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The paper examines a general class of multi-unit auctions. The class of games investigated 
includes uniform-price, pay-your-bid, all-pay and Vickrey auctions as special cases. The 
seller offers k identical units of goods and sets the minimum accepted bid. Bidders have 
atomless valuation distributions and they submit up to k bids. For this class, the existence of 
Nash equilibrium in a measurable strategy space and weakly increasing pure strategy space is 
proven. In many cases any equilibrium strategies can be modified in such a way that they 
form a pure strategy equilibrium. Properties of standard strategies in multi-unit auctions are 
analyzed. 
 
 
 

Abstrakt 
 

Studie se zabývá obecnou třídou aukcí, ve které prodávající nabízí několik jednotek daného 
zboží. V této obecné třídě se nachází i holandská, americká a Vickreyho aukce jako jednotlivé 
příklady. Prodávající nabízí k prodeji k s tejných jednotek zboží a určí minimální prodejní 
cenu za každou jednotku (nejvyšší výnos). Každý účastník aukce na straně poptávky, má 
spojité náhodné rozložení hodnot pro jednotky zboží a objedná nejvýše k jednotek daného 
zboží. Pro takovouto třídu aukcí je ukázáno, že Nashova rovnovážná strategie existuje, pokud 
účastníci aukce na straně poptávky volí strategie z prostoru měřitelných funkcí a nebo 
z prostoru čistých neklesajících funkcí. V mnoha případech Nashovy smíšené rovnovážné 
strategie mohou být upravenyč tak, že výsledné strategie tvoří Nashovy čisté rovnovážné 
strategie. Základní vlastnosti běžných strategií pro aukcí s více objekty jsou diskutovány.  
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1 INTRODUCTION

Until recently multi—unit auctions have received less attention than single-

unit auctions in theoretical studies although Internet auctions of multiple

units of goods and auctions of bundles of licences for mobile phone systems

are ubiquitous. The theoretical results on multi-unit auctions are not as

straightforward and powerful as those for single-unit auctions. This paper is

an addendum to an enlarging literature focusing on existence of equilibrium

in multi-unit auctions (see McAdams (2006), Jackson and Swinkels (2005),

Athey (2001) and others).

In this paper, multi-unit auctions with independent private values and

sellers’ reservation prices are analyzed. I focus on a class of auctions that

includes uniform-price, “Dutch”, Vickrey, all-pay, and pay-your-bid auctions.

I first prove the existence of equilibria for auctions in this class (which is

defined by assumptions A1 - A5 detailed below).

In auctions of non-divisible goods, bidders’ payoffs are not continuous. In

the literature on equilibria in discontinuous games Dasgupta and Maskin

(1986), Reny (1999) and Simon (1987), the class of multi-unit auctions

has posed particular challenges. Lizzeri and Persico (2000), Amman and

Leininger (1996) and Krishna and Morgan (1997) provide insightful analyses

of classes of single-unit auctions using differential equations. This approach is

difficult to extend to multi-unit auctions because we know less about systems

of vector differential equations than we know about scalar differential equa-

tions. Below I therefore propose a different approach. Specifically, I prove

the existence of an equilibrium in which bidders bid below their expected

values. I investigate the shape of the payoff function at discontinuities that
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result from ties. A tie occurs when two or more submitted bids are equal

but the seller, while satisfying at least one of them, can not satisfy all of the

equal bids.

Consider a strategy profile of two bidders each of them submitting a tied

bid with positive probability. If the profile is an equilibrium, then either a)

both bidders are indifferent whether winning or losing the tie, or b) with

probability 1 the tie-breaking rule makes the winner that bidder who prefers

to win the tie and the loser that bidder who does not prefer to win the tie (see

example 4 in Section 3 below). Otherwise, since the payoff function jumps at

the discontinuity, the tied bidder has incentive to deviate from her strategy

negligibly to achieve almost the same payoff as if winning or losing the tie.

In many economic applications, it is natural to use a random rule to

break a tie. Clearly, by its very nature such a rule does, however, not allow

to win or lose a tie with probability 1 or 0. It is, however, possible in some

circumstances to find an equilibrium with a tie-breaking rule that allows to

break a tie in favor of one bidder with probability 1 since then the sum

of bidder’s payoffs is upper-semi continuous in expectation given a bidder’s

value (see Dasgupta and Maskin (1986), Reny (1999) and Simon (1987)).

The main idea of the paper is to consider a class of auction games such that

the equilibrium profile exists when using a tie-breaking rule that allows to

break a tie in favor of one bidder with probability 1 and in such a manner that

in any equilibrium profile no tie occurs with positive probability. Therefore

it does not matter whether the seller uses the random tie-breaking rule or

not.

I demonstrate that ties do not occur with positive probability in equi-
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librium since every bidder (bidding below her value) is better off if she bids

ever so slightly above the tie. Therefore, when searching for an equilibrium,

one can a priori eliminate all strategy profiles in which ties occur with pos-

itive probability. This allows me to assume that the seller then chooses any

tie-breaking rule he desires without influencing the set of bidder equilibrium

strategies. The existence theorem by Reny (1999), applied to one specific

tie-breaking rule, then guarantees the existence of equilibrium for any tie-

breaking rule (e.g. the “random” rule that is usually considered in the liter-

ature). The approach proposed here was outlined in Bresky (1999) and uses

an idea similar to Lebrun (1996). It is an alternative proof to the one used in

Jackson and Swinkels (2005) who show the existence of mixed strategy equi-

libria for more general class of auctions applying the tie-breaking invariance

on bidders equilibrium profiles. The proof provides a new approach apply-

ing result of Reny (1999) to establish an equilibrium existence in multi-unit

auctions when the bidder mixes over weakly increasing strategies.

For multi-unit auctions with strictly increasing payoff function in bidder’s

own bid e.g. for all-pay auctions, pay-your-bid auctions, their convex combi-

nations, bidders use pure strategies in equilibrium that are weakly increasing

in bidder’s own value. For all other auctions in the class of multi-unit auc-

tions, every mixed best response can be mapped to a pure weakly increasing

best response that yields the same payoff to the bidder and the same dis-

tribution of a bidder’s bids. Then, opposing bidders have the same payoff

for whatever strategy they use. This mapping can be made for all players

simultaneously yielding an equilibrium in weakly increasing pure strategies.

Therefore, if one finds a specific property of an equilibrium in weakly in-
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creasing pure strategies that depends only on the distribution of bids, then

all equilibria must satisfy this property. In other words, including mixed or

decreasing strategies in the set of admissible strategies complicates the analy-

sis but does not yield different results. This result is not valid in general,

e.g. if one relaxes independent distributions of values. The idea is similar to

McAdams (2006) who shows that if bidder’s signals are independent and pri-

vate and valuations are increasing in own signal and non-decreasing in others’

signals for the multi-unit uniform-price auction, then equilibrium exists.

This paper complements the literature showing the importance of better

reply security as defined in Reny (1999) that generalizes to ideas of Das-

gupta and Maskin (1986). Similar “purification” result is known in other

games with private information including Khan and Sun (1995), Radner and

Rosenthal (1982), and Milgrom and Webber (1985).

The paper is structured as follows. In Section 2 the multi-unit auction

games considered here are defined. In Section 3 I show why ties can not occur

in equilibrium, and why, hence, the equilibrium set does not depend on the

choice of tie-breaking rule. In Section 4 I demonstrate that the auction is

payoff secure as defined in Reny (1999) and that the payoff sum is upper

semi-continuous with an efficient tie-breaking rule. These two conditions

are sufficient for the existence of a mixed strategy equilibrium in the space

of weakly increasing strategies. In Section 5, I prove the existence of an

equilibrium in pure strategies that are weakly increasing. I also show that

equilibria are in pure strategies only. This result requires me to restrict

the analysis to auction games with continuous valuation distributions. The

Appendix collects some proofs and lemmas.
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2 MULTI-UNIT-AUCTIONGAMESANDTHEIR

BASIC PROPERTIES

Consider n (n ≥ 1) risk-neutral bidders with continuous private valuation

distributions and a seller who would like to auction k (k ≥ 1) identical

units of goods to these bidders. The seller specifies publicly a reservation

price R ∈ [0,∞) for his goods. In general, the seller could choose different

reservation prices for different units. Simple way how to implement it is

described in Jackson and Swinkels (2005). They consider reservation prices

as additional bids that compeete with regular bidder bids without any effect

on the existence of equilibria. Each bidder i draws values vi = [vi,1, · · · , vi,k]

from her private valuation distribution where vi,j is the value of the jth unit

(1 ≤ j ≤ k, 1 ≤ i ≤ n). Let Fi (vi) denote the cumulative distribution

function of the private values vi,j with support on the compact set Vi ⊂

×kj=1 [0,∞) .
1 I focus on independent private value auctions with continuous

valuation distributions. This implies that independence is required between

bidders’ valuation distributions but not within valuation distributions.

