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NONLINEAR ECONOMETRIC MODELS: THE SMOOTH 

TRANSITION REGRESSION APPROACH∗ 
 

 

Abstract 1 

In this paper we study econometric models of smooth transition characterized by switching 

regimes through continuous transition functions. We discuss the process of specifying, 

estimating and evaluating smooth transition regression (STR) models. Next we present an 

overview of the first attempts at extending nonlinear STR techniques to vector autoregressive 

(VAR) models and to panels that have emerged in the last few years. Additionally, we review 

the applications of the STR modelling techniques to a number of different economic 

problems. Finally, we provide an illustration by applying the methodology to a particular 

example of nonlinear Okun’s Law for Germany. 
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NONLINEAR ECONOMETRIC MODELS: THE SMOOTH 

TRANSITION REGRESSION APPROACH∗ 
 

Abstract 2 

In this paper we study econometric models of smooth transition between different possible 

regimes. The transition dynamics is based on continuous transition functions that allow for 

smooth changes during the transition. Smooth transition models can be seen as a 

generalization of threshold models. We discuss the process of specifying the models using 

statistical tests for nonlinearities and choice of transition variable. Furthermore, we provide 

some details on estimating and evaluating smooth transition regression (STR) models. Next 

we present an overview of the first attempts at extending nonlinear STR techniques to vector 

autoregressive (VAR) models. Extensions to data panels that have emerged in the last few 

years are also discussed. Panels are especially interesting since they can easily be applied to 

disaggregated data. Additionally, we review the applications of STR modelling techniques to 

a number of different economic issues: dynamics of exchange rates, Okun’s Law, Phillips 

curve, structure of wages in different sectors, models based on disaggregated data, and others. 

Finally, we provide an illustration by applying the methodology to a particular example of 

nonlinear Okun’s Law for Germany. We find that the transition function aligns closely with 

substantial increases in unemployment rates, reflecting major shifts in economic structure, 

such as German reunification, oil shocks, and a very restrictive monetary policy in the 

eighties.. 
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1 INTRODUCTION  

From recent studies of univariate models, we learn that there is much to be gained by allowing 

nonlinear specification. Additionally, economic variables are frequently subject to switching 

regimes. The notion of the regime switch implies a sudden abrupt change. However, most 

economic variables change regimes in a smooth manner, with transition from one regime to 

another taking some time. To handle this, Smooth Transition Regression (STR) models have 

recently been developed. We present the STR methodology, including specification, 

estimation and evaluation of STR models; examine its recent applications; and provide an 

illustration of its application to a particular nonlinear model of Okun's Law for Western 

Germany covering the reunification period. 

 

In contrast to discrete switching models (e.g. Hansen, 1999), smooth transition regression 

(STR) models transition as a continuous process dependent on the transition variable. This 

allows for incorporating regime switching behaviour both when the exact time of the regime 

change is not known with certainty and when there is a short transition period to a new 

regime. Therefore, STR models provide additional information on the dynamics of variables 

that show their value even during the transition period.  

 

Capturing nonlinearities and regime switching makes STR models good candidates for 

analysis of numerous economic variables. First, STR models naturally lend themselves to 

modelling institutional structural breaks. Thus, they may be a useful tool to study transition 

economies characterised by many structural breaks in the early part of transition. Second, 

several authors provide evidence of asymmetries in the dynamics of economic variables, 

depending on the magnitudes of parameters, in established market economies. Examples 

include Johansen (2002), who shows asymmetric reactions for wages in various sectors, and 

Legrenzi et al. (2004), who study asymmetric adjustment of real exchange rates. Third, the 

STR methodology has been extensively used to study exchange rates and has recently been 

applied to Okun's Law and the Phillips curve. Finally, the methodology has been extended 

recently to VAR and to panel data. This allows for a whole spectrum of new applications 

modelling several variables and incorporating heterogeneity in disaggregated data. 
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2 SMOOTH TRANSITION REGRESSION 

Economic theory frequently asserts that the economy behaves differently if values of certain 

variables lie in one region rather than in another, or, in other words, if they follow different 

regimes. The first attempt at modelling such phenomena is represented by discrete switching 

models, where a finite number of different regimes is assumed. The central tool of this class 

of models is the so-called switching variable, which can be either observable or unobservable. 

As smooth transitions between regimes are often more convenient and realistic than abrupt 

switches, several scientists proposed a generalisation of discrete switching models of the 

following form: 

 ( ) ( , ; )t t t t ty x x G c s uϕ θ γ′ ′= + ⋅ + ,     1, 2, ,t T= … , (1) 

where 0 1( , , , )pϕ ϕ ϕ ϕ ′= …  and 0 1( , , , )pθ θ θ θ ′= …  are the parameter vectors, tx  is the vector of 

explanatory variables containing lags of the endogenous variable and the exogenous variables, 

(i.e., 1 1 1(1, , , ) (1, , , , , , )t t tp t t m t tnx x x y y z z− −′ ′= … = … … ), whereas tu  denotes a sequence of 

independent identically distributed errors. G stands for a continuous transition function 

usually bounded between 0 and 1. Because of this property, not only can the two extreme 

states be explained by the model, but also a continuum of states that lie between those two 

extremes. The slope parameter 0γ >  is an indicator of the speed of transition between 0 and 

1, whereas the threshold parameter c  points to where the transition takes place. The transition 

variable ts  is usually one of the explanatory variables or the time trend. 

The most popular functional forms of the transition function are as follows: 

• LSTR1 Model: 1 ( )
1( , ; )

1 tt s cG c s
e γγ − −=

+
 

1G  is a monotonously increasing function of the transition variable ts , bounded between 0 

and 1. Additionally, 1( , ; ) 0.5G c cγ = ; therefore, we can say that the location parameter c 

represents the point of transition between the two extreme regimes with 1lim 0
ts G→−∞ =  and 

1lim 1
ts G→∞ = . The restriction γ  > 0 is an identifying restriction. As we can see from Figure 

1, the slope parameter γ  indicates how rapidly the transition of G1 from 0 to 1 takes place. 
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While a moderate value of γ  = 1 imposes a slow transition, the function with γ  = 10 changes 

quite fast.  

Figure 1: LSTR1 transition functions with c = 1 

 

If γ  → ∞ in the definition of 1G , then model (1) converges to a switching regression model 

with the extreme regimes t t ty x uϕ′= +  and ( )t t ty x uϕ θ′= + + . For γ  = 0, the function 1G  is 

constant and equal to 0.5. In this case, model (1) simplifies to a linear regression model. 

