the chance7

κ (ℓ; z) = b (⌊ℓ (n− 1)⌋ ;n− 1, z) (3)

of ⌊ℓ (n− 1)⌋ successes in n − 1 independent trials, each with success probability z,

where

b (i;n− 1, z) =

 n− 1

i

 zi (1− z)n−1−i (4)

is the binomial density. The agent’s expected payoff γ (z) from participating is the

5More precisely, most prior selection results have assumed strict strategic complementarities
(i.e., that the payoff function π (·) is increasing). This property implies strict SC1. In the global
games literature, it is more common to assume only strategic complementarities, which means “no
decreasing segments” (Frankel, Morris, and Pauzner [31, p. 4]). Strategic complementarities implies
SC1, but is orthogonal to strict SC1 as the latter allows decreasing segments but not segments in
which the function is identically zero.

6The only exception is global games; see section 1.

7The floor function in (3) ensures that the integral in (5) below is well defined. Nonintegral values
of ℓ (n− 1) receive no weight in that integral since they cannot occur in the discrete case; this is
accomplished by setting the measure µ (ℓ) to zero in (6).
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sum, over ℓ ∈ λ, of her realized payoff π (ℓ) weighted by this probability κ (ℓ; z), which

we can write in three equivalent ways:8

γ (z) =
∑
ℓ∈λ

κ (ℓ; z) π (ℓ)

=

∫ 1

ℓ=0

κ (ℓ; z) π (ℓ) dµ (ℓ)

=
n−1∑
i=0

b (i;n− 1, z)π

(
i

n− 1

)
(5)

where the measure µ on [0, 1] is

dµ (ℓ) =

1 if ℓ ∈ λ;

0 otherwise.

(6)

That is, µ assigns unit (resp., zero) weight to ℓ if is feasible (resp., infeasible) given

that the agent plays the game with exactly n−1 others. The following claim extends

a result in Athey [74]:9

Claim 5. If π satisfies weak SC1 on λ, then:

1. γ satisfies SC1 on (0, 1) and weak SC1 on [0, 1].

2. γ is Lipschitz-continuous on [0, 1] and agrees with π at the endpoints: γ (0) =

π (0) and γ (1) = π (1).

Claim 5 states that if each opponent has an independent probability z of partic-

ipating and the realized payoff function π satisfies weak SC1 in ℓ, then the expected

payoff function γ is Lipschitz-continuous and satisfies SC1 in z. These properties will

play a key role in our treatment of the five noncooperative theories. To show that

γ is an agent’s expected payoff from participating, we rely on random signals in the

8The integral in (5) is well defined as equation (3) defines κ (ℓ; z) for all ℓ ∈ [0, 1]. But as dµ (s)
is nonzero only if s is in λ, γ (z) depends only on the values taken by κ (·, z) at integral values of
ℓ (n− 1).

9Proofs of all claims are in our online appendix (Frankel [28]).
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global games theory and on random matching in the other four theories.10

4 Heuristic Theories

We begin with two heuristic theories. The first is the most optimistic of the seven

theories:

The Pareto theory is the argument that the agents will choose “all participate” if

it is a strict Nash equilibrium.11

We define an associated selection criterion:12

The Pareto criterion is the criterion given by (2) for the fictional beliefs13

Γ∗ (ℓ)
d
=

0 if ℓ < 1

1 if ℓ = 1.

(7)

That is, agents who rely on the Pareto criterion will play a best response to the belief

that all others will participate.

The second heuristic theory is the most pessimistic of the various theories:

10For this reason, we will usually need π itself to satisfy SC1 and continuity when agents are
infinitesimal: as play is against the entire population, there is no random matching process that
would let us substitute the “nicer” payoff function γ.

11The Pareto theory is used to predict investor behavior in Chakraborty, Gervais, and Yilmaz
[15]. The usual argument is that an agent can persuade others to choose the “good” equilibrium
by stating her own intention to do so. Aumann [6] argues, to the contrary, that agents may have
an incentive to lie. However, subsequent experimental evidence has suggested that people prefer
truth-telling (Gneezy [33]) and that preplay communication makes the Pareto dominant outcome
more likely (Blume and Ortmann [11]; Feri, Irlenbusch, and Sutter [22]).

12In addition to having an obvious heuristic basis, the Pareto criterion emerges in a variety of
noncooperative contexts (Demichelis and Weibull [19]; Kim and Sobel [51]; Rabin [61]). However,
we think it makes more sense to ground it in a heuristic than in a particular model. First, it is
unclear which model to choose, unlike in the case of the Laplace, KMR, FY, and FH criteria which
emerge in iconic settings. Second, the Pareto criterion has a long history in economics and an
intuitive appeal that does not hinge on any particular model and that, moreover, seems more often
to motivate models than to be motivated by them.

13The notation “
d
=” indicates a definition.
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The Unique-Implementation (UI) theory is a heuristic argument that states

that the agents will choose “none participate” if it is a strict Nash equilib-

rium.14

We define an associated selection criterion:

The UI criterion is the criterion given by (2) for the fictional beliefs

ΓUI (ℓ) = 1 for all ℓ. (8)

That is, agents who rely on the UI criterion will play a best response to the belief

that no others will participate.

The five noncooperative theories predict that the agents will coordinate. In con-

trast, the two heuristic theories do not rule out population mixing. To ensure consis-

tency, we thus strengthen these heuristics by assuming that the agents, as a group,

display a lexicographic preference for coordination:15

A1 If all-participate or none-participate is a Nash equilibrium, the agents will not

mix.

With this addition, each heuristic theory is equivalent to the associated criterion

under weak SC1:

Claim 6. Assume A1. If π satisfies weak SC1, the Pareto theory implies the Pareto

criterion and vice-versa.

14The UI theory has been used in participation games by Bernstein and Winter [9], Halac, Kremer,
and Winter [39], Halac, Lipnowski, and Rappoport [40], Segal [65], and Winter [70]. The usual
argument is not that the agents will choose the bad equilibrium, but rather that the principal wishes
to rule this out. The same approach is taken in dominant strategy implementation: the principal
wishes to makes it dominant for the agents to truthfully reveal their types (Groves [37]; Green and
Laffont [36]).

15E.g., for any c ∈ (0, 1), the payoff function π (ℓ) =

{
0 if ℓ ≤ c

−1 if ℓ > c
satisfies weak SC1 and any

participation rate in [0, c] is a Nash equilibrium. The five noncooperative theories put positive weight
on other-agent participation rates over c and thus predict that no agents will participate. It is less
clear what the two heuristic theories would predict as the arguments in their favor assume two pure
Nash equilibria. To pin down their predictions and ensure consistency with the noncooperative
theories, we thus add assumption A1.
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Claim 7. Assume A1. If π satisfies weak SC1, the UI theory implies the UI criterion

and vice-versa.

5 Dynamic Theories

We next study four dynamic theories. In the discrete case, the participation game

will be played by groups of n ≥ 2 agents who are drawn at random from a much larger

population.16 If the proportion who participate in this larger population is z ∈ [0, 1],

then the probability that exactly ℓ ∈ λ randomly drawn opponents will participate

is given by the function κ (ℓ; z) defined in (3). Our discussion of γ in section 3 then

implies:

Claim 8. In games in which groups of n agents are randomly matched from a large

population to play the participation game, a player’s expected static payoff from par-

ticipating is given by γ (z) defined in (5) where z ∈ [0, 1] is the participation rate in

the population.

5.1 The Kandori-Mailath-Rob (KMR) Theory

The KMR theory is a discrete-time model in which random groups of n boundedly

rational agents are selected, in each period, to play the participation game.17 The

action with the higher static payoff in a given period is chosen by more agents in the

next. There are trembles: each agent has a small chance of choosing the suboptimal

action.

More precisely, we study the following generalization of the evolutionary model of

16This population is finite in KMR and a continuum in the other three theories.

17The KMR theory is defined only for discrete agents.
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Kandori, Mailath, and Rob [48].18,19 The population consists of a large finite number

N of agents. In each period t = 0, 1, ..., random groups of n ≥ 2 agents are selected

to play the participation game. By Claim 8, an agent’s expected payoff from partici-

pating is thus γ (z) where z ∈ [0, 1] is the participation rate in the population. The

model we study is in the following class.

