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Abstract

In this paper we evaluate the premise from the recent literature on empirical Monte

Carlo studies that an empirically motivated simulation exercise is informative about

the actual ranking of various estimators when applied to a particular problem. We

use two alternative designs to generate a large number of data sets which mimic the

well-known NSW-CPS and NSW-PSID sets. We then compare the “true ranking”

of various estimators for the average treatment effect on the treated with rankings

implied by the results of our simulations. We conclude that a necessary condition for

the simulations to be informative about the true ranking is that the treatment effect in

the simulation must be equal to the treatment effect in the original data. This severely

limits the usefulness of such procedures in practice, since if the effect were known the

procedure would not be necessary.
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1 Introduction

Monte Carlo studies constitute a standard approach in econometrics and statistics to ex-

amining small-sample properties of various estimators whenever theoretical results are un-

available. Recent papers by Frölich (2004), Lunceford and Davidian (2004), Zhao (2004,

2008), Busso et al. (2009), Millimet and Tchernis (2009), Austin (2010), Abadie and Im-

bens (2011), Busso et al. (2013), and Huber et al. (2013) have carried out Monte Carlo

experiments to assess the relative finite-sample performance of a large number of estimat-

ors for various average treatment effects of interest.1

Most of these recent papers have used highly stylised data-generating processes (DGPs)

which only loosely correspond to any actual evaluation data sets (see, e.g., Frölich 2004 and

Busso et al. 2009). This approach has been criticised by Huber et al. (2013) on the grounds

that Monte Carlo experiments are design dependent so can only be useful when based on

realistic DGPs. They suggest that the conclusions of many Monte Carlo studies may be

inapplicable to real-world estimation problems, i.e. the external validity of these studies

is low. Instead, they propose an approach to generating artificial data sets which closely

mimics the original data of interest, which they term an “empirical Monte Carlo study”.

Similar simulation exercises have been carried out by Abadie and Imbens (2011) and Busso

et al. (2013), who use a different procedure but it is again adapted to the circumstance of

interest.2

Busso et al. (2013) encourage empirical researchers to “conduct a small-scale simulation

study designed to mimic their empirical context” in order to choose the appropriate es-

timator(s) for a given research question. This suggestion is based on the premise that a

1See, e.g., Blundell and Costa Dias (2009) and Imbens and Wooldridge (2009) for recent reviews of the
treatment effects framework.

2As noted by Huber et al. (2013), the idea of using data to inform Monte Carlo studies goes back at least
as far as Stigler (1977).
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carefully designed and empirically motivated Monte Carlo experiment is capable of in-

forming the empirical researcher of the actual ranking of various estimators when applied

to a given problem using a given data set. In other words, one must accept a proposition

that “the advantage [of an empirical Monte Carlo study] is that it is valid in at least one

relevant environment” (Huber et al. 2013), i.e. its internal validity is high by construction.

In this paper we evaluate this important premise.

Two different approaches to conducting empirical Monte Carlo simulations have been pro-

posed in the literature. The first, which we term the “structured” design, has been con-

sidered by both Abadie and Imbens (2011) and Busso et al. (2013). Loosely speaking,

in this setting covariate values are drawn from a distribution similar to that in the data,

and then treatment status and outcomes are generated using parameters estimated from the

data. The second approach, which we term the “placebo” design, was proposed by Huber

et al. (2013). Here both covariates and the outcome are drawn from the control data with

replacement, and treatment status is assigned using parameters from the data. However,

since all observations come from the control data and the original outcomes are retained,

the treatment effect is known to be zero by construction.

We implement both of these approaches using the well-known NSW-CPS and NSW-PSID

data sets, previously analysed by LaLonde (1986), Heckman and Hotz (1989), Dehejia and

Wahba (1999), Smith and Todd (2005), Abadie and Imbens (2011), Diamond and Sekhon

(2012), and many others.3 Since this programme originally had an experimental control

group, an unbiased estimate of the effect of the NSW programme can be computed. Fol-

lowing LaLonde (1986) we use this true effect to calculate the bias (in these data) for a

large set of estimators. We can then compare these biases, and the ranking of the estim-

ators, to those we find from using the simulation designs considered. If empirical Monte
3Also, the NSW data were the subject of several recent empirically motivated Monte Carlo experiments

(see, e.g., Lee and Whang 2009, Abadie and Imbens 2011, Diamond and Sekhon 2012, and Busso et al.
2013).
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Carlo methods are internally valid, there should be a strong positive correlation between

the biases found in the data and those found in the simulations.

We find that the structured approach to empirical Monte Carlo studies is valid only un-

der the restrictive assumption that the treatment effect in the original data is equal to the

treatment effect implied by the simulation procedure. This result precludes the use of this

method in the practical choice of estimators: if we know that this assumption holds then

we already know the true treatment effect, and if not then the method can provide severely

misleading answers.

The placebo design is similarly problematic, but for an additional reason. As with the

structured design the true effect in simulations is likely to be different than the actual effect

of a given programme. However, it is also less representative of the original data, since it

uses only the control data. This means that when the treated observations are quite different

to the controls it is less good at replicating the original data.

Hence we conclude that there is little support for the chief premise of the recent literature

on empirical Monte Carlo studies: that they are at least informative about the appropri-

ate choice of estimator for the data at hand. We caution researchers against seeing these

methods as a panacea which provides information about estimator choice, and to instead

continue using several different estimators as a form of robustness check.

2 The National Supported Work (NSW) Data

The National Supported Work Demonstration (NSW) was a work experience programme

which operated in the mid-1970s at 15 locations in the United States (for a more detailed

description of the programme, see Smith and Todd 2005). It served several groups of

disadvantaged workers, such as women with dependent children receiving welfare, former
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drug addicts, ex-criminals, and school dropouts. Unlike many similar programmes, the

NSW programme selected its participants randomly, and such a method of selection into the

programme allowed for its straightforward evaluation via a comparison of mean outcomes

in the treatment and control groups.

In an influential paper, LaLonde (1986) suggested that one could use the design of this pro-

gramme to assess the performance of various nonexperimental estimators of the average

treatment effect. He discarded the original control group from the NSW data and cre-

ated several alternative comparison groups using data from the Current Population Survey

(CPS) and the Panel Study of Income Dynamics (PSID), two standard data sets on the U.S.

working population. LaLonde (1986) suggested that a reasonable estimator of the average

treatment effect should be able to closely replicate the experimental estimate of the effect

of the NSW programme on the outcomes of its participants, using data from the treatment

group and the nonexperimental comparison groups. He found that very few of the estimates

were close to the experimental benchmark. This result motivated a large number of rep-

lications and follow-ups, and established a testbed for new estimators for various average

treatment effects of interest (see, e.g., Heckman and Hotz 1989, Dehejia and Wahba 1999,

Smith and Todd 2005, Abadie and Imbens 2011, Diamond and Sekhon 2012).

