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Abstract

Koc¢enda (2001) introduced the test for nonlinear ddpeaies in time series data
based on the correlation integral. The idea oftds is to estimate the correlation
dimension by integrating over a range of proxinggrametee. However, there is an
unexplored avenue if one wants to use the testeotify nonlinear structure in non-
normal data. Using the Monte Carlo studies, we stiat non-normality leads to an
over-rejection of the null hypothesis due to twasens: First, the data are not iid, and
second, the data are non-normal. It is shown thah @ very small deviation from
normality could lead to a rejection of the null bypesis and hence a wrong
conclusion. Therefore, the bootstrap method i®dhiced and it is shown that it helps
to avoid the over-rejection problem; moreover tlosver of the test increases by a
significant amount. These findings help us to edtéme use of the test into many
other fields that deal with nonlinear data thatrasenecessarily normal, e. g. financial
economics, stock price volatility, stock markei@éncy, stock exchange, behavior of
equity indices, nonlinear dynamics in foreign exxerates, or interest rates.
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Abstrakt

Kocenda (2001) iedstavil proceduru na testovani zavislostasovych tad
nelinearnich procés Tato procedura vychazi z kor&tého integralu a jeji idea
spaiiva v odhadnuti koretami dimenze pomoci integracéeg interval parametrel
Pouzitim Monte Carlo metody wlanku poukazujeme na to, Ze nenormalita
testovanych dat vede v této procialld nadnirnému zamitani nulové hypotézy. To je
zpasobeno dyma gicinami. Za prvé, testovana data nejsou nezaviskdaomerng
roz&klena (iid), a za druhé, testovana data nejsou malmiho rozdleni. V ¢lanku
ukazujeme, Ze i velice jemna odchylka od normatityze vést k okamZzitému
zamitani nulové hypotézy, a tim k nespravnémuérzavProto pedstavujeme
bootstrap metodu, ktera eliminuje problém nadmho zamitani a zvysSuje silu testu.
Tyto zawry umoziuji aplikovat test na mnohé oblasti, kterézmg pracuji s
nenormalnimi daty, jako jsou analyzy burzovnichatrimodelovani volatility

vyménnych kurz a urokovych sazeb, nebo chovani se akciovych index



1. INTRODUCTION

The end of the 20 century witnessed a renaissance of nonlinear rirapiéh
econometrics. This huge movement in nonlinear mogelvas motivated by early
theoretical work in nonlinear estimation of a higégquency time series (see Engle
(1982) and Bollerslev (1986)) and later enormougignal studies in finance (see
Brock, Hsieh and LeBaron (1993) as reference stut@lig research of dozens of
economists in this promising field was cumulate@@®3 with a Nobel Prize for one
of the fathers of nonlinear modeling, Robert Endifar methods of analyzing
economic time series with time-varying volatility".

A large expansion of theories based on Engle'difigs in the eighties and
nineties have been supported with empirical eviddnam many fields. Many studies
from the areas of financial economics, stock pvickatility, stock market efficiency,
stock exchange, behavior of equity indices, nomlindynamics in foreign exchange
rates, and interest rates frequently brought newirgral evidence that there is a need
to model nonlinearity. In many cases, not includanigonlinear component in a model
caused vast quantitative and qualitative mistakKé®refore since the eighties, the
testing for nonlinear patterns in a time seriesabexthe norm.

As an alternative to the very popular BDS-teKbsenda (2001) introduced a test
for nonlinear dependencies in a time series basdtiecorrelation integral. The idea
of the test is to estimate the correlation dimemddy integrating over a range of
proximity parametee. Using the Monte Carlo studies, &nda and Briatka (2005)
showed that this test is very powerful over manglmear models and has an ability
to reveal much more of the hidden nonlinear depecids than other well-known
nonlinear tests.

However, there is an “unexplored avenue” if onetsdo use the Keenda's test
for the identification of nonlinear structure intdahat do not meet the normality
assumption. If this is the case, the test is bidse@rds rejecting the null hypothesis
of independently and identically distributed dasgg Ké&enda, Briatka (2005) for
some evidence). In this case, the rejection poviehe test is deformédby two
components: The first component is the natural paiéhe test to reject non-iid data.

The second one is derived from the fact that deganan-normal. In other words, the

! The BDS-test is one of the most common nonlinesis tand is exhaustively described in Section 2.2.



natural power of the test is strengthened withsaudbing effect of inappropriate non-
normality in data. The intensity of this disturbiaffect and its impact on the results
of the test depend on the extent of the data’sadievi from normality. The aim of this

paper is to measure this effect and evaluate tte aad strength of nonlinear and
non-normal processes in the rejection power ofkkb&enda’s test. This justification

fills in the gap in the methodology of the test aaltbws us to apply the testing
procedure to a broader set of non-normal data.

The paper is organized as follows: In Section @ bniefly present the concept of
nonlinearity and basic methods used for testindinearity in data; in Section 3, we
introduce normality and discuss the connection betwnormality and nonlinearity.
In Section 4, we provide Monte Carlo studies and Hootstrap testing of our
procedure; in Section 5, we comment on the resultsdiscuss possible implications

and conclude in Section 6.
2. METHODOLOGY AND LITERATURE REVIEW

The idea of testing for nonlinearities in datasaro the early eighties when Engle
(1982) was doing pioneer research in studying thlatlity of high-frequency data.
As the theory of modeling high-frequency data waswgng and becoming very
popular among econometricians due to its extensipplications (e.g. ARCH,
GARCH or NLMA models), there was a need to testrfonlinearities. One of the

largest groups of tests consists of testing proedoased on the correlation integral.
2. 1. Correlation Integral, Correlation Dimension,and The BDS-test

The tests based on the correlation integral built on the idea of a correlation
integral, a popular method of estimating the din@m®f an attractor. Formally, let
{x.} be a time series of the siZegenerated randomly according to a density function
f. Formm-dimensional vectors, called-histories, X" = (X, X1,---» Xamy ) - Then the

correlation integral at embedding dimensrots defined as
Con(€) =im C,y1 (), (2.1)

2 By deforming we mean incorrectly strengthening up.



where

Tt Tm
Cor(€)=2) > H (5 —Hx{” - X!

t=1 s=t+1

T, -1), (2.2)

is the sample correlation integral at embeddingetisionm. Here,¢ is a sufficiently

small number, T, =T -m+ 1H(2) is the Heaviside function that maps positive

argument into 1 and nonpositive into 0; and $| e distance inducted by the selected
form. Thus, the sample correlation integral measuhe fraction of pairs that lie
within the tolerance distaneefor the particular embedding dimension If Ci1(¢) is
large (close to 1), even for a very smalthen the data are correlated.

