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Abstract 
 

Kočenda (2001) introduced the test for nonlinear dependencies in time series data 
based on the correlation integral. The idea of the test is to estimate the correlation 
dimension by integrating over a range of proximity parameter ε. However, there is an 
unexplored avenue if one wants to use the test to identify nonlinear structure in non-
normal data. Using the Monte Carlo studies, we show that non-normality leads to an 
over-rejection of the null hypothesis due to two reasons: First, the data are not iid, and 
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normality could lead to a rejection of the null hypothesis and hence a wrong 
conclusion. Therefore, the bootstrap method is introduced and it is shown that it helps 
to avoid the over-rejection problem; moreover the power of the test increases by a 
significant amount. These findings help us to extend the use of the test into many 
other fields that deal with nonlinear data that are not necessarily normal, e. g. financial 
economics, stock price volatility, stock market efficiency, stock exchange, behavior of 
equity indices, nonlinear dynamics in foreign exchange rates, or interest rates. 
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Abstrakt 
 

Kočenda (2001) představil proceduru na testování závislosti časových řad 

nelineárních procesů. Tato procedura vychází z korelačního integrálu a její idea 

spočívá v odhadnutí korelační dimenze pomocí integrace přes interval parametru ε. 

Použitím Monte Carlo metody v článku poukazujeme na to, že nenormalita 

testovaných dat vede v této proceduře k nadměrnému zamítání nulové hypotézy. To je 

způsobeno dvěma příčinami. Za prvé, testovaná data nejsou nezávislá a rovnoměrně 

rozdělená (iid), a za druhé, testovaná data nejsou z normálního rozdělení. V článku 

ukazujeme, že i velice jemná odchylka od normality může vést k okamžitému 

zamítání nulové hypotézy, a tím k nesprávnému závěru. Proto představujeme 

bootstrap metodu, která eliminuje problém nadměrného zamítání a zvyšuje sílu testu. 

Tyto závěry umožňují aplikovat test na mnohé oblasti, které běžně pracují s 

nenormálními daty, jako jsou analýzy burzovních trhů, modelování volatility 

výměnných kurzů a úrokových sazeb, nebo chování se akciových indexů. 
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1. INTRODUCTION 

 

 The end of the 20th century witnessed a renaissance of nonlinear modeling in 

econometrics. This huge movement in nonlinear modeling was motivated by early 

theoretical work in nonlinear estimation of a high-frequency time series (see Engle 

(1982) and Bollerslev (1986)) and later enormous empirical studies in finance (see 

Brock, Hsieh and LeBaron (1993) as reference study). The research of dozens of 

economists in this promising field was cumulated in 2003 with a Nobel Prize for one 

of the fathers of nonlinear modeling, Robert Engle: "for methods of analyzing 

economic time series with time-varying volatility". 

 A large expansion of theories based on Engle’s findings in the eighties and 

nineties have been supported with empirical evidence from many fields. Many studies 

from the areas of financial economics, stock price volatility, stock market efficiency, 

stock exchange, behavior of equity indices, nonlinear dynamics in foreign exchange 

rates, and interest rates frequently brought new empirical evidence that there is a need 

to model nonlinearity. In many cases, not including a nonlinear component in a model 

caused vast quantitative and qualitative mistakes. Therefore since the eighties, the 

testing for nonlinear patterns in a time series became the norm. 

 As an alternative to the very popular BDS-test1, Kočenda (2001) introduced a test 

for nonlinear dependencies in a time series based on the correlation integral. The idea 

of the test is to estimate the correlation dimension by integrating over a range of 

proximity parameter ε. Using the Monte Carlo studies, Kočenda and Briatka (2005) 

showed that this test is very powerful over many nonlinear models and has an ability 

to reveal much more of the hidden nonlinear dependencies than other well-known 

nonlinear tests. 

 However, there is an “unexplored avenue” if one wants to use the Kočenda’s test 

for the identification of nonlinear structure in data that do not meet the normality 

assumption. If this is the case, the test is biased towards rejecting the null hypothesis 

of independently and identically distributed data (see Kočenda, Briatka (2005) for 

some evidence). In this case, the rejection power of the test is deformed2 by two 

components: The first component is the natural power of the test to reject non-iid data. 

The second one is derived from the fact that data are non-normal. In other words, the 

                                                 
1 The BDS-test is one of the most common nonlinear tests and is exhaustively described in Section 2.2. 
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natural power of the test is strengthened with a disturbing effect of inappropriate non-

normality in data. The intensity of this disturbing effect and its impact on the results 

of the test depend on the extent of the data’s deviation from normality. The aim of this 

paper is to measure this effect and evaluate the ratio and strength of nonlinear and 

non-normal processes in the rejection power of the Kočenda’s test. This justification 

fills in the gap in the methodology of the test and allows us to apply the testing 

procedure to a broader set of non-normal data. 

 The paper is organized as follows: In Section 2, we briefly present the concept of 

nonlinearity and basic methods used for testing nonlinearity in data; in Section 3, we 

introduce normality and discuss the connection between normality and nonlinearity. 

In Section 4, we provide Monte Carlo studies and the bootstrap testing of our 

procedure; in Section 5, we comment on the results and discuss possible implications 

and conclude in Section 6.  

 

2. METHODOLOGY AND LITERATURE REVIEW  

 

 The idea of testing for nonlinearities in data arose in the early eighties when Engle 

(1982) was doing pioneer research in studying the volatility of high-frequency data. 

As the theory of modeling high-frequency data was growing and becoming very 

popular among econometricians due to its extensive applications (e.g. ARCH, 

GARCH or NLMA models), there was a need to test for nonlinearities. One of the 

largest groups of tests consists of testing procedures based on the correlation integral. 

