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Abstract

The paper investigates experimentally the effect of information about the
payoff matrix on the players’ welfare attainments in repeated 2x2 games
of incomplete information. Controlling for both the amount of information
available to the players and the behavioral model of the opponent allows for
distinct treatments of performance of informed and uninformed subjects. The
main findings are as follows: (a) the informed player need not benefit from his
informational advantage while the uninformed player need not be worse off;
(b) asymmetric information can be used as an equilibrium selection device
in games with a multiple of such; (c) asymmetric scenarios do not improve
much in terms of welfare over the symmetric incomplete information baseline;
(d) uninformed subjects can easily be exploited by a purposeful opponent;
and in general, (e) subjects tend to perform worse than simplistic benchmark
strategies.
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1. Introduction

Historically, the majority of theoretical and experimental works on indi-
vidual learning in games has been concerned with strategic environments of
complete information where the very learning is to be understood as learn-
ing the behavioral model of the other player. One of the more recent trends
in the literature is studying games of incomplete information, in which the
players are deprived of the information about the payoff matrix and as such
also have to learn about the game itself along the way.

This paper covers a middle ground between games of complete and in-
complete information by considering scenarios with asymmetric information
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about the payoff matrix. I consider a number of classic 2x2 symmetric games
i.e., Prisoner’s Dilemma, Stag Hunt and Battle of Sexes1 in which only one
of the players knows the actual game that is being played and the other one,
among other things, has to learn about it.

My primary interest lies in the effect that information about the payoff
matrix can have on the welfare of the players. I therefore conduct a series of
laboratory experiments in order to provide answers to the following questions:

1. Does the informed player2 use his knowledge to his own advantage?

2. Does the presence of an informed player lead to a welfare externality
on the uninformed player?

3. Does the informed player use his knowledge to increase the joint wel-
fare3 of the pair?

4. Do welfare gains (if any) come from lowering the degree of miscoordi-
nation or robbing the other player of payoffs?

5. How is the welfare of the uninformed player affected by the way the
informed player uses his knowledge?

The experimental design includes a benchmark scenario of incomplete
information about the payoff matrix and a series of asymmetric scenarios
that allow for a learning environment with two principle control elements:
(i) the amount of information available to the player(s) and (ii) the behavioral
model of the opponent.

Some two strands of literature are related to my paper at once. Firstly,
there are papers like Oechssler and Schipper (2003), and Gerber (2006),
where the authors use similar setups to test how players perceive games,
which they are only incompletely informed about. Secondly, there are papers
like Duersch et al. (2010), Shachat and Swarthout (2002) that study how
well human subjects perform against particular learning models in games of
complete information. This paper can be seen as one that poses questions in
the spirit of the latter for a situation inspired by the former literature.

1Strictly speaking, Battle of Sexes is only anti-diagonally symmetric, but that makes
no difference for my particular setup as what is needed from the symmetry is that no
player has a strategic advantage over the other.

2As opposed to the uniformed player in a symmetric game of incomplete information.
3While at the presence of the first two this question may at first seem redundant, it is

in fact far from being so if (extra) information turns out to have opposing effects on the
players’ individual welfare.
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In the traditional setup, each player knows his own payoff function but
is unaware of that of the other one, whereas in my design, one player pos-
sesses both of these pieces of information from the start and the other one is
completely ignorant. Moreover, in my learning scenario, I preclude the play-
ers from observing each other’s actions. While for the completely informed
player it virtually makes no difference, it makes the learning problem some-
what more difficult to tackle for his uniformed opponent. The motivation for
this peculiarity is that I want to capture one of the most prominent features
a learning task can have in my opinion i.e., that at any moment of time, one
also has to figure out his cell in the game matrix as part of the process.

Since the behavior of the opponents needs to be controlled for, the sub-
jects in the experiment will be playing against computer programs that rep-
resent players with different amounts of information about the payoff matrix
available to them and/or level of sophistication.

In addition, I use simulations to create counterfactual welfare attainments
that serve as benchmarks for the observed subject performance in each in-
formation setting.

The remainder of the paper is structured as follows. In the next section,
we present the experimental design. Section 3 discusses the results. Section
4 concludes. The subject instructions are available in the appendix.

2. Experimental Design

The experimental design consists of four treatments varying in the amount
of information available to the players and the learning model used for the
computer opponent. In each treatment, the subjects play three blocks of 2x2
games for 50 rounds. Each block represents one of three games of interest4,
and the change of the objective game is announced to the players. The
subjects are informed of the number of players and the number of actions each
has in the game. They also know that their opponent is in fact a computer
program following some certain algorithm in an attempt to maximize its own
total payoff. The only feedback that the players receive after each period of
play is their own realized payoff.

