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Abstract

Simulations indicated that, in the class of 2£2 games which only have a mixed equilibrium,
payo¤s are increased by risk aversion compared to risk neutrality. In this paper I show that
the total expected payo¤ to a player over this class in equilibrium is indeed higher if this
player is risk averse than if he is risk neutral provided that all games are played with the same
probability. Furthermore, I show that for two subclasses of games more risk aversion is always
better, while for a third subclass an intermediate level of risk aversion is preferable.

Simulace ukazují, µze v mnoµzinµe her typu 2x2 které mají ekvilibrium pouze ve smíšených
strategiích jsou výplaty zvýšeny averzí v°uµci riziku. V této práci ukazuji, µze celková oµcekávaná
výplata hráµce v ekvilibriu je v tomto typu her ve skuteµcnosti vyšší, pokud je tento hráµc averzní
v°uµci riziku, neµz kdyµz je v°uµci riziku neutrální za pµredpokladu, µze jsou všechny hry hrány se
stejnou pravdµepodobností. Dále ukazuji, µze pro dvµe podmnoµziny tµechto her je vµetší averze v°uµci
riziku vµzdy lepší, kdeµzto pro tµretí podmnoµzinu je nejlepší stµrední úroveµn averze.

(JEL Classi…cation: C72, D89)
keywords: risk aversion, mixed strategy equilibria

¤I thank Ste¤en Huck, Michael Kosfeld, Wieland Müller, Jörg Oechssler, Sergey Slobodyan, and Martin Strobel
for helpful comments. Part of this research was conducted while I was a visitor at the University of Zürich and the
California Institute of Technology. I wish to thank these institutions for their hospitality. Financial support by the
Deutsche Forschungsgemeinschaft (DFG, grant EN 459/1-1), the DGZ-DekaBank and the CERGE-EI foundation
(ESC-postdoctoral fellowship) is gratefully acknowledged.

yCERGE-EI, P.O. Box 882, Politickych veznu 7, 11121 Prague 1, Czech Republic, dirk.engelmann@cerge-ei.cz

1



1 Introduction

In many areas of economic theory individuals are assumed to be endowed with a utility function

expressing their preferences over monetary outcomes. Robson (1992, 1996a, and 1996b) and To

(1999) provide evolutionary explanations for the prevalence of speci…c risk attitudes. Dekel and

Scotchmer (1999) study conditions for the selection of risk taking in winner-take-all games. Strobel

(2001) shows that for chicken games a payo¤ monotone dynamic would lead to a population of

ever increasing risk taking.

In the study at hand I investigate which kinds of utility functions have the potential to be

best suited for promoting long term survival in an evolutionary model based on the class of 2 £ 2

games without pure equilibrium. Speci…cally I compare the expected monetary payo¤s of players

with risk averse utility functions to that of players with risk neutral utility functions.

The restriction of the present analysis to the class of 2 £ 2 games without pure equilibrium

is motivated by simulations performed by Huck et al. (1999). They simulated an evolutionary

process selecting between agents with di¤erent risk attitudes based on the equilibrium payo¤s in

randomly generated 2£2 games. These simulations indicated an advantage for risk averse players.

The strength of this indication depended on the equilibrium selection criterion applied to games

with multiple equilibria. However, the e¤ect of higher long term propagation of risk averse players

was particularly pronounced if attention was restricted to the class of 2 £ 2 games with no pure

equilibrium. These results yield the intuition that risk averse players receive higher equilibrium

payo¤s in this class.

In this paper I prove that this intuition is indeed correct. To this aim let all payo¤s in a 2 £ 2

game be drawn from a uniform distribution on [0, 1] and consider then only those games with no

pure equilibrium. All these games then have the same density. I compare the expected payo¤

of player 1 for a risk averse type with (…xed) utility function U(x) and a risk neutral type with

utility function V (x) = x. In a mixed strategy equilibrium the strategy of player 2 is determined

by the preferences of player 1 (player 2 chooses probabilities such that player 1 is indi¤erent),

but not by player 2’s own preferences. The degree of risk aversion of player 2 is only relevant for

player 1’s payo¤ by in‡uencing the mixing probabilities of player 1. This in‡uence of player 2’s

degree of risk aversion on player 1’s payo¤ will be taken care of by aggregating games to classes

of games where the total e¤ect of player 2’s degree of risk aversion is neutral.
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Let the payo¤-matrix of player 1 in a game G where player 1 chooses between T and B and

player 2 between L and R be
L R

T a b
B c d

.

