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Abstract
Reduced-rank restrictions can add useful parsimony to coefficient matrices of
multivariate models, but their use is limited by the daunting complexity of the methods
and their  theory. The present work takes the easy road, focusing on unifying themes and
simplified methods. For Gaussian and non-Gaussian (GLM, GAM, etc.) multivariate
models, the present work gives a unified, explicit theory for the general asymptotic
(normal) distribution of maximum likelihood estimators (MLE). MLE can be complex
and computationally difficult, but we show a strong asymptotic equivalence between
MLE and a relatively simple minimum (Mahalanobis) distance estimator. The latter
method yields particularly simple tests of rank, and we describe its asymptotic behavior
in detail. We also examine the method's performance in simulation and via analytical and
empirical examples.

 Kdo se bojí parametrizace omezení hodnosti v modelech s více proměnnými?
Teorie a příklad

Abstrakt
Omezení hodnosti matice mohou podstatně zjednodu�it matici koeficientů v modelech
s více promennými, ale jejich pou�ití limituje slo�itost metod a jejich teorie. Ná� článek
se vydává jednodu��í cestou se zaměřením na metodologické zobecnění a zároveň
zjednodu�ení. Pro gaussovské a negaussovské modely více proměnných (v anglické
literatuře označované GLM, GAM, atd.) poskytujeme jednotnou, explicitní teorii pro
obecné asymptotické (normální) rozdělení estimátorů metody maximální věrohodnosti
(EMMV). EMMV mů�e mít slo�itou formu a nemusí být snadné jej spočítat, nicméně
tuto překá�ku ře�íme pomocí důkazu asymptotické ekvivalence mezi EMMV a relativně
jednoduchým (Mahalanobis) estimátorem nejmen�í vzdálenosti. Tato metoda je vhodná
obzvlá�tě pro testy omezení hodnosti matice a my popí�eme detailně její asymptotické
vlastnosti v tomto kontextu. Navíc zahrneme studii metody v simulacích a analytických i
empirických příkladech.



1. INTRODUCTION

Reduced-rank restrictions can add useful parsimony to coefficient matrices of mul-

tivariate models, but their use is limited by the daunting complexity of the methods

and their theory. In particular, reduced rank regression (Anderson 1951, Izenman 1975),

which has been extensively researched (see below), is not yet included in most statistics

textbooks, even at the graduate level, nor in most statistical software packages. A vicious

cycle exists: a dearth of technical training and support leads to the limited number of

applications attempted so far.

In an attempt to make reduced-rank methods more accessible to the average multi-

variate modeller, the present work takes the easy road, focusing on unifying themes and

simplified methods. For Gaussian and non-Gaussian (generalized linear models - GLM,

generalized additive models - GAM, etc.) types of multivariate models, the present work

gives a unified, explicit theory for the general asymptotic (normal) distribution of max-

imum likelihood estimators (mle), and also studies some simpler methods. To set the

context of this theory, for a random variable y and a k-vector x let F (y|x) be the con-

ditional (cumulative) distribution function of y given x. Let φ(x) = Φ(F (·|x)) describe

some feature of the conditional distribution of y, via a function Φ that maps conditional

distribution functions to functions of x. For each of g groups i = 1, 2, ..., g, with g ≤ k,

let Fi(y|x) be the conditional distribution of y in that group, and let φi(x) = Φ(Fi(·|x)).

Let the general feature φ be linear in parameters θ:

φi(x) = θ′ix, (1)

for i = 1, 2, ..., g, with coefficient k-vectors θi subject to reduced rank, meaning that the
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g×k coefficient matrix Θ = (θ1, ..., θg)
′ has rank r < g. For simplicity we suppose further

that the user has arranged the data so that the first r rows of Θ form a basis for all rows.

The model then has three important ingredients:

(i) a dependent variable for each of two or more groups,

(ii) linear linkage between the dependent variable and independent variables,

(iii) limitations on links’ degrees of freedom, due to a rank condition.

In the Gaussian multivariate linear model, the feature φ(x) is the conditional mean

µ(x) =
∫

y dF (y|x). Here reduced-rank (iii) can be applied ad hoc, as an interesting

model simplification, or can be motivated by some scientific theory. For example, the

literature in financial economics (see Reinsel and Velu 1998, Ch. 8, for an excellent

summary) takes the latter approach when modelling asset returns. Related to reduced-

rank regression models are factor analysis, growth curve models, MIMIC models, error-in-

variables models, latent variables models, index models, common trends, error correction

models and co-integration models, and for relevant discussion and applications we refer

the reader to Anderson (1951, 1976, 1984a, 1991, 1999a,b), Anderson and Rubin (1956),

Zellner (1970), Jöreskog and Goldberger (1975), Gleser (1981), Villegas (1982), Engle

and Granger (1987), Fuller (1980,1987), Stock and Watson (1988), Ahn and Reinsel

(1988,1990), van der Leeden (1990), Banks (1994), Schmidli (1995), Ahn (1997), and

Reinsel and Velu (1998).

Reduced-rank parameterization has also been developed for some non-Gaussian mul-

tivariate models. These include the multinomial logit model (Anderson 1984), the vector

generalized linear model (GLM) and vector generalized additive model (GAM), see Yee

and Hastie (2000) for a recent discussion. Typically, in these models the matrix Θ pa-
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rameterizes a feature φ which is not itself a (conditional) mean, but is related to the

mean of some (transformed) variable.

For many non-Gaussian multivariate models, reduced-rank methods are rarely (if

ever) attempted. For example, as a measure of the center or location of a continuous

distribution, an alternative to the conditional mean is the conditional median m(x) =

F−1
(

1
2
|x)

, this being the median of y conditional on x, for which P (y ≤ m(x)|x) = 1
2
.

When data have an asymmetric (hence non-Gaussian) distribution, the median typi-

cally differs from the mean. Linear models of conditional median date back at least to

Boscovich (1757), and Gonin and Money (1989) provide a review of theory and some

applications of such models (see also Huber 1981 for linear models of other location mea-

sures, and Koenker 2002 for models of conditional quantiles including the median). Any

time that reduced-rank MANOVA or multivariate linear regression models are employed,

one can imagine trying out also reduced-rank median-based models (without normality

assumptions). However, we know of no such attempt, perhaps due to the task’s perceived

difficulty. As we show, there is a reasonably easy way to approach such problems.

