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Abstract

This paper examines a decision-making problem of rational agents with risk
averse utilities in the financial market both in statics and in dynamics. In the
financial market there are two securities, one risky security and one riskless bond,
and a continuum of investors with heterogeneous preferences, endowments, and
beliefs. Given that investors’ beliefs are described by Gamma distribution with
different parameters, predictions are made about competitive equilibrium asset
prices and the sizes of groups of traders and of their positions in the market. The
dynamic extension of the model shows how traders’ beliefs can be updated by
Bayes’ rule. This rational updating determines the next period investors’ beliefs
and predicts future equilibrium asset prices and the positions of traders in the
market.
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1. Introduction

Modeling decision-making problems under uncertainty enriches the theoretic treat-
ment of reality and brings us closer to the ideal model of social-economic arrange-
ments in society. In particular, the functioning of modern financial markets can
be understood and improved upon only by incorporating elements of randomness,
heterogeneity, and asymmetry of information into the agents’ decision problem.
The model in this paper deals with these aspects of uncertainty to predict both
investors’ positions in the market and asset prices.

In general, the model is based on the following settings. A continuum of traders
who have different preferences, different endowments, and different information
about other investors characteristics’ trade in the financial market. Differences
in information cause investors to form different expectations about future asset
prices. The assumption of the agents’ heterogeneity has not been fully theoret-
ically explored and at the same time has always been empirically tractable (see
for example, Smith, Suchanek, Williams [22]).

Each investor’s financial decision on optimal portfolio holdings is made under
uncertainty about tomorrow’s security prices. If an investor purchases a risky
asset or a riskless bond, both of which are traded in the market, then an other
investor sells them. Both investors make decisions in a rational manner. Perhaps,
the buyer/seller thinks that there is a high/low probability that the prices of
shares will go up. Thus, one distinguishes three main reasons for trading: differ-
ent expectations, different risk aversion, and different endowments. With initial
endowments given and initial beliefs exogenously predetermined, asset prices in
the two markets and investors’ income are simultaneously endogenously deter-
mined. This model explains the short-run behavior of asset prices when asset
returns and consequently investors’ income come only from capital gains and not
from dividends. Traders in the markets make decisions by looking in advance only
to the next period, and each investor is interested only in the value of his own
portfolio.

In contrast, Lucas [21] shows that the stream of future discounted real divi-
dends determines the asset price. The key to his result is that he considers an
infinitely lived representative agent who is concerned only about real dividends
and that the state processes are known to the representative agent. However,
in reality the assumption of homogeneity is very restrictive; and the short-run
gains/losses from real dividends are incomparably lower than the short-run possi-
ble gains/losses from changes in asset prices. Not surprisingly, Lucas’ model did



not find much empirical support. (See, for example, Mehra and Prescott [18]).

My work is related to that of Green [16], Grandmont [13], and Werner [24] in
the sense that individual beliefs differ across investors. In my model, individual
beliefs have the same support while this assumption is not necessary in the models
of Green, Grandmont, and Werner. Given the assumption that agents in my model
have overlapping expectations, I can concentrate on individual beliefs as the major
determinant of equilibrium asset prices in the short-run.

The paper is organized as follows. The first section considers a parametric
economic model which specifies particular functional forms for investors’ utility
and their probability beliefs about the next period price. I derive the optimal de-
cision rule for a rational agent who chooses optimal holdings of risky and riskless
securities. It is assumed that investors have a constant absolute risk aversion util-
ity function and traders’ probability beliefs about next period prices is described
by a Gamma distribution with different parameters for each agent.

In the second section, I make additional assumptions about the distributions
of individual probability beliefs and initial portfolio holdings across investors and
predict the next period portfolio holdings across investors and equilibrium asset
price.

In the third section, I extend the static model to a dynamic case. Using the
rules for the Bayesian updating of probability beliefs, it is possible to determine
the parameters of the distribution of probability beliefs at any moment in time
after estimating the parameters of the initial probability beliefs and observing the
whole price history. I specify the Bayesian updating mechanism for individual
beliefs and derive an asset pricing formula for each discrete period of time. One
of the predictions in this section is that there will be a positive autocorrelation in
the asset pricing process.

Finally, I make concluding remarks and identify directions for future research.

2. The Economic Model

Let us consider a financial market with an infinitely lived riskless bond and risky
security. A continuum of risk averse investors trade in the market and make
decisions about optimal portfolio holdings looking only one period ahead. Each
investor is endowed with an initial portfolio and has expectations about the next
period’s risky asset price. The investors’ initial expectations about the next period
price and the initial holdings of bonds and risky assets differ across investors
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and are exogenous. The competitive equilibrium model in the financial market
considered below shows that beliefs about the next period price affect today’s
competitive equilibrium price.