 

2. 1. Correlation Integral, Correlation Dimension, and The BDS-test 

 

 The tests based on the correlation integral are built on the idea of a correlation 

integral, a popular method of estimating the dimension of an attractor. Formally, let 

}{ tx be a time series of the size T generated randomly according to a density function 

f. Form m-dimensional vectors, called m-histories, ),,,( 11 −++= mttt
m
t xxxx K . Then the 

correlation integral at embedding dimension m is defined as 

 )(lim)( , εε Tm
T

m CC
∞→

= , (2.1) 

                                                                                                                                            
2 By deforming we mean incorrectly strengthening up. 
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is the sample correlation integral at embedding dimension m. Here, ε is a sufficiently 

small number, 1+−= mTTm ; H(z) is the Heaviside function that maps positive 

argument into 1 and nonpositive into 0; and ||.|| is the distance inducted by the selected 

form. Thus, the sample correlation integral measures the fraction of pairs that lie 

within the tolerance distance ε for the particular embedding dimension m. If Cm,T(ε) is 

large (close to 1), even for a very small ε, then the data are correlated. 

 Grassberger and Procaccia (1983) showed that for a very small ε, Cm,T(ε) grows 

exponentially, i.e. D
Tm eC ηε =)(, , where η is a constant, and D is so called the 

correlation dimension. If the increase in Cm,T(ε) concerns increasing ε, then most data 

points are near to each other, and the data are well correlated. Therefore, the higher 

the correlation dimension, the less correlated the data are, and the system is random 

(stochastic). Formally, the correlation dimension is defined as 

 
ε

ε
ε ln

)(ln
limlim ,

0

Tm

T

C
D

∞→→
= . (2.3) 

 The correlation integral and the correlation dimension originate in Grassberger 

and Procaccia (1983) and appears to be a robust method of detecting nonlinear 

components in data. 

 Among many others tests3, a well-known BDS-test was invented by Brock, 

Dechert, and Scheinkman (1987) as a non-parametric method of testing for nonlinear 

patterns in a time series. Using the correlation integral, they constructed the test and 

provided its theoretical background. The null hypothesis of the test is that the data in a 

time series are independently and identically distributed and the alternative hypothesis 

is specified very widely. The alternative hypothesis is just opposite, i.e. that the null 

hypothesis is not true4. The test statistic, which measures the fraction of the data that 

lies within a given relative (and small enough) distance ε for embedding dimension m 

is formally described by the formula 

 [ ] )(/)()()(BDS ,,1,
2
1

εσεεε Tm
m

TTmm,T CCT −= , (2.4) 

                                                 
3 Other tests will be discussed in Section 2.4. 
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where σ m,T(ε) is an estimate of the asymptotic standard deviation of 

m
TTm CC )()( ,1, εε − . The BDS statistic is asymptotically standard normal under the 

whiteness null hypothesis and can be estimated n -consistently. 

 The intuition behind the BDS-statistic comes from the fact that the sample 

correlation integral Cm,T(ε) is an estimate of the probability that the distance between 

two m-histories, m
tx and m

sx , should be less than ε. If they were independent, then for 

t≠s the probability of joint event is equal to the product of the individual probabilities. 

Moreover, if m
tx  were also identically distributed, all of the m probabilities under the 

product sign would be the same. This logic is equivalent to the null hypothesis of 

white noise. 

 In the early nineties the BDS-test turned out to be widely used. Several studies 

were published in order to provide strong statistical and empirical properties of the 

BDS-test. Hsieh (1991) and Hsieh and LeBaron (1993) ran a large number of power 

tests that showed the great ability of the BDS-test to detect nonlinearities in ARCH, 

GARCH, NLMA, and TAR models. Later, Brock et al. (1996) extended their original 

framework and prepared software to be run in the MATLAB and C++ environment. 

Further, Barnett et al. (1997) compared the power of the BDS-test with the power of 

the most common nonlinear tests in ARCH, GARCH, NLMA, and ARMA models 

and found the BDS-statistic to be one of the most appropriate. Finally, the most recent 

study by Kanzler (1999) proved that the BDS-statistic is badly sized on small samples 

and thus yields misleading conclusions. Fortunately, he provided asymptotically 

corrected critical values for the small sample time series. 

 Although these studies were mostly in favor of the BDS-test, there were several 

substantial difficulties with this test that appeared to be very discouraging. First, to 

compute the BDS-statistic, one needs to set two parameters ex ante: the embedding 

dimension m and the correlation distance (the proximity parameter) ε. The problem is 

that for various pairs of the parameters, it is possible to get qualitatively different 

values of the statistic and therefore possibly contradictory results. The right choice of 

the parameters is widely debated in the statistical literature but no general suggestion 

                                                                                                                                            
4 LeBaron (1994) argues that “this feature can be viewed as both a cost and a benefit. On the one hand, 
it can detect many types of nonlinear dependence that might be missed by other tests. On the other 
hand, a rejection using this test is not very informative.” 
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has been made.5 Second, even though Monte Carlo simulation studies provide strong 

evidence for using the BDS-test in particular types of distributions, there are still 

many distributions the test does not fit very well. 

 

2. 2. Kočenda’s Test 

 
 To solve the problem that different parameters can get contradictory results, a new 

test for detecting hidden nonlinear patterns in data was proposed by Kočenda (2001). 

He suggested an alternative test using integration across the correlation integral 

 

 

( ) ( )
( )∑

∑

−

−⋅−
=

ε

ε

εε

εεεε
β

2
)ln()ln(

))(ln())(ln()ln()ln(
ˆ

mm

m

CC

, (2.5) 

where ε runs through a range of standard deviation σ of the time series. This test 

eliminates the arbitrary selection of the proximity parameter ε and reduces the choice 

of parameters to only one by integrating the correlation integral across the proximity 

parameter ε. The null hypothesis of the test is that data are iid, and the intuition behind 

this is to estimate the slope coefficient from the least squares regression of log of 

sample correlation integral to the log of proximity parameter ε. The regression can be 

formally described as 

 ( )( ) ( ) iimmiTm uC ++= εβαε lnln , ,    i = 1, …, n. (2.6) 

 Kočenda (2001) suggested estimating the slope βm using the integration of the 

correlation integral through the range (0.25σ; 1.00σ) within the formula (2.5). An 

empirical comparison of this new test with the BDS-test showed that Kočenda’s test is 

able to detect the hidden patterns with much higher precision. 

 Belaire-Franch (2003) considered the Kočenda’s test by using the bootstrapping 

method (the random shuffle) in order to avoid asymptotically biased critical values6. 

He recommended using two different ranges for the correlation distance ε. However, 

the new ranges were constructed only as an additive extension of the original range, 

and no theoretical or practical arguments were provided to support the choice.  