As another example, consider multivariate models of variability or scale, via the

conditional standard deviation:

σ(x) =

√∫
(y − µ(x))2 dF (y|x).

A linear model of variability is then σi(x) = θ′ix, i = 1, 2, ..., g, in which case the coeffi-

cient vectors θi describe a conditional variability/heteroskedasticity feature, rather than

a conditional location feature. We are not aware of linear models of conditional standard

deviation in the literature, but the example in Section 2 derives such a model from a form

of stochastic dominance. The linear model of σ(x) has the ingredients (i), (ii) and (iii),

3



with a linear form (ii) of conditional standard deviation, and reduced-rank (iii) applied

to the matrix Θ of conditional variability coefficients. We can similarly apply reduced-

rank structure to linear models of conditional variance σ2(x) (these being common in

economics/econometrics) and other features of the conditional distribution.

Maximum likelihood is the usual method for multivariate analysis, and we provide a

unified theory for the general asymptotic (normal) distribution of maximum likelihood

estimators (mle). However, maximum likelihood is often not the simplest method, and

it may be computationally burdensome. By comparison, a relatively simple “minimum

(Mahalanobis) distance” estimator, or “maximum approximate density” (MAD) estima-

tor, is typically available. This sort of estimator has, under standard conditions, an

asymptotic normal distribution which is fairly easy to establish (via the Delta Method)

in broad form. We go further, describing the MAD estimator’s behavior in more detail.

We show a strong asymptotic equivalence between the MAD and mle estimators, these

being perfectly correlated as sample size approaches infinity. To further interpret the

MAD estimator, we note that it maximizes a particular (asymptotically valid) density

function associated with a plug-in unrestricted (full-rank) estimator Θ̂. The MAD ap-

proach is intuitive and quite general, and we describe further similarities between it and

the maximum likelihood estimator.

We assume that the plug-in Θ̂ is asymptotically normal, and this covers many cases

of interest but not time series models with unit root dynamics, where Θ̂ can be asymp-

totically non-normal (see for example Johansen 1988, 1991, Ahn and Reinsel 1990 and

Reinsel and Velu 1998, Ch. 5). The proposed MAD estimator takes as input an available

full-rank estimator and plug-in variance-covariance estimate, and is consistent with an

asymptotically normal distribution that we describe in detail (via explicit formulas for
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the relevant variance/covariance matrix). The estimator does not require a fully-specified

probability model, yet mimics some special behavior of maximum likelihood estimators

(mle). Also, the proposed estimator is identical, asymptotically, to constrained mle when

Θ̂ is (unconstrained) mle. An advantage of the proposed method is its practicality,

whereas constrained mle (for reduced-rank multivariate conditional variability, etc.) may

be hard to compute (when available).

We also propose a rank test, based on the a ratio of asymptotic densities (RAD)

for constrained and unconstrained estimators. This testing principle is intuitive and

general. Since we assume that the unconstrained estimator Θ̂ is asymptotically normal,

we report here test theory for this case only. Our approach tests whether the first r rows

of coefficient matrix Θ span the rest, and hence is consistent against two (overlapping)

alternatives: (a) that Θ has rank > r, and (b) that the first r rows are not a basis of

Θ. Hence, our test allows us to check for misspecification of the posited row basis. By

comparison, other general rank tests (including Gill and Lewbel 1992, Cragg and Donald

1996, 1997, Robin and Smith 2000) are consistent against (a) but not (b), because they

test for the existence of reduced-rank regardless of which rows form a basis. Further, we

show that our test is equivalent, asymptotically, to a likelihood ratio test (which may be

hard to compute) when the plug-in Θ̂ is (unconstrained) mle.

The remainder of the paper is organized as follows. Section 2 gives an economic exam-

ple, Section 3 defines the proposed estimator and test, and Section 4 provides asymptotic

theory for the methods. Section 5 continues the economic example, Section 6 studies

performance through an analytical example and simulation, Section 7 concludes, and an

Appendix contains mathematical proofs.
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2. EXAMPLE

We give a simple example that illustrates reduced-rank multivariate linear modelling

of both conditional location (via mean and median) and conditional variability. The

model, which posits a form of stochastic dominance between groups, has ingredients (i),

(ii) and (iii), all of which are applied to conditional mean, median and standard deviation.

Let there be g = 2 groups of workers, the first group male and the second female. For

a random sample of workers, with n1 males and n2 females, let yij be the income of a

worker in the i-th gender group and j-th education level, with j = 1 indicating at most

a high school degree, and j = 2 indicating some college education.

We use data from the Integrated Public Use Micro-data Samples database (available

at www.ipums.umn.edu, see Ruggles and Sobek 1997 for description). This data is a

random sample, from the year 1990, of U.S. persons 16 years and older who earn a

positive amount of income and have at most a bachelor’s degree. The sample has features

typically observed in income data (see Becker 1993, Borjas 2000 and Blau and Kahn

2000), including higher incomes for the more educated workers, and higher incomes for

men. From Table 1, both income and log-income show high kurtosis (fat tails), and there

is positive skew for income and negative skew for log-income, in each gender × education

pairing.

The data in Table 1 are consistent with the idea that women in 1990 tended to earn

about half of what men did, in each education category. Formally,

y2j
d
= c y1j, j = 1, 2, (2)

where
d
= means equality in distribution, and c a constant close to 1/2. This charac-

terization, which (with x > 0) is a form of (first-order) stochastic dominance, allows a
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general income distribution for men at each education level, and restricts only the relative

performance of women versus men.

To put this form of stochastic dominance in the context of the model (1), define 2×1

vectors xi = (xi1, xi2), with dummy variables xij, j = 1, 2, indicating education level

(low and high). Then, with y1 and y2 the incomes of males and females (irrespective

of education level), stochastic dominance (2) implies reduced-rank multivariate linear

models of conditional location, when specified in terms of either mean or median, and

also implies a model of conditional variability, specified in terms of standard deviation.

That is:

µi(yi|xi) = θ′µi xi, mi(yi|xi) = θ′mi xi, σi(yi|xi) = θ′σi xi,

for some 2× 1 vectors θµi, θmi, θσi, i = 1, 2, which yield 2× 2 matrices Θµ, Θm, Θσ having

typical rows θ′µi, θ′mi, θ′σi, respectively. More generally, (2) implies a model (1) of condi-

tional quantiles (including the median), and of higher-order (standardized) moments. In

all of these models, linearity (ii) is not a strong assumption since xi consists of dummy

variables, and reduced-rank (iii) is implied by the stochastic dominance condition.