The key insight of LaLonde (1986) was that a sensible estimator for the average treatment

effect should be able to closely replicate the “true” experimental estimate of this effect us-

ing nonexperimental data. In this paper we suggest that a reasonable empirical Monte Carlo

study should be able to closely replicate the “true” ranking of nonexperimental estimators,

based on their ability to uncover this “true” estimate. In our analysis, we use the subset of

the treatment group (185 observations) which was created by Dehejia and Wahba (1999)

as well as the original CPS and PSID comparison groups (15,992 and 2,490 observations,

respectively) which were created by LaLonde (1986), and we aim at creating a large num-
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Table 1: Descriptive Statistics for the NSW-CPS and NSW-PSID Data Sets
NSW CPS PSID

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Number of observations 185 15,992 2,490
Outcome variable

Nonemployed ‘78 0.24 0.43 0.14 0.34 0.11 0.32
Control variables

Age 25.82 7.16 33.23 11.05 34.85 10.44
Black 0.84 0.36 0.07 0.26 0.25 0.43
Education 10.35 2.01 12.03 2.87 12.12 3.08
Married 0.19 0.39 0.71 0.45 0.87 0.34
‘Earnings ‘74’ 2,096 4,887 14,017 9,57 19,429 13,407
‘Nonemployed ‘74’ 0.71 0.46 0.12 0.32 0.09 0.28
Earnings ‘75 1,532 3,219 13,651 9,27 19,063 13,597
Nonemployed ‘75 0.60 0.49 0.11 0.31 0.10 0.30

NOTE: Earnings variables are all expressed in 1982 dollars.

ber of data sets mimicking these NSW-CPS and NSW-PSID sets. Descriptive statistics for

these data are presented in Table 1.

3 Empirical Monte Carlo Designs

3.1 The structured design

What we term a “structured” design is based on the Monte Carlo studies implemented by

Abadie and Imbens (2011) and Busso et al. (2013). We test both an “uncorrelated” and a

“correlated” version of this design.

First we generate a fixed number of 185 treated and either 2,490 (PSID) or 15,992 (CPS)

nontreated observations per replication. We then draw nonemployment status in 1974 and

1975 jointly, with the probability of each joint nonemployment status matching the ob-

served joint probability in the data for individuals with that treatment status. For individuals

who are employed in only one period, an income is drawn from a log normal distribution

with mean and variance that match those in the data for individuals with the same treat-

ment and employment status. Where individuals are employed in both periods a joint log

normal distribution is used. Also, whenever drawn income in a particular year lies outside

6



the support of income in that year observed in the data, the observation is replaced with the

limit point of the support, as suggested by Busso et al. (2013) .

In our initial uncorrelated design we closely replicate Abadie and Imbens (2011), drawing

all other covariates – black, married, education, and age – conditional only on treatment

status. Black and married are binary outcomes, so draws are taken from a Bernoulli with ap-

propriate probability of success. Age is drawn from a log normal, with matched conditional

mean and conditional variance from the data. As with income, censoring is performed, re-

placing any generated observations which lie outside the support with the limit point of the

support from the original data.

In the original data education is coded as the number of years of education completed, tak-

ing integer values four to sixteen. Since the data do not follow any smooth distribution,

Abadie and Imbens (2011) use a discrete distribution with support at each possible value.

Unlike them, we collapse the discrete distribution into two indicator variables, one indic-

ating whether the individual has at least 12 years of education, and the other whether the

individual has at least 16 years. These points are chosen because of the large probability

masses observed at these points in the distribution. We can then match the probabilities

for each of these to those in the data, conditioning on treatment status. This reduction in

support is done for consistency with our correlated design, so that we could focus on the

importance of using a rich correlation structure in the data generating process.4

In the correlated design we model the joint distribution of the covariates as a tree-structured

conditional probability distribution, where the conditional distributions are learned from the

data. This contrasts with the uncorrelated design where one imposes that the joint distri-

bution is the product of the marginals conditioned only on the treatment status. We begin

by deterministically assigning treatment status, and then generating employment status and

4We find qualitatively identical results for the uncorrelated design whether or not we perform this reduc-
tion in the support of education. These results are available on request.
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income as above. The process for generating other covariates is as follows:

1. The covariates are ordered: treatment status, employment statuses, income in each

period, whether black, whether married, whether received at least 12 years of educa-

tion, whether received at least 16 years of education, and age.

2. Using the original data, each covariate from “black” onwards is regressed on all the

covariates listed before it.5 These regressions are not to be interpreted causally; they

simply give the conditional mean of each outcome given all preceding covariates.

Where coefficients are insignificantly different from zero, they are set to zero, and

the other coefficients are recorded.

3. In the new (Monte Carlo) data set, covariates are drawn sequentially in the same or-

der. For binary covariates a temporary value is drawn from a Uni f (0,1) distribution.

Then the covariate is equal to one if the temporary value is less than the conditional

probability for that observation. The conditional probability is found using the val-

ues of the existing generated covariates and the estimated coefficients from (2). Age

is drawn from a log normal whose mean depends on the other covariates and whose

variance is allowed to depend on treatment status, and again we replace extreme

values with the limit of the support, as in the uncorrelated case.

In both designs (correlated and uncorrelated) the binary outcome, yi, is then generated in

two steps. In the first step, a probability of employment is generated conditional on the co-

variates, using the parameters of a logit model fitted from the original data (see Table A.1).

Each covariate is included linearly within the inverse logit function, except for treatment

status, which is interacted with all other covariates so that the coefficients may differ de-

5One exception is “at least 16 years of education” which is regressed on the prior listed covariates condi-
tional on having at least 12 years of education, since it is clearly not possible to have at least 16 years without
having at least 12.
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pending on treatment status. Precisely, the estimated coefficients, γ0 and γ1, from estima-

tion using the control and treatment subsamples are used to calculate the linear index, Xiγd

(for d = 0,1), from which we calculate pi = Pr(yi = 1|Xi, di = d) = eXiγd/(1+ eXiγd). Fi-

nally, employment status is then determined as a draw from a Bernoulli distribution with

the estimated conditional probability pi.

3.2 The placebo design

The “placebo” design follows the approach suggested by Huber et al. (2013), and applied

also by Lechner and Wunsch (2013). Covariates are drawn jointly with outcomes from

the empirical distribution, rather than a parametrised approximation. In particular, pairs

(yi,Xi) are drawn with replacement from the sample of nontreated observations. The data

on the treated sample are used with the control data to parametrically (logit) estimate the

probability an individual is treated conditional on their characteristics Xi.

We assign treatment status to observations in the sampled data using the estimated coef-

ficients, β (see Table A.2); iid logistic errors, εi; and two parameters λ and α , where λ

determines the degree of covariate overlap between the “placebo treated” and “nontreated”

observations and α determines the expected proportion of the “placebo treated”. Formally

di = 1(d∗i > 0) where d∗i = α +λXiβ +εi. Since the original outcome, yi, is drawn directly

from the data together with Xi, we do not need to specify any DGP for the outcome. Instead

we know that by construction the effect of the assigned treatment status is zero.6 Hence we

can judge estimators based on their ability to replicate this true effect of zero.

This design requires some choice of α and λ . We choose α to ensure that the proportion

of the “placebo treated” in each simulated sample is as close as possible to the propor-
6A similar approach was previously developed by Bertrand et al. (2004) who studied inference in

difference-in-differences (DiD) designs using simulations with randomly generated “placebo laws” in state-
level data (i.e. policy changes which never actually happened). See also Hansen (2007), Cameron et al.
(2008), and Brewer et al. (2013) for follow-up studies.
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tion of treated in the corresponding original data set (1.14% in NSW-CPS and 6.92% in

NSW-PSID). Huber et al. (2013) suggest that choosing λ = 1 should guarantee “selection

[into treatment] that corresponds roughly to the one in our ‘population’”. However, this

is not necessarily true: it would be true only if the degree of overlap between the treated

and nontreated in the original data was roughly equal to the degree of overlap between the

placebo treated and placebo nontreated in the simulated samples. There is no reason to ex-

pect such a relationship, so we conduct a small-scale calibration to determine the “optimal”

value of λ in these data.