Definition 9. (Ellison [21]; Young [72]) A Model of Evolution with Noise (MEN) is

a triple (Z, P, P (ε)) consisting of a state space Z (a finite set); a Markov transition

matrix P on Z that gives the transition probabilities in the absence of mutations; and

a family of perturbed Markov transition matrices P (ε) for each tremble probability

ε ∈ [0, ε] such that (a) P (ε) is ergodic20 for all ε and (b) P (ε) is continuous in ε with

P (0) = P .

In KMR [48] without trembles, the agents play a static best response to the prior

period’s population participation rate z. This is a special case of the following class

of deterministic dynamics, which we use instead.

Definition 10. (KMR [48]) The deterministic dynamic P in Def. 9 is Darwinian

with respect to the relative payoff function γ if the following conditions hold.

1. If one action has a higher payoff under γ given the current participation rate z,

the proportion playing that action rises in the next period (unless everyone is

already playing that action, in which case they keep doing so).

2. If the two actions give the same payoff under γ given the current participation

rate z, then the proportion playing a given action either (i) stays the same in the

next period or (ii) could rise or fall, but does not move solely in one direction.

18KMR [48] prove their result for two-player, two-action coordination games. Kim [50] general-
izes this result to coordination games with n ≥ 2 players. We replace Kim’s coordination game
assumption with weak SC1 and relax KMR’s [48] assumption on dynamics.

19While KMR [48] is often grouped with Young [72], the models are not equivalent (Jacobsen,
Jensen, and Sloth [46]).

20AMarkov chain is ergodic if every state is eventually reached from every other state with positive
probability.
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As in KMR [48], we assume further that the perturbed matrix P (ε) is generated by

independent random trembles (IRT): each agent plays according to the deterministic

dynamic with probability 1 − ε and randomizes 50-50 over the two actions with

probability ε. Let a MENI be a MEN whose noise is due to IRT trembles. For

any MENI (Z, P, P (ε)) and any ε > 0, the perturbed model has a unique limiting

distribution µε over Z, which is invariant to initial conditions (Ellison [21, sec. 2.2,

p. 21]). We focus on the limit of this distribution as the trembles go to zero:

Definition 11. (Foster and Young [23]; Young [72]) The long-run stochastically stable

set is the set of states z for which µ∗ (z) > 0 where µ∗ = limε↓0 µ
ε.

To the KMR theory we define an associated criterion:

The KMR criterion is the criterion given in (2) for the fictional beliefs

ΓKMR
n (ℓ) =

⌊(n−1)ℓ⌋∑
i=0

WKMR
i,n where WKMR

i,n =

 n− 1

i

(1

2

)n−1

. (9)

In the limit as the number n of agents grows, ΓKMR
n puts all of its weight on 50% of

the other agents participating:

Claim 12. In the limit as n→ ∞, ΓKMR
n (ℓ) converges to

ΓKMR
∞ (ℓ) =

 0 if ℓ < 1/2

1 if ℓ ≥ 1/2.
(10)

In this limit, the KMR criterion selects the equilibrium with the larger basin of

attraction - or, equivalently, the action that is a best response to an other-agent

participation rate of one half.

If π satisfies weak SC1 then, in any MENI with Darwinian dynamics, the agents’

participation decision is given by (2) for the fictional beliefs ΓKMR
n if the population

size N is large enough:21

21Kim [50, Prop. 2, p. 211] shows this result for KMR when payoffs satisfy strategic comple-
mentarities. We generalize Kim’s result to all MENIs with Darwinian dynamics in which π satisfies
weak SC1. The proof shows that the size of an action’s basin of attraction is determined by the sign
of γ at the midpoint z = 1/2 and then applies Ellison’s [21] radius-coradius theorem.
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Theorem 13. Let π satisfy weak SC1 on λ and let γ be the expected relative payoff

function defined in (5). For each aggregate population size N , let
(
ZN , PN , PN (ε)

)
be a MENI whose deterministic dynamic PN is Darwinian with respect to γ. Then if∫ 1

ℓ=0
π (ℓ) dΓKMR

n (ℓ) is positive (resp., negative), there is an N∗ <∞ such that for all

N > N∗, the only element of the long-run stochastically stable set of
(
ZN , PN , PN (ε)

)
is z = 1 (resp., z = 0).

5.2 Two Theories Based on the Replicator Dynamic

We now study two continuous-time models with infinitesimal agents. At each time

t ∈ ℜ+, random groups of n boundedly rational agents are selected to play the

participation game. Let at (resp., bt) denote the measure of agents who (do not)

participate at time t and let zt =
at

at+bt
denote the proportion who participate. The

the growth rate of each population is assumed to equal its expected payoff in the

participation game:

da = aγ1 (z) dt and db = aγ0 (z) dt (11)

where

γi (z) =

∫ 1

ℓ=0

κ (ℓ; z)u (i, ℓ) dµ (ℓ) (12)

is an agent’s gross expected utility from playing action i = 0, 1.22

5.2.1 The FY Theory

The FY theory is due to Foster and Young [23] (FY). They solve (11) for dz to

obtain the deterministic replicator dynamic: dz = z (1− z) γ (z) dt.23 To this they

22Defined in section 2, u (i, ℓ) is the utility from playing action i = 0, 1 when a proportion ℓ of
one’s opponents participate, where i = 1 (resp., i = 0) is interpreted as (not) participating. The
formula for γi (z) is obtained by replacing π (ℓ) in (5) by u (i, ℓ).

23To see this, let f (a, b) = a
a+b whence dz = df (a, b) = f1da + f2db where subscripts indicate

partial derivatives. Thus, since f1 = b
(a+b)2

and f2 = − a
(a+b)2

, dz equals b
(a+b)2

da− a
(a+b)2

db which

can be rearranged to z (1− z)
(
da
a − db

b

)
= z (1− z) γ (z) dt as γ (z) = γ1 (z)−γ0 (z) by (1) and (12).
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add shocks:

dz = z (1− z) γ (z) dt+ σdw, (13)

where σ > 0 is a constant and w is a Brownian motion.24,25 We define a corresponding

criterion:

The FY criterion is the criterion given by (2) for the fictional beliefs

ΓFY
n (ℓ) =

⌊(n−1)ℓ⌋∑
i=0

WFY
i,n where WFY

i,n =
6 (i+ 1) (n− i)

n (n+ 1) (n+ 2)
(14)

in the discrete case and ΓFY
∞ (ℓ) = 3ℓ2 − 2ℓ3 in the infinitesimal case.

Theorem 14. Assume π satisfies weak SC1 on λ. Then for σ > 0, equation (13)

has an ergodic distribution. In the long run, in the limit as σ shrinks to zero, the

state z spends nearly all of its time in a small neighborhood of one (resp., zero) if∫ 1

ℓ=0
π (ℓ) dΓFY

n (ℓ) is positive (resp., negative).

Theorem 14 assumes that each agent interacts with a random set of n − 1 other

agents. It thus corresponds to the discrete case. To address the infinitesimal case,

we assume now that an agent interacts with the whole population: her flow payoff is

π (zt) rather than γ (zt). Equation (13) is thus replaced with

dz = z (1− z) π (z) dz + σdw. (15)

As this is the only change, a result analogous to Theorem 14 holds if we assume that

π has the properties of γ that we use in the proof of that result:

24FY [23] derive their criterion in two-player, two-action coordination games. Kim [50] generalizes
their result to coordination games with n ≥ 2 players, while we replace Kim’s coordination game
assumption with weak SC1. For further details, see section 5.2.1 of the online appendix.

25FY assume that z reflects at the boundary of [∆, 1−∆] for small ∆ > 0. Relying on a different
mathematical result, we let z reflect at the boundaries of [0, 1]. This does not affect the results:
Kim’s [50] n-player generalization of FY, which also restricts [∆, 1−∆], finds the same selection
criterion as our Theorem 14. (While Kim assumes strategic complementarities, we rely only on weak
SC1.)
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Corollary 15. Let π : [0, 1] → ℜ be Lipschitz-continuous on [0, 1] and satisfy SC1

on (0, 1). Then for σ > 0, equation (15) has an ergodic distribution. In the long run,

in the limit as σ shrinks to zero, the state z spends nearly all of its time in a small

neighborhood of one (resp., zero) if
∫ 1

ℓ=0
π (ℓ) dΓFY

∞ (ℓ) is positive (resp., negative).

