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Abstract
The first chapter focuses on evaluation of time-series forecasts. It is a common practice to
split a time series into in-sample and pseudo out-of-sample segments and estimate the
out-of-sample loss for a given statistical model by evaluating forecasting performance over
the pseudo out-of-sample segment. I propose an alternative estimator of the out-of-sample
loss, which, contrary to conventional wisdom, utilizes criteria measured both in- and
out-of-sample via a carefully constructed system of affine weights. I prove that, provided
the time series is stationary, the proposed estimator is the best linear unbiased estim-
ator of the out-of-sample loss, and outperforms the conventional estimator in terms of
sampling variability. Application of the optimal estimator to Diebold-Mariano type tests
of predictive ability leads to a substantial power gain without increasing finite sample size
distortions. An extensive evaluation on real world time series from the M4 forecasting
competition confirms the superiority of the proposed estimator, and also demonstrates
substantial robustness to violations of the underlying assumption of stationarity.

In the second chapter we perform an extensive investigation of different specifications
of the BEKK-type multivariate volatility models for a moderate number of assets, fo-
cusing on how the degree of parametrization affects forecasting performance. Because
the unrestricted specification may be too generously parameterized, often one imposes
restrictions on coefficient matrices constraining them to have a diagonal or even scalar
structure. We frame all three model variations (full, diagonal, scalar) as special cases of a
ridge-type regularized estimator, where the off-diagonal elements are shrunk towards zero
and the diagonal elements are shrunk towards homogeneity. Our forecasting experiments
with the BEKK-type Conditional Autoregressive Wishart model for realized volatility
confirm the superiority of the more parsimonious scalar and diagonal model variations.
Regularization of the diagonal and off-diagonal parameters does not regularly lead to
tangible performance improvements irrespective of how precise the tuning of regularization
intensity is. Additionally, our results highlight the crucial importance of frequent model
re-estimation in improving the forecast precision, and, perhaps paradoxically, a slight
advantage of shorter estimation windows compared to longer windows.

In the third chapter I propose a novel meta-learning model that utilizes hypernetworks
to design a parametric model tailored to a specific family of forecasting tasks. The
model’s training can be directly performed with backpropagation, eliminating the need
for reliance on higher-order derivatives, and is equivalent to a simultaneous search over
the space of parametric functions and their optimal parameter values. This, in essence,
provides a data-driven alternative to manually designing a parametric model for a group
of similar prediction tasks, an endeavor that typically requires considerable statistical
expertise and domain knowledge. I demonstrate the capabilities of the proposed meta-
learning model on two applications. When applied to the sinusoidal regression task, the
proposed model outperforms state-of-the-art meta-learning approaches and is capable of
almost perfectly recovering the underlying parametric model. In the second application,
the model is applied to the time-series from the M4 forecasting competition, where it
outperforms conventional time-series forecasting models designed by human experts. As a
third application, I use the model to make quintile predictions for asset returns in the M6
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Financial Forecasting Competition. The model attained an RPS of 0.15689, securing the
4th place in the forecasting challenge and ultimately the 1st place in the overall duathlon
ranking.
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Abstrakt
První kapitola se zaměřuje na vyhodnocení přesnosti předpovědí časových řad. Je běžnou
praxí rozdělit časovou řadu na in-sample a pseudo out-of-sample segmenty a odhadnout
out-of-sample ztrátu daného statistického modelu vyhodnocením přesnosti předpovědí v
pseudo out-of-sample segmentu. V této kapitole navrhuji alternativní estimátor out-of-
sample ztráty, který, na rozdíl od konvenčního estimátoru, využívá kritéria měřená jak v
in-sample, tak out-of-sample prostřednictvím pečlivě konstruovaného systému afinních
vah. Za předpokladu, že časová řada je stacionární, navržený estimátor je nejlepším
lineárně nezkresleným estimátorem out-of-sample ztráty a předčí konvenční estimátor z
hlediska vzorkové variability. Použití tohoto optimálního estimátoru pro statistické testy
prediktivní schopnosti typu Diebold-Mariano vede k podstatnému zvýšení statistické síly
bez zvýšení zkreslení v malých vzorcích. Rozsáhlé vyhodnocení na reálných časových
řadách ze soutěže M4 potvrzuje nižší vzorkovou variabilitu navrženého estimátoru a také
prokazuje značnou odolnost vůči porušení základního předpokladu stacionarity.

Ve druhé kapitole zkoumáme různé specifikace BEKK multivariačních modelů volatility
pro střední počet aktiv s důrazem na to, jak stupeň parametrizace ovlivňuje kvalitu
předpovědí. Vzhledem k tomu, že neomezená specifikace může být příliš štědře paramet-
rizována, často se ukládají omezení na koeficientové matice, omezující je na diagonální
nebo dokonce skalární strukturu. Všechny tři varianty modelů (plný, diagonální, skalární)
formulujeme jako speciální případy estimátoru s regulací typu ridge, kde jsou prvky mimo
diagonálu penalizovány směrem k nule a prvky na diagonále penalizovány směrem k
homogenitě. Naše experimenty s modely typu CAW (Conditional Autoregressive Wishart)
pro realizovanou volatilitu potvrzují vhodnost restriktivnějších variant modelu v podobě
skalární a diagonální specifikace. Dále naše výsledky zdůrazňují klíčový význam časté
re-estimace modelu pro zvýšení přesnosti předpovědí a paradoxně také mírnou výhodu
kratších estimačních oken ve srovnání s delšími okny.

Ve třetí kapitole navrhuji nový meta-learning model, který využívá neuronové hyper sítě
k návrhu parametrického modelu přizpůsobeného konkrétní skupině predikčních úkolů.
Trénink modelu lze provádět přímo pomocí zpětné propagace, což eliminuje potřebu
spoléhat se na derivace vyšších řádů, a je ekvivalentní simultánnímu prohledávání prostoru
parametrických funkcí a optimálních hodnot jejich parametrů. To poskytuje alternativu
k ručnímu návrhu parametrického modelu pro skupinu podobných predikčních úkolů,
což obvykle vyžaduje značné statistické a doménové znalosti. Schopnosti modelu jsou
demonstrovány na třech aplikacích. Při aplikaci na problém sinusové regrese, navržený
model předčí všechny alternativní přístupy a dokáže téměř dokonale obnovit původní
parametrický model. Při aplikaci na časové řady z M4 Forecasting Competition model
dosáhl vyšší přesnosti než konvenční modely běžně používané v praxi. V rámci třetí
aplikace je model používán v soutěži M6 Financial Forecasting Competition k predikci
kvintilů výnosů aktiv. Zde model dosáhl přesnosti 0.15689 RPS, což zajistilo 4. místo v
předpovědní výzvě a 1. místo v celkovém pořadí duatlonu.
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Introduction

This dissertation consists of three standalone articles on time-series forecasting stapled
together, each forming a chapter.

The first chapter focuses on time-series forecast evaluation. Here, I demonstrate that
the conventional estimator frequently used for out-of-sample loss is generally suboptimal
for stationary time-series and derive the best linear unbiased estimator of out-of-sample
loss. Furthermore, I propose a modification of the Diebold-Mariano type tests of equal
predictive ability which utilize this proposed estimator, achieving higher power without
increasing finite sample size distortions. Simulations and evaluation on real-world time-
series from the M4 Forecasting Competition confirm the superiority of the proposed
estimator and tests. This work was published in the Journal of Forecasting.1 To facilitate
broader use of the proposed optimal estimator, I introduce an R software package called
ACV 2, which contains a ready-to-use implementation of the estimator and tests.

The second chapter is a joint work with Stanislav Anatolyev and focuses on the task
of multivariate volatility forecasting. We propose a ridge-type regularized estimator of
the full BEKK/CAW model, which conveniently nests all three model variations (full,
diagonal, scalar) as special cases. We perform extensive evaluation on real-world data to
assess the optimal degree of regularization and confirm that the most stringent regulariza-

1Staněk, F. (2023) "Optimal out-of-sample forecast evaluation under stationarity", Journal of Fore-
casting, 42(8), 2249-2279.

2Available at: https://CRAN.R-project.org/package=ACV.
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tion of off-diagonal elements is typically preferred in terms of forecasting performance.
Additionally, our results highlight the crucial importance of frequent model re-estimation
and, paradoxically, an advantage of using shorter estimation windows as opposed to longer
ones. This work was published in Studies in Nonlinear Dynamics & Econometrics.3 A
ready-to-use implementation of the proposed regularized estimator for both BEKK and
CAW is publicly available as a MATLAB software package RMV.4

The third chapter is concerned with meta-learning, a field that is extremely relevant
for time-series forecasting, as the task of finding the most suitable parametric model
for a given family of prediction tasks can be framed as a meta-learning problem. I
propose a meta-learning model based on hypernetworks, whose training is equivalent to a
simultaneous search over the space of parametric functions and their optimal parameter
values. This approach enables the creation of a parametric model specifically optimized
for a particular family of prediction tasks, so that the degrees of freedom allotted to
each task are fine-tuned to best capture any heterogeneity between the tasks. The model
substantially outperforms state-of-the-art meta-learning approaches on the sinusoidal
regression task, a synthetic problem often used to benchmark different meta-learning
approaches. To demonstrate its applicability to real-life time-series forecasting problems,
I participated with the model in the M6 Financial Forecasting Competition, where it
secured the 4th place in the forecasting challenge and ultimately won the 1st place in the
overall duathlon ranking. This work was submitted to the special issue of the International
Journal of Forecasting dedicated to the M6 Competition and is currently under review,
as of the writing of this thesis. To facilitate broader use of the proposed meta-learning
model, a ready-to-use implementation is provided in the R language.5

3Anatolyev, S., Staněk, F. (2022) "Unrestricted, Restricted, and Regularized Models for Forecasting
Multivariate Volatility", Studies in Nonlinear Dynamics & Econometrics.

4Available at: https://github.com/stanek-fi/RMV.
5Available at: https://github.com/stanek-fi/MtMs_sinusoidal_task
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Chapter 1

Optimal Out-of-Sample Forecast Evaluation
Under Stationarity

Originally published as:
Staněk, F. (2023) "Optimal out-of-sample forecast evaluation under stationarity", Journal
of Forecasting, 42(8), 2249-2279.

1.1 Introduction

In the field of time-series forecasting, researchers are typically concerned with the expected
performance of a particular statistical model on yet unseen data, the so called out-of-
sample loss. It is used to assess whether a proposed model statistically significantly
outperforms an already established benchmark model. Likewise, in practical forecasting
tasks, the out-of-sample loss is frequently used to select a model that is likely to deliver
the best forecasting performance from a set of competing models.

Out-of-sample loss is defined as the expected value of a contrast function that measures
the discrepancy between the prediction and the observed value (e.g., the expected value
of squared error). Thus, it is by definition unknown and needs to be estimated. This is
typically achieved by excluding the most recent segment of the observed time-series from
the estimation and performing a sequence of predictions for these observations instead,
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essentially mimicking the process of actual out-of-sample forecasting.1 The estimate of
the out-of-sample loss is then obtained simply by averaging the precision of individual
predictions as measured by the contrast function, i.e., the so called empirical contrasts
(e.g. squared errors). While there are many such pseudo out-of-sample evaluation schemes
(for a survey, see Tashman, 2000), we restrict our attention to two prominent variants; the
rolling scheme and the fixed scheme. When performing an evaluation under the rolling
scheme, the model is repeatedly estimated on a rolling window of a fixed length and
predictions are made for the subsequent observations. In the fixed scheme, the model
is estimated only once on the first segment of the data and is then used to predict all
remaining observations (see e.g. Clark and McCracken, 2013b).