A��������	 A1. For any i = 1, · · · , n there exists a density function

fi (vi) that is independent of the realization of opponent values v−i.
2

A bidder who wins Ji units obtains value
∑Ji

j=1 vi,j. I assume that

the marginal value from winning an additional unit weakly decreases for

each bidder, i.e. vi,j ≥ vi,j′ if j < j′. Each bidder submits k sealed bids

bi,1, · · · , bi,k ∈ {−∞} ∪ [R,∞) = B that are denoted as bi where bidding

1Symbol × means the Cartesian product.
2The index −i represents the set of indices {1, · · · , i− 1, i+ 1, · · · , n} .
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−∞ on a unit signals no interest on a given unit. The list of submitted bid

k-tuples from all bidders is labeled as b below.

If more than k bids are above or equal to the reservation price R, then the

seller chooses the k highest bids as the winning bids. A tie occurs when the

kth and k + 1st highest bids are equal.3 I assume that the seller breaks ties

according to a reasonable tie-breaking rule T . Each reasonable tie-breaking

rule T has to determine at least one winning bid and at least one losing bid.

A typical tie-breaking rule that does the job selects randomly the winning

bids from among those bids that are tied. I shall call this rule the random

rule. If fewer than k + 1 bids are above or equal to the reservation price R,

then each of them wins a unit.

I denote the set of all admissible bid k-tuples of one bidder as Bi =

×kj=1B.
4 and the set of all admissible bid k-tuples of all bidders as Bi ×B−i.

Let me denote cj as the jth highest bid by an opponent where j = 1, · · · , k

and Ji as the number of bids bidder i wins when the seller sets the reservation

price R and all bidders submit bids b. Then bidder i’s ex post payoff depends

on the winning values vi,1, · · · , vi,Ji, all submitted bids b, and the reservation

price R.

ϕi (vi, b, R) =

Ji∑

j=1

(
vi,j − p

w
i,j (b, R)

)
−

k∑

j=1+Ji

pli,j (b, R) , (1)

where pwi,j (·) and p
l
i,j (·) are the prices paid when winning or losing the jth

3Other bids may be also equal to the kth and k+1st highest bids and, therefore, tied.
4Since the seller orders bids anyway, one can assume without loss of generality that

bidders submit ordered k-tuples of bids bi,1 ≥ · · · ≥ bi,k although the notation admits

submission of k-tuples that are not ordered.
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unit. I define i’s ex post payoff from winning or losing the jth unit as

ϕwi,j (vi, b, R) = vi,j − pwi,j (b, R) and ϕ
l
i,j (vi, b, R) = −pli,j (b, R) . As we will

see presently, −pli,j (b,R) plays a role in all-pay auctions.

Example 1 The following multi-unit auctions with independent private val-

ues are consistent with the setting above.

1. Uniform-price auction - the price for winning any unit is the k + 1st

highest bid c̄ = max (bi,Ji+1, ck+1−Ji) if more than k bids above R are

submitted; otherwise the price for winning a unit is R.5 The price for

losing a unit is 0.

ϕui (vi, b,R) =

Ji∑

j=1

[vi,j −max (R, c̄)] , (2)

2. Dutch auction - the price for winning any unit is the kth highest bid c̄′ =

max (bi,Ji , ck−Ji) if more than k bids above R are submitted; otherwise

the price for winning a unit is R. The price for losing a unit is 0.

ϕdi (vi, b,R) =

Ji∑

j=1

[vi,j −max (R, c̄
′)] , (3)

3. Vickrey auction - the price for winning the jth unit is the k + 1 − jth

highest opponent bid ck+1−j, if more than k+1− j opponent bids above

reservation price are submitted; otherwise the price for winning a unit

is R. The price for losing a unit is 0.

ϕvi (vi, b,R) =

Ji∑

j=1

(vi,j −max (ck+1−j, R)) . (4)

5In other words, the price is determined by the highest losing bid of either bidder i or

her opponent.
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4. Pay-your-bid auction - the price for winning any unit is the bidder’s

bid. The price for losing a unit is 0.

ϕ
p
i (vi, b, R) =

Ji∑

j=1

[vi,j − bi,j] . (5)

5. All-pay auction - the price for both winning and losing any unit is the

bidders’ bid for that unit or reservation price R.

ϕai (vi, b, R) =

Ji∑

j=1

[vi,j −max (bi,j, R)]−
k∑

Ji=1

max (bi,j, R) . (6)

6. All convex combinations of payoffs of auctions 1-5 above.

ϕλi (vi, bi, c,R) = λu · ϕ
u
i + λd · ϕ

d
i + λp · ϕ

p
i + λv · ϕ

v
i + λa · ϕ

a
i , (7)

for 0 ≤ λu, λd, λp, λv, λa, λu + λd + λp + λv + λa = 1.

A strategy of bidder i specifies i’s bids based on the information she has

before the auction. This information includes her private values, the number

of opponents and their valuation distributions, the seller’s reservation price,

and the number of units for sale. For the sake of simplicity I will write pure

strategies as a function of private values only. A measurable strategy of bid-

der i is therefore a mapping bi (·) : Vi → Bi (bi(vi) = [bi,1(vi,1, · · · , vi,k), · · · ,

bi,k(vi,1, · · · , vi,k)]) such that bi,j (·) is measurable function. When opponents

use measurable strategies b−i (·), then the interim expected payoff to a bidder

i, whose values are vi and who bids bi, is

πi (vi, bi|b−i (·) ,T) = E (ϕi (vi, b, R)) . (8)

Expectations are taken over opponent values v−i. The probability measure of

ϕi (vi, b, R) is induced by the opponent strategies b−i (·) , and a tie-breaking
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rule T for ties that occur with positive probability. In the following I will use

the word interim payoff to denote a bidder’s interim expected payoff after she

has learned her values but before she submits her bids. In contrast, a bidder

computes her ex ante payoff before she has learnt her values. Correspondingly

I denote interim best response I will denote a bids bi of bidder i whose values

are vi.

When bidder i uses her pure strategy bi (·), then her ex ante pure strategy

payoff is

π (bi (·) |b−i (·) ,T) = E (πi (vi, bi (vi) |b−i (·) ,T)) , (9)

where the expectations are taken over vi.

The class of auctions I study is defined by the following assumptions on

the ex post price of any unit j = 1, · · · k of any bidder i = 1, · · ·n. I shall

refer to these auctions as standard from here on. The bid bi,j can win only

if it is above or equal to reservation price R and k + 1 − jth opponent bid

(bi,j ≥ max (ck+1−j, R)). Therefore I discuss the properties of the winning

prices and the ex post payoffs in this case only. Similarly, I discuss the

properties of the losing prices and the ex post payoffs only for the case that

the bid bi,j is below or equal to reservation price R and k+1− jth opponent

bid (bi,j ≤ max (ck+1−j, R)).

In this paper, I will focus on auctions with monotonic and additively

separable prices.

A��������	 A2. Winning and losing prices are weakly increasing in any

bid j of any bidder i.6 (Note that a bidder’s payoffs are weakly increasing

6For any b ∈ Bi × B−i and any b′i,j ∈ B if bi,j ≥ b′i,j ≥ max(ck+1−j , R), then

pwi,j (b,R) ≥ pwi,j(b
′

i,j , bi,−j , b−i, R) and if bi,j ≤ b′i,j ≤ max(ck+1−j , R), then p
l
i,j (b,R) ≤
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even in other bidders’ payoffs.)

A��������	 A3. The auction price is additively separable, i.e. when

bidder i changes her bids on some units bi,p, bi,p+1, · · · , bi,q (given opponents

submitted bids b−i), the difference in ex post price before and after the change

is the same for any of her bids on units bi,1, · · · , bi,p−1, bi,q+1, · · · , bi,k if bidder

i wins every tie.7

The assumption A3 requires that if bidder i changes her bids on some

units, then strategic considerations on other units are not affected. The

assumptiomn above is satisfied for auctions from example 1 only if the seller

breaks the ties in the same manner before and after bidder i changes his

strategies.

A��������	 A4. Winning and losing prices are continuous in all sub-

mitted bids.8 (In conjunction with additive separability, this property implies

joint continuity.)

The proofs that auctions from Example 1 satisfy assumptions A2-A4 are

trivial and hence omitted.