The investors are assumed to have non-homogeneous beliefs about the next
period prices because of differences in their information. The agents’ beliefs are
represented by a probability distribution over the next period price. There are
two ways to specify the distribution of investors’ beliefs. One is to assume that
each agent’s belief is given non-parametrically and to introduce a prior /posteriori
distribution on the space of probability measures which describes the distribution
of before - trade/after - trade beliefs in the market. This approach is very general,
and it requires Bayesian updating in a non-parametrically specified functional
space. (See Dubins [8] and Ferguson [10] for more details). The second way is to
assume that each agent’s probability distribution belongs to a given parametric
family of distributions and each agent’s belief is described by the parameters of
this distribution. Then we have to construct the prior and posteriori distributions
over the parameter space which describe the before and after - trade distribution
of investors’ beliefs in the economy. In what follows, the second way has been
adopted for simplicity.

Suppose the measure space (I, R, u) is the investors’ space, and p is an atomless
probability measure on the investors’ space. Each investor in the space is described
by three different characteristics. Each agent ¢ € I has a constant absolute risk
averse utility function:

ui (w) =1— e 4"

where a; > 0 represents a coefficient of absolute risk aversion, and w is the next
period wealth, which is the market price of the next period portfolio. Without
any loss of generality, the price of the riskless bond is normalized to unity. The
trader’s objective is to maximize the expected utility of the next period wealth.
Each investor’s beliefs about the next period risky asset, p, is represented by
a Gamma distribution with parameters « and /3;, where « is the shape parameter
and is common for all investors and f3; is the scale parameter which describes
the agent’s beliefs and differs across investors. Given that an investor’s belief is
described by a gamma distribution, the expected next period price F (p), and
expected volatility V' (p) are given as follows: F (p) = o and V (p) = ﬂ% Many

empirical studies (see, for example, A. Lo and A. MacKinlay [19],[20]) support
the idea that the distribution of asset prices has heavy tales. Therefore, it is



appropriate to choose the Gamma distribution for modelling asset prices. 2 The
investor’s budget set can be specified as follows:

B; (p*v_x_z'v_b_i) = {(%, b;) € Ri | p*wi+b; =p* T, + by } ;

where p* > 0 denotes today’s actual price of the risky asset; x; and b; denote the
feasible amounts of the risky asset and the riskless bond, respectively, for investor
i: T; denotes investor i’s initial holdings of the risky asset; b; denotes investor i’s
initial holdings of the riskless bond; and p* T; + b; is equal to the investor’s
initial wealth, w; .

Given these assumptions, the space of investors’ characteristics is a four-

dimensional Euclidean space with the following elements: (ai, B, %, bi) ,fori e 1.

Investor 7’s maximization problem can be written as:

e}

max / (1 — ety g(p | a, B;)

0
s.t. z;, by € B (p*,_x_z‘,_b_z‘),

where g (p | «, ;) is the Gamma density function.

The maximization yields investor ¢’s optimal demand for the risky and risk-
less securities given in equations (1.1)-(1.3). If the individual characteristics are
such that the coefficient describing the agent’s beliefs, (3;, belongs to the interval

(]%; —l—oo), then the agent’s demand is equal to

=0, bi=p T+ i <8, (1.1)

Equation (1.1) shows that the total agent’s wealth is invested only in the riskless
bond. The condition o N

— <B; e E(p) =—<p

p Bi
states that if the investor’s expected next period price of the risky asset is less
than today’s price, p*, the investor prefers not to buy the risky asset and to
invest all his current wealth in the riskless security, no matter what the coefficient
of absolute risk aversion is. All investors whose beliefs belong to the interval

2See Hogg, Craig [17] for more details about the properties of this distribution.



(z%; —l—oo) become net suppliers of the risky asset and sell all of the risky assets

that they hold to invest their total wealth in the riskless bond.
If the investors’ characteristics are such that the coefficient describing agent

beliefs, 3,, belongs to the interval (f —azT; —“;‘;_i; 1% , then the agent’s demand
is equal to
Q@ - -« -
a;p a; a; a;
« — i __z' «
p* p* p*

Equation (1.2) shows that the total wealth is invested in both securities. The
second condition can be divided into two parts: B
(AA)Q—CLZ_JJ'_Z<61§g and (B)g—az_x_z—a”“<ﬁ1§£—az_x_z
p* p* p* p* p*

If inequality (A) is satisfied, then the left-hand side of (A) implies that

- | —

a;p* a; a; \ p*

The term in brackets is negative because ]% —a; ;< ;. At the same time, the
left-hand side of condition (A) implies that

bi— bi=p" T -2 +p*& =2 (_ﬂ +a; T; +5¢> > 0.
a; a; a; p*
These, together with 3, < z%’ means that investors with the characteristics given
by condition (A) hold the total wealth in both securities, and they are the net
suppliers of the risky asset and the net demanders of riskless bond in the market.
In the case when inequality (B) is satisfied, then the following two inequalities

hold:




This means that the investors with characteristics satisfying the right-hand side
of condition (B) is a demander of the risky asset and a supplier of the risky bond.
The left-hand side of condition (B) means that investors whose characteristics

ab;
p*

satisfy the inequality (3, > o —a T; — diversify their wealth between both

securities available in the market.
If the investors’ characteristics are such that the coefficient describing the

a’d

¥ , then the agent’s

p*

agent’s beliefs, (3,, belongs to the interval (O, z% —aT; —
demand for a risky asset and riskless bond is equal to

T =7, +ﬁ, =0 if f<% 07 -2 bs (1.3)
p* p* p*
Equation (1.3) shows that the total wealth is invested in the risky asset. The

condition (3, < }% —a 7T; =2 derived from the investor’s optimization problem,

implies that those investors whose characteristics satisfy this condition are the
suppliers of all the bond holdings and the demanders of the risky asset. These
investors invest all of their wealth totally in the risky asset. (For a full derivation
see Appendix 1.)