3. DEFINITIONS

We define here the proposed estimator and test, and later explore their properties and

performance. When reduced-rank holds there is a factorization of the coefficient matrix:

Θ = AB, (3)

with A and B being g × r and r × k full-rank matrices, respectively. With Ir the r × r

identity matrix, we specify:
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A =




Ir

C


 , (4)

with C some (g− r)× r matrix which we will call the multiplier matrix. The first r rows

of Θ then form a basis, spanning the remaining rows, and we partition Θ as:

Θ =




Θ1

Θ2


 , (5)

with Θ1 the ‘basis’ sub-matrix consisting of the first r rows of Θ, and Θ2 consisting of

the last g − r rows. Then, under (4), for the factorization Θ = AB we have:

Θ1 = B, (6)

Θ2 = CΘ1. (7)

Let S∗ be the set of g × k matrices whose first r rows are linearly independent and span

the remaining rows. The reduced-rank form of interest is then the hypothesis

H0: Θ ∈ S∗.

To introduce the proposed methods, let φ = vec Θ′ and φ̂ = vec Θ̂′ (with full-rank

plug-in Θ̂), each gk × 1 vectors, and let f∗(ζ; µ, Σ) be a known family of probability

density functions for gk × 1 vectors ζ, with density parametrized by its gk × 1 mean

vector µ and gk × gk variance-covariance matrix Σ. Suppose that:

Ω−1/2(φ̂− φ)
d→ f∗(·; 0, I),
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for some gk × gk invertible variance-covariance matrix Ω which depends on sample size,

with each element Ωij → 0 in large samples, and where Ω−1/2 = (Ω1/2)−1 with Cholesky

root Ω1/2: Ω1/2(Ω1/2)′ = Ω. We define fφ̂(ζ; φ, Ω) = f∗(ζ; φ, Ω) as the asymptotic density

function of φ̂. Let φ̃ maximize the asymptotic density value fφ̂(φ̂; z, Ω̂) over z = vec M ′

such that M lies in the set S∗, where Ω̂ is a plug-in (invertible) estimator of Ω, for which

we assume that Ω̂−1Ω → I (in probability). We then call φ̃ a maximum asymptotic

density (mad) estimator, and call Θ̃ = ÃB̃ the mad estimator of Θ, such that vec Θ̃′ = φ̃,

with component estimators Ã = [Ir, C̃
′]′ and B̃.

To test H0 we introduce a ratio of asymptotic densities (rad) test statistic:

W = −2

(
ln

(
fφ̂(φ̂; φ̃, Ω̂)

fφ̂(φ̂; φ̂, Ω̂)

))
,

which is based on the ratio fφ̂(φ̂; φ̃, Ω̂)/fφ̂(φ̂; φ̂, Ω̂) of restricted (via H0) and unrestricted

(asymptotic) density values.

In the remainder of this paper (Part I of a two-part project), we suppose that Θ̂ is

asymptotically normal:

Ω−1/2 vec
(
Θ̂′ −Θ′

)
→ N(0, I). (8)

Let Mpq be the set of p× q matrices, for some given p and q, and define the Mahalanobis

metric:

d(a, b; ∆) = [ vec′(a′ − b′) ∆ vec( a′ − b′) ]1/2,

for each a and b in Mpq and some symmetric positive definite pq × pq matrix ∆. Then,

under (8), the mad estimator Θ̃ minimizes d(Θ̂,M ; Ω̂−1) over M ∈ S∗, and hence is a
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“minimum distance” estimator, while rad test statistic W = d2(Θ̂, Θ̃; Ω̂−1). The decision

rule for the proposed test is to reject H0 if W exceeds the relevant critical value from the

chi square distribution with (g − r)(k − r) degrees of freedom, in which case the test is

a “minimum chi square” test (alternatively called a “generalized Wald” test by Szroeter

1983).

When suitably applied to multivariate models of conditional mean (as in MANOVA,

regression, and errors-in-variables models), the proposed methods reduce to well-known

maximum likelihood estimators (mle) and likelihood ratio (lr) tests. For example, in the

context of Gaussian reduced-rank regression, if Θ̂ is the unconstrained mle estimator,

and Ω̂ is its maximum likelihood variance/covariance estimate, then Θ̃ is a reduced-rank

mle and W is a likelihood ratio test statistic for H0, as can be seen by applying Magnus

and Neudecker (1999, Theorem 3) to Reinsel and Velu (1998, line 14 of p. 31). Similarly,

W can take the form of a Rao/score/Lagrange multiplier test when Ω̂ is obtained from

constrained maximum likelihood. For models of conditional mean in which the errors

can be non-normally distributed, the proposed estimator is not necessarily maximum

likelihood but can take the form of “generalized least squares” (as in Fuller 1980 and

Villegas 1982).

4. THEORY

To proceed, for each reduced-rank matrix M ∈ S∗ write M = LQ for some g × r

matrix L = [Ir, N
′]′, r × k matrix Q, and (g − r) × r matrix N . Then we can view

fφ̂(φ̂; z, Ω̂) as a function of vectors v1 = vec Q′ and v2 = vecN ′, via z = vec ([Ir, N
′]′Q)′.

Let v = (v′1, v
′
2)
′ and ψ = ((vec B′)′, (vec C ′)′)′, each an (rk+(g−r)r)×1 vector. Recalling

the connection between fφ̂ and distance d(Θ̂,M ; Ω̂−1), it is useful to write:
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d2(Θ̂, LQ; Ω̂−1) = vec′(Θ̂′ −Q′L′) Ω̂−1 vec(Θ̂′ −Q′L′).