Provided that the subjects understand that it is a fixed algorithm that
they are playing with, the only two possible tasks left for them (depending

4Subject subsamples were playing the games in all possible orders to control for possible
order effects.
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on the treatment) are learning the payoff matrix of the game and manipu-
lating the inputs of the learning process on the other side. Therefore it is
safe to assume that all differences in outcomes across the treatments should
be attributed to how the available information about the payoff matrix is
utilized by the human subjects and / or their computer opponents rather
than anything else.

The baseline treatment is that of symmetric incomplete information where
both human subjects and computer players do not know the objective struc-
ture of the game. The baseline computer player is programmed to follow
the generic reinforcement learning technique. Another three treatments are
asymmetric, in that either the human subject or computer player is endowed
with information about the payoff matrix from the very beginning. In the
former case, the learning algorithm of the computer player remains the same,
while in the latter one it is replaced with either the basic experience-weighted-
attraction (EWA) or sophisticated EWA routines5. For details, please con-
sider Table 1 and Table 2.

Table 1: Experimental Design. Treatments

Uninformed Computer Informed Computer
Uninformed Subject loRE loEWA loEWAs
Informed Subject hiRE ∅ ∅

Treatments constituting the experiment. The first two letters in the acronyms
correspond to the human subject type (i.e., lo and hi as in ”low info” and ”high
info”, respectively) and the rest of the letters correspond to the computer oppo-
nent type (i.e., RE and EWA(s) as in ”reinforcement” and ”experience-weighted-
attraction (sophisticated)”, respectively).

As it is argued in Camerer and Ho (1999), sophisticated EWA nests the
original EWA and basic reinforcement learning models, which also makes
the three a sensible selection from the methodological perspective. Indeed,
different behavioral patterns can be achieved e.g., by restricting certain pa-
rameters of the richer model to null, which can be interpreted as dumbing
down one and the same player or denying him of the knowledge about the
objective structure of the game.

5Based on the theoretical models of Erev and Roth (1998) and Sarin and Vahid (1999,
2001), and Camerer and Ho (1999). Additional details are available in the appendix.

6Definitions due to Hart and and Mas-Colell (2006).
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Table 2: Experimental Design. Learning Models for Computer Opponent

Generic Name Type Dynamic Learning Rule6 Information Used
RE Reinforcement Uninformed Adaptive Completely uncou-

pled
Own payoff realized

EWA Experience-
weighted-attraction

Informed Adaptive Uncoupled Own payoffs, real-
ized and counter-
factual

EWAs Sophisticated EWA Informed opponent model Coupled Own payoffs, real-
ized and counter-
factual, and oppo-
nent’s payoff real-
ized

X Y
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Y

2, 2

3, 0

0, 3

1, 1

(a) Prisoner’s Dilemma

X Y

X

Y

2, 2
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1, 1

(b) Stag Hunt

X Y

X

Y

3, 2

0, 0

1, 1

2, 3

(c) Battle of Sexes

Figure 1: Games

The games of interest are the ordinal versions of Prisoner’s Dilemma, Stag
Hunt and Battle of Sexes as shown in Figure 1.

Stag Hunt has two Nash equilibria in pure strategies: {X, X} and {Y, Y};
and Prisoner’s Dilemma has a unique Nash equilibrium in pure strategies,
that is {Y, Y}. From the welfare point of view, both games are interesting
in that the socially optimal upper left-hand-side cell can only be achieved
(and sustained as a play outcome) if a certain amount of effort is exerted by
each player. Moreover, the amount of such effort, however quantified, must
be greater in the Prisoner’s Dilemma than in the Stag Hunt case because
strategic dominance is arguably way stronger a motive to suppress than risk
dominance.

Battle of Sexes has two Nash equilibria in pure strategies: {X, X} and
{Y, Y}; and either of them is socially optimal yet the players strictly but not
unanimously prefer one to the other. Therefore in contrast to the other two
games, there are bound to be a winner and loser in Battle of Sexes7 and it is

7Unless the players coordinate on oscillating between the equilibria, which turned out
to have never happened in this experiment.
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a question of whether or not information can be the watershed that divides
the two.

Perhaps another interesting way to look at these games is to reflect upon
the nature of interaction the players are involved in in either of them. In-
formation availability concerns aside, it is a fairly straightforward conjecture
that the success of one player in Stag Hunt does not come at any cost to
the other player, which is quite the opposite in case of Prisoner’s Dilemma.
Now in the Battle of Sexes game, it seems like the players are neither imme-
diate antagonists nor protagonists. Whether this conjecture is true or not
for symmetric incomplete information and asymmetric scenarios is an inter-
esting empirical matter on its own and provides justification for postulating
question 4 above.

From the technical perspective, the choice of games is dictated by several
considerations. Firstly, there are only so many symmetric games in the 2x2
space that are economically interesting (as opposed to e.g., the game with
efficient dominant strategy as defined by Eshel et al. (1998)). And secondly,
I decided to exclude games that do not have Nash equilibria in pure strate-
gies since there exists experimental evidence (see e.g., Mukherji and Runkle
(2000), and Gerber (2006)) that it is generally more difficult to learn to ran-
domize in equilibrium, and the subjects’ task is already complex enough as
it is.