The case when T;,=p,= 0 is ruled out in the model. (If Z;=b;= 0, the agent
can not participate in trading because of a short sales restriction.)

The above result shows that the agent’s characteristics (ai, B, T, _b_z) , which

differ across investors, determine the optimal demand and supply of risky and
riskless securities. Four cases are possible:

1) In the first case, investor i expects that tomorrow’s risky asset price will go
down. As a result, he prefers to sell his holdings of the risky asset and keep all
his wealth in the riskless bond.

2) In the second case, investor i sells a part of his risky asset holdings and
invests his wealth in the riskless bond.

3) In the third case, investor 7 sells a part of his bond holdings and invests his
wealth in the risky securities.

4) In the forth case, investor ¢ sells his bond holdings and invests his total
wealth in the risky security.



3. Comparative Statics

This section considers the comparative statics of the model, i.e., it shows how
the exogenous variables of the model - «, a, m, n, r, s, [, k - affect endogenous
variables such as:

1) the size of investor groups whose portfolio contain either only riskless bonds,
or only risky assets or both risky and riskless securities;

2) the size of investor groups who are suppliers of risky assets or suppliers of
bonds; and

3) the equilibrium price for risky asset.

Assume that a probability measure on the space of investor characteristics
(ai, Bi, T, _b_z) € RY - is described as follows:

1) B, , investor i’s belief about the next period price, has the Gamma distrib-
ution with parameters m and n, i.e., 3, ~I'(m,n);

2) x;, the initial holdings of the risky asset by investor ¢ , has the Gamma
distribution with parameters r and s, i.e., T;~ ' (1, s);

3) b, the initial holdings of the riskless bond by investor i , has the Gamma
distribution with parameters [ and k, i.e., b~ T (1, k);

4) a; , the coefficient of investor’s absolute risk aversion, is constant across
investors and a; = a for all 7 € I.

The ratio of the distribution parameters ”* indicates the average belief about
the quantity %; (where % represents the ratio of the next period average price
to its volatility) and 75 indicates the dispersion of beliefs across investors. The
ratios of the distribution parameters £, and % describe the average holdings of the
risky asset and riskless bond across investors.

Proposition 2.1

The size of the group of investors whose wealth is allocated in the riskless bond
only in the end of the period decreases (increases) if either of a or k increases
(either m or a increases) and does not depend on r and [.

Proof:

In this proof, the property of an incomplete gamma function is used to rewrite
the formula determining the size of the group of investors who invest their wealth
only in the riskless bond as follows®:

3The size of the group of investors who in the end of the period have all their wealth invested
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*13 L @
P =Pr(p3,> XY —1-pr (P bi < ) I P /tm_le_l“tdt =1—y (m, k, g) )
p* a a I' (m) a
0

(2.1)
Recall from the investor’s optimization problem that the condition (ﬁi > pﬁ)

means that p* > E;(p). Those investors who fall in the category with such
expectations about the next period price sell all of their risky asset holdings to
invest all of their wealth in the riskless bond. Note that this happens irrespective of
their other characteristics including the coefficient of the absolute risk aversion, a,
initial asset holdings 7;, and bond holdings b; . As defined above, the probability
includes neither the average risky asset holdings, x, nor the average bond holdings,
b. Hence, the size of this group is not affected by exogenously determined average
risky asset holdings or by the average riskless bond holdings.

The term % [ t™te7*dt is the incomplete gamma function, v (m, k, <),
0

with parameters m, k, <. From the properties of the incomplete gamma function

it is easy to verify that the size of this group, Pr (ﬁi > p%) , decreases if either a

or k goes up; the size of group Pr (ﬁi > p%) increases if either m or a increases.

(The properties of the incomplete gamma function are given in more detail in
Appendix 2.) Q.E.D.

Proposition 2.2
The size of the group of investors who hold both types of securities at the end
of the period increases if k, m, r, or [ increases.

Proof:

This proof follows directly from the validity of the two previous propositions.
Recall from the investor’s optimization problem that the size of the group of in-
vestors, whose end of period portfolio holdings contain both the riskless bond and
the risky asset, is determined by the size of the investors’ characteristics satisfying

in the riskless bond is determined by the size of the investors’ characteristics given by the
inequality: 3, > 1%.



the following condition: (% < % +p* T+ b, < S+pt T+ _b_z) . From this it
follows that the size of this group of investors depends on the probability measure
defined on the space of investors’ characteristics.