We choose a search grid of possible values for λ , using {0.01, 0.03, . . . , 0.99} for NSW-CPS

and {0.01, 0.02, . . . , 0.99} for the smaller NSW-PSID. For each value we generate data and

calculate “overlap” for each sample, which we define to be the proportion of treated indi-

viduals for whom the estimated propensity score is larger than the minimum and smaller

than the maximum estimated propensity score among the nontreated. We perform 100

replications for each λ in NSW-CPS and 500 in NSW-PSID. We choose this λ which

minimises the root-mean-square deviation of our simulated overlap from the one in the ori-

ginal data. This gives λ = 0.51 in the NSW-CPS and λ = 0.19 in the NSW-PSID. As a

comparison with Huber et al. (2013), however, we also perform simulations with λ = 1,

and we refer to these two versions of the placebo design as calibrated and uncalibrated,

respectively.

4 Estimators

As mentioned above, in this paper we reverse the usual ordering, using a number of es-

timators to compare different types of empirical Monte Carlo designs, rather than using

the generated data to rank estimators. We implement many common estimators to see
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how good the various designs are at replicating the true biases, absolute biases, and cor-

responding rankings. Generally, we consider treatment effect estimators which belong

to one of five main classes: standard parametric (regression-based), flexible parametric

(Oaxaca–Blinder), kernel-based (matching, local linear regression, and local logit), nearest-

neighbour matching, and inverse probability weighting estimators.

In each case we estimate the average treatment effect on the treated (ATT) using these es-

timators, and then calculate the bias for each replication via a comparison to an “oracle”

estimator which provides the true value. In the placebo design, the true value in the pop-

ulation is equal to zero by construction. In the structured design, we use our knowledge

of both the potential outcome equations to compute the probability of success under both

regimes for each individual. The true value is then obtained by averaging the difference

between these two probabilities over the subpopulation of treated individuals.

In particular, we use as regression-based estimators the linear probability model (LPM) as

well as the logit, probit, and complementary log-log models. The complementary log-log

model is a parametric estimator using an asymmetric binary link function, which makes it

more appropriate when the probability of success takes values close to zero or one (see,

e.g., Cameron and Trivedi 2005 for a textbook treatment), as is the case in our application.

We also follow Kline (2011) in using the Oaxaca–Blinder (OB) decomposition to com-

pute the ATT.7 Since we consider a binary outcome, we apply both linear and non-linear

OB estimators. The linear OB decomposition is equivalent to the LPM but with the treat-

ment dummy interacted with appropriately demeaned covariates. Similarly, the non-linear

OB decompositions impose either a logit or probit link function around the linear index,

separately for both subpopulations of interest (see, e.g., Yun 2004 and Fairlie 2005).

7Kline (2011) has shown that the OB decomposition is equivalent to a particular reweighting estimator
and that it therefore satisfies the property of double robustness. See also Oaxaca (1973) and Blinder (1973)
for seminal formulations of this method as well as Fortin et al. (2011) for a recent review of the decomposition
framework.
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Turning to more standard treatment effect estimators, we consider several kernel-based

methods, in particular kernel matching, local linear regression, and local logit. Kernel

matching estimators have played a prominent role in the programme evaluation literature

(see, e.g., Heckman et al. 1997 and Frölich 2004), and their asymptotic properties were

established by Heckman et al. (1998). Similarly, local linear regression was studied by

Fan (1992, 1993), Heckman et al. (1998), and others. Because our outcome is binary, we

also consider local logit, as applied in Frölich and Melly (2010). Note that each of these

estimators requires estimating the propensity score in the first step (based on a logit model)

as well as choosing a bandwidth. For each of the methods, we select the bandwidth on

the basis of leave-one-out cross-validation (see, e.g., Busso et al. 2009 and Huber et al.

2013) from a search grid 0.005× 1.25g−1 for g = 1,2, . . . ,15, and repeat this process in

each replication.8

We also apply the popular nearest-neighbour matching estimators, including both match-

ing on covariates and on the estimated propensity score. Large sample properties for some

of these estimators were derived by Abadie and Imbens (2006). Since nearest-neighbour

matching estimators were shown not to be
√

n-consistent in general, we also consider the

bias-adjusted variant of both versions of matching (Abadie and Imbens 2011). Like kernel-

based methods, also nearest-neighbour matching estimators require choosing a tuning para-

meter, N, i.e. the number of neighbours. We consider the workhorse case of N = 1 (pair

matching) and also N = 40,9 so we apply eight nearest-neighbour matching estimators in

total.
8Note that the computation time is already quite large in the case of the NSW-PSID data, but it is com-

pletely prohibitive for NSW-CPS. Consequently, in the case of the NSW-CPS data set, we calculate optimal
bandwidths only once, for the original data set, and use these values in our simulations. We find qualitatively
identical results for the NSW-CPS data set when we exclude all the kernel-based estimators. These results
are available on request.

9While the latter number of matches is unusually big, results from the early stage of this project suggested
a negative monotonic relationship between N and the root-mean-square error (RMSE) of an estimator (in the
range 1–64).

12



The last class of estimators includes three versions of inverse probability weighting (see

Busso et al. 2009 for a thorough discussion) as well as the so-called double robust regres-

sion (see, e.g., Robins et al. 1994, Robins and Rotnitzky 1995, and Busso et al. 2009). We

consider unnormalised reweighting, in which the sum of weights is stochastic; normalised

reweighting, in which the weights are rescaled to sum to 1; as well as (asymptotically)

efficient reweighting, which is a linear combination of normalised and unnormalised re-

weighting (Lunceford and Davidian 2004). Also, the double robust regression is in prac-

tice a combination of regression and reweighting, and the resulting estimator is consistent

if at least one of the two models is well-specified (see Imbens and Wooldridge 2009 for a

discussion).

Moreover, for regression-based, Oaxaca–Blinder, and inverse probability weighting estim-

ators we also consider a separate case in which we restrict our estimation procedures to

those treated (or placebo treated) whose estimated propensity scores are larger than the

minimum and smaller than the maximum estimated propensity score among the nontreated,

i.e. to those who are located in the common support region. In consequence, our total num-

ber of estimators is equal to 35, including 8 regression-based estimators, 6 Oaxaca–Blinder

estimators, 5 kernel-based estimators, 8 nearest-neighbour matching estimators, and 8 in-

verse probability weighting estimators.10

5 Results

Empirical Monte Carlo studies (EMCS) seek to persuade one of the benefits of using a par-

ticular estimator, showing that it is preferred to many others in a particular circumstance.

Here we are able to test the internal validity of such a procedure, by comparing the biases
10We perform our simulations in Stata and use several user-written commands in our estimation proced-

ures: locreg (Frölich and Melly 2010), nnmatch (Abadie et al. 2004), oaxaca (Jann 2008), and psmatch2

(Leuven and Sianesi 2003).
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produced by estimators from the original data with those produced using the Monte Carlo

data. Since we know the true effects in the original data – the programme reduced nonem-

ployment among its participants by 11.06 percentage points – and the generated data, we

can calculate both of these biases.