Because Θ̃ minimizes d2(Θ̂, LQ; Ω̂−1) over matrices M of the form LQ, we can deduce

(readily) that the rows of Θ̃ are each linear combinations of the rows of Θ̂, as are the rows

of the ‘basis’ matrix estimator B̃, and the proposed estimation problem is equivalent to

finding an optimal linearly dependent set of vectors each of which are linear combinations

of Θ̂ rows. There can occasionally be multiple mad estimators Θ̃, as when g = 2 = k,

Θ̂ = I2 and Ω̂ = I4, where there are two (readily obtained) candidates for Θ̃ and for

ψ̃ = ((vec B̃′)′, (vec C̃ ′)′)′, namely: ψ̃ = (1/2, 1/2, 1)′, Θ̃ = ((1/2, 1/2)′, (1/2, 1/2)′); and

ψ̃ = (1, 0, 0)′, Θ̃ = ((1, 0)′, (0, 0)′), each of which yield d(Θ̂, Θ̃; Ω̂−1) = 1. More generally,

when the matrix Θ̂ is such that the first r rows are orthogonal to the last g−r rows, there

can be multiple mad estimators Θ̃, but this form of Θ̂ must fail to hold (with probability

approaching 1 in large samples, under (8)) if Θ satisfies H0.

Noting that vec Q′L′ = (L⊗Ik) vec Q′, using the chain rule we have the 1×rk vector

of partial derivatives of ln(fφ̂) with respect to v1:

∂ ln(fφ̂)

∂v1

=
∂ ln(fφ̂)

∂z

∂z

∂v1

= vec′(Θ̂′ −Q′L′) Ω̂−1 (L⊗ Ik). (9)

Likewise, using the fact that vec Q′L′ = (Ig ⊗Q′) vec L′ we get the 1× (g − r)r vector:

∂ ln(fφ̂)

∂v2

=
∂ ln(fφ̂)

∂z

∂z

∂v2

= vec′(Θ̂′ −Q′L′) Ω̂−1 (Ig ⊗Q′)R, (10)

where R is the gr × (g − r)r matrix:

R =




0r2,(g−r)r

I(g−r)r


 =

∂ vec L′

∂ v2

,
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with 0r2,(g−r)r the r2 × (g − r)r matrix with all entries = 0.

Setting derivatives equal to zero, we obtain partial solutions for B̃ and C̃:

vec B̃′ =
[
(Ã⊗ Ik)

′ Ω̂−1 (Ã⊗ Ik)
]−1

(Ã⊗ Ik) Ω̂−1 vec Θ̂′, (11)

vec C̃ ′ =
[
((Ig ⊗ B̃′)R)′ Ω̂−1 (Ig ⊗ B̃′)R

]−1

((Ig ⊗ B̃′)R)′ Ω̂−1 vec Θ̂′. (12)

The (rk + (g − r)r) × (rk + (g − r)r) Hessian matrix of second partial derivatives for

ln(fφ̂) with respect to v is:

H =




∂
∂v

(L⊗ Ik)
′ Ω̂−1 vec(Θ̂′ −Q′L′)

∂
∂v

R′(Ig ⊗Q′)′ Ω̂−1 vec(Θ̂′ −Q′L′)


 =




H11 H12

H ′
12 H22


,

with H11 the upper-left rk × rk sub-matrix of H, H12 the upper-right rk × (g − r)r

sub-matrix, etc. Evaluating Q and N at B̃ and C̃ respectively, yields the result H̃ for H.

Using the above-mentioned formulas relating vec Q′L′ to vec Q′ and vec L′, respectively,

we obtain:

H̃11 = −(Ã⊗ Ik)
′ Ω̂−1(Ã⊗ Ik), (13)

H̃22 = −R′(Ig ⊗ B̃′)′ Ω̂−1(Ig ⊗ B̃′)R. (14)

For the cross-derivative term H̃12, we repeatedly make use of the chain rule and the

fact that vec (L ⊗ Ik)
′ = vec (L′ ⊗ Ik) = (Ig ⊗ G) vec L′ where G is the k2r × r matrix

(Kkr⊗Ik)(Ir⊗vec Ik) and Kkr is the kr×kr commutation matrix (as discussed in Magnus

and Neudecker 1999, Ch.’s 3, 5), for which vec U ′ = Kkr vec U for each k × r matrix U .

The result is:
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H̃12 = Z [Ig ⊗G] R, (15)

with Z the kr × gk2r matrix:

Z = −(vec Θ̂′)′ Ω̂−1 ⊗ Ikr + (vec B̃′)′ (Ã⊗ Ik)
′Ω̂−1 ⊗ Irk + (Ã⊗ Ik)

′ Ω̂−1 ⊗ (vec B̃′)′.

Using the fact that Θ̃ = ÃB̃ is a (weakly) consistent estimator of Θ under H0 and

(8) (as is readily shown, and can be obtained from Lemma 1 in the Appendix), we get a

convenient asymptotic approximation H̃12 ≈ −(Ã⊗Ik)
′ Ω̂−1(Ig⊗B̃′)R, where for sample-

specific random matrices a and b, a ≈ b means that a = b(1 + op(1)), with op(1) a term

vanishing in probability in large samples. From this we obtain −H̃Vψ̃

p→ Irk+(g−r)r, where

Vψ̃ = [P ′Ω−1P ]−1,

with P the gk × (rk + (g − r)r) matrix:

P = (A⊗ Ik, (Ig ⊗B′)R).

Partition Vψ̃ as we did H, yielding upper-left rk × rk sub-matrix Vψ̃11, etc. in which

case (using the partitioned inverse formula) we have:

Vψ̃11 = [ (A⊗ Ik)
′Ω−1(A⊗ Ik) −

((A⊗ Ik)
′Ω−1(Ig ⊗B′)R) (R′(Ig ⊗B′)′Ω−1(Ig ⊗B′)R))

−1
((A⊗ Ik)

′Ω−1(Ig ⊗B′)R)
′
]−1,

Vψ̃22 = [ R′(Ig ⊗B′)′Ω−1(Ig ⊗B′)R −

((A⊗ Ik)
′Ω−1(Ig ⊗B′)R)

′
((A⊗ Ik)

′Ω−1(A⊗ Ik))
−1

((A⊗ Ik)
′Ω−1(Ig ⊗B′)R) ]−1.

Defining VB̃ = Vψ̃11
and VC̃ = Vψ̃22

, we have:
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Theorem 1: Under (8) and H0, ψ̃−ψ ≈ (P ′Ω−1P )−1P ′Ω−1 vec (Θ̂′−Θ′) and V
−1/2

ψ̃
(ψ̃−ψ)

converges in distribution to N(0, Irk+(g−r)r), hence:

(i) V
−1/2

B̃
vec (B̃′ −B′) d→ N(0, Irk),

(ii) V
−1/2

C̃
vec (C̃ ′ − C ′)

d→ N(0, I(g−r)r).