Moreover, the discrete criterion converges to the continuous one as n grows:

Claim 16. For all ℓ ∈ [0, 1], limn→∞ ΓFY
n (ℓ) = ΓFY

∞ (ℓ).

5.2.2 The FH Theory

While FY add shocks directly to the state z, Fudenberg and Harris [32] (FH) instead

add shocks to the sizes of the populations playing the two actions. They study a

sequence of variants of this two-player random matching model until they obtain an

ergodic distribution. We extend this final variant to the case of n ≥ 2 players.26

In their final variant, FH assume that

da = a [γ (z) dt+ σadwa] + (λbb− λaa) dt (16)

and

db = b [σbdwb] + (λaa− λbb) dt (17)

where wa and wb are independent Brownian motions.27 This model differs from FY

in two ways. First, there are shocks (dwa and dwb) to the masses (a and b, resp.)

playing each action rather than to the proportion z playing action one. FH [32, Prop.

2] show that such shocks alone do not give rise to an ergodic distribution. Intuitively,

the implied shocks to z are of order z (1− z) which vanishes as the state z approaches

zero or one. Hence, the two endpoints of the state space [0, 1] are absorbing. To

26Fudenberg and Harris [32] restrict to two-player, two-action games. We extend this variant to
the case of n ≥ 2 players under weak SC1. To our knowledge, the FH model has been solved only
in the case of two players. This contrasts with the other noncooperative theories, which Kim [50]
solves for n ≥ 2 players under the assumption of strategic complementarities.

27The functions γi for i = 0, 1 are defined in (12).
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avoid this, FH also add individual random trembles: each agent playing a (resp., b)

exogenously switches to b (resp., a) according to a Poisson process with arrival rate

λa (resp., λb). These trembles keep the participation rate z away from the endpoints,

thus yielding an ergodic distribution.

Define the constant

σ =
√
σ2
a + σ2

b . (18)

Let w denote σa

σ
wa− σb

σ
wb, which is a standard Brownian motion.28 By (16) and (17)

and Ito’s Lemma, the state z = a
a+b

changes according to29

dz = α (z) dt+ β (z) dw (21)

with coefficients

α (z) = z (1− z) [γ (z) + (1− z)σ2
b − zσ2

a] + λb (1− z)− λaz (22)

and

β (z) = z (1− z)σ. (23)

We assume that σ2
a, σ

2
b , λa, and λb are all constant multiples of a common param-

28As wa and wb have continuous paths and independent increments, so does w. And since wa

and wb are independent Brownian motions, σdw = σadwa − σbdwb is normal with mean zero and
variance σ2. Thus, w is a standard Brownian motion.

29To see this, define f (a, b) = a
a+b which equals z. By Ito’s Lemma in two dimensions,

dz = f1da+ f2db+
1

2

[
(da)

2
f11 + 2 (da) (db) f12 + (db)

2
f22

]
, (19)

where numbered subscripts denote partial derivatives. In the present setting, (da)
2
= (σaa)

2
dt,

(db)
2
= (σbb)

2
dt, (da) (db) = 0, f1 = b

(a+b)2
, f2 = − a

(a+b)2
, f11 = − 2b

(a+b)3
, and f22 = 2a

(a+b)3
and

thus, using γ (z) = γ1 (a)− γ0 (z),

dz = z (1− z)

(
da

a
− db

b

)
+ z (1− z)

[
(1− z)σ2

b − zσ2
a

]
dt. (20)

We then use (16) and (17) to substitute for da and db in equation (20) to obtain (21). One can
easily see that (21) is equivalent to FH’s equation (8).
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eter, which we take to be σ2 to save notation:

σ2
a = saσ

2, σ2
b = sbσ

2, λa = laσ
2, and λb = lbσ

2 (24)

where sa, sb, la, lb ∈ ℜ++ are fixed.30

To the FH theory we define a corresponding criterion:

The FH criterion is the criterion given by (2) for the fictional beliefs

ΓFH (ℓ) =

1/2 if ℓ < 1

1 if ℓ = 1.

. (25)

That is, agents who rely on the FH criterion will play a best response to the belief

that either no others or all others will participate, with equal probabilities.

In the FH model, in the long run in the limit as the noise parameter σ shrinks

to zero, the agents play according to the FH criterion. More precisely, let F be the

long-run distribution of the state: for any y ∈ [0, 1], F (y) = limt→∞ Pr (zt ≤ y). For

any y ∈ (0, 1), define the two quantities

χy
1 =

F (y)

1− F (y)
and χy

2 =
1− F (1− y)

F (1− y)
. (26)

Intuitively, χy
1 (resp., χ

y
2) gives the odds that the state lies in [0, y] (resp., in (1− y, 1]).

The formal result is as follows.

Theorem 17. Assume either that (a) agents are discrete and π satisfies weak SC1 or

(b) agents are infinitesimal and π is Lipschitz-continuous on [0, 1] and satisfies SC1

on (0, 1). Then for any y ∈ (0, 1), if
∫ 1

ℓ=0
π (ℓ) dΓFH (ℓ) is negative (resp., positive)

then limσ↓0 χ
y
1 = ∞ (resp., limσ↓0 χ

y
2 = ∞).

5.3 The Matsui-Matsuyama (MM) Theory

The MM theory is due to Matsui and Matsuyama [53] (MM). In this theory, the

participation game is played in continuous time by randomly chosen groups of n

30The parameters sa and sb in (24) must satisfy sa + sb = 1 as σ2
a + σ2

b = (sa + sb)σ
2 equals σ2

by (18).
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fully rational agents, each of whom gets Poisson chances to change actions.31 In the

case of discrete agents, MM’s model is as follows. As in FY and FH, at each time

t ∈ ℜ+ random groups of n agents are selected from the unit interval [0, 1] to play

the participation game. By Claim 8, an agent’s flow payoff from participating is thus

γ (z) where z ∈ [0, 1] is the participation rate in the whole population.

Unlike in FY and FH, the agents are rational and forward-looking. Each agent

gets chances to switch actions according to an independent Poisson process with

arrival rate p > 0. The rate of change of the participation rate thus satisfies dzt
dt

∈

[−pzt, p (1− zt)] so for any given initial participation rate z0 = ζ ∈ [0, 1], the path

z· = (zt)t≥0 of this rate must satisfy zt ∈
[
zζt , z

ζ
t

]
where the lower and upper bounds

are given by

zζt = ζe−pt and zζt = 1− (1− ζ) e−pt, (27)

respectively. Let r be the rate of time preference. As agents have perfect foresight,

the benefit of switching from “not participate” to “participate” at time t, if an agent

expects the path (zs)s≥0 to be played, is proportional to

V r
t (z·)

d
= (p+ r)

∫ ∞

s=t

e−(p+r)(s−t)γ (zs) ds (28)

since, for each time s ≥ t, the expected flow payoff from participating is γ (zs) and

the chance that the agent will not receive another revision opportunity before time s

is e−p(s−t). An agent with an action revision opportunity at time t will thus choose

(not to) participate if (28) is positive (resp., negative). One can easily calculate that

if zt = z for all t ≥ 0, then V r
t (z·) = γ (z) . (29)

MM define the following concepts.

Definition 18. A state z ∈ [0, 1] is accessible from z′ ∈ [0, 1] if there exists an

equilibrium path from z′ that reaches or converges to z. The state z is globally

31MM [53] prove their result for coordination games with two players and two actions. Kim [50,
Proposition 1] generalizes it to coordination games with n ≥ 2 players and two actions. We extend
it further by replacing Kim’s coordination game assumption with weak SC1.
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accessible if it is accessible from any z′ ∈ [0, 1].

Definition 19. A state z ∈ [0, 1] is absorbing if there is a neighborhood U of z such

that any equilibrium path originating in U must converge to z. It is fragile if it is not

absorbing.

To the MM theory we define an associated selection criterion:32,33

The Laplace criterion is the criterion given in (2) for the fictional beliefs

ΓLaplace
n (ℓ) =

⌊(n−1)ℓ⌋∑
i=0

1

n
(30)

in the discrete case and

ΓLaplace
∞ (ℓ) = ℓ (31)

in the infinitesimal case.

Agents who rely on the Laplace criterion play a best response to the belief that all

other-agent participation rates are equally likely.