A common drawback of all such pseudo out-of-sample evaluation schemes and correspond-
ing estimators is the relatively high sampling variance, as the estimate is computed based
on only a relatively few most recent observations reserved for the pseudo out-of-sample
evaluation (Bergmeir and Benítez, 2012; Bergmeir et al., 2014; Schnaubelt, 2019; Cerqueira
et al., 2020). Moreover, this issue of scarcity of pseudo out-of-sample observations and
consequently of high sampling variance is not limited to situations with few observations,
but also afflicts longer time-series. This is because there is an inevitable trade-off between
the size of the data-sets designated to be in-sample and pseudo out-of-sample. The former
allows for a more faithful approximation of the loss when the whole data-set is used for
estimation, whilst the latter allows for more precise estimation of the loss (see Arlot and
Celisse, 2010).

To alleviate this issue, we propose an alternative estimator of the out-of-sample loss that
utilizes in-sample performance to aid the estimation of the out-of-sample loss, a practice
often considered taboo in the forecasting community. In particular, we use in-sample
empirical contrasts to partially eliminate the idiosyncratic noise present in observations
designated for the out-of-sample evaluation, via a carefully constructed system of optimal
affine weights. We prove that, under stationarity, the proposed estimator of the out-of-
sample loss is optimal in terms of the sampling variance within the class of unbiased linear
estimators, to which the conventional estimator also belongs. The proposed estimator
hence offers a lower sampling variance relative to the conventional estimator, all without

1There is another class of evaluation schemes that do not respect the temporal ordering of the data
and perform out-of-sample evaluation not dissimilar to the canonical cross-validation for independent
processes, see e.g., Burman et al. (1994), Racine (2000), and Bergmeir et al. (2018). However, these are
not as widely used in practice and hence are not considered in this chapter.
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introducing any bias. In turn, this allows for a finer assessment of forecasting ability, more
powerful inference about predictive ability, and more precise model selection.

The proposed optimal estimator is obtained by finding weights that minimize the sampling
variance, subject to constraints that guarantee unbiasedness. Importantly, both in-
and out-of-sample contrasts can be included with non-zero weights, and weights are
allowed to be negative, unlike for the conventional estimator, which simply places equal
positive weights only on out-of-sample contrasts. In practice, this translates to assigning
negative weights to in-sample empirical contrasts that are positively correlated with
out-of-sample empirical contrasts, and positive weights to in-sample empirical contrasts
that are uncorrelated with out-of-sample empirical contrasts. At the same time, sums of
weights of ex-ante identical in-sample contrasts are equal to zero, which ensures that the
inclusion of in-sample contrasts does not alter the expected value of the estimator, and
hence does not introduce bias. From a more general standpoint, the possibility to reduce
the sampling variance arises because time-series out-of-sample evaluation schemes are
inherently unbalanced in the sense of Shao (1993). That is, these schemes generally do
not treat observations equally in terms of in-/out-of-sample usage. The proposed optimal
weighting partially rectifies this unbalanced design.

Aside from the optimal estimator itself, we also propose modifications of the canonical
Diebold-Mariano test (Diebold and Mariano, 1995) and of the sub-sampling test of
equal predictive ability (Zhu and Timmermann, 2020; Ibragimov and Müller, 2010). Both
modified tests leverage the proposed optimal weighting for estimation of the loss differential.
We show that these tests are asymptotically valid and demonstrate that they exhibit
a substantially higher power in detecting deviations from the null hypothesis of equal
predictive ability relative to their respective benchmarks.

Finally, to assess the real-life applicability and the robustness of the proposed estimator,
we perform an extensive evaluation on 100,000 time-series from the M4 forecasting
competition (Makridakis et al., 2020) ranging from yearly to hourly frequency. The
proposed estimator delivers more than a 10% reduction in the mean squared error relative
to the conventional estimator when tasked with predicting the incurred loss on the test
segments of time-series. Moreover, when selecting the model by comparing estimated
losses, the proposed optimal estimator is more likely to select the best performing model
and delivers a smaller overall incurred loss. Importantly, in this evaluation, we include
time-series from the M4 competition without specifically selecting for stationarity. Many
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series in this dataset exhibit trends or seasonality, or both. The proposed estimator works
well in this diverse setting, outperforming the conventional estimator across various types
of time-series, though it should be noted that the gains are less sizable if the assumption of
stationarity is violated. This demonstrates that the theoretical advantages of the proposed
estimator translate effectively to practical forecasting applications, showcasing its ability
to handle the complexities inherent in real-world time-series data.

Section 1.2 introduces the statistical framework and provides formal definitions of out-
of-sample evaluation schemes and corresponding estimators. Section 1.3 introduces the
proposed estimator of the out-of-sample loss, proves its optimality, and demonstrates
its efficiency gains in a simulated environment. Section 1.4 introduces modified tests of
equal out-of-sample predictive ability that utilize the optimal estimator, and demonstrates
their power advantage relative to benchmarks. Section 1.5 compares the performance
of the conventional estimator and the proposed optimal estimator on real world time-
series from the M4 forecasting competition. Section 1.6 concludes. Sections 1.7, 1.8, 1.9,
and Appendix 1.A contain proofs, estimators, algorithms, and supplementary results,
respectively. A ready-to-use implementation of the estimator and tests is provided as an
R software package ACV 2.

1.2 Conventional Estimator of the Loss

We follow the notation of Arlot and Celisse (2010). Consider a sequence {Xt}T
1 ∈ RT from

a stationary random process Xt for a given T ∈ N. A statistical model M = {s, ˆ︁θ} is
composed of two functions. The estimator ˆ︁θ : ∪m∈NRm → Θ, which takes sequence {Xt}m

1

of length m and outputs model parameters θ belonging to the parameter space Θ, and the
forecasting function s : {Rk; Θ} → R, which predicts the observation Xk+τ based on most
recent observations {Xt}k

t=1 where k is the memory of the model and τ is the forecast
horizon.3 While we refer to {s, θ̂} simply as the model, it is important to note that this
framework can also accommodate more complex procedures or algorithms. Notably, {s, θ̂}
can represent a combination of multiple models. In this case, s is a linear combination of

2Available at: https://CRAN.R-project.org/package=ACV.
3To facilitate the exposition, we take the liberty of representing the model as a prediction and estimation

function pair M = {s, ˆ︁θ} rather than a single function A representing a statistical algorithm as in Arlot
and Celisse (2010), hence focusing on parametric models. All results can nonetheless be extended to
non-parametric models by using the identity A

(︁
{Xt}m

1
)︁(︁

{Xt}j−τ
j−k−τ+1

)︁
= s
(︁
{Xt}j−τ

j−k−τ+1; ˆ︁θ(︁ {Xt}m
1
)︁)︁

.
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prediction functions, and the parameter vector θ̂ concatenates individual model parameters
and forecast combination weights, if they are data-dependent. This flexibility is crucial,
as forecast combinations have shown remarkable success in empirical applications, often
outperforming their constituent models (for a comprehensive review, see Wang et al.,
2023). To assess the quality of a model M, we use a contrast function γ : {R, R} → R
that measures the discrepancy between a prediction X̂k+τ = s({Xt}k

t=1 , θ) and the actual
realization of the process Xk+τ . For instance, a simple AR(k) model would correspond toˆ︂Xk+1 = s({Xt}k

1 ; ˆ︁θ) = ∑︁k
1 Xk

ˆ︁θk where ˆ︁θ is the corresponding OLS estimator. Contrast
function is typically a squared error in which case γ

(︂
Xk+1, ˆ︂Xk+1

)︂
=
(︂
Xk+1 − ˆ︂Xk+1

)︂2
.4

Finally, let us denote the loss5 of model M = {s, ˆ︁θ} when estimated on a sequence of length
m and when faced with forecasting the period j > m using observations {Xt}j−τ

j−k−τ+1 as

Lm
j (M) = E

[︂
γ
(︂
Xj, s

(︂
{Xt}j−τ

j−k−τ+1 ; ˆ︁θ ({Xt}m
1 )
)︂)︂]︂

. (1.1)

Note that the expectation is taken over the whole segment {Xt}j
1, i.e., both the forecasted

observation Xj and its predecessors, including the estimation window {Xt}m
1 . We are

therefore interested in the performance of model M rather than that of some partic-
ular forecasting function s

(︂
{Xt}j−τ

j−k−τ+1 ; θ0
)︂

with fixed θ0 ∈ Θ (i.e., Question 6 from
Dietterich’s (1998) taxonomy).

Further, for a “shifting” index i : 0 ≤ i ≤ T − m, we also denote the out-of-sample
empirical contrast of model M when estimated on a sequence {Xt}i+m

i+1 and evaluated at
the (i + j)-th period with j > m as

lm, i
j (M) = γ

(︂
Xi+j, s

(︂
{Xt}i+j−τ

i+j−k−τ+1 ; ˆ︁θ (︂{Xt}i+m
i+1

)︂)︂)︂
. (1.2)

4Throughout the text, we focus exclusively on univariate point prediction for the sake of simplicity.
The framework can be however readily extended to a general d-variate prediction problem by considering
s : {

(︁
Rd
)︁k; Θ} → Ψ and γ : {Rd, Ψ} → R where Ψ represents the space of possible predictions. For

instance, in the case of univariate conditional density forecasting, a model M is a class of densities
with a corresponding estimator ˆ︁θ for its parameters, set Ψ is a space of density functions and ψ(q) =
s
(︁
{Xt}k

1 ; ˆ︁θ)︁(︁q)︁ = ˆ︁f(︁q|{Xt}k
1 ; ˆ︁θ)︁ is the predicted density at point q. One may take γ

(︁
Xk+τ , ψ

)︁
=

− ln
(︁
ψ
(︁
Xk+τ

)︁)︁
= − ln

(︁ ˆ︁f(︁Xk+τ |{Xt}k
1 ; ˆ︁θ)︁)︁ to obtain the Kullback-Leibler divergence (Kullback and

Leibler, 1951) as a measure of precision.
5In certain research domains, the contrast function is known as the loss function, while loss is referred

to as risk (see e.g., Chen and Liu, 2023). For consistency, we adhere to the former terminology in this
chapter.
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The assumption of stationarity then immediately implies

E
[︂
lm, i
j (M)

]︂
= Lm

j (M) . (1.3)

In this text, we focus on the pseudo out-of-sample evaluation with step-size v (see e.g.,
Callen et al. (1996) and Swanson and White (1997)). The procedure is as follows. The
model is estimated on a segment of data of length m and forecasts are iteratively made
on v consecutive periods for which empirical contrasts are recorded. After that, the
estimation window is moved forward by v, and the process is repeated until the end of
the sample is reached. The estimate of the out-of-sample loss is then computed simply by
averaging all pseudo out-of-sample empirical contrasts incurred. Figure 1.1a provides a
diagram of such a procedure. More formally, the estimator is expressed as6

ˆ︁LCV = 1
n

n/v∑︂
i=1

v∑︂
j=1

l
m, (i−1)v
m+j (1.4)

where n ≡ T − m is the number of observations designated for the pseudo out-of-sample
evaluation.7 This specification nests the two most common variants of pseudo out-of-
sample evaluation. By setting v = n, we obtain the fixed scheme evaluation, which is
popular because of its low computational requirements and simplicity. On the other
hand, by setting v = 1, we obtain the rolling scheme evaluation, which requires repeated
re-estimations, but is presumably more theoretically appealing (Swanson and White,
1997).

From Eq. 1.3, it follows that

E
[︂ ˆ︁LCV

]︂
= 1

v

v∑︂
j=1

Lm
m+j ≡ LCV (1.5)

where LCV is the quantity of interest. Note that LCV depends not only on model M but
also τ , v, and m. Indeed, different losses LCV might be relevant to different applications,
depending on the desired horizon, the ability to update the model, and the length of the
available data. However, irrespective of the particular LCV to be estimated, we show that
the conventional estimator ˆ︁LCV is sub-optimal for that task. In the next section, we derive

6Due to space considerations, we omit M from the argument of empirical contrasts, losses, and
estimators when it causes no confusion.