• LSTR2 Model: 
1 22 1 2 ( )( )

1( , , ; )
1 t tt s c s cG c c s

e γγ − − −=
+

 

Monotonous transition may not always be satisfactory in applications. The quadratic logistic 

function in the LSTR2 model is a nonmonotonous transition function that is especially useful 

in the case of reswitching. 2G  is symmetric about the point 1 2

2
c c+  and 2lim 1

ts G→±∞ = . 2G  is 

never equal to 0; its minimal value lies between 0 and 0.5. Two examples of the function 2G  

with different values of the parameters are depicted in Figure 2. 
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Figure 2: LSTR2 transition functions with 1 1c = −  and 2 1c =  

 

• ESTR Model: 
2( )

3 ( , ; ) 1 ts c
tG c s e γγ − −= −  

Sometimes it is desirable that small absolute values of the transition variable are related to 

small values of the transition function. The ESTR model with an exponential transition 

function complies with the above condition for c = 0. The function 3G  is nonmonotonous and 

symmetric about the point c. 

Figure 3: ESTR transition functions with c = 0 

 

Both the LSTR2 model and the ESTR model enable reswitching, but they differ in the 

rapidity of reswitching. One can see from Figure 3 that for a large value of γ , the transition of 
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st from 1 to 0 and back to 1 is much faster for the ESTR model as compared to the LSTR2 

model, where the reswitching can be slower when the gap between 1c  and 2c  is large. 

 

2.1 Testing Linearity against STR 

Let us start by defining a more convenient notation:  

                                                     * 0.5, 1, 2
, 3

i
i

i

G i
G

G i
− =⎧

= ⎨ =⎩
                                                      (2) 

Obviously, * 0iG =  for 0γ = . The null hypothesis of linearity for model (2) can be expressed 

as 0 : 0H γ =  against 1 : 0H γ >  or as 0 : 0H θ′ =  against 1 : 0H θ′ ≠ . This indicates an 

identification problem, since the model is identified under the alternative but not identified 

under the null hypothesis. Namely, the parameters c  and θ  are nuisance parameters that are 

not present in the model under 0H  and whose values do not affect the value of the log-

likelihood. Consequently, the likelihood ratio test, the Lagrange multiplier, and the Wald test 

do not have their standard asymptotic distributions under the null hypothesis and one cannot 

use these tests for a consistent estimation of the parameters c  and θ . To overcome this 

problem, Luukkonen, Saikkonen and Teräsvirta (1998) replaced the transition function with 

its Taylor approximation of a suitable order. Let us write the first order Taylor approximation 

around 0γ =  for the logistic transition function *
1G  as a polynomial in the transition variable 

ts : 

 1 0 1 1( , ; )t tT a a s R c sγ= + + .  (3) 

After replacing *
1G  by 1T  in equation (2), one obtains 

 *
0 1( )t t t t ty x b x s b u′ ′= + + ,  (4) 

where 0b  and 1b  are (p+1)-dimensional column vectors of parameters. The null hypothesis of 

linearity can be tested as 0 1: 0H b′′ =  against 1 1: 0H b′′ ≠  with a straightforward Lagrange 

multiplier test. The test statistic is asymptotically 2χ -distributed with p+1 degrees of 

freedom. We have to emphasize that auxiliary regression (4) is suitable only if the transition 
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variable ts  is not an element of the vector tx . Otherwise, the variable ts  appears twice on the 

right-hand side of Equation (4). The problem is solved by substituting tx  with 

1( , , )t t tpx x x ′= …%  in the second term of (4).  

To avoid dealing with low power in some special cases, the third order Taylor polynomial is 

applied. This leads to the following auxiliary regression: 

 2 3 *
0 1 2 3( ) ( ) ( )t t t t t t t t ty x b x s b x s b x s b u′ ′ ′ ′= + + + + .  (5) 

Under the null hypothesis of linearity, the parameter vectors 1b , 2b  and 3b  are jointly tested to 

zero. F-version of the linearity test is usually preferred because of its better small sample 

properties. Comprehensive discussion of these issues is given in Teräsvirta (1998) and in 

Luukkonen, Saikkonen and Teräsvirta (1998). 

 

2.2 Model Specification 

The choice of transition variable is not straightforward, since the underlying economic theory 

often gives no clues as to which variable should be taken for the transition variable under the 

alternative. Teräsvirta (1998) suggests testing the null hypothesis of linearity for each of the 

possible transition variables in turn. The candidates for the transition variable are usually the 

explanatory variables and the time trend. If the null is rejected for more than one variable, the 

variable with the strongest rejection of linearity (i.e., with the lowest p-value) is chosen for 

the transition variable. This intuitive and heuristic procedure can be justified by observing that 

the test is most powerful when the alternative hypothesis is correctly specified, and this is 

achieved for the "right" transition variable. It has to be emphasized that one cannot control the 

overall significance level of the linearity test for this heuristic procedure, since several 

individual tests have to be performed. 

If the transition variable has already been decided upon, the next step in the modelling process 

consists of choosing the transition function. The decision rule is based on a sequence of 

nested hypotheses that test for the order of the polynomial in auxiliary regression (5): 

                                                            04 3: 0H b =  
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03 2 3: 0 0H b b= =                                                          (6) 

       02 1 2 3: 0 0H b b b= = = . 

The 3 hypotheses are tested with a sequence of F-tests named F4, F3 and F2, respectively. If 

the rejection of the hypothesis 03H  is the strongest, Teräsvirta (1998) advises choosing the 

LSTR2 or the ESTR model. In practice, one usually chooses the LSTR2 model and 

additionally tests the hypothesis 1 2c c=  after estimation. If it cannot be rejected, it seems 

better to select the LSTR2 model; otherwise ESTR should be selected. In case of the strongest 

rejection of the hypotheses 04H  or 02H , LSTR1 is chosen as the appropriate model. This 

heuristic decision rule is based on expressing the parameter vectors 1b , 2b  and 3b  from 

auxiliary regression (5) as functions of the parameters γ , c  (or 1c  and 2c ) and θ  and the first 

three partial derivatives of the transition function *
iG  at the point 0γ = . 