Grassberger and Procaccia (1983) showed that ¥@rnasmalle, C1(¢) grows

exponentially, i.e.C_ () =7e°, wherey is a constant, an® is so called the

correlation dimension. If the increaseGp,t(¢) concerns increasing then most data
points are near to each other, and the data alecaretlated. Therefore, the higher
the correlation dimension, the less correlatedddwa are, and the system is random
(stochastic). Formally, the correlation dimensismléfined as

~ InC_.(¢&
D =lim Ilmm—'T().
E-0T o |n£

(2.3)

The correlation integral and the correlation disien originate in Grassberger
and Procaccia (1983) and appears to be a robudtothedf detecting nonlinear
components in data.

Among many others te$fsa well-known BDS-test was invented by Brock,
Dechert, and Scheinkman (1987) as a non-paranmagibod of testing for nonlinear
patterns in a time series. Using the correlatidagral, they constructed the test and
provided its theoretical background. The null hyyasis of the test is that the data in a
time series are independently and identically digted and the alternative hypothesis
is specified very widely. The alternative hypotiseisi just opposite, i.e. that the null
hypothesis is not trdeThe test statistic, which measures the fractibthe data that
lies within a given relative (and small enough)taices for embedding dimensiom

is formally described by the formula

BDS,; (€) =T%[C,.1 () = Cir ()] 7+ (£), (2.4)

3 Other tests will be discussed in Section 2.4.



where o nt(e)is an estimate of the asymptotic standard dewiatiof

C.:(6)-C,;(&)™. The BDS statistic is asymptotically standard rarmnder the

whiteness null hypothesis and can be estima@dconsistently.

The intuition behind the BDS-statistic comes frahe fact that the sample
correlation integraCn1(¢) is an estimate of the probability that the diseabetween
two m-histories, x"andx_', should be less than If they were independent, then for
t#s the probability of joint event is equal to the guat of the individual probabilities.

Moreover, if x were also identically distributed, all of theprobabilities under the

product sign would be the same. This logic is egjent to the null hypothesis of
white noise.

In the early nineties the BDS-test turned out ¢oviddely used. Several studies
were published in order to provide strong statdtend empirical properties of the
BDS-test. Hsieh (1991) and Hsieh and LeBaron (1988)a large number of power
tests that showed the great ability of the BDS-tedletect nonlinearities in ARCH,
GARCH, NLMA, and TAR models. Later, Brock et al9@6) extended their original
framework and prepared software to be run in theTMAB and C++ environment.
Further, Barnett et al. (1997) compared the powehe BDS-test with the power of
the most common nonlinear tests in ARCH, GARCH, M ,Mind ARMA models
and found the BDS-statistic to be one of the mppt@priate. Finally, the most recent
study by Kanzler (1999) proved that the BDS-statist badly sized on small samples
and thus yields misleading conclusions. Fortunatély provided asymptotically
corrected critical values for the small sample tsrees.

Although these studies were mostly in favor of Bi2S-test, there were several
substantial difficulties with this test that appehito be very discouraging. First, to
compute the BDS-statistic, one needs to set twarpatersex ante: the embedding
dimensionm and the correlation distance (the proximity par@me. The problem is
that for various pairs of the parameters, it isslle to get qualitatively different
values of the statistic and therefore possibly @@h¢tory results. The right choice of

the parameters is widely debated in the statistitsahture but no general suggestion

* LeBaron (1994) argues that “this feature can beetikas both a cost and a benefit. On the one hand,
it can detect many types of nonlinear dependeratentight be missed by other tests. On the other
hand, a rejection using this test is not very infative.”



has been madeSecond, even though Monte Carlo simulation stugieside strong
evidence for using the BDS-test in particular tymésdistributions, there are still

many distributions the test does not fit very well.

2. 2. Kofenda's Test

To solve the problem that different parametersgetrcontradictory results, a new
test for detecting hidden nonlinear patterns iradeas proposed by Kenda (2001).

He suggested an alternative test using integraibooss the correlation integral

Yl -In(@)in(C,,(e) - In(C,.(£))
B = — v : (2.5)
3 (ine) -In2))

£

where e runs through a range of standard deviawoof the time series. This test
eliminates the arbitrary selection of the proximpgrameter and reduces the choice
of parameters to only one by integrating the catreh integral across the proximity
parametet. The null hypothesis of the test is that dataiidreand the intuition behind
this is to estimate the slope coefficient from thast squares regression of log of
sample correlation integral to the log of proximpgrametet. The regression can be
formally described as

In(C,.-(&))=a, +B,In(g)+yu,, i=1,..,n. (2.6)

Koc¢enda (2001) suggested estimating the sl@peising the integration of the
correlation integral through the range (&23.0Q0) within the formula (2.5). An
empirical comparison of this new test with the Bi2St showed that Kenda's test is
able to detect the hidden patterns with much higinecision.

Belaire-Franch (2003) considered thecKinda'’s test by using the bootstrapping
method (the random shuffle) in order to avoid astatigally biased critical valués
He recommended using two different ranges for threetation distance. However,
the new ranges were constructed only as an addiitension of the original range,

and no theoretical or practical arguments wereidem/to support the choice.

® See Brock, Hsieh and LeBaron (1993) as a referemxtieook for choice of parameters related issues.
® If data are non-normal, and one uses the tabutaitichl values, it leads to overrejection of thel
hypothesis.