7Throughout this text, we assume that n is divisible by v, i.e. n mod v = 0.
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(a) Conventional estimator ˆ︁LCV .
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(b) Optimal estimator ˆ︁LACV .

Figure 1.1: A diagram illustrating estimators of the out-of-sample loss.
The example is for T = 20 observations, length of the estimation window m = 14, and step size
v = 2. The gray background indicates whether the observation Xt is used in the estimation of

parameters θ. The blue outline indicates whether the empirical contrast lm,i
j is used when

computing the estimate of the out-of-sample loss.

the optimal estimator of LCV which, under the assumption of stationarity, outperforms the
conventional estimator in terms of the sampling variance while retaining its unbiasedness.

1.3 Optimal Estimator of the Loss

Analogically to out-of-sample empirical contrasts, in-sample empirical contrasts can be
expressed as

lm, i
j (M) = γ

(︂
Xi+j, s

(︂
{Xt}i+j−τ

i+j−k−τ+1 ; ˆ︁θ (︂{Xt}i+m
i+1

)︂)︂)︂
(1.6)
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with the only difference being that j ≤ m.8 To construct the optimal estimator, we
leverage two facts. First, the correlation between out-of-sample contrast lm, i

j and in-
sample contrast lm, i′

j′ varies, generally being the strongest when j + i = j′ + i′, i.e. when
the in-sample empirical contrast is computed from the same observation Xi+j as the
out-of-sample contrast, and hence is influenced by the same idiosyncratic noise. Second,
for any pair i and i′ it holds that E[lm, i

j ] = E[lm, i′

j ]. Consequently, we can construct affine
combinations of in-sample contrasts lm, i

j , which are of zero mean, but are still negatively
correlated with ˆ︁LCV , and whose inclusion hence reduces the sampling variance without
introducing any bias. Figure 1.1b provides a diagram of such a procedure.

To provide a precise description of how such affine combinations should be obtained,
we denote the vector of in-sample and out-of-sample contrasts of a model estimated on
{Xt}i+m

i+1 by lm, i
in and lm, i

out respectively, i.e.

lm, i
in =

(︂
lm, i
1 , lm, i

2 , . . . , lm, i
m

)︂⊤
(1.7)

lm, i
out =

(︂
lm, i
m+1, lm, i

m+2, . . . , lm, i
m+v

)︂⊤
. (1.8)

We can then collect all measured in-sample and out-of-sample contrasts across different
window locations i to a single column vector ϕ, i.e.

ϕ =

⎛⎜⎝
⎛⎝lm, 0v

in

lm, 0v
out

⎞⎠⊤

,

⎛⎝lm, 1v
in

lm, 1v
out

⎞⎠⊤

, . . . ,

⎛⎝l
m, ( n

v
−1)v

in

l
m, ( n

v
−1)v

out

⎞⎠⊤

,
(︂
lm, n
in

)︂⊤

⎞⎟⎠
⊤

. (1.9)

Throughout this chapter, we consider estimators linear in measured empirical contrasts,
i.e.

λ⊤ϕ with λ ∈ Rcard(ϕ) (1.10)

where, following the work of Lavancier and Rochet (2016) on optimal weighting of
estimators, λ is a vector of weights for individual elements of ϕ. Note that the conventional

8All propositions bellow remain valid even if the definition in Eq. 1.6 is replaced with a measurable
model-specific function κj

(︁
{Xt}i+m

i+1
)︁

proxying the in-sample contrasts as defined in Eq. 1.6. This allows
us to also consider applications in which the forecasting function s uses all available observations up to
Xj−τ in order to predict Xj , i.e., when k = m.
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estimator ˆ︁LCV can likewise be expressed as in Eq. 1.10; by defining9

λCV q =

⎧⎪⎪⎨⎪⎪⎩
1
n

for q coresponding to elements lm, iv
j with 0 ≤ i ≤ n

v
and j > m

0 otherwise
(1.11)

it follows that ˆ︁LCV = (λCV )⊤ϕ. (1.12)

This automatically poses the question of whether the vector of weights λCV is optimal in
terms of mean squared error

E
[︃(︂

λ⊤ϕ − LCV

)︂2
]︃

= λ⊤Σϕλ (1.13)

where
Σϕ = E

[︂
(ϕ − LCV 1card(ϕ))(ϕ − LCV 1card(ϕ))⊤

]︂
. (1.14)

In the following proposition, we derive the optimal linear unbiased estimator of LCV

(denoted by ˆ︁LACV ∗ where the “A” stands for affine) and show that the conventional
estimator ˆ︁LCV is generally not optimal.

Proposition 1. Let {Xt} be a stationary process and let Vϕ be a positive definite covariance
matrix of vector ϕ. It then holds that the set of all linear estimators of LCV that are
guaranteed to be unbiased is given as

E[λ⊤ϕ] = LCV ⇐⇒ λ ∈ ΛACV ≡

⎧⎨⎩x ∈ Rcard(ϕ)

⃓⃓⃓⃓
⃓⃓Bx = b

⎫⎬⎭ (1.15)

with

B =
(︂
1⊤

n/v ⊗ I, I:,M
)︂

b =
⎛⎝0m

1
v
1v

⎞⎠ (1.16)

where M = (1, 2, . . . , m). Furthermore, for estimator

ˆ︁LACV ∗ = (λACV )⊤ ϕ with λACV = V −1
ϕ B⊤

(︂
BV −1

ϕ B⊤
)︂−1

b (1.17)

9We follow convention and denote q-th element of vector a by aq and the row (resp. column) subset
of matrix A by AQ,: (resp. A:,Q) where Q is the set of indices to be kept. Furthermore, we denote the
identity matrix by I and column vectors of ones (resp. zeroes) of length k by 1k (resp. 0k).
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it holds that
E
[︂ ˆ︁LACV ∗

]︂
= LCV , (1.18)

V ar
(︂ ˆ︁LACV ∗

)︂
< V ar

(︂
λ⊤ϕ

)︂
with λ ∈ ΛACV , λ ̸= λACV , (1.19)

and also
V ar

(︂ ˆ︁LACV ∗

)︂
≤ V ar

(︂ ˆ︁LCV

)︂
. (1.20)

In Proposition 1, we first show that, for all linear unbiased estimators, it holds that
λ ∈ ΛACV . We then derive the variance minimizing weights λACV within ΛACV . The
corresponding optimal estimator ˆ︁LACV ∗ = (λACV )⊤ϕ is preferred to the conventional
estimator ˆ︁LCV as it is also unbiased and V ar

(︂ ˆ︁LACV ∗

)︂
≤ V ar

(︂ ˆ︁LCV

)︂
.

The term affine is key here, as the inclusion of negative weights is fundamental to reducing
sampling variance. Under non-negativity constraints, it can be shown that the variance-
minimizing weights (given unbiasedness) would simply reduce to the conventional loss
estimator, ˆ︁LCV . While, to our knowledge, there is no comprehensive analysis regulating
the use of negative weights in optimal estimator weighting, we can draw insights from
the closely related field of forecast combination (for a review, see Wang et al., 2023).
Notably, Radchenko et al. (2023) show that negative weights primarily arise in situations
where forecasts are strongly positively correlated and that the benefit of relaxing the
non-negativity constraint lies in the ability of the resulting combined forecast to extend
beyond the range of candidate forecasts. This same mechanism drives the benefit of
optimal weighting in the case of ˆ︁LACV ∗ as well.

To illustrate this concept, consider the simplest possible example: a time series with only
two observations. In this scenario, the model is estimated on the first observation X1 and
evaluated on the second observation X2. We have three recorded contrasts: the in-sample
contrast l1,0

1 , the out-of-sample contrast l1,0
2 , and the in-sample contrast computed with the

shifted window, l1,1
1 . The condition of unbiasedness (the constraints in Eq 1.16) implies that

λ[2], corresponding to l1,0
2 , equals 1, and that for the remaining two weights, λ[1] and λ[3],

corresponding to l1,0
2 and l1,1

1 respectively, we have λ[1] + λ[3] = 0. Consequently, all linear
unbiased estimators ˜︁LCV can be expressed, without loss of generality, as combinations of
two components:

˜︁LCV = 1 ∗ l1,0
2 + λ[3](l1,1

1 − l1,0
1 ) with λ[3] ∈ R. (1.21)
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Typically, we observe that cov(l1,0
2 , l1,1

1 − l1,0
1 ) > 0, as l1,0

2 and l1,1
1 are both computed from

the same observation X2. Note that E[l1,0
2 ] = LCV and E[l1,1

1 − l1,0
1 ] = 0. To stabilize the

estimator by exploiting this correlation, it hence becomes necessary to allow ˜︁LCV to lie
outside the range of both components l1,0

2 and l1,1
1 − l1,0

1 in approximately half the cases
(assuming symmetric distributions), mirroring the case of forecast combination.

It is also worth noting that the efficiency gains do not necessarily stem from the stationarity
per se, but rather from the existence of some partition (in addition to the partition of
singletons) of vector ϕ where contrasts within components of that partition share a common
mean. Consequently, analogous estimators can also be constructed for non-stationary
series, provided that there is such a partition, i.e., as long as there is at least some degree
of regularity. For example, by partitioning ϕ so lm, iv

j and lm, i′v
j′ share a common component

of the partition if and only if j = j′ and both contrasts are from the same day of the week,
we can construct the optimal estimator for time-series with a day-of-the-week seasonality.

1.3.1 Feasible Approximate Optimal Estimator of the Loss

Obviously, the estimator ˆ︁LACV ∗ as presented in Eq. 1.17 is not feasible, as Vϕ is not
known and needs to be estimated. Given the large size of matrix Vϕ relative to the
amount of data available, some restrictions on its structure are necessary. Furthermore,
computational resources needed for the storage of Vϕ, and even more so for its inversion,
grow very quickly, making the computation of optimal weights λACV directly via Eq. 1.17
infeasible for even moderately sized applications.10

Consequently, to make the proposed estimator practical, it is essential to develop the
estimator ˆ︁Vϕ jointly with an algorithm for computation of weights ˆ︁λACV , so it is not pro-
hibitively computationally expensive. To achieve this, we assume the following covariance
structure:

Cov(lm, iv
j , lm, i′v

j′ ) =

⎧⎪⎪⎨⎪⎪⎩
0 for j + iv ̸= j′ + i′v

σ2ρ|i−i′| for j + iv = j′ + i′v
, (1.22)

i.e., only contrasts computed from the same period are mutually correlated, and the
strength of that correlation increases in the overlap between respective estimation windows.

10For applications as small as T = 600, m = 400, and v = 1, approximately 109 GB of RAM would be
needed merely for the storage of Vϕ (assuming double precision). Inversion of such a matrix is practically
impossible via regularly available CPUs, as it requires O

(︁(︁
(m+ v) n

v +m
)︁3)︁ floating-point operations.
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We can then express ˆ︁Vϕ as

ˆ︁Vϕ = σ̂2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I A1
L A2

L . . . A
n
v

−2
L A

n
v

−1
L (A

n
v
L ):,M

A1
U I A1
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. . . A

n
v

−2
L (A

n
v

−1
L ):,M

A2
U A1

U I
. . . (A

n
v

−2
L ):,M

... . . . . . . . . . . . . . . . ...