The asymptotic variance matrices for vec B̃′ and vec C̃ ′ coincide (asymptotically) with

−H̃11 and −H̃22, respectively, where H̃ ij is the (i, j)-th partitioned block of the inverse

H̃−1 of Hessian matrix H̃ (with partitioning as in H); hence the asymptotic theory of

mad estimators mimics classical asymptotics for maximum likelihood estimators. Wilks

(1938) exploits this sort of resemblance in his study of the likelihood ratio statistic (see

also van der Vaart 1998, p. 240). We can further this resemblance by introducing the

(rk+(g−r)r)×1 vector s̃ =
(

∂ ln(fφ̂)

∂v1
|M=Θ,

∂ ln(fφ̂)

∂v2
|M=Θ

)′
, consisting of partial derivatives

(9) and (10) evaluated at M = Θ, in which case, from Theorem 1 we conclude:

ψ̃ − ψ ≈ −H̃−1s̃,

mimicking the asymptotic behavior of maximum likelihood estimators (as described in

van der Vaart 1998, Section 5.5, for example).

It is interesting to interpret the asymptotic variance matrices VB̃ and VC̃ in light of

formulas (11) and (12). If in (11) the value of A were known we could re-define Ã = A, in

which case vec B̃′ would be a linear function of vec Θ̂′ and would have asymptotic variance

matrix [(A⊗ Ik)
′ Ω−1 (A⊗ Ik)]

−1
, but with A unknown VÃ is larger (by a positive definite

matrix) than this ‘ideal’ variance matrix. Similarly, VC̃ is larger than the ‘ideal’ variance

[((Ig ⊗B′)R)′ Ω−1 (Ig ⊗B′)R]
−1

that could be obtained for vec C̃ ′ if B were known.

With Θ̃ = ÃB̃ we obtain the asymptotic distribution of Θ̃ from that of its components:
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Theorem 2: Under (8) and H0, vec (Θ̃′ − Θ′) ≈ P (P ′Ω−1P )−1P ′Ω−1vec (Θ̂′ − Θ′),

and hence asymptotically vec (Θ̃′ − Θ′) is normal with zero mean and variance matrix

VΘ̃ = P (P ′Ω−1P )−1P ′.

To examine the proposed estimators in the context of probability models and likeli-

hood functions, consider the following general situation:

Assumption 1: Let L(x; π) be a (generalized) log-likelihood function with some a × 1

parameter vector π. Let the restricted form of the model have π = q(ν) for some b × 1

vector ν, b < a, and differentiable function q. Let π† and π̂ be the maximum likelihood

estimators (mle’s) with and without the restriction, respectively, and let ν† be the mle

estimator of ν. Suppose that π̂− π ≈ −(ELππ′)
−1L′π and ν†− ν ≈ −(q′νELππ′qν)

−1q′νL′π,

where Lπ is the 1 × a vector of partial derivatives of L with respect to π1, ..., πa, and

Lππ′ is the a× a second derivative matrix of L, each evaluated at π, and qν is the a× b

derivative matrix of q, evaluated at ν. Also, suppose that V
−1/2
π̂ (π̂ − π)

d→ N(0, Ia),

with a× a matrix Vπ̂ = (−ELππ′)
−1 converging to zero (element-wise) in large samples.

Let V̂π̂ be an invertible estimate of Vπ̂ such that V̂ −1
π̂ Vπ̂ converges (in probability) to the

identity matrix, and with fπ̂(ξ; π, Vπ̂) the normal density function with mean vector π

and variance matrix Vπ̂ let ν̃ be the ‘mad’ estimator of ν, maximizing the asymptotic

density fπ̂(π̂; q(u), V̂π̂) over u, and let π̃ = q(ν̃).

The conditions on the likelihood imposed by Assumption 1 are standard (see for example

van der Vaart 1998, Ch. 5.5).

Theorem 3: Under Assumption 1, mad estimators are asymptotically equivalent to

maximum likelihood estimators of the restricted model: ν̃ ≈ ν† and π̃ ≈ π†.
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To apply Theorem 3 to our case of reduced-rank matrix estimators, let ν be partitioned

ν = (ν ′1, ν
′
2)
′, with ν1 = ψ, and let π be partitioned as π = (π′1, π

′
2)
′, with π1 = φ. Also,

let q(ν) = (t(ν1)
′, ν ′2)

′, with t: φ = t(ψ). The mad estimator of π contains components π̃1

and π̃2, and because the specification π1 = t(ν1) and π2 = ν2 allows π1 and ν2 (likewise

π2 and ν1) to freely vary with respect to each other, π̃1 minimizes d(π̂1, t(u); V̂ −1
π1

) over

u, with Vπ̂1 the upper-left sub-matrix (corresponding to π1) of Vπ̂. Setting V̂π1 = Ω̂, we

have d(π̂1, π̃1; V̂
−1
π1

) = d(Θ̂, Θ̃; Ω̂−1), hence π̃1 is of the form φ̃, and ν̃1 is of the form ψ̃.

To compute the mad reduced-rank matrix estimator Θ̃ and its component matrices

B̃ and C̃, various numerical routines are possible. A simple method is to start with the

estimator B̂ = Θ̂1 of B, plug this into (11) to get an estimate of C, then plug this C

estimate into (12) to get an updated estimate of B, etc., until convergence. Another

approach is the Newton-Raphson sequence: ψ̃(j+1) = ψ̃(j)−H−1(ψ̃(j)) s(ψ̃(j)), j = 1, 2, ...,

given some initial value ψ̃(1), with H as above and s the matrix of first partial derivatives

given by (9) and (10) (forming the upper and lower rows of s, respectively), each evaluated

at ψ̃(j). Note that we do not here prove covergence of the computational routines, but

recommend the first of these routines (which we have used exensively, with real data

and in simulations, with no problems). An easy-to-use computer program (in Microsoft

Windows format), for implementing the first routine, is available from the first author

upon request.

Regarding the proposed rad test of reduced-rank we have:

Theorem 4: Under (8) and H0 the rad test statistic W converges in distribution to chi

square, with (g − r)(k − r) degrees of freedom.