Koctenda and Briatka (2005) extended ¢knda’s original framework. They
provided broad power test studies to declare trengtability of Katenda’s test in
finding nonlinear dependencies. As a result of éhesidies, two new ranges for
correlation distance, (0.50;; 1.50s) and (0.25; 2.0Q;), were offered, and new
critical values computetl.Moreover, they ran sensitivity analysis within ghe
intervals. By contracting and expanding these vt they find the optimal-range
(0.607; 1.90) that was suggested to be used as a templatendgtiovas shown that
using newe-ranges, the test can be even more powerful thanBi8-test. The
comparison with the existing results of the com#blcompetition of Barnett et al.
(1997) as well as power tests on various nonlickeda were provided, and the result
of the comparison was strongly in favor of thisusbproceduré.Finally, new user-
friendly software that is capable of running deoda’s test for all embedding

dimensions was buif?
2. 3. Other Tests for Nonlinear Dependencies

Until now, there have been dozens of diagnossitstior nonlinearity available, so
we will only mention those most used. Several asthesed the test developed by
Tsay (1986). Also, the bispectral test developedtinjch (1982) is applied to several
macro economic series in Ashley and Patterson (1889 Barnett and Hinich (1993).
The null hypothesis of this test is that the skesgrfeinction is flat, and hence, there is
a lack of third order nonlinear dependence. Nyclgtaal. (1992) proposed a
nonparametric test for positivity of the maximumalpyinov exponent, which is a
direct test for chaos. Further, White (1989htroduced a test for nonlinearity, a test
of the null hypothesis of the linearity in the meand Kaplan (1994 described a
test for nonlinearity, which is a test of the nyjpothesis of linearity of the dynamics
found in the data. These procedures are all temtssbme kind of nonlinear

dependencies; however, they are very specific.

" The results of these power tests are not in therthpmselves. They can be found in a working paper
by Ko¢enda and Briatka (2004).

8 A deeper discussion of how and when this inteivaked can be find in Section 3.

° The exact formulas of processes used in this siteljn Section 4.4.

191t is known that if the technique is easy to ustimd and to implement, and particularly if a
convenient computer program is available, thes likely to be used.

1 For further details about this test see Lee, White, Granger (1993) and Jungeilges (1996).

2 The test depends on the embedding dimemnsiand works comparing the distances between points
in anm-dimensional reconstructed space with the distabetsgeen their images.



3. NON-NORMALITY AND NONLINEARITY

3. 1. Introducing Concepts of Normality and Nonlinarity

In this paper, we distinguish between two typesiraé series — non-normal (but
still random) time series and nonlinear (and hefetermined) time series. To make it
clear for the rest of the paper, we will discuss differences between these two time
series here in more detail.

We consider the non-normal times series to beaahd drawn from statistical
distribution with well-known properties (studentstiibution, y*-distribution, beta
distribution, F-distribution, etc.). An important fact is that theure values of non-
normal time series cannot be forecasted using yases. However, because of the
known distribution, we can still compute the proitiibs that the expected value will
be from a given interval. The non-normal time sergerandom in nature, and our test
should not reject the null hypothesis of iid-ness.

Contrary to the non-normal time series, the naamtime series are meant to be
driven by some kind of deterministic process (aegoessive conditional
heteroscedasticity, nonlinear moving averages, $heiz.). Therefore, future values
of nonlinear time series are fully observable oweeobtain the formula that is behind
the nonlinear process. It means that the futureevéd known with the probability
equal to one. The nonlinear time series is noteandand hence, it is very likely that
our test will reject the null hypothesis.

The difference between non-normal and nonlingae tseries is more evident if
we incorporate Kéenda’s test. The usual testing procedure is destrib Figure 1
and could be summarized in the following way. le fire-test phase (first step), a
researcher prepares data and runs a regré$siorihe second step, the residuals are
subject to tests for normalify These residuals create the input time seriestior
test.

If the tests do not reject the normality of thadiseries (Branch A in Figure 1),
then in the third step one proceeds with computimg Katenda’'s statistics and

comparing the results with tabulated critical valué the test does not reject the null

3 We do not specify any kind of data or regressibdepends on the current research of a researcher.
The parts relevant for our research start from #oesd step. We include the first step only in otder
picture the complexity of the whole process. Inagah the origin of the data could be unknown.

14 We discuss the most used normality tests in thesetion.



hypothesis, the residuals are iid and the spetificaof the model can be used in
further analysis.

Figure 1
Process of testing time series for nonlinearities

PREPARATION
START PHASE / —>] Take dala/

Run regression

!

Get residuals

!

Run normality

tests /

Do tests reject’
normality?
YES
NO

Run standard Run Kogenda's
Kocenda's test test with boolslr?

Does the test
reject iidness?,
YES NO

Rebuild the model Model is OK Rebuild the model Model is OK

TESTING PHASE J—»

Y A

h 4
Back to Back to
PREPARATION END PREPARATION END
PHASE PHASE

The second clearest result is if the test in kinel tstep rejects the null hypothesis
of iid-ness, then the data are not independentraewn from the random distribution.
They contain some nonlinear structure, and theeefone should try to rebuild the
design of the model. After a new design is fouiha, previously mentioned analysis
should be run again from the first step.

A different kind of logic applies in the case eéts in the second step rejecting the
null hypothesis (branch B in Figure 1). It meanattbur residuals are not normal;
hence, the result of the Kenda’'s test when using a tabulated critical valsie i
obscure, and one would not be able to distinguitietiker the data are randomly

drawn from known distribution or they follow a nov@ar process.

10



In this case, we have three options. The firsioopts to run the test against
several types of one-sided hypotheses of exactiiisbn. This approach is very
straightforward, but we are forced to compute aydammount of critical values.
Moreover, in this kind of approach, the philosopfythe test is destroyed, and its
strength (to reveal much more of the hidden noalindependencies than other
nonlinear tests) is broken down.