Theorem 20. Let π : λ → ℜ satisfy weak SC1. In the above version of MM with

random groups of n agents who play the stage game, if
∫ 1

ℓ=0
π (ℓ) dΓLaplace

n (ℓ) is positive

(resp., negative), there is an r∗ > 0 such that for all r ∈ (0, r∗), z = 1 (resp., z = 0) is

absorbing and globally accessible while z = 0 (resp., z = 1) is fragile and not globally

accessible.

We can extend Theorem 20 to the case of infinitesimal agents by assuming that

an agent plays against the whole population [0, 1]. An agent’s flow payoff is thus π (z)

rather than γ (z). Accordingly, the same results hold if π has the properties of γ on

which we rely in the proof of Theorem 20:

32Kim [50] first identified the Laplace criterion and showed that it is implied by the GG and MM
theories in coordination games. An intuition for the former result appears in MS [55, pp. 61-63].

33The role of the floor function in (30) is to ensure that the beliefs are defined for all ℓ ∈ [0, 1] and
thus that the integral in (2) is well-defined.
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Corollary 21. Let π : [0, 1] → ℜ be continuous on [0, 1] and satisfy SC1 on (0, 1).

In the modified version of MM with flow payoff π (z) rather than γ (z), if∫ 1

ℓ=0

π (ℓ) dΓLaplace
∞ (ℓ)

is positive (resp., negative), then there is an r∗ > 0 such that for all r ∈ (0, r∗), z = 1

(resp., z = 0) is absorbing and globally accessible while z = 0 (resp., z = 1) is fragile

and not globally accessible.

6 A Static Theory: Global Games

The Global Games (GG) theory is a static model in which the payoff function π

depends not only on ℓ but also on an agent’s private signal of an unobserved “fun-

damental” θ, such that (not) participating is strictly dominant for sufficiently high

(low) signals. A contagion argument then pins down the agents’ behavior for almost

any fundamental.34,35

34Global games were first studied for two-player, two-action games by Carlsson and van Damme
[14] and for n-player, two-action coordination games by Kim [50]. The coordination-game assumption
was first relaxed by Goldstein and Pauzner [34] who showed that there is a unique Nash equilibrium
under strict SC1 if signal errors are uniformly distributed. Morris and Shin [55, p. 70] then showed
the existence of a unique threshold equilibrium for general signal errors under strict SC1. Next
Szkup [66] extend this uniqueness result to uniform signal errors and a specific payoff function that
satisfies only weak SC1. Finally, we extend the result to general signal errors and a general payoff
function that satisfies weak SC1.

35The problem of eliciting the participation of a group of agents in a global games setting has been
studied in the context of asset liquidity (Plantin [60]), bailouts (Frankel [25]), bank runs (Goldstein
and Pauzner [34]), debt pricing (Morris and Shin [57]), foreign direct investment (Dasgupta [18]),
IMF interventions (Morris and Shin [58]), investment subsidies (Sákovics and Steiner [63]), platform
competition (Argenziano [4]; Guimaraes and Pereira [38]; Jullien and Pavan [47]), regime change
(Edmond [20]), and monopoly pricing (Frankel [24]). Other applications of global games include
international contagion (Goldstein and Pauzner [35]), currency crises and market crashes (Morris
and Shin [54, 56]), information acquisition (Yang [71]), investment cycles (Chamley [16]; Oyama
[59]), merger waves (Toxvaerd [68]), neighborhood change (Frankel and Pauzner [30]), regime change
(Angeletos, Hellwig, and Pavan [1, 2]; Szkup and Trevino [67]), search-driven business cycles (Burdzy
and Frankel [13]), and sectoral choice (Frankel and Pauzner [29]). Experimental support appears
in Heinemann, Nagel, and Ockenfels [42, 43], while theoretical limitations are studied in Angeletos,
Hellwig, and Pavan [1], Angeletos and Werning [3], Chassang [17], Hellwig, Mukherji, and Tsyvinski
[44], Morris and Shin [57], and Weinstein and Yildiz [69]. Strategic substitutes are studied in
Harrison and Jara-Moroni [41] and Hoffman and Sabarwal [45], who extend the uniqueness result,
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Following MS [55, Lemma 2.3, p. 70], we assume there is a random, unobserved

state θ that is uniformly distributed on the whole real line.36,37 Agents may be either

discrete or infinitesimal. Each agent i sees a noisy signal xi = θ + σεi of the state θ,

where σ > 0 is a scalar. An agent’s payoff from participating is a function π (ℓ, xi) of

the other-agent participation rate ℓ and the agent’s private signal xi.
38 The idiosyn-

cratic terms εi are independent of each other and of θ and have a continuous density

f with full support on ℜ and corresponding distribution function F . We assume

moreover that f satisfies

MLRP For all xH > xL and yH > yL in ℜ,

f (sH − zH) f (sL − zL) ≥ f (sH − zL) f (sL − zH) .

An example with these properties is a normal distribution (with any mean and vari-

ance). MLRP appears as assumption A7 in MS [55, p. 69].

Fix an agent i. Suppose each agent j ̸= i participates (resp., does not participate)

if her signal xj = θ + σεj exceeds (resp., is less than) some fixed threshold k ∈

and Karp, Lee, and Mason [49], who show that a threshold equilibrium may not exist if weak SC1
fails.

36Such an “improper prior” can be seen as the limit, e.g., of a normal distribution as the variance
grows without bound. The assumption of an improper prior greatly simplifies the analysis but is
not essential to the results.

37In some applications (e.g., Frankel [27]), a principal designs a scheme to induce the agents to
participate. The principal knows the state and thus can predict the agents’ response. We can obtain
this feature by assuming that a public signal θ + ηε of the state is first observed, where η > 0 is
a scalar and ε is noise. The principal chooses her scheme, after which each agent i sees a private
signal xi = θ + σεi of the state. Taking the private signal error to zero (σ → 0), one obtains a
unique prediction for the agents’ behavior. If we then take the public signal error to zero (η → 0),
the principal can estimate the state with arbitrarily high precision; she can thus predict how the
agents will respond to any scheme. This order of limits was previously studied in Morris and Shin
[58].

38Frankel, Morris, and Pauzner [31, pp. 23 ff.] (FMP) give conditions under which, if π satisfies
strategic complementarities, then the asymptotic (as σ → 0) behavior of the model studied here
coincides with that of a variant in which an agent’s payoff is a function π (ℓ, θ) not of her signal
xi but rather of the state θ. While we expect that their result holds also under weak SC1, the
verification needed would be beyond the scope of this paper for two reasons. First, the Laplace
criterion is just one of six criteria that we study and finds support also in the MM theory (section
5.3). Second, real-world payoffs are plausibly heterogeneous, which is better captured by a model
such as ours in which π depends partly on an idiosyncratic shock εi.
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ℜ ∪ {±∞}. Given θ, the probability that agent j participates is then

Pr (θ + σεj > k|θ) = Pr

(
εj >

k − θ

σ

∣∣∣∣ θ) = 1− F

(
k − θ

σ

)
(32)

We now turn separately to the cases of discrete and infinitesimal agents.

1. Discrete agents: R = λ. By (32), the probability (given θ) that a proportion

ℓ ∈ λ of agent i’s opponents participate is κ
(
ℓ; 1− F

(
k−θ
σ

))
where κ is defined

in (3). The density of the state θ at any realization θ0 given the signal xi is

1
σ
f
(
xi−θ0

σ

)
. Thus, agent i’s payoff from participating when her realized signal

is x (and all others play according to the threshold k) is

πn
σ (x, k) =

∫ ∞

θ=−∞

1

σ
f

(
x− θ

σ

)∑
ℓ∈λ

κ

(
ℓ; 1− F

(
k − θ

σ

))
π (ℓ, x) dθ. (33)

2. Infinitesimal agents: agent i’s payoff from participating when her signal real-

ization is x is

π∞
σ (x, k) =

∫ ∞

θ=−∞

1

σ
f

(
x− θ

σ

)
π

(
1− F

(
k − θ

σ

)
, x

)
dθ (34)

as the other-agent participation rate ℓ equals the probability F
(
k−θ
σ

)
that a

given opponent participates by the law of large numbers.

A threshold equilibrium consists of a finite threshold k∗ such that if an agent i believes

that each opponent j will (not) participate if her signal xj exceeds (is less than) k∗,

then it is a best response for i (not) to participate if her signal exceeds (resp., is less

than) k∗. More precisely, let π∗
σ (x, k) denote π

∞
σ (x, k) in the infinitesimal case and

πn
σ (x, k) in the discrete case. We define:39

Definition 22. A Threshold Equilibrium consists of a threshold k∗ ∈ ℜ∪{±∞} such

that π∗
σ (x, k

∗) ≷ 0 for all x ≷ k∗ in ℜ.