The last assumption requires that there is a weakly increasing upper

bound of strategy b̄i (·) such that in a tie below b̄i (·) , a bidder has an incentive

to bid above the tie, and for any bid above the upper bound there is another

pli,j(b
′

i,j , bi,−j , b−i,R).
7For any b−i ∈ B−i, any bi, b̂i, b

′

i, b̂
′

i ∈ Bi if bi,S = b̂
′

i,S, bi,−S = b̂i,−S, b
′

i,−S = b̂
′

i,−S , and

b′i,S = b̂i,S for some S = {p, p+ 1, · · · , q} ⊂ {1, · · · , k}, then p̃i,j (b,R)− p̃i,j(b̂i, b−i, R) =

p̃i,j (b
′
i, b−i, R)− p̃i,j(b̂

′

i, b−i, R) where p̃i,j (b,R) is p
w
i,j (b,R) when bi,j ≥ max(ck+1−j , R)

and pli,j (b,R) otherwise.
8For any b ∈ Bi ×B−i and any δ > 0 exist ε > 0 such that for all b

′ ∈ Bi ×B−i within

ε, if bi,j ≥ max(R, ck+1−j) and b
′

i,j ≥ max(R, c
′

k+1−j), then |p
w
i,j (b,R)− p

w
i,j (b

′,R) | < δ;

and if max(R, ck+1−j ≥ bi,j) and max(R, c
′

k+1−j) ≥ b
′

i,j , then |p
l
i,j (b,R)−p

l
i,j (b

′, R) | < δ.
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bid below the upper bound that brings at least as high a payoff as the bid

above the upper bound.

A��������	 A5. There is a weakly increasing upper bound strategy

b̄i (·) such that for any values vi and any bids bi of bidder i and for any

strategy of her opponents:

1. no bidder i has an incentive to submit jth bid above b̄i,j (vi),
9 and

2. the ex post winning payoff is greater than the ex post losing payoff if

there is a tie below the upper bound b̄i (·).
10

Specifically, in the auctions in Example 1, no bidder has an incentive to

bid above her value.11 In auctions (5) and (6) a bidder who submits her jth

bid above her jth value has a nonpositive winning or losing jth unit payoff.

Therefore if that bidder bids 0 instead, she is not worse off because her losing

unit payoff is 0. In auctions (2), (4) and (5), a bidder who submits her jth

bid above her jth value when the k + 1− jth highest opponent bid is above

her value has nonpositive winning and losing jth unit payoff. Therefore if

that bidder bids her value instead, she is not worse off because her winning

and losing jth unit payoff is 0. When the k + 1− jth highest opponent bid

is below the bidder’s value and the bidder bids on his value instead of above

the value, then she is better off. In addition, in any of these auctions, if any

9Consider values vi ∈ Vi of bidder i (i = 1, · · ·n), and bids bi ∈ Bi of bidder i. Then

there exists b′i ∈ Bi where b
′

i,j ≤ b̄i,j (vi) for all j = 1, · · · , k such that for any opponents’

bids b−i ∈ B−i ϕi (vi, b, R) ≤ ϕi(vi, b
′

i, b−i, R).
10For any j = 1, · · · k, any vi (i = 1, · · ·n) with vi,j > v̂i,j and any b ∈ Bi × B−i if

bi,j = ck+1−j ∈ [R, b̄i,j (vi,j)), then vi,j − p
w
i,j (b,R) > p

l
i,j (b,R) .

11This assumption is an analog of No dumb bid rule in Jackson and Swinkels (2005).
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bid bi,j below the value is tied with the k+1−jth highest opponent bid, then

the bidder strictly prefers wining the tie to losing it. In simple auctions in

Example 1, the upper bound strategy b̄i,j (vi,j) that fulfills the two properties

can be defined as the value vi,j.

I discuss the last assumption in the Appendix in more detail because it is

not a condition on primitives. Briefly, in lemma 14 and 15 in the Appendix

I formulate two sets of conditions on the winning and losing price functions

under which an auction game satisfies A5. I also illustrate these lemmas are

applicable to a convex combination of simple auctions from Example 1.

I will denote the set of bidder i’s measurable strategies bi (·) : Vi → Bi

with each jth component below or equal to b̄i,j (vi) as Bi and the set of

these measurable strategy profiles as B = ×ni=1Bi. In Sections 3 and 4,

I show the existence of equilibrium in a weakly increasing strategy space

B̂i. The pure strategy space B̂i consists of bi (·) : Vi → Bi such that each

component of bi,j (vi) is a weakly increasing function in every argument vi,j′

(for j, j′ = 1, · · · , k), b̄i,1 (vi) ≥ bi,1 (vi) andmin
(
bi,j (vi) , b̄i,j (vi)

)
≥ bi,j+1 (vi)

for j = 1, · · · , k − 1. The mixed strategy space M̂i is a Borel sigma algebra

generated on a pure strategy space B̂i. The standard results of probability

theory imply that B̂i is a subset of Bi because any bounded weakly increasing

strategy is measurable and that B̂i and M̂i are compact metric spaces (see

Lemma 16 in the Appendix).

When opponents use mixed strategies m−i from M̂−i then we can define

interim payoffs and ex ante pure strategy payoffs to bidder i. They differ

from (8) and (9) only in probability measure of π (vi, b, R) , that is induced
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by m−i instead of b−i (·) . Player i’s ex ante mixed strategy payoff from mi is

πi (mi|m−i (·) , T ) = E (πi (bi (·) |m−i (·) , T )) , (10)

where the expectation is taken over bi (·) that bidder i uses in mixed strategy

mi.
12

Note that i’s payoff is the same for a given distribution of opponent bids

whether it was generated by mixed or measurable opponent strategies. I omit

opponent strategies, reservation price and the tie-breaking rule in the payoff

argument list to simplify notation.

3 TIES ANDTIE-BREAKINGRULEEQUIV-

ALENCE

Let us now investigate the effect of tie-breaking rules on the bidder’s payoff.

In Section 1 I defined a tie from the seller’s point of view. From the bidder’s

point of view, if a tie occurs with probability 0 in equilibrium, then it does

not influence her payoff. When discussing ties below I consider only the ties

that occur with positive probability for a given opponent’s strategies.

Let me demonstrate that for a given opponent’s strategy, the best re-

sponse payoff for a bidder i who bids below her value must be at least as

high as when every tie is broken in her favor. Assume that the seller’s reser-

vation price is 0 and consider a tie in strategies bi,j that occurs with positive

12One can decrease both winning and losing payoff by a fixed amount interpreted as

information costs to each bidder for finding out unit values. It has no effect on the shape

of equilibrium strategies if the costs are not so high to deter any bidder from finding out

this information.
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probability and that is not surely broken in favor of bidder i. If the oppo-

nent’s k+1− jth highest bid is bi,j and the bidder bids bi,j+ε instead of bi,j,

she wins the tied unit surely at a slightly increased price. Since the bidder

ex post prefers winning over losing the tied unit, for small ε her ex post and

therefore interim payoff increases (by a jump) for a set of values of positive

measure. For simplicity assume that the auction price is uniformly continu-

ous in bids and that bidder i submits all her bids ε higher whether there is

a tie or not. Then for sufficiently small ε the ex post and therefore ex ante

auction price paid for any of her units changes negligibly and with negligible

effect on her ex ante payoff. Therefore i’s best response payoff cannot be

worse than her payoff when winning every tie surely.

One important implication of this finding is that there are no ties in

equilibrium for a reasonable tie breaking rules as long as each bidder submits

her jth bid below her jth value. Since every bidder strictly prefers winning

a tie over losing it and since the seller cannot satisfy all tied bids, the bidder

who does not surely win every tie has incentive to increase her strategy by

ε to win the tied unit. I formalize this idea in the following lemma that is

proved in the Appendix.

Lemma 2 Consider a standard multi-unit auction game and opponent mea-

surable strategies b−i (·) ∈ B−i or mixed weakly increasing strategies m−i ∈

M̂i. If there is a tie with positive probability so that it is not broken in the

favor of bidder i with positive probability when using bi (·) ∈ B̂i, then a better

response strategy bεi (·) ∈ B̂i exists than bi (·). Moreover for any measurable

best response bi (·) ∈ Bi the bidder payoff must be at least as high as if every

tie that occurs with positive probability the seller breaks in bidder i’s favor.
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What are the effects of a particular tie-breaking rule on the set of equi-

libria? Lemma 2 shows that no strategy bi (·) with a tie that occurs with

positive probability for given opponent strategies is the equilibrium best re-

sponse. Since at any tie at least one bidder does not win the unit, that bidder

deviates to win the unit. In other words, when searching for equilibrium in

the set of all player profiles one can a priori eliminate the profiles in which

the tie occurs. But no tie-breaking rule influences the payoff at these profiles

without ties. Therefore choosing a particular tie-breaking rule has no influ-

ence on the best response strategy payoff and any equilibrium found for one

rule T is also equilibrium for any other rule T ′.