The second option is to proceed with the bootstfae bootstrap method gives us
estimated critical values that can be easily usétl the Kaienda's test without
thoughts of normality. The problem of this approashts exceptional demand for
computational tim& that is completely impractical if one wants totteandreds of
model specifications. Anyway, the results of thpg@ach are very promising, and we
shall discuss them in more details in Section 4.2.

The third option is to use the basicdeoda’s test and use the tabulated critical
values. However, to recognize the true process,haseto consider the extent of the
deviation from normality, or in other words, onesha know how big is big enough.
This point is crucial in using the test, and wellskkame to it from a different

perspective later in Section 5.

3. 2. Survey of Tests for Normality

In Section 2.3, we described the most common testsionlinearity. In this
Section, we shall survey the basic tests for natynal

The basic testing for normality of the data isatetl to the moment statistics of a
distribution. If we expected the time series to dnaero mean (expectation of the
linear deviation) and unit variance (expectatiornthed quadratic deviation), the next
candidates for testing are skewness and kurtosi§licients'® Skewness is a measure
of the symmetricity of a distribution (expectatiai the cubic deviation), while
kurtosis is a measure of the thickness of the tdils distribution (expectation of the
quadruplicate deviation). The coefficients of skess and kurtosis are formally

defined as

!> On a slow computer, it can take up to an hountopute the Kéenda’s statistics for a single time
series using the bootstrap method.

'8 |n generally the normal distribution with non zenean or/and non unit variance is not a problem.
The procedure used in Kenda's test standardizes the time series to zeam imwad unit variance itself.

11
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o, E(X—,U)Z 312
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=M _ E(X‘ﬂ)zz, (3.2)
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whergx, }is a time series with meap and standard deviation. In practice,

coefficientst andx are estimated using the sample momeﬁz}ts:T‘lztll(xt -X)".

The normal distribution has skewness coefficientaéqo 0 and kurtosis equal to 3.

lf{x} is normally distributed and iid, then VTFfI?- N(06) and

JT(®-3) P~ N (024).

In order to test for normality very often, the Belarque test is employed. This
standard procedure tests for the joint hypothelsigwvingz = 0 andx = 3. Bera and
Jarque (1981) showed that

a2 s o2
T[% +%} TP x2. (3.3)

In other words, the test is asymptotically disitdd as chi-squared with two
degrees of freedort. Later in the paper, we shall use the skewnesskanibsis
coefficients and the Bera-Jarque statistics asbt#®c description of connection to
normality and measure of departure from normality.

Other tests for normality of the data are basedtre empirical distribution
function. The most known tests of this kind are K@mogorov-Smirnov (KS), the
Anderson-Darling (AD) and the Cramer-von Mises (Cieljts. These tests are very
often referred to as EDF tests. Because the idésstihg is the same for all cases and
the only differences are the test statistics, wallstiscuss just the Kolmogorov-
Smirnov test in more detail.

The null hypothesis of the KS-test is that theadatlows a specified distribution
(in our case the normal one); the alternative @t tthe data do not follow this

distribution. The Kolmogorov-Smirnov test statissalefined as
D = sugF,(x) = F(x)|, (3.4)
where F is the theoretical cumulative distribution of tdestribution being tested,

which must be a continuous distribution, and it mbge fully specified. The

" See also Bera and Jarque (1982) for more details.

12



hypothesis regarding the distributional form ieotgd if the test statistib), is greater
than the critical value obtained from a table.

There are several variations of these tables énliterature that use somewhat
different scaling for the KS test statistic andtical regions. These alternative
formulations should be equivalent, but it is neaeg$o ensure that the test statistic is
calculated in a way that is consistent with howdhgcal values were tabulated.

As we shall see in the next Section, testing farmmality is an important step in
finding nonlinear dependencies in a time series.uMgertook just a quick survey of
the most common normality tests. For more detditsuaitesting normality issues, we
referred to Lehman (1997).

4. MONTE CARLO STUDIES AND BOOTSTRAP

To test the impact of the non-normality vs. noadinity on the result of the test,
we compare several models with low, middle, andvyedisturbances of non-
normality in extensive Monte Carlo competition. Trhedels were selected in order to
deviate from the normality in all ways considerthg deviation from Section 3.

The general procedure of generating a time seissmmarized in the following
setup. First, samples of 10 000 time series wiff0Q observatiort& were generated
for the given process, and so-called “true” critivgalues were obtained from this
generation. Second, new 1 000 time series werergkaefrom the same process, and
these generations were used as input for the geptiocedure to get the value of the
Koc¢enda’s statistics. Third, the Kenda’'s statistics computed in the previous step
were compared with the critical values of the ndrofiatribution and also with the
“true” critical values. The differences between thesults in the very last stage of the
previous setup can be directly used as the measuhe error based on the usage of
inappropriate critical values in the test.

After having a look at the error based on usirgppropriate critical values, new
500 time series with 1 000 observations were géeerand the bootstrap method

employed to generate bootstrapping critical vafieesach time serieS. The results

'8 This study was dealing only with a time series With00 observations. A comparable study to the
same extent, but with 2 500 observations in omeisihot technically executable in the present time
due to the extensive computer time that would lezlad.
2 We will come to this issue in more detail in Sest#.5.

13



based on the bootstrapping critical values ande*traritical values are now
compared. The efficiency of the bootstrap methadigsussed.

Before presenting the results, we introduce th&icbdistribution and processes
used in our Monte Carlo study. These processesaicpdt time series drawn from
student distribution (to evaluate the impact of ioger kurtosis on results); 4 time
series drawn from?-distribution (to evaluate the impact of impropé&ewness on
results); 4 time series based on some nonlinearepses (ARCH, GARCH, NLMA,
ARMA? — to evaluate the impact of bootstrap on the tektdnd 4 time series drawn
from normal distribution with a different gauge nbn-normal contamination (to
evaluate the impact of unknown disturbances omehelts).