P, = Pr(a pﬁ—l—px—l—b< +px+b> (2.2)

:Pr(p*ﬁi§g>—Pr(pﬁ +p*x; +b<a>

a a

P*ﬁi<g
a — a

where Pr( ) indicates the size of the group of investors whose end of
period portfolio contains either only risky assets or both risky and riskless securi-
ties. The expression Pr (%ﬁz +p* T+ b < %) is the size of the group of investors
whose end of period portfolio contains only risky assets. The above expression
can be rewritten in terms of the probabilities determined in Propositions 1 and 2:

Pr(lj—ﬁigg>—Pr<p—ﬁi+p*_x_i+_b_i§ 2)2
a a a a

:1—{Pr(p—ﬂi>g>—l—Pr(p—ﬁi+p*fi+_b_i§ 9)] (2.3)
a a a a

Equation (2.3) can be evaluated from the results of Propositions 1 and 3. The
term in brackets decreases if k, m, r, or [ increases; consequently, the value of
expression (2.3) increases if k, m, r, or [ increases. Q.E.D.

Proposition 2.3
The size of the individual groups who choose only risky securities in trading
increases if « increases, and decreases if m, r, [, n, or a increases.

Proof:
From the previous section (where the optimal holdings were determined), it
follows that if the condition




is satisfied about a trader’s characteristics then a given trader will sell of all bonds
and hold only risky securities.
is satisfied. This condition can be rewritten as

* . o __ Q
Z?Tﬂz +p" T+ bi<



a goes up, while it decreases if m,r, [, k or a goes up. Details of the derivation of
this proposition are demonstrated in Appendix 2. Q.E.D.

Proposition 2.4
The size of the group of investors who are the net suppliers of the risky assets
in the market increases (decreases) if r, m, k, or a increases (a increases).

Proof:

An investor sells all risky assets if his belief satisfies the inequality 3, > ﬁ
This inequality means that the expected next period price of a security, < 5o 1S
less than today’s price p*. The investor is the seller of a part of his own risky
assets if his characteristics satisfy the 1nequahty L _gri<f, <2 = . From these
two expressions, it follows that the investor is the net supplier of the risky assets
if the following inequality is satisfied: 2 [3 = +p" z;> %. Given that 8; and x;
are random variables with a Gamma dlstrlbutlon, then the sum 1%'61' + p* x; is
a random variable which has a Gamma distribution with parameters m + r and
k. Therefore, the size of the group of investors who are net suppliers of the risky
asset is

p ﬁ «@ km+r by m-+r—1 _—kt
Pr > — = ———————— t . 2.5
{ e a} T (m+ 1) / ‘ (25)

From the properties of the Gamma function (described in detail in Appendix
2), it follows that the probability defined in expression (2.5) increases/decreases
if m, r, k, or a increases/a increases. Thus, Proposition 4 holds. Q.E.D.

Proposition 2.5
The size of the group of investors who are net suppliers of the riskless bond
decreases (increases) if r, m, k, or a increases (« increases).

Proof:
An investor sells a part of his riskless bonds and demands the risky securities if

his characteristics satisfy the inequality 1% —a T; — “p’ii < fB; < p% —a T; . A more

convenient way to rewrite this inequality is o < Bi+a x; +% < %+%. On the
other hand, the investor sells all his initial holdings of bonds if his characteristics

abZ a
p* —p*

satisfy the inequality 3, +a =; +
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Combining the last two inequalities, it is obvious that the size of the group of
investors who are excess suppliers of the riskless bond is determined by the prob-
ability measure of the set of investor characteristics which satisfy the inequality

hoo el
p P p

Using the fact that 8, +a 7; has a Gamma distribution with parameters m+x
and k, the size of the group of investors who are net suppliers of the riskless bond
is equal to

(2.6)

k=3

P*B; — Y R 1,k

o e e S .l 2.7

r{ g TP oS a} F(m+r)/ ‘ (2.7)
0

Clearly, from this expression it follows that this probability decreases (in-
creases) if either m, or r, or k, or a increases (« increases). Q.E.D.

Proposition 2.6

The competitive equilibrium price of the risky asset

1) increases if the expectation about the next period increases (o increases);

2) decreases if the average [3; across investors increases (which means that =
increases);

3) decreases if the average initial asset holdings increase (which means that -
increases);

4) increases if the average initial bond holdings increase (which means that £
increases);

5) decreases if the coefficient of the absolute risk aversion, a, increases.

Proof:

Recall from Section 1 of this paper that the optimal demands for the risky
asset and the riskless bond for investor ¢ are given by

Dazi=0  bi=p"T;+ b, if o <55

ﬂ 2)al'22£—% bz:p* _Z'_Z—|— bz —%+p*% lf }%—a?fz —ap—il<
< L.
T = px)
—7. b — o _ g7 _ab;
3) xz—xz+p_* bz_o z'Sp* a T pk

From the assumption about the distribution of investor characteristics it fol-
lows that average belief and the average initial asset and bond holdings are given
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respectively by

{_x_i dp (i) = §7
Jbidp(i) =+,

From this, it follows

(2.8)

1

— __z' ) — __z'

xPr{g—axi—ab <ﬁi§g}+(f+—>Pr{ﬂi§g—am—ab}.