Theorem 3 Consider the two standard multi-unit auction games that differ

only in a tie-breaking rule Ĝ =< M̂i, ϕi, T >Ni=1 and Ĝ
′ =< M̂i, ϕi, T

′ >.

Ties occur with probability 0 in equilibrium and the set of equilibria of the

game Ĝ coincides with that of Ĝ′.

Proof. Consider a profile m with a tie which occurs with positive prob-

ability. Assume that bidder i strictly prefers winning to losing the tie and

that bidder i loses the tie with positive probability when using bi (·) ∈ B̂i. By

the nature of a tie at least one bidder does not win the unit for any positive

measure of pure strategies bi (·) in the support ofmi. For any such bi (·) there

is a better strategy bεi (·) by Lemma 2 and therefore m is not an equilibrium.

Since the payoff in profiles without ties is independent of using T or T ′, the

set of equilibria coincides for both Ĝ and Ĝ′.

In Section 4 I choose the tie-breaking rule that is the most suitable to

finding the equilibrium strategy profile. This strategy profile is also the
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equilibrium for other tie-breaking rules according to Theorem 3. Let me

illustrate that Theorem 3 is not valid for some discontinuous distributions of

values.

Example 4 Consider a single-unit first-price or single-unit second-price auc-

tion with two bidders and a zero reservation price. The first bidder has a value

of 1, and the opponent’s value is distributed uniformly on (1, 2] . If the seller

uses the tie-breaking rule that surely breaks the ties in favor of the second

bidder, there exists an equilibrium in which both bidders bid surely 1. But it

is not an equilibrium if the seller breaks the tie randomly because the second

bidder is strictly better off if bidding 1 + ε for a sufficiently small positive ε.

Moreover Lebrun (1996), in his footnote 1, shows that no equilibrium exists

for this first-price auction with the random rule.

Please note that I do not restrict the seller in the type of information

he uses for breaking ties. Therefore the game in which the seller breaks ties

according to the bidder values has the same equilibria as the game with the

random rule. This game does not have the same informational structure as

the game that is understood as an auction in the literature because it gives

the seller complete information about the bidder values if a tie occurs. But

the definition of the game in Section 2 ensures that if no tie occurs the only

information the seller uses for the allocation of units are the submitted bids,

as is standard procedure in the auctions literature. This is utilized in Section

4.
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4 THEEXISTENCEOFANEQUILIBRIUM

IN A RESTRICTED STRATEGY SPACE

In this section I show the existence of an equilibrium in an auction game with

a restricted set of strategies on weakly increasing functions. One possible way

of showing the existence of equilibrium in this setting used in Jackson and

Swinkels (2005) is to apply the theorem by Jackson, Simon, Swinkels and

Zame (2002). Roughly speaking, their theorem claims the existence of a

tie-breaking rule which ensures equilibrium. In my paper I present another

approach to this problem. These authors first extend the game definition

to incorporate various “endogenous tie-breaking rules” and game outcomes.

They ultimately, however, restrict their attention to auction games in which

the tie-breaking rule is irrelevant. In a sense, I go a different but closely

related route.

Since the tie-breaking rule is irrelevant as I have shown in Section 3, In

my approach I apply ideas from standard existence results by Dasgupta and

Maskin (1986), Reny (1999), and Simon (1987). Specifically, I construct a

specific tie-breaking rule T e called the efficient tie-breaking rule for which

the existence of equilibrium is guaranteed by Reny (1999). The efficient tie-

breaking rule T e maximizes the sum of bidder ex post payoffs when a tie

occurs. This rule thus awards the tied unit to the bidder who values the

unit the most. Following this rule, the sum of bidder’s payoffs is upper semi-

continuous and the payoff function is “payoff secure” (Reny (1999)) in the

sense of a specific bidder being able to guarantee herself almost the same

payoff if her opponents change their strategies slightly. These properties are
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sufficient for the existence of equilibrium.

The following definition formulates a specific tie-breaking rule for the

seller when a tie occurs.

Definition 5 Let us call efficient tie-breaking rule T e the rule in which the

seller breaks any tie in favor of bidder i who gets a higher ex post payoff than

his opponents −i from winning the tied unit. If there is a tie in bids and ex

post payoffs are equal, then the tie is broken randomly.13

The efficient tie-breaking rule requires, unfortunately, the seller to have

private information about the values of the bidders. This assumption does

not reflect real-life auctions well and is indeed not used in the literature.

Fortunately, the fact that the efficient tie-breaking rule is not implementable

is not crucial because the equilibrium strategies remain in equilibrium for

any tie-breaking rule, in particular the standard random one.

Definition 6 The ex ante payoff function πi (m,T,R) is payoff secure at

profile m ∈ M̂ if for every δ > 0, player i has a strategy m′
i that satisfies

lim inf
m′′

−i
→m−i

πi(m
′
i,m

′′
−i, T, R) ≥ πi(m,T,R)− δ. (11)

The function πi(m,T,R) is payoff secure if it is payoff secure for every m ∈

M̂ .14

13When A1 is used, ties in values occur with probability 0 and do not influence the

payoff.
14Since πi (m,T ) is linear in mi, it is sufficient to check the local payoff security for each

pure strategy bi ∈ Bi of bidder i and any opponent mixed strategies m−i ∈M−i.
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Definition 6 requires that bidder i’s best response payoff does not de-

crease by a jump even if the opponents change their strategies slightly. If the

opponents increase their strategies slightly, then bidder i loses all ties that

occurred before the opponents’ increase in strategies and i’s payoff jumps

down. However, if bidder i increases his strategy by a sufficiently small ε, his

payoff is negligibly smaller than the payoff from winning all ties by Lemma

2. In addition, no new tie occurs for suitable ε and the “out-of-ties” payoff is

continuous in opponent bids b−i by A4. Therefore the auction game payoff

satisfies Definition 6. For more details see Lemma 17 in the Appendix.

Now let us examine the upper semi-continuity of the bidder’s payoff sum.

Definition 7 The standard auction payoff is summation upper semi-continuous

if for any profilem and any sequencem′ → m from M̂ lim
m′→m

sup
∑

i πi(m
′, T,R) ≤

∑
i πi(m,T,R).

The theorem by Reny (1999) must be applied carefully to auctions with

the random tie-breaking rule T r because their payoff are not summation

upper semi-continuous in ties. This is shown in the following example.15

Example 8 Assume that there are two bidders and two units for sale (k = 2)

in the uniform-price auction, and consider a realization of agent values and

bids such that v2,2 > v1,1, b2,1 > b2,2 = b1,1 > b1,2 > R and b1,1 is the first

rejected bid. Now fix all values and bids except the second bid of bidder 2

and examine the sequence of strategies when b+2,2 approaches b1,1 from above.

15The auction game does not satisfy “complementarity discontinuity property” intro-

duced by Simon (1987) that requires some player’s payoff jump up whenever some other

player’s payoff jumps down.
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Along the sequence bidder 2 wins v2,2 but at the limit (lim b+2,2 = b1,1) the seller

breaks this tie randomly between bidder 1 and 2 giving them value
v1,1+v2,2

2
on

average. At the limit the price is the same and the payoff sum difference is

1

2
· (v1,1 − b1,1)−

1

2
·
(
v2,2 − lim b

+

2,2

)
=
v1,1 − v2,2

2
< 0. (12)

In this case the payoff sum jumps down. If this situation occurs with positive

probability, then
∑

i πi (m,T
r, R) is not upper semi-continuous (see Billings-

ley (1968)).

If the seller uses an efficient tie-breaking rule, then the auction payoff is

summation upper semi-continuous because the payoff cannot jump down at

ties and the “out-of-ties” sum of payoffs is continuous by A4.16 For more

details see Lemma 18 in the Appendix.

Now using the efficient rule, I can show that a mixed strategy equilibrium

exists.

Theorem 9 Consider a standard auction with the efficient tie-breaking rule

Ĝe =
〈
M̂i, ϕi, T

e
〉n

i=1
k units for sale and n bidders. Then a mixed strat-

egy equilibrium m∗ exists in Ĝe. Moreover if the bidders are symmetric, a

symmetric equilibrium exists.