Without loss of generality assume a > maxfb, c, dg. Then d > b holds if there is only a mixed

equilibrium. Furthermore, in this case the payo¤ of player 2 for (T, R) exceeds that for (T,L) and

his payo¤ for (B, L) exceeds that for (B, R).

The relative magnitude of c determines three cases:1

1. a > c > d > b

2. a > d > c > b

3. a > d > b > c.

In the following section I show that risk aversion increases the expected payo¤ compared to risk

neutrality in each of the three subclasses of games de…ned by these cases and thus over the whole

class of 2 £ 2 games with no pure equilibrium.

The primary result is in contrast to the e¤ects of risk aversion in bargaining games. As

outlined e.g. by Binmore et al. (1986), a concave transformation of a player’s utility function, i.e.

if he becomes more risk averse (or more impatient), changes the Nash bargaining solution in favor

of the other player. Increasing a player’s risk aversion weakens his bargaining position because

the risk of not reaching an agreement becomes more threatening to him. In contrast, in the class

of games studied here, the basic intuition (which is entirely correct only in case 1) is that the

increased risk aversion of player 1 leads player 2 to increase the probability on player 1’s preferred

outcome to keep him indi¤erent, and this bene…ts player 1. This is, of course, a somewhat perverse

argument common for mixed strategy equilibria.

In Section 3, I study the e¤ects of di¤erent levels of risk aversion. In particular, I show that in

cases 1 and 2 the expected payo¤ increases with the degree of absolute risk aversion, whereas in

case 3 a positive but …nite level of risk aversion yields higher expected payo¤s than extreme levels

of risk aversion. Hence in an evolutionary model based on games of cases 1 and 2 the population

would always tend towards consisting of players with more extreme risk aversion, whereas it would

1The class of games with ties between payo¤s has total mass zero, given the assumption on the distribution of

the payo¤s. Hence these games can be ignored.
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tend towards consisting of players with …nite levels of risk aversion if only games of case 3 were

played. I also discuss to what extent the assumption of a uniform distribution of payo¤s can be

relaxed.

Although the class of games dealt with in this paper covers only a minor part of the reality

that people face, I believe that this result may give a basis for an evolutionary explanation for the

widely observed phenomenon of risk aversion.

Note that nothing is concluded about the utility levels. Hence although a risk averse player

would be in advantage compared to a risk neutral player in an evolutionary model where the

dynamic is driven by the given payo¤s, it cannot be decided whether he also “feels happier”.

2 Analysis

The following proposition contains the main result.

Proposition 1 The overall e¤ect of risk aversion of a player over the set of 2£ 2 games with no

pure equilibrium is an increase of his expected payo¤ in equilibrium.

The proof will be conducted separately for each of the three cases de…ned in the introduction.

Case 1 a > c > d > b

Player 1 always prefers that player 2 chooses L since a > b and c > d. Let p denote the probability

that player 2 chooses L. Hence the expected payo¤ of player 1 increases with p. Lemma 2 then

gives the crucial result.

Lemma 2 In cases 1 and 2 the equilibrium probability p that player 2 chooses L is higher if player

1 is risk averse than if player 1 is risk neutral.

Proof. Since a > c > b and a > d > b the risk associated with the payo¤s is higher if player 1

chooses T than if he chooses B. While a risk neutral player 1 will be indi¤erent between T and

B if they yield the same expected payo¤, a risk averse player 1 will only be indi¤erent if T yields

a higher expected payo¤ than B to compensate for the larger associated risk. The latter requires

that in equilibrium p is larger if player 1 is risk averse since in case 1 a¡ b > c¡ d implies that an
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increase of p has a larger impact on the expected payo¤ for T than on that for B, while in case 2

since a ¡ b > 0 > c ¡ d an increase of p will increase the expected payo¤ for T and decrease that

for B. Hence for both cases 1 and 2 player 2 will in equilibrium choose L with a higher probability

if player 1 is risk averse than if he is risk neutral.

