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“My darling girl, when are you going to realize that being normal is not necessarily a virtue?

It rather denotes a lack of courage.”

— Aunt Francis, in Alice Hoffman’s Practical Magic

❦

“We’re all mad here.”
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❦
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strength and encouragement throughout my journey, shaping both my personal growth and

academic pursuits. Thank you for your unwavering commitment and compassion.
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Abstract

High dimensionality is a popular contemporary setting in applied statistical analysis of

various types of data. Growing dimensionality of the data challenges precise and well-

conditioned estimates of statistical models. We address selected high-dimensional methods

and their applications to financial market analysis. First, we consider modeling flexible

joint distributions using copulas. In Chapter 1, we address estimation of Gaussian and t

copulas in ultra-high dimensions, up to thousands of variables that use up to 30 times shorter

sample lengths. We employ large covariance matrix shrinkage tools to obtain precise and

well-conditioned estimates of the matrix parameters of the copulas. In Chapter 2, we present

a new method for estimating the skew-t copula, known for its advantageous properties in

characterizing joint distributions, including asymmetry, heavy tails, and asymmetric tail

dependence. Our approach involves a two-step procedure based on the simulated method

of moments and analytical non-linear shrinkage estimator for large covariance matrices. In

both chapters, we also illustrate the benefits of the copula approach in a large stock portfolio

allocation. Our analysis shows that copula-based models deliver better portfolios in terms of

cumulative returns and maximum downfalls over the portfolio lifetime than the benchmark

alternatives. In Chapter 3, we step away from unconditional distribution modeling, and

assess the performance of selected machine learning algorithms in forecasting daily realized

volatility. We utilize high-dimensional settings and mixed-frequency data set-ups to improve

forecasts of selected stocks returns volatility in the Russian stock market in 2018-2020.
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Introduction

High-dimensional settings have gained popularity in contemporary statistical analysis, driven

by applications characterized by an increasing number of variables or relatively smaller sample

sizes. As the dimensionality of the data, denoted by the ratio of variables to the sample size,

grows, obtaining precise and well-conditioned estimates of statistical models becomes more

challenging. This work addresses selected methods for high-dimensional statistical analysis

and their applications to financial market analysis and forecasting.

In the first part, we focus on modeling flexible joint distributions, where copulas serve as

a convenient tool. Currently, copula-based high-dimensional settings typically involve a

few hundred variables and demand large data samples for accurate estimation. In Chapter

11, we tackle the estimation of Gaussian and t copulas in ultra-high dimensions—up to

thousands of variables—with sample lengths as much as 30 times shorter. We employ large

covariance matrix shrinkage tools to obtain precise and well-conditioned estimates of the

matrix parameters for both Gaussian and t copulas.

Moving to Chapter 22, we introduce a novel method for estimating the skew-t copula,

recognized for its advantageous properties in characterizing joint distributions, including

asymmetry, heavy tails, and asymmetric tail dependence. Our approach utilizes a two-step

procedure based on the simulated method of moments and an analytical non-linear shrinkage

estimator for large covariance matrices. In both chapters 1 and 2, we illustrate the benefits

of the copula approach in large stock portfolio allocation. Our analysis reveals that copula-

based models yield portfolios with superior cumulative returns and fewer downfalls over

the portfolio lifetime compared to benchmark alternatives. The skew-t copula’s ability to

effectively account for tail dependence within the distributions of asset returns significantly

contributes to portfolio performance.

In Chapter 33, we shift focus from unconditional distribution modeling to assessing the
1the results of the research presented in this chapter were co-authored and published in the Journal of

Economic Dynamics and Control (Anatolyev and Pyrlik, 2022)
2this chapter presents results of the research that are solo-authored
3the research presented in this chapter was co-authored and published (Pyrlik et al., 2021)
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performance of selected machine learning algorithms in forecasting the daily realized volatility

of returns for top stocks in the Russian stock market. We compare these forecasts with the

widely-used benchmark, the heterogeneous autoregressive realized volatility, over the period

2018-2020. Utilizing high-dimensional settings and a mixed-frequency data setup, we enhance

the model’s predictive power by including various economic indicators that carry information

about future volatility. Our findings indicate that Lasso delivers a good combination of easy

implementation and forecast precision. Other algorithms require fine-tuning and frequent

re-training to outperform the benchmark consistently. Lagged log-RV values emerge as the

only significant explanatory variables for the benchmark’s in-sample quality.

2



1 Shrinkage for Gaussian and t Copulas

in Ultra-High Dimensions

1.1 Introduction

In this chapter, we present the results of our research of how methods of high-dimensional

covariance matrix estimation can be extended to copulas estimation. The results are also

published in the Journal of Economic Dynamics and Control (Anatolyev and Pyrlik, 2022).

Copulas are an attractive tool to model joint distributions due to a high degree of flexibility

and ability to capture various properties of the real data, both in marginal distributions

and dependence structures (Patton, 2009). An important recent challenge in modeling joint

distributions is the upward trend in data dimensionality. For example, financial market

participants are challenged to deal with thousands of alternative assets to allocate their funds

into (Ledoit and Wolf, 2017a; De Nard et al., 2018; Müller and Czado, 2019).

High dimensional datasets are challenging in many applications that involve statistical

estimation, computation, and inference. Having hundreds and thousands of variables in

the data complicates each step of statistical modeling, with estimation and inference the

most problematic. In particular, when the dimensionality of datasets becomes comparable to

available sample sizes, a variety of traditional estimators tends to fail to deliver desirable

properties that researchers normally seek to obtain (Ledoit and Wolf, 2004a,b, 2022).

Regarding existing high-dimensional copula settings, a common limitation is the actual

number of dimensions relative to sample sizes used that are called ’high dimensional’. What

most studies usually explore as high dimensional settings tend to appear rather moderately

dimensional. In this paper, we focus the two most commonly used in modeling and practical

applications elliptical copulas: Gaussian and t copulas. Their dimensionality of the parameter

space is directly connected to the data dimensionality, with the matrix parameter naturally

interpretable in the description of the degree of pairwise dependence among the variables.

An important property of these copulas is that the matrix parameter is very close to the

correlation matrix of pseudo-observations (Demarta and McNeil, 2005; Kojadinovic and Yan,
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2010). Hence, in low dimensions, the copulas are effectively estimated via computationally

very practical method-of-moments-like techniques based on rank correlations and sample

correlation matrices (Demarta and McNeil, 2005). However, in high dimensions the settings

and their estimates inherit the same problems as the traditional covariance matrix estimators.

This makes it practical to use the shrinkage estimators of Ledoit and Wolf (2004b, 2017b);

Ledoit et al. (2020) to estimate the matrix parameters of Gaussian and t copulas in high

dimensional datasets.4

We consider datasets with up to thousands of variables that use up to 20 times lower sample

sizes. Thus, we take the data dimensionality well beyond what is studied in the copula

literature; hence the prefix “ultra-” in “high dimensions” in the title.5 In a simulation

study, we compare the quality of performance of different estimators for various ratios of

data dimensionality to sample size. We show that the shrinkage estimators significantly

outperform the traditional copula matrix parameter estimators based on sample analogs of

Kendall’s rank correlation and approximate Spearman’s rank correlation. The performance of

estimators is measured in terms of both the closeness of estimated parameter values to their

actual values and the closeness of the entire estimated copula function to its true counterpart.

Not only do we show that the shrinkage estimators outperform the traditional estimators of

the copula matrix parameters, but also we find that non-linear shrinkage generally tends to

dominate the linear one.

As an empirical application, we apply shrinkage-based estimators of copula correlation

matrices in high dimensions to a large portfolio of stocks allocation problem and compare

emerging portfolios to those from a multivariate normal model and copula models based on

traditional estimators. Using daily data on prices of roughly 5000 U.S. stocks, we construct

portfolios of up to 3600 assets and simulate buy-and-hold portfolio strategies. The joint
4In the case of t copula, one also needs to estimate the scalar degrees-of-freedom parameter that controls

the thickness of copula tails. We confirm that once the large matrix parameter is sufficiently precisely
estimated, the remaining scalar parameter can be effectively estimated via maximum pseudo-likelihood
method.

5The maximum of 1000 for data dimensionality in the simulation study is determined by the computational
capacities at our disposal. With a thousand variables and largest samples, simulations are computationally
very demanding, particularly due to multiple iterations in computing quality criteria. The results suggest,
however, that the shrinkage estimators can be effectively used in even higher dimensions; in our empirical
example, the t copula is estimated for 3600 variables in the dataset.

4



distributional models of asset returns are estimated over the period of six months (120

observations), hence the problem is ultra-high dimensional, with the dimensionality ratio

of 30. To our knowledge, this is the highest dimensionality of the large portfolio allocation

problem considered in the literature. The comparison of the portfolios based on different

models to equally weighted portfolios shows that the shrinkage-based estimators applied to t

copula based models of return distribution deliver better portfolios in terms of both cumulative

return and maximum downfall over the portfolio lifetime than the corresponding portfolios

derived from the multivariate normal or copula-based models estimated via traditional

estimators.

The rest of this chapter is organized as follows. Section 1.2 presents a more detailed review

of related literature and explains the focus of our study. Section 1.3 covers the methodology

including a description of chosen copulas and their main properties, existing approaches to

copula estimation, drawbacks thereof and the solution we propose. In Section 1.4, we describe

the simulation study design and results. An empirical application of the shrinkage estimators

to a large portfolio allocation problem is presented in Section 1.5. Section 1.6 concludes.

Appendices A, B and C contain some additional technical material, including tables with

detailed results of the simulations in Supplementary Appendix.

1.2 Background

Modeling joint distributions has been a major task in a wide variety of applications. One way

to deal with dependence in multivariate settings is to directly model the joint distribution

of quantities of interest using a family of multivariate distributions. However, in most

applications, there are only few such families that can capture the crucial properties of actual

data. Although the multivariate normal is popular due to its analytical and computational

convenience, it is also widely criticized for symmetry, non-heavy tails, and linearity of

conditional means. Asymmetric and heavy-tailed multivariate distributions are much more

cumbersome to work with, particularly in higher dimensions.

Copula-based settings are attractive due to a higher degree of flexibility and ability to capture

various properties of the real data, both in marginal distributions and dependence structures

5



(Patton, 2009). In particular, the financial literature has been giving copulas increasing

attention since the 2008 financial crisis. One of critical effects of the crisis was that the

quantities previously viewed as “almost independent” were unexpectedly co-moving, resulting

in a joint crush in several markets (Zimmer, 2012; Patton, 2012; De Leon and Chough, 2013).

This effect of so-called tail-dependence appears crucial for modeling joint distributions in

financial markets; yet it was absent in the traditional multivariate normal-based settings

(Patton, 2013; Oh and Patton, 2017). Various alternative dependence structures have been

proposed to account for the critical properties of real data. For example, the t copula

of Demarta and McNeil (2005) was exploited in many studies, although it captures only

symmetric tail dependence (Sukcharoen et al., 2014; Ning, 2010; Wen et al., 2012). It was

then further extended by Kollo and Pettere (2010) and Smith et al. (2012) to account for

asymmetric extreme co-movements, and the resulting versions of skewed-t copula have since

been a popular choice to model inter- and intra-market dependencies (Kollo and Pettere,

2010; Smith et al., 2012; Patton, 2012, 2013).

Consistently growing data dimensionality constitutes another challenge in modeling joint

distributions. While financial market participants can access thousands of options for their

funds’ allocation, they may be at the same time become limitied in the sample size bound

to use the most relevant information and account for recent changes in the market (Ledoit

and Wolf, 2017a; De Nard et al., 2018; Müller and Czado, 2019; Engle et al., 2019). In this

and many other applications with the number of variables growing potentially well above

the limited sample size, multiple statistical estimators that would perform well under low

dimensionality fail to result in precise or well-conditioned estimates (Ledoit and Wolf, 2004a,b;

Ledoit et al., 2020; Ledoit and Wolf, 2022).

Although there has been significant progress in multivariate methods addressing the high

dimensionality challenge, most of the work has been done to restore the properties of

estimators up to the second moment. In particular, a variety of estimators robust to growing

dimensionality have been recently developed to improve the estimation of large covariance

matrices (Ledoit and Wolf, 2017b; De Nard et al., 2018; Anatolyev et al., 2018; Ledoit and

Wolf, 2022).
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At the same time, significant progress has been observed in the copula theory and applications

addressing high dimensional data (Patton, 2009; Müller and Czado, 2019; Smith, 2021).

For example, Oh and Patton (2016) suggest a copula version of a high dimensional factor

model. Later, Oh and Patton (2017) use mixed frequency data to construct high dimensional

distributions. Müller and Czado (2017) develop another type of approach to use the advantages

of copulas in high dimensional case that relies on sparse data structures, which allow one

to combine copulas with lasso estimation. Another direction in the development of high

dimensional copula-based models relies on the pair copula constructions (PCCs, aka vines).

Based on hierarchical pair-wise copula construction, the vines presume very flexible settings

and an intuitive interpretation of dependence structures that make them an attractive

modeling tool (Brechmann and Czado, 2013).

A common limitation of the existing approaches to constructing high dimensional copulas is the

actual number of dimensions relative to sample sizes used that are called ’high dimensional’.

What most studies usually explore as high dimensional settings tend to appear rather

moderately dimensional. Until recently, the dimensionality of data in empirical applications

of PCCs rarely had exceeded a few dozen variables (Brechmann and Czado, 2013), with only

several studies applying the PCCs to settings with more than a hundred variables. Currently,

the very recent study by Müller and Czado (2019) is the only one with PCCs applied in the

framework with more than a thousand variables. Still, the study focuses on sparse structures

that are identified heuristically from the data, and uses a considerable number of observations

in the sample (viz., n = 999 observations and p = 2131 variables). Given that the data

dimensionality exceeds the number of observations, this setting is indeed high-dimensional.

However, in many applications the ratio of the data dimensionality to available sample sizes

can be significantly higher, with sparse structures being an excessively strong assumption.

We focus on elliptical copulas in high dimensions, particularly, Gaussian and t copulas that

are most commonly used in modeling and practical applications as either main modeling

frameworks, important building blocks of more complicated and flexible settings, or bench-

mark models. Often, Gaussian and t copulas are used to model the joint distribution of

characteristics of objects or events located or taking place in different points of geographi-

7



cal space. This is found particularly useful in environmental and civil engineering studies

(Van de Vyver and Van den Bergh, 2018; Li et al., 2018; Valle and Kaplan, 2019) and energy

economics (Atalay and Tercan, 2017; Schindler and Jung, 2018). Regression analysis and

pattern recognition is another field where these copulas are applied (Fu and Wang, 2016;

Kwak, 2017; Li et al., 2017, 2019), including the high-dimensional context, with the data

dimensionality exceeding the number of observations (He et al., 2018, 2019). In finance,

the Gaussian and t copulas are criticized for inability to capture asymmetric dependence.

However, they have proved beneficial for modeling the joint distribution of assets returns as

compared to the traditional models that disregard dependencies beyond correlations. Most

often, they are applied to model joint distributions of financial assets or indices returns for

the task of portfolio allocation (Karmakar, 2017; Han et al., 2017; Lourme and Maurer, 2017),

but also in studies of tail dependence (Huang et al., 2009; Zorgati et al., 2019) and asset

pricing (Hörmann and Sak, 2010).

Other elliptical copulas, as well as their skewed versions or even selected cases from the more

general implicit copulas, may offer very appealing degrees of flexibility and wide range of

properties (Smith, 2021). Most of them are easy to extend to high-dimensions, and often

the parameters are well interpretable. However, unlike for the Gaussian and t copulas, more

complex copula structures are parameterized in the ways that make the parameters not as

easy to relate to the observed data and disentangle in estimation (Kollo and Pettere, 2010;

Daul et al., 2003; Smith, 2021). It limits the potential choice of estimation techniques and

makes many of them computationally demanding beyond low dimensions (Yoshiba, 2018).

In the case of Gaussian and t copulas, the dimensionality of the parameter space is directly

connected to the data dimensionality, with the matrix parameter naturally interpretable in

the description of the degree of pairwise dependence among the variables. Moreover, the

structure of these copulas is such that the matrix parameter is relatively easy to relate to the

properties of the observed data. In low dimensions, Gaussian and t copulas are effectively

estimated via computationally very practical method-of-moments-like techniques based on

rank correlations and sample correlation matrices. However, in high dimensions the settings

and their estimates inherit the same problems as the traditional covariance matrix estimators.

8



Thus, most settings based on the Gaussian and t copulas are low-dimensional, where the

number of dimensions varies from two to a few dozen, and the ratio to corresponding sample

sizes is considerably less than unity. However, some settings are high-dimensional with the

ratio reaching five (He et al., 2018, 2019). More importantly, many applications that are

currently low-dimensional can potentially benefit from increased dimensionality. This is

particularly relevant for financial applications with more variables in datasets (e.g., more

assets in multivariate models used for portfolio management). For applications in which the

number of objects is rather low (e.g., in some spatial applications), the high-dimensional case

is still relevant due to the necessity of estimating the dependence using small samples.

Recently, a substantial amount of research has focused on developing covariance matrix

estimators that are robust to and well-conditioned under the data dimensionality growing along

with the sample size. Two main directions towards solving the problem can be distinguished

(Fan et al., 2008; Ledoit and Wolf, 2004b). The first approach is based on manipulating

the data and relies on dimensionality reduction techniques to impose some structure on the

covariances (Wong et al., 2003; Huang et al., 2006; Fan et al., 2008). Alternatively, researchers

adjust the traditional sample covariance matrix by directly restricting its structure, eigenvalues

or the inverse to achieve better properties under moderate or high data dimensionality (Daniels

and Kass, 2001; Ledoit and Wolf, 2004b). Ledoit and Wolf (2012), Ledoit and Wolf (2017b)

and Ledoit et al. (2020) developed newer versions of the previously developed estimator by

Ledoit and Wolf (2004b). The new estimator relies on the random matrix theory and leads

to fast and relatively easy estimation of large covariance matrices of dimensionality higher

than had been feasible ever before. It has also proved substantially more efficient than a

number of previously developed estimators of the same type (Ledoit and Wolf, 2017b).

These advances in large covariance matrix estimation rather conveniently match with the

structure of Gaussian and t copulas. Because their matrix parameter is very close to the

correlation matrix of pseudo-observations (Demarta and McNeil, 2005; Kojadinovic and Yan,

2010), shrinkage estimators of Ledoit and Wolf (2004b, 2017b); Ledoit et al. (2020) can be

employed to estimate the Gaussian and t copulas, even in high dimensional datasets.

In the next section, we formally introduce the Gaussian and t copulas and their properties

9



that are crucial for the study. We then give briefly overview of the traditional estimation

technique, followed by a rather detailed description of the shrinkage methods for large

covariance matrices and suggested algorithm to apply them for the copulas’ correlation matrix

parameter estimation.

1.3 Methodology

1.3.1 Gaussian and t copulas

The Gaussian copula in p dimensions associated with correlation matrix P ∈ Rp×p is defined

as

CN
P (u) = FP

(
Φ−1(u1), ...,Φ−1(up)

)
, (1.1)

where FP (x) is the joint CDF of the p-dimensional random vector drawn from multivariate

normal distribution N (Op, P ), and Φ−1(u) is the quantile function of the univariate standard

normal distribution. Similarly, the t copula with correlation matrix P and degrees of freedom

parameter ν > 2 is defined as

Ct
P,ν(u) = tP,ν

(
t−1
ν (u1), ..., t−1

ν (up)
)
, (1.2)

where tP,ν(x) is the joint CDF of the p-dimensional multivariate Student’s t-distribution with

ν degrees of freedom and the matrix parameter P , and t−1
ν (ui) is the quantile function of the

standard univariate t-distribution with ν degrees of freedom.

As any other copula function, the copulas (1.1) and (1.2) are legit CDFs living on the domain

[0, 1]p, and can be used accordingly. The first important property of these copulas is the

relation between Kendall’s rank correlation and the regular correlation coefficient6. For a

pair of random variables {Ui, Uj}, Kendall’s rank correlation, or Kendall’s i-τ , is defined as

τij ≡ E
[
sign

(
(Ui − Ũi)(Uj − Ũj)

)]
, (1.3)

6by regular correlation we call the correlation coefficient of the underlying multivariate distribution, from
which the copula is constructed, i.e. either multivariate normal or multivariate Student’s t distribution in our
case, that is exactly the coefficients of the matrix parameter P .

10



where {Ũi, Ũj} is an independent from {Ui, Uj} pair of similarly distributed random variables.

Then, for U = (U1, ..., Up)′ ∼ C(u) for either C(u) = CN
P (u) or C(u) = Ct

P,ν(u) it holds that:

τij = 2
π

arcsin
(
Pij

)
. (1.4)

Another important property is the relation between the matrix parameter P and the correlation

of the random variables U distributed according to the copula function as their CDF7. Firstly,

in the case of multivariate normal distribution and its copula, i.e. U ∼ CN
P (u), the relation

has the following analytical form:

Corr(U) = 6
π

{
asin

(
Pij

2

)}
i,j=1,...p

. (1.5)

In practical estimation, however, especially beyond the bivariate case, the following approxi-

mation of this relation is used (Karmakar, 2017):

Corr(U) ≈ P. (1.6)

In the case of t copula, U ∼ Ct
P,ν(u), there is no closed form expression for Corr(U).

Nevertheless, the relations (1.5) and (1.6) can be used as reliable approximations, with the

corresponding approximation errors diminishing fast as ν grows (Demarta and McNeil, 2005;

Karmakar, 2017). In the case of Gaussian copula, the absolute error of this approximation

reaches at most 0.018. In the case of t copula, the error is higher, but it approaches the level

of that for the Gaussian copula rather fast as the value of degrees of freedom grows. For

example, for the t copula with 10 degrees of freedom, the error does not exceed 0.024. See

more details in Appendix A.

Thus, (1.6) and (1.4) can be used to estimate the copula matrix parameter. We address the

corresponding estimation techniques as traditional/benchmark estimators to compare with

the proposed approach. The estimators are presented later in Sections 1.3.2, 1.3.3.

Another construct related to the copula function is the copula density function, the probability
7similarly to the regular correlation coefficient, in terms of the underlying distributions, from which the

copulas are constructed, the correlation of the transformed r.v. U is called the Spearman’s rank correlation
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density function (PDF) associated with the copula function C(u) as a CDF:

c(u) = ∂pC(u)
∂u1...∂up

. (1.7)

In the case of Gaussian and t copulas defined by (1.1) and (1.2) it is easy to show using (1.7)

that the corresponding copula log-densities are

log cN
P (u) = −1

2 log |P | − 1
2ϕ

′(u) · (P−1 − Ip) · ϕ(u), (1.8)

and

log ct
P,ν(u) = log Γ

(
ν + p

2

)
+ (p− 1) log Γ

(
ν

2

)
− p log Γ

(
ν + 1

2

)
− 1

2 log |P |

− ν + p

2 log
(

1 + ψ′
ν(u)P−1ψν(u)

ν

)
+

p∑
i=1

log
(

1 + t−1
ν (ui)2

ν

)
, (1.9)

where ϕ(u) =
(
Φ−1

0,1(u1), ...,Φ−1
0,1(up)

)′
and ψν(u) =

(
t−1
ν (u1), ..., t−1

ν (up)
)′

. The log-densities

(1.8) and (1.9) are used in evaluation of estimation precision via the Kullback–Leibler

information criterion (KLIC) presented later in Section 1.4.1.

Finally, the Gaussian and t copulas share the following important property. Consider CP (u),

the Gaussian (or t) copula function (the degrees-of-freedom parameter is unimportant if it is

a t copula) of a p-dimensional distribution of random vector X = (X1, ..., Xp)′. Then, for

any p̃-dimensional sub-vector X̃ = (Xi1 , ..., Xip̃
) (with p̃ < p, {is}s=1,...,p̃ ⊂ {1, ..., p}, and

∀s1 ̸= s2 ∈ {1, ..., p̃}, is1 ≠ is2), the copula of the joint distribution of X̃ is also Gaussian (or

t) with the matrix parameter P̃ = {Pis1
is2

}s1,s2∈{1,...,p̃}.

1.3.2 Traditional estimators

Copulas allow one to separate estimation of the marginal distributions from estimation of

the dependence structure embedded in the copula function. Even though for any copula the

full maximum likelihood estimation (full MLE, FMLE) problem can be specified, the actual

estimation is very demanding, especially in high dimensions. Hence, most of the estimators

12



of such models are performed in stages.

First, the marginal distributions {Fi}i=1,...,p are estimated from the corresponding univariate

data on each of the variables Xi = {Xit}t=1,...,n = (Xi1, ..., Xin)′, where n is sample size. The

curse of dimensionality does not apply at this stage, and we follow the convention in the

copula literature and do not focus on estimating the marginals, assuming one can estimate

them efficiently. Second, the estimates of the marginal distributions, {F̂i}i=1,...,p, are used to

transform the initial data {Xi}i=1,...,p into a corresponding set of so-called pseudo-observations

Uit = F̂i(Xit), (1.10)

and the copula function is treated as the joint distribution function of the pseudo-observations

(2.14), from which the parameters of the copula alone are estimated.

One way to proceed with estimation of copula parameters would be, again, the method of

maximum likelihood. The estimation routine in this case is called maximum pseudo-likelihood

estimation (MPLE). The method is based on maximization of the traditional conditional

likelihood function, so it disregards the fact that the pseudo-observations (2.14) are never

i.i.d. (because they are constructed from the estimates of marginal distributions F̂i, each

constructed from the whole univariate sample Xi). Still, there is evidence that together with

efficient univariate estimation of the marginals, the two-stage procedure as a whole delivers

estimates that are very close to and barely worse than the full maximum likelihood (Demarta

and McNeil, 2005).

The MPLE is universal among the copula classes, and with its resulting estimates being close

to the FMLE, it is often a preferred method of copula estimation. On the other hand, the

optimization problem is quite demanding in high dimensions for elliptical and other copulas

with high-dimensional parameters. There is another approach to estimating parameters of the

dependence structure relevant for the elliptical copulas. It is based on method-of-moments

type of estimates for large matrix parameters, and allows one to separate estimation of the

large matrix parameters from the rest of the copula function.

In the case of Gaussian and t copulas, the properties (1.6) and (1.4) are used to estimate the
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matrix parameter P . Given sample data {Xi}i=1,...,p and corresponding pseudo-observations

{Ui}i=1,...,p, the matrix parameter P of either Gaussian or t copula can be estimated as

P̂ smpl = {P̂ smpl
ij }i,j=1,...,p =

{
ĉorr(Ui, Uj)

}
i,j=1,...,p

, (1.11)

and

P̂ i-τ = {P̂ i-τ
ij }i,j=1,...,p =

{
sin

(
π

2 τ̂ij

)}
i,j=1,...,p

, (1.12)

where ĉorr(Ui, Uj) and τ̂ij are the sample analogs of the correlation coefficients and Kendall’s

rank correlations for the pseudo-observations {Ui}i=1,...,p.

The most important drawback of Kendall’s i-τ estimator (1.12) is that the resulting estimates

of correlation matrices are not guaranteed to be positive definite, and this issue naturally

escalates under high data dimensionality (Demarta and McNeil, 2005). As for estimators of

the type (1.11) based on the sample correlation, they are also sensitive to data dimensionality,

as the sample correlation matrix is positive definite if and only if the sample size strictly

exceeds data dimensionality.

For the same reason, the estimator based on the exact relation (1.5) is preferred in bivariate

case, otherwise there is no guarantee the resulting estimate of the matrix parameter of higher

dimensionality will be well-conditioned. The numerical errors of the approximation (1.6) are

relatively small, both for Gaussian and t copulas, and the estimator (1.11) turns out precise

enough and better-conditioned.