Proof. Using Lemma 16 it is clear that M̂i is compact metric spaces. In

addition, mixed strategy payoff (10) is bounded from above because Vi is

bounded, payoff secure and summation upper-semi continuous (see Lemma

16In the example 8, T e1,1 (b1, b2, v) = 0 and T
e
2,1 (b1, b2, v) = 1. Therefore the expression

(12) is equal to 0 if a tie b2,2 = b1,1 occurs because v2,2 > v1,1.
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17 and 18 in the Appendix). Then Reny (1999, Proposition 5.1 and Corollary

5.2 of the Theorem 3.1) shows that the equilibrium exists.

Symmetric bidders choose their strategies from the same strategy set M̂i,

and i’s payoff does not depend on the permutation of the opponents’ strate-

gies.17 Since symmetry is a weaker condition than quasi-symmetry, payoff

security is a weaker condition than the payoff security along the diagonal and

payoff is continuous when all bidders use the same strategy from M̂i, one can

use Proposition 5.1 and Corollary 5.3 of the theorem 4.1 in Reny (1999) to

show that the game possesses a symmetric equilibrium.

Theorems 3 and 9 imply the following corollary.

Corollary 10 In a standard auction game Ĝr =
〈
B̂i, ϕi, T

r
〉n

i=1
with the

random tie-breaking rule consistent, mixed equilibrium m∗ exists.

Corollary 10 shows that equilibrium in weakly increasing strategies exists

for the random tie-breaking rule. In the next section I will show that any

other measurable strategy cannot be better off. The equilibrium with random

tie-breaking rule may not exist for discontinuous valuations if there is a tie

that a specific bidder wins or loses with probability 1 or 0 in equilibrium with

efficient tie-breaking rule as illustrated in Example 4.

It seems possible to generalize Theorem 9 to discontinuous distributions

of values although it requires specific restrictions specific for each multi-unit

auction format so that the results by Lebrun (1996) and some of the results

by McAdams (2006) when bidder’s signals are independent and private and

17∀mi ∈ Mi,∀m−i,m
′

−i ∈ M−i such that ∀i
′∃i′′ mi′ = m′

i′′ : πi (mi,m−i, T ) =

πi(mi,m
′

−i, T ) for more details see Reny (1999).
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valuations are increasing in own signal and non-decreasing in others’ signals

can be incorporated; the proof however exceeds the scope of this paper. An

intuitive argument is that in auctions 1-4 of Example 1 the bidder who bids

her value is indifferent between winning or losing a tie because she has a

zero payoff anyway. In the proof of Lemma 2 I ruled out ties in which a

bidder submits a high bid equal to her value since it is a probability zero

event for continuous distributions. In the case of discontinuous distributions

one can realize that in such a tie the bidder’s ex post payoff is continuous in

her bids, and hence payoff secure. A seller who uses an efficient tie-breaking

rule breaks the tie in favor of the bidder with highest payoff, thus making

bidders’ payoff summation upper semi-continuous.

These properties are sufficient to extend Theorem 9 for auction games

with efficient tie-breaking rule when bidders’ valuation distributions are not

continuous (see Example 4). Unfortunately, Theorem 3 is not valid for all

discontinuous valuation distributions.

One can however restrict the valuation distributions in such a way that

in any mass point above the reservation price in the support of the jth value

marginal distribution, the probability that k − j or more opponents’ values

are above or equal to vi,j is less than 1. This implies that for any mass point

value vi,j the bidder i has a positive probability of winning in a pay-your-

bid auction because all opponents bid at most their values. Therefore it is

a better response to bid vi,j − ε instead of vi,j for a bidder with value vi,j

and sufficiently small ε. Then in equilibrium there is no tie (occurring with

positive probability) that a specific bidder wins or loses with probability 1 or

0 and Corollary 10 holds (see Reny (1999) for an alternative proof). Similar
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restrictions are specific for other multi-unit auction games.

5 EQUILIBRIUMEXISTENCE INMEASUR-

ABLE STRATEGY SPACE

In this section, I show first that the mixed equilibrium strategies in the space

of weakly increasing strategies M̂ identified in Section 4 are pure or can be

changed to be pure. The pure strategy is the best response whenever the

mixed is and yields the same distribution of bidder’s bids, and hence, the

opponents face the same decision-making problem. These pure strategies

form an equilibrium in measurable strategy space or even if each bidder i

chooses his strategy after knowing his values vi.
18 Such a “purification” can

be made in other games with private value information Khan and Sun (1995),

Radner and Rosenthal (1982), and Milgrom and Webber (1985).

I then show that for any equilibrium in mixed or measurable strategies

exists equilibrium in pure weakly increasing strategies with the same bid

distributions. Therefore any specific property of auctions that depends on

the equilibrium distribution of bids and that is valid for the set of all equilibria

in pure weakly increasing strategies must be valid for all mixed equilibria.

This result was discussed in McAdams (2006) for multi-unit uniform price

auctions. Finally I show that, if the ex post auction price paid by bidder i

is strictly increasing in his bids (e.g. in the case of all-pay and pay-your-bid

auctions, and their convex combinations), then the equilibrium strategy is

18In other words, they form an equilibrium in behavioral strategies discussed in Lizzeri

and Persico (2000) if one would extend behavioral strategies to multi-unit auctions.
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pure and weakly increasing in bidder values. For other auction formats in

the class investigated here, mixed or decreasing equilibrium strategies are

possible.

Consider a mixed or measurable best response strategy in a single-unit

auction and let me denote Gi (bi) the distribution of bidder i’s bids and

Fi (vi) the distribution of her values . Then G
−1
i (Fi (·)) is the pure weakly

increasing strategy generating the same distribution of bids. Moreover, it is

the best response strategy. Intuitively, if a bidder i for value v′i prefers to bid

b′i instead of bi < b′i, then the bidder’s interim surplus difference when bidding

b′i and bi is positive. For all vi above vi the sign of interim surplus difference

when bidding b′i and bi must be the same because the winning and losing

prices when bidding b′i and bi are independent of vi, and therefore change

in interim surplus difference is v′i − vi times the difference in probability

of winning when bidding b′i and bi that is not negative. Therefore, if the

best response is decreasing, then the probability of winning, and winning

and losing prices are the same whether the bidder bids b′i or bi. This implies

that every interim best response is either unique or any bid between two best

response bids is also the best response with the same probability of winning

and payment.

For a multi-unit auction one can construct the pure weakly increasing

best response strategy generating the same distribution of bids along one

dimension. After iterating this process along different strategies one gets a

strategy that is the pure weakly increasing best response strategy generating

the same distribution of bids along all dimensions.

The following proposition is proven in the Appendix; it shows that instead
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of a mixed or nonincreasing best response a bidder can use a pure weakly

increasing strategy that yields the same payoff to her and that generates the

same distribution of her bids as the mixed or nonincreasing best response.

Proposition 11 In a standard auction consider the best response mi ∈ M̂i

(or bi (·) ∈ Bi) to any opponent equilibrium strategy m−i ∈ M̂−i (or b−i (·) ∈

B−i) . Then a weakly increasing strategy b̂i (vi) ∈ B̂i exists such that

1. b̂i (vi) are the interim best response for any value vi up to the measure

zero set, and

2. the distributions of bids generated by strategies b̂i (·) and mi (or bi (·))

are the same.

Moreover if pwi,j (·) strictly increases in bi,j, then any two pure best response

strategies bi (vi) ∈ B̂i are the same for values that win with positive probabil-

ity up to the measure zero subset and any measurable best response strategy

bi (·) ∈ Bi is weakly increasing for values that win with positive probability up

to the measure zero subset.

The second part of Proposition 11 says that the best response strategy

is pure weakly increasing in all-pay and pay-your-bid auctions where the

winning price of the jth unit strictly increases in jth unit bid. The first

part of Proposition 11 says that for other standard auctions a mixed or

nondecreasing measurable best response can be modified to be pure weakly

increasing. This “purification” result is known for special cases from other

studies of auctions (Engelbrecht-Wiggans and Kahn (1995a), and Lizzeri and

Persico (1996)). Intuitively, if a bidder i for value v′i,j prefers to bid b
′
i,j instead
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of bi,j < b′i,j, then the bidder’s interim surplus difference when bidding b′i,j

and bi,j is positive. For all vi,j above v
′
i,j the sign interim surplus difference

when bidding b′i,j and bi,j must be the same because the winning and losing

prices when bidding b′i,j and bi,j are independent of vi,j, and therefore change

in interim surplus difference is vi,j − v
′
i,j times the difference in probability

of winning when bidding bi,j and b
′
i,j that is not negative. Therefore, if the

best response is decreasing, then the probability of winning, and winning and

losing prices are the same whether the bidder bids bi,j or b
′
i,j. This implies that

there exists an interim best response that is weakly increasing. Moreover,

one can choose such an interim best response that preserves the distribution

of bids.