Teräsvirta (1998) conducted a series of simulation experiments to investigate the properties of 

the proposed heuristic specification strategy for choosing the transition variable and the 

transition function. The study was carried out for smooth transition autoregressive (STAR) 

models in the univariate setting. Different types of STAR models were examined and their 

parameters were varied. The "true" transition variable was the lagged endogenous variable 

t dy − , where the delay parameter d  ran from 1 to 5. For each d , the linearity test was 

performed for every possible transition variable in turn (i.e., for 1 2 5, , ,t t ty y y− − −K ) and the 

variable with the lowest p-value was chosen. The empirical size of the overall linearity test 

was 3 to 4 % when the nominal size was 5 %. The results of the simulation study justified the 

heuristic specification procedure and also showed that the power of the linearity test is better 

for higher γ  values and for lower values of the delay parameter d . The decision rule for 

choosing the type of the transition function was tested for distinguishing between LSTAR1 

and ESTAR models. It works best when the number of observations of the transition variable 

that lie below c  is about the same as the number of observations above c . The performance 

of the rule improves with the sample size. 
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2.3 Estimation of STR Models 

The specified STR model is usually estimated with nonlinear least squares or with maximum 

likelihood estimation under the assumption of normally distributed errors. Both methods are 

equivalent in this case. Nonlinear optimisation procedures are used to maximize the log-

likelihood or to minimize the sum of squared residuals. Some of the most often used nonlinear 

optimisation algorithms are the Newton-Raphson algorithm, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm, the steepest descent algorithm, and the Davidon-Fletcher-Powell 

(DFP) algorithm.  

An additional remark should be made on the slope parameter γ  of the transition function. The 

magnitude of the parameter γ  depends on the magnitude of the transition variable ts  and is 

therefore not scale-free. The numerical optimisation is more stable if the exponent of the 

transition function is standardised prior to optimisation. In other words, it is advisable to 

divide γ  by the sample standard deviation (in the case of LSTR1 models) or by the sample 

variance (for ESTR and LSTR2 models) of the transition variable. In this way the magnitude 

of the slope parameter is brought closer to the magnitude of other parameters. 

 

2.4 Misspecification Tests 

The misspecification tests were first developed by Eitrheim and Teräsvirta (1996) for 

univariate time series, i.e. for smooth transition autoregressive (STAR) models, but the 

generalisation to STR models is straightforward. Three tests had to be developed especially 

for the STAR models, namely the test of no remaining nonlinearity, the test of no error 

autocorrelation, and the parameter constancy test. For a detailed derivation of these tests, see 

Eitrheim and Teräsvirta (1996) and Lin and Teräsvirta (1994). Other tests, like the LM test of 

no autoregressive conditional heteroscedasticity of Engle (1982) and of McLeod and Li 

(1983), and the Lomnicki-Jarque-Berra test of the normal distribution of errors, are performed 

in the same way as in the linear setting. 
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3 SYSTEMS OF EQUATIONS 

As many issues in economics require the specification of several relationships, techniques to 

handle nonlinear features in systems are required. Only in recent years have such methods 

appeared in the literature. Most of the work has been done in the nonlinear VAR framework. 

Anderson and Vahid (1998) devised a procedure for detecting common nonlinear components 

in a multivariate system of variables. The common nonlinearities approach is based on the 

canonical correlations technique and can help us interpret the relationships between different 

economic variables. The specification and estimation of the system of equations is also 

simplified, since the existence of common nonlinearities reduces the dimension of nonlinear 

components in the system and enables parsimony. This is particularly important in empirical 

investigations involving economic time series of shorter length. Namely, most of the 

macroeconomic indicators are published on a quarterly basis. 

 

3.1 Smooth Transition Approach to Vector Autoregressive Models 

Weise (1999), van Dijk (2001), and Camacho (2004) extended the STR modelling approach 

to vector autoregressive models of smooth transition. Similarly, multivariate Markov–

switching models are treated in Krolzig (1997), and multivariate threshold models in Tsay 

(1998). Van Dijk (2001) applies the STVAR modelling approach to study the intraday spot 

rates and futures prices of the FTSE100 index, whereas Camacho (2004) examines the 

nonlinear forecasting power of the composite index of leading indicators to predict both 

output growth and the business cycle phases of the US economy. Since all three studies are 

similar, and the most comprehensive description of the methodological approach is given by 

Camacho (2004), we shall give a short review of his work. The STR specification is limited to 

the case where the transition between different parameter regimes is governed by the same 

transition variable and the same type of transition function in every equation of the system. 

The authors argue that since the economic practice imposes common nonlinear features, all 

equations share the same switching regime.  
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3.1.1 Specification and Estimation 

Camacho (2004) considers a 2-dimensional smooth transition vector autoregressive (STVAR) 

model 

                                              
( )
( )

( )

( ) ,
t y t y t y yt yt

t x t x t x xt xt

y X X G s u

x X X G s u

ϕ θ

ϕ θ

′ ′= + +

′ ′= + +
                                        (7) 

where 1 1(1, , , , , ) (1, )t t t t p t p tX y x y x X− − − − ′ ′= = %K , , , ,x y x yϕ ϕ θ θ  are the corresponding parameter 

vectors, and ( , ) (0, )t yt xtU u u N′= Ω:  is a vector series of serially uncorrelated errors. The 

difference it it iD s c= − , ,i x y=  in the exponent of the transition function iG  is called the 

switching expression. The letters ty  and tx  are used for the two variables in the 

autoregressive system, since the smooth transition approach is applied to the rate of growth of 

the US GDP and the rate of growth of the US composite index of leading indicators, 

respectively. The discussion is restricted to the case of xt yt ts s s= =  and x yG G= , where the 

same transition variable and the same transition function are used in both equations. 

After the linear VAR has been specified, the linearity test is applied. The problems with the 

transition function parameters are solved with a suitable Taylor series expansion, as usual. 

The auxiliary regression to be performed in case the transition variable ts  belongs to tX  is 

                                                     

3

0
1

3

0
1

h
t y t yh t t yt

h

h
t x t xh t t xt

h

y X X s v

x X X s v

η η

η η

=

=

′ ′= + +

′ ′= + +

∑

∑

%

%
                                               (8) 

and the null hypothesis of linearity reads as 

                                                 0 1 2 3: 0,      , .i i iH i x yη η η= = = =                                             (9) 

Consequently, the null hypothesis can be tested with the Lagrange multiplier test. 

If the null hypothesis of linearity is rejected in favour of the alternative smooth transition 

vector autoregressive model, one has to decide which transition function to use. The decision 

is based on the sequence of nested hypotheses tests described in Section 2.2. The parameters 
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of the specified model are estimated with the maximum likelihood estimator under the 

assumption of normally distributed errors: 

            ( , ) (0, ).t yt xtU u u N′= Ω:                                                  (10) 

3.1.2 Testing the Model Adequacy 

As proposed by Eitrheim and Teräsvirta (1994), three tests are performed in order to check for 

the adequacy of the estimated model, namely the test of no error autocorrelation, the test of no 

remaining nonlinearity, and the parameter constancy test. A detailed description of the 

multivariate generalisations of the three tests can be found in Camacho (2004). 

 

4. PANEL SMOOTH TRANSITION REGRESSION (PSTR) 

PSTR models are the latest extension of STR modelling to panel data with heterogeneity 

across the panel members and over time. First we present the general form of PSTR 

(Gonzalez et al., 2005) and then an extension to multilevel PSTR (Fok et al., 2005a and Fok et 

al., 2005b).  