The data were generated using an inversive congalgenerator. The first 1 000
observations were discarded to avoid dependencytheninitial condition. The
generated data were randomly shuffled to reduce &mden non-random
dependencies in the data. The practical advantdganoinversive congruential
generator (ICG) against a linear congruential gatioer(LCG) is that ICG guarantees
the absence of a lattice structure. We have optedhe ICG for its superiority,
despite the fact that it is significantly sloweathLCG. Both generators are easy to
implement, and there is abundant literature avkslabwith the portable code,
parameters, and test results. For a concise swiélye performance of inversive
random number generators in theoretical and enapitests, as well as tables of
parameters to implement inversive generators sdlekdéek (1995). For a survey of
the latest concepts and results of random numbsgrggon, we recommend starting
with L’Ecuyer (2004).

Finally, all computations are done using the (8;809) interval for proximity
parametee. This interval was found to be the optimal rangethe Ka&enda’s test.

For more details see Kenda and Briatka (2005).

20 We know that the last process is linear; howetvemas used previously in Barnett et al. (1997),
Koc¢enda and Briatka (2004), and #&mda and Briatka (2005), and hence we hold it fogre
compactness of the study.

14



4. 1. Distributions to Consider for Simulations
4. 1. 1. Student Distribution

The student distribution is derived from the norndgstribution - it is the
distribution of the mean/standard deviation of mgke of normally distributed values
with unknown variance. It is a characteristic doiét$ high kurtosis and consequently
heavy tails. As a consequence, the data are expextee concentrated in the centre
of distribution more often than in the case of nakrmistribution. However, as we
increase degree of freedom student distributionveges to normal distribution.
Formally, the probability density function for sem’s distribution is given by the

formula
r¢
f(X) :—2_1(1+ x?)™"2, (4.1)
S

wheren is the number of freedom artls the gamma functiGh

The first four time series that were used in thenké Carlo competition are time
series randomly drawn from the student distributioth various degrees of freedom.
Different degrees of freedom mean different depagurom normality. The time
series used in the competition are drawn from tbdent distribution with 3, 9, 25,
and 36 degrees of freedom. All time series are abeed to have zero mean and unit
variance. The skewness coefficients of these tienes are close to zero, and kurtosis
coefficients are approaching 3, it is 24.91 fodstot (3); 4.33 for student (9); 3.26 for
student (25); and 3.21 for student (36).

It is obvious that the data from student distridautwith 3 degrees of freedom
deviate the most from the normal distribution, carnt to those from
student distribution with 36 degrees of freedont Hra very close to data drawn from
normal distribution.

We used these data to model the behavior of 8tartehe non-normal world that
are still independent. The results of the powetsted student distribution using

tabulated critical values in Section 4.3 could jdevthe justification for using the

[

2! The formula for the gamma functionig(a) = jta'le_tdt :
0
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tabulated critical values in the distribution witleavy tails. However, we show that
this is not the case.

4. 1. 2.y -distribution

The second set of four time series was drawn fam’-distribution. The
importance of the-distribution stems from the fact that it descriltes distribution
of the variance of a sample taken from a normaistributed population. The*
distribution is derived from the normal distributie it is the distribution of a sum of
squared normally distributed variables, and theeefbis never less than zero. It is a
typical nonsymmetrical distribution and is skewedrte right. Formally,

Xovy
f(x) :evz—xz, for x>0, (4.2)
22 r["j
2
wherev is the number of degrees of freeddiy) is the gamma function. Similarly to
the student distribution, the standardizgedistribution also converges to normal
distribution as degrees of freedom approachesiipfin

The time series used in the paper are drawn flem?distribution with 3, 8, 18,
and 48 degrees of freedom. The largest departone tihe normality shows data from
y>-distribution with 3 degrees of freedom; on theeothand, distribution with 48
degrees of freedom is often approximated by nowfsitibution. All time series are
normalized to have zero mean and unit variance. \Wese these time series to
measure the impact of skewness of a distributiorthenresults of the test. These
coefficients should be close to zero; however, they1.62 fon?(3); 1.08 fory*(8);
0.69 fory?(18); and 0.41 fog*(48).

We used the?-distribution to verify the behavior of the testtime non-normal
world but still independent. The results of the poviests ofy*distribution using
tabulated critical values in Section 4.3 show thereone can make when using the

tabulated critical values in skewed distributions.
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4. 1. 3. Nonlinear Distributions

The third pack of time series are based upon fanlinear processes. These
processes are classically used for modeling thelimearity in time series
econometrics. Moreover, these processes were pigyiaised in tests’ competition
provided by Barnett et al. (1997) and extensive grotgsts competition provided by
Koc¢enda and Briatka (2005), and therefore, we usenh thgain as a proxy. These
processes are GARCH, NLMA, ARCH, and ARMA. A mongesific description

follows:

1. A generalized autoregressive conditional hetadasticity model (GARCH) of the

form:
Yo =hu,, (4.1)
whereh, is defined byh, =1+ 0.1y?, + 0.8h_,, with hy=1andy, = O

2. A nonlinear moving average model (NLMA) of thoerh:

yt = ut + O'8ut—1ut—2 ’ (42)
3. An autoregressive conditional heteroscedastinitgel (ARCH) of the form:
2
y, = (1+ O.5yt2_l)]/ u,, (4.3)
with the value of the initial observation setygt= ; 0

4. An autoregressive moving average model (ARMAhefform:

y, =08y, + 015y, , +u, + 0.3u,_,, (4.4)
with y, =1 andy, =0.7.

These processes deviate more or less from theopily mentioned assumption
of normality. All time series generated based aséhprocesses are standardized to
have zero mean and unit variance. Their skewnes&arosis coefficients are —0.04
and 3.92 for GARCH; -0.03 and 6.02 for NLMA; 0.02da3.31 for ARCH; and 0.01
and 3.08 for the ARMA process.

From the first sign, it is clear that all processee not skewétl Moreover, their
departures in kurtosis coefficients are comparabtdose of student distribution with

a high degree of freedom. The only large deparftom the normality shows in

2 However, we do not provide any statistical teists,their skewness and kurtosis coefficient aretmuc
closer to those of Normal distribution than proesss Section 4.1.1 and 4.1.2.
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NLMA data. Its statistical properties are compagatad a student distribution with 9
degrees of freedom.