Further, writing Vφ̂ = Ω we have:
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W ≈ (φ̂− φ̃)′V −1

φ̂
(φ̂− φ̃),

under (8) and H0. This behavior of W imitates that of the likelihood ratio test, as we

now explain. In the setting described in Assumption 1, define the likelihood ratio test

statistic LR = −2(L(0) − L(1)), with L(1) and L(0) the unconstrained and constrained

log-likelihoods, respectively.

Assumption 2: LR ≈ (π̂ − π†)′V −1
π̂ (π̂ − π†).

This condition on LR is standard (as in van der Vaart 1998, Ch. 16).

Theorem 5: Under H0 and Assumptions 1 and 2, the rad test statistic W is (asymp-

totically) equivalent to the likelihood ratio test statistic LR.

We can extend the test equivalence in Theorem 5 to local alternatives. For this, generalize

Assumption 1 so that V
−1/2
π̂ (π̂ − π0)

d→ N(δ, Ia), for some π0 = q(ν0), some ν0, and a

vector δ. Also, in the Appendix setup for Lemmas 1 - 3 let V −1/2(µ̂ − µ0)
d→ N(ε, Im),

with µ0 satisfying a hypothesized restriction on parameter vector µ, and a vector ε. Local

alternatives arise when vectors δ and ε have non-zero elements. To cover this situation

we can readily extend Theorem 3 under Assumption 2 and generalized Assumption 1,

and from this find that the (local) power of the rad test and likelihood ratio test are the

same, given by the non-central chi square distribution χ2
(g−r)(k−r)(δ

′δ).

5. EXAMPLE, CONTINUED

Applying the proposed methods to the income data, let the full-rank estimator Θ̂ con-

sist of sample means, medians or standard deviations. For the estimated variance matrix
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Ω̂ of Θ̂, let all off-diagonal elements equal zero (since each two-way cell is sampled inde-

pendently of the others) and, for diagonal elements Ω̂mm (with m = 1, ..., 4 corresponding

to (i, j) = (1, 1), (1, 2), (2, 1), (2, 2)), (I) in the case of means let Ω̂mm = s2
ij/nij, where s2

ij

and nij are the sample variance and sample size for i-th sex × j-th education level, (II)

for medians let Ω̂mm = (y(n−kij+1)−y(kij))
2/(4z2

0.995), with kij = (nij +1)/2−z0.995

√
nij/4,

z0.995 the 0.995 quantile of the standard normal distribution, and y(1), ..., y(nij) the (i, j)-th

cell’s data in ascending order (see Wilcox 2003, p. 134), (III) for standard deviations let

Ω̂mm = (4nijs
2
ij)
−1((nij − 1)−1

∑nij

k=1

(
yijk − ȳij)

4 − (s2
ij)

2
)
.

Table 2 reports point estimates of parameters, and their standard errors, as well as

tests of reduced-rank in the 2 × 2 matrix Θ. To obtain standard errors for the mad

estimator, we use the (asymptotically valid) variance matrix Vψ̃ with unknown Ω, A, B

replaced by Ω̂, Ã, B̃. With male and female income coefficients (by education level) given

by the 1 × 2 row vectors Θ1 and Θ2, the reduced-rank (r = 1) restriction is Θ2 = c Θ1,

and the proposed estimates of c are near 1/2 for each coefficient concept (mean, median,

etc.), consistent with Table 1 and our earlier discussion. The proposed rank tests fail to

reject H0, with p-values ≥ 0.20 in each case.

In the case where coefficients are mean values we can interpret Θ as a matrix of

regression coefficients (with regressors zij being dummy variables indicating the (i, j)-th

classification), and here the mad estimates coincide with Gaussian maximum likelihood

(reduced-rank) estimates.

To interpret the results, in terms of our earlier discussion (Section 2) the proposed

methods suggest that in 1990 men’s income strongly stochastically dominated that of

women. Specifically, at each education level men’s income appears to dominate that

of women, in terms of central tendency (measured by mean or median) and variability

18



(measured by standard deviation). To check whether this “gender gap” has narrowed

since 1990, the proposed methods could be applied to recent Census data.

6. PERFORMANCE

Let g = 2, k = 2 and r = 1, in which case A = [1, c]′, B = (b1, b2) and Θ =

[1, c]′(b1, b2), for some scalars b1, b2, c. Also, let each of the four (i, j) classifications have

a sample of the same size n. To describe estimator performance we first obtain some

asymptotic formulas, then report on some finite-sample simulations.

For asymptotics we allow the coefficient concept θ to be generic, and set Ω = σ2I4/n,

for some σ2 > 0 and sample size n = 25, 50, 100, 200. To analyze the proposed estimator

ψ̃ of ψ = (b1, b2, c)
′, we require the matrix P (defined earlier) which here takes the form:

P =




1 0 0

0 1 0

c 0 b1

0 c b2




.

Applying Theorem 1 yields:




b̃1 − b1

b̃2 − b2

c̃− c



≈ Mψ̃




Θ̂11 −Θ11

Θ̂12 −Θ12

Θ̂21 −Θ21

Θ̂22 −Θ22




,

where Mψ̃ = (P ′Ω−1P )−1P ′Ω−1 is the 3× 4 matrix:
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Mψ̃ =
1

(1 + c2)(b2
1 + b2

2)




b2
1(1 + c2) + b2

2 b1b2c
2 b2

2c −b1b2c

b1b2c
2 b2

1 + b2
2(1 + c2) −b1b2c b2

1c

−b1c(1 + c2) −b2c(1 + c2) b1(1 + c2) b2(1 + c2)




.

This ties the performance of ψ̃ explicitly to that of Θ̂. Further, we find by direct com-

putation the Hessian matrix H̃ and the probability limit:

plim n−1H̃ = − 1

σ2




1 + c2 0 cb1

0 1 + c2 cb2

cb1 cb2 b2
1 + b2

2




,

and using the fact that −H̃VΦ̃ → I3 in probability, we compute Vψ̃ = −n−1(plim n−1H̃)−1

to obtain:

Vψ̃ =
σ2

n(b2
1 + b2

2)




b2
1 + b2

2/(1 + c2) b1b2c
2/(1 + c2) −cb1

b1b2c
2/(1 + c2) b2

1/(1 + c2) + b2
2 −cb2

−cb1 −cb2 1 + c2




,

which agrees with the formula Vψ̃ = (P ′Ω−1P )−1 given in Section 4. With ψ̃ = (b̃1, b̃2, c̃)
′,

the asymptotic variance of b̃1 and b̃2 is falling in |c|, and the asymptotic variance of c̃ is

falling in |b1| and |b2|.