3. Results

In total, 124 subjects took part in the experiment. At the beginning of
each session, they were given some time to get to understand the instructions
and ask additional questions if necessary. The instructions explained how the
payoffs were determined in each round and contained a basic description of
the other player. The subjects were explicitly told that the other player was
a computer program trying to maximize its payoff by choosing the better
action based on its past experience (and the information about the payoff
matrix if available).

Before discussing the actual results, it is perhaps necessary to make sure
that the human subjects indeed behave differently under various information
conditions. Figure 2 provides an overview of the average empirical frequencies
of observing action X across the subjects and their computer opponents per
treatment per game to help understand what’s going on inside each treatment
and explain the results better. With loRE as the baseline, the non-parametric
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Kolmogorov-Smirnov test for the equality of distributions rejects the null
hypothesis at the 5% level for all treatment pairs and games but for loEWAs
and loRE in Prisoner’s Dilemma and loEWA and loRE in Battle of Sexes.
I consider this to be a sufficient test for the differences in subject behavior,
which enables me to further interpret any observed differences in welfare
outcomes as those stemming from player interactions but not the noisiness
factor in the opponent’s learning algorithm or else.
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Figure 2: Average Empirical Frequencies of Action X

Means of average empirical frequencies of observing action X across the sub-
jects and their computer opponents per treatment per game. With loRE as the
baseline, the non-parametric Kolmogorov-Smirnov test for the equality of distri-
butions rejects the null hypothesis at the 5% level for all treatment pairs and
games but for loEWAs and loRE in Prisoner’s Dilemma and loEWA and loRE in
Battle of Sexes.
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3.1. How Subjects Make Use of Extra Information

The main results of the experiment can be nicely summarized by Figure
3, where one can see the distributions of the subjects’ and their opponents’
average payoffs in each information treatment and game.
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Figure 3: Average Payoff Attainments

Distribution of average contemporaneous payoffs across the subjects and their
computer opponents per treatment per game. The line in the box denotes the
median average profit, the boundaries of the box outline the interquartile range
(IQR) between the 1st and 3rd quartiles, and the whiskers define the most extreme
values within 1.5 IQR of the respective quartile.

The line in the box denotes the median average profit, the boundaries
of the box outline the interquartile range (IQR) between the 1st and 3rd
quartiles, and the whiskers define the most extreme values within 1.5 IQR of
the respective quartile.

The accompanying Table 3 contains data on the differences in means
of the subjects’, opponents’ and joint payoffs between the treatments in a
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particular pair of interest, as well as the results of the non-parametric Mann-
Whitney U tests for assessing whether in one treatment the observed average
payoffs tend to have larger values than in the other (double-sided p-values
for the null in parentheses).

Table 3: Mean Differences in Average Payoffs

Prisoner’s Dilemma Stag Hunt Battle of Sexes
Subj. Comp. Joint Subj. Comp. Joint Subj. Comp. Joint

∆ hiRE 0.027
(0.101)

−0.176
(0.000)

−0.149
(0.002)

0.148
(0.013)

0.199
(0.049)

0.347
(0.017)

0.244
(0.020)

0.033
(0.210)

0.277
(0.014)

∆ loEWA 0.062
(0.006)

0.088
(0.083)

0.150
(0.004)

0.106
(0.002)

0.074
(0.094)

0.180
(0.010)

−0.014
(0.799)

0.078
(0.034)

0.063
(0.424)

∆ loEWAs −0.104
(0.001)

−0.009
(0.414)

−0.113
(0.032)

−0.038
(0.403)

−0.058
(0.550)

−0.096
(0.580)

−0.822
(0.000)

0.034
(0.981)

−0.788
(0.000)

Differences in means of contemporaneous payoffs across the subjects and their
computer opponents per treatment per game, relative to the baseline loRE treat-
ment. Double-sided p-values of the Mann-Whitney U test statistic corresponding
to the null of no differences within a particular pair of treatments in the paren-
theses.

Before addressing the questions formulated in the introduction to this
paper, it is interesting to note that the distributions of subjects’ average
payoffs tend to be dominated by those of their computer opponents regardless
of the treatment in Prisoner’s Dilemma and Stag Hunt. This result goes
against the findings in Duersch et al. (2010) where the human subjects
consistently beat their computer opponents in terms of average payoffs (and
the reinforcement learning program appears to be the weakest opponent of
all). In my opinion, the most crucial difference between their setup and mine
is that theirs is one of complete information and mine is not. Therefore
my interpretation is that simple learning algorithms can actually be quite
successful8 when the objective structure of the game is unknown. One may
argue that situation in Battle of Sexes goes against this interpretation as the
subjects tend to earn spectacularly more than their computer opponents in
all sessions but loEWAs in this game. Yet the possible explanation would
be that the classic learning models are known for their under-experimenting
in early rounds of play, which in this particular case is extrememly crucial

8In this particular case, being successful would mean earning more than one’s opponent
on average.
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and provides the subjects with a competitive edge. The humans must be
much quicker at discovering the present equilibria and unless the computer
opponent has some kind of a twist in its program as it is the case with the
sophisticated version of EWA the pair becomes locked onto the equilibrium
that benefits the subjects more.