Theorem 23 below gives sufficient conditions for the game to have a unique thresh-

39The interpretation of k∗ = +∞ (resp., k∗ = −∞) is that the players never (resp., always)
participate, regardless of their signals.
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old equilibrium, with a finite threshold k∗.40 The conditions run roughly as follows.

A1 states that π is bounded and satisfies weak SC1. A4 states that there are domi-

nance regions: for a sufficiently high (low) signal, (not) participating is strictly dom-

inant. A2 and A3 are technical continuity and boundedness properties, while A5

restates our above assumptions on the noise distribution.

Theorem 23. Let R and π (ℓ, x) denote λ and πn (ℓ, x), resp., in the discrete case,

and [0, 1] and π∞ (ℓ, x), resp., in the infinitesimal case. Assume:

A1. Single Crossing: for each x ∈ ℜ, π (ℓ, x) satisfies weak SC1 in ℓ ∈ R and

supℓ∈R |π (ℓ, x)| is finite;

A2. Continuity: π (ℓ, x) is continuous in x ∈ ℜ uniformly in ℓ ∈ R;41

A3. State Monotonicity: π (ℓ, x) is increasing in x and bounded in ℓ ∈ R for each

x ∈ ℜ;

A4. Dominance Regions: there are x < x both in ℜ such that, for all ℓ ∈ R, π (ℓ, x) <

0 < π (ℓ, x); and

A5. MLRP and Full Support: the noise density f is positive and continuous on ℜ

and satisfies MLRP.

Then the game has a unique threshold equilibrium, whose threshold k∗ is finite and is

the unique k ∈ ℜ that satisfies π∗
σ (k, k) = 0. In this equilibrium, an agent with signal

x (does not) participate if
∫ 1

ℓ=0
π (ℓ, x) dΓLaplace (ℓ) is positive (negative).

40By focusing on threshold equilibria, we enable applications that satisfy only weak SC1. Other
global games papers that restrict to threshold equilibria include Angeletos, Hellwig, and Pavan [2],
Mathevet and Steiner [80], and Morris and Shin [56]. GP [34, pp. 1325-6] give some rationales for
this restriction. It can be omitted under strategic complementarities, as shown in FMP [31] and
Kim [50].

41More precisely: for any ε > 0 there is a δ > 0 such that, for any ℓ ∈ R and x, x′ ∈ ℜ satisfying
|x− x′| < δ, |π (ℓ, x)− π (ℓ, x′)| < ε.
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To remain faithful to the global games literature we have assumed that each agent

plays against all of the other agents rather than against a random sample as in KMR,

FY, FH, and MM. Yet the expected payoff function in this setting is still a Bernoulli

mixture over the realized payoff function π, so that weak SC1 suffices (assumption

A1). Intuitively, an agent knows her opponents’ identities but not their signals.

Hence, each opponent’s action is again the outcome of a random trial, where the

success probability is the chance that the opponent’s signal exceeds the participation

threshold.

7 Summary of Results

The preceding results are summarized in Table 1. With discrete agents, weak SC1 is

a sufficient condition for each theory to yield the associated criterion. This condition

is typically easy to verify.42 The six fictional beliefs appear in Figure 2.

Sufficient Conditions for Theory to Imply Criterion

Theory Criterion
Discrete

Agents
Infinitesimal Agents

Prior

Art

A. Heuristic Arguments

Pareto Pareto Weak SC1 Weak SC1 SC

UI UI Weak SC1 Weak SC1 SC

B. Rational-Player Models

MM Laplace Weak SC1 Continuous on [0, 1] & SC1 on (0, 1) SC

GG Laplace Weak SC1 Weak SC1 See §1
C. Evolutionary Models

KMR KMR Weak SC1 Theory requires discrete agents SC

FY FY Weak SC1 Lipschitz on [0, 1] & SC1 on (0, 1) SC

FH FH Weak SC1 Lipschitz on [0, 1] & SC1 on (0, 1)
SC,

n = 2

Table 1: Summary of Results. “Prior Art”: sufficient conditions identified by the prior
literature. “SC”: strategic complementarities. “Lipschitz”: Lipschitz-continuous.

42See, e.g., Frankel [26, 27].
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Figure 2: Fictional beliefs for each of the six criteria; n = 500 agents. The graph
depicts the probability Γ (ℓ) that the proportion of others who participate is at most
ℓ ∈ [0, 1] according to the fictional beliefs Γ associated with the UI, Pareto, Laplace,
KMR, FY, and FH criteria.

7.1 Evolutionary Criteria: Discussion

The evolutionary criteria differ starkly. The fictional beliefs in KMR put most of

their weight on participation rates near 50% and converge to a step function at this

value as n → ∞. The fictional beliefs in the FY criterion are more dispersed but,

like KMR, are higher near 50%. Finally, in the FH criterion, the fictional beliefs put

equal weight on participation rates of 0% and 100% and no weight on intermediate

participation rates.

What explains these differences? In all three settings, the agents play a game

repeatedly over time. Actions that yielded higher payoffs in the recent past are more

likely to be played today. This means that if the participation rate z is close enough

to zero (resp., one), it will fall (resp., rise): there are two long-run equilibria which,
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in our setting, are “all-participate” and “none-participate”.

In order to select between these two equilibria, the three theories introduce shocks

in different ways. In KMR, in each period t, every agent trembles (chooses the

suboptimal action) with some small probability. Starting in a situation in which all

agents play the same action, the size of that action’s basin of attraction is proportional

to the number of simultaneous trembles that must occur for the other action to

become optimal - and thus, given Darwinian dynamics, for a transition to the other

action to occur. But the action with the larger basin of attraction is the action that is

a best response to a 50-50 action distribution. For this reason, players will eventually

settle on the action that is a best response to the fictional belief that half of the other

players participate.43

In contrast, rather than jumping as in KMR, the participation rate z in FY and

FH is a continuous-time process that drifts towards the action with the higher current

payoff: it has the form dz = α (z) dt+ β (z) dw where w is a Brownian motion, β (z)

measures the size of the shocks, and α (z) measures the drift which, in turn, depends

positively on the expected payoff from participating at z.44 To transition from 0 to 1,

the action distribution z must pass through every value in (0, 1). In this setting, the

drift at all states matters. However, it matters more where the shocks are smaller:45

the weight on the drift at a given state z is proportional to the inverse 1/β2 (z) of

43For fixed n, in the limit as ε → 0, Γ converges not to a step function at ℓ = 1/2 but rather to the
smooth shape shown in Figure 2. Intuitively, if n− 1 players are chosen at random from an infinite
population that is evenly split between the two actions (z = 1/2) then the probability that exactly i
of them participate is just the binomial coefficient WKMR

i,n defined in (9). Hence, “participate” has a
larger basin of attraction if an agent would choose it under the belief that, for each i = 0, ..., n− 1,
the probability is WKMR

i,n that exactly i of her n− 1 opponents participate.

44The drift α (z) equals z (1− z) γ (z) where γ (z) is the expected flow payoff from participating
against n − 1 opponents, each of whom has an independent chance z of participating. For more
details, see sections 3 and 5.2 of the online appendix.

45Similarly, Beggs [7] finds that an equilibrium is more likely to be selected if the shocks are smaller
in its basin of attraction. More generally, Bergin and Lipman [8] and Binmore and Samuelson [10]
show that equilibrium selection depends on the sizes of the shocks at different states.
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the squared shock at that state.46 In FY, the diffusion term β (z) is a constant so

the criterion is a simple average of the drift over all states. This corresponds to

the diffused fictional beliefs ΓFY depicted in Figure 2. In FH, in contrast, the weight

1/β2 (z) goes to infinity as the participation rate z approaches either zero or one. This

gives rise to the fictional beliefs ΓFH in Figure 2, which divide their weight equally

between these two extreme rates.47

Much of the evolutionary literature has focused on the robustness of a particular

selection criterion to changes in the noise structure. For instance, Sandholm [64,

Thm. 7.14] shows that in a large class of n-player two-action games, such robustness

requires a payoff condition that is stronger even than strategic complementarities.

Our approach is different: we weaken the payoff conditions as much as possible and

show that the resulting criteria, while heterogeneous, have a simple common form.