Typically one would choose estimators on the basis of minimising either the root-mean-

square error (RMSE) or the absolute bias. Minimising the RMSE accounts for both the

bias and variance of an estimator, so might be the preferred measure for an analyst in many

contexts. Unfortunately from a single sample of data it is only possible to measure the

bias of an estimator, not the variance of the estimates produced. However, a minimum

condition for an EMCS to be able to reproduce the appropriate RMSE is that it should

produce the correct biases, and absolute biases. Hence we look at these metrics, comparing

the correlation in bias, absolute bias, and in the ranking of estimators by absolute bias

between the various EMCS procedures and the original data.11

5.1 The structured design

In this subsection we report simulation results for the uncorrelated and correlated structured

designs, and comment on their ability to replicate the “true ranking” of various nonexperi-

mental estimators for the average treatment effect on the treated.12

The baseline correlations in the NSW-PSID design are shown in the first and third columns

of Table 2. Mean biases are positively and significantly correlated with the true biases,

whilst absolute mean biases are significantly negatively correlated with the true absolute

11In order to reduce the impact of outliers on our final results, we discard all the estimates whose absolute
value is larger than 10. Note that the outcome in our application is binary, so the true effect cannot deviate
from the [−1,1] interval. Our rule should not therefore be viewed as particularly restrictive.

12Tables B.1 and B.2 present “true” biases and rankings of these estimators. Table B.3 provides evid-
ence on their relative performance in the uncorrelated structured design, when the DGP attempts to mimic
the NSW-CPS data-generating process; similarly Table B.4 provides the results for the NSW-PSID case.
Tables B.5 and B.6 present simulation results for the correlated structured design.
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Table 2: Correlations Between the Biases in the Uncorrelated and Correlated Structured Designs and in the Original NSW-PSID Data Set
“True biases” “Hypothetical biases”

Uncorrelated Correlated Uncorrelated Correlated
(1) (2) (1) (2) (1) (2) (1) (2)

Correlations
Bias–Mean bias 0.371** 0.256 0.643*** 0.549*** 0.371** 0.256 0.643*** 0.549***

(0.031) (0.189) (0.000) (0.002) (0.031) (0.189) (0.000) (0.002)
Abs. bias–Abs. mean bias –0.363** –0.217 –0.435*** –0.216 0.408** 0.297 0.698*** 0.616***

(0.035) (0.267) (0.009) (0.260) (0.017) (0.125) (0.000) (0.000)
Rank–Rank –0.357** –0.169 –0.380** –0.142 0.408** 0.222 0.693*** 0.599***

(0.038) (0.391) (0.025) (0.461) (0.017) (0.256) (0.000) (0.001)
Sample restrictions

Exclude outliers Y Y Y Y Y Y Y Y
Exclude Oaxaca–Blinder N Y N Y N Y N Y

Number of estimators 34 28 35 29 34 28 35 29

NOTE: P-values are in parentheses. We define outliers as those estimators whose mean biases are more than three standard deviations away from
the average mean bias. The following estimators are treated as outliers: unnormalised reweighting with the common support restriction (first and
fifth columns).
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

biases. The second and fourth columns test for robustness of this result to the exclusion

of all the Oaxaca–Blinder estimators, since the logit OB decomposition can be regarded

as the “true” model for the structured design, which might improve the performance of

various OB decompositions in such designs in an artificial way. Although the correlations

generally get weaker, and in some cases become insignificant as the number of estimators

falls, the signs are unchanged.13

The positive correlation in bias implies that estimators which have relatively high biases in

the original data continue to have relatively high biases in the simulations. Since bias is

calculated as the difference between the estimate and a constant, this positive correlation in

biases simply reflects a positive correlation in the underlying estimates.

However, for a researcher performing an empirical Monte Carlo study the appropriate de-

cision criterion to choose estimators is absolute bias, and on this criterion the researcher

would choose the wrong estimators. This result here differs from unadjusted bias because

when taking absolute values it becomes important what value is used as the constant “true”

13We also perform additional robustness checks, such as reweighting the effect of each estimator-
observation on our correlations in a way which would guarantee an equal impact of each of the classes
of estimators. Since these additional robustness checks never have an effect on our conclusions, we do not
report the results here. These results are available on request.
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Table 3: Correlations Between the Biases in the Uncorrelated and Correlated Structured Designs and in the Original NSW-CPS Data
Set

“True biases” “Hypothetical biases”
Uncorrelated Correlated Uncorrelated Correlated

(1) (2) (1) (2) (1) (2) (1) (2)
Correlations

Bias–Mean bias 0.390** 0.259 0.530*** 0.379** 0.390** 0.259 0.530*** 0.379**
(0.023) (0.184) (0.001) (0.042) (0.023) (0.184) (0.001) (0.042)

Abs. bias–Abs. mean bias 0.458*** 0.420** 0.396** 0.333* 0.322* 0.326* 0.301* 0.290
(0.007) (0.026) (0.019) (0.078) (0.063) (0.090) (0.079) (0.128)

Rank–Rank 0.484*** 0.428** 0.426** 0.334* 0.330* 0.323* 0.360** 0.330*
(0.004) (0.023) (0.011) (0.077) (0.057) (0.093) (0.034) (0.080)

Sample restrictions
Exclude outliers Y Y Y Y Y Y Y Y
Exclude Oaxaca–Blinder N Y N Y N Y N Y

Number of estimators 34 28 35 29 34 28 35 29

NOTE: P-values are in parentheses. We define outliers as those estimators whose mean biases are more than three standard deviations away
from the average mean bias. The following estimators are treated as outliers: unnormalised reweighting with the common support restriction
(first and fifth columns).
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

value against which the bias is calculated.

With the NSW-PSID data, the structured design generates true values equal to –0.2554 and

–0.2604, on average, in the uncorrelated and correlated versions respectively. These are far

from the true value of –0.1106 in the original data, since they are in effect based on the

logit Oaxaca–Blinder decomposition, which estimates a true effect of –0.2568.

In the fifth to eighth columns of Table 2 we test the hypothesis that the structured design is

informative about the ability of estimators to replicate the estimate from the model, rather

than the true effect in the data. To do this we replace the “true effect” in the original NSW

data with the effect suggested by the model, and use this to compute the corresponding

hypothetical biases. Hence this transformation provides some evidence on what the results

would be if the model generated the correct treatment effect.

These results are striking. Indeed, all the correlations turn positive, and most of them highly

statistically significant. The results are stronger for the correlated structured design, and in

that case remain significant even upon the exclusion of a number of estimators.

We further test our hypothesis that a structured empirical Monte Carlo design is informative

only when the implied treatment effect is correct by applying the method to the NSW-CPS
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data. Here the estimated effect is equal to –0.1174, close to the true value of –0.1106.

The results in Table 3 are supportive of our interpretation. We find similar results on ab-

solute bias in each of these, since the true effect is already close to the estimated one, and

correlations are generally positive. Again the relationships get weaker, and sometimes in-

significant, when we exclude all the OB estimators, but the broad picture does not seem to

change.

Hence a structured Monte Carlo design is able to be informative about the absolute bias of

an estimator only under the assumption that the true effect is equal to the estimated effect

used in the data generating process. However, this assumption is not testable. Further, if

one were to take this assumption seriously there would be no reason to use any Monte Carlo

procedure, since the true effect would already be known.