D p* D s kp* p* p*
After aggregating the individuals’ demand for the risky asset, it follows:

z
/xidu(i): (i—ﬁ> ><P2+(f+ ) x Py,
apx  na S
I

kp*

The last equation gives the mean demand for the risky asset. The mean excess
demand for the risky asset is

« m r [ _ ,
I

{
:<i_m)xp2+<t+ )Xp3_f, (2.9)
apx  na s kp*

s
To determine the competitive equilibrium asset price, the mean excess de-
mands for the risky security should be set equal to zero:

[
(i—ﬁ)xpz+<f+—)xp3—f_o
apx  na s kp*

s
The solution to these equations — the competitive equilibrium price, p*— is given
by

o altih

ap, +Lip
Pr=7 Ol LN Ll B (2.10)
I1-P)+2p L(P+P)+L2P

It is straightforward to verify from this expression that Proposition 6 is true.
Q.E.D.
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4. The Dynamic Model

The dynamic model is an extension of the static model described above. Since
we have considered infinitely long - lived securities in the financial market, a
short - run dynamic model is a finite sequence of overlapping two - period models
and the dynamics of the security price is a sequence of temporary equilibrium
prices. In this section we also consider changes in investor beliefs over time due
to information acquisition. The main issue of the dynamic model is the effect
of the realization of the competitive equilibrium price on investors’ beliefs. In
particular after observing current security price traders update their priory beliefs
and the high realization of current price leads that investors in the market have
stochastically high beliefs. In the dynamic version of the model, the distribution
of posterior beliefs about the next period price across investors has the same
functional form as the distribution of prior beliefs in the market.

Proposition 3.1
If investors’ prior beliefs, 3,;, have a Gamma distribution, then their posterior
beliefs will again have a Gamma distribution with different parameters.

Proof:
In the dynamic setting, the after-trade distribution of investor beliefs 3, after
observing the realization of the security price of the risky asset is

g(ﬂj|p):oo Ga(p‘avﬁi)Ga(ﬁi‘m,n) '
| Galp|a,B;)Ga(B; | mn)dp,

Using the property of a gamma distribution one can obtain

(3.1)

[e.°]

[ Galo 0.8 Gas: | momyag, = [ Gt gt g, -
0

(3.2)

a—1 n —1 m

— b 1 i o B gm—1,—Bim 3 _ P> n
<a>r<m>0/ e e T T T )

[ gt nomag, -

0

—

p*~ ' n™ T (a+m)
r (Oé) r (m) (p + n)aer.
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If we substitute Expression (3.2) in the Expression (3.1), one can get,

9(ﬂ¢|p):oo Ga(p‘avﬁi)Ga(ﬁi‘mvn) —

L!)ﬂ Ga(p | a,B;) Ga(B; | m,n)dB;

B a1, B.p.nm am—1__ 3,
mpa 16 ﬂzp_FTém)/@:n’ e ﬂzn B (n+p)m+a

p=! nm _T(atm) T
T(a) T(m) (nip)™+e) (m +a)

ﬂ;’n'i'a_le*ﬂi (ptm) (3.3)

this expression (3.3) indicates that the after-trade beliefs also have a Gamma
distribution with parameters m + « and n + p.

Now it becomes clear that the model can be used to make predictions about the
next period’s asset price. In particular, if parameters my, ng, vy, ¢, ly, ki, Piy, Pog, Psy
and « are estimated according to the procedure described in Appendix 3 of this
paper, one can use them together with the competitive equilibrium price observed
in the market to predict the next period’s new parameters of the distribution of
investor beliefs. . . . . .

My 1=my + a and Ny 1=n; +p; (3.4)
for any t = 1,2...T. Consequently one can predict the next period’s competi-
tive equilibrium price. From this it follows that today’s price has an effect on
tomorrow’s expectations about the next period price. When today’s competitive
equilibrium risky asset price, p;, is high, then n,,; increases. This leads to a sto-
chastic shift in investors’ beliefs. Using formulas (2.10) and (3.4), one can easily
verify that the price p;y1 increases. This means that today’s high price leads to
tomorrow’s stochastically high beliefs, and consequently, a high price. This pre-
diction is consistent with the empirical research, which supports the finding that
there exists a positive correlation between asset prices. In particular, the empirical
studies of Lo and MacKinlay [19], [20], and DeBondt and Thaler [6], [7], show that
in the short - run (i.e., daily or weekly) asset prices are positively autocorrelated.
(In contrast, empirical evidence has been found, for example by Fama and French
[9], indicating that asset prices are significantly negatively serially correlated in
the long - run.)

In the dynamic model, the competitive equilibrium asset price is a sequence
of the static solutions. For any time period, ¢, the solution is

. %P2t+]l€_ip3t
p - Tt My N
¢ S_t(P1t+P2t)+a_ntP2t

(3.5)
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This formula assumes that parameters o and a are constants in the short-run, and
ny and m; are determined from (3.4) as follows: n; = ny_1 + pr_1 and my=m;_; +
a. Equation (3.5), determining the dynamic competitive equilibrium asset price,
shows that the current price of the risky asset is explained by its previous price;
a high price at period (¢ — 1) implies a high value of the current price. There is a
positive serial autocorrelation in the price process.