A
n
v

−2
U

. . . I A1
L (A2

L):,M

A
n
v

−1
U A

n
v

−2
U

. . . A1
U I (A1

L):,M

(A
n
v
U )M,: (A

n
v

−1
U )M,: (A

n
v

−2
U )M,: . . . (A2

U)M,: (A1
U)M,: (I)M,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.23)

where

• Ai
U = (ρ̂U v)i

• Ai
L = (ρ̂Lv)i

and M = (1, 2, . . . , m). Matrices U, L ∈ R(m+v)2 are upper and lower shift matrices, i.e.,
matrices with ones on the superdiagonal and subdiagonal, respectively:

Ui,j =

⎧⎪⎪⎨⎪⎪⎩
0 for i − j ̸= −1

1 for i − j = −1
Li,j =

⎧⎪⎪⎨⎪⎪⎩
0 for i − j ̸= 1

1 for i − j = 1
. (1.24)

Parameters ρ and σ2 can be estimated via a generalized method of moments based on
differenced contrasts lm, iv

j and l
m, (i+x)v
j−xv with varying x as described in Section 1.8 in more

detail. Combined with the convenient structure of ˆ︁Vϕ from Eq. 1.23 which admits a
closed-form inverse as shown in Lemma 2, we can compute a feasible and approximately
optimal analog of ˆ︁LACV ∗ ; estimator ˆ︁LACV with weights

ˆ︁λACV = ˆ︁V −1
ϕ B⊤

(︂
B ˆ︁V −1

ϕ B⊤
)︂−1

b, (1.25)

without the need to store or numerically invert ˆ︁Vϕ, as described in Algorithm 1 in Section
1.9.

Admittedly, the parametrization via ρ and σ2 is rather restrictive and might not fully
account for all complexities of the true Vϕ. However, since the covariances of contrasts
from the same period are generally larger than other entries of Vϕ by an order of magnitude,
and since they tend to decay approximately exponentially, ˆ︁Vϕ as defined in Eq. 1.23
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successfully captures the key properties relevant for optimal weighting. Consequently, it is
able to reap a major share of the available reduction of sampling variance as demonstrated
in Sub-section 1.3.2. This is in line with the observation of Lavancier and Rochet (2016)
that the weighting of estimators is often beneficial, even when based on an imperfect
variance estimator. Furthermore, the estimator ˆ︁LCV retains unbiasedness irrespective of
how well ˆ︁Vϕ approximates the true Vϕ, as by definition ˆ︁λACV ∈ ΛACV . Therefore, only
the magnitude of the reduction of sampling variance is at risk when Vϕ is imprecisely
estimated.

In summary, the process of computing the optimal (feasible) weights is as follows: First,
the model is repeatedly estimated and evaluated using the rolling window pseudo out-of-
sample evaluation scheme, recording both in-sample and out-of-sample contrasts to obtain
ϕ. This step mirrors conventional loss estimation, with the addition of estimating the
model at the final position where no out-of-sample observations exist (see Figure 1.1b).
These additional in-sample contrasts lm, n

in help to reduce sampling variance. Next, ϕ is
used to estimate parameters ρ̂ and σ̂2 of the assumed covariance structure using Estimator
1 detailed in Section 1.8. These estimates are then input into Algorithm 1 (Section
1.9) to compute the corresponding optimal weights λ̂ACV without explicitly constructing
and inverting ˆ︁Vϕ. Finally, ˆ︁LACV is calculated as ˆ︁LACV = λ̂

⊤
ACV ϕ. This entire process

is automated in the estimateL function from the R package ACV 11, which takes the
time-series {Xt}T

t=1 and the model as inputs and performs all necessary steps.

1.3.2 Simulations

We first illustrate the core mechanism that leads to the reduction of sampling variance.
Figures 1.2 and 1.3 display weights λCV and ˆ︁λACV for an illustrative simulated scenario
with T = 20, m = 16, n = 4, and simple AR(1) process/model for the fixed and the rolling
schemes, respectively. As is apparent from the figures, ˆ︁λACV includes in-sample empirical
contrasts from periods 17−20 with negative weights to eliminate a part of the idiosyncratic
noise present in out-of-sample empirical contrasts. In turn, it is necessary to include
other in-sample contrasts with positive weights to retain unbiasedness, creating a chain
of positive and negative weights that gradually approach zero as we move towards the
beginning of the sample. Obviously, such a small sample application is rarely encountered
in practice, but it serves well for illustrative purposes, as the basic mechanics are the same

11Available at: https://CRAN.R-project.org/package=ACV
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regardless of the sample size.

(a) Weights λCV (b) Weights ˆ︁λACV

Figure 1.2: A side by side comparison of weights λCV and ˆ︁λACV for the fixed scheme.

(a) Weights λCV (b) Weights ˆ︁λACV

Figure 1.3: A side by side comparison of weights λCV and ˆ︁λACV for the rolling scheme.

To assess the magnitude of the reduction of sampling variance, we perform a series of
simulations with the AR(1) data generating process (φ1 = 0.9) and an AR(1) model
estimated via OLS. For varying m and n, we repeatedly (1,000 repetitions per combination)
estimate the loss of the model by ˆ︁LCV and ˆ︁LACV under a fixed scheme, and measure the
variance of each estimator. Furthermore, to assess how well the feasible approximate
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estimator ˆ︁Vϕ matches the true Vϕ, we also compute the true Vϕ by means of simulations,
which then allows us to compute the unfeasible ˆ︁LACV ∗ and its variance as a reference
point.

Figure 1.4 displays ratios V ar(ˆ︁LACV )
V ar(ˆ︁LCV )

for different combinations of m and n. Clearly, the
improvement brought by ˆ︁LACV relative to ˆ︁LCV decreases in n and increases in m. This is
because the larger the n, the more precise the ˆ︁LCV and the lesser the potential of reducing
the variance by optimal weighting. On the other hand, the larger the m, the stronger
the correlation ρ, which in turn allows for better utilization of in-sample contrasts and
larger reduction of sampling variance. Consequently, for commonly used in-/out-of-sample
splitting rules that maintain a fixed ratio of n and m, ˆ︁LACV delivers a reduction of
sampling variance that is approximately constant in the sample size T . Variance ratios
range from ∼ 0.4, when 1/3 of the sample is reserved for the out-of-sample evaluation, to
∼ 0.1, when 1/10 of the sample is reserved for the out-of-sample evaluation. This clearly
demonstrates that the gains are sizable and not limited to small sample applications.

Furthermore, the estimator ˆ︁Vϕ, despite its parsimonious parametrization, approximates
the true matrix Vϕ relatively well, as measured by the performance of ˆ︁LACV relative toˆ︁LACV ∗ . Indeed, the feasible estimator ˆ︁LACV is able to reap more than 90% of the available
reduction of sampling variance relative to the optimal unfeasible estimator ˆ︁LACV ∗ , as is
apparent from the ratios V ar(ˆ︁LCV )−V ar(ˆ︁LACV )

V ar(ˆ︁LCV )−V ar(ˆ︁LACV ∗ )
.
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Figure 1.4: Ratios V ar( ˆ︁LACV )/V ar( ˆ︁LCV ) for different combinations of m and n.
Numbers in brackets measure the optimality of the feasible estimator relative to the true unfeasible

optimal estimator, that is (V ar( ˆ︁LCV ) − V ar( ˆ︁LACV ))/(V ar( ˆ︁LCV ) − V ar( ˆ︁LACV ∗)). Common
in-/out-of-sample splitting rules {1/3, 1/5, 1/10} are highlighted.
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1.4 Inference about Predictive Ability

The lower variance of the proposed estimator also translates to a substantial power ad-
vantage when performing inference about out-of-sample loss. Since Diebold and Mariano’s
(1995) pioneering work, many studies have been devoted to inference about predictive
ability (see West (2006) or Clark and McCracken (2013b) for a comprehensive survey).
Following the taxonomy of Clark and McCracken (2013b), these tests can be broadly
divided into two families. First, there are the tests of population-level predictive abil-
ity (e.g. West, 1996; Clark and McCracken, 2001), which are concerned with the null
hypothesis about prediction errors of models evaluated at the true, unknown parameters.
Second, there are the tests of finite-sample predictive ability (e.g. Giacomini and White,
2006; Clark and McCracken, 2015), which are concerned with the null hypothesis about
prediction errors of models with parameters that are themselves a function of a finitely
sized window of observed data.

In this section, we apply the optimal estimator to an inference about finite-sample predict-
ive ability, i.e., asymptotics n → ∞ with m considered fixed. The reasons for adoption of
this asymptotic framework are threefold. First, the null hypothesis addressed by the test
of finite-sample predictive ability appeals to practitioners, as it takes into consideration
the bias/variance trade-off inherent to comparing models of different complexity at a given
sample size (Clark and McCracken, 2013b). Second, unlike for tests of population-level
predictive ability, the null hypothesis cannot be addressed with full-sample methods, which
tend to dominate pseudo out-of-sample methods in terms of power if applicable (Inoue
and Kilian, 2005; Diebold, 2015). Furthermore, despite common belief, out-of-sample
tests addressing the null hypothesis of population-level predictability seem to offer no
advantage over purely in-sample tests in terms of robustness to data mining, dynamic
misspecification, or structural changes, as demonstrated by Inoue and Kilian (2005).
Lastly, the inference about finite-sample predictive ability is very general and can be used
for both parametric/non-parametric and nested/non-nested models, which is in sharp
contrast to tests of population-level predictive ability, where special care has to be taken
to address individual cases (West, 2006).

We restrict our attention to the rolling window (i.e. v = 1) τ -step ahead unconditional test
of equal predictive ability, i.e. the test of null hypothesis H0 : Lm

m+1(M1) = Lm
m+1(M2)

19



for models M1 and M2.12 This narrower scope is motivated by recent findings showing
that the null hypothesis of equal conditional predictive ability can occur only under very
specific data generating processes (Zhu and Timmermann, 2020) and findings that the
inference under the fixed scheme (i.e. v = n) fails to address the desired null hypothesis
about models M1 and M2 (McCracken, 2020).

Let ∆ ˆ︁LCV ≡ ˆ︁LCV (M2) − ˆ︁LCV (M1) and let ˆ︁σ2
CV be a HAC estimator of its asymptotic

variance; σ2
CV ≡ V ar

(︂√
n∆ ˆ︁LCV

)︂
. As shown in Giacomini and White (2006), the following

proposition applies.

Proposition 2. Provided that:

(i) {Xt} is mixing with ϕ of size −r/(2r − 2), r ≥ 2 or α of size −r/(r − 2), r > 2.

(ii) E [|∆lm,v
m+1|2r] < ∞ for all v.

(iii) σ2
CV ≡ V ar

(︂√
n∆ ˆ︁LCV

)︂
> 0 for all n sufficiently large.

Then under H0

tDM ≡ ∆ ˆ︁LCVˆ︁σCV /
√

n
= (λCV )⊤∆ϕˆ︁σCV /

√
n

d−→ N(0, 1) (1.26)

where ∆ϕ = ϕ(M2) − ϕ(M1) and under HA : |E
[︂
∆ ˆ︁LCV

]︂
| ≥ δ > 0 for all n sufficiently

large
P (|tDM | > c) −→ 1. (1.27)

We denote the test statistic by a subscript DM as it coincides exactly with the canonical
Diebold and Mariano (1995) test (henceforth DM test).

Provided that {Xt} is stationary, the third expression in Equation 1.26 motivates an
alternative test statistic that utilizes the optimal weights ˆ︁λACV to gain more power. Note
that, unlike in Section 1.3, here the weights are optimal for minimizing the variance
of estimator of Lm

m+1(M2) − Lm
m+1(M1) rather than that of individual estimators of

Lm
m+1(M1) and Lm

m+1(M2), which is generally not the same task. We propose the
following modification of the DM test, which uses the optimal affine weighting (ADM test
henceforth).