Since in any single game in case 1 the expected payo¤ to player 1 increases with p, Lemma 2

implies that in equilibrium the expected payo¤ is higher if player 1 is risk averse than if he is risk

neutral.

Case 2 a > d > c > b

Let p¤ and p denote the equilibrium probability that player 2 chooses L if player 1 is risk neutral

or risk averse, respectively.

Consider the class of games with …xed payo¤s a > d > c > b for player 1 and denote it

by ¡ := ¡abcd. Note that this is actually a class of games since the payo¤s for player 2 are not

speci…ed. p¤ and p depend only on a, b, c, d and are thus equal for all games in ¡. By Lemma 2

p > p¤. Lemma 3 gives the key result for case 2.

Lemma 3 Over any class ¡ the expected payo¤ to player 1 increases with the probability p that

player 2 chooses L, if player 1 chooses his equilibrium strategy.

Proof. Let q denote the equilibrium probability that player 1 chooses T in a speci…c game. q

depends only on the payo¤s to player 2. By exchanging player 2’s payo¤ for (T,L) with that for

(B,R) and that for (T,R) with that for (B,L) while leaving the payo¤s to player 1 …xed, one

obtains another game in class ¡ with only a mixed equilibrium and the equilibrium probability of

player 1 to choose T is 1 ¡ q. Since player 2’s payo¤s are all drawn from the same distribution,

both games have the same density. Therefore over the class ¡, q is distributed symmetrically

around 1
2 .

The expected payo¤s to player 1 for decisions L and R of player 2 in one game are E(L) =

qa + (1 ¡ q)c and E(R) = qb + (1 ¡ q)d. Therefore the expected (with respect to the distribution

of q over a class ¡ with density f) payo¤s to player 1 over a class of games ¡, given that he plays
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his equilibrium strategy are

E¡(L) =
Z 1

0
(q(a ¡ c) + c)f(q)dq =

Z 1

0
cf(q)dq +

Z 1

0
q(a ¡ c)f(q)dq

= c + (a ¡ c)
1
2

=
1
2
(a + c) and (1)

E¡(R) =
Z 1

0
(q(b ¡ d) + d)f(q)dq =

Z 1

0
df(q)dq +

Z 1

0
q(b ¡ d)f(q)dq

= d + (b ¡ d)
1
2

=
1
2
(b + d), (2)

where (1) and (2) result from the symmetry of the distribution of q around 1
2 (which implies for

the expected value of q,
R 1
0 qf(q)dq = 1

2). Then

E¡(L) ¡ E¡(R) =
1
2
(a + c) ¡ 1

2
(b + d) =

1
2
(a ¡ b ¡ (d ¡ c)) > 0 since a > d > c > b.

Therefore, the expected payo¤ to player 1 over a class of games ¡, given that he chooses his

equilibrium strategy, is higher if player 2 chooses L than if player 2 chooses R and thus increases

with p.

By Lemma 2 player 2 chooses L with higher probability if player 1 is risk averse than if player

1 is risk neutral, i.e. p > p¤. Also p and p¤ are the same for all games in one class ¡. Thus by

Lemma 3 for any such class ¡ the expected payo¤ to player 1 in equilibrium is higher if he is risk

averse than if he is risk neutral. Since the set of all games in case 2 falls into classes ¡abcd, the

expected payo¤ to player 1 over the whole set is increased by risk aversion.

Case 3 a > d > b > c

While the expected payo¤ for player 1 is increased by risk aversion for any single game in

case 1 and over any class of games with …xed payo¤s for player 1 in case 2, the situation is less

straightforward in case 3.

Consider a game G1 with payo¤s a1 > d1 > b1 > c1 and additionally a1 ¡ b1 > d1 ¡ c1. Then

there is a game G2 with payo¤s a2 = a1, b2 = a1¡(d1¡c1) = c1+a1¡d1, c2 = c1, d2 = c1+a1¡b1.