However, these traditional estimators are expected to lose quality under high data dimension-

ality, which brings forward the main point of this paper. The next subsection briefly covers

the basics of shrinkage estimators of large covariance matrices and explains how they can be

used to estimate copula matrix parameters.

1.3.3 Shrinkage estimation of copula matrix parameters

Over the years, researchers have come up with a variety of estimators of large covariance

matrices to restore the properties of the sample covariance under high dimensionality (Fan

et al., 2008; Ledoit and Wolf, 2004b, 2017b). In this paper, to estimate the large matrix
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parameters of Gaussian and t copulas, we use the shrinkage estimators of Ledoit and Wolf

(2004b, 2017b). These estimators have proved to perform well in general settings of large

covariance matrices estimation, and they allow one to take the analysis to the highest data

dimensionality achieved so far (Ledoit and Wolf, 2017b; Engle et al., 2019).

The idea behind the shrinkage estimators is the following. Given a p-dimensional random

vector X from some distribution F characterized by zero mean (without loss of generality)

and some non-random positive-definite covariance matrix Σ = E[XX ′] = cov(X), and an i.i.d.

sample of size n from that distribution recorded into n× p matrix Xn = {Xti}t=1,...,n;i=1,...,p,

the population covariance matrix Σ can be estimated by the sample covariance matrix

Sn = X ′
nXn

n
. (1.13)

The estimator Sn is consistent and well-conditioned under standard asymptotics when p

is fixed and n → ∞. However, in high dimensions the sample covariance matrix is not

well-conditioned when p is non-negligible compared to n, and even non-invertible for p larger

than n. Ledoit and Wolf (2004b) follow the work of Haff (1980) and construct the linear

shrinkage estimator as a linear combination of a structural covariance matrix estimator (an

equivariate diagonal covariance matrix) and the sample covariance matrix (1.13):

Σ∗ = ρ1Ip + ρ2Sn. (1.14)

However, unlike in the work of Haff (1980), Ledoit and Wolf (2004b) managed to derive

the optimal estimator Σ∗∗ that minimizes the Frobenius norm of the deviation from the

population covariance matrix Σ, ||Σ∗∗ − Σ||2 = p−1trace
[
(Σ∗∗ − Σ)(Σ∗∗ − Σ)′

]
. Next, since

the estimator Σ∗∗ is not feasible as it depends on the unknown Σ, it itself needs to be

estimated. The feasible estimator that can be calculated directly from the data takes the

form

S∗ = ϑ̂µ̂Ip + (1 − ϑ̂)Sn, (1.15)

where the coefficients ϑ̂ and µ̂ depend on the data Xn, see the definitions in Lemmas 3.2–3.4 in

Ledoit and Wolf (2004b). This estimator is positive definite and consistent for the population
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covariance matrix Σ under dimension asymptotics, that is, under p → ∞, n → ∞, and

c ≡ p/n → c̄ ∈ (0,∞). The value ϑ̂ is called shrinkage intensity. The less accurate the

sample covariance matrix Sn is, the more it will be shrunk, i.e., more weight in (1.15) is put

on the structural estimator (Ledoit and Wolf, 2017b).

An important characterization of the linear shrinkage estimator is in terms of eigenvalues

of the covariance matrix. Given that Σ is characterized by its eigenvalues λ1, ..., λp (let

without the loss of generality λi ≤ λj ∀i < j), and if l1, ..., lp are the eigenvalues of the sample

covariance matrix Sn, it is proved that the population and sample eigenvalues share the same

grand mean (Ledoit and Wolf, 2004b):

µ = E
[

1
p

p∑
i=1

li

]
= 1
p

p∑
i=1

λi. (1.16)

Also, Ledoit and Wolf (2004b) show that

1
p
E
[ p∑

i=1
(li − µ)2

]
= 1
p

p∑
i=1

(λi − µ)2 + E||Sn − Σ||2. (1.17)

Thus, the sample eigenvalues are relatively more dispersed than the population ones, and the

excess dispersion exactly equals the expected loss of the sample covariance matrix. Further,

as there is particular over-dispersion around the same mean, the higher eigenvalues are biased

upward, while the lower ones are biased downward.

Essentially, the shrinkage estimator (1.15) reduces the bias of the sample covariance matrix

eigenvalues by shifting them towards their grand mean (1.16) shrinking the distribution of

the sample eigenvalues. The shrunk eigenvalues corresponding to the optimal linear shrinkage

estimator (1.15) are

λ∗
i = ϑµ+ (1 − ϑ)li, (1.18)

where the coefficients ϑ and µ are probability limits, under dimension asymptotics, of ϑ̂ and

µ̂ in (1.15), and so the shrunk eigenvalues can then be estimated from the data similarly to

how the estimator (1.15) estimates (1.14):

l∗i = ϑ̂µ̂+ (1 − ϑ̂)li, (1.19)
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and the shrinkage estimator then can be rewritten as a rotation equivariant estimator:

S∗ = Γndiag{l∗i }i=1,...,pΓ′
n, (1.20)

where Γn = [γn,1, ..., γn,p] is the matrix of sample covariance matrix eigenvectors {γn,i}i=1,...,p.

Later, Ledoit and Wolf (2012) studied the performance of their linear shrinkage estimator

and found that it often results in under-shrinkage, i.e. the resulting distribution of sample

eigenvalues of the estimator (1.20) is still considerably over-dispersed as compared to the

population distribution of eigenvalues of Σ. In their study, Ledoit and Wolf (2012) use

the same approach to upgrade to the nonlinear shrinkage by applying different shrinkage

intensities to eigenvalues of different magnitude. They build on the work Ledoit and Péché

(2011) and show how a feasible estimator can be constructed, in a way similarly to how the

optimal linear shrinkage estimator (1.15) estimates the non-feasible estimator (1.14). The

non-linear shrinkage estimator preserves the form of the rotation equivariant estimator (1.20),

with the linearly shrunk eigenvalues l∗s (1.19) replaced by the non-linearly shrunk versions:

l∗∗
i = li

|1 − p
n

− p
n
lim̆

∗
F (li)|2

. (1.21)

Here, m̆∗
F (l) is the shrinkage intensity term that depends on sample eigenvalue l. The

construction of this term is presented in detail in Section 5 of Ledoit and Wolf (2012).

The intuition behind the estimator is the following. The linear shrinkage performs well

when the sample eigenvalues are not too dispersed so that the constant shrinkage intensity is

sufficient to shift the distribution of the sample eigenvalues closer to the population analog.

However, with a higher dimensionality p/n and sample eigenvalues far from the grand mean

appearing more frequently, treating the sample eigenvalues differently is likely to pay off.

The estimator of nonlinear shrinkage intensity m̆∗
F (li) aims to make the estimator of the

asymptotic distribution of eigenvalues as close to the actual limiting distribution of the

sample eigenvalues as possible (Ledoit and Wolf, 2012). The resulting estimator is proved to

be asymptotically equivalent to the optimal one in terms of Frobenius loss in the class of

rotation equivalent estimators of Ledoit and Péché (2011), and thus can outperform the linear
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shrinkage estimator (Ledoit and Wolf, 2012). However, implementation of the estimator

requires numerical inversion of a particular multivariate nonrandom function, which was later

efficiently implemented by Ledoit and Wolf (2017b).

We employ these shrinkage estimators in estimation of the high dimensional correlation

matrices of Gaussian and t copulas. The shrinkage estimators are to substitute the sample

correlation-based estimator (1.11). Since the shrinkage estimators estimate the population

covariance matrix, we transform them to estimates of the correlation matrices to comply with

the structure of the copulas’ parameters P . It is done by a simple covariance-to-correlation

transformation, which cannot change the estimator being well-conditioned or not.

Another possible concern when estimating copulas is that the shrinkage estimators and their

properties rely on i.i.d. data samples, while in copula estimation the pseudo-observations

(2.14) are not independent. Still, the same issue arises when implementing the MPLE,

yet the resulting estimates are shown to be relevant and insignificantly different from the

FMLE. Hence, we expect that disregarding the actual “non-iid-ness” of pseudo-observations

and applying the shrinkage estimators will perform sufficiently better than the traditional

estimators (1.11) and (1.12).

1.4 Simulation study

In this section, we present the results of our simulation study. We consider a variety of

Gaussian and t copulas with different values of matrix parameters. We vary both the number

of variables in the data and its ratio to the sample size in order to track the performance of

the estimators under low and high dimensionality. The estimation quality is evaluated both

in terms of closeness of matrix parameter estimates to the true matrix parameter values and

closeness of estimates of copula functions to their true counterpart.

When working with the t copula, the degrees of freedom parameter ν needs to be estimated

as well. We avoid describing technical details of this estimation; it is a basic uni-dimensional

estimation performed via MPLE treating the matrix parameter fixed at its estimated (via

one of the moments-like estimators) level. Neither do we report the estimation results of

these parameters; the estimates ν̂ are generally very close to the true values and do not
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cause any problems. Similarly, we do not focus on details or results of estimating the

marginal distributions. We use univariate empirical distributions (EDF) to construct the

pseudo-observations (2.14) from the original data.

Next, we present the choice of copula parameters and estimation quality criteria. Then we

present simulation design and report the results.

1.4.1 Simulation design

True copula specifications The following specifications of the copulas are used in the

simulations:

• The true copulas are either Gaussian or t.

• The data dimensionality p takes one of three values

p ∈ {10, 100, 1000}. (1.22)

• The sample size is set via fixing particular values of the p-to-n ratios to compare the

cases of different dimensionality. Generally, we consider the range of the dimensionality

ratio from 1/20 to 20 except the cases with a small number of variables (p = 10) and

dimensionality higher than 2 (as they imply the sample size of n < 5), and the cases

with a large number of variables (p = 1000) and dimensionality lower than 1/2 (as they

imply sample sizes higher than 2000 which is too computationally demanding). To

summarize, the dimensionality varies in the following way:

p

n
∈



{1/20, 1/10, 1/2, 1, 2} , p = 10,

{1/10, 1/2, 1, 2, 5, 10} , p = 100,

{1/2, 1, 2, 5, 10, 20} , p = 1000.

(1.23)

• For each copula and all pairs of dimensionality and sample size we consider two versions

of the true matrix parameter P . First, we use the identity structure P = Ip as an
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important benchmark case. Second, for each p we construct an arbitrary and randomly

generated matrix parameter P , which is a legit correlation matrix as it is positive

definite, far from being degenerate, and has a full range of values for correlation

coefficients. The three non-identity matrices are visualized in Figure 3.

• For the t copulas, the degrees of freedom parameter value is always fixed at ν = 8

so that the copulas are sufficiently far from being Gaussian, but also are sufficiently

distant from the value of 2 when variance does not exist.

• The marginal distributions are set to univariate standard skewed-t distribution with

randomly and independently assigned degrees-of-freedom and skewness parameters.

The degrees-of-freedom parameter is drawn from a discrete uniform on {6, 7, 8, 9, 10},

and the skewness parameter is drawn from U [−1, 1].

Measures of estimation accuracy

Given some true model CP (u) with the p × p matrix parameter P and its estimate P̂ we

evaluate estimation quality using the following three measures:

• Positive-definiteness. As all true matrix parameters P are legit correlation matrices, it is

a desirable property of the estimates P̂ to be such, too. By construction, all estimators

we consider deliver P̂ that are symmetric with unit diagonal elements and correlation

coefficients off the diagonal. Positive-definiteness, however, is not guaranteed for some

of the estimators; hence, for every P̂ we check whether they satisfy this property. The

shrinkage-based estimators deliver positive-definite matrices by construction; still, we

assess their positive-definiteness as a sanity check for numerical routines.

• Closeness of matrix estimate to true values. Given that the matrix parameters are

symmetric, there is a wide choice of measures of closeness of estimates to true values.

However, since the matrices at hand are correlation matrices, it is sufficient to measure

the closeness of elements off the main diagonal. We use the Euclidean norm of the

difference between the half-vectorized true and estimated matrices:

LE(P, P̂ ) = ||vech(P − P̂ )||. (1.24)
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Note that the use of Frobenius matrix norm would deliver the same rankings because

the diagonal elements in both matrices are fixed.

• Closeness of estimated copula function to true one. Finally, as the main object of

modeling is the copula function CP itself, we measure the closeness of the estimated

one to the true one via the Kullback-Leibler information criterion (KLIC):

KLICP |P̂ = ECP

[
log

(
cP (u)
cP̂ (u)

)]
=
∫

· · ·
∫
1p

Op

cP (u) log cP (u)
cP̂ (u)dpu. (1.25)

While the first two criteria are computationally practical even when p is large, calculating KLIC

for large p is computationally demanding. To make it operational, we do two simplifications.

First, we use the property that Gaussian and t copulas of larger vectors remain the same

for their sub-vectors (see Section 1.3.1), so for any data dimensionality p we only consider

KLIC for 3-dimensional subsets of the data. For p = 10, we compute the KLIC for only one

triplet; for p = 100, we average KLIC over randomly chosen 30 triplets, and for p = 1000

the number of triplets we average over is 100. Second, we estimate the expectation in (1.25)

via simulations. For each true copula function CP̃ (u) (where P̃ is a 3 × 3 matrix parameter

corresponding to a chosen triplet and the initial true matrix P ), we generate a collection of

M = 106 3-dimensional vectors {ũm}m=1,...,M from the true copula function CP̃ , and estimate

the expectation in (1.25) using the expressions for log-densities of Gaussian and t copulas

(1.8) and (1.9):

KLIC
P̃ | ˜̂

P
= M−1

M∑
m=1

(
log cP̃ (ũm) − log c ˜̂

P
(ũm)

)
. (1.26)

Simulation design

For a particular combination of number of variables p, true matrix parameter P , marginal

distributions {Fi}p
i=1, true copula function CP (u), and sample size n, a single simulation is

run as follows.

1. We generate the data X ∈ Rn×p from CP (F1(u1), ..., Fp(up)), estimate the marginals

via EDFs, and transform them to pseudo-observations, U = {F̂i(xi)}p
i=1 ∈ [0, 1]p.

2. We estimate corr(U) via each of the four estimators and obtain estimates P̂ smpl, P̂ i-τ ,
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P̂ LSh and P̂NLSh.

3. For each estimate, we calculate the following accuracy measures:

• a binary indicator of positive-definiteness of P̂ ;

• the Euclidean loss, LE(P, P̂ ), via (1.24),

• KLIC, via (1.26) and averaged over randomized triplets of variables;

* for t copulas, KLIC are estimated twice: once treating the degrees-of-freedom

parameter as known, and then with that estimated by MPLE.

We repeat each simulation 210 times.8

1.4.2 Simulation results

The simulation results are presented Tables SA1 – SA12 in the Supplementary Appendix.

For each evaluation criterion, we report the median, mean and standard deviation across the

simulations. The median values of the criteria are visualized in Figures SA1, SA2. When

calculating KLIC for non-positive-definite P̂ , there is a great chance that the estimate of

the expectation does not converge, resulting in an “infinite” value of KLIC. In most of these

cases, the median can still be computed (unless KLIC is infinite in all the simulations),

but the mean and standard deviation make no sense due to a high share of infinite values.

Next, in some cases either the median or the mean and standard deviation are numerically

indistinguishable from zero, i.e. they are < 10−23. In measuring the performance in terms

of any criterion, we say that one estimator outperforms another if the median value of the

former estimator’s performance criterion is smaller than that of the latter estimator.

The results of the positive-definiteness check are perfectly predictable and appear as expected.

The shrinkage estimators always deliver positive-definite estimates of the matrix parameter.

The traditional estimators deliver positive-definite estimates only under low dimensionality
8The format of a power of two is chosen due to technical reasons of multi-core calculation organization. A

higher number of simulations appears very time consuming under large p and n, and the number 210 resulted
in sufficiently precise calculations to make the conclusions.
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(p/n < 1), with P̂ i-τ not necessarily positive-definite even then (though the fraction of such

cases is small).

The case of p = 10 is included to show the basic properties of the four estimators and to point

out that the ratio of the number of dimensions in the data to the sample size does matter

(see Tables SA1–SA4). More importantly, the difference in performance is well observed for

higher dimensions and smaller samples (Tables SA9–SA12).

Regarding the two distance criteria, overall the shrinkage estimators confidently outperform

the traditional ones. First, under low dimensionality, there is no clear pattern in which type of

estimator is the best in terms of the closeness of the estimated matrix to its true counterpart.

However, there are very few cases when one of traditional estimators outperforms one of

the shrinkage estimators in terms of Euclidean distance. Further, even when the traditional

estimators do outperform the shrinkage ones in terms of Euclidean distance, the KLIC are

likely to be smaller for the shrinkage estimators.

Second and most interesting, under high dimensionality, the better performance of shrinkage

estimators is more obvious. Not only are the estimates always positive definite, but they are

also precise enough in terms of both Euclidean distance and KLIC, and the difference in the

performance of the shrinkage estimators and traditional ones is substantial. Figure 4 gives a

representative picture for a slice of simulations.

Regarding the relative performance of the shrinkage estimators to each other, we additionally

report several selected slices of the joint distributions of their performance to check how

often each of the estimators outperforms the others, and how that changes with higher

dimensionality. This is reflected in Figure 5.

Overall, under high dimensionality (p/n > 1), there is a tendency for nonlinear shrinkage

based estimators of copulas, both Gaussian and t, to outperform linear shrinkage based either

in terms of Euclidean distance between the true and estimated matrix parameter, or the

average Kullback-Leibler distance between the true and estimated copula function. Further,

the higher the dimensionality, the more likely the nonlinear shrinkage will perform better

than the linear one (see, for example, Figure 5). However, there are a few exceptions. First,

for either copula with rather dispersed true eigenvalues (e.g., the 100 × 100 arbitrary true
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matrix P in our simulations), the linear shrinkage outperforms the nonlinear one under high

dimensionality (see Figures 4 and 5c). We conjecture that the relatively better performance

of nonlinear shrinkage for the models with less-dispersed true eigenvalues (e.g., the identity

P in our simulations) is explained by the ability of nonlinear shrinkage to shift the right tail

(outlier) sample eigenvalues towards the grand mean. Second, there may be a situation (see,

e.g., Figure 5d) in which the linear shrinkage based estimator dominates all others, with the

nonlinear shrinkage, in this case, only slightly underperforming (see Table SA12c), and the

differences between the two can be neglected.

1.5 Empirical illustration: large portfolio allocation

We apply shrinkage based estimators of copula correlation matrices in high dimensions to

allocate large portfolios of stocks and compare their performance with portfolio choices

derived from the plain multivariate normal (MVN) model.

Asset allocation is one of the classical applications of multivariate models of assets returns.

A number of theoretical settings describing investor’s behavior offer analytical solutions for a

portfolio structure. However, the more complicated the investor’s problem is or the more

sophisticated the model for asset returns is, the more likely numerical methods need to be

employed for an optimal portfolio choice (DeMiguel et al., 2007; Michaud and Michaud, 2008;

Guidolin and Timmermann, 2008; Kolm et al., 2014; Ledoit and Wolf, 2017a). Even in the

static case, when the portfolio structure is determined only once per portfolio lifetime, it

often appears necessary to simulate the dynamics of asset returns over a portfolio lifetime

period to evaluate the performance of different portfolios and pick the optimal structure

corresponding to investor’s utility function (van Binsbergen and Brandt, 2007; Guidolin and

Timmermann, 2008; Harvey et al., 2010).

We perform a static portfolio allocation exercise, i.e. the structure of the portfolio is going

to be set once per portfolio lifetime. However, the joint distribution model of asset prices

during the portfolio lifetime is based on empirical marginal distributions of asset returns and

copula across assets’ dependence structure. Hence, simulations of asset price dynamics are

required to evaluate the value of portfolios during and at the end its lifetime.
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We use historical data from the database FIZ©2019.9 From the CRSP dataset we extract

daily close prices of the securities listed in the Wilshire 5000 index for the last 9 months of

2017. There are 4982 assets at our disposal. We randomly choose subsets of size 3600 assets

to model the predictive joint distribution of their prices. Based on this model, we simulate

future prices and select portfolios with the best Sharpe ratio. To evaluate these portfolios, we

compare their actual performance over the period of simulation with the performance of the

equally weighted portfolio, or the portfolios based on other models, in terms of cumulative

return in the end of portfolio lifetime.

Prior to estimating predictive multivariate distribution, we filter out univariate conditional

means and conditional variances of each log-return via ARMA-EGARCH modeling, and

extract serially uncorrelated standardized residuals. Then, one of the following multivariate

distribution models is applied to these residual terms across the assets:

• MVN,

• t copula, with the marginals estimated as EDFs.

We use either linear or nonlinear shrinkage estimators to estimate the matrix parameter of

both the MVN and the t copula models. The d.f. parameter of the t copula is estimated via

MPLE. In this exercise we drop the sample correlation estimator of the matrix parameter

of either MVN or t copula due to the high dimensional context (p/n = 30), and the i-τ

estimator for the copula is dropped due to its poor performance shown in simulation results

earlier. We use only the t copula as it includes the Gaussian copula as a special case.

Thus, for each set of 3600 assets we obtain 4 different model-based portfolios, each of which

is the optimal portfolio in terms of Sharpe ratio corresponding to one of the 4 estimates. To

account for differences among randomly chosen subsets of assets, we measure the performance

of these portfolios relative to each other or to the return of the equally-weighted portfolio.

The detailed description of the modeling technique and simulation design are relegated to

Appendix B. We use historical data over the period of the last 9 months of 2017, with the

first 6 months used to fit the models, and the last 3 months used as an out-of-sample period,
9Center for Research in Security Prices (CRSP), University of Chicago Booth School of Business.
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over which the simulations are run and the performance of the portfolios is evaluated. The

distributions of relative performance of portfolios suggested by different models and estimates

across the randomly chosen sets of assets are shown in Figure 7. Figure 6 gives examples of

dynamics of different model-based portfolio cumulative return in comparison with the one for

equally-weighted portfolios.

The intuition behind this approach is the following. The performance of model-based portfolio

choices crucially depends on whether the model is capable of capturing the properties of

returns properly. In the case of MVN, not only does the model disregard heavy tails and

asymmetry in return marginal distributions, but also it ignores possible tail dependence.

The resulting portfolios are likely to be vulnerable to the shocks that are rare, but occur

simultaneously in the returns of many assets included in the portfolio. Although the t copula

based model is also rather limited in capturing the desired properties (only symmetric tail

dependence can be captured), it still is able to improve the quality of the portfolios exactly

because the assets that are likely to be tail dependent will not be included in the same

portfolio with high weights. Further, given the results presented earlier, we expect that under

high dimensionality (p/n = 3600/120 = 30 in this case), the shrinkage-based estimates of the t

copula based models are to deliver more relevant portfolio choices.

The results do confirm this. Overall, from our 135 randomly chosen sets of assets we find that

in over 74% of cases the best portfolio is suggested by either of the t copula based models, in

about 13% the best portfolio is the model-free equally weighted one, and the rest are the

MVN-based choices. Further, when a portfolio is suggested by either MVN or t copula model,

it is more often the one based on the nonlinear shrinkage estimator of the matrix parameter.

However, in case of the t copula estimates, in over 63% of cases the performance of the

two portfolios is indistinguishable in terms of the cumulative return in the end of portfolio

lifetime. In terms of relative performance of the models, for t copula based portfolios there is

a considerable chance that the resulting return at the end of portfolio’s lifetime is going to

be higher than the corresponding return of any other portfolio (see Figure 7).

We have intentionally designed this example so that it over-simplifies the dynamic component

of the returns modeling, but instead reveals and stresses the potential benefits in the high-
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dimensional context. First, we took the number of assets to what, to our knowledge, is the

highest dimensionality of portfolios analyzed via copulas. Second, the model is estimated

on a (relatively) extremely small sample, which justifies using a very simple dynamic model

for asset returns. We believe that this approach can be further developed for the task of

dynamic re-balancing of large portfolios.

1.6 Discussion and concluding remarks

We employ large covariance matrix shrinkage estimators in the task of Gaussian and t copulas

estimation in high dimensions. This technique allows us to precisely estimate the copulas

in (ultra-)high dimensions with up to 1000 variables in a dataset and sample sizes up to 20

times smaller. While it is accepted that the copulas we study cannot capture all of data

properties in all empirical applications (e.g., asymmetric dependence, including that in the

tail), they remain favored in numerous applications either as a main dependence model or at

least as important benchmark models and building blocks for more flexible settings. Many

applications that employ the Gaussian and t copulas can benefit from higher dimensionality

either by including more variables into the datasets, or by making use of smaller samples.

Our main results show that large covariance shrinkage estimators can effectively be used for

copula matrix parameter estimation in (ultra-)high dimensions. Not only are the resulting

estimates of the correlation matrices of the pseudo-observations well-conditioned and close

to their true values, but also the whole copula function estimates are close to their actual

counterparts, including t copulas, for which the scalar degrees-of-freedom parameter controlling

for tail dependence is additionally estimated by MPLE. In addition, we show that the non-

linear shrinkage estimator generally outperforms the linear one, except when the true matrix

parameter is rather sparse, in which case the performance of the two shrinkage estimators is

indistinguishable.

Obviously, it is potentially very beneficial in future research to extend the approach we

have proposed to other copula-based settings, such as skewed versions of Gaussian and t

copulas that are known to be able to capture asymmetric dependence. In this paper, we

heavily exploit the symmetry to be able to connect the correlation matrix of the pseudo-
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observations with the actual parameters of the copula function. This makes estimation of

the actual copula parameters practical. However, we conjecture that there is no obstacle

in extending the approach to the estimation of correlation matrices of pseudo-observations

for other copulas, including skewed ones. However, it is not operational since for copulas

other than Gaussian or t the parameters of copula functions cannot be easily connected with

moments of pseudo-observations. One possible way to overcome this is to use the idea of

simulated method of moments for copula estimation of Oh and Patton (2013) combined with

shrinkage estimation of the covariance matrix of pseudo-observations. Again, currently the

approach is rather computationally impractical in high dimensions. Another way to approach

it would be to introduce a two-step-like estimation, when on the first step one estimates the

lower-dimensional parameters of the copula so that to transform the pseudo-observations

according to the quantile functions of the underlying distribution of the copula and use its

properties to estimate, on the second stage, the matrix parameter via shrinkage estimators.

Potentially, shrinkage estimators application can be extended to skewed versions of elliptical

copulas or other implicit copulas. We see this idea potentially very beneficial, yet it requires

substantial further investigation.

What may be a beneficial and computationally practical extension of the current approach

is to use the most recent advances in non-linear shrinkage estimation of large covariance

matrices. In particular, the recently suggested analytical non-linear shrinkage of Ledoit et al.

(2020) makes the non-linear shrinkage estimator easier and faster to implement. Similarly,

the quadratic shrinkage of Ledoit and Wolf (2019) is potentially beneficial for practical

application. According to the authors, it is unlikely that either of these estimators will

improve the quality of estimation as compared to earlier numerical implementation of the

non-linear shrinkage. We ran a separate short simulation study of this issue confirming that

the gain of the analytical non-linear shrinkage is only in terms of computational time.

Another result of our research is an empirical application of the proposed copula estimators

to a large portfolio allocation problem. We use the high-dimensional t copula to model the

joint distribution of returns of (ultra-)many assets over a short period and construct large

portfolios. With the number of assets in the portfolio of 3600 and the sample length for
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model estimation of 120 observations, the problem is ultra-high dimensional and, to our

knowledge, the highest dimensional portfolio allocation problem in the literature. Hence,

precise estimation of the model requires shrinkage estimation of matrix parameters. The

results show that although the t copula is symmetric, the suggested portfolios significantly

outperform those coming from the multivariate normality or the copula model estimated

by traditional estimators. Not only do the portfolios deliver higher returns by the end of

the lifetime, but also they persistently avoid substantial downfalls during the lifetime due to

accounting for and proper estimation of tail dependence.