 

4.1. Panel STR Models  

While Tsay (1998) discusses multivariate threshold models, Hansen (1999) presents a panel 

threshold regression model. Building on this, Gonzalez et al. (2005) generalise the framework 

to include STR in panels. The panel threshold model allows for regression coefficients to 

change upon some observable variable reaching the threshold. Thus, it assumes that the 

threshold for the switching of regimes is clearly defined. Gonzalez et al. (2005) relax this 

assumption and incorporate smooth transition into this framework, allowing the regression 

coefficients to adjust gradually as the system moves from one regime to another. 

The general form of the PSTR model is given in the following equation: 

1
' ' ( ; , )

r
j

it i i it i j it j it j j it
j

y x x G s c uµ ϕ θ γ
=

= + + +∑       (11) 
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µi are means for individual members of the panel, and r is the maximum number of different 

transition functions (Gj). The rest of the equation is analogous to (1) above, but with the 

additional index i  counting the panel members. The transition function is determined as 

follows: 

1

( )

1( ; , )

1

m
j

j it jk
k

j
j it j j

s c
G s c

e
γ

γ
=

− −
=

∏
+

     (12) 

with γ > 0 and 1 2j j jmc c c≤ ≤ ≤K . ( )1 2, , ,j j j jmc c c c ′= K  is an m-dimensional vector of 

threshold parameters.  

The transition Gj function incorporates one (m = 1) or more (m > 1) regime switches. m = 2 in 

Equation (12) allows for two different switches of regime (with identical outer regimes), 

which is usually sufficient for most practical applications. With the slope parameter γj  ∞ 

and m = 1, Gj becomes an indicator function I[sj
it > cj], with I[A] = 1 when event A occurs, 

and 0 otherwise. m = 1 corresponds to two regimes, and m = 2 to the three regime panel 

threshold model developed in Hansen (1999). In general, when sj
it = sit for j = 1, ... , r, m = 1 

and γj  ∞, this results in a panel threshold model with r + 1 regimes. Thus, Equation (11) is 

a generalisation of Hansen's approach. Additionally, the model (11) and (12) above is a 

convenient alternative for testing for remaining heterogeneity. 

4.1.1. Testing Homogeneity of a Panel 

If a data generating process is homogenous, the PSTR is not identified. Therefore, the first 

step in specifying the model is testing for homogeneity. Consider the model in (11) with r = 1. 

For such a panel model, the H0: γ = 0 is tested against the PSTR alternative. The null implies 

no heterogeneity. As explained above, the testing is based on the Taylor expansion of the 

transition function around γ = 0. If the first-order Taylor approximation is applied, the null 

hypothesis (based on auxiliary regression) becomes H0: b1 = b2 = ... = bm = 0. The general 

approach is the same as in Section 2.1. Some details can be found in Gonzalez et al. (2005) or 

in Luukkonen, Saikkonen and Teräsvirta (1988). 

The testing procedure from Section 2.2 can also be used for PSTR models to choose the 

transition variable (the one with strongest rejection of linearity) and to determine an 
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appropriate form of transition function (12), thus choosing m. This requires the sequential 

testing for m from highest to lowest (as in (6) above). 

4.1.2. Estimation 

First the fixed effects (µi) are eliminated by subtracting panel member specific means from 

the data, and then NLS is applied to the transformed variables. Assuming r = 1 and 

subtracting the respective means in equation (11) we obtain: 

* * *' ( , )it it ity x c uβ γ= +      (13) 

where β = (φ', θ')', xit(γ,c) = (xit', xit'G(sit;γi,ci))', and asterisks denote deviations from the 

individual means. NLS or maximum likelihood can be applied to Equation (13) with a caveat 

that transformed x* depends on γ and c through both the levels and the individual means. 

Thus, one has to compute x*(γ,c) at each iteration of the nonlinear optimization procedure.  

Conditionally on γ and c, the PSTR model is linear in β. As pointed out by Hansen (2000), the 

computationally easiest method to obtain the LS estimates in this case is through 

concentration. The parameters of the model are estimated by minimising the concentrated sum 

of squared errors.  

4.1.3. Model Evaluation 

Gonzalez et al. (2005) develop the parameter constancy test. This is done using the alternative 

that the parameters in (11) change smoothly over time. The model under the alternative is 

time varying PSTR. If m = 1 in (12), then the alternative is defined as: 

2

2 2 1 1
1

( ; , ) ( ' ' ( ; , ))it i j i j it i j it it it
j

y f t c x x G s c uµ γ ϕ θ γ
=

= + ∗ + +∑     (14) 

where f1(.) = 1 and f2(.) is as given in (12). If the parameter γ2 = 0, then this reduces to (11) 

and indicates parameter constancy, implying the following null H0: γ2 = 0. Eitrheim and 

Teräsvirta (1996) discuss some numerical problems in computing the test (see also Gonzalez 

et al., 2005), but the F test can be applied. 

Testing for remaining heterogeneity is based on the alternative r = 2 in (11). The null is again: 

H0: γ2 = 0 and can be tested using appropriate F distribution. Gonzalez et al. (2005) also 
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discuss the choice of the number of regimes and provide some simulation results for the 

model at hand. 

 

4.2. Multi Level Panel STAR Models 

Multi level panel STAR models allow for an additional structure that relates the parameters of 

the model across various elements of the panel. Fok et al. (2005a) present a two level STAR 

model for a panel of time series. They use it to study disaggregated data and argue that 

aggregation loses some information embedded in individual series. Furthermore, their 

approach makes STAR models more parsimonious by partially pooling parameters across 

panel members.  

In addition to estimating the usual STAR model, they add to the model the second level where 

the parameters of the transition function (γ and c) are dependent on data characteristics in 

individual sectors. In particular they estimate: 

' ' ( ; , )it i i it i it t i i ity x x G s c uµ ϕ θ γ= + + +     (15) 

log( )
'i

i i
i

w
c
γ

δ η
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

     (16) 

The vector of explanatory variables in (15) is given by 1(1, , , )it it it px y y− − ′= K . Equation (15) 

is the same as (11). However, equation (16) shows the second level regression where the 

parameters of the transition function G (γi and ci) depend on observable variables (related to 

yit) collected in vector wi. δ is a 2-column matrix of unknown coefficients and ηi is a vector of 

well-behaved errors. 

The estimation of the complex system above is not straightforward. Fok et al. (2005a) use 

simulated maximum likelihood and concentrate the likelihood function with respect to the 

parameters of the first level model. 