5.2 The placebo design

In light of our earlier findings, the placebo design offers some hope that it should provide

valuable information to the empirical researcher, since it is clear that the treatment effect

here is always known. However, the results in Table 4 show that this procedure is unable to

even generally replicate the biases from the true data, with significant negative correlations

in many cases, and no correlation in absolute bias.14 Whilst the calibrated design does

always dominate the uncalibrated design, it remains unable to provide useful guidance on

the choice of estimators.15

Although the placebo design avoids the problem of needing to correctly specify a para-

metric model for the outcome, the treatment effect is now clearly different from that in the

original data. Additionally, only a subset of the original data are used. To the extent that
14This design has no “optimal estimator”, so we do not include the additional columns we had in the earlier

tables.
15Simulation results are presented in Tables B.7 and B.8 (uncalibrated placebo design) as well as Tables B.9

and B.10 (calibrated placebo design).
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Table 4: Correlations Between the Biases in the Uncalibrated and Calibrated Placebo
Designs and in the Original NSW-CPS and NSW-PSID Data Sets

Uncalibrated Calibrated
NSW-PSID NSW-CPS NSW-PSID NSW-CPS

Correlations
Bias–Mean bias –0.337** –0.353** –0.403** 0.470***

(0.048) (0.041) (0.018) (0.004)
Abs. bias–Abs. mean bias –0.022 0.045 0.273 –0.015

(0.900) (0.801) (0.119) (0.930)
Rank–Rank 0.061 –0.187 0.351** –0.178

(0.730) (0.289) (0.042) (0.307)
Sample restrictions

Exclude outliers Y Y Y Y
Number of estimators 35 34 34 35

NOTE: P-values are in parentheses. We define outliers as those estimators whose mean biases
are more than three standard deviations away from the average mean bias. The following es-
timators are treated as outliers: matching on the propensity score, N = 40 (second column) and
bias-adjusted matching on covariates, N = 40 (third column).
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.

these control observations differ from the treated ones, this will create a second difference

between the original data and our simulations. This effect is important as demonstrated

by the results in Table 4. With this design it is generally not possible to even match the

mean bias. Although it is partially improved through the use of calibration to better match

the overlap between treated and control observations, this remains insufficient to generally

solve the problem. Hence the results of this procedure are also not informative about the

performance of estimators in finding the treatment effect in the original data.

6 Conclusions

In this paper we investigate the internal validity of empirical Monte Carlo studies, which we

define as the ability of such simulation exercises to replicate the “true ranking” of various

nonexperimental estimators for the average treatment effect on the treated. This problem

is of high practical relevance, since several recent papers have put forward the idea that

empirical Monte Carlo studies might provide a solution to the oft-cited design depend-

ence of simulation exercises and their reliance on unrealistic DGPs. For example, Busso

et al. (2013) suggest that empirical researchers should “conduct a small-scale simulation
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study designed to mimic their empirical context” in order to choose the estimator with best

properties.

We consider two different empirical Monte Carlo designs. The first, which we term the

“structured” design, is based on Abadie and Imbens (2011) and Busso et al. (2013). Here

we generate new data which match particular features of the original data set, and then

generate outcomes using parameters estimated from the original data.

We show that this method can only be informative about the true ranking of the estimators

if the treatment effect in the original data is the same as that implied by the data generating

process. This is clearly untestable, and if it were to be true then one would already know

the treatment effect of interest, precluding the need for a simulation process. This severely

limits the practical usefulness of the structured design.

We also consider the “placebo” design suggested by Huber et al. (2013). Here a sample of

observations is drawn from the control data, and a placebo treatment is assigned using a

parametric conditional probability of treatment estimated from the full data. Now the true

treatment effect is known – it is zero by construction – and one might hope that this would

solve the earlier problem.

Our results show that this method is even more problematic than the structured design.

The treatment effect in simulations is still likely to be different than the true effect in the

original data. Additionally since only the control observations are used, the simulated data

may differ significantly from the original data, depending on the overlap in the original

data. This can partly be corrected by adjusting the overlap between treated and control

observations, but the support of the covariates and outcome may still be very different.

Our results are unfortunately very negative, although in line with a long-standing literature:

there is unfortunately no silver bullet for researchers when choosing which estimators to use

in a particular circumstance. The finite-sample performance of these estimators continues
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to be an important issue and finding grounds on which to judge their suitability remains an

open research question. For now empirical researchers would be best advised to continue

using several different approaches, as Busso et al. (2013) also suggest, and reporting these

potentially varying estimates as an important robustness check.
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A Potential Outcome and Treatment Equations

Table A.1 presents potential outcome equations which are used in the uncorrelated and

correlated structured designs, separately for the NSW-CPS and NSW-PSID data sets as

well as for the treated and nontreated subsamples (γ1 and γ0, respectively). These equations

are based on the logit coefficients estimated using the original data sets.

Table A.1: Potential Outcome Equations in the Structured Design
NSW-CPS NSW-PSID

γ1 γ0 γ1 γ0
Age -0.0068 0.0461 -0.0068 0.0335
Black 1.5818 0.0937 1.5818 -0.2514
Education-12 -0.3608 0.5363 -0.3608 -0.0056
Education-16 (omitted) -0.0675 (omitted) -0.1078
Married -0.6001 0.2558 -0.6001 -0.2182
‘Earnings ‘74’ 0.000010 -0.000034 0.000010 0.000010
‘Nonemployed ‘74’ -1.7371 0.5564 -1.7371 1.8915
Earnings ‘75 -0.000145 -0.000060 -0.000145 -0.000068
Nonemployed ‘75 1.3457 1.2479 1.3457 1.3282
Intercept -1.6669 -3.2891 -1.6669 -2.8314

Similarly, Table A.2 presents treatment equations which are used in the uncalibrated and

calibrated placebo designs, separately for the NSW-CPS and NSW-PSID data sets. Again,

the coefficients are taken from logit models estimated using the original data sets.

Table A.2: Treatment Equations in the Placebo
Design

NSW-CPS NSW-PSID
Age –0.0266 –0.1136
Black 3.8887 2.1466
Education –0.1072 –0.1366
Married –0.9979 –1.6143
‘Earnings ‘74’ 0.000063 0.000024
‘Nonemployed ‘74’ 1.6595 3.1840
Earnings ‘75 –0.000180 –0.000276
Nonemployed ‘75 0.1821 –1.2951
Intercept –3.8391 2.7444
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B The Performance of Individual Estimators

B.1 The true ranking

Table B.1 presents nonexperimental estimates of the effect of the NSW programme using

the NSW-CPS data set and 35 various nonexperimental estimators. Generally, the estimat-

ors perform very well, with the average bias being slightly smaller than 0.01 (less than 9%

of the absolute value of the “true effect”). Several regression-based estimators perform best,

especially the complementary log-log and logit models. Also, the logit OB decomposition

performs very well, as do selected bias-adjusted nearest-neighbour matching estimators.

Inverse probability weighting and kernel-based estimators (especially local linear regres-

sion and local logit) perform relatively badly, although the corresponding biases can still

be regarded as quite low.