The results of the empirical exercise also suggest that the proposed approach can be beneficial

for constructing more sophisticated multivariate dynamic models for financial asset returns,

particularly if one succeeds in practically applying it to the case of skewed copulas. Alter-

natively, these results can be used to update some of the existing approaches to modeling

the joint dynamics of many assets’ returns that yet disregard the the dependence between

the variables beyond correlations. For example, Engle et al. (2019) use non-linear shrinkage

to bring the dynamic conditional correlation model of assets’ returns into high dimensions

and use it to construct large portfolios, and De Nard et al. (2020) bring the analysis to even

higher dimensions and intra-day data frequency. Yet the standardized innovations follow

simple multivariate normal distribution. Our empirical example suggests that a copula-based

setting in the part of standardized innovations distribution modeling can be beneficial for the

emerging portfolios, and shrinkage estimation is a practical way to keep the whole setting

high-dimensional.
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2 Estimation of High-Dimensional Skew-t Copula

and Application to Portfolio Allocation

2.1 Introduction

Selecting or constructing an appropriate multivariate distribution plays a fundamental role

in a wide array of practical statistical applications. While many families of multivariate

distributions are commonly used, they often exhibit limitations in their ability to capture all

essential data properties.

Copulas have emerged as a potent tool for constructing multivariate distributions. They

provide the means to model individual marginal distributions and the interdependence

structure, referred to as the copula, separately within a multivariate distribution.

One of the current challenges in copula applications is that, in the contemporary landscape,

there is a growing need for modeling frameworks that are effective in high-dimensional

settings. Despite the multitude of available copulas, many are unsuitable for high-dimensional

applications due to practical constraints.

Specifically, in financial contexts, the estimation of multivariate distributions for asset returns

has remained a pivotal endeavor. Over the years, researchers have continually refined these

models to better capture essential data properties, enabling more informed decision-making

in areas such as pricing, asset risk management, and portfolio allocation.

While univariate processes have seen significant advancements, the modeling of multivari-

ate asset return distributions has lagged behind. Much of the literature in this domain

focuses primarily on modeling joint second moments. Aspects of financial data, such as

asymmetric dependence and tail dependence, hold significant importance in practical applica-

tions. Nevertheless, these properties have received relatively limited attention in the existing

literature.

In this paper, we investigate the skew-t copula, based on the multivariate skew-t distribution

introduced by Azzalini and Capitanio (2003). This copula leverages the foundation of elliptical
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distributions, enabling easy extension to high dimensions. Moreover, owing to its inheritance

of the skewness and heavy tails of the skew-t distribution, it possesses the capability to model

asymmetry and tail dependence. However, its analytical characteristics are limited, rendering

estimation of it challenging, even in scenarios with moderate dimensions.

We introduce a new method for estimating the skew-t copula in both low and high dimensions.

Our approach takes advantage of the convenient stochastic representation of the underlying

distribution and involves a two-step procedure for estimating the copula’s parameters. In the

first step, we use the simulated generalized method of moments to identify and estimate the

lower-dimensional skewness and degrees of freedom parameters of the copula. These estimates

help us transform the data from the copula distribution into a representative sample that

aligns with the underlying multivariate skew-t distribution. In the second step, we apply

analytical non-linear shrinkage of Ledoit et al. (2020) to the transformed data, resulting in a

well-conditioned estimate of the large matrix parameter. We then put the skew-t copula and

our proposed estimator to the test in practical portfolio allocation within high-dimensional

settings.

To demonstrate the real-world relevance of our approach, we construct a series of portfolios

using the top 30 components of the EUROSTOXX50 index in the first half of 2022. Our

dynamic portfolio exhibits significant outperformance of the market. A closer look at the

changes in the portfolio structure highlights the skew-t copula’s crucial role in accounting for

tail dependence among assets.

The rest of the chapter is organized as follows. In section 2.2 we give an overview of the

multivariate skew-t and its copula. Section 2.2.3 presents the suggested two-step algorithm

of skew-t copula estimation. Section 2.4 contains a summary and discussion of the empirical

exercise. Section 2.5 concludes the chapter.
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2.2 Multivariate skew-t distribution and its copula

2.2.1 Sklar’s theorem and foundations of copulas

A copula is a multivariate cumulative distribution function (CDF) with U [0, 1] marginals.

Such CDFs are vital for multivariate distribution construction due to the key result in copula

theory – Sklar’s theorem (Sklar, 1959). The theorem shows that any multivariate distribution

with CDV F (x) and marginal CDFs {Fi(xi)}i=1,...,p has a unique representation

F (x) = C
(
F1(x1), ..., Fp(xp)

)
, (2.1)

and the function C : [0, 1]p → [0, 1] is called the copula function of F .

The converse of the theorem also holds and allows one to combine a copula function of

one distribution with a set of any marginal CDFs {F ′
i (xi)}i=1,...,p to plug them into (2.1)

and obtain a legitimate new CDF F ′(x) with those marginals. Thus, a copula embeds the

structure of the interdependence in a multivariate distribution, that can be modeled and

analyzed separately from the marginal distributions.

The copula approach to multivariate distribution modeling has been widely used in the

research, and it engendered a vast variety of kinds of copulas. While Archimedean copulas

proved very convenient in bivariate settings, they are not flexible when extended to moderate

or high dimensions (Hofert et al., 2012). Hence, Archimedean copulas are rarely used

outside bivariate settings. The vine copulas allow one to attain maximal flexibility in copula

construction, but at the cost of a growing number of alternative specifications and parameters

with higher data dimensionality. Often, constructing a vine copula requires one to make rather

strict structural assumptions about the data-generating process and to use heuristic algorithms

for specification selection (Aas et al., 2009; Brechmann et al., 2012; Brechmann and Czado,

2013; Czado et al., 2013; Dissmann et al., 2013). Another approach to constructing a copula

is to directly extract the copula function from a multivariate distribution (2.1). For example,

the elliptical copulas are copulas of elliptical distributions. The most famous members of this

class are Gaussian and t copulas, derived correspondingly from the multivariate normal and
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Student’s t distributions (Demarta and McNeil, 2005). Elliptical copulas are often used in the

construction of multivariate distributions to capture desired properties of the data (Zimmer,

2012; Patton, 2012; De Leon and Chough, 2013; Patton, 2013; Oh and Patton, 2017).

Thus, finding a relevant copula for a particular task of constructing a multivariate distribution

seeks a compromise between the ability to capture all the desired properties of the data and

how practical it is in applications to actual data. In this paper, we consider the copula of

multivariate skew-t distribution that builds on elliptical copulas. On one hand, it inherits

the skewness of the skew distribution that allows it to capture asymmetrical dependence and

tail dependence. On the other hand, the lack of analytical properties makes it sufficiently

difficult to apply, particularly in high-dimensional settings.

In the next sections, we first introduce the multivariate skew-t distribution and its properties

that are essential for skew-t copula analysis. Next, we introduce the corresponding copula

and the approach to its estimation that we suggest.

2.2.2 Multivariate skew-t distribution of Azzalini and Capitanio

In the literature, there are several different distributions under the label of “multivariate

skew-t distribution” (MSTD). They are generally built by introducing additional skewness to

the multivariate t distribution. In our study, we stick to the definition of MSTD by (Azzalini

and Capitanio, 2003). This definition introduces a convenient stochastic representation of

the distribution that corresponds to our purposes. Moreover, there are several other studies

that introduce skew-t copula based on this distribution (Yoshiba, 2018).

The stochastic representation of the standardized distribution is the following10. A p-

dimensional random vector Y is distributed according to MSTD with parameters {P, δ, ν},

MSTD(P, δ, ν), with P p× p correlation-like11 matrix, δ p× 1 vector from [−1, 1]p, scalar
10The original definition of MSTD by Azzalini and Capitanio (2003) is an equivalent but a different

parameterization in terms of the parameters {P, α, ζ, ν} introduced below. We stick to the parameterization
in terms of {P, δ, ν} that is more convenient for the copula definition, random numbers generation, and
estimation.

11symmetric, positive-definite, unity diagonal, from [−1, 1] off-diagonal elements matrix
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ν > 2, if the extended matrix

Ω =

1 δ′

δ P

 (2.2)

is positive-definite, and

Y = V −1/2Z̃, (2.3)

where the scaling scalar r.v. V −1/2 is such that

ν · V ∼ χ2
ν , (2.4)

and the p-variate r.v.

Z̃ =


Z, if Zo ≥ 0,

−Z, o.w.,
(2.5)

with Zo

Z

 ∼ N (Op+1,Ω), (2.6)

and V is independent of (Zo Z
′)′.

Neither the CDF of this distribution, nor the marginal CDFs, nor the marginal quantile

functions have closed-form representations. The PDF can be represented in the following

way:

fMST D(Y ;P, δ, ν) = 2ftp
(Y ;P, ν)Ft1

(
α′Y

√
ν + p

Y ′P−1Y + ν
; ν + p

)
, (2.7)

where ftp
(.;P, ν) is the PDF of p-variate Student’s t distribution with correlation matrix P

and ν degrees of freedom, Ft1(.; ν) is the CDF of univariate Student’s t distribution with ν

d.f., and

α = P−1δ√
1 − δ′P−1δ

. (2.8)

The marginal distributions of MSTD(P, δ, ν) are the univariate skew t distributions with

parameters {δi, ν}, STD(δi, ν). The corresponding PDF is

fST D(Yi; δi, ν) = 2ft1(Yi; ν)Ft1

(
ζiYi

√
ν + 1
Y 2

i + ν
; ν + 1

)
, (2.9)
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where ft1(.; ν) is the PDF of standard univariate t distribution with ν d.f., and

ζi = δi√
1 − δ2

i

. (2.10)

The PDF (2.9) can be used to numerically calculate FST D(.; .) and F−1
ST D(.; .) that are required

for the switch to the copula.

Azzalini and Capitanio (2003) derive various properties of this distribution. For our

purposes, the closed-form expressions for some moments are useful. Particularly, for

Y ∼ MSTD(P, δ, ν),

E(Y ) = δ(ν/π)1/2 Γ
(
(ν − 1)/2

)
Γ(ν/2) , ν > 1, (2.11)

E(Y Y ′) = P
ν

ν − 2 , ν > 2, (2.12)

and it obviously implies that

Cov(Y ) = P
ν

ν − 2 − δδ′ ν

π

Γ
(
(ν − 1)/2

)
Γ(ν/2)

2

, ν > 2. (2.13)

2.2.3 Skew-t copula

The copula corresponding to MSTD above is the skew-t copula. Yoshiba (2018) gives a good

description of the copula and its parameterizations, with a focus on maximum likelihood

estimation of its parameters.

The copula function can be expressed via inversion of (2.1), yet it involves the joint and

marginal CDFs of MSTD that can only be calculated numerically from (2.7) and (2.9). The

same holds for the copula density function. Moreover, this transformation requires the

marginal quantile functions of MSTD, F−1
ST D(.; .) that can only be calculated numerically.

Further, unlike the related symmetric Gaussian or t copulas (the copulas of multivariate

normal and multivariate t distributions), the skew-t copula has no closed-form expressions that
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would relate the parameters of the copula to the dependency measures (like rank correlations).

The lack of analytical properties and the necessity to numerically integrate and invert the

marginal CDFs complicate the application of the copula, even in low dimensions. Nevertheless,

the copula remains an attractive tool due to its flexibility.

Figure 8 gives an example of how the skewness of the copula can influence the joint distribution.

Both joint densities share the same standard normal marginals, the same values of the degrees

of freedom parameter ν, and the off-diagonal element of the matrix parameter P , ρ. The

difference in the values of the skewness parameter δ has a significant effect on the shape of

the resulting density. In the left panel, the skewness creates a rather minor nonlinear though

asymmetric effect, but the random variables remain correlated. However, due to a lot more

significant skewness in the right panel, the random variables appear nearly uncorrelated,

while there is obvious non-linear asymmetric dependence in means. Moreover, a significant

portion of the joint probability mass is relocated in the direction of the left-bottom tail,

which lays the basis for asymmetric tail dependence.

2.3 Estimation of the skew-t copula

2.3.1 General notes on copula estimation

There are several approaches to copula estimation. The parameters of the copula can be

estimated together with the parameters of the marginal distribution via any relevant method.

This approach requires knowledge of the particular properties of the resulting joint distribution

and in some sense ignores the advantages of the copula approach. It is sometimes chosen

in low-dimensional (mostly bivariate) settings with a relatively low number of parameters

and well-established closed-form or computationally practical numerical properties of the

distributions.

In more complicated settings, the copula is estimated separately from the marginal distribu-

tions. Consider a target joint distribution with CDF G that has the marginals Gj and the

copula function C. Given a sample {xij}i=1,...n from G, it is transformed to the corresponding

sample of so-called pseudo-observations
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uij = Ĝj(xij), (2.14)

where Ĝj is an estimate of the univariate marginal CDF Gj. The pseudo-observations (2.14)

are then considered as a sample from the distribution with the joint CDF C and are used to

estimate its parameters.

One way to approach the estimation is to relate the parameters of the copula to particular

properties of the distribution C, and use these relations to estimate the parameters. For

example, because the transformation (2.14) is essentially equivalent to the transformation

into ranks, for some copulas, rank correlations of the underlying distributions are used to

estimate the correlation-like parameters (Gaussian copula, t copula) (Demarta and McNeil,

2005; Anatolyev and Pyrlik, 2022). However, this is not a practical option in the case of the

skew-t copula, because no such properties are available in closed form.

For the skew-t copula, Yoshiba (2018) suggests a maximum likelihood estimator for the

copula, based on the fast numerical evaluation of the copula density function and a convenient

reparameterization of the matrix parameter that guarantees well-conditioned estimates. The

approach proves to be practical in low-dimensional settings. However, as the number of

dimensions grows, the number of scalar parameters escalates and makes full maximum

likelihood optimization unduly heavy.

We suggest a different approach that utilizes the convenient stochastic representation (2.2 -

2.6) of MSTD. Instead of relating the parameters of C to its properties, we use the simulated

method of moments to identify the lower-dimensional parameters of the copula δ, ν and use

their estimates to perform another inversion transformation to MSTD distribution, for which

the analytical properties (2.11 - 2.13) can be used to estimate the remaining high-dimensional

matrix parameter. The algorithm is presented in detail in the next few sections.

2.3.2 Suggested two-step algorithm

2.3.2.1 The general scheme

Consider a random variable that generates pseudo-observations from skew-t copula
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(u1, ...up)′ ∼ C(P, δ, ν). (2.15)

This can be considered as a stage of a broader task of estimating a joint distribution of the

originally observed random variable x from the distribution G, whose marginals are not of

interest or are known. The pseudo-observations (2.15) then should be considered as the result

of transformation (2.14) of the original data.

The estimation task is then to obtain estimates P̂ , δ̂, ν̂ based on a sample of the pseudo-

observations {ui1, ...uip}i=1,...n (possibly, under n ≥ p).

The estimation is challenging in two ways. Firstly, the number of scalar parameters grows

fast with growing p. Secondly, the estimates of the parameters P, δ must result in a well-

conditioned estimate of the corresponding extended matrix Ω (defined by (2.2)).

The rationale behind the suggested two-step estimation technique is the following. Suppose,

the true values of the parameters δ, ν are known. Then consider the inverse transformation

of the pseudo-observations {uij}

yij(δj, ν) = F−1
j (uij; δj, ν), (2.16)

where F−1
j (uij ; δj, ν) is the marginal CDF of MSTD with parameters P, δ, ν. By construction

of the skew-t copula, then,

Y = (y1, ...yp)′ ∼ MSTD(P, δ, ν). (2.17)

Using the property (2.13), the remaining matrix parameter P can be estimated using the

method of moments:

P̂ (δ, ν) = ν − 2
ν

Ĉov(Y ) + δδ′ν − 2
π

Γ
(
(ν − 1)/2

)
Γ(ν/2)

2

. (2.18)

Although the parameters δ, ν are not known in actual applications, they can be estimated

from lower-dimensional subsets of the data {uij}. The stochastic representation of MSTD
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(2.2 - 2.6) implies that for any pair uj1 , uj2 , j1 ̸= j2 from (2.15) it holds that

(uj1 , uj2)′ ∼ C


 1 ρj1 j2

ρj1 j2 1

 ,
δj1

δj2

 , ν
 . (2.19)

Breaking the sample from (2.15) into such pairs (2.19), even in a high-dimensional setting

with relatively large p, we can estimate the parameters δ1, ...δp, ν consistently12. Moreover,

each parameter appears in different pairs and can be estimated more than once, which makes

the final estimates more robust (for example, by taking the median estimator for each of

them). The estimates δ̂, ν̂ then can be used to estimate the quantile functions F−1
j to perform

the approximate transformation (2.16) and the estimation (2.18).

Thus, given a sample of pseudo-observations {ui1, ...uip}i=1,...n from a skew-t copula C(P, δ, ν),

the two-step estimation procedure is the following:

Step 1. Using a sufficient set of pairs {j1, j2}, j1, j2 ∈ {1, ...p}, j1 < j2, estimate the parameters

δ1, ...δp, ν from the subsets of data {uj1 , uj2}i=1,...n using the property (2.19).

Step 2. Use the estimates from Step 1 δ̂, ν̂ to estimate the marginal quantile functions of the

MSTD(P, δ, ν) and perform the transformation of the data (2.16). Use the transformed

data to estimate the large matrix parameter P using (2.18).

The two steps are described in detail in the next two sections.

2.3.2.2 SGMM estimation of bivariate skew-t copula

2.3.2.2.1 Population moment conditions

The bivariate skew-t copula (2.19) is a 4-parameter distribution function with very limited

analytical properties. However, the stochastic representation (2.2) - (2.6) of MSTD makes

simulating it very convenient, including the calculation of mixed moments
12Naturally, the parameters elements of the matrix P , ρj1j2

will also be identified and individually
consistently estimated. However, the resulting estimates of either the matrix P or the extended matrix Ω are
not expected to be either consistent or well-conditioned. Hence, these estimates are disregarded in this step.
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mk1,k2(ρj1 j2 , δj1 , δj2 , ν) = E
[
u

k1
j1
u

k2
j2

]
. (2.20)

As the domain of the random variable (2.19) is, by definition of the copula, [0, 1]2, the

moments (2.20) are also bound in [0, 1] under k1, k2 ≥ 0. The simulation-based calculation of

such moments is rather practical.

The same holds for the sample analogs of these moments. Under any k1, k2 ≥ 0, the sample

moment n−1∑n
i=1

[
u

k1
j1,iu

k2
j2,i

]
is easy to evaluate.

Thus, we define population moment conditions for a simulated generalized method of moments

(SGMM) estimation of the bivariate skew-t copula (2.19):

Efk1,k2(uj1 , uj2 ; ρj1 j2 , δj1 , δj2 , ν) = 0, ∀(k1, k2) ∈ K (2.21)

where

fk1,k2(uj1 , uj2 ; ρj1 j2 , δj1 , δj2 , ν) = u
k1
j1
u

k2
j2

−mk1,k2(ρj1 j2 , δj1 , δj2 , ν), (2.22)

and K is a set of pairs of indices (k1, k2) such that the set of conditions (2.21) is sufficient to

identify the four parameters of (2.19).

2.3.2.2.2 Choice of conditions

Set of |K| = 4 non-redundant and mutually non-repeating conditions results in exact

identification and method of moments estimation. |K| > 4 leads to over-identification and

results in a generalized method of moments estimation.

In our work, we present estimation results obtained under

K = {(1/2, 1/2), (1, 1/2), (1/2, 1), (1, 1), (2, 2)} . (2.23)

We made the choice of this set K based on the results of our preliminary simulations. The

simulations suggested that, for stronger robustness of the simulation-based calculation of the
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moments (2.20) and identification of the parameters from the conditions (2.21), negative k

and k > 3 are best avoided, as are too close pairs (k1, k2).

Inefficient estimator

Given a sufficient set of conditions (2.21), the inefficient SGMM estimator of the copula (2.19)

parameters is

{
ρ̂j1 j2 , δ̂j1 , δ̂j2 , ν̂

}
= arg min

r,d2,d2,v

∑
(k1,k2)∈K

(
n−1

n∑
i=1

fk1,k2(uj1,i, uj2,i; r, d1, d2, v)
)2

. (2.24)

The estimator (2.24) is a typical inefficient GMM estimator. Although it is rather compu-

tationally practical in the context of a single bivariate copula estimation, the advantages

of simulation-based estimation would be lost in any extension to the efficient GMM es-

timation. Moreover, when it is used to estimate the parameters of bivariate blocks of a

higher-dimensional MSTC, the procedure needs to be repeated multiple times, which makes

the estimation of parameters of the multivariate copula significantly computationally heavier

even via the inefficient estimator. Last but not least, proceeding to a well-conditioned

estimation of the parameters of the multivariate copula requires consistent estimates of the

lower-dimensional blocks, yet those estimates will be used to transform the sample and

will not appear directly in the final estimator. Thus, in Step 1 of the two-step estimation

algorithm of MSTC, the inefficient SGMM estimator of bivariate skew-t copula proves to be

sufficient.

2.3.2.2.3 Application to STC estimation

An SGMM estimation of bivariate skew-t copula is used in Step 1 of our suggested two-step

estimation algorithm of MSTC. The step is performed in the following way. We observe a

sample
{(
u1,i, ...up,i

)′
}

i=1,...n
from a p-dimensional skew-t copula (2.15). The goal of Step 1

is to estimate the copula’s lower-dimensional parameters δ = (δ1, ...δp)′ and ν so that the

transformation (2.16) is available. These parameters can be identified from pairs (j1, j2) ∈ J ,

the set of which is defined as
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J = {(j1, j2) | j1 < j2, j1, j2 ∈ {1, ...p}} ,

and

∀j ∈ {1, ...p} ∃j′ : either (j, j′) ∈ J, or (j′, j) ∈ J.

The set J does not require inclusion of all the pairs of indices, as the parameters ρj1 j2 are

not required to perform the transformation (2.16). However, each j ∈ {1, ...p} should appear

in at least one of the pairs in J .

Thus, ∀(j1, j2) ∈ J SGMM above will provide estimates δ̂j1(j1, j2), δ̂j2(j1, j2), and ν̂(j1, j2).

The resulting estimates of Step 1 of the two-step algorithm are defined as

δ̂I
j = median

{
{δ̂j(j, j′)|(j, j′) ∈ J} ∪ {δ̂j(j′, j)|(j′, j) ∈ J}

}
, j = 1, ...p, (2.25)

ν̂I = median
{
ν̂(j, j′) | (j, j′) ∈ J

}
. (2.26)

The estimate ν̂I is also the final estimator of the degrees of freedom parameter that remains

unchanged on Step 2. The estimates δ̂I
j , however, are subject to change in Step 2, as a part

of the large matrix parameter Ω.

2.3.2.3 Shrinkage-based estimation of the large matrix parameter

2.3.2.3.4 First approximate of the extended matrix parameter

The estimates of Step 1 (2.25) and (2.26) are next used to transform the sample of pseudo-

observations {uij} into yij(δ̂I
j , ν̂

I) via the inverse transformation (2.16). The resulting sample

{yij} is then treated as coming from the multivariate skew-t distribution MSTD(P, δ, ν),

and its parameters are estimated using the analytical properties of the distribution.

We begin by using (2.18) to obtain the first approximation of the large matrix parameter

P as P̂ (δ̂I , ν̂I). The quality of the estimate depends on the estimator ĉovY used in (2.18)
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and the estimates δ̂I and ν̂I . The main challenge of the estimation is that not only P̂ should

be a well-conditioned estimate of a correlation matrix, so should be also the corresponding

estimate of the extended matrix (2.2). The corresponding to the first approximation of P̂

estimate of Ω, thus, is

Ω̂I(δ̂I , ν̂I) =

 1 δ̂I
′

δ̂I P̂ (δ̂I , ν̂I)

 . (2.27)

Although the estimator (2.27) is by-element consistent to its population analog (2.2), it is

not guaranteed to be well-conditioned. Not having a well-conditioned estimate for the matrix

Ω crucially limits the application of the estimated skew-t copula. To improve the properties

of the estimator (2.27), we suggest using the analytical large covariance matrix shrinkage of

Ledoit et al. (2020).

2.3.2.3.5 Analytical shrinkage of large covariance matrix

A detailed description of the analytical shrinkage estimator, its properties, and its relative

performance compared to other available covariance matrix shrinkage methods is provided in

Ledoit et al. (2020).

Unlike previous numerical versions of non-linear shrinkage methods (Ledoit and Wolf, 2012,

2017a), the analytical approach is significantly faster, and preserves accuracy. It not only

resolves the challenging scenario in which the matrix dimension exceeds the sample size, but

it also extends the method’s applicability to high-dimensional covariance matrices of up to

thousands of variables (Ledoit et al., 2020; Ledoit and Wolf, 2022).

Another advantage of the analytical non-linear shrinkage, which is particularly important

in the context of skew-t copula estimation, is that the estimator is directly applied to the

“non-shrunken” matrix, and it does not require observation of the underlying data. Thus, we

directly apply the analytical non-linear shrinkage to the estimator (2.27).

If we rewrite the approach of Ledoit et al. (2020) using the notation of this paper, the

analytical non-linear shrinkage estimation of the extended matrix Ω based on the initial,

ill-conditioned estimate Ω̂ goes as follows.
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1. Perform the spectral decomposition of the matrix Ω̂:

Ω̂ = V ΛV ′, (2.28)

where

Λ = diag{λ1, ...λp+1} (2.29)

is the diagonal matrix with Ω̂’s eigenvalues. Without loss of generality, assume λ1 ≤

...λp+1. The matrix V is the corresponding matrix of Ω̂’s eigenvectors.

2. Set the “global” bandwidth for the estimator

hn = n−1/3, (2.30)

and the “locally adaptive” bandwidths

hn,j = λjhn, j = 1, ...p+ 1. (2.31)

3. Estimate the spectral density using Epanechnikov kernel:

f̃n(λi) = 1
p+ 1

p+1∑
j=1

3
4
√

5hn,j

1 − 1
5

(
λi − λj

hn,j

)2
+

, (2.32)

and its corresponding Hilbert transform:

Hf̃n
(λi) = 1

p+ 1

p+1∑
j=1

− 3(λi − λj)
10πh2

n,j

+ 3
4
√

5hn,j

1 − 1
5

(
λi − λj

hn,j

)2


· log
∣∣∣∣∣
√

5hn,j − λi + λj√
5hn,j + λi − λj

∣∣∣∣∣
. (2.33)

4. Calculate the estimated “shrunk” eigenvalues:

λ̃j = λj(
π p+1

n
λif̃n(λj)

)2
+
(
1 − p+1

n
− π p+1

n
λiHf̃n

(λj)
)2 , j = 1, ...p+ 1. (2.34)
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5. The resulting estimator of the large matrix parameter is

Ω̂ASh = V diag{λ̃1, ...λ̃p+1}V ′. (2.35)

2.3.2.3.6 Remarks on using the analytical shrinkage to estimate skew-t copula

Our proposed algorithm involves application of the method of moments in Step 1 and subse-

quent large covariance matrix shrinkage in Step 2. Both methods presume the independence of

the observations in the sample. However, in the context of copula estimation, this assumption

is not met, as both the pseudo-observations (2.14) and the inverted observations (2.16) used

in the second step are inherently dependent across observations. It is essential to acknowledge

that this issue is common to copula estimation tasks. Thus, we maintain confidence in the

finite sample performance of our estimator as in the cases of the other copula estimators.