5. Concluding Remarks and Directions for the Future Re-
search

The main goals of this paper were to consider a parametrized economy in order
to study and derive optimal solutions for the portfolio holding problem. In this
paper exogenous variables such as beliefs and initial portfolio holdings are shown
to affect equilibrium price.

The particular functional specifications of investor utilities, beliefs, along with
the specification of the distribution functions on the space of investor character-
istics make it possible to solve the model and derive the closed - form solution for
the equilibrium price. Apart from this, testable predictions about the effects of
the exogenous parameters of the model (the coefficient of absolute risk aversion,
the average belief, the average asset holding, and the average bond holding) on
the sizes of the groups of investors who have different portfolio holdings and on
the equilibrium asset price were made.

In the dynamic extension of the model, individual beliefs change over time;
therefore, the high realization of current price implies stochastically high investor
beliefs. In this setting, it is enough to know the initial distribution of beliefs and
the current competitive equilibrium asset price to make predictions about the next
period competitive equilibrium asset price. The dynamic extension of the model
reveals the existence of a positive autocorrelation pattern in the price process.

Possible directions for future theoretical research would be to consider the
model in continuous time to combine into the model factors explaining the move-
ments of asset prices in the short-run with the fundamentals lying behind the
long-run behavior of asset prices and to measure temporary deviations of stock
prices from their fundamental values.
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6. Appendices

Appendix 1.
Trader 7’s maximization problem can be written as:

max [ (1 — e~ %#=H)) g (p | a, B;) dp
0
s.t.xi,bi € B, (p*,i;,l_):) )

where

9(p |0, B) = i e

The first order condition for optimization is

/ —a; pml—p foi+p T+ b )ai (p _ p*) ﬁl pafle*ﬂipdp =0.
0

This equation can be written as

[o.°]

/ TP (p — p) p* e PPdp = 0,
0

o0

/ efal-p;cip paflefﬂipdp — p* / e*aipwipaflefﬂipdp =0.
0 0

Integrating separately the left and right integrals, it follows

Il :/ e*aipxip pailefﬂipdp :/ efp(aixﬂrﬂi)padp_
0 0

After changing the variable p (a;z; + ;) = y, one obtains

/ eV dy — 1 / y* e Vdy =
(a;z; + B,)" (a;z; + B3;) (a;x; + ﬁz’)aﬂ 0

0
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['(a+1)
(ax; + ﬁz’)aH.

Analogously integrating the right part of the equation, one obtains

12 = p* / e*aipxipafle*ﬂipdp — p* / efp(aicci+ﬂi) pafldp‘
0 0

After changing the variable p (a;z; + ;) = y, one obtains

oo

I, =" e PlaizitB;) o171, / efy —
2P [ vl = azxﬂrﬁ (air; + ;)

0

oo I (a)
= e Ydy = pf——m———.
p (a;z; + ﬂ / v y=p (a;z; + 3;)”
0
The first order condition becomes
I'(a+1) . T (o)

(i 8 " (i + 5
Using the property of a Gamma function I" (o« 4+ 1) = oI (@) , one obtains

a
a;x; + B

*

From the last equation, it follows that the optimal demand for the risky asset
and for the riskless bond for investor ¢ is

1) z; =0, bi=p" Z;+ bi if o < Bis

Q)xizl_&abi:p*fi+_[?_i_%+p*% if = —az; abl<ﬂ<p

a;p* a; p*

% 7
3 — bi b — o ab;
):BZ- —x1—|—p*l 5 ,L—“ Lgiép*—(l ,T,L‘—p*l.

Appendix 2
The incomplete gamma functions can be written as
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v (a,z) = t* e tdt for (a,z > 0), and
0

[(a,z) =/ t*"te 'dt for (a,z >0).
Clearly ~ (wa, z)=T(a)—TI(a,z).

For more details about the incomplete Gamma function, see Gautschi [8], [9].
Let us denote G (a,x) = ﬁ [ t*~te7'dt and G* (a,z) = ﬁ [t te~tdt.
0 T

If the function e~ is expanded, it can be easily verified that

a 1 x n x? n ‘
" T(a)\a 1U@+1) 2'(a+2) )’
this series converges rapidly if x is small. Integration by part leads to

e

I (a)

G* (a,z) = (2 "+ (a—1)2"* + (a— 1)% 2978 + )
From this equation, it follows that

G (a,2) =G (a—1,z) +

Using the last expression, it is easy to see that G* (a, z) is an increasing func-
tion with respect to a. In the model, G* (m, o) = Pr (ﬁi > p%) and is an increas-

ing function of m. The second relationship can be easily verified by an variable
transformation:

a Em > 1 oo ] oo
r<ﬁ1>p*> F(m)/ ‘ F(m)/( )7 e Td (k) Tm) )Y %
o = ak

The value of the last integral clearly decreases if k increases. Q.E.D.

Appendix 3.