Similarly, Table B.2 presents analogous estimates and rankings on the basis of the NSW-PSID

data set. The average bias is now much larger than in the previous case (and equal to

–0.047), and many estimators, especially all variants of the OB decomposition, suffer from

large (absolute) biases in the order of 0.08–0.17. On the other hand, unnormalised re-

weighting as well as selected nearest-neighbour matching and kernel-based estimators (es-

pecially matching with the Gaussian kernel and local logit) perform best. Note that the

correlation between the rankings in Tables B.1 and B.2 is insignificant and close to zero.
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Table B.1: Nonexperimental Estimates for the NSW-CPS Data
Comsup? Estimate Bias Rank

Regression-based
Linear probability –0.1331 –0.0225 23
Linear probability X –0.1293 –0.0187 16
Logit –0.1076 0.0030 3
Logit X –0.1060 0.0047 5
Probit –0.1002 0.0104 9
Probit X –0.0978 0.0128 12
Complementary log-log –0.1125 –0.0019 2
Complementary log-log X –0.1117 –0.0011 1

Oaxaca–Blinder
Linear probability –0.1358 –0.0252 26
Linear probability X –0.1317 –0.0211 22
Logit –0.1174 –0.0068 6
Logit X –0.1152 –0.0046 4
Probit –0.1249 –0.0143 13
Probit X –0.1222 –0.0116 10

Kernel-based
Kernel matching, uniform –0.0962 0.0144 14
Kernel matching, Gaussian –0.0912 0.0194 19
Kernel matching, Epan. –0.0876 0.0230 24
Local linear regression –0.0719 0.0387 34
Local logit –0.0709 0.0397 35

Matching
On pscore, N = 1 –0.0805 0.0302 28
On pscore, N = 40 –0.0859 0.0247 25
On pscore, N = 1, bias-adj. –0.1208 –0.0102 8
On pscore, N = 40, bias-adj. –0.0897 0.0209 21
On covs, N = 1 –0.1277 –0.0171 15
On covs, N = 40 –0.0749 0.0357 33
On covs, N = 1, bias-adj. –0.1223 –0.0117 11
On covs, N = 40, bias-adj. –0.1019 0.0087 7

Weighting
Unnormalised –0.0826 0.0280 27
Unnormalised X –0.0905 0.0201 20
Normalised –0.0793 0.0313 29
Normalised X –0.0781 0.0325 31
Efficient –0.0793 0.0313 30
Efficient X –0.078 0.0326 32
Double robust –0.0913 0.0193 18
Double robust X –0.0914 0.0192 17

NOTE: “Comsup?” denotes the estimates which are obtained after removing all
the treated observations from outside the common support region. “Rank” is based
on absolute bias.
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Table B.2: Nonexperimental Estimates for the NSW-PSID Data
Comsup? Estimate Bias Rank

Regression-based
Linear probability –0.2030 –0.0924 25
Linear probability X –0.2017 –0.0911 24
Logit –0.1941 –0.0835 22
Logit X –0.1944 –0.0838 23
Probit –0.1527 –0.0421 15
Probit X –0.1525 –0.0419 14
Complementary log-log –0.1900 –0.0794 19
Complementary log-log X –0.1909 –0.0803 20

Oaxaca–Blinder
Linear probability –0.2721 –0.1615 34
Linear probability X –0.2701 –0.1595 33
Logit –0.2568 –0.1462 30
Logit X –0.2553 –0.1447 28
Probit –0.2590 –0.1484 32
Probit X –0.2576 –0.1470 31

Kernel-based
Kernel matching, uniform –0.1507 –0.0401 12
Kernel matching, Gaussian –0.0957 0.0149 4
Kernel matching, Epan. –0.1504 –0.0398 11
Local linear regression –0.2811 –0.1705 35
Local logit –0.0842 0.0264 7

Matching
On pscore, N = 1 –0.0703 0.0403 13
On pscore, N = 40 –0.0878 0.0228 6
On pscore, N = 1, bias-adj. –0.1381 –0.0275 10
On pscore, N = 40, bias-adj. –0.1914 –0.0808 21
On covs, N = 1 –0.1279 –0.0173 5
On covs, N = 40 –0.2554 –0.1448 29
On covs, N = 1, bias-adj. –0.1240 –0.0134 3
On covs, N = 40, bias-adj. –0.1789 –0.0683 18

Weighting
Unnormalised –0.1110 –0.0004 1
Unnormalised X –0.1129 –0.0023 2
Normalised –0.0142 0.0964 26
Normalised X –0.0102 0.1004 27
Efficient –0.0839 0.0267 9
Efficient X –0.0841 0.0266 8
Double robust –0.0531 0.0575 16
Double robust X –0.0518 0.0588 17

NOTE: “Comsup?” denotes the estimates which are obtained after removing all
the treated observations from outside the common support region. “Rank” is based
on absolute bias.
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B.2 The structured design

Table B.3: Simulation Results for the Uncorrelated Structured Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0453 0.0550 0.0362 31
Linear probability X –0.0417 0.0547 0.0399 28
Logit 0.0062 0.0282 0.0311 10
Logit X 0.0025 0.0283 0.0314 4
Probit 0.0127 0.0317 0.0331 18
Probit X 0.0130 0.0334 0.0344 19
Complementary log-log 0.0113 0.0268 0.0269 16
Complementary log-log X 0.0058 0.0247 0.0262 9

Oaxaca–Blinder
Linear probability –0.0471 0.0567 0.0365 32
Linear probability X –0.0424 0.0555 0.0404 29
Logit –0.0001 0.0353 0.0394 2
Logit X –0.0089 0.0397 0.0425 13
Probit –0.0102 0.0359 0.0387 14
Probit X –0.0160 0.0412 0.0420 21

Kernel-based
Kernel matching, uniform –0.0041 0.1093 0.1105 7
Kernel matching, Gaussian 0.0286 0.1817 0.1802 26
Kernel matching, Epan. –0.0043 0.1098 0.1109 8
Local linear regression –0.0080 0.4852 0.4856 12
Local logit 0.0225 0.1841 0.1834 22

Matching
On pscore, N = 1 0.0247 0.1845 0.1837 25
On pscore, N = 40 0.0447 0.0790 0.0660 30
On pscore, N = 1, bias-adj. –0.0041 0.1611 0.1621 6
On pscore, N = 40, bias-adj. 0.0000 0.0929 0.0942 1
On covs, N = 1 –0.0148 0.1401 0.1400 20
On covs, N = 40 –0.0595 0.0734 0.0472 33
On covs, N = 1, bias-adj. –0.0074 0.1681 0.1688 11
On covs, N = 40, bias-adj. –0.0035 0.0927 0.0936 5

Weighting
Unnormalised –0.0772 0.6085 0.6046 34
Unnormalised X –0.1923 0.6293 0.6003 35
Normalised 0.0236 0.1827 0.1826 24
Normalised X –0.0019 0.1805 0.1818 3
Efficient 0.0291 0.1504 0.1486 27
Efficient X 0.0116 0.1180 0.1182 17
Double robust 0.0226 0.1453 0.1450 23
Double robust X –0.0106 0.1359 0.1369 15

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.4: Simulation Results for the Uncorrelated Structured Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0501 0.0644 0.0470 14
Linear probability X 0.0604 0.1270 0.1135 19
Logit 0.0379 0.0631 0.0538 12
Logit X 0.1037 0.1287 0.0767 26
Probit 0.0692 0.0850 0.0535 21
Probit X 0.1208 0.1442 0.0798 31
Complementary log-log 0.0459 0.0654 0.0474 13
Complementary log-log X 0.1135 0.1290 0.0605 30

Oaxaca–Blinder
Linear probability 0.0003 0.0416 0.0482 1
Linear probability X 0.0542 0.1212 0.1102 15
Logit 0.0035 0.0629 0.0671 3
Logit X 0.0562 0.1084 0.0948 17
Probit 0.0007 0.0574 0.0621 2
Probit X 0.0555 0.1072 0.0938 16

Kernel-based
Kernel matching, uniform 0.0700 0.3682 0.3622 22
Kernel matching, Gaussian 0.1058 0.3829 0.3689 27
Kernel matching, Epan. 0.0685 0.3720 0.3664 20
Local linear regression 0.1126 0.8083 0.8012 29
Local logit 0.0879 0.4511 0.4435 23