12Note that in the generic definition of the rolling window estimator presented in Eq. 1.4, all observations
up to m are utilized for estimation (but not as input to s) irrespective of the horizon τ . This is done
for a notational convenience. To obtain the canonical rolling window estimator with τ > 1, it suffices to
define the ˆ︁θ associated with the given model so that it omits last τ − 1 observations from the estimation
(see e.g. Section 1.4.1).
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Proposition 3. Provided that {Xt} is stationary, plim(ρ̂) ̸= 1, and (i)-(iii) holds, then

tADM ≡ ∆ ˆ︁LACVˆ︁σACV /
√

n
= (ˆ︁λACV )⊤∆ϕˆ︁σACV /

√
n

d−→ N(0, 1) (1.28)

where ˆ︁σACV = ˆ︁σCV
ˆ︁λ⊤

ACV
ˆ︁V∆ϕˆ︁λACVˆ︁λ⊤

CV
ˆ︁V∆ϕˆ︁λCV

and under HA : |E
[︂
∆ ˆ︁LCV

]︂
| ≥ δ > 0 for all n sufficiently

large
P (|tADM | > c) −→ 1. (1.29)

While widely adopted, the DM test is known to suffer from level distortions in small
samples, stemming from the estimation of the long-run variance (see Clark and McCracken,
2013b). To mitigate this issue, Zhu and Timmermann (2020) propose to use Ibragimov
and Müller’s (2010) sub-sampling t-test (IM test henceforth), which does not require
a variance estimation. In particular, Zhu and Timmermann (2020) prove the following
proposition.

Proposition 4. Suppose that {Xt} is stationary and E[∆lm,i
m+1] = 0. Assume that

E|∆lm,i
m+1|r = 0 is bounded for some r > 2 and ∆lm,i

m+1 is strong mixing of size −r/(r − 2).
Then, for fixed K > 1

tIM = ∆ ˆ︁LCV√︄
(K − 1)∑︁K

k=1

(︃ ˆ︁L(k)
CV − ∆ ˆ︁LCV

)︃2
/
√

K

d−→ tK−1 (1.30)

where ˆ︁L(k)
CV is the loss estimate computed from the k-th block of data of size ñ = n/K,

that is ˆ︁L(k)
CV = ñ−1∑︁ñ−1

i=0 ∆l
m,i+ñ(k−1)
m+1 = λ

(k)
CV ∆ϕ(k) where ∆ϕ(k) = ∆ϕM with M =

{i}(ñ+1)∗(m+1)−1+ñ∗(m+1)(k−1)
i=1+ñ∗(m+1)(k−1) , and where ∆ ˆ︁LCV = K−1∑︁K

k=1
ˆ︁L(k)

CV .

Similarly to the DM test, the IM test also immediately lends itself to a modified version
that exploits the optimal weighting ˆ︁λACV (AIM test henceforth).

Proposition 5. Suppose that {Xt} is stationary, plim(ρ̂) ̸= 1, and E[∆lm,i
m+1] = 0.

Assume that E|∆lm,i
m+1|r = 0 is bounded for some r > 2 and ∆lm,i

m+1 is strong mixing of size
−r/(r − 2). Then, for fixed K > 1

tAIM = ∆ ˆ︁LACV√︄
(K − 1)∑︁K

k=1

(︃ ˆ︁L(k)
ACV − ∆ ˆ︁LACV

)︃2
/
√

K

d−→ tK−1 (1.31)
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where ˆ︁L(k)
ACV is the loss estimate computed from the k-th block of data of size ñ = n/K,

that is ˆ︁L(k)
ACV = ˆ︁λ(k)

ACV ∆ϕ(k) where ∆ϕ(k) = ∆ϕM with M = {i}(ñ+1)∗(m+1)−1+ñ∗(m+1)(k−1)
i=1+ñ∗(m+1)(k−1) ,

and where ∆ ˆ︁LACV = K−1∑︁K
k=1

ˆ︁L(k)
ACV .

1.4.1 Power and Level Properties

To evaluate the power and level properties of the proposed tests, we adapt the simulation
environment of McCracken (2019) that allows to generate series satisfying, or to a various
degree violating, the null hypothesis of equal unconditional predictive ability under
different forecast horizons τ . In particular, we consider a process

Xt = c + ηt with ηt = εt +
τ−1∑︂
j=1

φjεt−j, εt ∼ N(0, σ2), (1.32)

and two models M1 = {s1, ˆ︁θ1} and M2 = {s2, ˆ︁θ2} producing point predictions of Xj+τ :

s1
(︂
{Xt}j

j−k−1; ˆ︁c)︂ = ˆ︁c with ˆ︁c = ˆ︁θ1
(︂
{Xt}j+τ−1

j+τ−m

)︂
= 0, (1.33)

s2
(︂
{Xt}j

j−k−1; ˆ︁c)︂ = ˆ︁c with ˆ︁c = ˆ︁θ2
(︂
{Xt}j+τ−1

j+τ−m

)︂
= 1

m − τ + 1

j∑︂
t=j+τ−m

Xt. (1.34)

Model M1 is hence misspecified in that it omits the intercept c. Model M2, on the
other hand, estimates c by averaging Xt over the estimation window. For c ̸= 0 and
m → ∞, model M2 is always preferred over M1. In finite samples however, their relative
performance is determined by m and c as expressed in the following proposition.

Proposition 6. For the mean squared error contrast function γ(Xt, ˆ︂Xt) = (Xt − ˆ︂Xt)2,
any ς ≥ 1, and

c =
⎛⎝ς

⎛⎝α0 + 1˜︂mα0 + 2
˜︁m−1∑︂
i=1

˜︂m − i˜︂m2 αi

⎞⎠− α0

⎞⎠0.5

, (1.35)

where ˜︂m = m − τ + 1 and αi = E [ηtηt−i], it holds that

ς = Lm
m+1(M1)

Lm
m+1(M2)

. (1.36)

By setting ς = 1, Proposition 6 allows to simulate series under H0, that is with the
constant c such that the loss stemming from the bias caused by its omission is exactly
the same as the loss stemming from the noise introduced by its estimation. To explore
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the power of the proposed tests, we also consider values ς > 1, in which the omission of
the constant will result in worse predictions. In the exercise below, we follow the setup
of McCracken (2019) and set σ2 = 1 and φj = (0.5)j. The truncation lag of Newey and
West’s (1987) HAC estimator in DM and ADM tests is chosen according to the commonly
used rule ⌊3

4n
1
3 ⌋ (see e.g. Lazarus et al., 2018). The number of groups K in IM and AIM

tests is 2 as in Zhu and Timmermann (2020).

We repeatedly (2000 repetitions per combination of parameters) simulate the process
from Eq. 1.32 with constant c corresponding to values of ς ∈ { 1, 1.03125, 1.0625,

1.125, 1.25, 1.375, 1.5, 1.75, 2 } for m = 100, n ∈ {10, 20, 50, 100, 200, 300}, and
τ ∈ {1, 3, 6}. Figure 1.5 displays rejection rates for simulations with the forecast horizon
τ = 1. The proposed ADM and AIM tests exhibit substantially higher power relative
to their conventional counterparts. In accordance with results from Section 1.3.2, the
power gain is especially sizable in scenarios with small n relative to m. The power gain
also appears to be more pronounced for IM type tests, which tend to sacrifice power
in exchange for lesser finite sample level distortions, creating a greater opportunity for
improvements. A similar power advantage of ADM and AIM tests relative to benchmarks
is also observed when considering forecast horizons τ = 3 and τ = 6 as can be seen in
Figures 1.6 and 1.7, respectively, in Appendix 1.A.

To better explore level properties, we repeat the exercise with ς = 1, levels p ∈
{0.01, 0.05, 0.1}, and 10000 simulation repetitions. Inspecting Table 1.1, it is appar-
ent that for all tests and forecast horizons, rejection probabilities approach the desired
levels as n → ∞. In small samples, we do observe the same level distortions for DM type
tests as documented in the literature. The over-rejection is especially pronounced for
higher τ as there, the data generating process exhibits a stronger temporal dependence
which further complicates the estimation of the long run variance in small samples. Im-
portantly however, the magnitude of these distortions is, in fact, smaller for the proposed
ADM test. This shows that the power gain is achieved despite better level properties,
not because of them. For IM type tests, rejection probabilities are generally closer to the
desired levels even for small n, as expected. The AIM test exhibits larger level distortions
in small samples relative to the conventional IM test. These distortions stem from stronger
finite sample dependencies between individual estimators ˆ︁L(k)

ACV introduced by the affine
weighting. However, given the substantially higher power of the AIM test relative to the
IM test, these finite sample distortions seem acceptable.

23



Figure 1.5: Plots of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05 for
τ = 1. Whiskers represent 95% confidence intervals.
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p = 0.01 p = 0.05 p = 0.10
τ n DM ADM IM AIM DM ADM IM AIM DM ADM IM AIM

1 10 0.048 0.035 0.009 0.019 0.120 0.084 0.047 0.090 0.188 0.132 0.095 0.174
20 0.031 0.027 0.010 0.018 0.102 0.071 0.047 0.081 0.164 0.119 0.093 0.165
50 0.016 0.018 0.012 0.016 0.072 0.055 0.052 0.075 0.126 0.100 0.097 0.151

100 0.014 0.018 0.011 0.013 0.059 0.057 0.051 0.075 0.109 0.099 0.099 0.149
300 0.011 0.011 0.012 0.015 0.046 0.045 0.057 0.072 0.087 0.082 0.115 0.141

3 10 0.130 0.098 0.010 0.020 0.235 0.183 0.054 0.098 0.318 0.254 0.101 0.188
20 0.068 0.048 0.009 0.020 0.159 0.121 0.045 0.093 0.231 0.184 0.092 0.176
50 0.035 0.028 0.010 0.015 0.109 0.085 0.049 0.076 0.181 0.144 0.097 0.150

100 0.022 0.023 0.010 0.014 0.085 0.076 0.047 0.069 0.144 0.132 0.092 0.141
300 0.012 0.012 0.010 0.012 0.054 0.055 0.051 0.068 0.103 0.101 0.106 0.134

6 10 0.171 0.139 0.010 0.024 0.284 0.240 0.055 0.109 0.365 0.313 0.108 0.208
20 0.102 0.071 0.011 0.019 0.201 0.157 0.051 0.092 0.283 0.229 0.100 0.175
50 0.053 0.041 0.008 0.016 0.149 0.112 0.043 0.077 0.226 0.182 0.089 0.150

100 0.030 0.031 0.007 0.013 0.104 0.094 0.043 0.064 0.170 0.157 0.091 0.134
300 0.014 0.014 0.011 0.014 0.064 0.063 0.053 0.062 0.115 0.111 0.108 0.132

Table 1.1: Rejection probabilities for DM, ADM, IM, and AIM tests under the null (ς = 1) for
different values of p and τ .

1.5 Empirical Evaluation

To demonstrate that the theoretical superiority of the proposed estimator also translates
to real-life forecasting tasks, we perform an extensive evaluation on the M4 competition
(Makridakis et al., 2020) data, consisting of 100,000 time-series ranging from yearly to
hourly frequency. Participants in the M4 competition were asked to produce forecasts for
each of the series for the upcoming 6/8/18/13/14/48 periods for yearly/quarterly/monthly/
weekly/daily/hourly frequency, respectively. The organizers withheld the most recent
segment of each series of corresponding length (test segments, henceforth). Submitted
forecasts were then compared with test segments to evaluate their precision.