Frequently one may want to know the value of the switching function G(st; γi, ci) for 

individual sectors at given times.  Using simulation, Fok et al. (2005a) calculate the 

conditional expectations of the transition function that depends on the sector-specific 

observed data: 
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Thus the conditional expectation of the transition function G, with parameters dependent on 

observables as in (16), given the information on yi, is calculated using appropriate weights ω 

(some details can be found in Fok et al., 2005a). These conditional expectations are 

interpreted as indicators of the state of the system (for example, the state of the business 

cycle). 

This two-fold strategy places their model in between two extremes: the completely 

heterogeneous panel, which imposes no cross restrictions on the parameters, and the fully 

pooled panel, where the regime switching process is equal across the panel members. The 

approach is interesting since it allows substantial flexibility across the panel members. 

However, the estimation is rather complicated (for iterations on concentrated simulated 

maximum likelihood, see Fok et al., 2005a for details.) 

Fok et al. (2005b) incorporate some generalisations in the multilevel panel STAR model 

presented above, which they use for studying forecasting properties of the model. 

Generalisations include the transition function that depends on the vector zt=(zt1, ..., ztk)' of 

observable variables. Thus, the transition function is of the following form: 
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     (18) 

where πi is a vector of parameters. Furthermore, they generalise the model by including a 

vector νt of additional exogenous regressors into Equation (15) above: 

' ' ' ( ; , , )it i i it i it i it t i i i ity x x G z c uµ λ ν ϕ β π γ= + + + +    (19) 

λi  is a vector of regression coefficients, and the error term is well-behaved. The second level 

estimation for this model is based on the following: 
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where variables are defined as in (16). The estimation methodology of concentrated and 

simulated maximum likelihood from Fok et al. (2005a) is employed here. As above, the 

conditional expectations are simulated to obtain information on the current state with respect 

to the regime. 

 

5 APPLICATIONS 

5.1 Nonlinearities in Real Exchange Rates 

Since the real exchange rate in logarithmic form may be viewed as a measure of the deviation 

from purchasing power parity (PPP), the question of mean reversion in the real exchange rate 

is closely related to the issue of validity of PPP. In order to circumvent the low power 

problem of conventional unit root tests, the validity of PPP is usually investigated through 

long-span studies or panel unit root studies. Sarno and Taylor (2002) point out the 

disadvantages of both of the mentioned approaches. As far as the long-span studies are 

concerned, the long samples required to generate a reasonable level of power with univariate 

unit root tests may be unavailable for many currencies. Panel studies, on the other hand, 

impose the null hypothesis that all of the series under observation are generated by unit root 

processes, implying that the probability of rejection of the null hypothesis may be quite high 

when as few as just one of the series is stationary. For this reason, Sarno and Taylor develop a 

smooth transition autoregressive (STAR) model to study the behaviour of the real exchange 

rate. In their model, the real exchange rate in the logarithmic form is explained by its lagged 

values. It is shown that the four major real dollar exchange rates are becoming increasingly 

mean reverting with the absolute size of the deviation from equilibrium, which is consistent 

with the recent theoretical literature on the nature of the real exchange rate dynamics in the 

presence of international arbitrage costs. 

Traditional empirical analyses of purchasing power parity validity and its deviations are based 

on linear framework and mostly suggest that the long run equilibrium is constant. Moreover, 

these analyses suggest that real exchange rate dynamics should be explained by a linear 

autoregressive process with continuous and constant speed of adjustment, not taking into 

account the size of deviations from purchasing power parity (Sarno and Taylor, 2002). Using 

a linear framework for a nonlinear dataset, the rejection of a unit root as a null hypothesis is 
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more likely (Taylor 2006), while the assumption of constant speed of adjustment implies 

downward bias of the results.  

Potential reasons for nonlinearities in real exchange rates include frictions due to transport 

costs, tariffs or non-tariff barriers, interaction of heterogeneous agents in the foreign exchange 

market at the micro-structural level, and influence of official intervention in the foreign 

exchange market (Taylor, 2006). Sarno and Taylor (2002), Sarno (2003), and Taylor (2006) 

provide an overview of nonlinear exchange rate models and assess their contribution to 

explaining the behaviour of the exchange rates. Numerous authors reject linearity assumption 

in favour of STAR models when studying exchange rate dynamics: Liew, Chong and Lim 

(2003) for 11 Asian countries, and Rapach and Wohar (2006) and Ahmad and Glosser (2007) 

for the US dollar real exchange rate. Moreover, Paya, Venetis, and Peel (2003) take into 

consideration two different approaches in solving the purchasing power parity puzzle: 

nonlinear adjustment of real exchange rates induced by transaction costs and non-constant 

real exchange rate equilibrium induced by different productivity growth rates. Consequently, 

the dynamics of real exchange rates can be described as symmetric and nonlinear. 

Additionally, these authors show that the estimated half-lives of the shocks are much shorter 

than those obtained by linear models. 

A growing number of studies apply nonlinear LSTAR or ESTAR models and find (rapid) 

mean reversion in both real and nominal exchange rates: Taylor, Peel, and Sarno (2001); 

Guerra (2003) for the Swiss frank–German mark; Liew, Bahrumshah and Lim (2004) for the 

Singapore dollar-US dollar; Paya and Peel (2005) for high inflation countries; Leon and 

Najarian (2005); and Baum, Barkoulas and Caglayan. (2001) using deviations from PPP 

obtained by the Johansen cointegration method. Additionally, several authors reject unit roots 

when testing real exchange rates: Sollis (2005) for several US dollar exchange rates with 

gradually changing deterministic trends, and Leon and Najarian (2005) for PPP deviations.  

Lahtinen (2006) uses the US dollar-euro exchange rate and distinguishes between the sudden 

and smooth adjustment to long-run equilibrium. He argues that the adjustment for the data 

under observation is sudden. 

ESTAR models have also been used to forecast the behaviour of real exchange rates. Kilian 

and Taylor (2003) find evidence of exchange rate predictability in 2 to 3 years given ESTAR 

real exchange rate dynamics. Asymmetries in adjustment of real exchange rate to equilibrium 

was studied in Leon and Najarian (2005), and Legrenzi and Milas (2004).  
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Monte Carlo simulations are frequently used to study the dynamics of exchange rates and test 

for possible nonlinearity: Taylor, Peel, and Sarno (2001) show the fastest adjustment process 

of real exchange rates when transaction costs and nonlinearities in mean reversions are 

present; Paya and Peel (2005) show that nonlinear tests provide support for PPP; and Ahmad 

and Glosser (2007) claim that the methodology used to detect nonlinearities in the data exhibit 

size bias.   

In addition, Peel and Venetis (2005) present theoretical limitations of ESTAR models and 

propose a new linear model consistent with rational expectations, while the ESTAR model 

assumes adaptive expectations.  