We used these nonlinear processes to verify thawer of the test in the non-
normal and dependent world. The results of the paasts of these processes provide
justification for the usage of the tabulated catigalues in this kind of distribution.
The comparison with the results based on bootsinasection 4.3 provides a

comparison of the strength of the test.

4. 2. The Bootstrap Method®

Bootstrapping is a method for estimating the samgpdistribution of an estimator
by resampling with a replacement from the origiseinple. Because of an incredible
increase of computer power, the bootstrap methad dewome very popular. For
references, especially in econometrics, see Danidsd MacKinnon (2000) or Efron
and Tibshirani (1998). Based on the original tireeies, the bootstrap method gives
us virtual populations that can be considered asrtlte data population.

To proceed with bootstraping, we first generasample of 500 time series. Every
time series contains 1 000 observations and isdbaeseone of the distributions or
processes described in Section 4.1. Having chosertime series from this sample,
the bootstrap comes into play. For this single inaljtime series, we generate 200
new time series. These 200 new time series areubed as a virtual population to
compute so called bootstrapped critical values @fekda’s test for the original time
series. Then, the bootstrapped critical valuesarployed to evaluate the Eenda’s
test on the original time series and bring a répecteject conclusion.

The bootstrap method here helps us to distingtiehpower of the test between
(1) arejection that is made due to a usage of opgr critical values, and
(2) arejection due to a nonlinear dependency endata. If the test gives different
results for the tabulated critical values and tbetstrapped ones, that would be a sign
of inappropriate usage of the tabulated criticduesa. If the test offers the same
results in both cases that would serve as a daliaek for usage of tabulated critical

values.

23 Bootstrapping alludes to a German legend aboutrBEtiinchhausen, who was able to lift himself
out of a swamp by pulling himself up by his ownrhéi later versions, he was using his own boot
straps to pull himself out of the sea, which gase to the term bootstrapping.
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Bootstrapping is time consuming, and often ita$ necessary to proceed with it
to get clear evidence of the distribution of ddtathe rest of the paper, we provide
easy guidance based on the departures from noynthéit will show us when it is
necessary to provide the bootstrap and when it avbal satisfactory to use tabulated

critical value.

4. 3. Results of the Monte Carlo studies

The Monte Carlo studies were performed to meatheesize of a Type | and a
Type Il error of the test. There are two kinds wbes that can be made in significance
testing: (1) a true null hypothesis can be incdlyerejected, and (2) a false null
hypothesis can fail to be rejected. The formerreisacalled a Type | error, and the
latter error is called a Type Il error. The sizeacofype | error is the probability that a
Type | error is made and similarly the size of @&yl error is the probability that a
Type Il error is made. To describe the basic prigeiof the test means to describe
the size of these errors.

As we mentioned before, the tests on iid setsatd avere performed to show the
size of a Type | error when using tabulated criticdues. All tests were evaluated at
a constant, 5% significance level. Results ofdfuglies for student distribution are in
Table 1.

Table 1
Empirical power of Ko¢enda's test against Student distribution using tabulated critical values
The numbers in the table represent the size of a Type | error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
student(3) 100.00%| 100.00%| 100.00%| 100.00%]| 100.00%]| 100.00%| 100.00%| 100.00%| 100.00%
student(9) 92.20% 87.60% 81.80% 71.20% 62.40% 50.60% 42.00% 35.00% 32.00%

student(25) 25.00% 21.00% 17.80% 16.00% 13.00% 9.20% 8.00% 7.40% 9.20%
student(36) 13.40% 13.20% 10.60% 9.40% 8.00% 7.60% 8.20% 6.60% 6.00%

The results clearly state that using tabulateticativalues in the case of fat-tailed
distributions leads to over-rejection of the nuipbthesis. This is evident from the
results of student distributions with 3 and 9 degref freedom, where the smallest
rejection rate is 32%, but the expected rate wasiah?. These results are far above
the expected level of rejection and prove thatt#imilated critical values are biased

towards rejecting the null hypothesis for studestrdbution.
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Because the kurtosis coefficient of student (S)rthution is 4.33 and of student
(25) and student (36) is 3.26 and 3.21 respectivedycan conclude that the tabulated
critical values should not be used for distributieith kurtosis greater than 4 and
should be used very carefully in a time series \kiihtosis close to 4. At any rate, if
the kurtosis is less than 4, we should still bengsihe tabulated critical values
carefully. We are technically not able to say tlxaot number for “safe-usage” of
tabulated critical valué§ but the results show that even the distributidth & very
small kurtosis equal to 3.26 or 3.21 (as with shiddistributions with 25 and 36
degrees of freedom) can generate a rejection eera times greater than the
accepted one at 5%.

Similarly to Table 1, the results in Table 2 shibw rejection rates (Type | error)

for they*-distribution.

Table 2
Empirical power of Koenda's test against x2 distribution using tabulated critical values
The numbers in the table represent the size of a Type | error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

chi(3) 100.00%]| 100.00%| 100.00%| 100.00%]| 100.00%]| 100.00%| 100.00%| 100.00%| 100.00%
chi(8) 100.00% 99.80% 99.40% 99.40% 98.40% 97.20% 93.00% 86.20% 82.20%
chi(18) 79.40% 72.80% 66.40% 58.20% 50.20% 39.80% 32.40% 24.20% 22.40%
chi(48) 24.00% 21.20% 17.60% 12.60% 12.00% 10.60% 9.60% 9.80% 8.60%

The results immediately illustrate that usageabltated critical values in the case
of skewed distributions leads to over-rejectiontteé null hypothesis. The usage of
improper critical values show the rejection rategwieen 8% and 100%, but the
expected rate was about 5%. The rates in the tallé¢oo high, and therefore, the
tabulated critical values are biased towards reigcthe null hypothesis for
y2-distribution.