To assess the performance of ˆ︁LACV we consider two canonical models that were used
as standards for comparison in the M4 competition; the ETS (Hyndman et al., 2002a),
which automatically selects the optimal form of exponential smoothing via the information
criterion, and the autoARIMA (Hyndman and Khandakar, 2008a), which selects the most
appropriate ARIMA specification via the information criterion. Both these models are
frequently used in practice and performed comparably well in the M4 competition, making
them ideal candidates. Similarly to the competition, the performance of each model is
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assessed on the test segment of series using the sMAPE contrast function:13

γ
(︂
Xt, ˆ︂Xt

)︂
= |Xt − ˆ︂Xt|

1
2 |Xt| + 1

2 |ˆ︂Xt|
100. (1.37)

Unlike in the M4 competition however, our interest is not in the performance of indi-
vidual models per se, but rather in our ability to predict the out-of-sample performance˜︁LCV,s(M)14 on the test segment of a series s with the use of in-sample data only. To do so,
we perform 1-step ahead pseudo out-of-sample evaluations under the rolling scheme (i.e.
τ = 1 and v = 1) with the same number of pseudo out-of-sample observations as in the
test segment (i.e. n ∈ {6, 8, 18, 13, 14, 48}). For each series s, we compute the estimatesˆ︁LCV,s(M) and ˆ︁LACV,s(M) and compare them with the actual 1-step ahead out-of-sample
loss ˜︁LCV,s(M) incurred on the test segment. The overall precision of the estimator is
computed as

MSECV (M) = 1
|S|

∑︂
s∈S

(︂ ˜︁LCV,s(M) − ˆ︁LCV,s(M)
)︂2

(1.38)

and
MSEACV (M) = 1

|S|
∑︂
s∈S

(︂ ˜︁LCV,s(M) − ˆ︁LACV,s(M)
)︂2

(1.39)

with S being a subset of time-series under consideration. To better assess the performance
on different types of series, we also subject each series to a non-parametric CS test for the
presence of a trend (Cox and Stuart, 1955) and a QS test for the presence of seasonality
(Ljung and Box, 1978).

Table 1.2 depicts MSECV and MSEACV for both models across all frequencies, further
broken down by the results of the CS and QS tests (for both, the threshold p = 0.05
is considered). For each model, percentage improvements of ˆ︁LACV over ˆ︁LCV in terms
of MSE are shown alongside their statistical significance. As is apparent, the use ofˆ︁LACV leads to a substantially more precise estimation of the incurred out-of-sample loss˜︁LCV , in particular to a reduction of MSE by 13.0% and 10.6% on average for ETS and
autoARIMA, respectively. It is worth highlighting that this reduction of MSE likely

13This contrast function was chosen by organizers so that losses of series on different scales are
approximately comparable. As a robustness check, we also repeat the exercise with MAE and MSE
contrast functions with prior normalization and obtain comparable results (available upon request).

14We use the notation ˜︁LCV rather than ˆ︁LCV to highlight that this is the loss incurred on the test
segment (i.e., the true out-of-sample evaluation). However, as the test segment is of finite length, this is
still only an estimate of the true theoretical loss LCV . The subscript CV indicates that the conventional
estimator is used to compute the loss incurred on the test segment.
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underestimates the true gains, as the comparison is made with respect to the estimate of
loss ˜︁LCV rather than the true theoretical loss LCV ; hence, the corresponding part of the
MSE in principle cannot be reduced. A back of the envelope calculation suggests that the
theoretical reduction of MSE, if computed against the true loss rather than its estimate,
is actually twice the size.

A significant portion of the series in the M4 competition display non-stationary character-
istics. Specifically, 90% of the series exhibit a trend, 39% show seasonality, and 36% feature
both trend and seasonal components. The fact that ˆ︁LACV exhibits superior performance
relative to ˆ︁LCV , even when applied indiscriminately to a wide range of time-series without
any regards for stationarity, clearly demonstrates its robustness and practical applicability.
However, it is important to mention that the reduction in MSE is less pronounced for
series with seasonal patterns.

To assess the robustness of these findings, we also repeat the exercise for forecast horizons
τ up to 3 and 6 (Tables 1.5 and 1.6 in Appendix 1.A). In these cases, the optimal
estimator ˆ︁LACV reduces MSE by 9.7% and 3.2%, respectively for ETS and 7.0% and 1.4%,
respectively for autoARIMA. Although more modest than in the case with horizon τ = 1,
all these differences are statistically significant. The lower relative gains of ˆ︁LACV over ˆ︁LCV

for longer forecast horizons likely stems from the fact that the mean and the dispersion of
out-of-sample contrasts tend to increase in the forecast horizon, reflecting the difficulty of
forecasting far ahead to the future. Consequently, the gains achievable through optimal
affine weighting are smaller in comparison to the higher inherent uncertainty present in
the estimation of the out-of-sample loss.

To gauge the computational complexity of the proposed estimator, Table 1.4 in Appendix
1.A provides average run-times needed for the computation of the vector of contrasts ϕ as
well as for the computation of ˆ︁LCV and ˆ︁LACV . Unsurprisingly, the computation of ˆ︁LACV

is more demanding than that of the conventional estimator, averaging to approximately
5 seconds per series. Overall however, the usage of ˆ︁LACV results in only < 20% longer
run-time as the most demanding task is the computation of ϕ which is common to bothˆ︁LCV and ˆ︁LACV . For more complex forecasting models likely used in practice, the relative
difference in run-times would be even smaller.

Lastly, we assess the performance of ˆ︁LACV in terms of model selection. In this exercise,
the task is to use the loss estimate to select the model M that will perform best on the test
segment of a given series, i.e., to identify the model with the smallest ˜︁LCV,s(M). Table

27



time-series ETS autoARIMA
Period Trending Seasonal N MSECV MSEACV ∆MSE [%] MSECV MSEACV ∆MSE [%]

Yearly 23000 48.68 41.47 -14.8*** 57.05 51.37 -10.0***
(1.65) (1.49) (2.42) (2.38)

F F 2214 139.93 126.41 -9.7*** 194.26 187.93 -3.3
(10.60) (10.27) (16.17) (16.36)

F T 267 20.22 19.86 -1.8 24.08 23.84 -1.0
(5.49) (5.43) (6.22) (5.76)

T F 15076 49.62 41.06 -17.3*** 54.29 46.57 -14.2***
(1.92) (1.65) (2.74) (2.63)

T T 5443 10.35 9.12 -11.9** 10.51 10.44 -0.7
(0.90) (0.81) (1.38) (1.37)

Quarterly 24000 28.70 24.18 -15.8*** 33.87 29.30 -13.5***
(1.16) (0.97) (1.41) (1.22)

F F 1561 92.17 78.02 -15.4** 101.50 81.68 -19.5***
(8.96) (7.75) (9.51) (7.78)

F T 681 65.29 49.90 -23.6 90.95 81.41 -10.5
(14.91) (8.83) (16.93) (14.93)

T F 14115 26.34 21.68 -17.7*** 29.50 25.23 -14.5***
(1.32) (1.09) (1.49) (1.18)

T T 7643 16.82 15.50 -7.9 23.02 21.50 -6.6
(1.48) (1.38) (2.43) (2.33)

Monthly 48000 19.32 17.65 -8.6*** 21.68 19.69 -9.2***
(0.47) (0.45) (0.57) (0.55)

F F 2574 78.64 63.56 -19.2*** 87.64 73.09 -16.6***
(5.02) (4.42) (5.89) (5.28)

F T 1964 21.89 19.70 -10.0* 24.63 21.33 -13.4**
(1.99) (1.88) (2.67) (2.38)

T F 21613 23.60 22.27 -5.6** 26.57 24.78 -6.8***
(0.72) (0.75) (0.91) (0.94)

T T 21849 7.85 7.49 -4.7* 8.81 8.23 -6.6**
(0.36) (0.36) (0.41) (0.40)

Weekly 359 8.81 5.55 -37.0*** 6.47 5.95 -8.0
(1.40) (0.99) (0.86) (1.13)

F F 54 13.18 10.50 -20.4 9.50 7.51 -21.0
(3.05) (4.09) (2.27) (1.67)

F T 3 2.72 1.85 -32.1 0.81 0.67 -18.0
(2.09) (1.47) (0.80) (0.64)

T F 257 8.81 5.15 -41.5*** 6.39 6.35 -0.7
(1.81) (1.06) (1.06) (1.53)

T T 45 4.01 2.14 -46.8 3.61 2.12 -41.2
(1.99) (0.91) (1.65) (0.84)

Daily 4227 1.62 1.56 -3.5 2.11 2.15 1.7
(0.33) (0.37) (0.51) (0.54)

F F 226 2.71 3.98 47.1 4.05 4.36 7.6
(2.33) (3.73) (3.53) (4.01)

F T 19 0.39 0.43 10.8 0.33 0.42 26.5
(0.19) (0.24) (0.18) (0.21)

T F 3535 0.89 0.71 -19.3* 0.89 0.77 -13.4*
(0.22) (0.19) (0.23) (0.22)

T T 447 6.94 7.11 2.5 10.92 12.05 10.3**
(2.29) (2.45) (4.07) (4.31)

Hourly 414 12.71 8.55 -32.7*** 53.11 45.62 -14.1
(2.27) (1.47) (11.36) (12.16)

F F 1 0.24 0.09 -60.4 0.06 0.02 -56.3
( NA) ( NA) ( NA) ( NA)

F T 125 29.67 17.97 -39.4*** 90.33 59.04 -34.6***
(6.65) (3.89) (21.18) (15.35)

T F 5 2.12 2.70 27.1 1.56 1.86 18.6
(1.93) (2.54) (1.30) (1.49)

T T 283 5.45 4.53 -16.8 37.77 40.63 7.6
(1.36) (1.22) (13.64) (16.44)

All 100000 27.51 23.94 -13.0*** 31.99 28.60 -10.6***
(0.52) (0.47) (0.71) (0.68)

Table 1.2: Comparison of ˆ︁LCV and ˆ︁LACV in terms of the loss estimation.
∆MSE [%] = MSEACV −MSECV

MSECV
100. Standard errors in brackets,

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.
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1.3 shows the average incurred loss ˜︁LCV and the probability of selecting the best model,
for AIC (Akaike, 1998), ˆ︁LCV and ˆ︁LACV . The table also includes the average loss that
would be incurred if we knew which model was the best-performing on the test segment.15

Obviously, such a selection is not feasible in practice but it provides a useful benchmark,
as it represents the best possible outcome that can be achieved via model selection alone.
Compared to AIC, ˆ︁LACV achieves a 23.7% reduction of incurred loss relative to what is
achievable and is more likely to select the best model by 4.9% points.16 Compared to ˆ︁LCV ,
the relative reduction of loss is more modest, only 1.4%, but still statistically significant.
The estimator ˆ︁LACV is 0.3% points more likely to select the best model than ˆ︁LCV .

time-series ex-post opt. AIC CV ACV AIC vs ACV CV vs ACV
Period N ˜︁L P (best) ˜︁L P (best) ˜︁L P (best) ˜︁L ∆˜︁L [%] ∆˜︁L [%]

Yearly 23000 6.489 0.513 7.186 0.528 7.096 0.526 7.089 -13.9*** -1.2
(0.056) (0.003) (0.065) (0.003) (0.063) (0.003) (0.062)

Quarterly 24000 5.602 0.484 6.198 0.548 6.007 0.551 6.002 -32.8*** -1.0
(0.055) (0.003) (0.061) (0.003) (0.059) (0.003) (0.059)

Monthly 48000 6.513 0.525 6.944 0.578 6.858 0.585 6.852 -21.3*** -1.7
(0.043) (0.002) (0.046) (0.002) (0.045) (0.002) (0.045)

Weekly 359 5.033 0.616 5.162 0.526 5.245 0.577 5.229 52.1 -7.3
(0.298) (0.026) (0.303) (0.026) (0.316) (0.026) (0.316)

Daily 4227 1.013 0.516 1.052 0.522 1.030 0.509 1.031 -53.6*** 4.4*
(0.027) (0.008) (0.031) (0.008) (0.028) (0.008) (0.028)

Hourly 414 6.765 0.551 9.261 0.804 6.911 0.819 6.869 -95.9*** -28.9
(0.443) (0.024) (0.655) (0.020) (0.452) (0.019) (0.450)

All 100000 6.052 0.512 6.575 0.558 6.456 0.561 6.451 -23.7*** -1.4*
(0.028) (0.002) (0.031) (0.002) (0.030) (0.002) (0.030)

Table 1.3: Comparison of AIC, ˆ︁LCV and ˆ︁LACV in terms of model selection.
For x ∈ {AIC, CV }, ∆ ˜︁L [%] = ˜︁LCV (MACV )−˜︁LCV (Mx)˜︁LCV (Mx)−˜︁LCV (Mex−post opt.)