                                                 
5 See Brock, Hsieh and LeBaron (1993) as a reference textbook for choice of parameters related issues. 
6 If data are non-normal, and one uses the tabulated critical values, it leads to overrejection of the null 
hypothesis. 
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  Kočenda and Briatka (2005) extended Kočenda’s original framework. They 

provided broad power test studies to declare the strong ability of Kočenda’s test in 

finding nonlinear dependencies. As a result of these studies, two new ranges for 

correlation distance ε, (0.50σ; 1.50σ) and (0.25σ; 2.00σ), were offered, and new 

critical values computed.7 Moreover, they ran sensitivity analysis within these 

intervals. By contracting and expanding these intervals, they find the optimal ε-range 

(0.60σ; 1.90σ) that was suggested to be used as a template option.8 It was shown that 

using new ε-ranges, the test can be even more powerful than the BDS-test. The 

comparison with the existing results of the controlled competition of Barnett et al. 

(1997) as well as power tests on various nonlinear data were provided, and the result 

of the comparison was strongly in favor of this robust procedure.9 Finally, new user-

friendly software that is capable of running Kočenda’s test for all embedding 

dimensions was built.10  

 

2. 3. Other Tests for Nonlinear Dependencies 

 

 Until now, there have been dozens of diagnostic tests for nonlinearity available, so 

we will only mention those most used. Several authors used the test developed by 

Tsay (1986). Also, the bispectral test developed by Hinich (1982) is applied to several 

macro economic series in Ashley and Patterson (1989) and Barnett and Hinich (1993). 

The null hypothesis of this test is that the skewness function is flat, and hence, there is 

a lack of third order nonlinear dependence. Nychka et al. (1992) proposed a 

nonparametric test for positivity of the maximum Lyapunov exponent, which is a 

direct test for chaos. Further, White (1989)11 introduced a test for nonlinearity, a test 

of the null hypothesis of the linearity in the mean, and Kaplan (1994)12 described a 

test for nonlinearity, which is a test of the null hypothesis of linearity of the dynamics 

found in the data. These procedures are all tests for some kind of nonlinear 

dependencies; however, they are very specific. 

                                                 
7 The results of these power tests are not in the paper themselves. They can be found in a working paper 
by Kočenda and Briatka (2004). 
8 A deeper discussion of how and when this interval is used can be find in Section 3. 
9 The exact formulas of processes used in this study are in Section 4.4. 
10 It is known that if the technique is easy to understand and to implement, and particularly if a 
convenient computer program is available, then it is likely to be used. 
11 For further details about this test see Lee, White, and Granger (1993) and Jungeilges (1996). 
12 The test depends on the embedding dimension m and works comparing the distances between points 
in an m-dimensional reconstructed space with the distances between their images. 
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3. NON-NORMALITY AND NONLINEARITY 

3. 1. Introducing Concepts of Normality and Nonlinearity 

 

 In this paper, we distinguish between two types of time series – non-normal (but 

still random) time series and nonlinear (and hence determined) time series. To make it 

clear for the rest of the paper, we will discuss the differences between these two time 

series here in more detail. 

 We consider the non-normal times series to be randomly drawn from statistical 

distribution with well-known properties (student distribution, χ2-distribution, beta 

distribution, F-distribution, etc.). An important fact is that the future values of non-

normal time series cannot be forecasted using past values. However, because of the 

known distribution, we can still compute the probabilities that the expected value will 

be from a given interval. The non-normal time series is random in nature, and our test 

should not reject the null hypothesis of iid-ness. 

 Contrary to the non-normal time series, the nonlinear time series are meant to be 

driven by some kind of deterministic process (autoregressive conditional 

heteroscedasticity, nonlinear moving averages, chaos, etc.). Therefore, future values 

of nonlinear time series are fully observable once we obtain the formula that is behind 

the nonlinear process. It means that the future value is known with the probability 

equal to one. The nonlinear time series is not random, and hence, it is very likely that 

our test will reject the null hypothesis. 

 The difference between non-normal and nonlinear time series is more evident if 

we incorporate Kočenda’s test. The usual testing procedure is described in Figure 1 

and could be summarized in the following way. In the pre-test phase (first step), a 

researcher prepares data and runs a regression13. In the second step, the residuals are 

subject to tests for normality14. These residuals create the input time series for our 

test. 

 If the tests do not reject the normality of the time series (Branch A in Figure 1), 

then in the third step one proceeds with computing the Kočenda’s statistics and 

comparing the results with tabulated critical values. If the test does not reject the null 

                                                 
13 We do not specify any kind of data or regression. It depends on the current research of a researcher. 
The parts relevant for our research start from the second step. We include the first step only in order to 
picture the complexity of the whole process. In general, the origin of the data could be unknown. 
14 We discuss the most used normality tests in the next section. 
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hypothesis, the residuals are iid and the specification of the model can be used in 

further analysis.  

Figure 1
Process of testing time series for nonlinearities  

PREPARATION
PHASE

START Take data

Run regression

Get residuals

TESTING PHASE
Run normality 

tests

Do tests reject 
normality?

YES
NO

Run  standard 
Kočenda’s test

Does the test 
reject iidness?

Rebuild the model Model is OK

YES NO

Back to 
PREPARATION 

PHASE
END

Run Kočenda’s 
test with bootstrap

Does the test 
reject iidness?

Rebuild the model Model is OK

YES NO

Back to 
PREPARATION 

PHASE
END

Branch A Branch B

 

 

 The second clearest result is if the test in the third step rejects the null hypothesis 

of iid-ness, then the data are not independent nor drawn from the random distribution. 

They contain some nonlinear structure, and therefore, one should try to rebuild the 

design of the model. After a new design is found, the previously mentioned analysis 

should be run again from the first step. 

 A different kind of logic applies in the case of tests in the second step rejecting the 

null hypothesis (branch B in Figure 1). It means that our residuals are not normal; 

hence, the result of the Kočenda’s test when using a tabulated critical value is 

obscure, and one would not be able to distinguish whether the data are randomly 

drawn from known distribution or they follow a nonlinear process. 
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 In this case, we have three options. The first option is to run the test against 

several types of one-sided hypotheses of exact distribution. This approach is very 

straightforward, but we are forced to compute a large amount of critical values. 