One of the relatively rare papers examining purchasing power parity deviations in Central 

European countries is Arghyrou, Boinet, and Martin (2005). The authors analyse the data 

from Czech Republic, Hungary, Poland, Slovakia and Slovenia. Among other results, it is 

shown that the short-run dynamics of the real exchange rates display nonlinear and 

asymmetric behaviour, while the speed of adjustment depends on the size and sign of the 

deviation.  

Legrenzi and Milas (2004) study a VAR that includes exchange rate, unemployment rate and 

real wages. They find evidence of nonlinearities and explain it as due to asymmetric 

adjustments to exchange rate disequilibria: "prices and wages are more flexible when real 

output is high." 

 

5.2 Phillips Curve, Okun's Law, and Money Demand 

5.2.1 Nonlinear Money Demand 

Since representation of asymmetric reactions, structural changes, and other phenomena of 

economic developments can be fruitfully investigated by nonlinear modelling techniques, the 

issue of a possible nonlinear money demand specification has been studied by several authors. 

Chen and Wu (2005) show that employing the conventional linear cointegration approach in 

examining long-run money demand may not be appropriate after taking into account the 

existence of transaction costs. They provide evidence that deviations from equilibrium money 

demand follow an exponential smooth transition autoregressive process that is mean-reverting 
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outside a given range and has a unit-root inside the range. Similarly, Sarno, Taylor and Peel 

(2003) argue that several theoretical models of money demand imply nonlinear functional 

forms for the aggregate demand for money, characterized by smooth adjustment toward long-

run equilibrium. Their paper proposes a nonlinear equilibrium correction model of US money 

demand that is shown to be stable over the sample period from 1869 to 1997. The use of an 

exponential smooth transition regression model, with the lagged long-run equilibrium error 

acting as the transition variable, implies faster adjustment toward equilibrium, the greater the 

absolute size of the deviation from equilibrium. In a similar study, Sarno (1999) presents a 

stable empirical model for the demand for narrow money in Italy using annual data spanning 

from Italian unification in 1861 through 1991. A nonlinear functional form of the aggregate 

demand for money is characterized by smooth adjustment towards long-run equilibrium, 

again achieved by estimating a nonlinear error correction model in the form of an exponential 

smooth transition regression 

5.2.2 Nonlinear Phillips Curve 

Substantial theoretical and empirical evidence can be found in the literature suggesting 

nonlinearity in the output-inflation relationship, namely a nonlinear Phillips curve. Dolado, 

Ramon and Naveira (2005) investigate the implications of a nonlinear Phillips curve for the 

derivation of optimal monetary policy rules. They show that combined with a quadratic loss 

function, the optimal policy is also nonlinear, with the policy-maker increasing interest rates 

by a larger amount when inflation or output are above target than the amount by which they 

are reduced when they are below target. The model of Schaling (2004) features a convex 

Phillips curve, in which positive deviations of aggregate demand from potential are more 

inflationary than negative deviations are disinflationary. Corrado and Holly (2003) consider 

the performance of optimal policy rules when the underlying relationship between inflation 

and the output gap may be nonlinear. In particular, if the inflation-output trade-off exhibits 

nonlinearities, this will impart a bias to inflation when a linear rule is used. To correct this 

bias, they propose a piecewise linear rule, which can be thought of as an approximation to the 

nonlinear rule of Schaling (2004). 

 

Mayes and Viren (2002) highlight the implications for a single monetary policy when key 

economic relationships are nonlinear or asymmetric at a disaggregate level. Using data for the 

EU and OECD countries, they show that there are considerable nonlinearities and 
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asymmetries in the Phillips and Okun curves. High unemployment has a relatively limited 

effect in pulling inflation down, while low unemployment can be much more effective in 

driving it up. To accommodate the potentially important departure from linearity of the 

Phillips curve, Huh (2002) employs a vector autoregressive (VAR) model of output, inflation, 

and the terms of trade augmented with logistic smooth transition autoregression 

specifications. Empirical results indicate that the model captures the nonlinear features 

present in the data well. Based on this nonlinear approximation, the output costs for reducing 

inflation are found to vary, depending critically on the state of the economy, the size of 

intended inflation change, and whether policymakers seek to disinflate or prevent inflation 

from rising. This implies that inferences based on the conventional linear Phillips curve may 

provide misleading signals about the cost of lowering inflation and thus the appropriate policy 

stance. Böhm (2001) also employs the smooth transition regression modelling approach. In a 

formulation of an inflation equation for Austria, which includes demand and supply features, 

he explores the capacity of STR models to improve upon specification. The nonlinearities and 

asymmetries are found to be relevant ingredients in the Austrian inflation equation, and the 

change in the unemployment rate is shown to have a larger impact on inflation during periods 

of high volatility of price increases. Kavkler and Böhm (2005) investigate a well-known 

model of monetary inflation theory which can be shortly characterized by an equation 

describing the monetary system augmented by a Phillips curve and the equation of Okun’s 

Law. The basic tool for identification and estimation of the model equations is the smooth 

transition regression approach. From the simulation of the estimated nonlinear system, 

asymmetric policy reactions can be derived. 

5.2.3 Nonlinear Okun's Law 

While the linear relationship between output and unemployment rate in the US was 

established empirically by Okun, Prachowny (1993) provided a theoretical derivation of the 

relation in a special case. Under the assumptions that the aggregate production function is of a 

Cobb-Douglas type and that the capital stock and a disembodied technology factor are always 

at their long-run levels, Prachowny established a log linear relationship between the output 

gap and capacity utilization gap, labour supply gap and hours worked gap. Sögner and 

Stiassny (2002) use Baysian methods to test for discrete structural breaks in Okun's Law and 

the Kalman filter to check for continuous parameter changes. 15 OECD countries are included 

in their study. The first approach does not detect any structural breaks, whereas the results of 
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the second approach imply continuous parameter changes for 10 of the countries. The 

relationships between output and labour demand and labour supply, respectively, are also 

discussed in the paper. The authors conclude that for most countries the change in Okun's 

coefficient results mainly from an increased reaction of employment to GDP change. A 

nonlinear relationship between cyclical unemployment and cyclical output is proposed by 

Cuaresma (2003). For US data, the linear specification is strongly rejected in favour of a 

piecewise linear specification. The estimated Okun's coefficient is significantly higher for 

expansions than for recessions, implying that output changes cause asymmetric and regime 

dependent changes in the unemployment rate. Additionally, unemployment shocks tend to be 

more persistent in times of expansion. The findings of Mayes and Viren (2002) for EU and 

OECD countries are similar. Asymmetry is built into Okun's Law with the help of the 

threshold model and the error correction mechanism, which enables regime dependent 

correction paths. Most of the countries included in the study exhibit an asymmetric 

relationship between unemployment rate and change in output. Below we present an 

application of STR to the Okun's Law.  