100. Standard errors in brackets,
∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.

While the gains from more accurate model selection via ˆ︁LACV rather than ˆ︁LCV are not
as sizable, it should be noted that the variance minimizing weights of ˆ︁LACV are not
necessarily optimal in terms of selecting a model so that its incurred loss is the lowest in
expectation. By computing multiple sets of weights jointly, so that they are optimal in
terms of model selection, we could presumably attain even better results. This promising
research direction is, however, beyond the scope of this chapter.

15We denoted these incurred losses and probabilities of selecting the best model by ˜︁LCV (Mx) and
P (best)x, respectively, where x ∈ {AIC, CV, ACV, ex− post opt.}.

16The dominance of CV and ACV over AIC likely stems from violations of stationarity, which more
heavily penalize the AIC than the ACV, and/or the fact that the sMAPE contrast function in Eq. 1.37
is not aligned with the MSE contrast function, for which the AIC is designed. A thorough theoretical
comparison of the AIC and pseudo out-of-sample estimators such as ˆ︁LCV or ˆ︁LACV is beyond the scope
of this chapter. A detailed analysis can, however, be found in Inoue and Kilian (2006).

29



1.6 Conclusions

We propose an alternative estimator of the out-of-sample loss that optimally utilizes both
in-sample and out-of-sample empirical contrasts via a system of affine weights. We prove
that under stationarity, the proposed (unfeasible) estimator is the best unbiased linear
estimator of the out-of-sample loss and that it dominates the conventional estimator in
terms of the sampling variance. We also propose an approximate feasible variant of the
estimator, which closely matches the performance of the unfeasible optimal estimator,
and which exhibits a substantially smaller sampling variance relative to the conventional
estimator, by a factor of ∼ 0.4 to ∼ 0.1 in our simulations. The reduction of sampling
variance is most sizable in situations where few observations are designated for the
out-of-sample evaluation relative to the number of in-sample observations.

The proposed optimal estimator can also be applied to the inference about predictive
ability. We put forward modifications of Diebold and Mariano’s (1995) test and of
Ibragimov and Müller’s (2010) test and show that utilization of the optimal estimator
leads to a substantial power gain (often by a factor > 2) in detecting deviations from the
null hypothesis of equal predictive ability. In addition, the finite sample level distortions
of Diebold and Mariano’s (1995) test frequently documented in the literature seem to be
attenuated, rather than exacerbated, by the system of optimal affine weights.

Finally, to assess the real-life applicability of the estimator and its robustness, we perform
an extensive evaluation on time-series from the M4 forecasting competition (Makridakis
et al., 2020). In line with the theoretical derivations and the simulation evidence, the
proposed estimator more precisely estimates the losses incurred on the test segments of
series (> 10% reduction of MSE relative to the conventional estimator). Furthermore,
selecting a model based on the proposed estimator leads to a higher probability of selecting
the ex-post optimal model and also to an overall lower loss relative to that which would
be incurred if the model were selected according to the conventional estimator. The
performance gains of our proposed estimator are evident across the diverse range of
time-series in the M4 competition. Many of these series display characteristics of non-
stationarity, which provides an opportunity for us to assess the estimator’s effectiveness
beyond ideal theoretical conditions. Our results suggest a degree of robustness in the
estimator’s application to various real-world scenarios.

There are several natural extensions of our proposed estimator of loss. Throughout this
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chapter, we have focused predominantly on loss estimation and inference. However, in
practice, loss estimation is frequently not an object of interest in its own right, but rather
an intermediate objective to further improve forecasting performance. Time-series are
often split into three segments: training, validation, and testing, with pseudo out-of-sample
evaluation being repeatedly performed on the test set to select the most suitable model
and fine-tune hyperparameters. A natural extension would be to consider leveraging
in-sample empirical contrasts to make these techniques less susceptible to random noise
and hence more effective when the most suitable models or hyperparameters are being
selected. Likewise, numerous studies have demonstrated superior performance of forecast
combinations (Wang et al., 2023). Many such forecast combination schemes rely on past
performance (see, e.g., Bates and Granger (1969) and Winkler and Makridakis (1983))
when determining the weight of forecasts. A more efficient estimator of loss might therefore
be used to improve the performance of such combination schemes.

There are two potential approaches to this enhancement. The first involves deriving
variance-minimizing estimates for each hyperparameter combination or candidate model,
with the expectation that reduced individual variances, even without accounting for their
correlation structure, will yield performance improvements. The second approach would
be to optimize directly for improved performance, akin to minimizing the variance of
the loss differential as in Section 1.4 and in the model selection exercise in Section 1.5.
However, generating such complex optimal weighting schemes in dimensions higher than
two could prove challenging. We are grateful to Prof. Andrey Vasnev and Prof. John
Galbraith for highlighting these possibilities.

Another line of possible extensions involves relaxing the underlying assumptions to make
the estimator applicable to a wider array of practical applications. The estimator described
in this chapter utilizes all in-sample contrasts up to the very beginning of the in-sample
segment to reduce the sampling variance of the out-of-sample loss estimator. However,
the benefit of including increasingly distant in-sample contrasts quickly diminishes, with
the most recent in-sample observations being most useful. It might be possible to restrict
weights for in-sample contrasts that are more distant than a certain multiple of the
pseudo out-of-sample segment length to zero without significantly impairing the sampling
variance reduction relative to the conventional estimator. This adjustment could make
the estimator more robust to structural breaks or interruptions.

Furthermore, as formulated in this chapter, the estimator requires stationarity of the
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underlying time-series to guarantee unbiasedness. However, it might also be possible to
prove unbiasedness under the weaker condition of stationarity of forecast errors, provided
that the contrast function depends solely on the error. This would substantially widen
the range of time-series to which the estimator might be applied. This possibility is also
indirectly evidenced by the evaluation on the M4 dataset, where the proposed estimator
outperformed the conventional estimator in terms of the sampling variance even when the
assumptions of stationarity were violated. We are grateful to Prof. Andrey Vasnev for
outlining these ways in which the estimator might be generalized.
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1.7 Proofs

Lemma 1. Let P =
{︂
P1, P2, . . . , Pcard(P )

}︂
be a partition of {1, 2, . . . , card(ϕ)} such

that ∀j ∈ {1, 2, . . . , card(P )} ∀i, i′ ∈ Pj : E[ϕi] = E[ϕi′ ]. Then for λ ∈ ΛACV where

ΛACV =
⎧⎨⎩λCV + x

⃓⃓⃓⃓
⃓⃓x ∈ Rcard(ϕ) ∧ ∀j ∈ {1, 2, . . . , card(P )} :

∑︂
i∈Pj

xi = 0
⎫⎬⎭ , (1.40)

it holds that
E[λ⊤ϕ] = LCV (1.41)

and
λ⊤Σϕλ = λ⊤Vϕλ (1.42)

where Σϕ = E
[︂
(ϕ − LCV 1)(ϕ − LCV 1)⊤

]︂
and Vϕ = V ar(ϕ).

Proof of Lemma 1 To prove this lemma, consider

E[λ⊤ϕ] = E[(λCV + x)⊤ ϕ]

= E[(λCV )⊤ ϕ] + E[x⊤ϕ]

= LCV +
card(P )∑︂

j=1

∑︂
i∈Pj

xiE[ϕi]⏞ ⏟⏟ ⏞
=0

= LCV .

(1.43)

Furthermore

Σϕ = E[(ϕ − LCV 1) (ϕ − LCV 1)⊤]

= E[((ϕ − E[ϕ]) + (E[ϕ] − LCV 1)) ((ϕ − E[ϕ]) + (E[ϕ] − LCV 1))⊤]

= V ar(ϕ) + (E[ϕ] − LCV 1) (E[ϕ] − LCV 1)⊤

(1.44)

and

λ⊤Σϕλ = λ⊤
(︂
V ar(ϕ) + (E[ϕ] − LCV 1) (E[ϕ] − LCV 1)⊤

)︂
λ

= λ⊤V ar(ϕ)λ + λ⊤ (E[ϕ] − LCV 1) (E[ϕ] − LCV 1)⊤ λ

= λ⊤V ar(ϕ)λ

(1.45)
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as

λ⊤ (E[ϕ] − LCV 1) = (λCV + x)⊤ (E[ϕ] − LCV 1)

= (λCV )⊤ E[ϕ] − (λCV )⊤ LCV 1 + x⊤E[ϕ] − x⊤LCV 1

= LCV − LCV +
card(P )∑︂

j=1

∑︂
i∈Pj

xiE[ϕi]⏞ ⏟⏟ ⏞
=0

−LCV

card(P )∑︂
j=1

∑︂
i∈Pj

xi1i⏞ ⏟⏟ ⏞
=0

= 0,

(1.46)

which completes the proof.

Proof of Proposition 1. Let P = {P1, P2, . . . , Pm+v} be a partition of {1, 2, . . . ,

card(ϕ)} such that ∀j ∈ {1, 2, . . . , m + v} ∀i ∈
{︂
0, 1, . . . , n

v

}︂
: lm, iv

j ∈ Pj. Due to
stationarity, it holds that ∀j ∈ {1, 2, . . . , card(P )} ∀i, i′ ∈ Pj : E[ϕi] = E[ϕi′ ] and hence
Lemma 1 can be applied. Also note that the set ΛACV from Lemma 1 can be equivalently
expressed as

λ ∈ ΛACV ⇐⇒ Bλ = b (1.47)

with

B =
(︂
1⊤

n/v ⊗ I, I:,M
)︂

b =
⎛⎝0m

1
v
1v

⎞⎠ (1.48)

where M = (1, 2, . . . , m).

By virtue of Proposition 1, for any λ ∈ ΛACV , it holds that

E[λ⊤ϕ] = LCV (1.49)

and
λ⊤Σϕλ = λ⊤Vϕλ, (1.50)

i.e., all estimators with weights in ΛACV are unbiased estimators of LCV and their mean
squared error is equal to their variance. We are interested in the best possible estimator
(in terms of mean squared error/variance) in the set ΛACV . Formally:

argmin
λ

λ⊤Vϕλ s.t : Bλ = b. (1.51)
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The Lagrangian associated with the problem is given by

L(λ, α) = λ⊤Vϕλ − α⊤(Bλ − b). (1.52)

Necessary conditions for pair {λ, α} to be solution to Eq. 1.51 are

∂L(λ, α)
∂λ

= 2Vϕλ − B⊤α = 0, (1.53)

∂L(λ, α)
∂α

= Bλ − b = 0. (1.54)

From Eq. 1.53, it follows
λ = 1

2V −1
ϕ B⊤α, (1.55)

combining that with Eq. 1.54 leads to

α = 2
(︂
BV −1

ϕ B⊤
)︂−1

b (1.56)

and consequently
λ = V −1

ϕ B⊤
(︂
BV −1

ϕ B⊤
)︂−1

b. (1.57)

The invertibility of matrix Vϕ and
(︂
BV −1

ϕ B⊤
)︂

follows from positive-definiteness of Vϕ and
full rank of B. The sufficient conditions then follows from the fact that λ⊤Vϕλ is strictly
convex function as Vϕ is positive definite. We denote the optimum weights as λACV and
the corresponding estimator by ˆ︁LACV ∗ , i.e.