The fact that the EWAs learning program has been able to beat the
human subjects in what appears to be the most difficult game of the three can
also be thought of as an indirect test of whether or not the basic reinforcement
learning routine is a good approximation of actual human behavior in games
of incomplete information. I would like to argue that the test yielded positive
results, which provides an additional, ex-post justification for the selection
of the opposing learning model in sessions loRE and hiRE.

Now let’s get back to the original theme of the paper and compare the
average payoffs in the loRE and hiRE treatments across the games.

Does the informed player use his knowledge to his own advantage? It
turns out, that is not universally true. The informational leverage need not
result in payoff gains as the more informed subjects in Prisoner’s Dilemma
do not manage to significantly increase their earnings relative to the baseline
setting. They tend to defect more often and yet their opponents are not
easy prey as they adjust accordingly fast enough. In the other two cases, the
more informed subjects apparently use their knowledge to coordinate on the
better equilibrium (from the social point of view, in case of Stag Hunt, and
from the individual perspective, in case of Battle of Sexes) by committing to
choosing action X more often and making the uninformed opponent follow
them.

Does the presence of an informed player lead to a welfare externality on
the uninformed player? Again, the answer is not unambiguous. There can
be either a positive or negative externality or none for that matter. In case
of Prisoner’s Dilemma, the result is quite straightforward. As the more
informed player tends to defect more often, there is virtually no scope for his
uninformed opponent to earn more. Rather the opposite as the opponent,
among other things, needs to get at least some flavor of the objective structure
of the game, he is bound to lose points whenever the informed player is
more inclined to defect relative to the baseline. If the actual game happens
to be of the Stag Hunt type, the uninformed opponent enjoys a positive
externality from the knowledge of the informed player. What is perhaps not
that intuitive in this case is the fact that the uninformed player appears to
benefit more than the informed one. That is, if you imagine a planner who
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can give knowledge about the objective structure of the game to only one
of the players and prefers one of them over the other, the extra information
should rather go to the less preferred one. Now in the Battle of Sexes game,
even though the more informed player commits to playing action X more
often thus leading the play towards the equilibrium that benefits him more,
his uninformed opponent doesn’t appear to be significantly affected by that
in terms of payoffs in any way.

Finally, does the informed player use his knowledge to increase the joint
welfare of the pair? As we have just seen, the answer is positive for Stag
Hunt and Battle of Sexes, where the informed player is able to use extra
information to his own advantage without hurting the opponent and even
helping him along the way in the former case. However in case of Prisoner’s
Dilemma, not only wasn’t the informed player successful in benefiting from
his knowledge but he also managed to make his opponent significantly worse
off hence decreasing the joint welfare. If the objective structure of the game
happens to be that of the Prisoner’s Dilemma type, it is socially optimal to
destroy (asymmetric) information.

Additional light can be shed on the above findings if we look into how in-
dividual payoffs interplay in each pair as a function of information treatment.
Consider Figure 4, where I present scatter plots of the subjects’ average earn-
ings against those of the computer opponents’ they are matched with in a
particular treatment and game. Relying on the notion of statistical associa-
tion, the aim of the exercise is to estimate the extent at which one player’s
average payoff can be increased without having the other’s average payoff
decrease. If such relation were found to be statistically significant, the inter-
pretation would be such that the players are protagonists in terms of payoffs
and any payoff gains due to extra information are to be attributed to lower-
ing the degree of miscoordination in a match. If the relation were found to
be of the of the opposite sign, it would mean that the players are antagonists
in terms of payoffs and are effectively hurting each other during the play.

Table 4 provides an estimate of Spearman’s rank correlation coefficient,
which is a non-parametric way to capture a monotonic relation, if any, be-
tween the players’ payoffs in each treatment and game. The number in each
cell corresponds to the estimate of coefficient; with the p-value given in the
parentheses (the coefficient is not distinguishable from zero under the null).
For now, we are interested in the estimates for sessions loRE and hiRE.