This appendix summarizes (see the table below) the effects that the exogenous
variables in the model (a, a, m,n,r, s,1, k) have on the endogenous variables (the
sizes of the groups of investors with different holdings of market securities, and
on the equilibrium risky asset price). The signs indicated in the table show the
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direction of these effects. These comparative statics constitute the main testable
predictions of the model considered in the first two sections of this paper. To
test these predictions it is necessary to know the values of the exogenous and
endogenous variables. While the endogenous variables are observable, the values
of the exogenous parameters have to be statistically estimated by means of the
likelihood function technique. This appendix proposes econometric techniques to
estimate parameter values of the model. It is straightforward to estimate values
of r, s, [, k after observing initial portfolio holdings. However, the estimation of
parameters o, a, m, and n, of the distribution of investor initial beliefs 3, requires
specific econometric techniques because 3, is not directly observable.

Table 17
Parameters
Endogenous Variables a a m n r s | k
1)The size of the individual
groups who hold only 4+ - - - - — — —

risky assets

2)The size of the individual

groups who hold only — 4+ 4+ — — —
riskless bonds

3)The size of the individual

groups who hold both R
risky and riskless securities

4)The size of the individual

groups who are excess — 4+ + + + + * +
suppliers of the risky asset

5)The size of the individual

groups who are excess A —
suppliers of the riskless bond
6)The price of the risky security + — — + — + + —

Firstly, consider a method of estimating the exogenous parameters r, s, [, k by

"The sign + or - indicates the direction of changes of the endogeneous variable if the exogenous
variable increases. The sign * indicates that there is no relationship between exogenous and
endogenous variables.
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observing the initial portfolio holdings. According to assumptions (2) and (3)
stated in Section 2, z;, and p; have a Gamma distribution

T~ T (1, 8)  bi~m T (1L K) .

This property of the initial portfolio holdings is used to construct the Maximum
Likelihood Estimators (MLE) for the shape parameter, r, and the scale parameter,
s. The procedure for estimating parameters [, and k is analogous.

Below the estimates that will maximize the likelihood function of a random
sample are determined. Using the density function of a Gamma distribution for

a random sample (71, To, ..... T,), the likelihood function can be written as
L(Zq,.. 2, |rs) = Hg (z; |r,s) = (A.3.1)
i=1

=n [rlns—lnf(r) +(r—1)n"

The first order conditions for the optimal parameters, r and s, are

Oln L =n|lns— dln—F(r) +In" T, %s ..... T,l, (A.3.3)
ox dx
OlnL rol e
68 =n [g — g i:E 1 CBZ] . (A34)

From the second equation, the ML estimators of the parameters z and s should
satisfy the equation
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R
— == T (A.3.5)
CO
The logaritmic transformation of equation (A.3.5) leads to
Ins=In7 —InA, (A.3.6)

where A = 2 3°7; denotes the arithmetic mean of the observed asset holdings
i=1
across investors. Using first order conditions (A.3.3) (A.3.4), the ML estimator

for the parameter r satisfies

dInT (r)
dr
This equation can be simplified by denoting the geometric mean of the initial

asset holdings, "v/ 215 ..... T,, by G and rearranging terms:

. dlnT (?) 4
Inr ——~= =In—. A.3.8
dr G ( )
As a result, the ML estimators of the parameters z and s are functions of
the sample arithmetic mean and the sample geometric mean, and they satisfy the
following equations:

In7—InA-— (A.3.7)

n

1 _
= — i A.3.
ni:lx (A.3.9)

%:lné and

dr G

w-| 3>

For more details about the MLE procedure for the Gamma distribution para-
meters see, Hogg and Craig [14]. The above described ML estimation of the
parameters x and s is directly applicable for estimating the parameters [ and k.

Next turn to the estimation of the parameters m and n, a and a. If the quantity
(;, which describes the agent’s belief about the next period price, were observable,
then the above specified MLE procedure would have been applicable. However, 3,
is not directly observable. That is why a new estimation procedure is developed
below.

Firstly, recall from the solution to the agent’s optimization problem in Section
1 that the optimal individual demand for a risky asset x; is given by

(1) z; =0 if o < Bis
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ﬂi 1 _b_i .
(2) @i= g — 2 if L—aw; - < B <O

(3) xz_x +bl lf/@ <_—(I./I} apil
By observing that an 1nvestor does not hold the risky asset, i.e., x; = 0, one
can conclude that 3, € (E’ ) . By observing that the investor does not hold the

ab;
p*

In the last case, when the investor holds a positive amount of both securities, one
can conclude that the opposite market value of the wealth invested in the risky
asset, —px;, has a three parameter Gamma distribution across investors:

x
—pxzwf(m L,—) 8
a ' a

] ] — _b_i [e] s
riskless bond, i.e., x; =z; + n » One can conclude that 3, € (O, o T Ti—

B _ = is observable only in the case when the investor holds

both securities, i.e., in case (2). In the other two cases, when 3, € (0, z% —aT; —“;b;i U

(p*, ) the quantity & ﬂ -t — 2 is not observable. This means that the problem of

censored observations from the left and right sides is present.