G2 is also a game of case 3 and due to the fact that all payo¤s originally are drawn from the same

uniform distribution, G2 has the same density as G1 conditioned on the order of payo¤s (note

that G2 is obtained from G1 by shifting d and b within the range given by a and c). From
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a2¡b2 = a1¡ (c1+a1¡d1) = d1¡c1 and d2¡c2 = c1+a1¡b1¡ c1 = a1¡ b1 follows in particular

d2 ¡ c2 > a2 ¡ b2.2

As in case 2, consider classes ¡1 and ¡2 of games of types G1 and G2. Correspondingly, let p¤i

and pi denote the equilibrium probability for a choice of L in class ¡i for the case of risk neutrality

and risk aversion, respectively. Then the following three lemmas result.

Lemma 4 If player 1 is risk neutral, then p¤2 = p¤1. Thus player 2 chooses the same strategy over

all games in the classes ¡1 and ¡2.

Proof. In equilibrium player 2 chooses p¤1 = d1¡b1
d1¡b1+a1¡c1 = 1

1+a1¡c1
d1¡b1

in all games G1 in ¡1 and

p¤2 = d2¡b2
d2¡b2+a2¡c2 = 1

1+a2¡c2
d2¡b2

in all games G2 in ¡2 if player 1 is risk neutral. From a2¡c2 = a1¡c1

and d2 ¡ b2 = c1 + a1 ¡ b1 ¡ (c1 + a1 ¡ d1) = d1 ¡ b1 follows p¤2 = p¤1.

Lemma 5 The total expected payo¤ to player 1 over both classes ¡1 and ¡2 will not be changed

if player 2 changes p by the same margin over all games in the union ¡ of these classes.

Proof. The total expected payo¤s to player 1 for the choices L and R of player 2 over the classes

¡1 and ¡2 are E1(L) = 1
2(a1+c1), E1(R) = 1

2(b1+d1), E2(L) = 1
2(a2+c2) and E2(R) = 1

2(b2+d2),

respectively (by applying the same argument as in the proof of Lemma 3 to classes ¡1 and ¡2

separately). Since the union ¡ = ¡1 [ ¡2 consists of pairs of games, one in each class, described

as above, of the same density, the total expected payo¤s for both choices L and R over the union

are just E¡(L) = E1(L) + E2(L) and E¡(R) = E1(R) + E2(R). Then

E¡(L) ¡ E¡(R) =
1
2
(a1 + c1 + a2 + c2) ¡ 1

2
(b1 + d1 + b2 + d2)

=
1
2

((a1 ¡ b1) ¡ (d2 ¡ c2) + (a2 ¡ b2) ¡ (d1 ¡ c1)) = 0.

Hence to player 1 the total expected payo¤ over both classes is the same if player 2 chooses

always R, always L or chooses some …xed p, as long as it is the same for all games in the union.

Consequently, the total expected payo¤ to player 1 over both classes will not be changed if player

2 changes p by the same margin ¢p over all games in the union of classes ¡1 and ¡2 because this

just implies adding ¢p(E¡(L) ¡ E¡(R)) = 0 to the expected payo¤.

2Of course, the situation is completely symmetric in the sense that for any such game G2 there is a corresponding

game G1 with the given properties. The crucial point is that the whole class of games falls into such pairs.
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Lemma 6 If player 1 is risk averse p1 > p2, thus player 2 chooses L with higher probability in

class ¡1 than in class ¡2.

Proof. If player 1’s utility function is given by U(x) then in equilibrium player 2 chooses

p1 =
U(d1) ¡ U(b1)

U(d1) ¡ U(b1) + U(a1) ¡ U(c1)
=

1

1 + U(a1)¡U(c1)
U(d1)¡U(b1)

in all games G1 in ¡1 and

p2 =
U(d2) ¡ U(b2)

U(d2) ¡ U(b2) + U(a2) ¡ U(c2)
=

1

1 + U(a2)¡U(c2)
U(d2)¡U(b2)

in all games G2 in ¡2.