In the baseline treatment of symmetric incomplete information both hu-
man and computer players have to learn, which action profile yields better
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Figure 4: Average Payoffs within Subject – Computer Match

Average contemporaneous payoffs of human subjects (on the horizontal axis)
against those of their computer opponent per treatment per game. Each point
corresponds to a specific match, and the overall distribution indicates the degree
of statistical association between the average payoffs within a pair.

payoff. It is interesting to note that in all three games the relation between
individual payoffs in a match is non-negative. It is significant and positive in
Stag Hunt and Battle of Sexes, which is intuitive albeit a tad bit less so in
the latter case. What’s even more interesting is the fact that this relation is
insignificant in Prisoner’s Dilemma. It appears that in games of incomplete
information the learning task that the players have to solve is so complicated
that on average they don’t end up hurting each other in terms of welfare even
when one would expect them to.

If information asymmetry is introduced to the system, the overall picture
changes drastically. Although the (positive) association between the indi-
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Table 4: Spearman’s Rho

Prisoner’s
Dilemma

Stag Hunt Battle of Sexes

hiRE −0.548
(0.001)

0.927
(0.000)

0.618
(0.000)

loRE 0.278
(0.137)

0.694
(0.000)

0.409
(0.025)

loEWA −0.161
(0.370)

0.855
(0.000)

0.078
(0.665)

loEWAs −0.939
(0.000)

0.312
(0.106)

0.330
(0.087)

Estimates of Spearman’s rank correlation coefficient as a non-parametric
way to capture a monotonic relation, if any, between the players’ payoffs
in each treatment and game. The number in each cell corresponds to
the estimate of coefficient; with the p-value given in the parentheses (the
coefficient is not distinguishable from zero under the null).

vidual payoffs in Stag Hunt and Battle of Sexes grows even stronger, such
association becomes negative and significantly so in the Prisoner’s Dilemma
game. As the subjects becomes fully aware of the objective structure of
the game, they start hurting their opponents in an attempt to increase own
payoffs.

Now let’s consider the payoff differences between the treatment pairs
loEWA and loRE, and loEWAs and loRE, to see how the welfare of the
uninformed player is affected by the way the informed player uses his knowl-
edge.

If the uninformed subjects are playing against the EWA learner, which
corresponds to an informed opponent using his knowledge in a passive or
conservative way, they do not seem to be suffering any negative consequences
in terms of welfare. Quite the opposite in all three games, the subjects end
up being weakly better off than in the symmetric incomplete information
scenario, which somewhat unexpected since there is Prisoner’s Dilemma in
the set of games of interest.

According to Figure 2, what happens in Prisoner’s Dilemma is that the
EWA computer chooses to play {X} (i.e., to cooperate) more often and in-
duces the subjects to play {X} more often, too, and both players end up
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earning more on average9 at the end of the day. Battle of Sexes is another
game where the uninformed subjects can have ended up being worse off but
they didn’t. They were indeed induced to play {X} less often, which resulted
in some payoff gains for the computer opponents, but were not significantly
hurt along the way. In both games, the Spearman’s rank correlation coeffi-
cient between the players’ payoffs is estimated to be insignificantly different
from zero, which further proves that the observed payoff gains were not at
the expense of either party.

In Stag Hunt, the results are quite straightforward. The players turn
out to be more successful in coordinating on the efficient outcome and both
enjoy payoff gains10 because of that. The degree of statistical association
between the average payoff attainments within a pair is estimated to be
highly significant and positive. Also note that, just like it was the case with
treatment hiRE, the uninformed player appears to be even better off than
his informed opponent on average.

The overall picture changes drastically, if the uninformed subjects are
paired with the EWAs learner that uses his (asymmetric) knowledge in a so-
phisticated or arguably aggressive way. Relative to the benchmark scenario of
symmetric incomplete information, the uninformed subjects perform weakly
worse in all three games. That would have been strictly worse if not for the
Stag Hunt case, where they do not appear to be affected significantly; and
yet provided the nature of the game, that is a bad result in itself. The esti-
mates of the Spearman’s rank correlation coefficient are either insignificantly
different from zero or different but negative (i.e., in Prisoner’s Dilemma),
which further implies that the uninformed player suffers a strong negative
externality if (extra) information turns out to be in the wrong hands.

3.2. Welfare Benchmarks

This subsection provides additional details on how human subjects per-
form under various information conditions. Having learnt how human sub-
jects perform in asymmetric treatments relative to the baseline, one may
wonder to what extent they were actually successful in what they did. In a
sense, can they have done better?

9The computer opponents are doing so only at the 10% level of significance, though.
10Again, the computer opponents have a hard time improving upon the 10 % significance

level.
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To answer that question, I construct counterfactual benchmarks by sim-
ulating average payoff attainments of several behavioral routines matched
with the same learning algorithms as used in the actual experiment. The
problem of choosing the most or least successful strategy goes far beyond
the scope of this paper and instead, I decided to pick those that are fairly
simple, fit the general learning paradigm already utilized for the computer
opponents, and make some common sense altogether.