 

5.3. Panel Smooth Transition Regression  

Gonzalez et al. (2005) apply the PSTR model to study companies' investment decisions under 

capital market imperfections. In particular, asymmetric information between borrowers and 

lenders causes investment decisions to depend on other financial variables, for example cash 

flow or leverage. In this setting, it is likely that both investment opportunities and information 

costs change through time in such a way that firms migrate between the constrained and the 

unconstrained regime. Since it is unlikely that the regime would switch abruptly, this merits 

the use of smooth transition techniques. The authors apply the model to 565 US firms during 

the years 1973-1987 and reject homogeneity for two transition variables: Tobin's q and lagged 

debt. Moreover, they determine the order of m in Equation (12) as a logistic function with 

m=1. Using Tobin's q as a transition variable, their results reveal that investment decisions 

depend on Tobin's q, debt, cash flow, and sales of assets. They report that on average nearly 

10% of firms switch regimes during a year, and they conclude that there exists a clear 

nonlinear relationship between investment and Tobin's q. 
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Fok et al. (2005a) apply their two level panel STR to 19 3-digit NAICS2 sectors of the US 

economy. They model the business cycle in these sectors, taking into account asymmetries 

between recessions and expansions. While the former are sharp and short, the latter have 

longer durations. Their modelling approach allows them to incorporate differences in the 

timing of recession onset in different sectors. To account for heterogeneity in regime-

switching properties across industries, they use capital, worker wages, energy, and material 

costs as explanatory variables in the second-level regression. They avoid the usual selection 

of transition variable through testing for linearity by choosing the interest rate as their 

transition variable. They base their decision on the finding that the "term spread is among the 

most powerful (leading) indicators of the US business cycle" (Estrella and Mishkin, 1998). 

After handling several estimation problems (such as no convergence in numerical 

optimisation for some sectors), Fok et al. report the conditional expectations as an indicator 

for the state of the business cycle. These align very well with the official NBER recession 

dates. There is some variation in the timing of the onset of recession for different industries, 

but that is rather limited. Additionally, they show that for aggregate growth the in-sample 

predictions are best for univariate STR; however, their model is superior for out-of-sample 

predictions. 

 

Fok et al. (2005b) use the coincidence index, measuring economic activity at the 

disaggregated state level in the US, to study the forecast properties of the multi-level panel 

STR model. The coincidence index is based on a dynamic factor model for non-agricultural 

employment, the unemployment rate, average hours worked, and real wages. Fok et al. use 

simulation to compare the forecasts obtained by estimating three different STR models: the 

STR for aggregate growth rates, the individual STR model, and the multi-level panel STR 

model. They find that the STR model for aggregate growth rates performs the worst in this 

simulation. The model is then applied to data and they find that the panel STR model 

outperforms the aggregate STR model for both in- and out-of-sample forecasts. Thus, they 

conclude that forecasting business cycles based on disaggregated data incorporates nonlinear 

dynamics in individual industries and therefore is superior to the forecasts based on the 

aggregate time series. 

 

                                                 
2 North American Industry Classification. 
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Using data for 117 industries, Johansen (2002) applies the panel STR techniques to industry 

specific wages. He rejects linearity and uses relative wages as a transition variable. After 

eliminating the industry-specific fixed effects by first differencing the data, he applies GMM 

on instrumental variables to estimate the parameters. He finds strong support for nonlinearity 

in industry wage responses to profitability, outside industry wage, and unemployment. He 

claims that nonlinearity reflects higher concern on the part of workers in low wage industries 

(first regime) as opposed to those in high wage industries. The long-run insider weight and the 

unemployment effect are much stronger in low wage industries. 

 

6 ILLUSTRATION: NONLINEAR OKUN'S LAW  

Okun’s law describes the short-run relationship between the GDP gap and the unemployment 

rate. This empirical relationship, developed by A.M. Okun in the 1970s, can be stated as 

follows (compare Frisch, 1990):  
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where 0a >  is a constant term, u and *u  denote the actual and the natural rate of 

unemployment, X stands for the actual real output, and *X  for potential real output. As a 

slightly more general relationship between the rate of unemployment and the rate of growth of 

real output, we can write 

 ( )*
1 xxauu −−= −   (22) 

with *x  denoting the expected rate of real growth following the long-run trend. 

 

We apply the STR approach to modelling Okun’s Law based on seasonally adjusted quarterly 

data from West Germany between 1969 and 2000.3 West Germany was chosen to investigate 

the impact of the German reunification, and the end of the time span under observation was 

determined by the availability of official data published by the Federal Statistical Office of 

Germany for West Germany. Following Grant (2002), four approaches for modelling *x  via 

the business cycle were applied: simple average, linear trend, the Hodrick-Prescott 

                                                 
3 Some further details can be found in Kavkler and Böhm (2005). 
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decomposition, and the Beveridge-Nelson decomposition. As the simple average did not 

perform worse than the other three methods, it was chosen as the appropriate method. After 

several attempts to specify a model that is linear in the output gap, the following estimation 

result including the squared gap was obtained. Additionally, it has proved useful to apply a 

difference transformation t t t 1u u u −∆ = −  when searching for the appropriate dynamics. In 

Equation (23) below, the variable gap stands for the difference *xx − , with the expected rate 

of real growth *x  set constant and equal to the arithmetic mean of x. The dummy variables 

were introduced to reduce the ARCH effects caused by the outliers in the years 1991 and 

1992, when German reunification took place. The obtained model proved satisfactory after 

being tested for normality, autocorrelations, ARCH effects, and constancy of coefficients. The 

estimation results are given in Equation (23) and the results of the tests in Table 1. 

 

 t∆u  = -0.0194 - 0.0464 gap + 0.0086 2gap  - 0.1960 t-1u  + 0.4247 t-1u∆  +              (23) 
                       (0.0225) (0.0093)        (0.0023)           (0.0312)        (0.0606)   

                    + 0.1788 t-3u∆  - 0.1886 t-4u∆  - 0.6667 dummy1 + 0.5415 dummy2 
           (0.0744)           (0.0708)          (0.1992)                 (0.1197) 

2R = 0.6276, S.E. = 0.1946, AIC = -0.3675, T = 128 

 

Table 1: Specification and diagnostic tests (p – values) 

Test Jarque-Bera Breusch-Godfrey (4 lags) Ljung-Box (4 lags) ARCH (4 lags) 
p-

value 0.1843 0.1229 0.568 0.4768 

 

Figure 4 depicts recursive coefficient estimates obtained by least squares estimation over 

gradually increasing time intervals. Sudden changes in the course of the recursive estimates 

imply structural change, whereas smooth changes hint at misspecification. In our case, the 

coefficients C(1), C(3) and C(5) of the constant and the variables 2gap  and t-1u∆  display the 

most variation. Equation (23) is thus a potential candidate for nonlinear STR specification, 

since several coefficients do not seem to be constant over time. 
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Figure 4: Recursive coefficients (following the coefficients in Equation (23) row-wise) 
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The first step in modelling the nonlinear relationship is to find an appropriate transition 

variable and transition function. The results of the F, F4, F3 and F2 tests are given in Table 2. 