Risk aversion implies

U(d2) ¡ U(b2) < U(d1) ¡ U(b1). (3)

This is established by the following argument: d2¡b2 = d1¡b1, hence d2+b1 = d1+b2. Therefore

lottery L1, which yields both d2 and b1 with probability 1
2 , and lottery L2, which yields both d1

and b2 with probability 1
2 , both have the same expected payo¤. But since d2 > d1 and b1 < b2 the

variance of L1 is higher than that of L2 and hence a risk averse player will prefer L2. This in turn

implies 1
2U(d2) + 1

2U(b1) < 1
2U(d1) + 1

2U(b2), which yields (3). From (3), a2 = a1, and c2 = c1,

p1 > p2 follows immediately.

By Lemma 4 p¤1 = p¤2. Thus if player 1 is risk neutral, player 2 chooses L with the same

probability in all games in ¡. Lemma 5 implies that the total expected payo¤ over ¡ will not be

changed if instead player 2 chooses L with an arbitrary probability as long as it is the same for

all games in ¡. In particular this will hold if this probability is p2. Now by Lemma 6, if player 1 is

risk averse, player 2 chooses L with probability p2 for all games in ¡2 and with probability p1 > p2

for all games in ¡1. Over the whole class ¡1 a choice of L by player 2 is more preferable for player

1 than a choice of R since E1(L) ¡ E1(R) = 1
2(a1 ¡ b1 ¡ (d1 ¡ c1)) > 0 and hence the expected

payo¤ to player 1 over the class ¡1 increases with p. Thus the total expected payo¤ to player 1

over ¡ is higher if he is risk averse than if player 2 chooses L with probability p2 in all games in

¡, which in turn yields the same total expected payo¤ as if player 1 is risk neutral. Summarizing,

risk aversion raises the total expected payo¤ to player 1 over a pair of classes ¡1 and ¡2 of case 3.

Since the set of all games in case 3 falls into such pairs of classes, the overall e¤ect of risk aversion

of player 1 in case 3 is an increase of his expected payo¤ in equilibrium.
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The statement of proposition 1 has been shown to be true for all three cases independently

and therefore it holds of course for the whole set of 2 £ 2 games without pure equilibrium. Thus

the proof is completed.

3 Extensions

There are two obvious directions in which the result of proposition 1 could be generalized. First,

one might wonder whether the results also hold for more general distributions than the uniform

distribution. The second obvious direction is the comparison between di¤erent levels of risk

aversion, i.e. the question whether there is an optimal intermediate level of risk aversion or whether

the expected payo¤ is always increasing in the degree of risk aversion.

Consider the second question …rst; it seems of particular interest if one wants to use the results

in evolutionary models for the explanation of speci…c risk preferences. Assume that U is twice

di¤erentiable. The following two propositions then provide answers to this question. They imply

that in an evolutionary model (where the unique mixed equilibria are always played and utility

functions propagate according to the payo¤s of its bearers) based on games of cases 1 and 2

the population would always tend towards consisting of players with more extreme risk aversion,

whereas it would tend towards consisting of players with …nite levels of risk aversion if only games

of case 3 were played. Over the whole class of 2 £ 2 games without pure equilibrium the e¤ect of

increasing risk aversion is not clear since the propositions only give rough estimates for the gains

and losses due to increasing risk aversion in the di¤erent cases, so they do not allow aggregation

over all cases. Since the class of games studied is rather special in the …rst place, however, it is

not much more restrictive to consider the subcases separately. The simulation results in Huck et

al. (1999) suggest that the overall e¤ect of increasing risk aversion is positive.

Proposition 7 In cases 1 and 2 the expected payo¤ is increasing in the degree of risk aversion.

Hence if only games of these types were played, the most risk averse players would be best o¤.

Proof. The proof is a straightforward extension of the proof of proposition 1 for cases 1 and

2. An equivalent for Lemma 2 can be proved by the same argument. In cases 1 and 2 the risk

involved in a choice of T is larger than the risk involved in a choice of B. Hence if a player 1 of
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type A is more risk averse than a player 1 of type B, to be indi¤erent type A will require a higher

compensation, i.e. a higher expected payo¤ for T than type B. Now as in the proof of Lemma 2,

this implies that p will be larger if player 1 is of type A (i.e. more risk averse) than if he is of

type B. That the expected payo¤ is increasing in p for every single game in case 1 is unrelated to

the degree of risk aversion and hence it is settled that the expected payo¤ in any single game of

case 1 increases with the degree of risk aversion. Lemma 3 does not depend on the degree of risk

aversion either and thus over all games in case 2 an increase in p increases the expected payo¤ to

player 1. Hence player 1’s expected payo¤ over the whole class of games of case 2 increases in the

degree of risk aversion.