Suppose that the after - trade portfolio holdings are known. Let

- n; denote the number of investors who have portfolios containing only risky
securities,

- ny denote the number of investors who have portfolios containing only riskless
securities, and

- n3 denote the number of investors who hold both types of securities. In
addition, suppose that for those investors who hold both types of securities the
market value of their wealth invested in the risky asset, p*x;, is known.

As shown in the last footnote, the quantity == *ﬂ — ¢ has a gamma distribution
with the shift parameter —%. Then the hkehhood function can be written as

o [ffs G (522 )] (B )]

(A.3.10)
where z; = — p*z;. Using the fact that z; has three parameter Gamma distribution,
and f3;, x;, and b; have the Gamma distribution, the following holds:

$This follows from the fact that —p*z; = —2 + 22 By assumption (1) in Section 1 of this

chapter, 8, ~ T'(m,n). From this it follows that % ~ I'(m, ). Hence, —p*z; has the
Gamma distribution with three parameters: m, = and the shift parameter <.
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pr (2 b =) == /tmlemdt
a a I'(m)

and

k=3

p*ﬁ . _ a nm+m+b “ b1
P v T, < === |[ ¢ttt nt ¢

r( a +P +b_a> I'(m+z+0) ‘
0

Using the last three expressions in the likelihood function and taking the log-
aritmic transformation of them, one obtains:

InL=ng(nlnm—InT"(m))+ (m—1)In <ﬁ (Zz'+%)> _ni (zi—l—%) _

i=1
(A.3.11)
Q a
—ngInT (m) + nyInT (m,ng) —niInl'(m+2x+0b)+nylny (m+x + b,ng) ,

where the values of x and b are obtained from the estimation procedure de-

scribed above; T' (m,22) = [ ¢t™le7'dt, and v (m,22) = [ t™ le 'dt. Hence,
n< 0
I (m, 22) 4 (m, 22) = T (m).
Differentiating the log-likelihood function with respect to parameters m, n and
. the first order conditions are obtained:

OlnL 1 & o n2dlnF(m,n9) nldln’y(m+m+b,n9)
i o) AR
on nm N3 Z 4t +n3 dn +n3 dn

(A.3.12)
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om m dm

OlnL n dnl (m) s - L a ne dInT' (m)
_n_em o, (H (z2+g)>——7+ (A.3.13)

nodInTl (m,n%) B @dlnf’(m—i—x—i—b) N ﬂdlny(m—i-x—i-b,n%)‘

b

n3 dm n3 dm n3 dm

8lnL_m—1<§: 1 ))_n_i_@dlnl“(m,n%)_i_@dlnv(m—i—x—i—b,n%)'

a a a
8; ns (ZZ' + & ns d= ns d;

i=1 a

(A.3.14)
Clearly, it is impossible to find a closed - form mathematical solution to the
above system of equations. An algoritmic solution has to be considered.

Algorithmic Choice
Let the following quantities be defined:

1 &
A (z, g, n3) = — Z (zi + g) modified arithmetic mean,
a ng 4= a

n3
G (Za g, n3) — 3 <H (zi + 2)) modifed geometric mean,
a a

i=1

1 (& 1
H (z, g, ng) = — (Z 7> modifed harmonic mean,
a a)

n3 \ 3 (Zi +a

where the three means are functions of <, and fortunately, A (z, o n3) has &
as an isolated term. A three step numerical solution is considered below.

Step 1:

The first step of the algorithm is based on the fact that p*z; < 2 for each
observation. That is why the starting value for < is taken to be the maximum of

A A
prx,, ie., (%) =max (p*z;). For the given value of (%) , calculate values for
0 ! 0
A (z, %,ng) , G (z, %,ng,) , and for H (z, %,ng,) )
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Step 2:

Using the second and third equations from the system of the first order con-
ditions [(A.3.13) and (A.3.14)], solve numerically for m and n.

Step 3:

Using the results of step 2 (estimated values of m and n) and the fact that
A (z, o, ng) has & as an isolated term, we can derive the new values for % from
the first order condition with respect to n

a n3 dn ns dn ns

A N . .
(g> :lnm+@M+ﬂdln7(m+x+b’”a) ! Zzi.
1

i=1

A
If this value of ¢ is smaller than its previous value, the iteration is finished.

Otherwise, the iterations must be continuous, i.e., starting with Step 2.
A

A
The algorithm produces (%) from <9> (where t is the number of itera-
t+1

a
t

tions). The distance between the neighboring estimators,

R R dln F(mt+17nt+1%) d fy(mHl—i—z—&-b,n%)

«Q «Q ]_ mt+1 i Up F(mt,nt%) i nq 'y(mt1+x+b,n%)

— — J— = n—— - _-

a a my ns dn ns dn ’
t+1 t

determines the criterion for convergence of the parameter to its true value. Iter-
ations are stopped when the last expression becomes less than ¢ > 0.

This section contains the econometric technique which enables us to estimate
the distribution parameters m, n, and < through observing the random variable

(% — %ﬁz) from the censored sample.
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