The variable t-1u∆  with the strongest rejection of linearity (i.e., with the lowest p-value of the 

F-test) is chosen for the transition variable. The comparison of the p-values of the F4, F3 and 

F2 tests for the variable t-1u∆  indicates the ESTR model as the best choice (see Section 2.2 for 

details).  

 

Table 2: Linearity tests (p-values) 

Variable F F4 F3 F2 
time trend 0.1553 0.0869 0.5435 0.2648 

2gap  0.0055 0.5306 0.0257 0.0056 

t-1v  0.0261 0.5446 0.0240 0.0551 

t-1v∆  0.0000 0.0057 0.0003 0.0079 

t-3v∆  0.0036 0.0201 0.0194 0.2663 

t-4v∆  0.0330 0.0131 0.0840 0.8711 
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After eliminating insignificant variables from the model, one obtains the estimated 

coefficients as shown in Equation (24): 

 

     t∆u  = -0.0422 gap - 0.1099 t-1u  + 0.4727 t-1u∆  + 0.1212 t-3u∆  - 0.7308 dummy1 +     (24) 
                (0.0084)        (0.0341)         (0.0599)           (0.0657)          (0.1683)      

             + 0.6099 dummy2 + [-0.1739 + 0.0400 2gap  - 0.2378 t-1u  - 0.5881 t-4u∆ ] *  
    (0.1039)                   (0.0722)  (0.0113)           (0.0808)        (0.2795) 

  * [1 -  Exp(-1.2706( t-1u∆  - 0.1142)2)] 
                                (0.5963)          (0.0383) 

2R = 0.7275, S.E. = 0.1686, AIC = -3.4703, T = 128, linnl ˆ/ˆ σσ  = 0.6540 

 

The estimate of the coefficient c makes sense because it lies in the range of the transition 

variable. The variable gap² is significant in the nonlinear part, but is dropped as insignificant 

from the linear part. The fact that the gap variable may even have increasing effects on 

unemployment may seem odd but can be explained by the additional demand for high skilled 

labour in periods of excessive growth, say by more than two to three percent deviation from 

normal. 

 

Finally, specification and diagnostic tests are performed to evaluate the obtained model. The 

p-values of the Jarque-Bera test and the test of no remaining error autocorrelation show that 

the null hypotheses of the normally distributed errors and of no error autocorrelation, 

respectively, cannot be rejected (Table 3). Table 3 also reveals that there are no ARCH effects 

present in our model. The test of parameter constancy detects only problems concerning the 

constant term in the nonlinear part of the model. 

 

Table 3: Specification and diagnostic tests (p – values) 

Test Jarque-Bera AR LM (4 lags) Ljung-Box (4 lags) ARCH LM (4 lags) 
p-value 0.6495 0.4343 0.8926 0.4107 

 

Since the threshold parameter c in Equation (24) is close to zero, the two extreme regimes 

with G = 0 and G = 1 are related to small and large changes in the unemployment rate, 

respectively. The short-run relationship between the variables t∆u  and gap is linear when the 

transition variable is close to threshold, 

t∆u  = -0.0422 gap         (for G = 0) 
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and nonlinear otherwise: 

t∆u  = -0.0422 gap + 0.0400 2gap           (for G = 1) 

Output changes thus cause asymmetric and regime dependent changes in the unemployment 

rate.  

 

A comparison of the linear and nonlinear models reveals an increase in explanatory power 

( 2R  increases from 0.63 to 0.73) and a decrease in the standard error of regression from 0.19 

to 0.17. The null hypothesis of linearity tested against the alternative of a smooth transition 

regression model has to be rejected for every possible transition variable with the exception of 

the time trend. Both of these facts confirm our intuition that the linear relationship of Okun’s 

Law can be improved by consideration of regime changes. 

 

By plotting the transition function G and the unemployment rate u in the same graph in Figure 

5 one can observe that most of the major changes in the transition function occur when the 

unemployment rate has risen to new heights. This can be associated with major structural 

changes in the German economy in those periods. In particular, we can clearly observe 

changes in regimes during three distinct periods. The first covers the oil shocks of the 

seventies, especially the first one. The second corresponds to strongly restrictive monetary 

policy in both Germany and the US during the eighties. The third and most clearly discernible 

covers the period following the reunification of Germany from 1990 to 1995. Each of the 

periods is characterized by a sharp rise in unemployment. The German labour market was 

characterized by a number of rigidities, ranging from centralized wage bargaining, a rigid 

institutional and legal framework for the labour market, and low mobility of the labour force; 

to high legal protection against firing (Berthold and Fehn, 2003; Hunt, 1999; Solow, 2000; 

Blanchard and Wolfers, 1999; Siebert, 1997). 

 

During each of these periods, large changes in the economic environment affected both the 

unemployment rate and GDP growth. However, due to a number of rigidities in the labour 

markets mentioned above, the interaction of shocks with the institutions of the labour market 

(Berthold and Fehn, 2003) changed the relationship between unemployment and output 

growth asymmetrically. Therefore, the major structural breaks of these periods can be seen as 

distinct regimes. Figure 5 thus reveals that the nonlinear part of the model captures these 

uneven developments in the economy rather well.   
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Figure 5: Unemployment rate and transition function  
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7 CONCLUSION 

 
The recently developed methodology of smooth transition regression allows for continuous 

smooth changes in regimes. Therefore, it lends itself very well to modelling structural breaks, 

asymmetries in dynamics of variables, and many other applications. Additionally, the 

methodology easily incorporates the possibility of regime reversals. The recent extensions of 

the methodology include VAR with smooth transition and panel smooth transition 

regressions. 

 

Numerous fruitful applications have been found for smooth transition regression models in 

economics, ranging from modelling exchange rate dynamics and asymmetries in sectoral 

wage structure, to nonlinear Phillips Curve, Okun’s Law, and nonlinear disaggregated models 

of business cycles. In particular, many papers apply the modelling strategy to exchange rates. 
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We illustrate the methodology on the example of Okun’s Law for Germany. We find that 

substantial increases in unemployment during the studied period, including the reunification 

of Germany, indicate substantial structural changes in the economy. Changes in the transition 

function closely follow major increases in unemployment, reflecting structural breaks such as 

the reunification of Germany, oil shocks, and the restrictive monetary policy of the eighties. 
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