For reduced-rank estimation of Θ we have the proposed mad estimator Θ̃:

Θ̃ =




b̃1 b̃2

c̃ b̃1 c̃ b̃2


 ,

and applying Theorem 2 yields:
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Θ̃11 −Θ11

Θ̃12 −Θ12

Θ̃21 −Θ21

Θ̃22 −Θ22




≈ Mφ̃




Θ̂11 −Θ11

Θ̂12 −Θ12

Θ̂21 −Θ21

Θ̂22 −Θ22




,

where Mφ̃ = P (P ′Ω−1P )−1P ′Ω−1 is the 4× 4 matrix:

Mφ̃ = 1
(1+c2)(b21+b22)

×



b2
1(1 + c2) + b2

2 b1b2c
2 b2

2c −b1b2c

b1b2c
2 b2

1 + b2
2(1 + c2) −b1b2c b2

1c

b2
2c −b1b2c b2

1(1 + c2) + b2
2c

2 b1b2

−b1b2c b2
1c b1b2 b2

1c
2 + b2

2(1 + c2)




.

This ties Θ̃’s performance explicitly to that of Θ̂. Further, evaluating the asymptotic

variance of Θ̃ (as given in Theorem 2) yields:

VΘ̃ = Mφ̃

σ2

n
,

in which case the elements of the mad restricted estimator Θ̃ have smaller asymptotic

variance than those of the unrestricted estimator (which has asymptotic variance matrix

= σ2I4/n), to an extent that depends on the values of b and c.

Turning to finite-sample estimator performance, Table 3 reports the simulated sample

mean and standard deviation of the proposed reduced-rank estimators of c, b1, b2, with Ω̂

given by the methods used in Section 5. The simulated data for the i-th group, i = 1, 2,

is a pseudo-sample of sample size n, mutually independent realizations distributed as:
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y1j = µ1j +
σ1j u1j

1.42
, y2j = c µ1j + c

σ1j u2j

1.42
, j = 1, 2,

with uij a Student’s t random variable (degrees of freedom = 4, matching income kurtosis,

Table 1), where (µ11, µ12) = (20871.82, 47767.38), (σ11, σ12) = (18711.83, 43395.45), c =

0.545 and the constant 1.42 is such that the variables u1j/1.42 and u2j/1.42 have unit

variance. In this simulation model Θ has rank r = 1, and when the coefficient concept

is mean or median we have Θ1 = (µ11, µ12) and Θ2 = c Θ1, while for the standard

deviation coefficient concept we have Θ1 = (σ11, σ12) and Θ2 = c Θ1. The values of c, µ

and σ, and the general setup, are such that the model matches reasonably the empirical

results (Table 1) for our economic data, except that here we keep sample size fixed across

categories (i, j).

With 10,000 simulation rounds, Table 3 reports on the performance of the proposed

mad estimators and rad test of reduced rank. Reported are the (simulation pseudo-

sample) mean and standard deviation of the estimators, and the rejection rate (under

H0) for the rad test at the 5% significance level. We notice some upward bias in the c

estimator, for each coefficient concept, diminishing in larger samples. By comparison,

consider the estimator of (the matrix) C minimizing d(Θ̂2, [Ir, N
′]′Θ̂1; V̂2|1), over (g−r)×r

matrices N , where V2|1 is the variance-covariance matrix of vec Θ̂′
2 conditional on vec Θ̂′

1,

and V̂2|1 is a consistent estimate of V2|1. In simulation we have found versions of this C

estimator to be near-perfectly correlated with the mad estimator C̃ in larger samples,

and to frequently have less bias but greater variance than C̃. For the proposed test,

rejection rates are close to the nominal 5% rate, with some under-rejection (in the case

of the median coefficient concept) that diminishes in larger samples.

An analogous simulation (omitted, for brevity) with standard normal uij yields similar
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results, as does a non-parametric bootstrap method where (I) n values y1j, for each

j = 1, 2, are drawn at random (with replacement) from the available sample, creating the

‘male’ pseudo-sample, then (II) another n values of y1j are drawn, then each multiplied

by c, creating a ‘female’ pseudo-sample.

7. CONCLUSION

The present work proposes reduced-rank estimators, and a test, of ‘coefficient’ ma-

trices, with coefficients for multivariate linear models of features (such as mean, median,

standard deviation) of conditional distributions. We demonstrate the feasibility of the

methods, and give a first-order asymptotic theory for the proposed estimator. It would

be interesting to attempt some second-order analysis of bias and variance, and to con-

duct a simulation study of the power of the proposed test. Also, while the proposed

reduced-rank coefficients estimator and rank test rely on an asymptotic normal distri-

bution for the unrestricted coefficients estimator, we are currently pursuing the case of

non-normal distributions (as arise in unit root time series), including error correction

models of conditional medians.
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APPENDIX

For an m × 1 vector µ let µ = q(λ) for an (unknown, unique) l × 1 vector λ, with

l < m, and a (known) continuously differentiable function q. Let qλ(v) = ∂q(v)/∂v

be the m × l matrix of partial derivatives, and suppose that qλ(λ) is full-rank. Let µ̂

be an estimator for which V −1/2(µ̂ − µ)
d→ N(0, Im) in large samples, where V is the

variance/covariance matrix of µ̂, with (the elements of) V → 0 in large samples. Let λ̄

minimize (µ̂ − q(v))′V̂ −1(µ̂ − q(v)) over v, with V̂ a (positive definite) estimator of V

such that V̂ −1V
p→ Im, and let µ̄ = q(λ̄).

Lemma 1: λ̄− λ ≈ ((q′λ(λ)V −1qλ(λ))−1q′λ(λ)V −1(µ̂− µ), and hence:

((q′λ(λ)V −1qλ(λ))−1)−1/2(λ̄− λ)
d→ N(0, Im),

in large samples.