Proposition 8 In case 3, if player 1’s Arrow-Pratt coe¢cient of absolute risk aversion rA(x) =

¡U 00(x)
U 0(x) tends towards in…nity, his expected payo¤ gain compared to risk neutrality tends towards

0, whereas it is larger than some positive value γ for at least some intermediate values of rA. This

implies that in case 3 the expected payo¤s for some positive but …nite levels of risk aversion exceed

those for extreme levels of risk aversion by a positive value.

Proof. The proof is based on Lemmas 10 and 11 below. Lemma 10 shows that the expected

payo¤ gain that risk aversion yields over risk neutrality can be made arbitrarily small (i.e. smaller

than any ε > 0) by choosing rA(x) su¢ciently large. On the other hand Lemma 11 shows that

for absolute risk aversion 1
3 < rA(x) < 5

3 for all x, the gain in expected payo¤s is larger than some

γ > 0. Thus by choosing ε = γ
2 the expected payo¤ in the latter case exceeds that in case of a

degree of risk aversion as implied by Lemma 10 by more than γ
2 > 0. Note, however, that even

excessive degrees of risk aversion still yield a higher expected payo¤ than risk neutrality.

In order to prove Lemma 10, the following lemma is needed.

Lemma 9 For all ε > 0 and η > 0 there exists K(ε, η) such that if rA(x) > K(ε, η) for all x,

then for all games of case 3 with b ¡ c > η, the probability that player 2 chooses L will be p < ε
2 .

Proof. Let rA(x) = ¡U 00(x)
U 0(x) > K = K(ε, η) for all x. This yields

U 00(x) < ¡KU 0(x). (4)
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Let e = b+c
2 . With (4) and U 00 < 0 then follows

U 0(b) = U 0(e) +
Z b

e
U 00(x)dx < U 0(e) ¡ K

Z b

e
U 0(x)dx < U 0(e) ¡ K(b ¡ e)U 0(b)

) (1 + K(b ¡ e))U 0(b) < U 0(e).

The probability that player 2 chooses L is given by

p =
U(d) ¡ U(b)

U(d) ¡ U(b) + U(a) ¡ U(c)
=

R d
b U 0(x)dx

R d
b U 0(x)dx +

R a
c U 0(x)dx

<
(d ¡ b)U 0(b)R d

b U 0(x)dx +
R a
c U 0(x)dx

<
(d ¡ b)U 0(b)R a

c U 0(x)dx
<

(d ¡ b)U 0(b)R e
c U 0(x)dx

<
(d ¡ b)U 0(b)
(e ¡ c)U 0(e)

<
(d ¡ b)
(e ¡ c)

1
K(b ¡ e)

=
4(d ¡ b)

K(b ¡ c)2
<

4
Kη2

=
ε
2

for K = K(ε, η) =
8

εη2
.

Lemma 10 For ε > 0 there exists K(ε) such that if player 1’s coe¢cient of absolute risk aversion

rA(x) > K(ε) for all x, then his expected payo¤ gain compared to risk neutrality over all games of

case 3 is < ε.

Proof. Consider games of classes ¡1 and ¡2 as de…ned in the proof for case 3 in section 2. First

choose η(ε) su¢ciently small such that the games with b1 ¡ c1 < η(ε) have a mass of at most ε
2 .

For games of classes ¡1 and ¡2 obviously p1 ¡ p2 · 1 and the maximal gain for player 1 if player

2 chooses L instead of R is also 1. Hence (by application of Lemmas 4 and 5) the maximal total

gain in expected payo¤s of a risk averse compared to a risk neutral player 1 over these games

(with b1 ¡ c1 < η(ε)) is ε
2 .