Moreover, in this kind of approach, the philosophy of the test is destroyed, and its 

strength (to reveal much more of the hidden nonlinear dependencies than other 

nonlinear tests) is broken down. 

 The second option is to proceed with the bootstrap. The bootstrap method gives us 

estimated critical values that can be easily used with the Kočenda’s test without 

thoughts of normality. The problem of this approach is its exceptional demand for 

computational time15 that is completely impractical if one wants to test hundreds of 

model specifications. Anyway, the results of this approach are very promising, and we 

shall discuss them in more details in Section 4.2. 

 The third option is to use the basic Kočenda’s test and use the tabulated critical 

values. However, to recognize the true process, one has to consider the extent of the 

deviation from normality, or in other words, one has to know how big is big enough. 

This point is crucial in using the test, and we shall come to it from a different 

perspective later in Section 5. 

 

3. 2. Survey of Tests for Normality 

 

 In Section 2.3, we described the most common tests for nonlinearity. In this 

Section, we shall survey the basic tests for normality. 

 The basic testing for normality of the data is related to the moment statistics of a 

distribution. If we expected the time series to have zero mean (expectation of the 

linear deviation) and unit variance (expectation of the quadratic deviation), the next 

candidates for testing are skewness and kurtosis coefficients.16 Skewness is a measure 

of the symmetricity of a distribution (expectation of the cubic deviation), while 

kurtosis is a measure of the thickness of the tails of a distribution (expectation of the 

quadruplicate deviation). The coefficients of skewness and kurtosis are formally 

defined as 

                                                 
15 On a slow computer, it can take up to an hour to compute the Kočenda’s statistics for a single time 
series using the bootstrap method. 
16 In generally the normal distribution with non zero mean or/and non unit variance is not a problem. 
The procedure used in Kočenda’s test standardizes the time series to zero mean and unit variance itself.  
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 In order to test for normality very often, the Bera-Jarque test is employed. This 

standard procedure tests for the joint hypothesis of having τ = 0 and κ = 3. Bera and 

Jarque (1981) showed that 
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 In other words, the test is asymptotically distributed as chi-squared with two 

degrees of freedom.17 Later in the paper, we shall use the skewness and kurtosis 

coefficients and the Bera-Jarque statistics as the basic description of connection to 

normality and measure of departure from normality. 

 Other tests for normality of the data are based on the empirical distribution 

function. The most known tests of this kind are the Kolmogorov-Smirnov (KS), the 

Anderson-Darling (AD) and the Cramer-von Mises (CM) tests. These tests are very 

often referred to as EDF tests. Because the idea of testing is the same for all cases and 

the only differences are the test statistics, we shall discuss just the Kolmogorov-

Smirnov test in more detail. 

 The null hypothesis of the KS-test is that the data follows a specified distribution 

(in our case the normal one); the alternative is that the data do not follow this 

distribution. The Kolmogorov-Smirnov test statistic is defined as  

  )()(sup xFxFD n −= , (3.4) 

where F is the theoretical cumulative distribution of the distribution being tested, 

which must be a continuous distribution, and it must be fully specified. The 

                                                 
17 See also Bera and Jarque (1982) for more details. 



 13 

hypothesis regarding the distributional form is rejected if the test statistic, D, is greater 

than the critical value obtained from a table. 

 There are several variations of these tables in the literature that use somewhat 

different scaling for the KS test statistic and critical regions. These alternative 

formulations should be equivalent, but it is necessary to ensure that the test statistic is 

calculated in a way that is consistent with how the critical values were tabulated. 

 As we shall see in the next Section, testing for normality is an important step in 

finding nonlinear dependencies in a time series. We undertook just a quick survey of 

the most common normality tests. For more details about testing normality issues, we 

referred to Lehman (1997). 

 

4. MONTE CARLO STUDIES AND BOOTSTRAP 

 

 To test the impact of the non-normality vs. nonlinearity on the result of the test, 

we compare several models with low, middle, and heavy disturbances of non-

normality in extensive Monte Carlo competition. The models were selected in order to 

deviate from the normality in all ways considering the deviation from Section 3. 

 The general procedure of generating a time series is summarized in the following 

setup. First, samples of 10 000 time series with 1 000 observations18 were generated 

for the given process, and so-called “true” critical values were obtained from this 

generation. Second, new 1 000 time series were generated from the same process, and 

these generations were used as input for the testing procedure to get the value of the 

Kočenda’s statistics. Third, the Kočenda’s statistics computed in the previous step 

were compared with the critical values of the normal distribution and also with the 

“true” critical values. The differences between the results in the very last stage of the 

previous setup can be directly used as the measure of the error based on the usage of 

inappropriate critical values in the test. 

 After having a look at the error based on using inappropriate critical values, new 

500 time series with 1 000 observations were generated and the bootstrap method 

employed to generate bootstrapping critical values for each time series.19 The results 

                                                 
18 This study was dealing only with a time series with 1 000 observations. A comparable study to the 
same extent, but with 2 500 observations in one file is not technically executable in the present time 
due to the extensive computer time that would be needed.  
19 We will come to this issue in more detail in Section 4.5. 
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based on the bootstrapping critical values and “true” critical values are now 

compared. The efficiency of the bootstrap method is discussed. 

 Before presenting the results, we introduce the basic distribution and processes 

used in our Monte Carlo study. These processes contain 4 time series drawn from 

student distribution (to evaluate the impact of improper kurtosis on results); 4 time 

series drawn from χ2-distribution (to evaluate the impact of improper skewness on 

results); 4 time series based on some nonlinear processes (ARCH, GARCH, NLMA, 

ARMA 20 – to evaluate the impact of bootstrap on the results); and 4 time series drawn 

from normal distribution with a different gauge of non-normal contamination (to 

evaluate the impact of unknown disturbances on the results). 