8 Mechanism Design

An intended application of our findings is to embed the participation game in a larger

setting in which a principal designs a scheme to induce the agents to participate. For

the principal to have an optimal scheme, the set of schemes that induce participation

must typically be closed. However, this is not so under (2) as the inequalities are

strict. We now develop a toolkit to address this issue.

We assume the principal can either stay out, getting some fixed payoff U0, or

propose a scheme s from a nonempty set Σ that is compact with respect to some

metric µ.48 Fix an agent size (discrete or infinitesimal) and let R be the set of feasible

46See Lemmas 43 and 44 in section 10 of the online appendix.

47Blume [12] studies a discrete-time model in which groups of n ≥ 2 players are randomly matched
to play a two-action coordination game. Relative to our version of KMR, Blume makes stronger
assumptions on payoffs but imposes weaker conditions on noise. He shows that either the FH
criterion [12, Thms. 3 & 4] or the KMR criterion [12, Thm. 5] may emerge, depending on the form
of the noise.

48See Appendix A for a review of metric spaces and compactness.

28



other-agent participation rates.49 Let πs : R → ℜ be the agents’ payoff function from

participating in s. The agents’ decision is thus governed by (2) with π = πs, which

yields three cases. If Ξ (πs) is positive, all agents participate; we let Us denote the

principal’s payoff in this case. If Ξ (πs) is negative, no agents participate; we assume

this is dominated by staying out.50

Finally, if Ξ (πs) is zero, the agents’ response is indeterminate. We assume the

principal will not propose such a scheme. As the justification for this assumption is

somewhat complicated, we defer it to Appendix B.

Assume that the maps s → Us and, for all ℓ ∈ R, s → πs (ℓ) are continuous with

respect to µ. Let

φΓ (s) =

∫ 1

ℓ=0

πs (ℓ) dΓ (ℓ) (35)

denote the integral in (2) associated with the payoff function πs.

Claim 24. The map s→ φΓ (s) is continuous in s with respect to µ.

Proof. Online appendix, section 10.

Assume that for every scheme s in Σ, the payoff function πs satisfies the sufficient

conditions in Table 1 for (2) to hold.51 Let

O = {s ∈ Σ : φΓ (s) > 0} (36)

denote the set of successful schemes in Σ: those that induce the agents to participate

under (2). As noted, we assume the principal will propose a successful scheme or no

scheme at all. But as the set O is not closed, the principal may not have an optimal

49R equals λ =
{

i
n−1 : i = 0, ..., n− 1

}
if agents are discrete and [0, 1] if infinitesimal.

50In practice, devising and marketing a scheme takes time and rejection is likely to damage a
principal’s reputation.

51These conditions depend on the researcher’s chosen agent size: discrete or infinitesimal. Some-
times the issuer has no choice; e.g., if πs (ℓ) is discontinuous in ℓ for some schemes s, she must
assume discrete agents. In more flexible applications, her choice might be guided instead by the
prior literature, notational simplicity, or - if she allows both agent sizes - a desire for generality. For
a variety of such applications, see Frankel [27].
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successful scheme. Instead, we look for an approximate optimum, which we define as

follows.

Definition 25. A scheme s∗ ∈ Σ is approximately optimal in Σ if (a) there is no

successful scheme s′ ∈ Σ that satisfies Us′ > Us∗ and (b) for any ε > 0 there is a

successful scheme s′ ∈ Σ within ε of s∗, such that |Us∗ − Us′| < ε.

By part (a), an approximately optimal scheme s∗ provides a tight upper bound

on the principal’s payoff from a successful scheme. By part (b), there are successful

schemes near s∗ that give the principal a payoff near this upper bound. Finally, an

approximately optimal scheme always exists by the following result. Let

O =
⋂

{closed S ′ ⊆ Σ : O ∈ S ′} (37)

denote the closure of O.

Claim 26. Assume O is nonempty. Then there exists a solution to maxs∈O Us. More-

over, s∗ is approximately optimal in Σ if and only if it solves maxs∈O Us.

Proof. Online appendix, section 10.

However, solving maxs∈O Us is not equivalent to maximizing Us subject to φΓ (s) ≥

0 as there may be schemes s satisfying φΓ (s) = 0 that are not near any success-

ful schemes.52,53 Rather, the following search procedure should be used. Steps (a)

through (d) reiterate the above groundwork, while (e) through (h) are new.

52A scheme s is not near any successful schemes if it is not a limit point of schemes in O: if, for
some δ > 0, there is no scheme s′ in O for which µ (s, s′) < δ.

53For instance, let Γ put all of its weight on ℓ = 1/2. Let the set Σ consist of two schemes s1

and s2 with payoff functions πs1 (ℓ) =

{
0 if ℓ < 1/4

1 if ℓ ≥ 1/4
and πs2 (ℓ) =

{
0 if ℓ < 3/4

1 if ℓ ≥ 3/4
. Assume the

principal prefers s2 to s1 if all agents participate, but prefers s1 to staying out: Us2 > Us1 > U0.
Then s2 maximizes Us while satisfying φΓ (s2) = πs2 (1/2) ≥ 0. However, s2 is not approximately
optimal since s1 is the only successful scheme and it is not close to s2. (If it were, πs1 (ℓ) would have
to be close to πs2 (ℓ) for all ℓ by continuity.)
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Heuristic Search Procedure (HSP) (a) Specify an agent type (discrete or in-

finitesimal) and let R ∈ {λ, [0, 1]} be the set of feasible other-agent participa-

tion rates. (b) Specify a nonempty set Σ of schemes and, for each scheme s in

Σ, a payoff function πs : R → ℜ for the agents as well as the payoff Us ∈ ℜ

that the principal receives if all agents participate. (c) Specify a metric µ on Σ

and verify that the set Σ is compact and the maps s → Us and, for all ℓ ∈ R,

s → πs (ℓ) are continuous with respect to µ. (d) Show that for any scheme

s ∈ Σ, πs satisfies the sufficient conditions in Table 1 for the chosen agent type

(discrete or infinitesimal). (e) If the set O of successful schemes is empty, abort

the procedure.54 (f) Let Σ′ be the result of removing from Σ an arbitrary (and

possibly empty) set of schemes that are not near any successful schemes.55 (g)

Find a scheme s∗ that maximizes Us on Σ′ subject to

φΓ (s) ≥ 0. (38)

(h) Show that for every δ > 0 there is a successful scheme s′ ∈ Σ that is within

δ of s∗.

Claim 27. Assume steps (a) through (d) of HSP are satisfied. (A) If a scheme s∗ ∈ Σ

solves steps (e) through (h) of HSP, then it is approximately optimal in Σ. (B) If s∗

is approximately optimal in Σ, then there is a way to delete schemes in step (f) such

that s∗ satisfies steps (e), (g), and (h).

Proof. Online appendix, section 10.

Frankel [27] uses HSP to solve three different variants of a security design model.

For each variant, he shows that (g) implies (h) and then solves (g) using standard

constrained optimization methods. In one variant, schemes must be deleted in step

(f) for (g) to imply (h). Some variants posit discrete agents and others infinitesimal.

54If O is empty, so is its closure O: by Claim 26, there is no approximately optimal scheme.

55See n. 52.
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A reader who wishes to apply HSP may thus find Frankel [27] useful.56

9 Concluding Remarks

In many applied settings, a group of agents choose whether or not to participate in

a joint activity that is worthwhile only if the overall participation rate is sufficiently

high. Examples include joining a platform, investing in a project, rebelling against a

regime, attacking a currency, and leaving funds in a bank. Such games have multiple

equilibria: both all-participate and none-participate are self-fulfilling prophecies. To

make predictions, one thus needs a theory of equilibrium selection.

We study seven well-known selection theories from the literature: two based on

heuristics, two that assume rational players, and three evolutionary models. We show

that these theories give rise to six distinct selection criteria, all of which have same

parsimonious form: an agent plays a best response to the belief that the proportion of

others who participate has some fixed distribution that depends on the theory. This

distribution is common across the agents and does not depend on the game’s payoffs.

In deriving these implications, we assume only a weak single crossing property57

in contrast with the prior literature, which has relied largely on strategic complemen-

tarities. This advance can make it easier to design optimal mechanisms, as well as to

explain the use of existing mechanisms that violate the stronger conditions.58

In many settings, a principal devises a scheme to induce a set of agents to par-

ticipate in some activity. To find an optimal such scheme, a researcher may need to

permit payoffs that satisfy a single crossing property but not strategic complementar-

ities. To facilitate such applications, we develop an algorithm: the Heuristic Search

56Another application appears below in Appendix B.