The utilization of the large covariance matrix shrinkage estimator in Step 2 of the algorithm

should be regarded as a practical means to obtain a well-conditioned estimate of the extended

correlation matrix parameter of the copula. This should not be misconstrued as an optimal

shrinkage estimator, as it is not applied to a sample correlation matrix corresponding to a

traditional data sample. However, it is important to note that the extended matrix subject

to shrinkage is, in fact, a correlation matrix. Its high-dimensional nature renders it similarly

ill-conditioned to a typical high-dimensional sample correlation matrix. Consequently, we

anticipate that the finite sample properties of the estimator will remain intact, though a

thorough evaluation of its performance awaits future research.

The efficacy of our proposed two-step estimator is contingent upon the selection of technical

details in its application, including the choice of sets K and J . In this paper, we intentionally

opt for simpler and smaller sets to prioritize computational efficiency over precision. Nonethe-

less, our objective is to underscore the practicality of the estimator, recognizing that more

comprehensive evaluations can be pursued in subsequent research.
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2.4 Dynamic portfolio allocation example

2.4.1 Background and data

As an empirical example, we perform a dynamic portfolio allocation exercise in the European

stock market in the first half of 2022. The choice of this particular period is intentional. The

baseline market dynamics for the selected period are negative, with the representative market

index EUROSTOXX50 losing between 10% and 20% of its value at the beginning of the year

by June; see Figure 9. However, we aim to show that using skew-t copula to account for

tail-dependency across market assets’ returns results in portfolios that hedge successfully

against significant shocks and outperform the market.

From Yahoo Finance (2022), we retrieve daily prices of the top 30 components of the

EUROSTOXX50 index for the period from November 30, 2021, till June 1, 2022. The period

is divided into rolling samples of 2 months (roughly 40 observations). We use the first half of

the sample to evaluate the joint distribution of the assets’ returns and construct the optimal

portfolio for the second half of the period. Then, we evaluate the performance of the portfolio

out-of-sample by rolling the sample by 1 month forward. We repeat the evaluation and update

the portfolio structure using the data most recent to the update date. Thus, during the whole

analysis period, we update the portfolio 4 times. Throughout the period, the benchmarks to

compare the performance of the portfolio are the market index EUROSTOXX50 and a naïve

portfolio of the index’s top 30 components that includes them with equal weights.

Prior to presenting and discussing the results of this exercise, a few remarks are necessary. It

is important to note several deliberate choices made in the design of the empirical exercise.

Firstly, our use of only 20 historical data points for each portfolio structure update may

seem artificially small. However, this intentional decision serves the purpose of highlighting

the application of our suggested algorithm of high-dimensional skew-t copula estimation.

Should one contemplate extending the time period for portfolio evaluation, it would be crucial

to recognize that the number of assets in the portfolio may also increase, maintaining the

relationship “p > n”.

Similarly, our selection of a one-month (20 observations) period for evaluating the portfolio
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before the update is somewhat arbitrary. This choice aligns with the length of the evaluation

period, which may not be essential in real-life applications. Importantly, in this exercise, the

choices of sample size and the number of assets in the portfolio serve better interpretability

and computational feasibility.

Thirdly, it is essential to clarify that our primary objective is not to compare the performance

of this portfolio construction approach to other allocation techniques. While our portfolio

significantly outperforms the market at the period’s end, this outcome is influenced, in

part, by the overall market conditions during the chosen period. It remains plausible that

alternative portfolio allocation techniques could also propose sound improvements beyond

a naïve investment strategy. However, our findings highlight the significant contribution of

the skew-t copula in capturing tail dependence among asset returns and translating it into a

portfolio structure.

Therefore, this empirical exercise should be regarded as ‘toy’ example, demonstrating the

advantages of the high-dimensional copula estimation algorithm and providing intuition for

its application in portfolio allocation. We deliberately leave the extension of this technique

to a comprehensive portfolio allocation study for future research.

The portfolio evaluation technique we apply is close to the one used by Anatolyev and

Pyrlik (2022). The main difference is that, in this study, we use only one model of the joint

distribution of the assets’ returns after filtration, which is the skew-t copula. A short recap

of the portfolio evaluation technique adjusted for this research is presented in Appendix D.

2.4.2 Results

Figure 10 illustrates the comparative dynamics of accumulated returns for the skew-t copula-

based investment strategy, a naïve portfolio, and the market over the specified time period.

Notably, the model-driven strategy consistently outperforms the market, with a particularly

sound result at the end of the period: the model-based portfolio achieved positive accumulated

returns, while the market’s dynamics, on average, exhibited a significant negative trend.

Upon closer examination of the portfolio’s performance over distinct periods, occasional co-

movement with the market was observed. However, the model-based portfolio demonstrated
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more frequent instances of positive dynamics compared to the negative returns observed

in the overall market. Additionally, certain negative shocks affected all portfolios, given

their impact on the broader market, making them challenging to hedge through conventional

strategies.

Further insights into the portfolio’s dynamics are provided by examining specific examples

of its structural changes based on copula estimates and their alignment with performance.

For example, in Period 1, Sanofi (SAN.PA) and Carrefour SA (CA.PA) stocks constituted

up to 30% of the portfolio, then decreased to 2% in Period 2. This shift corresponds to the

copula density function’s estimate for these assets’ returns in Period 1, indicating asymmetric

tail dependence (Figure 11). Similarly, the share of Inditex (ITX.MC) and Anheuser-Busch

InBev (ABI.BR) decreased from 35% in Period 2 to 9% in Period 3 (Figure 12). The share

of Eni (ENI.MI) and Assicurazioni Generali (G.MI) decreased from 24% in Period 3 to 7%

in Period 4 (skew-t copula density in Figure 13). These adjustments underscore the skew-t

copula’s pivotal role in accommodating tail dependence among various asset pairs within the

portfolio.

2.5 Discussion and concluding remarks

In this paper, we introduce a novel approach to high-dimensional skew-t copula estimation,

surpassing the copula size studied in the existing literature. Our estimation algorithm is

robust even when the number of observations is comparable to or smaller than the copula

size. Given the copula’s lack of analytical properties, we propose a two-step algorithm. In

Step 1, we leverage the stochastic representation of the multivariate skew-t distribution

to estimate lower-dimensional copula parameters using a simulated generalized method of

moments. Although the method of moments is inefficient, it provides consistent estimates

of degrees of freedom and asymmetry parameters, which we use to transform the data into

inverted observations treated as a sample from the multivariate skew-t distribution. In Step 2,

we use these transformed data for high-dimensional copula parameter estimation. To ensure

a well-conditioned estimate of the matrix, we employ analytical non-linear shrinkage of large

covariance matrix estimation.
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Illustrating the application of the skew-t copula and the high-dimensional estimation algorithm,

we conduct a dynamic portfolio allocation exercise in the European stock market for the

first half of 2022. Our model-based portfolio exhibits positive accumulated returns at the

period’s end, in stark contrast to the market’s overall negative trend. A closer examination

of the portfolio’s structure emphasizes the skew-t copula’s crucial role in accommodating tail

dependence among various asset pairs.

Our proposed estimation algorithm involves the application of the method of moments and

large covariance matrix shrinkage, assumptions of which are not fully met in copula estimation.

The algorithm is not guaranteed to be either efficient or optimal due to the inter-dependence

of pseudo-observations and inverted observations. The efficacy of the two-step estimator

hinges on technical details, such as the choice of moment conditions. We deliberately opt

for simpler choices to prioritize computational efficiency, underscoring the practicality of the

estimator. However, a comprehensive evaluation awaits future research, addressing finite

sample performance and properties.

Additionally, our suggested application of the large covariance matrix shrinkage estimator

to achieve well-conditioned estimates of the extended correlation matrix parameter should

not be regarded as the optimal shrinkage estimator. While we anticipate that the finite

sample properties will remain intact, a thorough evaluation awaits future research. For

potentially improved finite sample performance, we encourage deviations from the original

parameters of the analytical shrinkage formula. Asymptotic optimality is not the primary

goal, emphasizing the need for a nuanced exploration of parameters such as global and local

adaptive bandwidths or the spectral density estimator’s kernel in future research.
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3 Forecasting Realized Volatility Using Machine Learn-

ing and Mixed-Frequency Data (the Case of the Rus-

sian Stock Market in 2016-2020)

3.1 Introduction

In this chapter, we step away from unconditional joint distributions construction and assess

gains of high-dimensional and mixed-frequency settings in realized volatility forecasting. The

results of this research were published in CERGE-EI Working Paper Series (Pyrlik et al.,

2021).

Stock market volatility is known to be a measure of the dispersion of stock returns, and it is

commonly used to assess the riskiness of an asset. For the majority of asset and investment risk

management problems, volatility is one of the most important and irreplaceable characteristics

of assets. Hence, forecasting stock returns volatility has been popular among financial market

researchers.

Measuring volatility of returns is performed in various ways, with the realized volatility (RV)

approach popular among practitioners and researchers. It has proven to be a preferred

volatility evaluation technique due to its natural use of more information from high-frequent

market data. Andersen and Bollerslev (1997) were the first to show that realized volatility

forecasts outperform the predictions of numerous alternative approaches.

The concept of realized volatility was first introduced by Andersen and Bollerslev (1998) and

is defined as the sum of squared intraday stock returns. An important advantage of the RV

approach is that this volatility measure is observed directly from data, unlike the definitions

of market volatility based on latent volatility models such as stochastic volatility (SV) or

generalized autoregressive conditionally heteroskedastic models (GARCH).

Modeling and forecasting realized volatility can be done via several approaches, such as

the heterogeneous autoregressive realized volatility (HAR-RV) model or multiplicative error

model (MEM). Alternative approaches to modeling volatility are often compared. Andersen
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et al. (2003) show that HAR-RV is superior to SV models and GARCH. Hence, we use

HAR-RV as the benchmark in our research.

In the literature, it is common to apply various modifications to the models to improve the

quality of the forecasts. The method most commonly used and one that has proven relatively

reliable is inclusion of exogenous variables that contain valuable information about the

dynamics of volatility, the asset at hand or even the market or the economy in general. Based

on the literature, the most commonly used variables to explain the dynamics of volatility

and to improve the predictive power of the models can be divided into the following groups.

Financial market variables are one of the most extensive and prominent sets of indicators

in the literature. Lagged equity market returns are often shown to predict volatility. For

example, a well known stylized fact on most markets is that, if market returns are negative,

volatility increases (Christiansen et al., 2012; Nonejad, 2017). The earning-price ratio is

an important indicator of a firm’s well-being and value, so changes in the ratio potentially

predict the stock returns volatility. When the earning-price ratio decreases, it is likely to

indicate poor current and future performance of the firm, and hence a higher level of stock

returns volatility in the future (Christiansen et al., 2012; Nonejad, 2017). Similarly, the

dividend-price ratio can capture changes in stock returns volatility through the channel of

investment productivity. When this ratio decreases, stock returns volatility is expected to

increase (Christiansen et al., 2012; Nonejad, 2017). Long-term bond returns are considered

to carry higher risks than short-term ones, and thus have higher interest rates. Variations of

these quantities can be used to proxy investor attitude towards risk (Nonejad, 2017; Audrino

et al., 2020).

Market liquidity is another important indicator that provides information about stocks returns

and their volatility. An increase in liquidity is expected to indicate an increase in the level of

market participants activity in the market. A significant change in activity typically leads

to changes in price levels, returns, and volatility. As liquidity is not directly observable, a

variety of indicators have been developed to capture it (such as Amihud, Roll, and High-Low).

According to Będowska-Sójka and Kliber (2019), there is a significant relationship between

volatility and liquidity, but the sign of the correlation can differ depending on the liquidity
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proxy. The authors conclude that the most relevant approximation of liquidity is High-Low, as

this measure unilaterally influences volatility. Xu et al. (2019) show that there is a non-linear

dependence between liquidity and volatility with persistent influence of the former on the

latter. This research also exhibits that High-Low liquidity proxies are the most influential in

realized volatility forecasting.

Further, the number of daily transactions may carry significant information for movements of

stock volatility. Some studies confirm this effect, while others state that it does not exist.

For example, Shahzad et al. (2014) show that the number of trades in a day is a more

significant predictor of volatility than average daily volume. Moreover, they demonstrate that

the number of individual trades is a more important predictor than the number of trades

by institutional market participants. A possible explanation is that individuals’ actions

represent a noise term (because they possess less reliable information about the market than

organizations), which, in certain time periods, can lead to abnormally high volatility. Wang

et al. (2015) also confirm the existence of the trading volume effect and point out that, the

longer the forecasting horizon is, the lower the influence is. As for a contrary view of this

effect, Todorova and Souček (2014) show that, for the German market, the trading volume

of stock does not include any significant information for explaining realized volatility. It is

worth noting that this result was achieved both in-sample and out-of-sample.

Stock volatility is also known to be significantly time-dependent. Hence, incorporation of

day-of-the-week, weekend, and holiday effects is of great importance for precise forecasting of

stock volatility. Many authors focus specifically on the effects of non-trading days. Martens

et al. (2009) claim that stock volatility is usually higher after holidays, and on Christmas,

half of its regular level. As shown by Wang and Hsiao (2010), weekday holidays increase

the volatility of the S&P 100 and FTSE 100, while half-day trading periods decrease it.

Diaz-Mendoza and Pardo (2020) find that volatility significantly decreases on the first day

after a holiday or weekend, but after a long holiday, volatility either rises or remains the

same.

Similarly, overnight and lunch-break periods are relevant for forecasting returns volatility,

because during these periods important information on trade or macroeconomic news may
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arrive. According to Wang et al. (2015), these non-trading periods significantly influence

volatility. Moreover, they state that the leverage effect is captured, as the volatility rises

higher after negative shocks to returns. The same results are achieved by Todorova and

Souček (2014) and Zhu et al. (2017), who claim that the effects of overnight returns are

higher than those of lunch-break returns.

In addition to the calendar effects, expiration-day effects of related derivatives have been

thoroughly investigated. These effects measure how futures or option contract trading close

to an expiration day may influence the underlying stock returns and volatility. This has been

studied for stock markets in various countries, and the results are drastically different. Bollen

and Whaley (1999) use Chinese data and do not discover statistically significant difference in

stock volatility on expiration and non-expiration days of the derivatives. A similar result is

achieved by Xu (2014) using Swedish data. However, Arago and Fernandez (2002) conclude

that, for the Spanish market, volatility is significantly higher during a week with an expiration

day. Chou et al. (2006) arrive at the same conclusion in the case of the Taiwanese market.

The inclusion of a variety of macroeconomic indicators is justified, because the overall

economic environment influences the well-being of the corporate sector and thus the volatility

in the market. The most frequently used proxies are CPI, industrial production growth, and

GDP growth (Wongbangpo and Sharma, 2002; Christiansen et al., 2012; Paye, 2012; Nonejad,

2017; Audrino et al., 2020; Fang et al., 2020; Thampanya et al., 2020). It is important to

note that, when macroeconomic variables are used in combination with financial indicators,

most of the time, the former appear to be insignificant. Housing starts is one of the few

indicators that has proven to influence volatility (Audrino et al., 2020; Fang et al., 2020).

A possible mechanism behind this effect is that the more new houses are built, the more

the credit market expands Fang et al. (2020). T-bill rates are often used as predictors of

market volatility. If the economy is unstable, then T-bill rates generally tend to decrease,

while volatility commonly increases. These variables are used to proxy the steadiness of the

current economic situation (Christiansen et al., 2012; Nonejad, 2017; Audrino et al., 2020).

Not only does the domestic market affect stock volatility, but so do spillover effects from

adjacent or global financial markets. These spillover effects represent the influence of foreign
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or adjacent markets on a local market. Balli et al. (2015) show that one of the important

representations of the spillover effect is the trading volume of goods between developed

and emerging markets. They also demonstrate that spillovers from the US are higher than

those from Europe or Japan. Martens et al. (2009) illustrate that RV is higher on news

announcement dates. Similarly, Wang and Hsiao (2010) demonstrate that for the Taiwanese

market, weekend days raise the volatility of stocks, because, typically, a considerable amount

of macroeconomic news is issued on Fridays in the US.

Further, the oil market appears to be closely connected to stock prices, which is a manifestation

of spillover between adjacent markets. According to Kang et al. (2015) negative shocks in

oil production lead to positive shocks in stock returns volatility. Similarly, an increase in

demand for oil translates into a decrease in volatility. Luo and Qin (2017) state that oil price

shocks positively influence returns on the Chinese stock market, as a rise in the oil price is a

sign of an upturn in the economy.

Changing the functional form of the regression is another approach that is often used to

improve both the explanatory power, and the predictive performance of the models. On the

one hand, models like HAR-RV or MEM are commonly said to exhibit a relevant level of

interpretability. On the other hand, they are not guaranteed to deliver reasonable forecasting

power for either short or long time horizons, due to their limited ability to capture effects

that are more complicated than the linear correlations between the volatility dynamics and

the explanatory variables. However, machine learning (ML) algorithms are specifically known

for highly accurate predictions, due to their ability to capture various non-linear patterns

in the relationships between the variables. Recently, much attention has been focused on

investigating the applicability of ML in forecasting returns and their volatility.

Ingle and Deshmukh (2021) implement several types of models to predict closing prices of

stocks: Generalized Linear Model (GLM), Gradient Boosting Model (GBM), and several

types of neural networks in combination with machine learning methods. The results show

that GLM displays the highest level of forecasting accuracy, followed by ensemble models

and deep learning networks.

Hamid and Iqbal (2004) use a three-layered neural network to forecast the volatility of S&P
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500 futures and show that the predictions significantly outperform the benchmark. Further,

Parisi et al. (2008) research changes in the market price of gold and find that the best

performance, in-sample and out-of-sample, is delivered by a rolling neural network. Ding

et al. (2015) investigate potential improvements in predictions for S&P 500, and show that

forecasts from a deep convolutional neural network appear 6% better than those from the

baseline model.

Long Short-Term Memory (LSTM) is another machine learning method that has been gaining

popularity among researchers and practitioners. Xiong et al. (2015) compare the S&P 500

returns volatility forecasts from GARCH, Lasso regression, Ridge regression, and LSTM.

The results show that the LSTM forecasts significantly outperform its competitors. Another

notable study is Liu (2019), which shows that a combination of recurrent neural networks

with LSTM significantly outperforms GARCH in forecasting the returns volatility of S&P

500 and AAPL.

Combining multiple models into one appears to be an effective and, hence, popular approach

to applying deep learning algorithms. For example, Kristjanpoller and Minutolo (2015)

use artificial neural networks to combine GARCH-based forecasts of the gold price returns

variance, and achieve a sound reduction in the mean average percentage error. Vidal and

Kristjanpoller (2020) combine LSTM and convolutional neural networks for gold price returns

volatility forecasting, achieving a significantly better predictions than GARCH or LSTM

alone.

An important feature of the current literature on volatility forecasting, using either traditional

approaches or ML, is the scope of the markets under analysis. Overall, most research focuses

on the US, Chinese and European markets. Few studies consider emerging markets, and

even fewer consider Russia (Aganin et al., 2017; Nagapetyan et al., 2019; Fantazzini and

Shangina, 2019; Bazhenov and Fantazzini, 2019; Aganin, 2020). To the best of our knowledge,

no research on the Russian stock market has gone beyond GARCH-type or HAR-RV-type of

methodology in the analysis of returns volatility. Hence, our main goal is to contribute to the

existing literature by performing a comparative analysis of several approaches to forecasting

RV in the context of the Russian stock market, including the HAR-RV and ML approaches.
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We first aim to identify the extent to which ML is more suitable for RV forecasting than

the benchmark HAR-RV on the Russian stock market. Secondly, we seek to learn, what

information is significant for the Russian stock market RV forecasting, and how it is different

from the situation on international markets. To achieve these goals, we extract an extensive

dataset for the Russian stock market and compare the out-of-sample performance of the

HAR-RV and 4 ML algorithms (Lasso, Random Forest, Gradient Boosting, and Long Short-

Term Memory) in returns RV forecasting for selected top stocks in the market. We find

that both the HAR-RV and ML approaches provide us with reasonable predictive power in

terms of RMSE of RV in a rolling forecasting scheme, with the ML generally outperforming

the benchmark when a reasonable set of exogenous features are included. In particular,

Lasso regression appears to deliver a convenient combination of easy implementation and

forecasts precision. More complicated algorithms (Random Forest, Gradient Boosting, Long

Short-Term Memory) are very promising, but we show that, to benefit from them, they

require fine-tuning and frequent re-training, which is a computationally demanding task.

The rest of the chapter is organized as follows. Section 3.2 introduces the methodology of the

benchmark HAR-RV model and ML algorithms used in this research, and the data splitting

and forecasting schemes we choose. In Section 3.3, we describe the dataset and proceed

to our exploratory data analysis in Section 3.3.2. In Section 3.4, we describe the modeling

technique and analyze the results in Section 3.5. Section 3.6 offers a discussion of our main

findings and limitations of the research, and Section 3.7 concludes. Supplementary aids on

the data and results are collected in an online appendix.

3.2 Methodology

3.2.1 The benchmark model

The benchmark model in our study is HAR-RV of Corsi (2009). The main idea of the

approach is to use high-frequency data to obtain more accurate forecasts of volatility based
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on daily, weekly, and monthly RV. The notation of the model is:

RV
(d)

t+1d = α + β(d) ·RV (d)
t + β(w) ·RV (w)

t + β(m) ·RV (m)
t + ωt+1d, (3.1)

where weekly realized volatility, for example, is given by

RV
(w)

t = 1
5 · (RV (d)

t +RV
(d)

t−1d + ...+RV
(d)

t−4d). (3.2)

Inclusion of additional regressors to the model is straightforward:

RV
(d)

t+1d = α + β(d) ·RV (d)
t + β(w) ·RV (w)

t + β(m) ·RV (m)
t +

∑
i

βi · xit + ωt+1d, (3.3)

where xit is an additional explanatory variable i at moment t.

Estimation of the model is typically performed via OLS. Newey-West robust standard errors

are used to retain consistency of estimates with heteroskedicity and autocorrelation of the error

term. When the extended version (3.3) of the model is used, a model selection technique is

required for an in-sample based selection of the optimal combination of explanatory variables.

We estimate several specifications of the model with differing additional explanatory variables

and select the one that minimizes AIC from those without significant residual autocorrelation.

3.2.2 Machine learning algorithms

Here, we briefly describe the ML algorithms we use and compare to the benchmark HAR-RV.

These are: Lasso regression (Lasso), Gradient Boosting (GB), Random Forest (RF), and

Long Short-Term Memory (LSTM). Below, we cover distinct features of each algorithm, with

a fuller description and explanations of the mechanisms given in Appendix E, page 129.

The main feature of Lasso is regularization on weights of linear regression with zeroing of

extreme-value coefficients. This algorithm is typically good at dealing with overfitting that

may occur as a result of either a relatively small sample size or too many collinear regressors.

Lasso uses the only hyperparameter, which is the penalty for the degree of collinearity. Hence,

training this algorithm is fast.
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GB is an ensemble algorithm with a consequent learning of regression trees, while RF is

another ensemble algorithm that uses parallel learning of regression trees. Due to the

consequent structure, GB is capable of accurate capturing of dependencies in the data, but is

prone to overfitting. RF, on the other hand, is more robust to overfitting. However, both

algorithms are considered well suited for feature selection and coping with multicollinearity.

When some features appear highly collinear, the trees will avoid using them together for the

sake of greater information gain. These algorithms classify some variables as the most/least

significant, depending on their inputs to information gain.

As for neural networks, LSTM is a type of RNN that works with sequences of variables.

Due to its recurrent structure, the algorithm can capture autoregressive dependencies, which

makes it particularly useful in the tasks of time series forecasting. In contrast with other

networks, LSTM is designed to work better with longer sequences of data. The architecture of

LSTM is tunable, which makes the algorithm flexible for different data types and tasks. The

quality of this algorithm also depends on the learning approach. Hence, such hyperparameters

as batch size, learning rate, number of epochs, and type of the optimizer should also be tuned.

LSTM, thus, is the most complicated and computationally challenging algorithm among

those used in our study.

3.2.3 Partitioning the data and training the models

To train and evaluate our models, we perform a rolling scheme with out-of-sample validation

and testing. We sequentially divide our dataset into training, validation, and test sub-samples.

Each training sample includes information over a two-year period, and the validation and

test samples are the following two quarters (one each). We roll forward by one quarter at a

time. We use RMSE to measure the quality of our forecasts.

The validation parts are used to select the hyperparameters of the models (when there are

any). The choice of the hyperparameters is made via grid search over excessive sets of possible

values of the parameters. The optimal combinations are chosen to minimize the validation

RMSE.
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3.3 Data

3.3.1 Groups of variables

We extract historical data on the stock prices of the top 9 companies of Moscow Exchange

index from the 1st of January 2016 to the 31st of December 2020 at 5-minute frequency13.

We use the data to calculate daily, weekly and monthly stock realized volatility for each

company.

Following the results of previous studies, we add a variety of explanatory variables to our

dataset.

• To give an alternative for the T-bill rate, daily values of the Russian Government

Bond Index (RGBI) are included. Because returns on market portfolios cannot be

reported directly, daily log-returns on the stock market index RTSI were taken as a

proxy. An important characteristic for this proxy is high level of diversification; RTSI

is a composite index with the most liquid Russian stocks14.

• To control for changes in the economic environment and macroeconomic circumstances,

we added the dynamics of GDP (quarterly), CPI (monthly), and dwellings commenced

(monthly)15. From the same source, we obtained a few financial performance indicators,

specifically, the dynamics of dividend price ratio and earning price ratio for each of the

9 companies (monthly). It is important to note that for POLYUS (www.polyus.com),

the major part of these variables do not appear to be available; hence, we omit them

from the specifications for POLYUS.

• We included exports and imports to/from the USA from/to Russia, using the data from

the census.gov WebSite. In the literature, the exports and imports to/from the USA

are classified as the spillover effect. However, in our research, we include them into the

group of macroeconomic indicators. This is due to the frequency of these variables,
13The data is open and can be obtained directly from the stock exchange website or another service; we

obtain the data using the stock prices historical data exports feature of FINAM, www.finam.ru
14The data on RGBI and RTSI are available at www.finam.ru
15These data can be obtained from the Refinitiv Eikon (Thompson Reuters) https://eikon.

thomsonreuters.com
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and the fact that the mechanism of the spillovers is typically explained in terms of

macroeconomic theory, for example, Balli et al. (2015).

• We calculate several market liquidity indicators: High-Low, Amihud, and Roll, following

the approach of Będowska-Sójka and Kliber (2019). However, we end up including

only the High-Low metrics into our models, since it showed the most effect on stock

volatility in the literature.

• We account for the holiday effect, the weekend effect, and the Friday effect by including

the respective dummy variables. To try to capture an eponymous effect, we add the

overnight returns to the sets of variables, following the approach of Wang et al. (2015).

• Finally, we included the realized volatility of S&P 500 and Brent oil price to reflect

spillover effects from the global stock and crude oil markets.

It is worth noting that the companies in our study represent various sectors of the economy:

banking, mining, retail, and oil and gas. Literature shows that spillovers between sectors

are of great importance. As presented by Hammoudeh et al. (2009), three main sectors

(industrial, service, and banking) of GCC economies demonstrate volatility spillovers. Chen

et al. (2019) confirmed results of the previous paper and showed that consumer discretionary,

industrial, and health sectors generate the largest spillovers. The US stock market also

features cross-volatility between sectors, as shown by Mensi et al. (2020). They demonstrated

that consumer services and goods sectors produces the largest amount of volatility, while

material sectors produce the least.

Due to the industrial specificity of the Russian economy, it happens that most companies

chosen for our research belong to the oil and gas sector. Hence, we do not expect to see much

evidence of volatility spillovers between sectors. However, this is a field for future research.

We now describe the specificity of the data, necessary transformations of the variables, and

creation of additional indicators, when required. To avoid negative forecasts of realized

volatility, we apply the natural logarithm to the dependent variable and its lagged values.