An implication of Proposition 11 is that for a given valules and opponent

strategies the interim best response bids b̂i (vi) that are weakly increasing in

values exist (up to a measure zero subset of values). They form an equilibrium

not only in mixed strategy space but also in the game in which each bidder

knows his values vi at first, and then selects an optimal bid list bi ∈ B or

a probability distribution over the bid set B. Such an auction structure is

more intuitive and indeed typically used in the auction literature.

Theorem 12 In the standard multi-unit auction game, equilibrium b̂ (·) in

measurable strategy space exists such that all bidders use weakly increasing

strategies (b̂i (·) ∈ B̂i for i = 1, · · · , n).

Proof. Fix the equilibrium m∗ in the weakly increasing strategies from

Theorem 9. The weakly increasing strategy b̂i (vi) constructed in Proposition

11 is the best response for every vi, and hence no measurable best response
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is better. Since strategy b̂i (vi) preserves the distribution of bids, the profile

b̂i (·) , m̂
∗
−i forms an equilibrium. After changing the opponent strategies to

b̂−i (·) , the weakly increasing equilibrium b̂ (·) in measurable strategy space

is constructed. It is an equilibrium even if each bidder chooses her bids after

knowing her values.

Theorem 12 does not show that every equilibrium in weakly increasing

strategies is pure. But the same steps as in the proof of this theorem can

be done for any other best response. In any mixed equilibrium all bidders

can change their strategies to form equilibrium in pure strategies. In any

measurable equilibrium all bidders can change their strategies to form weakly

increasing equilibrium. In the newly formed equilibrium no bidder faces any

change in her strategic considerations and they have the same payoffs. This

property is valid for all equilibria in standard auctions with the random tie-

breaking rule that I summarize in the following corollary.

Corollary 13 Consider the standard multi-unit auction with a random tie-

breaking rule. Then any mixed weakly increasing equilibrium strategy mi ∈

M̂i can be rearranged to be pure, and any measurable equilibrium strategy

bi (·) ∈ Bi can be rearranged to be weakly increasing in such a way that the

bid distribution is not changed. Moreover if pwi,j (·) increases in bi,j, then

every mixed best response below b̄ (vi) is pure on values that win with positive

probability and every measurable best response below b̄ (vi) is weakly increasing

on values that win with positive probability.

An implication of this feature is that any possible equilibrium bid distri-

bution is generated by weakly increasing equilibrium strategies. That is why
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the results of studies that focus only on pure weakly increasing equilibrium

strategies in auctions are valid also for equilibria in other strategy spaces.

6 CONCLUSION

In this paper I have shown that in multi-unit auction games the disconti-

nuities in payoffs are of a special form that allow to prove the existence of

equilibrium in a straightforward manner. The key argument is that each bid-

der can bid in such a way that she wins any tie. Of course, the seller in an

auction can not give units to all tied bidders. Since bidders are aware of the

relevant tie-breaking rule, they adopt strategies that guarantee that no tie

occurs in equilibrium with positive probability. Therefore, the equilibrium

strategies in auction games secure payoffs as high as when winning all ties

surely even if opponents change their strategies slightly.

For continuous distributions of values the tie-breaking rule that the seller

uses does not matter. Even the efficient tie-breaking rule will not affect the

set of equilibrium strategies. The game with this rule is payoff secure and

summation upper semi-continuous and an equilibrium in weakly increasing

strategies exists. Since the distributions of values are independent Propo-

sition 11 guarantees that for any equilibrium strategy a bidder can use a

pure weakly increasing best response strategy having the same payoff and

distribution of bids. This allows to “purify” the equilibrium.

The set of weakly increasing equilibria is a representative subset of all

equilibria for standard auctions with continuous distributions of values. This

means that to study all possible equilibrium bid distributions one can re-
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strict one’s attention to weakly increasing strategy spaces. The fact that the

existence of equilibrium is independent of choosing a specific tie-breaking

rule that allows one to eliminate strategies with ties seems to be fairly in-

tuitive and applicable to other games that are payoff secure. The auction

game with an efficient tie-breaking rule is a special case of the “augmented”

auction game discussed in Lebrun (1996). and Jackson, Simon, Swinkels and

Zame (2002).

In this paper I present a unified approach to characterizing the equilib-

rium set of a large class of private value multi-unit auctions (cf. Lizzeri and

Persico (2000) in single unit auctions). The approach proposed here allows us

to understand exactly what assumptions are necessary to obtain an equilib-

rium strategy with the desirable features for private value auctions and even

for some unusual combinations of auctions satisfying assumptions A1-A5.

One more challenging question is of how to extend the existence result

presented in Theorem 9 to auctions with common value elements. Real-life

auctions tend to have features of private and common values. Although

in common value auctions a bidder does not know her value exactly, she

typically prefers winning to losing a tie. By reasoning similar to the one

applied in this article one might conjecture that the bidder can always bid

in such a way as to assure herself of winning the tie implying no tie in

equilibrium.
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7 APPENDIX

Let me discuss the conditions on primitives that are sufficient for the existence

of a specific upper bound b̄i,j (vi) used in assumption A5 in Section 2. The

following two lemmas formulate simple conditions on winning and losing price

functions that guarantee the existence of an upper bound b̄i,j (vi) and that

are applicable to all auctions in example 1.

Lemma 14 Let us assume that there exists strictly increasing continuous

strategy b̃i (·) ∈ Bi such that if bi,j is tied, then p
w
i,j (b) − pli,j (b) = b̃−1i,j (bi) .

Then b̃i (·) is an upper bound satisfying A5.

Proof. First realize that for every vi and bid bi ∈ Bi below b̃i (vi), each

bidder strictly prefers winning to losing a tie because in ties pwi,j (b)−p
l
i,j (b) =

b̃−1i,j (bi) < b̃−1i,j

(
b̃i (vi)

)
= vi,j where the inequality is valid because b̃i,j (·) is

strictly increasing. Therefore vi,j − pwi,j (b) > −pli,j (b) and the second point

of A5 is satisfied.

Let us fix vi and bi where bi exceeds b̃i (vi) in at least one component. We

can then show that a new bid vector b̃i =
[
min

(
bi,j, b̃i,j (vi,j)

)]k

j=1
makes the

bidder at least as good as bi. A bid k-tuple b̃i is an element of feasible bid set

Bi because bi and b̃i (vi) are elements of Bi. I will proceed by induction in a

bid component showing that in each step to bid
[
bi,1, · · · , bi,j, b̃i,j+1, . . . , b̃i,k

]

is at least as good as to bid
[
bi,1, · · · , bi,j, b̃i,j+1, . . . , b̃i,k

]
. Let me start with

j = k. It is oblivious that a bidder’s payoff is the same when bi,j = b̃i,j.

Let me focus on the opposite case when bi,j > b̃i,j. If both b̃i,j and bi,j ei-

ther win or lose jth unit, then the bidder is not worse off because decreas-

ing the jth unit bid weakly decreases the price by A2, and hence, bidding
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bi,j is at least as good as bidding b̃i,j. Otherwise bi,j wins a unit but b̃i,j

does not. In this case there exist a tied bid b′i,j ∈
[
b̃i,j, bi,j

]
and I denote

b̃
j
i =

[
bi,1, · · · , bi,j−1, b

′
i,j, b̃i,j+1, . . . , b̃i,k

]
. In such a tie, bidder i weakly prefers

to lose than to win because pwi,j

(
b̃
j
i , b−i

)
− pli,j

(
b̃
j
i , b−i

)
= b̃−1i,j

(
b̃
j
i , b−i

)
≥

b̃−1i,j

(
bi,1, · · · , b̃i,j, . . . , b̃i,k

)
= vi,j. By assumption A2 the following chain of

inequalities can be derived

−pli,j

(
b̃i,j, b̃

j
i,−j, b−i

)
≥ −pli,j

(
b̃
j
i , b−i

)
≥ vi,j−p

w
i,j

(
b̃
j
i , b−i

)
≥ vi,j−p

w
i,j

(
bi,j, b̃

j
i,−j, b−i

)

This chain says that after decreasing her bid to b̃i,j the losing price makes

the bidder at least as well off as if bidding b′i,j and that after increasing her

bid to bi,j the winning price does not make her better off than if bidding b
′
i,j.