Because the skewness coefficients (of ygedistribution) are between 0.41 and
1.62, we can realize that the tabulated criticalues should not be used for
distribution with skewness coefficient greater tfddl and should be used very
carefully if skewness is less than 0.41 in absohalee. Table 2 implies that although
the distributions with a very small skewness (ineour case, small skewness equals

0.41) can give a several times greater rejectitren it statistically should be.

%4 This is not possible because of the infinite nunteronlinear specifications of the model.
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In order to show the ability of the test to cothedistinguish between truly
random and random-like data we have performed gessaf tests also on the
nonlinear sets of processes. The results of theste are in Table 3. The numbers in

Table are now sizes of a Type Il error.

Table 3
Empirical power of Koenda's test against non-linear processes using tabulated critical values
The numbers in the table represent the size of a Type Il error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

GARCH 39.80% 26.20% 20.00% 15.40% 14.40% 15.80% 20.40% 27.60% 29.60%
NLMA 2.20% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.20%
ARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 1.40%
ARMA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

The results of the tests on the nonlinear dat& loEéerent logic than in previous
cases. In Table 1 and Table 2, the numbers représgre | error (a true null
hypothesis is incorrectly rejected). The data useztbmpute Table 3 were not iid, and
therefore, the numbers in Table 3 represent Typerdr (a false null hypothesis fails
to be rejected). We can see that the results astiyrexjual to or close to 0%, only the
GARCH process brings results between 14.4% and/@9®erefore, the results are
as we expected, and the test successfully find$ineam dependencies. However,
because of the high kurtosis (6.02) in the casth@®fNLMA process, the results of
power studies for NLMA should be considered vergely not as a rejection caused
by the nonlinear dependencies but as a rejectiosechby the high kurtosis itself (due
to a large deviation from normality). In the cadesoch a large kurtosis, usage of
Kocenda’s test with the tabulated critical values ¢psimoid information.

On the other hand, GARCH, ARCH and the ARMA preesshave skewness
coefficients very close to 0 and a kurtosis cogdfit smaller than 4. Therefore, we
can use tabulated critical values and provide tlaable decision of the character of
process. We do not go into deep details here becausimilar discussion was
provided in the study by Kenda and Briatka (2005), and our power studies of

nonlinear processes coincide with their results.
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4. 4. Results of the Bootstrap

The departure from normality due to a large kustos skewness makes tabulated
critical values of little use due to over-rejectiohthe null hypothesfs. Time series
with high kurtosis or skewness coefficient shoutd dnalyzed with Kéenda'’s test
only using the custom made (bootstrapped) critiefdes. In the previous chapter, we
compared the results of the power tests basedeotatiulated critical values with the
true critical values and found that even a smaliaten from normality could lead to
over-rejection of the null hypothesis and henca ¥arong conclusion.

This chapter answers the question whether thestrapt can be used as an
alternative method that would deal with over-regecdifficulties of the tabulated
critical values.

All power tests in this Section were evaluatedaa% significance level; the
numbers in Table 4 and 5 are the size of a Typsot® Table 6 contains the size of a
Type Il error. Results of the power studies basedhe bootstrapped critical values

for student distribution are in Table 4.

Table 4
Empirical power of Ko¢enda's test against Student distribution using the bootstrap
The numbers in the table represent the size of a Type | error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

student(3) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.60%
student(9) 0.00% 0.00% 0.00% 0.60% 0.80% 1.40% 1.20% 2.00% 3.00%
student(25) 0.00% 0.00% 0.40% 0.40% 1.00% 3.00% 3.80% 3.40% 4.60%
student(36) 0.00% 0.00% 0.80% 0.60% 1.00% 2.20% 2.80% 1.80% 4.20%

At first sight, the results of the power tests dthon the data from student
distribution using bootstrap are different thanstéhaising tabulated critical values
(Table 1). In the latter case, the values for thedent distribution with 3 and 9
degrees of freedom were far above 30%, now theltsesme close to zero, not
exceeding 3%. This directly indicates two thingseTfirst, the bootstrap method
works very well for student distribution. This meahat heavy tails cause no problem
in the Katenda’s test when using bootstrap. The second,ehidts of a power test
based on the tabulated critical values togetheh whie bootstrap imply that the
bootstrap can be used as a double check for titeriia’s test. In this case, different

5 However, a time series with large kurtosis or skess are not very common in real data. See
Koc¢enda and Briatka (2004), Section 5.5 for more tetaid evidence.
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results of the test based on bootstrapped andatsolctritical values are an attribute
of the fact that an improper testing procedure agdied to iid data.

The results of tests based on bootstrap for deavrd from y*-distribution are

shown in Table 5.

Table 5
Empirical power of Ko¢enda's test against x2 distribution using the bootstrap
The numbers in the table represent the size of a Type | error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

chi(3) 0.20% 0.20% 0.20% 0.20% 0.40% 0.40% 0.60% 0.40% 0.60%
chi(8) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 1.20% 1.00%
chi(18) 0.00% 0.00% 0.00% 0.20% 1.40% 1.20% 1.80% 2.20% 2.80%
chi(48) 0.00% 0.00% 0.40% 1.20% 2.40% 2.40% 3.00% 5.20% 4.80%

The results are very similar as in the previousiasion with the student
distributions. The high rejection implied by taliel critical values (see Table 2) was
replaced with close-to-zero (actually none) regattof bootstrapped critical values.
Moreover, the tabulated critical values providdeatiént results within themselves (it
depends on the degree of deviation from normallhy), the bootstrap results carry
constant results over all foyf-based distributions. The qualitative resultsyof
distributions coincide with the results of studdtributions as describe earlier, i. e.
the bootstrap method should be use as a suretk dhige deviation from normality
of time series is too high.

Table 6 shows the size of a Type Il error basetherbootstrap for four nonlinear

processes.