We shift to the growth rates of the low-frequent variables to introduce more variation in our

data and achieve stationarity. We include the lagged series of the main variables into our
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datasets. As a result, we divide all our variables into 5 groups (see Table 1) to investigate

additional predictive power that each group of variables brings to a certain model.

Table 1: Groups of explanatory variables included into models

Group Variables

Basic log RV, log RV weekly, log RV monthly

Overnight and calendar effects is after the weekend, is after a holiday, is Friday, overnight returns

Financial effects growth rate of dividend price ratio†, growth rate of earning price ratio†,

High-Low, log-returns of RTSI, RGBI

Spillovers log RV of S&P, log RV of Brent

Macro indicators growth rate of import/exports from/to the USA†, growth rate of CPI†,

growth rate of housing starts†, growth rate of GDP†

† - low frequency variable

We then construct 5 specifications of all implemented models with the consecutive addition

of these groups of variables and 5 specifications with lags of variables. We have some missing

values in the data. To keep the datasets as complete as possible, for each particular company,

we omit variables that are missing at rates 30% or more in the training samples. Less frequent

missing values are replaced with the latest known values of the same variable.

3.3.2 Exploratory data analysis

We conduct a preliminary data analysis to identify general patterns within the data, to

detect possible effects of extreme events, and to evaluate the overall relationships between

the variables.

Firstly, we consider the dynamics of the logarithm of realized volatility to investigate changes

throughout the period; see Figure 1 for an example (the rest of the figures are in Appendix).

Overall, our dependent variable is a typical time series of this kind: a volatile and possibly

heteroskedastic series, yet most likely with a stable longer-run average level and range.

Visually, there are specific differences across companies and some common patterns. For

example, all the series show significant short-run increases in volatility in the first half of

2018, and in the first half of 2020, there is an obvious and very sound change in the average
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volatility level. The shifts in 2018 are likely to be the result of GDP growth deceleration due

to sanctions policies of foreign countries, and depreciation of the national currency. The shifts

in 2020 are obvious consequences of the COVID-19 crisis and of the oil market shocks. We

address sampling around those periods with caution, yet we expect a loss in the predictive

power of the models anyway.

Figure 1: Dynamics of logarithm of realized volatility of returns, SBERBANK

Secondly, as we aim to capture changes in mean of our dependent variables that occur

over time, we consider the distribution of the average level of the dependent variable across

weekdays. For all companies, Thursdays feature the highest average volatility level. We

also observe that, for all companies, except GAZPROM and POLYUS, RV is the lowest on

Mondays on average. For GAZPROM and POLYUS, Friday features the lowest RV. These

findings line up with the literature. We include the corresponding dummies into our datasets.

Next, we select variables that are company-specific according to the information that we want

to account for in our models. We present and analyze the descriptive statistics, including

sample averages, standard deviations, and autocorrelations. For all companies, RV and

High-Low proxy of liquidity exhibit persistent significant autocorrelation. Growth rates of

dividend price ratio and earning price ratio show only a few significant autocorrelation terms,

and this order appears to be company-specific.

Finally, to examine correlations between the dependent variable and some potential explana-

tory variables, we examine correlation-scatterplot diagrams (in Appendix). For each company,
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we select the following indicators: logarithm of stock realized volatility (the dependent

variable), logarithm of realized volatility of S&P 500 (captures potential spillovers from the

global market), High-Low liquidity proxy (liquidity spillovers), RGBI (proxy of the economy

steadiness), and the log-returns of RTSI (the local market spillovers). The results are rather

similar across the companies. The log-RV is significantly correlated with the other variables;

it approves the inclusion of these indicators in the models. However, the there are obvious

non-linear dependencies present, hence, machine learning algorithms are naturally expected

to perform well.

Overall, the RV on the Russian stock market features properties typically outlined in the

literature. Also, this measure appears to be relatively similar across the companies with

drastic changes of values early in 2018 and 2020. We also find weekday effects in the average

level of RV. Further, we observe sound correlation between RV and various indicators that

we intend to use in the models as explanatory features. However, these dependencies are

ambiguous. We need to conduct a thorough search for the optimal forecasting specification

in the case of each particular asset and over a particular period of time.

3.4 Modeling technique

We aim to forecast realized volatility on the Russian stock market as precisely as possible,

and to identify the effects of potentially informative variables on the volatility dynamics. We

perform our analysis iteratively, going over different predictive algorithms combined with

different groups of explanatory variables. Each such combination is estimated for each of the

assets in our datasets on rolling samples. The performance of the different models is then

compared across time, across sets of explanatory variables, across algorithms, and across

assets.

For each dataset we perform the following sequence of steps.

1. We split the data across time into 11 samples, using the rolling window scheme, rolling

forward by one quarter at a time. Each sub-sample consists of 10 consecutive quarters.

(a) The first two years (8 quarters) are used to train the models.
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(b) The next one quarter is a validation sample, used to tune the hyperparameters of

the models.

(c) The succeeding one quarter is the testing sample, used to assess the models’

performance via comparing the RMSE of the forecasts of log-RV.

2. We construct 40 different model specifications, combining different model types with

sets of explanatory variables.

(a) HAR-RV is our benchmark model, and our ML algorithms are: Lasso, RF, GB,

and LSTM.

(b) We split all the explanatory variables into 5 groups (see Table 1 in Section 3.3),

and for every model specification we add groups consecutively.

(c) Each of the algorithms is trained on the sets of variables either including lagged

values or not, except in the case of HAR-RV and LSTM.

3. All the models are trained in terms of minimization of RMSE. The hyperparameters of

the models are tuned via a grid search to minimize RMSE, too, but on the validation

sample.

4. We choose RMSE as the main measure of the predictive power, too.

5. In addition to plain comparison of the RMSE of different models, we consider relative

win-rates of different specifications by algorithm and by set of variables. We track

the velocity of the accumulation of the squared sum of forecast errors on the testing

samples, to gather insights about which models and which sets of variables should be

preferred, and how they can be further improved.

3.5 Results

3.5.1 HAR-RV and the explanatory power of the variables

The full results of the estimation of the benchmark HAR-RV regressions are available in

Appendix 14, page 91. Overall, the most commonly selected statistically significant variables
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are the lagged daily, weekly, and monthly log-RV, the liquidity proxy High-Low, and the

log-RV of S&P 500. Regarding the other variables, growth rate of exports and log-returns of

RTSI appear to be significant for some firms (3 of 9). The variables that are not significant

in any of the regressions are from the group of calendar effects. The signs of the significant

coefficients coincide with those found in other studies which considered similar effects.

Regarding the global market effects, the result is that, the higher the S&P 500 RV is, the

higher the stock realized volatility of a Russian company tends to be. This confirms the

existence of spillover effect from the global market. The liquidity proxy High-Low also has a

reasonable sign: the higher the liquidity of a stock is, the lower is its volatility. As for the

basic variables, their signs make sense as well, because the higher the weekly or monthly

volatility is, the higher the value of the dependent variable is. The log-returns on RTSI (the

local market effect) show a negative effect, similarly to the findings of Christiansen et al.

(2012).

Though the calendar effects are not significant, the signs of their coefficients also coincide with

those typically found in the literature. Similarly, for example, to the results of Diaz-Mendoza

and Pardo (2020) and Todorova and Souček (2014), we find that, in the Russian market, too,

volatility decreases after a holiday or a weekend, and due to high overnight returns.

We run Breusch-Godfrey LM tests for residual autocorrelation, and find that the results vary

across the firms. There are companies for which there is significant residual autocorrelation

in all the specifications (ROSNEFT, NORNICKEL, POLYUS, and MAGNIT). For the other

firms, the residual correlation vanishes with inclusion of rather few additional variables

(GAZPROM, LUKOIL and NOVATEK). Finally, for SBERBANK and POLYMETAL there

are no signs of residual autocorrelation in all specifications of HAR-RV.

We compare the AICa of the specifications, and find that for most companies the specification

of HAR-RV that includes spillover effects appears to be the best. This pattern is violated only

for LUKOIL, for which regression with inclusion of all variables should be chosen. In general,

this result has proven that the selected explanatory variables contain valuable information

for explanation of stock realized volatility.
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3.5.2 ML and predictive power of the models

To report results of machine learning algorithms, we select top-1 models of each type in terms

of average RMSE, and put them on one graph for each company (see Appendix F.1, page 132).

The most distinct features for all figures are peaks in RMSE early in 2020 and in different

quarters of 2018 and 2019. The most reliable explanation, in our opinion, is the market shock

from COVID-19 early in 2020, and the oil market shock in the same time. For the 2018-2019

shocks, there could be multiple reasons, most likely including deceleration in growth of GDP

due to sanctions policies of foreign countries, pension reform, and depreciation of the national

currency in 2018 and 2019. However, in the quarter after those peaks, the RMSE lowers

significantly, which indicates that the proposed models adjust to the new information, process

it, and can regain their predictive power.

Further, for most of the companies, GB and RF algorithms appear to be the weakest. GB

appears to be the worst overall in most cases (across time, across specifications, and across

assets). This suggests that consequent learning of regression trees might not be the best for

forecasting stock realized volatility. However, unlike the others, RF models have the lowest

RMSE for all test periods for POLYUS. In turn, Lasso and HAR-RV appear to be the best

models, replacing each other in the leading position in different test quarters. The benchmark

model is chosen in its basic specification most of the time, while Lasso performs better with

inclusion of all types of variables into the model. The model specifications without lags of

variables are chosen more often, meaning that lags do not lend much forecasting power into

the algorithms.

To understand the predictive capabilities of different models better, we considered top-3

specifications for each class of ML algorithms for each dataset (and the top-1 benchmark

model specification for comparison). The predictive performance measures and description

of the specifications are in Appendix F.2, page 137. As in the previous step, Lasso and

HAR-RV deliver the lowest average RMSE on the testing samples, followed by RF and GB.

For LSTM, most notably, with the inclusion of extra variables, an increase in RMSE is much

higher than for the other models. We believe that the poor performance of LSTM is a sign of

overfitting. Nevertheless, it should be noticed that any model can deliver the lowest RMSE
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in a particular quarter. Thus, it is important that the majority of top-3 specifications of each

model are based on variables without lags. Moreover, we conclude that even though top-1

specifications can be based on the basic variables only, among the top-3 specifications there

is commonly at least one model with addition of extra variables, which does not perform

significantly differently across the top-3 options. This proves that various groups of variables

indeed carry valuable information about volatility and are important for better forecasting.

To confirm this claim further, we repeat the analysis of the top-3 specifications, excluding

the influence of the 1st and 2nd quarters of 2020. The results are comparable to those from

the previous step.

Since any algorithm can perform best in particular test quarters, we continue analysis of the

results and compare the win-rate of the models by class, showing the number of cases among

the firms for which a particular class of models appears to be the best in each particular

quarter and on average overall. See Table 2. The most frequent winner is Lasso, followed by

HAR-RV and RF. Hence, this result overlaps previous findings for benchmark model and

Lasso. However, the result for RF demonstrates that, though RF does not appear as the top-1

model, it is still a powerful algorithm. LSTM and GB have the lowest win-rates. However,

the two periods when either LSTM or RF show the highest win-rate are the 3d quarter of

2018, and the 3d quarter of 2020, right after the periods with abnormally high volatility for

most of the companies. This suggests that these particular algorithms can adjust faster to

changes in the patterns and absorb new arriving information better than the other models. If

so, it is worth an attempt to improve their performance by more frequent re-training (more

on this in the conclusion).

3.5.3 Prediction-based importance of the variables

Because Lasso is among the best model classes in terms of prediction across both time periods

and assets, we are able to determine which variables are the most significant. We point

out two groups of relatively significant variables: those that were sustainably chosen by

the algorithm, and those that were impermanently, but frequently chosen. The groups are

presented in tables in Appendix F.3, page 143, and Table 3 below summarizes the results
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Table 2: Total win-rate of models by class and testing sample period

Period Models
HAR-RV Lasso LSTM RF GB

2018Q2 2 4 0 1 3
2018Q3 1 2 1 3 2
2018Q4 2 6 0 1 0
2019Q1 3 2 1 2 1
2019Q2 1 2 2 2 2
2019Q3 4 3 0 2 0
2019Q4 2 6 0 1 0
2020Q1 2 5 0 2 0
2020Q2 4 4 0 1 0
2020Q3 2 1 3 3 0
2020Q4 3 3 0 2 1

Average 2.36 3.45 0.64 1.82 0.82

across all firms.

Table 3: Best overall variables, chosen by Lasso

Group of variables

Sustainably

chosen
Log RV, log RV weekly, log RV monthly, is after weekend, is Friday

Frequently

chosen

Log-RV of S&P, log-RV of Brent, growth rates of imports, growth rates of exports,

growth rates of GDP, growth rates of CPI, overnight returns, RGBI, earning price ratios,

dividend price ratios, growth rates of housing starts, High-Low

According to these results, the first group includes basic HAR-RV model variables: logarithms

of daily, weekly, and monthly realized volatility. It happens because the HAR-RV gives an

accurate description of the autoregressive process of RV, and with so few variables the Lasso

must be very close to the baseline linear model. Note that, even though the calendar effects

are often insignificant in-sample, they are rather persistently chosen to improve prediction by

Lasso (e.g., the Friday effect).

The second group contains less frequently chosen variables, including indicators of spillover

effects (log-RV of S&P 500 and Brent oil price returns). In many cases, macroeconomic factors

including growth rates of GDP, CPI, imports and exports, and housing starts are significant.

Moreover, financial indicators including growth rates of earning price ratios, growth rates of

dividend price ratios, growth rates of housing starts, High-Low proxy of liquidity, and RGBI
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are important in forecasting realized volatility for most companies. Lastly, overnight returns

were frequently chosen by Lasso. Similarly to the calendar effects, many of these variables

are not detected as carriers of significant explanatory power in-sample by the benchmark.

Compared to the results obtained by the benchmark model, many more variables from various

groups are chosen by Lasso. However, logs of daily, weekly, and monthly RV and High-Low

are chosen by both algorithms.

Our results demonstrate that linear models are more suitable for RV forecasting than more

complicated machine learning algorithms, at least in our framework. However, Lasso provides

more accurate forecasts than HAR-RV. Importantly, in terms of predictive power optimization,

Lasso tends to choose more variables as being valuable, while the benchmark model works

the best on the basic sets of regressors.

There are multiple reasons for the relative failure of GB, RF, and LSTM in the task of RV

forecasting. We believe that the most crucial source of high prediction numbers of errors by

these algorithms is overfitting. Another possible reason for the failure of these algorithms is

re-training that is not frequent enough. In both cases, the underlying reason must be the

nature of the volatility process itself, as it is essentially noisy. It is less likely but possible

that the tree structure used by GB and RF may be unsuitable for forecasting time series

such as RV. Lastly, LSTM is the closest to HAR-RV and Lasso in terms of predictive power,

but the problem of overfitting is likely to have escalated for this model.

3.6 Discussion

3.6.1 Applications of the results

There are several ways the results of this study can be implemented. Firstly, we were able to

identify the most suitable model for forecasting realized volatility on the Russian stock market,

so researchers and investors who want to study this topic or trade on the market can use the

model. Secondly, if researchers or investors want to build other models for forecasting stock

volatility, they can use our findings on the significant predictors of realized volatility. Thirdly,

with help of our results, traders can quantitatively assess the future short-run risks of an asset
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on the Russian stock market. Lastly, as realized volatility is important for optimal portfolio

allocation, our results can be used by portfolio investors to improve their (re)allocation

decisions.

3.6.2 Limitations of the study

We encountered the impossibility of acquiring some data. Although we included variables

related to calendar effects, spillover effects, and financial and macroeconomic effects, many

factors that can influence RV could not be taken into account. The most obvious reason

is unavailability of data. For instance, investors sentiment is expected to be an important

predictor of RV, yet we have not yet managed to access suitable structured or unstructured

data that would have been convenient to use in our research.

Another challenge is the computational capacity requirements necessary for appropriately fine

and frequent tuning of the models, particularly, the computationally heavy ML algorithms

(RF, LSTM). We briefly studied the velocity with which the sum of the squared prediction

error is accumulated by different models within a particular testing quarter. Figure 2 shows

the accumulation process for SBERBANK volatility top-1 by-class predictors during the 1st

quarter of 2019. The overall winning model for this firm and this period was Lasso (it shows

the lowest accumulated sum at the end of the quarter, day 60, see the left panel of Figure

2). However, the superiority of this model is not stable within the period. Obviously, LSTM

and GB have higher values of the squared error to begin with. This supports our intuition

about the overfitting problem. However, the other three models start off rather close to

each other in the beginning of the quarter, with RF being a sound leader for several days

(see the right panel of Figure 2). RF becomes outdated rather quickly (after approximately

6 days), and does not recover throughout the rest of the testing sample. Moreover, the

accumulation of the sum of the squared error occurs, on average, with increasing rates for

all the models, with dramatic increases in some periods, which possibly signal arrivals of

new information not yet accounted for by the trained models. These observations support

the idea that more frequent re-training of the models might significantly improve predictive

power. Even though this seems a rather obvious path to take, we leave it for future research,
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as it is too computationally demanding, particularly in the case of the GB, RF, and LSTM

algorithms.

Figure 2: Top-1 predictors cumulative sum of squared errors, SBERBANK, 2019Q1

3.7 Conclusion

We aim to employ data on the Russian stock market and to compare the suitability of the

benchmark HAR-RV with several ML algorithms (Lasso, Random Forest, Gradient Boosting,

Long Short-Term Memory) in the task of forecasting daily RV of selected top stocks on the

Russian stock market. We further seek to identify the most valuable factors for explaining

the dynamics and forecasting the future values of the RV.

We collect a novel and extensive dataset for the top-9 Russian companies based on MICEX,

consisting of our variable of interest and various groups of additional variables, including

calendar effects, financial variables, spillover effects and macroeconomic variables. For each

of the models, we constructed a number of specifications based on either HAR-RV or ML

algorithms that are trained on various sets of explanatory variables.

The results show that Gradient Boosting, Random Forest, and LSTM did not appear to

perform well in the forecasting task. The best performing models were Lasso and HAR-RV.

From Lasso, we were able to highlight the most significant factors for forecasting the RV.

The variables that showed the most effect on future RV across all companies are: logarithm

of daily, weekly, and monthly realized volatility, High-Low proxy of liquidity, calendar effects,
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and some macroeconomic variables and financial market and spillover effects, including as,

for example, logarithm of realized volatility of S&P, growth rates of CPI and GDP, growth

rates of earning price ratio and dividend price ratio.

We also find that, once trained, the specifications become outdated rather quickly. Their

predictive performance could be improved by finer tuning and more frequent re-training. This

is a computationally heavy task, which could be addressed in future research. Furthermore,

as most companies in our study are from the oil and gas sector (because of the industry

specificity of the Russian economy), spillovers between sectors could not be investigated fully,

opening another promising direction for further research.
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Conclusion

In conclusion, our research delves into the intricacies of high-dimensional statistical analysis,

exploring methodologies and applications across three key chapters. In Chapter 1, we

addressed the estimation challenges of Gaussian and t copulas in ultra-high dimensions.

Leveraging large covariance matrix shrinkage estimators, our approach demonstrated efficacy

in handling up to thousands of variables with considerably reduced sample lengths. The

findings showcased not only the precision in estimating copula matrix parameters but also the

practical applications, particularly in portfolio allocation. Despite acknowledged limitations

in capturing all data properties, Gaussian and t copulas emerged as valuable tools in various

applications, serving either as primary dependence models or essential benchmarks.

Chapter 2 introduced a novel high-dimensional approach to estimating the skew-t copula,

surpassing existing copula size limitations. The two-step algorithm, incorporating simulated

method of moments and analytical non-linear shrinkage, exhibited robustness even with

limited observations. The application of the skew-t copula in a dynamic portfolio allocation

exercise underscored its superiority, particularly in accommodating tail dependence among

asset pairs. The results emphasized its crucial role in constructing portfolios that outperform

alternative models, thus contributing significantly to the literature on copulas and portfolio

optimization.

Shifting focus to Chapter 3, we extended our exploration into the realm of machine learning

for forecasting daily realized volatility on the Russian stock market. The study identified the

most suitable model, with Lasso and HAR-RV emerging as the top performers. The detailed

analysis of predictors provided valuable insights for researchers, investors, and traders seeking

to understand and navigate short-run risks on the Russian stock market. The limitations,

including data unavailability and computational challenges, signal the need for future research

to overcome these obstacles and enhance the performance of predictive models.

In essence, our work represents a multifaceted contribution to high-dimensional statistical

methods, copulas, and machine learning applications in the financial domain. The demon-

strated benefits in portfolio allocation, tail dependence modeling, and volatility forecasting
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underscore the practical relevance of our findings. This opens avenues for future research,

where refinements in methodologies, addressing computational challenges, and exploring

sectoral spillovers can further enhance the applicability and effectiveness of these statistical

and machine learning tools in financial analysis.

Summary

In summary, our research tackles challenges in high-dimensional statistical analysis. In

Chapter 1, we employ large covariance matrix shrinkage estimators for precise estimation

of Gaussian and t copulas in ultra-high dimensions. Results highlight their effectiveness

in portfolio allocation. Chapter 2 introduces a novel approach for high-dimensional skew-t

copula estimation, showcasing robustness and superiority in dynamic portfolio allocation.

In Chapter 3, we leverage machine learning for daily realized volatility forecasting on the

Russian stock market, with Lasso and HAR-RV as top performers. Our findings offer practical

insights for risk assessment and portfolio optimization. Overall, the research contributes

to advancing methodologies in high-dimensional statistical analysis, copulas, and machine

learning applications in finance.
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List of Appendices

Tables

Table 4: Mean (s.d.) time of evaluation of estimators of P , milliseconds

p p/n
identity true P arbitrary true P

smpl i-τ LSh NLSh smpl i-τ LSh NLSh

10

1
2

0.032 0.333 0.127 263.653 0.031 0.331 0.125 3565.683

(0.008) (0.039) (0.023) (14.560) (0.007) (0.039) (0.021) (109.259)

1
0.031 0.306 0.101 1178.981 0.031 0.327 0.101 3506.683

(0.008) (0.034) (0.017) (29.304) (0.008) (0.156) (0.018) (118.759)

2
0.039 0.310 0.099 3229.914 0.031 0.423 0.096 558.311

(0.083) (0.113) (0.117) (120.781) (0.009) (0.348) (0.091) (16.000)

100

1
2

0.979 49.784 7.263 132.892 0.972 47.311 7.443 1488.073

(0.089) (3.579) (0.428) (8.497) (0.070) (2.642) (0.748) (76.432)

1
0.515 31.403 3.988 224.496 0.511 30.161 3.928 8047.918

(0.048) (3.725) (0.591) (11.136) (0.043) (2.959) (0.602) (76.432)

2
0.277 22.668 2.220 7733.754 0.272 21.976 2.068 1550.691

(0.028) (2.480) (0.534) (108.521) (0.018) (2.916) (0.289) (71.998)

1000

1
2

1116.264 50367.650 15802.090 46094.440 1151.178 45576.730 16735.310 444714.600

(150.527) (667.872) (2515.403) (6107.378) (144.601) (469.405) (2206.170) (16521.080)

1
570.525 24408.820 9265.924 98169.430 584.639 23739.780 8951.203 289481.000

(64.136) (412.646) (1153.461) (6241.310) (96.366) (2549.029) (1407.731) (43049.690)

2
260.719 12471.040 4569.003 104647.500 252.870 11564.420 3843.262 84845.240

(23.468) (287.130) (510.589) (2857.122) (22.259) (290.511) (431.792) (1691.892)
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Table 5: Descriptive statistics of selected variables, SBERBANK

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.61 0.03 -0.0 -0.35

std 0.69 0.13 0.1 0.07

ρ1 0.73∗∗∗ 0.03 −0.1 0.5∗∗∗

ρ2 0.61∗∗∗ −0.14 −0.12 0.35∗∗∗

ρ3 0.56∗∗∗ −0.06 −0.12 0.3∗∗∗

ρ4 0.53∗∗∗ 0.03 0.03 0.28∗∗∗

ρ5 0.51∗∗∗ −0.03 −0.09 0.27∗∗∗

ρ6 0.46∗∗∗ −0.07 0.0 0.23∗∗∗

ρ7 0.44∗∗∗ 0.05 0.24∗ 0.24∗∗∗

ρ8 0.43∗∗∗ 0.31∗∗ 0.07 0.24∗∗∗

ρ9 0.41∗∗∗ 0.05 −0.09 0.25∗∗∗

ρ10 0.39∗∗∗ −0.09 −0.15 0.19∗∗∗

Table 6: Descriptive statistics of selected variables, GAZPROM

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.81 0.01 0.05 -0.33

std 0.69 0.11 0.24 0.07

ρ1 0.66∗∗∗ −0.12 0.25∗ 0.52∗∗∗

ρ2 0.55∗∗∗ −0.22∗ −0.11 0.34∗∗∗

ρ3 0.49∗∗∗ 0.02 −0.0 0.27∗∗∗

ρ4 0.45∗∗∗ −0.11 0.16 0.25∗∗∗

ρ5 0.45∗∗∗ −0.12 −0.18 0.24∗∗∗

ρ6 0.41∗∗∗ −0.01 −0.06 0.24∗∗∗

ρ7 0.39∗∗∗ 0.11 0.08 0.25∗∗∗

ρ8 0.38∗∗∗ −0.08 0.1 0.23∗∗∗

ρ9 0.37∗∗∗ 0.08 −0.0 0.24∗∗∗

ρ10 0.34∗∗∗ −0.07 −0.06 0.19∗∗∗

Table 7: Descriptive statistics of selected variables, LUKOIL

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.68 0.0 0.05 -0.34

std 0.74 0.14 0.19 0.07

ρ1 0.73∗∗∗ −0.09 0.13 0.54∗∗∗

ρ2 0.64∗∗∗ −0.07 0.19 0.38∗∗∗

ρ3 0.59∗∗∗ −0.22∗ −0.11 0.35∗∗∗

ρ4 0.56∗∗∗ 0.14 0.16 0.33∗∗∗

ρ5 0.53∗∗∗ 0.11 0.31∗∗ 0.31∗∗∗

ρ6 0.51∗∗∗ 0.0 0.36∗∗∗ 0.3∗∗∗

ρ7 0.5∗∗∗ −0.03 0.18 0.28∗∗∗

ρ8 0.5∗∗∗ −0.03 0.09 0.3∗∗∗

ρ9 0.48∗∗∗ −0.08 0.08 0.31∗∗∗

ρ10 0.48∗∗∗ 0.15 0.05 0.28∗∗∗
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Table 8: Descriptive statistics of selected variables, NOVATEK