Now consider games with b2 ¡ c2 > b1 ¡ c1 > η(ε) > 0. By Lemma 9, for all these games

if rA(x) > K(ε, η(ε)) for all x, then p will be smaller than ε
2 . Lemma 6 shows for any speci…c

utility function that p1 > p2. This yields for any utility function with rA(x) > K(ε, η(ε)) that

0 < p1 ¡ p2 < ε
2 . The payo¤ gain from a choice of L by player 2 compared to R is at most 1 and

hence the total gain over classes ¡1,¡2 of games with b2 ¡ c2 > b1 ¡ c1 > η(ε) in expected payo¤s

is < ε
2 . Hence if rA(x) > K(ε) = K(ε, η(ε)), then the total gain over all games of case 3 compared

to risk neutrality is < ε
2 + ε

2 = ε.
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Lemma 11 If for player 1’s coe¢cient of absolute risk aversion 1
3 < rA(x) < 5

3 for all x, then

his total expected payo¤ over all games of case 3 exceeds that for risk neutrality by at least γ with

γ > 2¡28.

Proof. The values 1
3 and 5

3 are somewhat arbitrary and are chosen for convenience. They only

serve to show that for some intermediate level of risk aversion the gains are above some positive

lower bound.

Lemma 6 implies that for any pair of classes of subgames there is a gain from risk aversion

over risk neutrality. Hence to …nd a lower bound for the total gains from a speci…c degree of risk

aversion one can limit the attention to some of these classes in order to simplify the proof. (Note

that this leaves out a large part of the gains. In addition, most of the inequalities below are very

rough. Hence the actual gains over all games in case 3 will be much larger than γ.)

Consider pairs of classes of games with a > 7
8 ,

1
4 < d1 < 3

8 , c < 1
16 < b1 < 1

8 . This implies (with

b2 = c+a¡d1) b2¡d1 > 1
8 and d1¡b1 > 1

8 . With 1
3 < rA(x) < 5

3 , ¡5
3U

0(x) < U 00(x) < ¡1
3U

0(x)

one obtains the following two auxiliary inequalities

U 0(b2) = U 0(d1) +
Z b2

d1
U 00(x)dx < U 0(d1) ¡ 1

3

Z b2

d1
U 0(x)dx

< U 0(d1) ¡ 1
3
(b2 ¡ d1)U 0(b2)

, U 0(b2) <
U 0(d1)

1 + 1
3(b2 ¡ d1)

) U 0(d1) ¡ U 0(b2) >
1
3(b2 ¡ d1)

1 + 1
3(b2 ¡ d1)

U 0(d1) (5)

and

U 0(d1) = U 0(c) +
Z d1

c
U 00(x)dx > U 0(c) ¡ 5

3

Z d1

c
U 0(x)dx

> U 0(c) ¡ 5
3
(d1 ¡ c)U 0(c) =

µ
1 ¡ 5

3
(d1 ¡ c)

¶
U 0(c). (6)

Now the di¤erence between the probabilities for L in classes ¡1 and ¡2 is
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p1 ¡ p2 =
U(d1) ¡ U(b1)

U(d1) ¡ U(b1) + U(a) ¡ U(c)
¡ U(d2) ¡ U(b2)

U(d2) ¡ U(b2) + U(a) ¡ U(c)

=
(U(a) ¡ U(c)) (U(d1) ¡ U(b1) ¡ U(d2) + U(b2))

(U(d1) ¡ U(b1) + U(a) ¡ U(c)) (U(d2) ¡ U(b2) + U(a) ¡ U(c))

>
(U(a) ¡ U(c)) (U(d1) ¡ U(b1) ¡ U(d2) + U(b2))

4 (U(a) ¡ U(c))2

=
U(d1) ¡ U(b1) ¡ U(d2) + U(b2)

4 (U(a) ¡ U(c))
=

R d1
b1 U 0(x)dx ¡

R d2
b2 U 0(x)dx

4
R a
c U 0(x)dx

>
(d1 ¡ b1)(U 0(d1) ¡ U 0(b2))