 The data were generated using an inversive congruential generator. The first 1 000 

observations were discarded to avoid dependency on the initial condition. The 

generated data were randomly shuffled to reduce any hidden non-random 

dependencies in the data. The practical advantage of an inversive congruential 

generator (ICG) against a linear congruential generator (LCG) is that ICG guarantees 

the absence of a lattice structure. We have opted for the ICG for its superiority, 

despite the fact that it is significantly slower than LCG. Both generators are easy to 

implement, and there is abundant literature available with the portable code, 

parameters, and test results.  For a concise survey of the performance of inversive 

random number generators in theoretical and empirical tests, as well as tables of 

parameters to implement inversive generators see Hellekalek (1995). For a survey of 

the latest concepts and results of random number generation, we recommend starting 

with L’Ecuyer (2004). 

 Finally, all computations are done using the (0.60σ; 1.90σ) interval for proximity 

parameter ε. This interval was found to be the optimal range for the Kočenda’s test. 

For more details see Kočenda and Briatka (2005). 

 

                                                 
20 We know that the last process is linear; however it was used previously in Barnett et al. (1997), 
Kočenda and Briatka (2004), and Kočenda and Briatka (2005), and hence we hold it here for 
compactness of the study. 
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4. 1. Distributions to Consider for Simulations 

4. 1. 1. Student Distribution 

 

 The student distribution is derived from the normal distribution - it is the 

distribution of the mean/standard deviation of a sample of normally distributed values 

with unknown variance. It is a characteristic due to its high kurtosis and consequently 

heavy tails. As a consequence, the data are expected to be concentrated in the centre 

of distribution more often than in the case of normal distribution. However, as we 

increase degree of freedom student distribution converges to normal distribution. 

Formally, the probability density function for student’s distribution is given by the 

formula 

2/2 )1(
)
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1
(

)
2

(
)( n

n x
n

n

n

xf −+
−Γ

Γ
= , (4.1) 

where n is the number of freedom and Г is the gamma function21. 

 The first four time series that were used in the Monte Carlo competition are time 

series randomly drawn from the student distribution with various degrees of freedom. 

Different degrees of freedom mean different departures from normality. The time 

series used in the competition are drawn from the student distribution with 3, 9, 25, 

and 36 degrees of freedom. All time series are normalized to have zero mean and unit 

variance. The skewness coefficients of these time series are close to zero, and kurtosis 

coefficients are approaching 3, it is 24.91 for student (3); 4.33 for student (9); 3.26 for 

student (25); and 3.21 for student (36). 

 It is obvious that the data from student distribution with 3 degrees of freedom 

deviate the most from the normal distribution, contrary to those from 

student distribution with 36 degrees of freedom that are very close to data drawn from 

normal distribution. 

 We used these data to model the behavior of the test in the non-normal world that 

are still independent. The results of the power tests of student distribution using 

tabulated critical values in Section 4.3 could provide the justification for using the 

                                                 

21 The formula for the gamma function is ( ) ∫
∞

−−=Γ
0

1 dteta ta . 
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tabulated critical values in the distribution with heavy tails. However, we show that 

this is not the case. 

 

4. 1. 2. χ2-distribution 

 

 The second set of four time series was drawn from a χ2-distribution. The 

importance of the χ2-distribution stems from the fact that it describes the distribution 

of the variance of a sample taken from a normally distributed population. The χ2-

distribution is derived from the normal distribution - it is the distribution of a sum of 

squared normally distributed variables, and therefore it is never less than zero. It is a 

typical nonsymmetrical distribution and is skewed to the right. Formally,  








Γ
=

−−

2
2

)(
2

1
22

νν

ν

xe
xf

x

, for x ≥ 0, (4.2) 

where ν is the number of degrees of freedom Г(.) is the gamma function. Similarly to 

the student distribution, the standardized χ
2-distribution also converges to normal 

distribution as degrees of freedom approaches infinity. 

 The time series used in the paper are drawn from the χ2-distribution with 3, 8, 18, 

and 48 degrees of freedom. The largest departure from the normality shows data from 

χ
2-distribution with 3 degrees of freedom; on the other hand, distribution with 48 

degrees of freedom is often approximated by normal distribution. All time series are 

normalized to have zero mean and unit variance. We chose these time series to 

measure the impact of skewness of a distribution on the results of the test. These 

coefficients should be close to zero; however, they are 1.62 for χ2(3); 1.08 for χ2(8); 

0.69 for χ2(18); and 0.41 for χ2(48). 

 We used the χ2-distribution to verify the behavior of the test in the non-normal 

world but still independent. The results of the power tests of χ2-distribution using 

tabulated critical values in Section 4.3 show the error one can make when using the 

tabulated critical values in skewed distributions. 
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4. 1. 3. Nonlinear Distributions 

 

 The third pack of time series are based upon four nonlinear processes. These 

processes are classically used for modeling the nonlinearity in time series 

econometrics. Moreover, these processes were previously used in tests’ competition 

provided by Barnett et al. (1997) and extensive power tests competition provided by 

Kočenda and Briatka (2005), and therefore, we used them again as a proxy. These 

processes are GARCH, NLMA, ARCH, and ARMA. A more specific description 

follows: 

 

1. A generalized autoregressive conditional heteroscedasticity model (GARCH) of the 

form: 

 ttt uhy 21= , (4.1) 

where ht is defined by 1
2

1 8.01.01 −− ++= ttt hyh , with 10 =h  and 00 =y ; 

2. A nonlinear moving average model (NLMA) of the form: 

 218.0 −−+= tttt uuuy ; (4.2) 

3. An autoregressive conditional heteroscedasticity model (ARCH) of the form: 

 ( ) ttt uyy
212

15.01 −+= , (4.3) 

with the value of the initial observation set at 00 =y ; 

4. An autoregressive moving average model (ARMA) of the form: 

 121 3.015.08.0 −−− +++= ttttt uuyyy , (4.4) 

with 10 =y  and 7.01 =y . 

 These processes deviate more or less from the previously mentioned assumption 

of normality. All time series generated based on these processes are standardized to 

have zero mean and unit variance. Their skewness and kurtosis coefficients are –0.04 

and 3.92 for GARCH; -0.03 and 6.02 for NLMA; 0.02 and 3.31 for ARCH; and 0.01 

and 3.08 for the ARMA process. 