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.3 0.01 0.02 -0.35

std 0.71 0.12 0.15 0.07

ρ1 0.64∗∗∗ −0.02 0.13 0.57∗∗∗

ρ2 0.58∗∗∗ −0.25∗ −0.14 0.41∗∗∗

ρ3 0.52∗∗∗ 0.06 0.18 0.37∗∗∗

ρ4 0.49∗∗∗ −0.01 0.29∗∗ 0.37∗∗∗

ρ5 0.49∗∗∗ −0.08 0.06 0.33∗∗∗

ρ6 0.47∗∗∗ 0.01 −0.23∗ 0.31∗∗∗

ρ7 0.46∗∗∗ −0.21 −0.07 0.33∗∗∗

ρ8 0.46∗∗∗ −0.01 0.11 0.33∗∗∗

ρ9 0.45∗∗∗ 0.11 −0.09 0.31∗∗∗

ρ10 0.44∗∗∗ 0.03 −0.4∗∗∗ 0.29∗∗∗

Table 9: Descriptive statistics of selected variables, ROSNEFT

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.63 0.0 0.06 -0.35

std 0.72 0.15 0.21 0.07

ρ1 0.71∗∗∗ 0.05 0.2 0.56∗∗∗

ρ2 0.64∗∗∗ −0.11 0.08 0.42∗∗∗

ρ3 0.61∗∗∗ −0.02 0.04 0.39∗∗∗

ρ4 0.59∗∗∗ −0.01 0.04 0.41∗∗∗

ρ5 0.57∗∗∗ 0.14 0.03 0.37∗∗∗

ρ6 0.53∗∗∗ 0.09 0.0 0.34∗∗∗

ρ7 0.53∗∗∗ 0.01 −0.05 0.31∗∗∗

ρ8 0.52∗∗∗ 0.12 −0.04 0.34∗∗∗

ρ9 0.5∗∗∗ −0.1 −0.13 0.31∗∗∗

ρ10 0.46∗∗∗ −0.17 −0.05 0.28∗∗∗

Table 10: Descriptive statistics of selected variables, NORNICKEL

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.65 0.01 0.01 -0.34

std 0.66 0.15 0.17 0.07

ρ1 0.71∗∗∗ 0.01 0.02 0.61∗∗∗

ρ2 0.61∗∗∗ −0.17 −0.09 0.45∗∗∗

ρ3 0.55∗∗∗ −0.12 −0.15 0.34∗∗∗

ρ4 0.47∗∗∗ 0.08 −0.12 0.26∗∗∗

ρ5 0.45∗∗∗ −0.12 −0.04 0.24∗∗∗

ρ6 0.41∗∗∗ −0.1 −0.16 0.24∗∗∗

ρ7 0.39∗∗∗ −0.08 −0.04 0.16∗∗∗

ρ8 0.36∗∗∗ 0.13 0.1 0.15∗∗∗

ρ9 0.32∗∗∗ −0.01 0.14 0.14∗∗∗

ρ10 0.33∗∗∗ −0.19 0.1 0.1∗∗∗
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Table 11: Descriptive statistics of selected variables, POLYMETAL

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.03 0.02 0.01 -0.38

std 0.75 0.17 0.13 0.07

ρ1 0.66∗∗∗ −0.22∗ −0.23∗ 0.53∗∗∗

ρ2 0.56∗∗∗ −0.16 −0.12 0.36∗∗∗

ρ3 0.52∗∗∗ 0.0 0.01 0.31∗∗∗

ρ4 0.49∗∗∗ −0.02 −0.02 0.25∗∗∗

ρ5 0.46∗∗∗ −0.01 −0.08 0.25∗∗∗

ρ6 0.43∗∗∗ −0.15 −0.25∗ 0.22∗∗∗

ρ7 0.43∗∗∗ 0.13 0.18 0.2∗∗∗

ρ8 0.4∗∗∗ −0.09 −0.01 0.21∗∗∗

ρ9 0.39∗∗∗ 0.01 0.06 0.22∗∗∗

ρ10 0.39∗∗∗ −0.04 −0.04 0.2∗∗∗

Table 12: Descriptive statistics of selected variables, POLYUS

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.16 -0.01 0.02 -0.37

std 0.86 0.1 0.09 0.08

ρ1 0.6∗∗∗ 0.19 −0.05 0.57∗∗∗

ρ2 0.51∗∗∗ −0.27 −0.12 0.36∗∗∗

ρ3 0.46∗∗∗ −0.04 −0.08 0.3∗∗∗

ρ4 0.43∗∗∗ −0.06 −0.13 0.28∗∗∗

ρ5 0.39∗∗∗ −0.23 −0.1 0.26∗∗∗

ρ6 0.39∗∗∗ −0.27 −0.11 0.27∗∗∗

ρ7 0.39∗∗∗ −0.16 0.17 0.26∗∗∗

ρ8 0.36∗∗∗ 0.11 −0.04 0.23∗∗∗

ρ9 0.38∗∗∗ 0.3 0.24 0.24∗∗∗

ρ10 0.36∗∗∗ 0.1 0.02 0.22∗∗∗

Table 13: Descriptive statistics of selected variables, MAGNIT

Statistics log RV Dividend price ratio Earning price ratio High− Low

Mean -8.35 0.03 0.0 -0.36

std 0.75 0.12 0.12 0.07

ρ1 0.6∗∗∗ −0.07 −0.21 0.54∗∗∗

ρ2 0.51∗∗∗ −0.24∗ −0.0 0.34∗∗∗

ρ3 0.45∗∗∗ −0.09 −0.09 0.27∗∗∗

ρ4 0.4∗∗∗ 0.19 0.13 0.21∗∗∗

ρ5 0.37∗∗∗ 0.04 −0.14 0.21∗∗∗

ρ6 0.37∗∗∗ −0.1 −0.05 0.21∗∗∗

ρ7 0.34∗∗∗ −0.02 0.01 0.19∗∗∗

ρ8 0.35∗∗∗ 0.08 0.2 0.25∗∗∗

ρ9 0.34∗∗∗ −0.04 −0.09 0.2∗∗∗

ρ10 0.31∗∗∗ −0.16 −0.08 0.18∗∗∗
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Table 14: HAR-RV estimation results, SBERBANK

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.482∗∗∗ 0.462∗∗∗ 0.310∗∗∗ 0.310∗∗∗ 0.306∗∗∗

(0.045) (0.045) (0.053) (0.052) (0.050)

log RV weekly 0.322∗∗∗ 0.320∗∗∗ 0.334∗∗∗ 0.317∗∗∗ 0.316∗∗∗

(0.055) (0.055) (0.054) (0.053) (0.055)

log RV monthly 0.070 0.076∗ 0.080∗ 0.084∗ 0.065

(0.046) (0.044) (0.043) (0.046) (0.049)

is after weekend -0.010 -0.008 -0.002 -0.002

(0.032) (0.032) (0.032) (0.032)

is friday -0.052 -0.044 -0.047 -0.048

(0.039) (0.045) (0.045) (0.044)

is after holiday -0.025 -0.059 -0.061 -0.060

(0.071) (0.069) (0.070) (0.070)

overnight returns -6.979∗∗∗ -2.253 -2.062 -2.269

(2.409) (2.852) (2.825) (2.838)

RGBI -0.000 -0.001 -0.001

(0.002) (0.002) (0.002)

log return RTSI -0.905 -0.673 -0.685

(0.990) (0.983) (0.991)

high-low -1.911∗∗∗ -1.871∗∗∗ -1.872∗∗∗

(0.290) (0.292) (0.290)

growth rate of dividend price ratio 0.136 0.142 0.328

(0.165) (0.169) (0.232)

growth rate of earning price ratio 0.117 0.158 0.280

(0.242) (0.239) (0.299)

log RV S&P 0.040∗∗∗ 0.045∗∗∗

(0.015) (0.016)

log RV Brent -0.036∗∗ -0.043∗∗

(0.017) (0.019)

growth rate of imports from USA -0.001

(0.045)

growth rate of exports to USA -0.109

(0.068)

growth rate of CPI 4.401

(5.706)

growth rate of housing starts -0.034

(0.032)

growth rate of quarterly GDP 0.142

(0.192)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.46 0.46 0.45 0.45 0.45

AIC 1641.59 1637.41 1600.68 1593.7 1598.42

LM test 0.97 0.97 0.87 0.95 0.95

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: HAR-RV estimation results, GAZPROM

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.400∗∗∗ 0.382∗∗∗ 0.267∗∗∗ 0.251∗∗∗ 0.251∗∗∗

(0.040) (0.038) (0.040) (0.039) (0.039)

log RV weekly 0.371∗∗∗ 0.374∗∗∗ 0.364∗∗∗ 0.350∗∗∗ 0.349∗∗∗

(0.057) (0.057) (0.055) (0.052) (0.052)

log RV monthly 0.079∗ 0.077∗ 0.085∗∗ 0.029 0.022

(0.041) (0.040) (0.041) (0.049) (0.049)

is after weekend 0.008 -0.001 0.009 0.009

(0.033) (0.033) (0.034) (0.034)

is friday -0.065 -0.031 -0.030 -0.031

(0.042) (0.049) (0.049) (0.048)

is after holiday 0.106 0.112 0.109 0.101

(0.126) (0.126) (0.123) (0.125)

overnight returns -6.795∗∗ -0.725 0.361 0.269

(2.975) (3.320) (3.171) (3.162)

RGBI 0.003 0.002 0.003

(0.002) (0.002) (0.002)

log return RTSI -1.669∗ -1.421 -1.478∗

(0.894) (0.881) (0.883)

high-low -1.648∗∗∗ -1.632∗∗∗ -1.586∗∗∗

(0.291) (0.286) (0.282)

growth rate of dividend price ratio 0.062 0.022 -0.020

(0.151) (0.152) (0.158)

growth rate of earning price ratio -0.003 -0.030 -0.023

(0.069) (0.071) (0.071)

log RV S&P 0.048∗∗∗ 0.047∗∗∗

(0.017) (0.017)

log RV Brent 0.009 0.005

(0.020) (0.021)

growth rate of imports from USA -0.034

(0.052)

growth rate of exports to USA -0.017

(0.062)

growth rate of CPI 4.497

(5.634)

growth rate of housing starts -0.051∗

(0.028)

growth rate of quarterly GDP -0.020

(0.166)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.51 0.5 0.5 0.49 0.49

AIC 1863.85 1858.09 1835.48 1825.0 1830.11

LM test 0.1 0.04 0.07 0.15 0.14

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 16: HAR-RV estimation results, LUKOIL

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.432∗∗∗ 0.418∗∗∗ 0.302∗∗∗ 0.293∗∗∗ 0.286∗∗∗

(0.042) (0.040) (0.042) (0.042) (0.041)

log RV weekly 0.348∗∗∗ 0.342∗∗∗ 0.235∗∗∗ 0.207∗∗∗ 0.188∗∗∗

(0.068) (0.068) (0.058) (0.057) (0.059)

log RV monthly 0.115∗∗ 0.118∗∗ 0.218∗∗∗ 0.209∗∗∗ 0.225∗∗∗

(0.054) (0.050) (0.043) (0.046) (0.046)

is after weekend -0.008 -0.009 0.001 -0.000

(0.034) (0.034) (0.033) (0.033)

is friday -0.073∗ -0.064 -0.064 -0.065

(0.041) (0.045) (0.044) (0.044)

is after holiday -0.071 -0.090 -0.090 -0.096

(0.064) (0.062) (0.061) (0.060)

overnight returns -8.096∗∗ -0.537 0.754 0.685

(3.203) (3.397) (3.335) (3.271)

RGBI -0.002 -0.003 -0.002

(0.002) (0.002) (0.002)

log return RTSI -2.167∗∗ -1.990∗ -1.987∗

(1.090) (1.075) (1.075)

high-low -1.735∗∗∗ -1.669∗∗∗ -1.678∗∗∗

(0.282) (0.278) (0.275)

growth rate of dividend price ratio 0.605∗∗∗ 0.577∗∗∗ 0.635∗∗∗

(0.174) (0.167) (0.178)

growth rate of earning price ratio 0.041 0.021 0.015

(0.060) (0.061) (0.062)

log RV S&P 0.043∗∗∗ 0.041∗∗∗

(0.015) (0.016)

log RV Brent 0.008 0.003

(0.020) (0.021)

growth rate of imports from USA 0.015

(0.047)

growth rate of exports to USA -0.113∗

(0.066)

growth rate of CPI 0.660

(6.302)

growth rate of housing starts -0.067∗

(0.035)

growth rate of quarterly GDP -0.115

(0.155)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.49 0.49 0.48 0.47 0.47

AIC 1789.72 1784.22 1730.78 1721.86 1720.8

LM test 0.06 0.03 0.38 0.68 0.75

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17: HAR-RV estimation results, NOVATEK

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.297∗∗∗ 0.290∗∗∗ 0.196∗∗∗ 0.188∗∗∗ 0.188∗∗∗

(0.044) (0.044) (0.044) (0.043) (0.043)

log RV weekly 0.410∗∗∗ 0.400∗∗∗ 0.362∗∗∗ 0.341∗∗∗ 0.337∗∗∗

(0.073) (0.073) (0.069) (0.066) (0.065)

log RV monthly 0.182∗∗∗ 0.184∗∗∗ 0.214∗∗∗ 0.173∗∗∗ 0.170∗∗∗

(0.044) (0.043) (0.045) (0.047) (0.050)

is after weekend -0.019 -0.024 -0.012 -0.014

(0.036) (0.035) (0.035) (0.035)

is friday -0.025 -0.003 -0.003 -0.004

(0.040) (0.046) (0.046) (0.045)

is after holiday -0.120 -0.099 -0.101 -0.104

(0.093) (0.093) (0.092) (0.090)

overnight returns -7.322∗ -2.991 -1.124 -1.142

(4.248) (4.534) (4.309) (4.313)

RGBI -0.000 -0.001 -0.001

(0.002) (0.002) (0.002)

log return RTSI -3.059∗∗ -2.819∗∗ -2.809∗∗

(1.205) (1.168) (1.178)

high-low -1.543∗∗∗ -1.486∗∗∗ -1.427∗∗∗

(0.297) (0.291) (0.297)

growth rate of dividend price ratio 0.143 0.082 0.087

(0.112) (0.117) (0.124)

growth rate of earning price ratio -0.047 -0.035 -0.030

(0.100) (0.100) (0.097)

log RV S&P 0.053∗∗∗ 0.051∗∗∗

(0.016) (0.017)

log RV Brent 0.004 0.001

(0.017) (0.018)

growth rate of imports from USA 0.001

(0.052)

growth rate of exports to USA -0.116∗

(0.065)

growth rate of CPI -1.007

(6.963)

growth rate of housing starts -0.002

(0.036)

growth rate of quarterly GDP -0.220

(0.168)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.51 0.51 0.5 0.5 0.5

AIC 1896.76 1898.79 1873.42 1861.16 1866.26

LM test 0.0 0.0 0.0 0.11 0.14

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 18: HAR-RV estimation results, ROSNEFT

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.353∗∗∗ 0.331∗∗∗ 0.224∗∗∗ 0.222∗∗∗ 0.222∗∗∗

(0.037) (0.035) (0.039) (0.038) (0.038)

log RV weekly 0.454∗∗∗ 0.448∗∗∗ 0.429∗∗∗ 0.418∗∗∗ 0.414∗∗∗

(0.060) (0.059) (0.059) (0.056) (0.056)

log RV monthly 0.089∗ 0.094∗∗ 0.109∗∗ 0.106∗∗ 0.096∗

(0.051) (0.047) (0.049) (0.051) (0.051)

is after weekend 0.030 0.035 0.040 0.039

(0.035) (0.036) (0.036) (0.035)

is friday -0.037 -0.008 -0.009 -0.009

(0.038) (0.042) (0.042) (0.042)

is after holiday -0.049 -0.072 -0.072 -0.079

(0.078) (0.076) (0.076) (0.075)

overnight returns -10.928∗∗∗ -5.891∗ -4.948 -4.956

(2.648) (3.324) (3.407) (3.409)

RGBI -0.000 -0.001 -0.001

(0.002) (0.002) (0.002)

log return RTSI -1.347 -1.262 -1.325

(1.201) (1.194) (1.200)

high-low -1.592∗∗∗ -1.561∗∗∗ -1.534∗∗∗

(0.270) (0.268) (0.270)

growth rate of dividend price ratio 0.019 0.004 -0.019

(0.123) (0.124) (0.121)

growth rate of earning price ratio -0.019 -0.018 -0.006

(0.090) (0.088) (0.091)

log RV S&P 0.027∗∗ 0.024∗

(0.013) (0.014)

log RV Brent -0.007 -0.009

(0.016) (0.017)

growth rate of imports from USA -0.014

(0.045)

growth rate of exports to USA -0.029

(0.059)

growth rate of CPI 2.731

(5.554)

growth rate of housing starts -0.011

(0.032)

growth rate of quarterly GDP -0.183

(0.168)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.48 0.47 0.47 0.47 0.47

AIC 1714.29 1702.82 1679.21 1678.46 1685.35

LM test 0.01 0.0 0.01 0.03 0.04

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

95



Table 19: HAR-RV estimation results, NORNICKEL

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.316∗∗∗ 0.312∗∗∗ 0.183∗∗∗ 0.166∗∗∗ 0.166∗∗∗

(0.050) (0.049) (0.051) (0.050) (0.050)

log RV weekly 0.398∗∗∗ 0.397∗∗∗ 0.370∗∗∗ 0.349∗∗∗ 0.347∗∗∗

(0.066) (0.065) (0.063) (0.059) (0.059)

log RV monthly 0.138∗∗∗ 0.140∗∗∗ 0.154∗∗∗ 0.126∗∗ 0.129∗∗

(0.053) (0.052) (0.052) (0.054) (0.053)

is after weekend -0.046 -0.058∗ -0.046 -0.046

(0.035) (0.034) (0.034) (0.034)

is friday -0.037 -0.036 -0.034 -0.034

(0.044) (0.046) (0.045) (0.045)

is after holiday -0.036 -0.032 -0.039 -0.039

(0.076) (0.072) (0.074) (0.074)

overnight returns -3.807 2.378 2.665 2.476

(3.463) (3.353) (3.169) (3.158)

RGBI 0.002 0.001 0.001

(0.002) (0.002) (0.002)

log return RTSI -1.007 -0.701 -0.677

(1.327) (1.289) (1.281)

high-low -2.110∗∗∗ -2.119∗∗∗ -2.096∗∗∗

(0.323) (0.319) (0.320)

growth rate of dividend price ratio 0.141 0.135 0.144

(0.143) (0.140) (0.143)

growth rate of earning price ratio 0.103 0.124 0.113

(0.099) (0.099) (0.099)

log RV S&P 0.066∗∗∗ 0.064∗∗∗

(0.015) (0.016)

log RV Brent -0.020 -0.020

(0.018) (0.020)

growth rate of imports from USA 0.019

(0.055)

growth rate of exports to USA -0.045

(0.071)

growth rate of CPI -1.961

(6.680)

growth rate of housing starts -0.026

(0.035)

growth rate of quarterly GDP -0.124

(0.189)

Observations 1,785 1,785 1,785 1,785 1,785

RMSE 0.51 0.51 0.49 0.49 0.49

AIC 2643.13 2645.91 2580.13 2548.1 2555.23

LM test 0.0 0.0 0.0 0.0 0.0

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 20: HAR-RV estimation results, POLYMETAL

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.367∗∗∗ 0.360∗∗∗ 0.264∗∗∗ 0.249∗∗∗ 0.248∗∗∗

(0.038) (0.039) (0.047) (0.047) (0.046)

log RV weekly 0.340∗∗∗ 0.338∗∗∗ 0.285∗∗∗ 0.269∗∗∗ 0.252∗∗∗

(0.067) (0.066) (0.061) (0.060) (0.061)

log RV monthly 0.179∗∗∗ 0.181∗∗∗ 0.240∗∗∗ 0.226∗∗∗ 0.252∗∗∗

(0.055) (0.053) (0.051) (0.053) (0.055)

is after weekend -0.007 -0.003 0.009 0.008

(0.040) (0.041) (0.041) (0.040)

is friday -0.054 -0.023 -0.023 -0.023

(0.042) (0.046) (0.045) (0.045)

is after holiday -0.001 -0.017 -0.029 -0.016

(0.101) (0.099) (0.101) (0.100)

overnight returns -8.337 -6.258 -5.105 -4.660

(6.014) (5.688) (5.622) (5.690)

RGBI -0.002 -0.003∗ -0.004∗∗

(0.002) (0.002) (0.002)

log return RTSI -2.086∗∗ -1.727∗ -1.583

(1.044) (1.014) (1.005)

high-low -1.380∗∗∗ -1.398∗∗∗ -1.379∗∗∗

(0.338) (0.339) (0.339)

growth rate of dividend price ratio 0.234 0.164 0.238

(0.226) (0.223) (0.221)

growth rate of earning price ratio 0.001 -0.003 0.006

(0.222) (0.226) (0.240)

log RV S&P 0.049∗∗∗ 0.054∗∗∗

(0.017) (0.017)

log RV Brent 0.007 0.003

(0.024) (0.024)

growth rate of imports from USA 0.072

(0.055)

growth rate of exports to USA -0.130∗

(0.075)

growth rate of CPI -5.176

(6.975)

growth rate of housing starts 0.002

(0.031)

growth rate of quarterly GDP 0.095

(0.181)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.54 0.54 0.53 0.53 0.53

AIC 2026.9 2030.03 2004.52 1992.57 1996.41

LM test 0.65 0.72 0.9 0.94 0.93

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 21: HAR-RV estimation results, POLYUS

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.356∗∗∗ 0.369∗∗∗ 0.208∗∗∗ 0.200∗∗∗ 0.199∗∗∗

(0.038) (0.039) (0.059) (0.058) (0.058)

log RV weekly 0.333∗∗∗ 0.327∗∗∗ 0.299∗∗∗ 0.286∗∗∗ 0.262∗∗∗

(0.058) (0.057) (0.065) (0.062) (0.061)

log RV monthly 0.205∗∗∗ 0.203∗∗∗ 0.171∗∗∗ 0.122∗∗ 0.156∗∗

(0.044) (0.045) (0.059) (0.062) (0.070)

is after weekend -0.019 -0.106∗∗ -0.088∗ -0.089∗

(0.054) (0.054) (0.053) (0.053)

is friday 0.055 0.014 0.008 0.007

(0.056) (0.074) (0.073) (0.073)

is after holiday -0.057 -0.168∗ -0.202∗∗ -0.200∗∗

(0.138) (0.096) (0.099) (0.097)

overnight returns 9.454∗ 7.686 7.529 7.739

(5.649) (5.124) (5.150) (5.235)

RGBI 0.005 0.006∗ 0.006

(0.003) (0.003) (0.004)

log return RTSI -0.161 0.632 0.743

(1.575) (1.481) (1.469)

high-low -2.292∗∗∗ -2.190∗∗∗ -2.227∗∗∗

(0.479) (0.470) (0.475)

growth rate of dividend price ratio -0.709∗ -0.728∗ -0.799∗

(0.424) (0.420) (0.484)

growth rate of earning price ratio -1.005∗∗ -0.946∗ -1.103∗

(0.508) (0.499) (0.574)

log RV S&P 0.082∗∗∗ 0.078∗∗∗

(0.021) (0.023)

log RV Brent -0.024 -0.027

(0.030) (0.034)

growth rate of imports from USA 0.117

(0.106)

growth rate of exports to USA -0.149

(0.109)

growth rate of CPI -5.719

(11.094)

growth rate of housing starts 0.035

(0.049)

growth rate of quarterly GDP -0.167

(0.302)

Observations 1,256 1,256 838 838 838

RMSE 0.74 0.73 0.64 0.64 0.64

AIC 2800.92 2804.32 1668.02 1655.67 1661.63

LM test 0.01 0.01 0.05 0.07 0.1

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 22: HAR-RV estimation results, MAGNIT

Dependent variable: log RVt+1

Basic Overnight and calendar Financial Spillover Macroeconomic

log RV 0.369∗∗∗ 0.356∗∗∗ 0.196∗∗∗ 0.192∗∗∗ 0.190∗∗∗

(0.043) (0.044) (0.044) (0.045) (0.045)

log RV weekly 0.336∗∗∗ 0.341∗∗∗ 0.310∗∗∗ 0.294∗∗∗ 0.276∗∗∗

(0.059) (0.059) (0.055) (0.056) (0.055)

log RV monthly 0.129∗∗ 0.130∗∗ 0.148∗∗∗ 0.131∗∗ 0.131∗∗

(0.054) (0.055) (0.054) (0.057) (0.054)

is after weekend -0.044 -0.038 -0.029 -0.030

(0.039) (0.039) (0.039) (0.039)

is friday -0.024 -0.028 -0.029 -0.029

(0.043) (0.048) (0.047) (0.047)

is after holiday 0.011 0.023 0.024 0.007

(0.106) (0.107) (0.107) (0.104)

overnight returns -5.472∗ -0.051 1.250 0.892

(2.818) (3.150) (3.074) (2.962)

RGBI 0.001 0.000 0.001

(0.002) (0.002) (0.002)

log return RTSI -0.124 0.048 -0.044

(1.181) (1.162) (1.166)

high-low -2.395∗∗∗ -2.395∗∗∗ -2.344∗∗∗

(0.314) (0.312) (0.311)

growth rate of dividend price ratio -0.119 -0.085 -0.073

(0.205) (0.207) (0.200)

growth rate of earning price ratio -0.260 -0.191 -0.177

(0.233) (0.225) (0.231)

log RV S&P 0.038∗∗ 0.033∗∗

(0.016) (0.017)

log RV Brent 0.001 0.001

(0.019) (0.021)

growth rate of imports from USA -0.008

(0.054)

growth rate of exports to USA -0.030

(0.072)

growth rate of CPI -0.269

(6.573)

growth rate of housing starts -0.068

(0.043)

growth rate of quarterly GDP -0.298

(0.190)

Observations 1,255 1,255 1,255 1,255 1,255

RMSE 0.58 0.58 0.57 0.57 0.57

AIC 2209.2 2212.91 2174.45 2171.07 2171.79

LM test 0.0 0.0 0.01 0.05 0.08

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figures

(a) p = 10 (b) p = 100

(c) p = 1000

(d) distribution of correlation coefficients for the p = 1000 matrix

Figure 3: True correlation matrices P of arbitrary structure
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(a) Median Euclidean Loss

(b) Median KLIC (for t copula, the case of PMLE d.f.)

Figure 4: Median quality metrics of estimators in a selected slice of simulations
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(a) p = 1000, Gaussian copula, arbitrary P (b) p = 1000, t copula, identity P

(c) p = 100, Gaussian copula, arbitrary P (d) p = 1000, t copula, arbitrary P

Figure 5: Shares of simulations in which each estimator returns the best KLIC
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(a)

(b)

(c)

(d)

Figure 6: Examples of model-based portfolio cumulative return dynamics
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Figure 7: Relative returns of model-based portfolios across sets of assets

Figure 8: Density for standard normal marginals in bivariate skew-t copula
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Figure 9: EUROSTOXX50 dynamics in the first half of 2022

Figure 10: Skew-t copula-based portfolio value dynamics compared to the market
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Figure 11: Skew-t copula density of Sanofi and Carrefour returns in Period 1

Figure 12: Skew-t copula density of Inditex and AB InBev returns in Period 2
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Figure 13: Skew-t copula density of Eni and Generali Group returns in Period 3

Figure 14: Dynamics of log-RV, SBERBANK

Figure 15: Dynamics of log-RV, GAZPROM
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Figure 16: Dynamics of log-RV, LUKOIL

Figure 17: Dynamics of log-RV, NOVATEK

Figure 18: Dynamics of log-RV, ROSNEFT

Figure 19: Dynamics of log-RV, NORNICKEL
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Figure 20: Dynamics of log-RV, POLYMETAL

Figure 21: Dynamics of log-RV, POLYUS

Figure 22: Dynamics of log-RV, MAGNIT

Figure 23: Average log-RV across weekdays, SBER
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Figure 24: Average log-RV across weekdays, GAZPROM

Figure 25: Average log-RV across weekdays, LUKOIL

Figure 26: Average log-RV across weekdays, NOVATEK

Figure 27: Average log-RV across weekdays, ROSNEFT
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Figure 28: Average log-RV across weekdays, NORNICKEL

Figure 29: Average log-RV across weekdays, POLYMETAL

Figure 30: Average log-RV across weekdays, POLYUS

Figure 31: Average log-RV across weekdays, MAGNIT
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Figure 32: Correlations and dependencies between selected variables, SBERBANK

112



Figure 33: Correlations and dependencies between selected variables, GAZPROM
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Figure 34: Correlations and dependencies between selected variables, LUKOIL
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Figure 35: Correlations and dependencies between selected variables, NOVATEK
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Figure 36: Correlations and dependencies between selected variables, ROSNEFT
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Figure 37: Correlations and dependencies between selected variables, NORNICKEL
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Figure 38: Correlations and dependencies between selected variables, POLYMETAL
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Figure 39: Correlations and dependencies between selected variables, POLYUS
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Figure 40: Correlations and dependencies between selected variables, MAGNIT
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A Quality of approximation of correlation parameter

Attractiveness of the methodology relies heavily on the quality of the approximation (1.6). It

suggests using a correlation of pseudo-observations U from either Gaussian or t copula as an

approximation for the copula correlation matrix parameter P . We demonstrate the scope of

this approximation for these two copulas in the bivariate case, i.e. for the copula parameter

P =

1 ρ

ρ 1

 . (A.1)

The approximation (1.6) suggests that

cor(u1, u2) ≈ ρ, (A.2)

where (u1, u2)′ ∼ CP . We run a simulation to evaluate cor(u1, u2) from B = 226 simulated

values of (u1, u2)′ from the Gaussian and t copulas; in the latter case, the degrees of freedom

parameter ν varies in {2, 4, 8, 10, 16}). We evaluate the error of this approximation for different

values of ρ. The results are summarized in Figure 41. In a nutshell, the approximation error

is negligible in all cases of practical interest.