Table 6
Empirical power of Ko¢enda's test against non-linear processes using the bootstrap
The numbers in the table represent the size of a Type Il error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10

GARCH 98.60% 80.00% 55.20% 42.20% 35.60% 35.20% 41.00% 50.40% 50.20%
NLMA 11.20% 1.10% 0.00% 0.00% 0.00% 0.00% 0.00% 1.40% 0.20%
ARCH 37.00% 10.80% 7.60% 6.80% 8.60% 12.00% 18.60% 27.40% 39.80%
ARMA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

The rejection rates are a little bit smaller (thenbers in the table are bigger) than
those in Table 3; however, they are still high. Hme of a Type Il error for the
NLMA and ARMA processes stand around 0%. The sfze Dype Il error in the case
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of the ARCH process rises from 0% to 18% on averagéhe case of the GARCH

model, the average increase was 31%.

Following the previous partial results, we coneutat the bootstrap works fine
even for nonlinear processes, and the power ofetstehas changed negligibly. More
evidence will be provided in the discussion in et Section.

5. DISCUSSION, COMMENTS, AND RECOMMENDATIONS

To conclude the results of the power tests froenptevious section, we suggest
adhering to the following strategy in order to hiana time series in the correct way
and to minimize the error of rejecting the truel ilypothesis.

Initially, perform the normality test for the tinseries. Now, the basic rules could
be summarized in two points:

(1) If the skewness coefficient of a time sergefiabsolute value greater than 0.5
or kurtosis greater than 4.0, we have to use thetsbap method to compute
asymptotic critical values for Kenda's test. The decision about the nonlinear
behavior of the time series should be derived ftioenresults of the bootstrap.

(2) If the skewness coefficient is in absoluteuesl lower than 0.5 and kurtosis
lower than 4.0, we can continue with the standamtieidda’s test without the need of
bootstrap. The decision about the nonlinear behawiothe time series could be
inferred from the results.

Several final thoughts and recommendations follow.

First, the results presented in this paper weraptded using the (0.60 1.90)
interval for proximity parameter. We also run a very similar Monte Carlo study for
different intervals, but the results are not maieridifferent and are available upon
request.

Second, in approaching the normal distribution, fauend that the results of the
standard and the bootstrap test match|#0|5 andk<4. Therefore, this is the point
that separates all time series into two groupshénfirst group, there are time series
that can be verified for nonlinear structure witle tstandard procedure. Time series
from the second group have to be examined witlbtdwodstrap method.

Third, following the basic implications of this ger, we can now run the testing

procedure on much more extensive sets of data.udecaf the bootstrap procedure,
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we do not require the normality properties of tiagad However, if the deviation from
normality is too larg€, we should be again careful in applying the testnewith

bootstrapped critical values.

Another important feature of the test is descrilmeBigure 2. It is the comparison
between the properties of the test when using atanmethodology (tabulated critical

values) and new methodology (based on the boojstrap

Figure 2
Comaprison of Type | and Type Il errors of the test for using tabulated critical values and the bootstrap
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The Figure shows a comparison of sizes of Typad &ype Il errors between
standard methodology (left panel) and the bootstnethod (right panel). In the left
panel there is a very low size of Type Il error,iehh means that the standard
methodology is very powerful in finding nonlinegg in a time series that are
nonlinear in nature. This is the main finding ire thaper by K&enda and Briatka
(2005). Yet, the power of the test suffers frona@é Type | error, which means that
many random time series could be incorrectly carsd to be nonlinear.

The situation in the right panel is a little biffdrent. When using the bootstrap,
the size of a Type | error is very low. It meanattthe probability of rejecting a true
null hypothesis is very low. Further, the power thé test is still high enough
(comparable to standard methodology) to reveal dnddependencies in a nonlinear
time series. This could be considered as the niadliniy of the paper.

Generally, to find the balance between the powénetest and the possible errors

of the tests is a very hard task. We measured tieonatives for concepts of balance

% We do not measure the exact values here becapsadtice there is no need to consider such a
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and as the best solution, we suggest to evaludte dmmcepts and make a decision
based upon the results from both the standard eotstoap method.

6. CONCLUSION

The basic idea of this paper is to identify twpaate elements that constitute the
rejection power of the Keenda’s test. The first element is nonlinear. Ide&sived
from the fact that the test is designed to find lim@@ar dependencies in data. The
second element is non-normal, and it is derivednftbe fact that the test assumes
normal distribution of input data. Both elements @intly summed into the whole
rejection power of the K@nda’s test. The main reason why one should disshg
between these two powers is to allow the testimgguiure to be applied to a broader
set of non-normal data.

Therefore, this paper builds on &mda (2001) and Kenda and Briatka (2005)
and sheds light on the properties of the test endase of non-normally distributed
data.

First, the bootstrap method is introduced, amslshown that by using this method
and the optimal interval suggested byc¢Knda and Briatka (2005), the power of the
test increases significantly for the data that dblaok normally distributed although
they still may be iid. Using Monte Carlo studies found that for a time series with
the coefficient of skewness coefficient greatemtla5 in absolute value and the
coefficient of kurtosis greater than 4, bootstrappetical values have to be employed
for the Kaenda'’s test. Otherwise, the results could be biagedrds rejecting the
null hypothesis of iid-ness.

Second, the results of power tests on severaladtd with different noises (from
weak to strong) are provided, and the robustnegheotest to not-Gaussian data is
evaluated. It is found that when using bootstrap,dize of a Type | error is very low,
and hence, the probability of rejecting a true myijpothesis is also low. Hopefully,
the power of the test remains still high enough.

Finally, to answer the question from the title tbfs paper — How big is big
enough? — we would say that every time series {#fi0.5 ork>4 is big enough. In

our concept, it means that deviation from normaditguch a time series is so big that

pathological case. However, to our knowledge, &wgd deviated time series should hajsl| ork>5.
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it will influence the result of the Kenda’s test in a way that the test statistic wall b
biased toward rejecting the null hypothesis. Ineotlwords, we should use the
bootstrap methodology to test this time serieqtorlinearities.

These findings help us to extend the area of usiagest into many other fields
that deal with nonlinear data that are not necédgs®rmal, e. g. financial economics,
stock price volatility, stock market efficiency,osk exchange, behavior of equity

indices, nonlinear dynamics in foreign exchangesabr interest rates.
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