 From the first sign, it is clear that all processes are not skewed22. Moreover, their 

departures in kurtosis coefficients are comparable to those of student distribution with 

a high degree of freedom. The only large departure from the normality shows in  

                                                 
22 However, we do not provide any statistical tests, but their skewness and kurtosis coefficient are much 
closer to those of Normal distribution than processes in Section 4.1.1 and 4.1.2. 
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NLMA data. Its statistical properties are comparable to a student distribution with 9 

degrees of freedom. 

 We used these nonlinear processes to verify the behavior of the test in the non-

normal and dependent world. The results of the power tests of these processes provide 

justification for the usage of the tabulated critical values in this kind of distribution. 

The comparison with the results based on bootstrap in Section 4.3 provides a 

comparison of the strength of the test. 

 

4. 2. The Bootstrap Method23 

 

 Bootstrapping is a method for estimating the sampling distribution of an estimator 

by resampling with a replacement from the original sample. Because of an incredible 

increase of computer power, the bootstrap method has become very popular. For 

references, especially in econometrics, see Davidson and MacKinnon (2000) or Efron 

and Tibshirani (1998). Based on the original time series, the bootstrap method gives 

us virtual populations that can be considered as the true data population.  

 To proceed with bootstraping, we first generate a sample of 500 time series. Every 

time series contains 1 000 observations and is based on one of the distributions or 

processes described in Section 4.1. Having chosen one time series from this sample, 

the bootstrap comes into play. For this single original time series, we generate 200 

new time series. These 200 new time series are then used as a virtual population to 

compute so called bootstrapped critical values of Kočenda’s test for the original time 

series. Then, the bootstrapped critical values are employed to evaluate the Kočenda’s 

test on the original time series and bring a reject/no reject conclusion. 

 The bootstrap method here helps us to distinguish the power of the test between 

(1) a rejection that is made due to a usage of improper critical values, and 

(2) a rejection due to a nonlinear dependency in the data. If the test gives different 

results for the tabulated critical values and the bootstrapped ones, that would be a sign 

of inappropriate usage of the tabulated critical values. If the test offers the same 

results in both cases that would serve as a double check for usage of tabulated critical 

values. 

                                                 
23 Bootstrapping alludes to a German legend about Baron Münchhausen, who was able to lift himself 
out of a swamp by pulling himself up by his own hair. In later versions, he was using his own boot 
straps to pull himself out of the sea, which gave rise to the term bootstrapping. 
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 Bootstrapping is time consuming, and often it is not necessary to proceed with it 

to get clear evidence of the distribution of data. In the rest of the paper, we provide 

easy guidance based on the departures from normality that will show us when it is 

necessary to provide the bootstrap and when it would be satisfactory to use tabulated 

critical value. 

 

4. 3. Results of the Monte Carlo studies 

 

 The Monte Carlo studies were performed to measure the size of a Type I and a 

Type II error of the test. There are two kinds of errors that can be made in significance 

testing: (1) a true null hypothesis can be incorrectly rejected, and (2) a false null 

hypothesis can fail to be rejected. The former error is called a Type I error, and the 

latter error is called a Type II error. The size of a Type I error is the probability that a 

Type I error is made and similarly the size of a Type II error is the probability that a 

Type II error is made. To describe the basic properties of the test means to describe 

the size of these errors. 

 As we mentioned before, the tests on iid sets of data were performed to show the 

size of a Type I error when using tabulated critical values. All tests were evaluated at 

a constant, 5% significance level.  Results of the studies for student distribution are in 

Table 1. 

 

Table 1
Empirical power of Kočenda's test against Student distribution using tabulated critical values
The numbers in the table represent the size of a Type I error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
student(3) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
student(9) 92.20% 87.60% 81.80% 71.20% 62.40% 50.60% 42.00% 35.00% 32.00%
student(25) 25.00% 21.00% 17.80% 16.00% 13.00% 9.20% 8.00% 7.40% 9.20%
student(36) 13.40% 13.20% 10.60% 9.40% 8.00% 7.60% 8.20% 6.60% 6.00%  

 

 The results clearly state that using tabulated critical values in the case of fat-tailed 

distributions leads to over-rejection of the null hypothesis. This is evident from the 

results of student distributions with 3 and 9 degrees of freedom, where the smallest 

rejection rate is 32%, but the expected rate was about 5%. These results are far above 

the expected level of rejection and prove that the tabulated critical values are biased 

towards rejecting the null hypothesis for student distribution.  
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 Because the kurtosis coefficient of student (9) distribution is 4.33 and of student 

(25) and student (36) is 3.26 and 3.21 respectively, we can conclude that the tabulated 

critical values should not be used for distribution with kurtosis greater than 4 and 

should be used very carefully in a time series with kurtosis close to 4. At any rate, if 

the kurtosis is less than 4, we should still be using the tabulated critical values 

carefully. We are technically not able to say the exact number for “safe-usage” of 

tabulated critical values24, but the results show that even the distribution with a very 

small kurtosis equal to 3.26 or 3.21 (as with student distributions with 25 and 36 

degrees of freedom) can generate a rejection rate several times greater than the 

accepted one at 5%. 

 Similarly to Table 1, the results in Table 2 show the rejection rates (Type I error) 

for the χ2-distribution. 

 

Table 2
Empirical power of Kočenda's test against χ2 distribution using tabulated critical values
The numbers in the table represent the size of a Type I error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
chi(3) 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
chi(8) 100.00% 99.80% 99.40% 99.40% 98.40% 97.20% 93.00% 86.20% 82.20%
chi(18) 79.40% 72.80% 66.40% 58.20% 50.20% 39.80% 32.40% 24.20% 22.40%
chi(48) 24.00% 21.20% 17.60% 12.60% 12.00% 10.60% 9.60% 9.80% 8.60%  

 

 The results immediately illustrate that usage of tabulated critical values in the case 

of skewed distributions leads to over-rejection of the null hypothesis. The usage of 

improper critical values show the rejection rates between 8% and 100%, but the 

expected rate was about 5%. The rates in the table are too high, and therefore, the 

tabulated critical values are biased towards rejecting the null hypothesis for 

χ
2-distribution. 

 Because the skewness coefficients (of used χ
2-distribution) are between 0.41 and 

1.62, we can realize that the tabulated critical values should not be used for 

distribution with skewness coefficient greater than 0.41 and should be used very 

carefully if skewness is less than 0.41 in absolute value. Table 2 implies that although 

the distributions with a very small skewness (i. e. in our case, small skewness equals 

0.41) can give a several times greater rejection rate than it statistically should be.  