In case it is the human subjects that possess additional information about
the objective structure of the game, the benchmark strategy is to always
play {Y} (i.e., to defect) in Prisoner’s Dilemma and {X} in Stag Hunt and
Battle of Sexes. If the human subjects are the uninformed, then there are
two benchmark strategies considered. The first one is the outcome of the
notorious reinforcement learning routine used in the loRE treatment, and the
second one is a simple randomization between the two action profiles with
equal probabilities. Note that the implication of the first benchmark is that
in session loRE there are two identical learning programs playing with each
other, and in session loEWAs the model of the opponent assumed by the more
informed computer player happens to be the correct one by construction11.
Also note that the degenerate benchmark strategy for the informed and the
second benchmark strategy for the uninformed reflect arguably the lowest
bounds of performance conditional on the available information as far as
one’s mental effort is concerned.

Figure 5 provides the actual average payoff attainments of human subjects
against the benchmark levels obtained from 10 thousand counterfactual sim-
ulations with the identical computer opponents. Benchmark A corresponds
to the degenerate strategy if the subjects are the informed or to the rein-
forcement learning routine if they are the uninformed as explained above.
Benchmark B corresponds to the equiprobable randomization between the
actions for the uninformed subjects. According to the Mann-Whitney U
test, the null hypothesis of the actual payoff attainments being statistically
indistinguishable from either benchmark in a particular treatment and game
can be rejected at the 5% confidence level for all scenarios but session loEWA
in Stag Hunt (against both benchmarks).

The first thing that catches the eye here is that the subject’s actual payoff

11Although, the loEWAs learner still cannot predict the actual realization of the prob-
abilistic action choice subroutine of his opponent.
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Figure 5: Average Subject Payoffs against Simulated Benchmarks

Means of average payoff attainments of human subjects against the counterfactual
simulated players matched with identical computer opponents. Benchmark A
corresponds to always playing {Y} in Prisoner’s Dilemma, and {X} in Stag Hunt
and Battle of Sexes if the subjects are the informed; or to the basic reinforcement
learning routine if they are the uninformed. Benchmark B corresponds to the
equiprobable randomization between the actions. The Mann-Whitney U tests
reject the null hypothesis of the actual payoff attainments being statistically
indistinguishable from either benchmark in a particular treatment and game at
the 5% level for all scenarios but session loEWA in Stag Hunt (against both
benchmarks).

attainments are again generally lower than those of the basic counterfactual
behavioral routines, with the notable exception of Battle of Sexes save for the
loEWAs treatment. My general explanation would be similar to that given
as an interpretation of the data patterns observed in Figure 6 above. Let’s
take a closer look, though.
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If the subjects possess (extra) information about the objective structure of
the game, there is an overwhelming amount of different ways (i.e., strategies)
in which that knowledge could be used. It turns out that the subjects in
this experiment were successful in using their informational leverage only in
case of Battle of Sexes. In Prisoner’s Dilemma and Stag Hunt, they earned
even less than the very simple benchmark strategies, which can be explained
by certain proportions of subjects in the experiment trying to achieve the
socially optimal outcome and not being successful at that in the former and
not being patient enough in gearing the play towards the efficient equilibrium
in the latter.

If the subjects are deprived of the information about the objective struc-
ture of the game, they perform even worse with respect to the simple bench-
marks. As one carefully examines the charts going from session loRE to loE-
WAs, it becomes clear that as the opponent gains in knowledge, the subjects
tend to lose more. There is no clear ranking as regards to the informed oppo-
nent’s level of sophistication but it is obvious that the observed performance
is inferior to that of the reinforcement learning routine and sometimes even
to that of the overly simplistic equiprobable randomization process. Again,
Battle of Sexes stands somewhat aside for the reasons discussed above.

Going back to the original question of whether the subjects can have done
better or not, the answer is, certainly yes. Both the informed and uninformed
subjects tend to perform poorer than fairly simple benchmark routines, and
the situation appears to be significantly worse in the latter case.

4. Discussion

The general findings of my experiment can perhaps be summarized by
a phrase of the sort in asymmetric scenarios when the uninformed player is
deprived of knowledge of the objective structure of the game, the informed
player need not benefit from his informational advantage whereas the uni-
formed player need not be worse off. But have we learned anything other
than that?

Knowing the objective structure of the game is a very important factor
in the subjects’ behavior and has significant effects on the joint welfare and
individual earnings within a match. Both from the social and distributional
point of views, ignorance can be bliss as such asymmetric information has to
be put to the proper use to yield positive results.
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Playing a game of incomplete information appears to be a difficult task
for the subjects as they both tend to perform inferior to some very simple
learning models and, as the treatments with the informed computer oppo-
nents indicate, can be exploited easily, and that is much in contrast to the
findings in the experimental literature on games of complete information.
Perhaps, the only real competitive edge that the human subjects have over
the traditional learning models in games of incomplete information is their
non-linear propensity to experiment, which is crucial for interaction scenarios
with a flavor of Battle of Sexes to them.