Repeating induction steps until j = 0 one concludes that bidding b̃i is at

least as good as bidding bi. In other words, no bidder has an incentive to bid

above b̃i,j (vi,j) . By implication b̃i,j (vi,j) satisfies the second point of A5.

For the linear combination of auctions in example 1 the winning price in

ties is pwi,j (b) = bi,j and the losing price in ties is p
l
i,j (b) = λa ·bi,j. Therefore if

0 ≤ λa < 1, then a strictly increasing continuous strategy to that lemma 14 is

applicable is [(1− λa) · bi,j]
k

j=1
.For all-pay auctions when λa = 1, winning and

losing prices are equal in ties pwi,j (b) = bi,j = pli,j (b), and therefore b̃i,j (vi,j) =

0 which is not strictly increasing. For such an auction the following lemma

is applicable.

Lemma 15 Let us assume that there exists a strictly increasing continuous

strategy b̃i (·) ∈ Bi and K ≥ 0 with the following properties:

1. pwi,j (b)− p
l
i,j (b) ≤ b̃−1i,j (bi) if bi,j is tied,
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2. vi,j +K ≤ pwi,j

(
b̃i,j (vi,j) , bi,−j, b−i

)
and K ≤ pli,j

(
b̃i,j (vi,j) , bi,−j, b−i

)
,

3. pwi,j (0, bi,−j, b−i) ≤ K and pli,j (0, bi,−j, b−i) ≤ K, and

4. For any submitted bids of all bidders and any pair of equal bids of bidder

i that both either win or lose, the price of the unit with the higher index

value is lower or equal to the price of the unit with the lower index

value; i.e. winning and losing prices are weakly decreasing in the unit

number. 19

Then b̃i (·) is an upper bound satisfying A5.

Proof. First realize that for every vi and bid bi ∈ Bi below b̃i (vi) each

bidder strictly prefers winning to losing a tie because in ties pwi,j (b)−p
l
i,j (b) ≤

b̃−1i,j (bi) < b̃−1i,j

(
b̃i (vi)

)
= vi,j where the second inequality is holds because

b̃i,j (·) is strictly increasing. Therefore vi,j−p
w
i,j (b) > −p

l
i,j (b) and the second

point of A5 is satisfied.

Let me construct a sequence of bid k-tuples b̃mi =
[
b̃mi,j

]k

j=1
with initial

b̃0i = bi. Then if b̃
m
i,j ≤ b̃i,j (vi) for all j the iteration process stops and b̃

m
i is at

least as good as bi and b̃i,j (vi,j) satisfies the second point of A5; otherwise I

take the highest unit number j for that a bidder submits a bid above b̃i,j (vi)

(b̃mi,j > b̃i,j (vi)) and show that if a bidder bids min (0, bi,k) instead of b̃
m
i,j, then

she is not worse off. In the new bid k-tuple bids b̃mi,j+1, · · · , b̃
m
i,k correspond to

units vi,j, · · · , vi,k−1; i.e. b̃
m+1
i =

[
b̃mi,1, · · · , b̃

m
i,j−1, b̃

m
i,j+1, · · · , b̃

m
i,k,min (0, bi,k)

]
.

Let me decompose a change from b̃mi to b̃
m+1
i into the following steps

19For any b ∈ Bi × B−i and any j
′ = 1, · · · , j if bi,j′ = bi,j ≥ max(ck+1−j , R), then

pwi,j′ (b) ≤ p
w
i,j′+1 (b) ≤ · · · ≤ p

w
i,j (b) and if bi,j′ = bi,j ≤ max(ck+1−j′ , R), then p

l
i,j′ (b) ≤

pli,j′+1 (b) ≤ · · · ≤ p
l
i,j (b) .
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b̃mi =
[
b̃mi,1, · · · , b̃

m
i,j, · · · , b̃

m
i,k

]

[
b̃mi,1, · · · , b̃

m
i,j−1, b̃

m
i,j+1, b̃

m
i,j+1, b̃

m
i,j+2 · · · , b̃

m
i,k

]

...
[
b̃mi,1, · · · , b̃

m
i,j−1, b̃

m
i,j+1, · · · , b̃

m
i,j+s, b̃

m
i,j+s, · · · , b̃

m
i,k

]

...
[
b̃mi,1, · · · , b̃

m
i,j−1, b̃

m
i,j+1, · · · , b̃

m
i,k−1, b̃

m
i,k, b̃

m
i,k

]

b̃m+1i =
[
b̃mi,1, · · · , b̃

m
i,j−1, b̃

m
i,j+1, · · · , b̃

m
i,k,min (0, bi,k)

]

Along the k-tuple bid sequence above, a bid on the j+ s− 1st unit drops

from b̃mi,j+s−1 to b̃
m
i,j+s for s = 1, · · · , k − j and in the last step b̃mi,k drops to

min (0, bi,k) . Using the 4th property of the preceding lemma, the fact that the

marginal value from winning an additional unit weakly decreases (vi,j ≥ vi,j′

if j < j′), and A2, it is obvious that if the bidder bids b̃mi,j+s on the j+s−1st

unit, she is not worse off than if she bids b̃mi,j+s on the j + sth unit because

ck+2−j−s ≥ ck+1−j−s. Moreover, the payoff from bidding b̃mi,j on the jth unit

yields a payoff less than −K by the second property of the preceding lemma.

By the 3. property of the preceding lemma, this payoff is at least as good

as bidding min (0, bi,k) on the kth unit. Therefore bidding b̃
m+1
i is at least as

good as bidding b̃mi which completes the proof.

For all-pay auction combinations with pay-your-bid, uniform-price and

Dutch auctions of example 1 (λa + λp + λu + λd = 1) lemma 15 is applicable

forK = 0 and b̃i,j (vi) = vi,j. The Vickrey auction cannot be included because

the 4th property of the preceding lemma is too restrictive.

Lemma 16 Pure strategy spaces B̂i and M̂i are compact metric spaces.
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Proof. It is a standard result of probability theory that the set of prob-

ability distribution functions Pi = {ωi : Vi → [0, 1]} is a compact metric

space in the topology of almost everywhere pointwise convergence for any

i = 1, · · · , n. There is a one-to-one mapping from Pi to the set of weakly

increasing functions B̂i = {bi : Vi → [0, v̄i]} and, therefore, it is a compact

metric space in which two strategies are considered to be identical if they are

equal almost everywhere with respect to Lebesgue measure similarly as in Lp

spaces. From Billingsly (1968) we know that if B̂i is a compact metric space,

then the set M̂i of Borel probability measures on B̂i is a compact metric

space.

Proof of Lemma 2. Consider a profile bi (·) ,m−i or bi (·) , b−i in which

a tie that the bidder loses with positive probability occurs with positive

probability. Let me denote any bid for which a tie occurs as bi,j (for some

i = 1, · · · , n and j = 1, · · · k). For simplicity let me at first analyze the case

that bi,j−1 > bi,j > bi,j+1 in the tie.

Consider the set of values for which the bidder i is indifferent between

winning and losing a tie when she bids bi,j, and the tie is not broken in

her favor surely. Since bi (·) ∈ B̂i, then the set of such values is empty or

has measure zero because the distribution of values is continuous by A1 and

the bidder strictly prefers winning to losing for bids strictly below strictly

increasing upper bound b̄i,j (·) by the second point of A5, and, therefore, I

can neglect it.

Consider the set of values vi for which the bidder strictly prefers winning

the tied unit to losing it when she bids bi,j, and the tie is not broken in her

favor surely. If instead the tie is surely broken in her favor for any vi from
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this set, her ex ante payoff jumps up. The bidder who increases her bids

on jth unit by a sufficiently small ε is better off because she wins the tied

unit surely and her ex post payoff (1) is negligibly smaller than if winning

the unit at the tie by A4 and A2 and, hence, bi,j + ε = bεi,j (vi) is a better

response than bi,j. Since the bidder uses strategy bi (·) from B̂i, then for any

such vi there exists sufficiently small ε such that bi,j + ε ≤ b̄i,j (·) because

b̄i,j (·) is strictly increasing by A5. Moreover the bidder may be forced to

increase her bids for other values for that she submits jth bid in the interval

(bi,j, bi,j + ε) . But for sufficiently small ε the set of these values is arbitrarily

small having negligible contribution on the ex ante payoff by A2 and A1 and,

hence bεi (·) ∈ B̂i.

If it happens that bi,j = bi,j+1 = · · · = bi,j′ in the tie, then the bidder can

also increase her bids on j + 1st, · · · , j′th units in the interval (bi,j, bi,j + ε).