Proof: The (weak) consistency of λ̄ follows from that of µ̂, and for minimizer λ̄ the first-

order condition is (µ̂− q(λ̄))′V̂ −1qλ(λ̄) = 0. Further, since q is continuously differentiable

and qλ(λ) has full rank, with the approximation q(λ̄) ≈ q(λ)+qλ(λ)(λ̄−λ) the first order

condition yields λ̄ − λ ≈ ((q′λ(λ)V −1qλ(λ))−1q′λ(λ)V −1(µ̂ − µ). Since µ̂ ≈ N(µ, V ), the

result follows.

Proof of Theorem 1: We apply Lemma 1 with µ = φ = vec Θ′, λ = ψ, φ = q(λ) given by

the restriction H0 : Θ = (Ir, C
′)′B, and V = Ω.

We have two equivalent forms of q: φ = (A ⊗ Ik)λB and φ = (Ig ⊗ B)R λC , where

λB, λC partition λ into its first rk and last (g − r)r elements. To compute qλ(λ) we

proceed component-by-component, using (respectively) the two forms of q, in which case

we arrive at qλ(λ) = (A⊗ Ik, (Iq ⊗B)R). Lemma 1 then yields the desired result.
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Lemma 2: q(λ̄) ≈ q(λ)+ qλ(λ)(λ̄−λ), and hence, asymptotically, µ̄ is normal with mean

vector µ and variance matrix qλ(q
′
λ(λ)V −1qλ(λ))−1q′λ.

Proof: With µ̄ = q(λ̄) we obtain µ̄ ≈ q(λ) + qλ(λ)(λ̄ − λ), so the result follows from

Lemma 1.

Proof of Theorem 2: It suffices to apply Lemma 2, with the same notational conventions

as in the proof of Theorem 1, and with the fact that Vψ̃ = (P ′Ω−1P )−1.

Proof of Theorem 3: Under Assumption 1, π̂ − π ≈ −(ELππ′)
−1L′π and ν† − ν ≈

−(q′νELππ′qν)
−1q′νL′π, so with Vπ̂ = (−ELππ′)

−1 we obtain:

ν† − ν ≈ (q′νV
−1
π̂ qν)

−1q′νV
−1
π̂ (π̂ − π) .

Applying Lemma 1 with µ = π and λ = ν and λ̄ = ν̃, we get:

ν̃ − ν ≈ (q′νV
−1
π̂ qν)

−1q′νV
−1
π̂ (π̂ − π) ,

hence ν̃ ≈ ν†. Moreover, with π† = q(ν†), the weak consistency of π̂ (implied by the

convergence of Vπ̂ to zero element-wise) implies the weak consistency of ν† and π†, in

which case π† − π ≈ qν(ν
† − ν). Hence:

π† − π ≈ qν(q
′
νV

−1
π̂ qν)

−1q′νV
−1
π̂ (π̂ − π) .

Applying Lemma 2 with µ = π and λ = ν and λ̄ = ν̃, we conclude that π̃−π ≈ qν(ν̃−ν).

Hence π̃ ≈ π†.

Lemma 3: (µ̂− µ̄)′V −1(µ̂− µ̄)
d→ χ2

m−l in large samples.

Proof: Write µ̄−µ = q(λ̄)−q(λ). From the proof of Lemma 1, q(λ̄)−q(λ) ≈ qλ(λ)(λ̄−λ),

with λ̄ − λ ≈ ((q′λ(λ)V −1qλ(λ))−1q′λ(λ)V −1(µ̂ − µ). Hence, µ̄ − µ ≈ JV −1(µ̂ − µ), with
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J the m × m matrix J = qλ(λ)(q′λ(λ)V −1qλ(λ))−1q′λ(λ). Hence (µ̂ − µ̄)′V −1(µ̂ − µ̄)

≈ (µ̂−µ)′(Im−J)′V −1(Im−J)(µ̂−µ), and since the matrix (Im−J)′V −1(Im−J), when

multiplied by V , is an idempotent matrix of rank m− l, the result follows from the fact

that µ̂ ≈ N(µ, V ).

Proof of Theorem 4: It suffices to apply Lemma 3, with the same notational conventions

as in the proof of Theorems 1 and 2.

Proof of Theorem 5: Follows from the equivalence of rad and reduced rank estimators

(Theorem 3).
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TABLE 1. Income statistics, by Sex and Education

male female
low ed high ed low ed high ed

income n 1,556 403 1,632 306
mean 20,871.82 47,767.38 11,570.22 24,185.74
median 17,000.00 36,000.00 8,344.00 20,057.50
std dev 18,711.83 43,395.45 10,729.81 19,994.79
skewness 3.28 2.49 2.35 2.93
kurtosis 25.32 10.39 14.44 21.70

log-income skewness -1.63 -0.85 -1.38 -1.44
kurtosis 8.81 5.99 7.03 5.60

TABLE 2. Income coefficients, reduced-rank method

coefficient c b1 b2 test
concept est. s.d. est. s.d. est. s.d. stat. p

mean 0.545 0.02 21054.04 451.01 46040.11 1653.02 1.55 0.21
median 0.500 0.02 16855.69 427.46 36851.49 1440.65 1.62 0.20
st.dev. 0.547 0.04 19288.92 1106.27 41091.85 2987.49 1.67 0.20
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TABLE 3. Estimator Simulation Results

estimator

sample coefficient c b1 b2 test rej.
size concept mean s.d. mean s.d. mean s.d. rate

25 mean 0.554 0.10 20867.01 3178.92 47794.65 7342.20 0.054
median 0.553 0.10 20862.08 3089.65 47846.53 7141.72 0.026
s.d. 0.557 0.13 17119.06 3603.43 39856.26 8471.59 0.059

50 mean 0.550 0.07 20861.13 2268.24 47762.44 5193.21 0.053
median 0.550 0.07 20864.86 2145.99 47758.13 5000.90 0.036
s.d. 0.551 0.09 17610.16 2718.04 40867.94 6415.60 0.051

100 mean 0.547 0.05 20865.35 1594.68 47785.38 3628.10 0.055
median 0.546 0.05 20866.05 1519.53 47795.84 3521.67 0.044
s.d. 0.548 0.07 17937.34 2100.88 41593.80 4819.97 0.041

200 mean 0.546 0.03 20863.92 1120.12 47738.62 2636.02 0.047
median 0.546 0.03 20855.67 1067.55 47713.45 2517.72 0.045
s.d. 0.547 0.05 18143.43 1597.39 42057.02 3650.23 0.045
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