Figure 41: Approximation of copula parameter by correlation of pseudo-observations
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B Portfolio selection and evaluation technique

Assume we have historical data on stock prices (daily, close) for a set of p stocks over the

period of T days, {Si
t}i=1,...,p,t=1,...,T . We call a portfolio a p-dimensional vector of shares,

α = (α1, ..., αp), such that ∀i = 1, ..., p αi ≥ 0, and ∑p
i=1 αi = 1. The value of portfolio α is

then the corresponding linear combination of the stock prices:

πt(α) =
p∑

i=1
αiS

i
t . (B.1)

We use the portion of the historical data for the periods t = 1, ..., n < T to fit a particular

model for the stock price dynamics, based on which a particular portfolio is selected according

to some criteria introduced below. The portfolio is then held for the rest T − n time periods,

t = n+ 1, ..., T . The ratio of the current value of the portfolio to its initial value is then what

we call cumulative return of the portfolio up to that time period:

Xt(α) = πt(α)
πn(α) , t > n. (B.2)

We use the following modeling technique.

1. Since all price series are non-stationary, to model price dynamics we switch to daily

log-returns,

ri
t = log

(
Si

t

)
− log

(
Si

t−1

)
.

2. For each of the log-return series, we use the historical data over the period t = 1, ..., n

to estimate a series of ARMA-EGARCH models of order up to (6,6)-(1,1,1). We

run a simple in-sample diagnostics of each specification dropping those that do not

pass the Ljung-Box test for standardized residual autocorrelation or the LM test for

autoregressive conditional heteroskedasticity, and from the remaining specifications we

pick the one with the minimal BIC value. For each asset we then record the estimates

of the conditional mean rquation and conditional variance specifications and extract

the corresponding standardized residual series, {ei
t}i=1,...,p,t=1,...,n.
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3. Two different types of models are then used to model the joint distribution of residuals

across all stocks, et = (e1
t , ..., e

p
t )′:

• The multivariate normal (MVN) model:

et ∼ i.i.d. N (Op,Ω), (B.3)

where Ω is the correlation matrix, which is estimated by either linear or non-linear

shrinkage, Ω̂, of the standardized residuals over the period t = 1, ..., n.

• The t copula model with EDF marginals:

et ∼ i.i.d. Ct
P,ν

(
F̂ 1(e1), ..., F̂ p(ep)

)
, (B.4)

where F̂ i(e) is the EDF of the ith standardized residual series estimated over the

period t = 1, ..., n. The matrix parameter P can be estimated by any of the

method-of-moments-like estimators described earlier in the paper (Sections 1.3.2

& 1.3.3), and the degrees-of-freedom parameter ν is estimated via MPLE. We use

only the two shrinkage estimators of the matrix parameter.

4. From each model, we generate B = 210 trajectories of future error terms for the period

t = n + 1, ..., T , {ei
t(b)}i=1,...,p,t=n+1,...,T,b=1,...,B, and use the fitted ARMA-EGARCH

specifications to calculate the corresponding trajectories of future stock prices, {Ŝi
t(b)}....

We use these simulated data to calculate the simulation analogs of the portfolio value

(B.1) and return (B.2) as

π̂t(α, b) =
p∑

i=1
αiŜ

i
t(b), and (B.5)

X̂t(α, b) = π̂t(α, b)
πn(α) . (B.6)

5. For each portfolio α, we use as the main performance criterion the simulated sample

Sharpe ratio based on the cumulative returns in the final period T estimated over the
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simulations b = 1, ..., B (and assuming zero risk-free return):

ξ(α) = B−1∑B
b=1 X̂T (α, b)√

B−1∑B
b=1

(
X̂t(α, b) −B−1∑B

b=1 X̂T (α, b)
)2
. (B.7)

6. We choose the portfolio with the best Sharpe ratio:

α∗ = arg max
α

ξ(α). (B.8)

This results in 4 different model-based portfolio choices: α∗
MVN-LSh, α∗

MVN-NLSh, α∗
tc-LSh,

α∗
tc-NLSh, depending on which model is used to simulate the stock price trajectories and

calculate the simulated portfolio returns (B.6).

7. As a benchmark for a given set of p stocks we use the equally weighted portfolio,

α1/p = (p−1, ..., p−1). To evaluate the actual performance of the portfolios over the

period t = n+ 1, ..., T , we calculate, for each set of assets and the corresponding choices

of α∗, the ratios of the actual return in time period T of the different model-based

portfolios to each other:

R̃(M1,M2) =
XT (α∗

M1)
XT (α∗

M2) , (B.9)

where M1 ∈ {tc-LSh, tc-NLSh}, M2 ∈ {1/p,MVN-LSh,MVN-NLSh, tc-NLSh}/M1.

The interpretation of the measures (B.9) is the following. The purpose of this empirical

exercise is to show the potential gains of the combination of copula-based models and

shrinkage-based estimators over traditional techniques. The higher the relative cumulative

return of a model-based portfolio R(M1,M2) is, the better is the model’s choice M1 over M2,

with the preferred range of the criterion being above 1.

Still, the resulting portfolio performance measures (B.9) are single numbers, and the result is

random for a particular set of assets, choice of sample sizes, and dates. We therefore run

another simulation to compare different model-based portfolio choices.

First, we set as a modeling period approximately the last 9 months of the year 2017. We

use n = 120 daily observations to fit and estimate the models. The remaining T − n =
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60 observations are used to run the simulations, select the portfolios, and evaluate their

performance. The sample sizes are intentionally very low. One reason to keep them such is

that, clearly, the quality of simulations of stock prices crucially depends on the quality of

univariate conditional mean models of the log-return series. In our example, these models

are very simplistic, and one should not expect that their performance can remain relevant for

a long period of time. However, normally, the shorter the samples are, the lower should be

the number of assets in potential portfolios, exactly due to the curse of dimensionality. In

our case, this is another reason to keep the samples short so that we can make the point that

the high-dimensionality adjustment in estimation techniques can be beneficial even when the

sample is very short.

Second, in the interest of not over-complicating asset selection for potential portfolios, from

all securities for which we managed to access the data, we drop the series whose log-returns

fail stationarity tests or for which we could not select an ARMA-EGARCH specification (for

example, if none of the specifications deliver residuals that pass the Ljung-Box or LM tests).

This leaves us with approximately 4980 securities from over 5000 initially.

From the remaining securities we randomly choose K > 27 subsets16 of size p = 3600, and

for each of them perform steps 1–7 above. Thus, we obtain a distribution of the overall

performance of different strategies of portfolio construction (B.9) over 135 randomly chosen

sets of p = 3600 assets.

Finally, under p = 3600 the optimization problem (B.7) is very high-dimensional. To

make its solution computationally practical (in each simulation it needs to be solved up 4

times), we substitute the actual optimization (B.7) with a choice over a number greater

than 106 of portfolios α randomly and uniformly generated from p-dimensional simplex. The

set of alternative αs is pre-generated and remains fixed across all simulations as long as

the dimensionality p remains the same. The resulting choices of the portfolios α∗ are not

guaranteed to be optimal, however, given the dimensionality of the optimization problem, and

its simulation nature, the search on a randomly pre-generated set of alternatives is believed

to be the best computationally feasible choice.
16we ran the simulations for over K = 150 subsets to obtain result for 135 of them, the remaining 15 were

dropped due to poor convergence of optimization or numerical errros during paralleled computations
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C Technical remarks

C.1 Computational software

All the calculations for the simulation study were performed using R language (R Core

Team, 2013). The packages foreach (Weston, 2019b) and doParallel (Weston, 2019a) were

used to perform parallel computations. The package copula (Hofert et al., 2018; Jun Yan,

2007; Ivan Kojadinovic and Jun Yan, 2010; Marius Hofert and Martin Mächler, 2011) was

used to simulate the random variables from the copula-based multivariate distributions and

calculate copula density functions. To perform linear and nonlinear shrinkage covariance

matrix estimators, the package nlshrink (Ramprasad, 2016) was used. Other packages used

in particular calculations include Matrix, matrixcalc, pcaPP, corrplot (Bates and Maechler,

2019; Novomestky, 2012; Filzmoser et al., 2018; Wei and Simko, 2017), and others.

The empirical example was evaluated in the Julia programming language (Bezanson et al.,

2017). Particularly, the package ARCHModels (Broda and Paolella, 2020) was applied to

estimate and select ARMA-EGARCH models.

C.2 Evaluation time of estimators

We assess the time required for evaluation of the four estimators of matrix parameters of the t

copula for different true matrix parameter structures (identity or arbitrary) and under different

dimensionality p/n ∈ {1/2, 1, 2}. The results are reported in Table 4. The assessment of

evaluation time was performed on an Intel(R) Core(TM) i7-7700K CPU @4.20GHz machine

with 16GB of RAM running on Windows 10 Home edition. For assessing evaluation time, no

parallel computing was used. The R package microbenchmark (Mersmann, 2019) was used to

record the running time of the four estimators evaluation.
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D Dynamic portfolio allocation technique

D.1 Definitions

This section presents the overview of the portfolio selection and evaluation algorithm we

use in Chapter 2 to produce the results discussed in Section 2.4. We apply the following

definitions.

1. Stock prices, {Sij}i=0,1,...N,j=1,...p, are daily close prices of stocks, indexed by j = 1, ...p,

over the time period from i = 1 to N days.

2. Daily stock returns, rij = logSij − logS(i−1)j, i = 1, ...N , j = 1, ...p.

3. A portfolio, α = (α1, ...αp)′, is a vector of shares that correspond to the input of each

stock to the portfolio, i.e. αj ≥ 0, ∀j = 1, ...p, and ∑p
j=1 αj = 1.

4. Equally-weighted portfolio (EWP) or naïve portfolio is α1/p = (1/p, ...1/p)′.

5. A portfolio’s value at time i = 1, ...N , Xi(α) = ∑p
j=1 Sijαj.

6. A portfolio’s accumulated return over a period from i1 to i2, xi1,i2(α) = Xi2
(α)

Xi1
(α) .

7. A portfolio’s Sharpe’s ratio (assuming zero risk-free return) for the period from i1 to i2,

ξi1,i2(α) = Exi1,i2(α)√
Varxi1,i2

(α) .

Investment strategy

In this study, we employ dynamic portfolio allocation, mimicking an investment strategy under

conditions of full reinvestment and no transaction costs. The whole timeframe i = 1., , , N is

divided into equal periods t = 1, ...T , with starting points it1 and end points it2, such that

i11 < i12 = i21 < i22 = i31 < ...iT −1
2 = iT1 < iT2 = N,

and
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i11 = it2 − it1 = n, ∀t = 1, ...T.

An investment strategy is a vector of period-specific portfolios, A = (α1, ...αT ). Each of the

portfolios, αt, is selected at the time point it1, and over the period t it generates accumulated

return xi
t
1,i

t
2
(αt). At the beginning of the next period t+ 1, the full final value of the previous

portfolio Xi
t
2
(αt) is re-invested into the next portfolio αt+1. Thus, at each time-point i

between i11 and iT2 , the accumulated return of an investment strategy is

Zi(A) =


xi1,i(α1), if i11 ≤ i < i12,

xi1,i(αt̄)∏t̄−1
t=1 xi

t
1,i

t
2
(αt), if it̄1 ≤ i ≤ it̄2, t̄ = 2, ...T.

D.2 Portfolio selection technique

According to an investment strategy, the portfolio is selected (updated) T times. We perform

each portfolio selection t = 1, ...T following the same algorithm:

1. Each of the stocks j = 1, ...p returns series rij over the historical period of time

i = it1 − n+ 1, ...it1 is filtered using ARMA-(E)GARCH model of sufficient small order

to obtain serially-uncorrelated residual returns eij.

2. The sample {eij}i=i
t
1−n+1,...i

t
1,j=1,...p is transformed into pseudo-observations (2.14) using

ECDF of each particular series j = 1, ...p. Skew-t copula is fitted to the pseudo-

observations using the algorithm described in Section 2.3.2.

3. The estimate of the copula is used as the model of the joint distribution of the residual

returns, and the fitted ARMA-(E)GARCH models are used as conditional mean models

for the assets’ returns. From these models, we simulate trajectories of stock prices Sij,

j = 1, ...p for the period i = it1 + 1, ...it2 to solve the optimal Sharpe’s ratio portfolio

selection problem:

α∗t = arg max
a

ξi
t
1,i

t
2
(a).
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We perform the ARMA-(E)GARCH filtration step in the same manner as by Anatolyev and

Pyrlik (2022), with a lower maximum order of the models, as in this study the sample size

n = 20. Our simulation of random values from skew-t copula distribution is performed using

the stochastic representation of MSTD (2.2) - (2.6) and the transformation (2.14).

We measure the realized performance of the portfolio in terms of the whole investment

strategy accumulated return ZN (A∗) compared to the naïve portfolio’s return x
i
1
1,N

(α1/p) and

the accumulated return of the market index
S

i
1
1,EUROSTOXX50

SN,EUROSTOXX50
.

Technical remarks

We performed all the calculations for this study in the Julia programming language (Bezanson

et al., 2017). The package Distributed (Jeff Bezanson and other contributors, 2022) was

used to perform parallel computations. We handled the optimization problems in SGMM

application using package Optim (Mogensen and Riseth, 2018). We apply package ARCH-

Models (Broda and Paolella, 2020) to estimate and select ARMA-EGARCH models. We

produce visualizations using PlotlyJS (Lyon, 2022). Other packages that we use in particular

calculations include LinearAlgebra, Distributions, Roots, and others.

E Machine Learning Algorithms

Lasso

Lasso (least absolute shrinkage and selection operator) is a type of regularization that performs

variable selection. This method aims to enhance predictive power of linear models and to

highlight the most valuable predictors. As OLS models tend to exhibit low bias and high

variance of forecasts, they may be overfitted. Lasso regularization helps to decrease the risk

of overfitting.

In comparison with the Ordinary Least Squares method, there is an added penalty in Lasso:

||Xw − y||22 − λ||w||1 −→ min (E.1)
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where λ is a hyperparameter of Lasso regularization that can be interpreted as the penalty

rate.

Gradient Boosting

Gradient Boosting was firstly described by Friedman (2001), and its main idea is to create

an ensemble of simple models by sequentially fitting and adding parameterized functions.

The main goal of this algorithm is to find a function F ∗(x) that maps x to y and specific

(differentiable) loss function Ψ(y, F (x)) is minimized:

F ∗(x) = arg min
F (x)

Ψ(y, F (x)) (E.2)

F (X) is represented as a linear combination of simple models (base learners):

F (x) =
M∑

m=o

βmh(x; am) =⇒ Fm(x) = Fm−1(x) + βmh(x; am) (E.3)

where h(a;x) (base learner) is a simple function of x with parameters a = {a1, a2, ...}, βm is

the coefficient behind each base learner hm to make a linear combination.

Suppose, we have a training sample {y, x} of size N . So, function F ∗(x) could be fitted by

repeating two steps m times. Firstly, function h(x; a) is fitted via least squares

am =a

N∑
i=1

[y∗
im − h(a;xi)]2 (E.4)

to the current ’pseudo’-residuals

y∗
im = −

[
∂Ψ(yim, F (xim))

∂F (xim)

]
F (x)=Fm−1(x)

(E.5)

Then the optimal value of βm is determined

βm = arg min
β

N∑
i=0

(Ψ(yi, Fm−1(xi) + βh(am;xi))) (E.6)
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Figure 42: LSTM scheme

This method replaces a potentially difficult function optimization problem with one based on

least squares followed by a single parameter optimization based on general loss criterion Ψ.

The most commonly used base learners are binary decision trees (we use them in our study).

Further, we use L1 regularization on this algorithm to deal with overfitting. This type of

regularization works on Gradient Boosting by constraining the leaf weights, rather than the

feature weights.

Random Forest

Random forest was firstly described by Breiman (2001). The algorithm consists of tree-

structured algorithms {h(x,Θk), k = 1, ...} where {Θk} are i.i.d. random vectors. Each tree

casts a unit vote at input x. For the regression problem, RF extracts the mean vote of all the

trees. The mechanism of tree-structured algorithms is the same as for GB, described above.

LSTM

Long Short-Term Memory (LSTM) was first described by Hochreiter and Schmidhuber (1997).

LSTM is a kind of recurring neural network tahn can be represented as a sequence of blocks.
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The principal work of a block is described in Figure 42. This block can also be rewritten as:

ft = σ(xtU
f + ht−1W

f + bf ),

it = σ(xtU
i + ht−1W

i + bi),

ot = σ(xtU
o + ht−1W

o + bo),

C̃t = tanh(xtU
g + ht−1W

g + bg),

Ct = ft ∗ Ct−1 + it ∗ C̃t,

ht = tanh(Ct) ∗ ot.

where W , U and b are the parameters of the block, xt is an input vector, ht is an output

vector and Ct is a vector of conditions. The two functions σ and tanh are σ(x) = 1
1−e

−x , and

tanh(x) = e
x−e

−x

e
x+e

−x . LSTM is typically trained with the use of stochastic gradient descent or

one of its modifications. In our study, we use firstly ADAM optimizer, but we switch to

alternatives in case it fails.

F Machine Learning Results

F.1 Graphs with Top-1 Models

Figure 43: Results for top-1 ML models, SBERBANK
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Figure 44: Results for top-1 ML models, GAZPROM

Figure 45: Results for top-1 ML models, LUKOIL
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Figure 46: Results for top-1 ML models, NOVATEK

Figure 47: Results for top-1 ML models, ROSNEFT
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Figure 48: Results for top-1 ML models, NORNICKEL

Figure 49: Results for top-1 ML models, POLYMETAL
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Figure 50: Results for top-1 ML models, POLYUS

Figure 51: Results for top-1 ML models, MAGNIT
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F.2 Tables with Top-3 Models

Table 23: Results of models for SBERBANK with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Financial

no lags

Financial

no lags

Spillover

no lags

Basic

with lags

Overnight and calendar

with lags

Basic

with lags

Basic

no lags

Financial

no lags

Spillover

no lags

Basic

with lags

Overnight and calendar

no lags

Basic

no lags

Spillover

no lags

2018 Q2 0.7 0.69 0.68 0.7 0.82 0.82 0.81 0.83 0.83 0.8 0.74 0.79 0.76

2018 Q3 0.55 0.57 0.58 0.58 0.63 0.62 0.62 0.59 0.6 0.67 0.59 0.63 0.6

2018 Q4 0.45 0.44 0.45 0.45 0.54 0.54 0.51 0.46 0.5 0.51 0.48 0.49 0.59

2019 Q1 0.35 0.35 0.36 0.35 0.45 0.47 0.43 0.38 0.39 0.35 0.4 0.43 0.41

2019 Q2 0.46 0.46 0.48 0.48 0.54 0.53 0.5 0.46 0.46 0.48 0.45 0.46 9.19

2019 Q3 0.44 0.52 0.52 0.51 0.51 0.56 0.5 0.47 0.46 0.48 0.45 0.61 0.6

2019 Q4 0.38 0.38 0.38 0.39 0.43 0.41 0.5 0.41 0.42 0.39 0.42 0.39 0.83

2020 Q1 0.7 0.7 0.7 0.69 0.67 0.68 0.84 0.69 0.72 0.71 0.72 0.69 1.35

2020 Q2 0.55 0.55 0.54 0.54 0.62 0.61 0.56 0.57 0.55 0.55 0.58 0.55 0.58

2020 Q3 0.48 0.48 0.48 0.48 0.56 0.56 0.55 0.48 0.49 0.54 0.49 0.48 0.57

2020 Q4 0.43 0.43 0.43 0.41 0.46 0.43 0.44 0.41 0.42 0.42 0.46 0.47 0.59

Mean RMSE 0.5 0.51 0.51 0.51 0.57 0.57 0.57 0.52 0.53 0.54 0.52 0.54 1.46

Table 24: Results of models for GAZPROM with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Macroeconomic

no lags

Financial

no lags

Financial

with lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Spillover

no lags

Financial

no lags

Spillover

with lags

Overnight and calendar

no lags

Basic

no lags

Financial

no lags

2018 Q2 0.68 0.67 0.67 0.67 0.71 0.74 0.72 0.68 0.69 0.7 0.83 0.72 0.75

2018 Q3 0.41 0.42 0.4 0.42 0.44 0.44 0.43 0.41 0.42 0.39 0.43 0.41 0.43

2018 Q4 0.5 0.52 0.49 0.51 0.52 0.53 0.56 0.52 0.52 0.51 0.67 0.67 0.67

2019 Q1 0.36 0.38 0.37 0.35 0.41 0.43 0.4 0.38 0.38 0.37 0.35 0.43 0.43

2019 Q2 0.91 0.91 0.92 0.91 0.9 0.88 0.89 0.91 0.92 0.93 0.91 0.91 0.96

2019 Q3 0.55 0.55 0.55 0.55 0.56 0.57 0.64 0.55 0.53 0.55 0.62 0.55 0.62

2019 Q4 0.56 0.55 0.55 0.55 0.63 0.65 0.63 0.56 0.55 0.59 0.58 0.76 0.58

2020 Q1 0.74 0.69 0.72 0.74 0.87 0.9 0.98 0.81 0.81 0.81 0.8 0.86 0.76

2020 Q2 0.49 0.47 0.52 0.49 0.48 0.49 0.56 0.52 0.54 0.51 0.51 0.54 0.86

2020 Q3 0.38 0.4 0.38 0.4 0.42 0.41 0.46 0.38 0.4 0.38 0.41 0.46 0.74

2020 Q4 0.45 0.44 0.45 0.45 0.52 0.51 0.51 0.45 0.45 0.47 0.54 0.46 0.74

Mean RMSE 0.55 0.55 0.55 0.55 0.59 0.6 0.62 0.56 0.56 0.56 0.6 0.61 0.68

Table 25: Results of models for LUKOIL with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

with lags

Overnight and calendar

with lags

Financial

no lags

Overnight and calendar

with lags

Basic

with lags

Spillover

with lags

Spillover

no lags

Overnight and calendar

no lags

Overnight and calendar

with lags

Basic

no lags

Overnight and calendar

no lags

Spillover

no lags

2018 Q2 0.74 0.72 0.72 0.74 0.79 0.83 0.75 0.78 0.78 0.77 0.79 0.76 0.77

2018 Q3 0.42 0.42 0.42 0.4 0.46 0.47 0.44 0.39 0.41 0.42 0.42 0.5 0.4

2018 Q4 0.43 0.46 0.46 0.44 0.5 0.49 0.48 0.45 0.46 0.44 0.6 0.44 0.45

2019 Q1 0.37 0.38 0.38 0.38 0.52 0.5 0.66 0.38 0.39 0.38 0.44 0.46 0.66

2019 Q2 0.58 0.59 0.59 0.56 0.62 0.63 0.63 0.61 0.57 0.57 0.69 0.61 0.64

2019 Q3 0.6 0.6 0.6 0.59 0.66 0.65 0.72 0.6 0.61 0.62 0.64 0.63 0.65

2019 Q4 0.62 0.62 0.62 0.63 0.72 0.7 0.85 0.76 0.71 0.7 0.71 0.82 0.74

2020 Q1 0.84 0.83 0.84 0.9 1.15 1.16 1.11 1.09 1.04 1.16 1.05 1.02 1.35

2020 Q2 0.52 0.54 0.54 0.59 0.56 0.56 0.7 0.63 0.78 0.7 0.52 0.54 0.57

2020 Q3 0.38 0.38 0.38 0.37 0.4 0.4 0.37 0.37 0.39 0.38 0.38 0.61 0.38

2020 Q4 0.47 0.48 0.48 0.46 0.55 0.57 0.57 0.5 0.54 0.55 0.5 0.54 0.61

Mean RMSE 0.54 0.55 0.55 0.55 0.63 0.63 0.66 0.6 0.61 0.61 0.61 0.63 0.66
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Table 26: Results of models for NOVATEK with 2020
Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Overnight and calendar

no lags

Basic

with lags

Overnight and calendar

with lags

Overnight and calendar

no lags

Basic

with lags

Overnight and calendar

with lags

Overnight and calendar

no lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Overnight and calendar

no lags

Basic

no lags

Macroeconomic

no lags

2018 Q2 0.76 0.75 0.75 0.77 0.82 0.83 0.85 0.79 0.79 0.76 0.76 0.78 0.8

2018 Q3 0.55 0.56 0.56 0.58 0.57 0.57 0.53 0.55 0.56 0.55 0.58 0.56 0.59

2018 Q4 0.52 0.51 0.51 0.53 0.54 0.53 0.58 0.52 0.51 0.53 0.65 0.64 0.57

2019 Q1 0.47 0.46 0.46 0.47 0.47 0.45 0.6 0.46 0.46 0.51 0.49 0.48 1.07

2019 Q2 0.52 0.51 0.51 0.53 0.6 0.6 0.64 0.58 0.57 0.55 0.53 0.53 0.54

2019 Q3 0.48 0.5 0.5 0.5 0.5 0.56 0.54 0.48 0.48 0.51 0.52 0.5 0.63

2019 Q4 0.43 0.47 0.47 0.47 0.47 0.5 0.6 0.47 0.47 0.48 0.44 0.98 0.82

2020 Q1 0.88 0.88 0.88 0.9 1.22 1.14 1.37 1.21 1.23 1.22 0.89 0.9 1.92

2020 Q2 0.39 0.44 0.44 0.44 1.0 1.01 0.92 0.48 0.48 0.49 0.44 0.5 0.52

2020 Q3 0.37 0.38 0.38 0.37 0.44 0.44 0.49 0.38 0.38 0.4 0.38 0.43 0.45

2020 Q4 0.44 0.44 0.44 0.44 0.51 0.54 0.48 0.5 0.5 0.46 0.51 0.47 0.51

Mean RMSE 0.53 0.54 0.54 0.54 0.65 0.65 0.69 0.58 0.59 0.59 0.56 0.62 0.76

Table 27: Results of models for ROSNEFT with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