Using the same arguments as for the jth unit bid, the payoff either jumps

up (if some of the bids bi,j = bi,j+1 = · · · = bi,j′ are tied) or it has negligible

effect for sufficiently small ε on the bidder’s payoff by A5, A4, A2 and A1.

Moreover bεi (·) is still in B̂i because b̄i,j (·) ≤ b̄i,j+1 (·) ≤ · · · ≤ b̄i,j′ (·) by A5.

In other words for all ties that occur with positive probability in a strategy

profile each bidder strictly prefers to increase her strategy, she does so and

as ε → 0 she gains the payoff arbitrarily close to the payoff when breaking

every tie into her favor.

To finish Lemma 2 it is necessary to check that if any tie occurs with

positive probability there is an ε for which no new tie occurs after the bidder

changes the tied strategy by ε. By the standard results of probability theory

each bidder places ex ante positive probability on at most countably many
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bids. Then there is at most countably many ties in any original strategy

profile and for at most countably many ε a tie occurs in the new profile after

one bidder increases his strategy by ε.

Lemma 17 The payoff in an auction game with any tie-breaking rule con-

sistent with ex post payoff (1) and assumptions A1, A4, A6 and A5 is locally

payoff secure (see definition 6).

Proof. Consider any bi (·) ∈ mi in any profile m ∈ M̂ . Let me define bεi (·)

to be bi (·) if no tie occurs when using bi (·) , m−i and the strategy constructed

in lemma 2 otherwise. Then πi(b
ε
i (·) ,m−i) ≥ πi(bi (·) ,m−i) and no tie occurs

when using bεi (·) , m−i whether there is a tie in bi (·) , m−i or not.

Using the standard results of probability theory (e.g. in Billingsley (1968))

for any sequence m′′
−i → m−i limm′′

−i
→m−i

πi(b
ε
i (·) ,m

′′
−i) = πi(b

ε
i (·) ,m−i) be-

cause the ex post “out-of-ties” payoff is continuous in opponent strategies by

A4.

Combining the two findings above, (11) is valid for any pure strategy

bi (·) ∈ mi, and, therefore, for any mixed strategy mi (see footnote 14).

Lemma 18 An auction game with the efficient tie-breaking rule satisfying

assumptions A1, A4 and A5 is summation upper-semi continuous (see defi-

nition 7).

Proof. Consider any realization of values v = [vi]
n

i=1 of all bidders. Us-

ing their chosen strategy the bidders submit bids b and receive total payoff
∑

i πi (vi, b, R) . At first I show that for any sequence of bids b
′ → b the ex

post payoff sum is upper-semi continuous.
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If the set of winning and losing bids in the limit of b′ is the same as in b,

the allocation of units is the same and
∑

i πi (vi, b,R) is continuous because

the ex post price is continuous by A4. If the set of winning and losing bids

in the limit of b′ is not the same as in b, units might be allocated to different

bidders (see Example 8). But the efficient tie—breaking rule maximizes the

payoff sum at b and therefore it cannot be below the payoff sum in the limit

of b′ by A4.

If the bidder uses mixed strategies, and one takes expectations over all

realizations of values v (see Billingsley (1968)), the upper-semi continuity of

the sum of bidder payoffs is preserved. For an alternative proof see Wagner

(1977).

Proof of the proposition 11. For any measurable strategy bi (·) for all vi

(up to a measure 0 subset), bi (vi) must be the pointwise best response bi (vi)

can be improved upon. Similarly for any pure strategy bi (·) from the support

of the mixed equilibrium strategymi (up to a measure 0 subset) for all vi (up

to a measure 0 subset), bi (vi) must be the pointwise best response otherwise

mi can be improved upon. In addition, no tie occurs with positive probability

by lemma 2 when using bi (·) . Therefore the pointwise payoff from bi (vi) is

independent of the way the seller breaks the ties for all vi (up to a measure 0

subset). Without a loss of generality I will assume that bidder i wins every

tie surely. Then his pointwise payoff (8) given the opponent strategies and

reservation bid R is
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πi (vi, bi) =
∑

1≤j≤k

E
((
vi,j − p

w
i,j (b)

)
· I (bi,j ≥ max (ck+1−j, R))

)
−

∑

1≤j≤k

E
(
pli,j (b) · I (max (ck+1−j, R) > bi,j)

)
. (13)

At first let me show that for any two values vi and v′i from Vi with

vi,j ≥ v′i,j for some j = 1, · · · , k and their pointwise best response bids bi

and b′i from Bi with bi,j < b′i,j, the probabilities of winning of jth unit are the

same for any jth bid between bi,j and b
′
i,j.

Consider any j such that bi,j < b′i,j and let p and q (1 ≤ p ≤ j ≤ q) be

the smallest and largest j such that bi,p < b′i,p, · · · · · · , bi,j < b′i,j, · · · , bi,q <

b′i,q. The following bids b̂i =
(
bi,1, · · · , bi,p−1, b

′
i,p, · · · , b

′
i,q, bi,q+1, · · · , bi,k

)
and

b̂′i =
(
b′i,1, · · · , b

′
i,p−1, bi,p, · · · , bi,q, b

′
i,q+1, · · · , b

′
i,k

)
have weakly increasing com-

ponents and hence are elements of Bi because bi and b′i are elements of

Bi and because of the following inequality strings bi,p−1 ≥ b′i,p−1 ≥ b′i,p,

b′i,q > bi,q ≥ bi,q+1, b
′
i,p−1 ≥ b′i,p > bi,p and bi,q ≥ bi,q+1 ≥ b′i,q+1.

Then the following best response ex ante inequalities are true

πi(vi, bi) ≥ πi(vi, b̂i) and πi(v
′
i, b

′
i) ≥ πi(v

′
i, b̂

′
i). (14)

After summing (14), substituting (13) and using A3 one gets,

∑

p≤j′≤q

(
v′i,j′ − vi,j′

)
·
(
Pj′ (bi,j′)− Pj′

(
b′i,j′
))
≥ 0, (15)

where Pj′ (b) is the probability that the bidder i wins j
′th unit when he

submits bid b on that unit above R.

Since the probability of winning a unit Pj′ (b) is weakly increasing in i’s

j′th bid and bi,j′ > b′i,j′ for j
′ = p, · · · , q by definition, the terms Pj′ (bi,j′)−
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Pj′
(
b′i,j′
)
≥ 0 in the above sum. Since v′i,j′ − vi,j′ ≤ 0 by assumption it must

be that

Pj′ (bi,j′)− Pj′
(
b′i,j′
)
= E

(
I
(
bi,j ≤ ck+1−j < b′i,j

))
= 0 (16)

whenever v′i,j′−vi,j′ < 0 for j
′ = 1, · · · , k that shows that the probabilities of

winning are the same. In addition, since b′i is the best response and winning

and losing prices are weakly increasing in bids, it must be that prices for any

bids b̂i where b
′
i,j ≥ b̂i,j ≥ b̂′i,j are the same. This implies that for all b̂i the

pointwise payoff πi
(
v′i, b̂i

)
is the same. This result is similar to McAdams

(2006) on allocation and interim expected payment equivalence of multi-unit

uniform-price auction.

It implies that the best response is not pure weakly increasing only in the

regions where no k+1−jth opponent highest bid falls
(
E
(
I
(
bi,j ≤ ck+1−j < b′i,j

))
= 0

)
.

But when pwi,j (·) strictly increases in bi,j, then any bid in this region above

bi,j is worse than bidding bi,j and hence even in this region the strategy is

pure weakly increasing. That completes the proof of the last part proposition

11. It remains to check that when pwi,j (·) is constant for bids in the interval
[
bi,j, b

′
i,j

]
the iteration process described above the proposition 11 converges

to the pure weakly increasing best response strategy generating the same

distribution of bids.

In the beginning part of the proposition I define the strategy such that

for some j and any vi,−j I define the strategy b̂i (·) which is weakly increasing

in vi,j and generates the same distribution of bids as mi;

P
(
b̂i,j (vi) < bi,j|vi,−j

)
= P (mi,j < bi,j|vi,−j) . (17)
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For every vi,−j it is a kind of “average” of all pure strategies bi (·) in support

of mi. Therefore by the standard result of probability theory and Fubini’s

theorem b̂i (·) ∈ B̂i and b̂i (·) and mi generate the same distribution of bids.

Moreover b̂i (·) is within the two strategies in the support of mi and therefore

it is the best response. Moreover following the steps of McAdams (2006)

one can conclude that the iteration process converges the strategy converges

to the pure weakly increasing best response strategy generating the same

distribution of bids as the original mixed strategy mi. Similar results can be

obtained for measurable best response strategy.
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