 

                                                 
24 This is not possible because of the infinite number of nonlinear specifications of the model. 
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 In order to show the ability of the test to correctly distinguish between truly 

random and random-like data we have performed a series of tests also on the 

nonlinear sets of processes. The results of these tests are in Table 3. The numbers in 

Table are now sizes of a Type II error. 

 

Table 3
Empirical power of Kočenda's test against non-linear processes using tabulated critical values
The numbers in the table represent the size of a Type II error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
GARCH 39.80% 26.20% 20.00% 15.40% 14.40% 15.80% 20.40% 27.60% 29.60%
NLMA 2.20% 0.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.20%
ARCH 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 1.40%
ARMA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

 The results of the tests on the nonlinear data have different logic than in previous 

cases. In Table 1 and Table 2, the numbers represent Type I error (a true null 

hypothesis is incorrectly rejected). The data used to compute Table 3 were not iid, and 

therefore, the numbers in Table 3 represent Type II error (a false null hypothesis fails 

to be rejected). We can see that the results are mostly equal to or close to 0%, only the 

GARCH process brings results between 14.4% and 39.8%. Therefore, the results are 

as we expected, and the test successfully finds nonlinear dependencies. However, 

because of the high kurtosis (6.02) in the case of the NLMA process, the results of 

power studies for NLMA should be considered very wisely not as a rejection caused 

by the nonlinear dependencies but as a rejection caused by the high kurtosis itself (due 

to a large deviation from normality). In the case of such a large kurtosis, usage of 

Kočenda’s test with the tabulated critical values brings void information. 

 On the other hand, GARCH, ARCH and the ARMA processes have skewness 

coefficients very close to 0 and a kurtosis coefficient smaller than 4. Therefore, we 

can use tabulated critical values and provide the valuable decision of the character of 

process. We do not go into deep details here because a similar discussion was 

provided in the study by Kočenda and Briatka (2005), and our power studies of 

nonlinear processes coincide with their results. 
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4. 4. Results of the Bootstrap 

 

 The departure from normality due to a large kurtosis or skewness makes tabulated 

critical values of little use due to over-rejection of the null hypothesis25. Time series 

with high kurtosis or skewness coefficient should be analyzed with Kočenda’s test 

only using the custom made (bootstrapped) critical values. In the previous chapter, we 

compared the results of the power tests based on the tabulated critical values with the 

true critical values and found that even a small deviation from normality could lead to 

over-rejection of the null hypothesis and hence to a wrong conclusion. 

 This chapter answers the question whether the bootstrap can be used as an 

alternative method that would deal with over-rejected difficulties of the tabulated 

critical values.  

 All power tests in this Section were evaluated at a 5% significance level; the 

numbers in Table 4 and 5 are the size of a Type I errors. Table 6 contains the size of a 

Type II error. Results of the power studies based on the bootstrapped critical values 

for student distribution are in Table 4. 

 

Table 4
Empirical power of Kočenda's test against Student distribution using the bootstrap
The numbers in the table represent the size of a Type I error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
student(3) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.60%
student(9) 0.00% 0.00% 0.00% 0.60% 0.80% 1.40% 1.20% 2.00% 3.00%
student(25) 0.00% 0.00% 0.40% 0.40% 1.00% 3.00% 3.80% 3.40% 4.60%
student(36) 0.00% 0.00% 0.80% 0.60% 1.00% 2.20% 2.80% 1.80% 4.20%  

 

 At first sight, the results of the power tests based on the data from student 

distribution using bootstrap are different than those using tabulated critical values 

(Table 1). In the latter case, the values for the student distribution with 3 and 9 

degrees of freedom were far above 30%, now the results are close to zero, not 

exceeding 3%. This directly indicates two things. The first, the bootstrap method 

works very well for student distribution. This means that heavy tails cause no problem 

in the Kočenda’s test when using bootstrap. The second, the results of a power test 

based on the tabulated critical values together with the bootstrap imply that the 

bootstrap can be used as a double check for the Kočenda’s test. In this case, different 

                                                 
25 However, a time series with large kurtosis or skewness are not very common in real data. See 
Kočenda and Briatka (2004), Section 5.5 for more details and evidence. 
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results of the test based on bootstrapped and tabulated critical values are an attribute 

of the fact that an improper testing procedure was applied to iid data. 

 

 The results of tests based on bootstrap for data drawn from χ2-distribution are 

shown in Table 5. 

 

Table 5
Empirical power of Kočenda's test against χ2 distribution using the bootstrap
The numbers in the table represent the size of a Type I error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
chi(3) 0.20% 0.20% 0.20% 0.20% 0.40% 0.40% 0.60% 0.40% 0.60%
chi(8) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.40% 1.20% 1.00%
chi(18) 0.00% 0.00% 0.00% 0.20% 1.40% 1.20% 1.80% 2.20% 2.80%
chi(48) 0.00% 0.00% 0.40% 1.20% 2.40% 2.40% 3.00% 5.20% 4.80%  

 

 The results are very similar as in the previous situation with the student 

distributions. The high rejection implied by tabulated critical values (see Table 2) was 

replaced with close-to-zero (actually none) rejection of bootstrapped critical values. 

Moreover, the tabulated critical values provide different results within themselves (it 

depends on the degree of deviation from normality), but the bootstrap results carry 

constant results over all four χ2-based distributions. The qualitative results of χ
2-

distributions coincide with the results of student distributions as describe earlier, i. e. 

the bootstrap method should be use as a surety check if the deviation from normality 

of time series is too high. 

 Table 6 shows the size of a Type II error based on the bootstrap for four nonlinear 

processes.  