with lags

Overnight and calendar

with lags

Financial

no lags

Overnight and calendar

with lags

Basic

with lags

Financial

with lags

Financial

no lags

Financial

with lags

Spillover

with lags

Overnight and calendar

no lags

Basic

no lags

Macroeconomic

no lags

2018 Q2 0.73 0.72 0.72 0.72 0.74 0.75 0.74 0.74 0.74 0.73 0.73 0.74 0.82

2018 Q3 0.33 0.33 0.33 0.34 0.4 0.39 0.37 0.37 0.34 0.34 0.39 0.34 0.36

2018 Q4 0.43 0.42 0.42 0.42 0.46 0.49 0.48 0.45 0.45 0.45 0.43 0.44 0.42

2019 Q1 0.39 0.53 0.53 0.56 0.51 0.52 0.43 0.39 0.41 0.45 0.5 0.75 0.81

2019 Q2 0.46 0.45 0.45 0.44 0.43 0.44 0.46 0.45 0.44 0.45 0.54 0.64 8.43

2019 Q3 0.53 0.55 0.55 0.53 0.64 0.63 0.74 0.56 0.6 0.59 0.94 0.76 0.72

2019 Q4 0.44 0.45 0.45 0.45 0.51 0.52 0.53 0.46 0.45 0.45 0.56 0.73 0.64

2020 Q1 0.88 0.88 0.88 0.91 1.19 1.12 0.96 1.18 1.22 1.24 0.94 1.02 1.34

2020 Q2 0.58 0.58 0.58 0.64 0.6 0.64 0.92 0.65 0.62 0.59 0.66 0.66 1.15

2020 Q3 0.34 0.35 0.35 0.34 0.38 0.4 0.4 0.34 0.34 0.34 0.35 0.39 0.53

2020 Q4 0.47 0.48 0.48 0.48 0.53 0.51 0.53 0.53 0.51 0.51 0.54 0.48 0.59

Mean RMSE 0.51 0.52 0.52 0.53 0.58 0.58 0.6 0.56 0.56 0.56 0.6 0.63 1.44

Table 28: Results of models for NORNICKEL with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Financial

no lags

Basic

with lags

Overnight and calendar

with lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Financial

no lags

Spillover

no lags

Basic

with lags

Basic

no lags

Overnight and calendar

no lags

Financial

no lags

2018 Q2 0.82 0.82 0.85 0.86 0.85 0.84 0.77 0.8 0.79 0.84 0.8 0.81 0.95

2018 Q3 0.44 0.42 0.45 0.45 0.48 0.48 0.54 0.53 0.51 0.48 0.45 0.43 0.44

2018 Q4 0.38 0.39 0.38 0.39 0.45 0.44 0.48 0.39 0.43 0.41 0.41 0.45 0.4

2019 Q1 0.46 0.54 0.54 0.54 0.56 0.57 0.82 0.63 0.64 0.53 0.55 0.56 0.58

2019 Q2 0.56 0.56 0.57 0.59 0.63 0.64 0.57 0.55 0.55 0.59 0.61 0.61 0.63

2019 Q3 0.46 0.48 0.46 0.46 0.55 0.54 0.55 0.54 0.55 0.47 0.45 0.61 0.46

2019 Q4 0.61 0.65 0.6 0.61 0.62 0.64 0.71 0.65 0.65 0.62 0.64 0.62 0.77

2020 Q1 0.82 0.83 0.82 0.84 1.29 1.28 0.95 0.97 0.98 1.11 1.05 0.9 1.4

2020 Q2 0.58 0.58 0.58 0.59 0.61 0.64 0.91 0.62 0.63 0.62 0.61 0.61 0.81

2020 Q3 0.49 0.48 0.49 0.48 0.48 0.48 0.57 0.48 0.48 0.53 0.53 0.78 0.45

2020 Q4 0.47 0.47 0.47 0.47 0.52 0.53 0.54 0.47 0.47 0.49 0.47 0.53 0.54

Mean RMSE 0.55 0.57 0.57 0.57 0.64 0.64 0.68 0.6 0.61 0.61 0.6 0.63 0.67
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Table 29: Results of models for POLYMETAL with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Overnight and calendar

with lags

Basic

no lags

Basic

with lags

Overnight and calendar

no lags

Basic

with lags

Overnight and calendar

with lags

Spillover

no lags

Macroeconomic

no lags

Financial

no lags

Basic

no lags

Overnight and calendar

no lags

Financial

no lags

2018 Q2 0.69 0.7 0.69 0.69 0.8 0.74 0.74 0.73 0.72 0.73 0.71 0.71 0.87

2018 Q3 0.52 0.53 0.52 0.52 0.58 0.63 0.62 0.56 0.52 0.57 0.52 0.54 0.56

2018 Q4 0.48 0.47 0.61 0.48 0.53 0.53 0.52 0.51 0.5 0.5 0.55 0.48 0.57

2019 Q1 0.43 0.44 0.39 0.46 0.62 0.68 0.68 0.47 0.48 0.49 0.44 0.48 0.64

2019 Q2 0.57 0.58 0.57 0.58 0.82 0.84 0.86 0.62 0.66 0.62 0.62 0.97 7.81

2019 Q3 0.58 0.56 0.58 0.57 0.64 0.6 0.6 0.59 0.59 0.58 0.57 0.56 0.57

2019 Q4 0.39 0.4 0.4 0.4 0.43 0.44 0.44 0.41 0.42 0.43 0.43 0.44 0.46

2020 Q1 0.77 0.83 0.78 0.85 0.95 0.94 1.02 0.97 0.99 1.01 0.82 0.9 0.94

2020 Q2 0.53 0.55 0.55 0.55 0.55 0.61 0.61 0.58 0.62 0.62 0.58 0.55 0.69

2020 Q3 0.54 0.55 0.53 0.55 0.71 0.62 0.63 0.54 0.56 0.52 0.58 0.54 0.54

2020 Q4 0.57 0.56 0.57 0.56 0.61 0.63 0.58 0.55 0.54 0.56 0.64 0.65 0.62

Mean RMSE 0.55 0.56 0.56 0.56 0.66 0.66 0.66 0.59 0.6 0.6 0.59 0.62 1.3

Table 30: Results of models for POLYUS with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Spillover

no lags

Basic

with lags

Basic

no lags

Financial

with lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Macroeconomic

no lags

Overnight and calendar

no lags

Basic

no lags

Basic

no lags

Overnight and calendar

no lags

Financial

no lags

2018 Q2 0.82 0.83 0.82 0.84 0.85 0.85 0.9 0.84 0.82 0.83 1.11 1.08 0.96

2018 Q3 0.73 0.71 0.71 0.7 0.75 0.76 0.72 0.63 0.68 0.68 0.69 0.77 0.71

2018 Q4 0.55 0.55 0.54 0.61 0.58 0.59 0.56 0.48 0.48 0.47 0.61 0.6 0.56

2019 Q1 0.62 0.62 0.63 0.61 0.7 0.74 0.71 0.39 0.38 0.37 0.65 0.74 0.68

2019 Q2 0.67 0.68 0.67 0.68 0.82 0.78 0.78 0.45 0.48 0.48 0.72 0.84 0.98

2019 Q3 0.72 0.72 0.72 0.73 0.71 0.75 0.83 0.46 0.47 0.47 0.73 0.71 0.73

2019 Q4 0.5 0.48 0.48 0.5 0.52 0.54 0.62 0.46 0.41 0.41 0.52 0.62 0.54

2020 Q1 0.72 0.76 0.77 0.77 0.88 0.89 0.71 0.72 0.68 0.72 0.72 0.84 1.36

2020 Q2 0.69 0.64 0.63 0.62 0.61 0.62 0.78 0.57 0.58 0.58 0.62 0.67 0.67

2020 Q3 0.55 0.61 0.61 0.57 0.63 0.6 0.66 0.51 0.52 0.53 0.63 0.8 0.6

2020 Q4 0.53 0.57 0.58 0.55 0.65 0.68 0.65 0.41 0.42 0.42 0.66 0.64 0.62

Mean RMSE 0.65 0.65 0.65 0.65 0.7 0.71 0.72 0.54 0.54 0.54 0.7 0.76 0.76

Table 31: Results of models for MAGNIT with 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

with lags

Overnight and calendar

with lags

Financial

no lags

Basic

with lags

Overnight and calendar

with lags

Financial

with lags

Financial

no lags

Spillover

no lags

Financial

with lags

Basic

no lags

Overnight and calendar

no lags

Macroeconomic

no lags

2018 Q2 0.68 0.67 0.68 0.67 0.72 0.75 0.76 0.66 0.68 0.66 0.67 0.68 0.68

2018 Q3 0.56 0.56 0.56 0.55 0.58 0.61 0.58 0.57 0.57 0.55 0.56 0.57 0.7

2018 Q4 0.67 0.66 0.68 0.69 0.71 0.73 0.82 0.71 0.75 0.72 0.67 0.76 0.77

2019 Q1 0.52 0.53 0.52 0.52 0.65 0.64 0.56 0.51 0.51 0.51 0.51 0.63 0.54

2019 Q2 0.5 0.51 0.51 0.53 0.53 0.61 0.64 0.52 0.52 0.57 0.53 0.49 0.49

2019 Q3 0.57 0.56 0.56 0.64 0.8 0.87 0.8 0.64 0.65 0.62 0.63 0.65 0.62

2019 Q4 0.58 0.57 0.57 0.58 0.98 0.92 0.74 0.63 0.62 0.62 0.63 0.63 9.07

2020 Q1 0.73 0.73 0.73 0.74 0.81 0.8 0.91 0.77 0.8 0.83 0.8 0.85 1.78

2020 Q2 0.52 0.51 0.52 0.53 0.59 0.57 0.68 0.56 0.54 0.55 0.59 0.62 0.54

2020 Q3 0.48 0.47 0.47 0.46 0.53 0.47 0.51 0.47 0.47 0.48 0.61 0.48 0.48

2020 Q4 0.49 0.5 0.5 0.51 0.56 0.52 0.52 0.52 0.5 0.5 0.5 0.57 0.63

Mean RMSE 0.57 0.57 0.57 0.58 0.68 0.68 0.68 0.6 0.6 0.6 0.61 0.63 1.48
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Table 32: Results of models for SBERBANK with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Financial

no lags

Financial

no lags

Spillover

no lags

Basic

with lags

Basic

no lags

Overnight and calendar

no lags

Overnight and calendar

with lags

Financial

with lags

Financial

no lags

Spillover

with lags

Overnight and calendar

no lags

Basic

no lags

Spillover

no lags

2018 Q2 0.7 0.69 0.68 0.7 0.81 0.81 0.82 0.82 0.83 0.83 0.74 0.79 0.76

2018 Q3 0.55 0.57 0.58 0.58 0.62 0.62 0.63 0.6 0.59 0.6 0.59 0.63 0.6

2018 Q4 0.45 0.44 0.45 0.45 0.51 0.51 0.54 0.48 0.46 0.49 0.48 0.49 0.59

2019 Q1 0.35 0.35 0.36 0.35 0.43 0.43 0.45 0.35 0.38 0.36 0.4 0.43 0.41

2019 Q2 0.46 0.46 0.48 0.48 0.5 0.51 0.54 0.46 0.46 0.46 0.45 0.46 9.19

2019 Q3 0.44 0.52 0.52 0.51 0.5 0.52 0.51 0.47 0.47 0.47 0.45 0.61 0.6

2019 Q4 0.38 0.38 0.38 0.39 0.5 0.5 0.43 0.41 0.41 0.41 0.42 0.39 0.83

2020 Q3 0.48 0.48 0.48 0.48 0.55 0.56 0.56 0.5 0.48 0.49 0.49 0.48 0.57

2020 Q4 0.43 0.43 0.43 0.41 0.44 0.43 0.46 0.41 0.41 0.41 0.46 0.47 0.59

Mean RMSE 0.47 0.48 0.48 0.49 0.54 0.54 0.55 0.5 0.5 0.5 0.5 0.53 1.57

Table 33: Results of models for GAZPROM with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Financial

no lags

Financial

with lags

Basic

no lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Financial

no lags

Spillover

no lags

Spillover

with lags

Overnight and calendar

no lags

Basic

no lags

Financial

no lags

2018 Q2 0.68 0.67 0.67 0.68 0.71 0.74 0.72 0.69 0.68 0.7 0.83 0.72 0.75

2018 Q3 0.41 0.4 0.42 0.41 0.44 0.44 0.43 0.42 0.41 0.39 0.43 0.41 0.43

2018 Q4 0.5 0.49 0.51 0.53 0.52 0.53 0.56 0.52 0.52 0.51 0.67 0.67 0.67

2019 Q1 0.36 0.37 0.35 0.37 0.41 0.43 0.4 0.38 0.38 0.37 0.35 0.43 0.43

2019 Q2 0.91 0.92 0.91 0.91 0.9 0.88 0.89 0.92 0.91 0.93 0.91 0.91 0.96

2019 Q3 0.55 0.55 0.55 0.55 0.56 0.57 0.64 0.53 0.55 0.55 0.62 0.55 0.62

2019 Q4 0.56 0.55 0.55 0.56 0.63 0.65 0.63 0.55 0.56 0.59 0.58 0.76 0.58

2020 Q3 0.38 0.38 0.4 0.39 0.42 0.41 0.46 0.4 0.38 0.38 0.41 0.46 0.74

2020 Q4 0.45 0.45 0.45 0.44 0.52 0.51 0.51 0.45 0.45 0.47 0.54 0.46 0.74

Mean RMSE 0.53 0.53 0.53 0.54 0.57 0.57 0.58 0.54 0.54 0.54 0.59 0.6 0.66

Table 34: Results of models for LUKOIL with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Financial

no lags

Financial

no lags

Basic

with lags

Financial

with lags

Overnight and calendar

with lags

Basic

with lags

Overnight and calendar

no lags

Overnight and calendar

with lags

Financial

no lags

Basic

with lags

Basic

no lags

Spillover

no lags

Overnight and calendar

no lags

2018 Q2 0.74 0.74 0.72 0.74 0.79 0.83 0.76 0.77 0.77 0.77 0.79 0.77 0.76

2018 Q3 0.39 0.4 0.42 0.41 0.46 0.47 0.43 0.42 0.39 0.42 0.42 0.4 0.5

2018 Q4 0.44 0.44 0.46 0.45 0.5 0.49 0.51 0.44 0.44 0.44 0.6 0.45 0.44

2019 Q1 0.37 0.38 0.38 0.39 0.52 0.5 0.55 0.38 0.39 0.38 0.44 0.66 0.46

2019 Q2 0.56 0.56 0.59 0.58 0.62 0.63 0.68 0.57 0.59 0.56 0.69 0.64 0.61

2019 Q3 0.59 0.59 0.6 0.59 0.66 0.65 0.64 0.62 0.6 0.62 0.64 0.65 0.63

2019 Q4 0.63 0.63 0.62 0.61 0.72 0.7 0.75 0.7 0.79 0.7 0.71 0.74 0.82

2020 Q3 0.39 0.37 0.38 0.38 0.4 0.4 0.39 0.38 0.36 0.39 0.38 0.38 0.61

2020 Q4 0.47 0.46 0.48 0.47 0.55 0.57 0.54 0.55 0.51 0.54 0.5 0.61 0.54

Mean RMSE 0.51 0.51 0.51 0.51 0.58 0.58 0.58 0.54 0.54 0.54 0.57 0.59 0.6
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Table 35: Results of models for NOVATEK with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Financial

no lags

Financial

no lags

Basic

with lags

Overnight and calendar

with lags

Basic

with lags

Overnight and calendar

with lags

Financial

no lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Overnight and calendar

no lags

Basic

no lags

Financial

no lags

2018 Q2 0.76 0.77 0.75 0.75 0.82 0.83 0.82 0.79 0.79 0.76 0.76 0.78 0.81

2018 Q3 0.55 0.55 0.56 0.56 0.57 0.57 0.56 0.55 0.56 0.55 0.58 0.56 0.63

2018 Q4 0.51 0.52 0.51 0.51 0.54 0.53 0.54 0.52 0.51 0.53 0.65 0.64 0.58

2019 Q1 0.47 0.47 0.46 0.46 0.47 0.45 0.56 0.46 0.46 0.51 0.49 0.48 1.1

2019 Q2 0.51 0.51 0.51 0.51 0.6 0.6 0.57 0.58 0.57 0.55 0.53 0.53 0.62

2019 Q3 0.5 0.5 0.5 0.5 0.5 0.56 0.71 0.48 0.48 0.51 0.52 0.5 0.51

2019 Q4 0.4 0.45 0.47 0.47 0.47 0.5 0.64 0.47 0.47 0.48 0.44 0.98 0.58

2020 Q3 0.37 0.38 0.38 0.38 0.44 0.44 0.42 0.38 0.38 0.4 0.38 0.43 0.47

2020 Q4 0.43 0.43 0.44 0.44 0.51 0.54 0.45 0.5 0.5 0.46 0.51 0.47 0.49

Mean RMSE 0.5 0.51 0.51 0.51 0.55 0.56 0.59 0.52 0.53 0.53 0.54 0.6 0.64

Table 36: Results of models for ROSNEFT with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

no lags

Overnight and calendar

no lags

Macroeconomic

no lags

Overnight and calendar

with lags

Basic

with lags

Financial

no lags

Financial

with lags

Financial

no lags

Spillover

with lags

Overnight and calendar

no lags

Basic

no lags

Macroeconomic

no lags

2018 Q2 0.73 0.75 0.75 0.71 0.74 0.75 0.73 0.74 0.74 0.73 0.73 0.74 0.82

2018 Q3 0.33 0.33 0.34 0.35 0.4 0.39 0.39 0.34 0.37 0.34 0.39 0.34 0.36

2018 Q4 0.43 0.42 0.42 0.43 0.46 0.49 0.47 0.45 0.45 0.45 0.43 0.44 0.42

2019 Q1 0.39 0.44 0.44 0.44 0.51 0.52 0.38 0.41 0.39 0.45 0.5 0.75 0.81

2019 Q2 0.46 0.47 0.46 0.47 0.43 0.44 0.46 0.44 0.45 0.45 0.54 0.64 8.43

2019 Q3 0.53 0.53 0.53 0.56 0.64 0.63 0.74 0.6 0.56 0.59 0.94 0.76 0.72

2019 Q4 0.44 0.44 0.45 0.45 0.51 0.52 0.59 0.45 0.46 0.45 0.56 0.73 0.64

2020 Q3 0.34 0.34 0.34 0.33 0.38 0.4 0.39 0.34 0.34 0.34 0.35 0.39 0.53

2020 Q4 0.47 0.47 0.47 0.47 0.53 0.51 0.51 0.51 0.53 0.51 0.54 0.48 0.59

Mean RMSE 0.46 0.47 0.47 0.47 0.51 0.52 0.52 0.48 0.48 0.48 0.55 0.58 1.48

Table 37: Results of models for NORNICKEL with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

no lags

Financial

no lags

Basic

with lags

Overnight and calendar

with lags

Basic

with lags

Spillover

no lags

Basic

with lags

Overnight and calendar

with lags

Financial

with lags

Basic

no lags

Financial

no lags

Macroeconomic

no lags

2018 Q2 0.82 0.91 0.82 0.85 0.85 0.84 0.77 0.84 0.84 0.81 0.8 0.95 0.93

2018 Q3 0.44 0.46 0.42 0.45 0.48 0.48 0.54 0.48 0.47 0.47 0.45 0.44 0.48

2018 Q4 0.38 0.37 0.39 0.38 0.45 0.44 0.48 0.41 0.41 0.39 0.41 0.4 0.46

2019 Q1 0.46 0.48 0.54 0.54 0.56 0.57 0.82 0.53 0.53 0.59 0.55 0.58 0.61

2019 Q2 0.56 0.56 0.56 0.57 0.63 0.64 0.57 0.59 0.6 0.58 0.61 0.63 0.54

2019 Q3 0.46 0.44 0.48 0.46 0.55 0.54 0.55 0.47 0.47 0.52 0.45 0.46 0.48

2019 Q4 0.61 0.62 0.65 0.6 0.62 0.64 0.71 0.62 0.62 0.68 0.64 0.77 0.73

2020 Q3 0.49 0.48 0.48 0.49 0.48 0.48 0.57 0.53 0.54 0.5 0.53 0.45 0.61

2020 Q4 0.47 0.48 0.47 0.47 0.52 0.53 0.54 0.49 0.49 0.51 0.47 0.54 0.5

Mean RMSE 0.52 0.53 0.53 0.54 0.57 0.57 0.62 0.55 0.55 0.56 0.54 0.58 0.59
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Table 38: Results of models for POLYMETAL with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Overnight and calendar

with lags

Basic

with lags

Basic

no lags

Overnight and calendar

with lags

Basic

with lags

Macroeconomic

no lags

Macroeconomic

no lags

Spillover

no lags

Financial

no lags

Basic

no lags

Overnight and calendar

no lags

Financial

no lags

2018 Q2 0.69 0.7 0.69 0.69 0.74 0.74 0.75 0.72 0.73 0.73 0.71 0.71 0.87

2018 Q3 0.52 0.53 0.52 0.52 0.62 0.63 0.64 0.52 0.56 0.57 0.52 0.54 0.56

2018 Q4 0.48 0.47 0.48 0.61 0.52 0.53 0.58 0.5 0.51 0.5 0.55 0.48 0.57

2019 Q1 0.43 0.44 0.46 0.39 0.68 0.68 0.71 0.48 0.47 0.49 0.44 0.48 0.64

2019 Q2 0.57 0.58 0.58 0.57 0.86 0.84 0.73 0.66 0.62 0.62 0.62 0.97 7.81

2019 Q3 0.58 0.56 0.57 0.58 0.6 0.6 0.65 0.59 0.59 0.58 0.57 0.56 0.57

2019 Q4 0.39 0.4 0.4 0.4 0.44 0.44 0.43 0.42 0.41 0.43 0.43 0.44 0.46

2020 Q3 0.54 0.55 0.55 0.53 0.63 0.62 0.61 0.56 0.54 0.52 0.58 0.54 0.54

2020 Q4 0.57 0.56 0.56 0.57 0.58 0.63 0.6 0.54 0.55 0.56 0.64 0.65 0.62

Mean RMSE 0.53 0.53 0.53 0.54 0.63 0.63 0.63 0.55 0.55 0.56 0.56 0.6 1.41

Table 39: Results of models for POLYUS with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Spillover

no lags

Spillover

no lags

Financial

no lags

Overnight and calendar

with lags

Overnight and calendar

with lags

Basic

with lags

Financial

no lags

Macroeconomic

no lags

Basic

no lags

Overnight and calendar

no lags

Basic

no lags

Financial

no lags

Macroeconomic

no lags

2018 Q2 0.82 0.81 0.82 0.84 0.85 0.85 0.88 0.84 0.83 0.82 1.11 0.96 1.27

2018 Q3 0.73 0.73 0.72 0.71 0.75 0.76 0.74 0.63 0.68 0.68 0.69 0.71 0.77

2018 Q4 0.55 0.55 0.57 0.55 0.58 0.59 0.56 0.48 0.47 0.48 0.61 0.56 0.56

2019 Q1 0.62 0.62 0.62 0.62 0.7 0.74 0.67 0.39 0.37 0.38 0.65 0.68 0.6

2019 Q2 0.67 0.7 0.67 0.68 0.82 0.78 0.76 0.45 0.48 0.48 0.72 0.98 0.91

2019 Q3 0.72 0.72 0.72 0.72 0.71 0.75 0.84 0.46 0.47 0.47 0.73 0.73 0.71

2019 Q4 0.5 0.48 0.49 0.48 0.52 0.54 0.67 0.46 0.41 0.41 0.52 0.54 0.52

2020 Q3 0.55 0.61 0.6 0.61 0.63 0.6 0.57 0.51 0.53 0.52 0.63 0.6 0.68

2020 Q4 0.53 0.54 0.55 0.57 0.65 0.68 0.65 0.41 0.42 0.42 0.66 0.62 0.66

Mean RMSE 0.63 0.64 0.64 0.64 0.69 0.7 0.71 0.51 0.52 0.52 0.7 0.71 0.74

Table 40: Results of models for MAGNIT with NO Q1 and Q2 of 2020

Period HAR-RV Lasso Random Forest Gradient Boosting LSTM

Basic

no lags

Basic

no lags

Overnight and calendar

no lags

Basic

with lags

Financial

with lags

Basic

with lags

Financial

no lags

Financial

with lags

Financial

no lags

Spillover

no lags

Basic

no lags

Overnight and calendar

no lags

Macroeconomic

no lags

2018 Q2 0.68 0.68 0.68 0.67 0.76 0.72 0.78 0.66 0.66 0.68 0.67 0.68 0.68

2018 Q3 0.56 0.56 0.56 0.56 0.58 0.58 0.64 0.55 0.57 0.57 0.56 0.57 0.7

2018 Q4 0.67 0.67 0.67 0.66 0.82 0.71 0.79 0.72 0.71 0.75 0.67 0.76 0.77

2019 Q1 0.52 0.52 0.52 0.53 0.56 0.65 0.56 0.51 0.51 0.51 0.51 0.63 0.54

2019 Q2 0.5 0.5 0.5 0.51 0.64 0.53 0.6 0.57 0.52 0.52 0.53 0.49 0.49

2019 Q3 0.57 0.55 0.55 0.56 0.8 0.8 0.86 0.62 0.64 0.65 0.63 0.65 0.62

2019 Q4 0.58 0.56 0.56 0.57 0.74 0.98 0.75 0.62 0.63 0.62 0.63 0.63 9.07

2020 Q3 0.48 0.48 0.48 0.47 0.51 0.53 0.48 0.48 0.47 0.47 0.61 0.48 0.48

2020 Q4 0.49 0.49 0.49 0.5 0.52 0.56 0.61 0.5 0.52 0.5 0.5 0.57 0.63

Mean RMSE 0.56 0.56 0.56 0.56 0.66 0.67 0.67 0.58 0.58 0.59 0.59 0.61 1.55
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F.3 Prediction-Based Importance of Variables

Table 41: Best variables, chosen by Lasso, SBERBANK

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is Friday, is after weekend

Frequently

chosen
log RV S&P, log RV Brent, growth rate of export, growth rate of housing starts, RGBI

Table 42: Best variables, chosen by Lasso, GAZPROM

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is Friday, is after weekend

Frequently

chosen

log RV S&P, log RV Brent, growth rate of import, growth rate of CPI, growth rate of housing starts,

overnight returns

Table 43: Best variables, chosen by Lasso, LUKOIL

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is Friday, is after weekend

Frequently

chosen

log RV S&P, log RV Brent, growth rate of import, growth rate of export, growth rate of housing starts,

RGBI

Table 44: Best variables, chosen by Lasso, NOVATEK

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is Friday, is after weekend

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of import, growth rate of export, growth rate of CPI,

overnight returns, RGBI
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Table 45: Best variables, chosen by Lasso, ROSNEFT

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is after weekend

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of import, growth rate of CPI,

is Friday, overnight returns, RGBI, earning price ratio

Table 46: Best variables, chosen by Lasso, NORNICKEL

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is after weekend

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of export, growth rate of CPI, growth rate of GDP,

is Friday, overnight returns, RGBI, growth rate of earning price ratio, growth rate of housing starts

Table 47: Best variables, chosen by Lasso, POLYMETAL

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of export, growth rate of CPI, is after weekend, is after holiday,

is Friday, overnight returns, RGBI, growth rate of earning price ratio, growth rate of housing starts

Table 48: Best variables, chosen by Lasso, POLYUS

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of export, is after holiday,

is after weekend, is Friday, overnight returns, RGBI, High-Low, growth rate of housing starts

144



Table 49: Best variables, chosen by Lasso, MAGNIT

Group of variables

Sustainably

chosen
Log RV, log weekly RV, log monthly RV, is after weekend, is Friday

Frequently

chosen

Log RV S&P, log RV Brent, growth rate of import, growth rate of GDP,

overnight returns, RGBI, growth rate of earning price ratio, growth rate of dividend price ratio, growth rate of housing starts
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Supplementary material (not for publication)

Figure SA1: Median values of Euclidean Loss of different estimators across simulations

SA1



Figure SA2: Median values of KLIC of different estimators across simulations

SA2
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