4
R a
c U 0(x)dx

=
1
4

(d1 ¡ b1)(U 0(d1) ¡ U 0(b2))R d1
c U 0(x)dx +

R a
d1

U 0(x)dx

>
1
4

(d1 ¡ b1)(U 0(d1) ¡ U 0(b2))
(d1 ¡ c)U 0(c) + (a ¡ d1)U 0(d1)

(5)
>

1
4

(d1 ¡ b1)
1
3 (b2¡d1)

1+ 1
3 (b2¡d1)

U 0(d1)

(d1 ¡ c)U 0(c) + (a ¡ d1)U 0(d1)

(6)
>

1
4

(d1 ¡ b1)
1
3 (b2¡d1)

1+1
3 (b2¡d1)

U 0(d1)

(d1¡c)
1¡ 5

3 (d1¡c)
U 0(d1) + (a ¡ d1)U 0(d1)

>
1
4

1
8

1
25
2

= 5¡22¡6.

If player 2 chooses L instead of R in class ¡1, player 1’s expected payo¤ increases by

1
2

(a ¡ b1 ¡ (d1 ¡ c)) >
1
2

µ
3
4

¡ 3
8

¶
=

3
16

.

By Lemmas 4 and 5 the expected payo¤ would be equal to that in the case of risk neutrality

if player 2 chose L with probability p2 in both classes ¡1 and ¡2. Thus since player 2 chooses

p1 in class ¡1, player 1’s expected payo¤ over any pair of classes ¡1 and ¡2 exceeds that of risk

neutrality by at least

(p1 ¡ p2)
3
16

> 5¡22¡6
3
16

= 5¡22¡103.

The total mass of the classes of games considered is at least
¡1
8

¢2 ¡ 1
16

¢2 = 2¡14. Hence the total

gain in expected payo¤s over all games of case 3 by absolute risk aversion of 1
3 < rA(x) < 5

3 for

all x compared to risk neutrality is (much) larger than γ := 5¡22¡243 > 2¡28.

Concerning the question whether the results also hold if the payo¤s are drawn from more

general distributions than the uniform distribution, it is straightforward that in cases 1 and 2 the

results do not depend on the distribution as long as all payo¤s are drawn from the same distrib-

ution. Since Lemma 2 holds for any single game it is completely independent of the distribution.
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Lemma 3 only uses the assumption that the payo¤s are all drawn from the same distribution

without making any requirements on its form. The results do not, however, extend to case 3.

This is because in case 3 there are classes of games where risk aversion increases the expected

payo¤ as well as those where it decreases expected payo¤s. The way to get around this problem in

the proof of proposition 1 for case 3 is to pair up classes which yield a total positive e¤ect of risk

aversion. This, however, requires that in each pair of games both games have the same density.

For this to hold for all classes requires a uniform distribution. Alternative ways to aggregate

games do not yield the desired results either. For example if the distribution is symmetric around
1
2 one can pair a game in ¡1 with another game that is obtained by re‡ecting the payo¤s around
1
2 , i.e. a2 = 1 ¡ c1, b2 = 1 ¡ d1, c2 = 1 ¡ a1, d2 = 1 ¡ b1. The equivalence of Lemmas 4 and 5 then

hold, but that of Lemma 6 does not.

Summing up these two generalizations yields that if only games of cases 1 and 2 are considered,

then more risk averse players are always in advantage to less risk averse players, independent of

the distribution that the payo¤s are drawn from. If, however, games of case 3 are considered, then

while there is an overall positive e¤ect of risk aversion compared to risk neutrality in the case of

a uniform distribution, this result does not easily extend to more general distributions and more

risk aversion leads to lower expected payo¤s if it exceeds some …nite level.

There are further possible extensions of the present analysis. Extending the strategy space

is likely to yield qualitatively similar results, but will require the consideration of many more

subcases, including di¤erentiating between mixed and completely mixed equilibria. The same

holds for multi-player games. Given the weak results of the simulations in Huck et al. (1999)

eliminating the restriction to games without pure equilibria will, even if the result still holds,

probably render the proof much less straightforward. This is in particular the case since in the

class of games studied by Strobel (2001) risk taking is favored.
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