 

Table 6
Empirical power of Kočenda's test against non-linear processes using the bootstrap
The numbers in the table represent the size of a Type II error of the test for the embedding dimension m

Process m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9 m=10
GARCH 98.60% 80.00% 55.20% 42.20% 35.60% 35.20% 41.00% 50.40% 50.20%
NLMA 11.20% 1.10% 0.00% 0.00% 0.00% 0.00% 0.00% 1.40% 0.20%
ARCH 37.00% 10.80% 7.60% 6.80% 8.60% 12.00% 18.60% 27.40% 39.80%
ARMA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%  

 

 The rejection rates are a little bit smaller (the numbers in the table are bigger) than 

those in Table 3; however, they are still high. The size of a Type II error for the 

NLMA and ARMA processes stand around 0%. The size of a Type II error in the case 
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of the ARCH process rises from 0% to 18% on average. In the case of the GARCH 

model, the average increase was 31%.  

 

 Following the previous partial results, we conclude that the bootstrap works fine 

even for nonlinear processes, and the power of the test has changed negligibly. More 

evidence will be provided in the discussion in the next Section. 

 

5. DISCUSSION, COMMENTS, AND RECOMMENDATIONS 

 

 To conclude the results of the power tests from the previous section, we suggest 

adhering to the following strategy in order to handle a time series in the correct way 

and to minimize the error of rejecting the true null hypothesis. 

 Initially, perform the normality test for the time series. Now, the basic rules could 

be summarized in two points: 

 (1) If the skewness coefficient of a time series is in absolute value greater than 0.5 

or kurtosis greater than 4.0, we have to use the bootstrap method to compute 

asymptotic critical values for Kočenda’s test. The decision about the nonlinear 

behavior of the time series should be derived from the results of the bootstrap. 

 (2) If the skewness coefficient is in absolute values lower than 0.5 and kurtosis 

lower than 4.0, we can continue with the standard Kočenda’s test without the need of 

bootstrap. The decision about the nonlinear behavior of the time series could be 

inferred from the results. 

 Several final thoughts and recommendations follow. 

 First, the results presented in this paper were computed using the (0.60σ; 1.90σ) 

interval for proximity parameter ε. We also run a very similar Monte Carlo study for 

different intervals, but the results are not materially different and are available upon 

request.  

 Second, in approaching the normal distribution, we found that the results of the 

standard and the bootstrap test match if |τ|<0.5 and κ<4. Therefore, this is the point 

that separates all time series into two groups. In the first group, there are time series 

that can be verified for nonlinear structure with the standard procedure. Time series 

from the second group have to be examined with the bootstrap method.  

 Third, following the basic implications of this paper, we can now run the testing 

procedure on much more extensive sets of data. Because of the bootstrap procedure, 
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we do not require the normality properties of the data. However, if the deviation from 

normality is too large26, we should be again careful in applying the test even with 

bootstrapped critical values. 

 

 Another important feature of the test is described in Figure 2. It is the comparison 

between the properties of the test when using standard methodology (tabulated critical 

values) and new methodology (based on the bootstrap). 

  

Figure 2
Comaprison of Type I and Type II errors of the test for using tabulated critical values and the bootstrap  
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 The Figure shows a comparison of sizes of Type I and Type II errors between 

standard methodology (left panel) and the bootstrap method (right panel). In the left 

panel there is a very low size of Type II error, which means that the standard 

methodology is very powerful in finding nonlinearities in a time series that are 

nonlinear in nature. This is the main finding in the paper by Kočenda and Briatka 

(2005). Yet, the power of the test suffers from a large Type I error, which means that 

many random time series could be incorrectly considered to be nonlinear. 

 The situation in the right panel is a little bit different. When using the bootstrap, 

the size of a Type I error is very low. It means that the probability of rejecting a true 

null hypothesis is very low. Further, the power of the test is still high enough 

(comparable to standard methodology) to reveal hidden dependencies in a nonlinear 

time series. This could be considered as the main finding of the paper. 

 Generally, to find the balance between the power of the test and the possible errors 

of the tests is a very hard task. We measured two alternatives for concepts of balance 

                                                 
26 We do not measure the exact values here because in practice there is no need to consider such a 
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and as the best solution, we suggest to evaluate both concepts and make a decision 

based upon the results from both the standard and bootstrap method. 

 

6. CONCLUSION 

 

 The basic idea of this paper is to identify two separate elements that constitute the 

rejection power of the Kočenda’s test. The first element is nonlinear. It is derived 

from the fact that the test is designed to find nonlinear dependencies in data. The 

second element is non-normal, and it is derived from the fact that the test assumes 

normal distribution of input data. Both elements are jointly summed into the whole 

rejection power of the Kočenda’s test. The main reason why one should distinguish 

between these two powers is to allow the testing procedure to be applied to a broader 

set of non-normal data. 

 Therefore, this paper builds on Kočenda (2001) and Kočenda and Briatka (2005) 

and sheds light on the properties of the test in the case of non-normally distributed 

data. 

 First, the bootstrap method is introduced, and it is shown that by using this method 

and the optimal interval suggested by Kočenda and Briatka (2005), the power of the 

test increases significantly for the data that do not look normally distributed although 

they still may be iid. Using Monte Carlo studies, we found that for a time series with 

the coefficient of skewness coefficient greater than 0.5 in absolute value and the 

coefficient of kurtosis greater than 4, bootstrapped critical values have to be employed 

for the Kočenda’s test. Otherwise, the results could be biased towards rejecting the 

null hypothesis of iid-ness. 

 Second, the results of power tests on several iid data with different noises (from 

weak to strong) are provided, and the robustness of the test to not-Gaussian data is 

evaluated. It is found that when using bootstrap, the size of a Type I error is very low, 

and hence, the probability of rejecting a true null hypothesis is also low. Hopefully, 

the power of the test remains still high enough.  

 Finally, to answer the question from the title of this paper – How big is big 

enough? – we would say that every time series with |τ|>0.5 or κ>4 is big enough. In 

our concept, it means that deviation from normality of such a time series is so big that 

                                                                                                                                            
pathological case. However, to our knowledge, too large deviated time series should have |τ|>1 or κ>5. 



 27 

it will influence the result of the Kočenda’s test in a way that the test statistic will be 

biased toward rejecting the null hypothesis. In other words, we should use the 

bootstrap methodology to test this time series for nonlinearities. 

 These findings help us to extend the area of using the test into many other fields 

that deal with nonlinear data that are not necessarily normal, e. g. financial economics, 

stock price volatility, stock market efficiency, stock exchange, behavior of equity 

indices, nonlinear dynamics in foreign exchange rates, or interest rates. 
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