Matching
On pscore, N = 1 0.0943 0.4549 0.4459 24
On pscore, N = 40 0.2080 0.2267 0.0914 32
On pscore, N = 1, bias-adj. 0.0095 1.5200 1.5208 7
On pscore, N = 40, bias-adj. 0.0054 0.3691 0.3706 5
On covs, N = 1 –0.0099 0.1574 0.1600 8
On covs, N = 40 0.0082 0.0458 0.0515 6
On covs, N = 1, bias-adj. –0.0130 0.4554 0.4566 9
On covs, N = 40, bias-adj. 0.0044 0.1595 0.1613 4

Weighting
Unnormalised 0.2319 0.8523 0.8207 34
Unnormalised X –0.5662 1.4889 1.3778 35
Normalised 0.1105 0.3366 0.3189 28
Normalised X 0.0307 0.3256 0.3250 11
Efficient 0.1012 0.3854 0.3729 25
Efficient X 0.0562 0.2548 0.2491 18
Double robust 0.2245 0.4953 0.4419 33
Double robust X 0.0240 0.2788 0.2789 10

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.5: Simulation Results for the Correlated Structured Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0228 0.0398 0.0376 32
Linear probability X –0.0222 0.0396 0.0379 30
Logit 0.0075 0.0279 0.0310 17
Logit X 0.0072 0.0278 0.0310 15
Probit 0.0206 0.0355 0.0335 28
Probit X 0.0208 0.0357 0.0336 29
Complementary log-log 0.0068 0.0232 0.0248 13
Complementary log-log X 0.0063 0.0229 0.0247 12

Oaxaca–Blinder
Linear probability –0.0253 0.0416 0.0380 34
Linear probability X –0.0247 0.0414 0.0383 33
Logit –0.0016 0.0350 0.0399 4
Logit X –0.0022 0.0352 0.0401 7
Probit –0.0072 0.0353 0.0395 14
Probit X –0.0075 0.0355 0.0398 19

Kernel-based
Kernel matching, uniform 0.0110 0.0528 0.0549 23
Kernel matching, Gaussian 0.0147 0.0632 0.0638 26
Kernel matching, Epan. 0.0099 0.0527 0.0552 21
Local linear regression 0.0407 0.3824 0.3806 35
Local logit 0.0074 0.0676 0.0698 16

Matching
On pscore, N = 1 0.0062 0.0682 0.0702 11
On pscore, N = 40 0.0123 0.0477 0.0500 24
On pscore, N = 1, bias-adj. 0.0008 0.0647 0.0675 1
On pscore, N = 40, bias-adj. 0.0021 0.0478 0.0516 6
On covs, N = 1 –0.0044 0.0696 0.0716 9
On covs, N = 40 –0.0227 0.0490 0.0474 31
On covs, N = 1, bias-adj. –0.0033 0.0727 0.0748 8
On covs, N = 40, bias-adj. –0.0013 0.0503 0.0538 3

Weighting
Unnormalised –0.0134 0.0887 0.0895 25
Unnormalised X –0.0174 0.0866 0.0866 27
Normalised 0.0075 0.0635 0.0651 18
Normalised X 0.0055 0.0632 0.0650 10
Efficient 0.0104 0.0525 0.0544 22
Efficient X 0.0086 0.0521 0.0545 20
Double robust 0.0010 0.0563 0.0587 2
Double robust X –0.0019 0.0560 0.0583 5

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.6: Simulation Results for the Correlated Structured Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0673 0.0793 0.0495 13
Linear probability X 0.0963 0.1295 0.0897 17
Logit 0.0820 0.1012 0.0643 16
Logit X 0.1167 0.1380 0.0761 19
Probit 0.1212 0.1338 0.0620 21
Probit X 0.1514 0.1673 0.0739 23
Complementary log-log 0.0780 0.0940 0.0549 15
Complementary log-log X 0.1113 0.1257 0.0589 18

Oaxaca–Blinder
Linear probability –0.0134 0.0441 0.0492 5
Linear probability X 0.0568 0.1112 0.0985 10
Logit –0.0007 0.0658 0.0702 1
Logit X 0.0622 0.1120 0.0962 12
Probit –0.0048 0.0600 0.0646 2
Probit X 0.0596 0.1088 0.0941 11

Kernel-based
Kernel matching, uniform 0.2795 0.4367 0.3359 32
Kernel matching, Gaussian 0.2523 0.3901 0.2983 28
Kernel matching, Epan. 0.2822 0.4360 0.3327 33
Local linear regression 0.1273 0.8406 0.8308 22
Local logit 0.2792 0.4364 0.3360 31

Matching
On pscore, N = 1 0.2838 0.4382 0.3345 34
On pscore, N = 40 0.2161 0.2318 0.0843 25
On pscore, N = 1, bias-adj. 0.0674 1.2470 1.2449 14
On pscore, N = 40, bias-adj. 0.0053 0.2988 0.3001 3
On covs, N = 1 –0.0257 0.1478 0.1485 9
On covs, N = 40 0.0162 0.0466 0.0504 6
On covs, N = 1, bias-adj. –0.0199 0.4232 0.4241 8
On covs, N = 40, bias-adj. –0.0062 0.1356 0.1384 4

Weighting
Unnormalised 0.2457 0.9771 0.9469 27
Unnormalised X –0.0176 1.1270 1.1275 7
Normalised 0.3065 0.4483 0.3274 35
Normalised X 0.2741 0.4357 0.3389 30
Efficient 0.2678 0.6234 0.5639 29
Efficient X 0.2162 0.5945 0.5546 26
Double robust 0.1541 0.2989 0.2576 24
Double robust X 0.1203 0.2870 0.2622 20

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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B.3 The placebo design

Table B.7: Simulation Results for the Uncalibrated Placebo Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0099 0.0348 0.0334 22
Linear probability X 0.0036 0.0375 0.0374 8
Logit 0.0057 0.0358 0.0353 17
Logit X 0.0118 0.0398 0.0380 28
Probit 0.0058 0.0359 0.0355 18
Probit X 0.0132 0.0405 0.0383 30
Complementary log-log 0.0065 0.0353 0.0347 19
Complementary log-log X 0.0109 0.0386 0.0370 24

Oaxaca–Blinder
Linear probability –0.0107 0.0353 0.0337 23
Linear probability X 0.0037 0.0381 0.0379 9
Logit 0.0049 0.0360 0.0357 14
Logit X 0.0116 0.0401 0.0384 27
Probit 0.0023 0.0352 0.0352 5
Probit X 0.0113 0.0398 0.0382 26

Kernel-based
Kernel matching, uniform –0.0022 0.0657 0.0657 4
Kernel matching, Gaussian –0.0014 0.1066 0.1067 3
Kernel matching, Epan. –0.0031 0.0652 0.0652 7
Local linear regression –0.0110 0.2786 0.2787 25
Local logit –0.0048 0.1105 0.1105 13

Matching
On pscore, N = 1 –0.0079 0.1102 0.1101 21
On pscore, N = 40 –0.0610 0.0846 0.0586 35
On pscore, N = 1, bias-adj. –0.0055 0.1012 0.1011 16
On pscore, N = 40, bias-adj. –0.0379 0.0764 0.0664 33
On covs, N = 1 –0.0029 0.0947 0.0947 6
On covs, N = 40 –0.0376 0.0598 0.0466 32
On covs, N = 1, bias-adj. 0.0072 0.0991 0.0989 20
On covs, N = 40, bias-adj. –0.0225 0.0661 0.0622 31