When the subjects are provided with the aforementioned informational
advantage, but again they cannot generally beat simple benchmark routines
as far as individual payoffs are concerned; so we know that they can have done
better were they to behave differently. The differences in payoff outcomes
between treatments loEWA and loEWAs show that the role of the informed
player is an extremely important one and can have both a positive impact on
an inherently antagonistic interaction scenario (i.e., Prisoner’s Dilemma) or
an absence of such in a protagonistic one (i.e., Stag Hunt). What we observe
the informed subjects actually do is somewhere in between as they manage
to make themselves better off without hurting the opponent in Stag Hunt
and Battle of Sexes but fail miserably in Prisoner’s Dilemma where the only
thing they succeed in is producing a negative externality on the other player.

Another interesting finding is that if there is indeed scope for mutual
improvement due to extra information and the more informed player commits
to gearing the play towards a better outcome, then his knowledge comes at
a personal cost as the uniformed opponent is likely to end up with an even
greater payoff gain.

Although the objective of this study is to learn more about the value of
information in general, there appear to be certain game-specific regularities I
cannot but comment upon. In games with two equilibria, asymmetric infor-
mation becomes a coordination vehicle that helps achieve better outcomes,
either individually or socially, by lowering the degree of miscoordination be-
tween the players. However in Prisoner’s Dilemma with its unique (and
inefficient) equilibrium, it becomes a pure means of exploitation, and an
unsuccessful one.

One last remark about the results that strikes me as peculiar is the fact
that save for the Battle of Sexes game, which is arguably an easy one in terms
of welfare even if at least one of the players doesn’t know the payoff function,
all the significant payoff differences observed are only so statistically. Yet as
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far as percentages are concerned, the differences are not that big. It appears
that in terms of welfare, there is a huge gap between asymmetric scenarios
and symmetric ones with complete information. As I argued above, having
to learn the objective structure of the game must be a very difficult task for
the subjects, with the manifestations of that process crowding out most of
the effort by the informed player whatever it may be geared at.
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AppendixA. Subject Instructions

AppendixA.1. Session loRE

Dear participant,
You are about to take part in an experiment that studies how people

behave in interactive environments. By choosing the right actions (to be
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explained later), you can significantly increase the amount of money that
you will receive when the experiment is over.

The experiment consists of three stages, which we call games. We will
tell you when one game is over and the next game begins.

Each game consists of 50 rounds. You will be paired with another player
who will be the same throughout the whole game, and your joint decisions
will determine your (and his) rewards. In each round, you will have a choice
of two actions and so will the other player. Each round of the game can be
represented with the help of the following picture.

UP

DOWN

LEFT

RIGHT

A B

C D

W X

Y Z

In this picture, you are the red player, and the
letters show rewards in each round. For example,
if in some round you choose DOWN and the other
player chooses LEFT, you will get C and the other
player will get Y.

Neither you nor the other player will know these
rewards at the beginning of the experiment. Both
you and the other player will have to learn them
by playing the game. We can only tell you that
these rewards can be equal to 0, 1, 2 or 3 (bigger
numbers mean more money) and they stay the same
throughout the whole game.

During the game, you will never be told what
the other player is doing. You simply make your
choice, receive your reward and move to another
round. The same is true for the other player. The other player will actually
be a computer program that will try to earn as much money as possible
throughout the experiment. The program will do its best to choose actions,
which in its opinion should bring it higher rewards.

In a nutshell, you should remember the following:

• You will be playing 3 different games, one after the other;

• Each game will last for 50 rounds;

• In each round, the game remains the same;

• Your reward depends on both what you do and what the other player
does;
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• You will not be told what the rewards are but will have to learn them
by playing the game;

• You will never be told what the other player is doing.

• The above rules also apply to the other player;

• The other player will be a computer program trying to earn as much
money as possible.

AppendixA.2. Session hiRE

Dear participant,
You are about to take part in an experiment that studies how people

behave in interactive environments. By choosing the right actions (to be
explained later), you can significantly increase the amount of money that
you will receive when the experiment is over.

The experiment consists of three stages, which we call games. We will
tell you when one game is over and the next game begins.

Each game consists of 50 rounds. You will be paired with another player
who won’t be changed throughout the whole game, and your joint decisions
will determine your (and his) rewards. In each round, you will have a choice
of two actions and so will the other player. Each round of the game can be
represented with the help of the following picture.

UP

DOWN

LEFT

RIGHT

A B

C D

W X

Y Z

In this picture, you are the red player, and the
letters show rewards in each round. For example,
if in some round you choose DOWN and the other
player chooses LEFT, you will get C and the other
player will get Y.

When the game starts, you will immediately be
told what the rewards are (bigger numbers mean
more money), both for you and the other player.
The other player will not know them from the be-
ginning but will have to learn them by playing the
game.