57This holds for discrete agents. For the infinitesimal case, see Table 1.

58An alternative is to craft taxes and subsidies that ensure that payoffs satisfy strategic comple-
mentarities as in Mathevet [52]. However, that approach is not as well suited to explaining existing
policies.
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Procedure (HSP). Frankel [27] illustrates the application of HSP in three security

design settings, two of which violate strategic complementarities in a natural way.

A Compact Metric Spaces

In HSP(c) one must show that the set Σ of feasible schemes is compact with respect

to some metric µ - or, equivalently, that Σ is a compact metric space with metric

µ. We now briefly review some concepts that may prove useful in establishing this

property.

A metric space is a set Σ together with a metric µ: a real-valued, nonnegative, and

symmetric function on Σ2 such that (i) for all s, s′ in Σ, µ (s, s′) > (=) 0 if s ̸= (=) s′

and (ii) for all s, s′, s′′ in Σ, µ (s, s′′) ≤ µ (s, s′)+µ (s′, s′′) (Royden and Fitzpatrick [62,

p. 183]) (RF). A metric space Σ is compact if and only if it is sequentially compact,

which means that every sequence (si)
∞
i=1 in Σ has a subsequence that converges to a

point in Σ (RF [62, p. 199]). If, moreover, Σ is a subset of Euclidean space, then Σ

is compact if and only if it is closed and bounded (RF [62, p. 200]).

B Indeterminate Schemes

Let an indeterminate scheme be a scheme s for which the selection criterion (2)

provides no prediction: Ξ (πs) equals zero. In section 8, we assume that the principal

will not propose such a scheme. We now justify this assumption.

There are two types of indeterminate schemes: (A) those that are near successful

schemes and (B) those that are not. While we do not let an issuer propose a type-A

scheme, we do not ignore them. To the contrary: they play a key role in our analysis.

In particular, all type-A schemes are in the closure of the set of successful schemes and

thus, by Claims 26 and 27, may be selected by HSP. Intuitively, a type-A scheme s can

always be “sweetened” by passing to a nearby successful scheme s′, thus inducing all
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agents to participate. It thus is a good approximation to schemes that the principal

might select.

In contrast, a type-B scheme s cannot be sweetened to induce full participation.

Accordingly, there can exist type-B schemes that would give the issuer a very high

payoff were the agents to participate, but that are weakly dominated for the agents

and thus unlikely to be accepted. Letting the principal choose such schemes can easily

lead to absurd results.

To illustrate, suppose there are n agents, each with wealth w > 0. If an agent

participates in the principal’s activity, she gets a private benefit f + bℓ where ℓ ∈ λ

is the other-agent participation rate. The constants f and b are positive but much

smaller than w. The principal devises a fee schedule τs : λ → [0, w], where an agent

pays τs (ℓ) to participate.59 An agent’s payoff function is thus

πs (ℓ) = f + bℓ− τs (ℓ) . (39)

The principal’s payoff is simply her fee revenue: if all agents participate, she gets

Us = nτs (1) . (40)

We now carry out the steps of HSP. For HSP(a), the agents are discrete so R = λ.

For HSP(b), we use the payoff functions πs and Us given in (39) and (40) and define

the set Σ of feasible schemes to be the set of all fee schedules (τs (ℓ))ℓ∈λ in [0, w]n

satisfying:

For all ℓ′ > ℓ both in λ, either πs (ℓ) ≤ 0 or πs (ℓ
′) ≥ 0. (41)

For HSP(c), we use the supremum metric µ (s, s′) = maxℓ∈λ |τs (ℓ)− τs (ℓ
′)|. As (41)

imposes only weak inequalities, Σ is a closed and bounded subset of Euclidean space

and thus is compact (Appendix A). The maps s → Us and, for all ℓ ∈ R, s → πs (ℓ)

are also clearly continuous with respect to µ. For HSP(d), weak SC1 holds by (41).

59If a total of i ∈ {1, ..., n} agents participate, then each such agent faces the same other-agent
participation rate ℓ = i−1

n−1 and thus pays the same fee τs (ℓ).
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As for HSP(e), the zero scheme τs (ℓ) ≡ 0 is successful as it yields the payoff function

πs (ℓ) = f + bℓ which is positive for all ℓ. For HSP(f), we remove no schemes.

We turn now to HSP(g). To obtain an upper bound on the principal’s payoff under

any fictional beliefs, we solve HSP(g) under the Pareto criterion: the best criterion

for the principal. The integral φΓPareto (s) in (35) now equals πs (1) = f + b − τs (1).

Thus, HSP(g) is solved by the scheme s∗ whose fee τs∗ (ℓ) identically equals the full-

participation private benefit f + b.60 By (40), an upper bound on the principal’s

payoff from any successful scheme, under any fictional beliefs, is thus the sum of the

agents’ full-participation private benefits:

Us ≤ n (f + b) . (42)

We now show that a much higher payoff Us emerges if type-B schemes are allowed,

which is equivalent to omitting step (h) from HSP. Moreover, we prove this result

under the UI criterion: the worst criterion for the principal. Consider the scheme s†

given by

τs† (ℓ) =

f if ℓ = 0;

w else.

The resulting payoff function is

πs† (ℓ) =

0 if ℓ = 0;

f + bℓ− w ≪ 0 else

(43)

which satisfies weak SC1 as it is never positive: s† is in Σ. Moreover, an agent

who participates gets zero if no others participate: s† satisfies the constraint (38) of

HSP(g). Since, by (40), the principal’s payoff Us† under full participation equals the

agents’ aggregate wealth nw, there is no better scheme for her: s† solves HSP(g). And

since w ≫ f + b, the payoff Us† far exceeds the upper bound (42) on the principal’s

60The resulting payoff function πs∗ (ℓ) = −b (1− ℓ) is increasing in ℓ so it satisfies (41): s∗ is in
Σ. Moreover, one can obtain a successful scheme by reducing the fee to τs (ℓ) = f + b − δ for any
small δ > 0, so s∗ satisfies HSP(h) as well.
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payoff from any acceptable scheme.

However, s† lies far away from any successful scheme and thus fails HSP(h) badly.

Why? By (36), a successful scheme s′ must satisfy φΓUI (s′) = πs′ (0) > 0. But then

by weak SC1, its payoff function must be nonnegative and so, by (43), must vastly

exceed πs† (ℓ) for ℓ > 0. The scheme s† is also implausible: no reasonable agent would

agree to a scheme that leaves her indifferent if noone else participates but leaves her

penniless otherwise. We conclude that to avoid absurd results, one must assume that

the principal will not propose an indeterminate scheme.

References

[1] Angeletos, G.-M., C. Hellwig, and A. Pavan. 2006. "Signaling in a Global Game:

Coordination and Policy Traps." Journal of Political Economy 114:452-84.

[2] —–. 2007. "Dynamic Global Games of Regime Change: Learning, Multiplicity,

and the Timing of Attacks." Econometrica 75:711-756.

[3] Angeletos, G.-M., and I. Werning. 2006. "Crises and Prices: Information Aggre-

gation, Multiplicity, and Volatility." American Economic Review 96:1720-36.

[4] Argenziano, R. 2008. “Differentiated Networks: Equilibrium and Efficiency.”

Rand Journal of Economics 39:747–769.

[5] Athey, S. 1996. “Comparative Statics Under Uncertainty: Single Crossing Prop-

erties and Log-Supermodularity.” M.I.T. Working Paper no. 96-22.

[6] Aumann, R. 1990. “Communication Need Not Lead to Nash Equilibrium.” He-

brew University of Jerusalem Working Paper.

[7] Beggs, A.W. 2007. “Large Deviations and Equilibrium Selection in Large Popu-

lations.” Journal of Economic Theory 132:383-410.

36



[8] Bergin, J., and B.L. Lipman. 1996. “Evolution with State-Dependent Muta-

tions.” Econometrica 64:943-956.

[9] Bernstein, S., and E. Winter. 2012. “Contracting with Heterogeneous External-

ities.” American Economic Journal: Microeconomics 4:50-76.