Weighting
Unnormalised –0.0043 0.1042 0.1042 11
Unnormalised X –0.0397 0.1157 0.1087 34
Normalised –0.0040 0.0953 0.0953 10
Normalised X 0.0043 0.0951 0.0951 12
Efficient –0.0054 0.0938 0.0938 15
Efficient X –0.0011 0.0824 0.0825 2
Double robust –0.0007 0.0872 0.0873 1
Double robust X –0.0126 0.0853 0.0845 29

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.8: Simulation Results for the Uncalibrated Placebo Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0224 0.0386 0.0315 18
Linear probability X 0.0346 0.0487 0.0342 26
Logit 0.0305 0.0485 0.0376 24
Logit X 0.0359 0.0524 0.0381 28
Probit 0.0389 0.0532 0.0363 30
Probit X 0.0439 0.0577 0.0374 32
Complementary log-log 0.0266 0.0445 0.0357 20
Complementary log-log X 0.0293 0.0449 0.0340 22

Oaxaca–Blinder
Linear probability 0.0120 0.0354 0.0333 11
Linear probability X 0.0350 0.0495 0.0350 27
Logit 0.0142 0.0410 0.0385 12
Logit X 0.0339 0.0500 0.0367 25
Probit 0.0218 0.0427 0.0367 17
Probit X 0.0401 0.0539 0.0360 31

Kernel-based
Kernel matching, uniform 0.0018 0.0705 0.0705 6
Kernel matching, Gaussian 0.0042 0.1581 0.1581 7
Kernel matching, Epan. –0.0005 0.0692 0.0692 2
Local linear regression 0.0173 0.5220 0.5219 14
Local logit –0.0018 0.1619 0.1619 5

Matching
On pscore, N = 1 –0.0015 0.1619 0.1620 4
On pscore, N = 40 –0.0300 0.0668 0.0597 23
On pscore, N = 1, bias-adj. –0.0244 0.1382 0.1361 19
On pscore, N = 40, bias-adj. –0.0378 0.0868 0.0782 29
On covs, N = 1 –0.0275 0.0626 0.0562 21
On covs, N = 40 0.0179 0.0384 0.0340 15
On covs, N = 1, bias-adj. –0.0510 0.1063 0.0933 33
On covs, N = 40, bias-adj. –0.0896 0.1037 0.0522 35

Weighting
Unnormalised 0.0207 0.2565 0.2558 16
Unnormalised X –0.0767 0.2779 0.2671 34
Normalised –0.0013 0.1231 0.1231 3
Normalised X 0.0090 0.1224 0.1221 10
Efficient 0.0002 0.1228 0.1228 1
Efficient X 0.0060 0.0838 0.0836 9
Double robust 0.0143 0.1065 0.1055 13
Double robust X –0.0043 0.1019 0.1018 8

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.9: Simulation Results for the Calibrated Placebo Design (NSW-CPS)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability –0.0241 0.0396 0.0315 31
Linear probability X –0.0247 0.0401 0.0316 33
Logit –0.0084 0.0323 0.0313 20
Logit X –0.0093 0.0327 0.0313 22
Probit –0.0103 0.0330 0.0314 25
Probit X –0.0113 0.0334 0.0315 26
Complementary log-log –0.0054 0.0309 0.0304 15
Complementary log-log X –0.0062 0.0312 0.0306 17

Oaxaca–Blinder
Linear probability –0.0245 0.0401 0.0317 32
Linear probability X –0.0251 0.0405 0.0318 35
Logit –0.0091 0.0332 0.0320 21
Logit X –0.0101 0.0336 0.0321 24
Probit –0.0122 0.0342 0.0320 27
Probit X –0.0132 0.0347 0.0321 28

Kernel-based
Kernel matching, uniform 0.0075 0.0381 0.0374 19
Kernel matching, Gaussian 0.0161 0.0422 0.0390 30
Kernel matching, Epan. 0.0051 0.0373 0.0369 14
Local linear regression 0.0031 0.4097 0.4101 12
Local logit 0.0096 0.0430 0.0420 23

Matching
On pscore, N = 1 –0.0018 0.0406 0.0406 8
On pscore, N = 40 –0.0159 0.0422 0.0391 29
On pscore, N = 1, bias-adj. 0.0025 0.0370 0.0370 11
On pscore, N = 40, bias-adj. –0.0016 0.0376 0.0376 7
On covs, N = 1 0.0062 0.0361 0.0356 18
On covs, N = 40 –0.0248 0.0437 0.0360 34
On covs, N = 1, bias-adj. 0.0058 0.0360 0.0355 16
On covs, N = 40, bias-adj. –0.0020 0.0348 0.0348 9

Weighting
Unnormalised –0.0003 0.0370 0.0370 2
Unnormalised X –0.0039 0.0373 0.0371 13
Normalised –0.0004 0.0369 0.0370 3
Normalised X –0.0014 0.0369 0.0369 6
Efficient –0.0005 0.0371 0.0371 4
Efficient X –0.0012 0.0369 0.0369 5
Double robust –0.0001 0.0362 0.0362 1
Double robust X –0.0022 0.0362 0.0362 10

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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Table B.10: Simulation Results for the Calibrated Placebo Design (NSW-PSID)
Comsup? Mean bias RMSE SD Rank

Regression-based
Linear probability 0.0060 0.0254 0.0247 26
Linear probability X 0.0084 0.0262 0.0248 32
Logit 0.0055 0.0270 0.0265 25
Logit X 0.0076 0.0276 0.0265 29
Probit 0.0080 0.0273 0.0261 31
Probit X 0.0099 0.0280 0.0262 34
Complementary log-log 0.0036 0.0253 0.0251 16
Complementary log-log X 0.0052 0.0255 0.0250 23

Oaxaca–Blinder
Linear probability 0.0040 0.0260 0.0257 18
Linear probability X 0.0073 0.0267 0.0257 28
Logit 0.0023 0.0263 0.0262 14
Logit X 0.0054 0.0266 0.0261 24
Probit 0.0051 0.0265 0.0260 22
Probit X 0.0080 0.0271 0.0259 30

Kernel-based
Kernel matching, uniform 0.0023 0.0284 0.0283 13
Kernel matching, Gaussian 0.0013 0.0297 0.0297 10
Kernel matching, Epan. 0.0012 0.0283 0.0283 8
Local linear regression 0.0024 0.0741 0.0740 15
Local logit 0.0071 0.0322 0.0314 27

Matching
On pscore, N = 1 –0.0051 0.0334 0.0330 21
On pscore, N = 40 –0.0018 0.0282 0.0281 11
On pscore, N = 1, bias-adj. –0.0006 0.0277 0.0277 2
On pscore, N = 40, bias-adj. –0.0092 0.0291 0.0276 33
On covs, N = 1 0.0047 0.0262 0.0258 20
On covs, N = 40 0.0039 0.0262 0.0259 17
On covs, N = 1, bias-adj. 0.0042 0.0264 0.0260 19
On covs, N = 40, bias-adj. –0.0142 0.0303 0.0268 35

Weighting
Unnormalised 0.0011 0.0275 0.0275 7
Unnormalised X –0.0008 0.0276 0.0276 4
Normalised 0.0010 0.0275 0.0275 5
Normalised X 0.0012 0.0274 0.0274 9
Efficient 0.0008 0.0275 0.0275 3
Efficient X 0.0020 0.0272 0.0271 12
Double robust 0.0010 0.0274 0.0274 6
Double robust X 0.0001 0.0273 0.0273 1

NOTE: “Comsup?” denotes the estimates which are obtained after removing all the treated
observations from outside the common support region. “Rank” is based on the absolute value
of mean bias.
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