During the game, you will never be told what
the other player is doing. You simply make your
choice, receive your reward and move to another
round. The same is true for the other player. The
other player will actually be a computer program that will try to earn as
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much money as possible throughout the experiment. The program will do
its best to choose actions, which in its opinion should bring it higher rewards.

In a nutshell, you should remember the following:

• You will be playing 3 different games, one after the other;

• Each game will last for 50 rounds;

• In each round, the game remains the same;

• Your reward depends on both what you do and what the other player
does;

• You will never be told what the other player is doing.

• The above rules also apply to the other player;

• You will be told what the rewards are when the game starts;

• The other player will not know what the rewards are but will have to
learn them by playing the game;

• The other player will be a computer program trying to earn as much
money as possible.

AppendixA.3. Sessions loEWA and loEWAs

Dear participant,
You are about to take part in an experiment that studies how people

behave in interactive environments. By choosing the right actions (to be
explained later), you can significantly increase the amount of money that
you will receive when the experiment is over.

The experiment consists of three stages, which we call games. We will
tell you when one game is over and the next game begins.

Each game consists of 50 rounds. You will be paired with another player
who will be the same throughout the whole game, and your joint decisions
will determine your (and his) rewards. In each round, you will have a choice
of two actions and so will the other player. Each round of the game can be
represented with the help of the following picture.
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UP

DOWN

LEFT

RIGHT

A B

C D

W X

Y Z

In this picture, you are the red player, and the
letters show rewards in each round. For example,
if in some round you choose DOWN and the other
player chooses LEFT, you will get C and the other
player will get Y.

You will not know these rewards at the begin-
ning of the game, but the other player will. You
will have to learn them by playing the game. We
can only tell you that these rewards can be equal to
0, 1, 2 or 3 (bigger numbers mean more money) and
they stay the same throughout the whole game.

During the game, you will never be told what
the other player is doing. You simply make your
choice, receive your reward and move to another
round. The same is true for the other player.

The other player will actually be a computer program that will try to
earn as much money as possible throughout the experiment. The program
will do its best to choose actions, which in its opinion should bring it higher
rewards.

In a nutshell, you should remember the following:

• You will be playing 3 different games, one after another;

• Each game will last for 50 rounds;

• In each round, the game remains the same;

• Your reward depends on both what you do and what the other player
does;

• You will never be told what the other player is doing.

• The above rules also apply to the other player;

• You will not be told what the rewards are but will have to learn them
by playing the game;

• The other player will know what the rewards are when the game starts;

• The other player will be a computer program trying to earn as much
money as possible.
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AppendixB. Computer Algorithms Overview

AppendixB.1. RE Opponent

The computer opponent governed by a generic reinforcement learning
routine proceeds in the following fashion:

1. Draw α1(i), i ∈ {X, Y }, numerical attractions to the game actions,
from a uniform distribution with the support [0, 3].

2. In period n, n ∈ {1, 2, ..., 49, 50}, choose action i according to the prob-
ability choice rule:

Pn(i) =
αn(i)

αn(i) + αn(−i)
.

3. Upon receiving payoff πn, update the numerical attractions as:

αn+1(i) =

{
λαn(i) + (1− λ)πn if action i has been chosen
αn(i) if action −i has been chosen

AppendixB.2. EWA Opponent

The computer opponent governed by an experienced-weighted-attraction
learning routine proceeds in the following fashion:

1. Draw α1(i), i ∈ {X, Y }, numerical attractions to the game actions,
from a uniform distribution with the support [0, 3].

2. In period n, n ∈ {1, 2, ..., 49, 50}, choose action i according to the prob-
ability choice rule:

Pn(i) =
αn(i)

αn(i) + αn(−i)
.

3. Upon receiving actual payoff πn and calculating counterfactual payoff
σn, update the numerical attractions as:

αn+1(i) =

{
λαn(i) + (1− λ)πn if action i has been chosen
γαn(i) + (1− γ)σn if action −i has been chosen

AppendixB.3. EWAs Opponent

The computer opponent governed by a sophisticated version of the experienced-
weighted-attraction learning routine proceeds in the following fashion:

1. Draw α1(i), i ∈ {X, Y }, numerical attractions to the game actions for
the human player, from a uniform distribution with the support [0, 3].
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2. Assume that in period n, n ∈ {1, 2, ..., 49, 50}, the human player chooses
action i according to the probability choice rule:

Pn(i) =
αn(i)

αn(i) + αn(−i)
.

3. Calculate own numerical attractions to the game actions:

βn(i) = Pn(X)δn(i,X) + Pn(Y )δn(i, Y )

4. Choose action i according to the probability choice rule:

Qn(i) =
βn(i)

βn(i) + βn(−i)
.

5. Upon determining payoff πn for the human player, update his numerical
attractions as:

αn+1(i) =

{
λαn(i) + (1− λ)πn if action i has been chosen by the human player
αn(i) if action −i has been chosen by the human player
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