[10] Binmore, K., and L. Samuelson. 1997. “Muddling Through: Noisy Equilibrium

Selection.” Journal of Economic Theory 74:235-265.

[11] Blume, A., and A. Ortmann. 2007. “The Effect of Costless Pre-play Communica-

tion: Experimental Evidence for Games with Pareto-ranked Equilibria.” Journal

of Economic Theory 132: 274–290.

[12] Blume, L.E. 2003. “How Noise Matters.” Games and Economic Behavior 44:251-

271.

[13] Burdzy, K., and D.M. Frankel. 2005. "Shocks and Business Cycles." Advances

in Theoretical Economics vol. 5, iss. 1, paper no. 2.

[14] Carlsson, H., and E. van Damme. 1993. “Global Games and Equilibrium Selec-

tion.” Econometrica 61:989-1018.

[15] Chakraborty, A., S. Gervais, and B. Yilmaz. 2011. “Security Design in Initial

Public Offerings.” Review of Finance 15:327-357.

[16] Chamley, C. 1999. "Coordinating Regime Switches." Quarterly Journal of Eco-

nomics 114:869-905.

[17] Chassang, S. 2010. "Fear of Miscoordination and the Robustness of Cooperation

in Dynamic Global Games With Exit." Econometrica 78:973-1006.

[18] Dasgupta, A. 2007. “Coordination and Delay in Global Games.” Journal of Eco-

nomic Theory 134:195-225.

37



[19] Demichelis, S., and J.W. Weibull. 2008. “Language, Meaning, and Games: A

Model of Communication, Coordination, and Evolution.” American Economic

Review 98:1292-1311.

[20] Edmond, C. 2013. “Information Manipulation, Coordination, and Regime

Change.” Review of Economic Studies 80;1422-1458.

[21] Ellison, G. 2000. “Basins of Attraction, Long-Run Stochastic Stability, and the

Speed of Step-by-Step Evolution.” Review of Economic Studies 67:17-45.

[22] Feri, F., B. Irlenbusch, and M. Sutter. 2010. “Efficiency Gains from Team-Based

Coordination—Large-Scale Experimental Evidence.” American Economic Re-

view 100:1892-1912.

[23] Foster, D., and P.H. Young. 1990. “Stochastic Evolutionary Game Dynamics.”

Theoretical Population Biology 38:219–232.

[24] Frankel, D.M. 2012. “Recurrent Crises in Global Games.” Journal of Mathemat-

ical Economics 48:309-321.

[25] —–. 2017. “Efficient Ex-Ante Stabilization of Firms.” Journal of Economic The-

ory 170:112-144.

[26] —–. 2023. “Executive Summary of ’Equilibrium Selection in Participation

Games: A Unified Framework’.” Mimeo (www.dmfrankel.com/papers.html).

[27] —–. 2023. “How to Sell Equity if You Must.” Mimeo

(www.dmfrankel.com/papers.html).

[28] —–. 2023. “Online Appendix to ‘Equilibrium Selection in Participation Games:

A Unified Framework’.” Mimeo (www.dmfrankel.com/papers.html).

[29] Frankel, D.M., and A. Pauzner. 2000. “Resolving Indeterminacy in Dynamic

Settings: The Role of Shocks.” Quarterly Journal of Economics 115:283-304.

38



[30] —–. 2002. "Expectations and the Timing of Neighborhood Change." Journal of

Urban Economics 51:295-314.

[31] Frankel, D.M., S. Morris, and A. Pauzner. 2003. “Equilibrium Selection in Global

Games with Strategic Complementarities.” Journal of Economic Theory 108:1-

44.

[32] Fudenberg, D., and C. Harris. 1992. “Evolutionary Dynamics with Aggregate

Shocks.” Journal of Economic Theory 57:420-441.

[33] Gneezy, U. 2005. “Deception: The Role of Consequences.” American Economic

Review 95:384-394.

[34] Goldstein, I., and A. Pauzner. 2005. “Demand-Deposit Contracts and the Prob-

ability of Bank Runs.” Journal of Finance 60:1293-1327.

[35] —–. 2004. "Contagion of Self-Fulfilling Financial Crises due to Diversification of

Investment Portfolios." Journal of Economic Theory 119:151-83.

[36] Green, J., and J.-J. Laffont. 1977. “Characterization of Satisfactory Mechanisms

for the Revelation of Preferences for Public Goods.” Econometrica 45:427-438.

[37] Groves, T. 1973. “Incentives in Teams.” Econometrica 41:617-631.

[38] Guimaraes, B., and A.E. Pereira. 2016. “QWERTY is Efficient.” Journal of

Economic Theory 163:819-825.

[39] Halac, M., I. Kremer, and E. Winter. 2020. “Raising Capital from Heterogeneous

Investors.” American Economic Review 110:889-921.

[40] Halac, M., E. Lipnowski, and D. Rappoport. 2021. “Rank Uncertainty in Orga-

nizations.” American Economic Review 111:757-786.

[41] Harrison, R., and P. Jara-Moroni. 2015. "A Dominance Solvable Global Game

with Strategic Substitutes." Journal of Mathematical Economics 57:1-11.

39



[42] Heinemann, F., R. Nagel, and P. Ockenfels. 2004. “The Theory of Global Games

on Test: Experimental Analysis of Coordination Games with Public and Private

Information.” Econometrica 72:1583-1599.

[43] —–. 2009. "Measuring Strategic Uncertainty in Coordination Games." Review

of Economic Studies 76:181-221.

[44] Hellwig, C., A. Mukherji, and A. Tsyvinski. 2006. "Self-Fulfilling Currency

Crises: The Role of Interest Rates." American Economic Review 96:1769-1787.

[45] Hoffman, E.J., and T. Sabarwal. 2019. “Global Games with Strategic Comple-

ments and Substitutes.” Games and Economic Behavior 118:72-93.

[46] Jacobsen, H.J., M. Jensen, and B. Sloth. 1999. “On the Structural Difference

Between the Evolutionary Approach of Young and that of Kandori, Mailath,

and Rob.” Mimeo, U. Copenhagen.

[47] Jullien, B., and A. Pavan. 2019. Information Management and Pricing in Plat-

form Markets. Review of Economic Studies 86:1666-1703.

[48] Kandori, M., G. Mailath, and R. Rob. 1993. “Learning, Mutation and Long

Equilibria in Games.” Econometrica 61:27–56.

[49] Karp, L., I.H. Lee, and R. Mason. 2007. “A Global Game with Strategic Substi-

tutes and Complements.” Games and Economic Behavior 60:155-175.

[50] Kim, Y. 1996. “Equilibrium Selection in n-Person Coordination Games.” Games

and Economic Behavior 15:203-227.

[51] Kim, Y.-G., and J. Sobel. 1995. “An Evolutionary Approach to Pre-Play Com-

munication.” Econometrica 63:1181-1193.

[52] Mathevet, L. 2010. “Supermodular Mechanism Design.” Theoretical Economics

5:403-443.

40



[53] Matsui, A., and K. Matsuyama. 1995. “An Approach to Equilibrium Selection.”

Journal of Economic Theory 65:415-434.

[54] Morris, S., and H.S. Shin. 1998. "Unique Equilibrium in a Model of Self-Fulfilling

Currency Attacks." American Economic Review 88:587-597.

[55] —–. 2003. “Global Games: Theory and Applications.” Pp. 56-114 in Dewa-

tripont, M., L.P. Hansen, and S.J. Turnovsky. “Advances in Economics and

Econometrics: Theory and Applications, [Econometric Society] Eighth World

Congress, Volume 1.” Cambridge University Press.

[56] —–. 2004. "Liquidity Black Holes." Review of Finance 8:1-18.

[57] —–. 2004. "Coordination Risk and the Price of Debt." European Economic Re-

view 48:133-53.

[58] —–. 2006. “Catalytic Finance: When Does it Work?” Journal of International

Economics 70:161-177.

[59] Oyama, D. 2004. "Booms and Slumps in a Game of Sequential Investment with

the Changing Fundamentals." Japanese Economic Review 55:311-20.

[60] Plantin, G. 2009. “Learning by Holding and Liquidity.” Review of Economic

Studies 76:395-412.

[61] Rabin, M. 1994. “A Model of Pre-Game Communication.” Journal of Economic

Theory 63:370-391.

[62] Royden, H.L., and P.M. Fitzpatrick. 2010. Real Analysis, 4th ed. New York:

Pearson.
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