ˆ︁LACV ∗ = (λACV )⊤ ϕ with λACV = V −1
ϕ B⊤

(︂
BV −1

ϕ B⊤
)︂−1

b. (1.58)

The statement
E[ ˆ︁LACV ∗ ] = LCV (1.59)

stems directly from λACV ∈ ΛACV and Lemma 1. Statements

V ar( ˆ︁LACV ∗) < V ar(λ⊤ϕ) with λ ∈ ΛACV , λ ̸= λACV (1.60)

and
V ar( ˆ︁LACV ∗) ≤ V ar( ˆ︁LCV ) (1.61)

follows from strict convexity of function λ⊤Vϕλ and λCV ∈ ΛACV , respectively.
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It remains to show that there is no λ′ /∈ ΛACV such that it is guaranteed that E[(λ′)⊤ ϕ] =
LCV . Suppose that there is such λ′ and let x = λ′ − λCV . From λ′ /∈ ΛACV it follows that
∃j′ : ∑︁i∈Pj′ xi = c ̸= 0. Suppose that ∀j ∈ {1, 2, ..., m + v} , j ̸= j′ : Lm

j = 0 and Lm
j′ ̸= 0.

Then
E[(λ′)⊤

ϕ] = E[λ⊤
CV ϕ] + E[x⊤ϕ] = LCV + cLm

j′ ̸= LCV , (1.62)

which is a contradiction.

Lemma 2. Provided that ρ̂ ̸= 1, matrix ˆ︁Vϕ defined as:

ˆ︁Vϕ = σ̂2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I A1
L A2

L . . . A
n
v

−2
L A

n
v

−1
L (A

n
v
L ):,M

A1
U I A1

L
. . . A

n
v

−2
L (A

n
v

−1
L ):,M

A2
U A1

U I
. . . (A

n
v

−2
L ):,M

... . . . . . . . . . . . . . . . ...
A

n
v

−2
U

. . . I A1
L (A2

L):,M

A
n
v

−1
U A

n
v

−2
U

. . . A1
U I (A1

L):,M

(A
n
v
U )M,: (A

n
v

−1
U )M,: (A

n
v

−2
U )M,: . . . (A2

U)M,: (A1
U)M,: (I)M,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.63)

with

• Ai
U = (ρ̂U v)i

• Ai
L = (ρ̂Lv)i

• M = (1, 2, . . . , m)

is invertible and its inverse is given by:

ˆ︁V −1
ϕ = 1

σ̂2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1 ZL 0 . . . 0 0 (0):,M

ZU Z2 ZL
. . . 0 (0):,M

0 ZU Z2
. . . (0):,M

... . . . . . . . . . . . . . . . ...
0 . . . Z2 ZL (0):,M

0 0 . . . ZU Z2 (ZL):,M

(0)M,: (0)M,: (0)M,: . . . (0)M,: (ZU)M,: (Z3)M,M

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.64)

with
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• Z1 = I + ρ̂2

1−ρ̂2 LvU v

• Z2 = I + ρ̂2

1−ρ̂2 (LvU v + U vLv)

• Z3 = 1
1−ρ̂2 I

• ZU = −ρ̂
1−ρ̂2 U v

• ZL = −ρ̂
1−ρ̂2 Lv.

Proof of Lemma 2 To prove this lemma, we check individual sub-matrices of ˆ︁Vϕ
ˆ︁V −1

ϕ to
verify that, together, they indeed constitute an identity matrix:

• [i, i] : i = 1

IZ1 + A1
LZU = I

(︄
I + ρ̂2

1 − ρ̂2 LvU v

)︄
+ ρ̂Lv −ρ̂

1 − ρ̂2 U v

= I

(1.65)

• [i, i] : 1 < i ≤ n
v

A1
UZL + IZ2 + A1

LZU = ρ̂U v −ρ̂

1 − ρ̂2 Lv + I

(︄
I + ρ̂2

1 − ρ̂2 (LvU v + U vLv)
)︄

+ ρ̂Lv −ρ̂

1 − ρ̂2 U v

= I

(1.66)

• [i, i] : i = n
v

+ 1

(A1
U)M,:(ZL):,M + (I)M,M(Z3)M,M = ρ̂(U v)M,:

−ρ̂

1 − ρ̂2 (Lv):,M + (I)M,M
1

1 − ρ̂2 (I)M,M

= −ρ̂2

1 − ρ̂2 (I)M,M + 1
1 − ρ̂2 (I)M,M

= (I)M,M

(1.67)
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• [i, j] : 1 < i ≤ n
v
, j = 1

Ai−1
U Z1 + Ai−2

U ZU = (ρ̂U v)i−2
(︄

ρ̂U v

(︄
I + ρ̂2

1 − ρ̂2 LvU v

)︄
+ −ρ̂

1 − ρ̂2 U v

)︄

= (ρ̂U v)i−2 1
1 − ρ̂2

(︂(︂
ρ̂ − ρ̂3

)︂
U v + ρ̂3U v − ρ̂U v

)︂
= 0

(1.68)

• [i, j] : i = n
v

+ 1, j = 1

(Ai−1
U )M,:Z1 + (Ai−2

U )M,:ZU = (Ai−1
U Z1 + Ai−2

U ZU)M,:

= (0)M,:

(1.69)

• [i, j] : j < i < n
v
, 1 < j ≤ n

v

Ai−j+1
U ZL + Ai−j

U Z2 + Ai−j−1
U ZU =

= (ρ̂U v)i−j−1
(︄

(ρ̂U v)2 −ρ̂

1 − ρ̂2 Lv + ρ̂U v

(︄
I + ρ̂2

1 − ρ̂2 (LvU v + U vLv)
)︄

+ −ρ̂

1 − ρ̂2 U v

)︄

= (ρ̂U v)i−2 1
1 − ρ̂2

(︂
−ρ̂3U2vLv +

(︂
ρ̂ − ρ̂3

)︂
U v + ρ̂3U vLvU v + ρ̂3U2vLv − ρ̂U v

)︂
= 0

(1.70)

• [i, j] : i = n
v

+ 1, 1 < j ≤ n
v

(Ai−j+1
U )M,:ZL + (Ai−j

U )M,:Z2 + (Ai−j−1
U )M,:ZU =

= (Ai−j+1
U ZL + Ai−j

U Z2 + Ai−j−1
U ZU)M,:

= (0)M,: .

(1.71)

The fact that remaining submatrices above the diagonal equal 0 follows from the symmetry
of ˆ︁Vϕ.

Proof of Proposition 2. The proof is provided in Giacomini and White (2006, p. 1575).

Lemma 3. Provided that {Xt} is stationary, plim(ρ̂) ̸= 1, and v = 1, it holds that:

√
n(ˆ︁λACV − λCV )⊤ϕ

p−→ 0 (1.72)
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and ˆ︁λ⊤
ACV

ˆ︁Vϕ
ˆ︁λACV

λ⊤
CV

ˆ︁VϕλCV

p−→ 1. (1.73)

Proof of Lemma 3 To prove this lemma, we first express ˆ︁λACV as function of m, n and
ρ. First let us recapitulate that

ˆ︁λACV = ˆ︁V −1
ϕ B⊤

(︂
B ˆ︁V −1

ϕ B⊤
)︂−1

b (1.74)

and note that for v = 1, the system of restriction B and b representing partition implied
by stationarity is the following:

B =
(︂
1⊤

n ⊗ I, I:,M
)︂

b =
⎛⎝0m

1

⎞⎠ (1.75)

where M = (1, 2, . . . , m).

Consider any ρ̂ ̸= 1, using the Lemma 2, we can express

ˆ︁V −1
ϕ B⊤ = 1

σ̂2

⎛⎜⎜⎜⎜⎝
Z1 + ZL

1n−1 ⊗ (ZU + Z2 + ZL)
(ZU)M,: + (Z3)M,M IM,:

⎞⎟⎟⎟⎟⎠ (1.76)

and furthermore

B ˆ︁V −1
ϕ B⊤ = 1

σ̂2

(︂
Z1 + ZL + (n − 1) (ZU + Z2 + ZL) + I:,M (ZU)M,:⏞ ⏟⏟ ⏞

=ZU

+ I:,M (Z3)M,M IM,:⏞ ⏟⏟ ⏞
= 1

1−ρ̂2 UvLv

)︂

= 1
σ̂2

(︄
n (ZU + Z2 + ZL) + Z1 − Z2 + 1

1 − ρ̂2 U vLv

)︄

= 1
σ̂2 (n (ZU + Z2 + ZL) + U vLv)

= 1
σ̂2

1
1 − ρ̂2

(︂
n
(︂
(1 − ρ̂2)I + ρ̂2(LvU v + U vLv) − ρ̂(U v + Lv)

)︂
+ (1 − ρ̂2)U vLv

)︂
.

(1.77)

39



Under v = 1, the resulting matrix is tridiagonal, in particular:

B ˆ︁V −1
ϕ B⊤ = 1

σ̂2
1

1 − ρ̂2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 c 0 . . . 0 0 0

c a2 c
. . . 0 0

0 c a3
. . . 0

... . . . . . . . . . . . . . . . ...
0 . . . am−1 c 0

0 0 . . . c am c

0 0 0 . . . 0 c am+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

≡Y

(1.78)

with

• a1 = n + 1 − ρ̂2

• aj = (1 + ρ̂2)n + 1 − ρ̂2, 1 < j < m + 1

• am+1 = n

• c = −nρ̂.

Using the results of Usmani (1994) on the inverse of tridiagonal matrices, we know that
the left-most column of Y −1 can be expressed as

(︂
Y −1

)︂
j,m+1

= (−1)j+(m+1) c(m+1)−j θj−1

θm+1
∗ 1

= (nρ̂)m+1−j θj−1

θm+1

(1.79)

with θ0 = 1, θ1 = a1, and θj = ajθj−1 + c2θj−2 with 2 ≤ j ≤ m + 1. In our particular case
it then follows that

θj =

⎧⎪⎪⎨⎪⎪⎩
nj + O(nj−1) 0 ≤ j ≤ m

(1 − ρ̂2)nj + O(nj−1) j = m + 1,
(1.80)

which can be proven by induction as θ0 = 1 and θ1 = n + 1 − ρ̂2 and for 2 ≤ j ≤ m it
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holds that

θj = ajθj−1 + c2θj−2

=
(︂
(1 + ρ̂2)n + 1 − ρ̂2

)︂ (︂
nj−1 + O(nj−2)

)︂
− (−nρ̂)2

(︂
nj−2 + O(nj−3)

)︂
= nj + O(nj−1)

(1.81)

and consequently for j = m + 1

θj = ajθj−1 + c2θj−2

= (n)
(︂
nj−1 + O(nj−2)

)︂
− (−nρ̂)2

(︂
nj−2 + O(nj−3)

)︂
= (1 − ρ̂2)nj + O(nj−1).

(1.82)

Therefore

(︂
Y −1

)︂
j,m+1

= (nρ̂)m+1−j nj−1 + O(nj−2)
(1 − ρ̂2)nm+1 + O(nm)

= ρ̂m+1−jnm + O(nm−1)
(1 − ρ̂2)nm+1 + O(nm)

= ρ̂m+1−j

1 − ρ̂2
1
n

+ O
(︃ 1

n2

)︃
(1.83)

and finally
(︃(︂

B ˆ︁V −1
ϕ B⊤

)︂−1
b
)︃

j
= σ̂2

(︂
1 − ρ̂2

)︂ (︂
Y −1

)︂
j,m+1

= σ̂2ρ̂m+1−j 1
n

+ O
(︃ 1

n2

)︃ (1.84)
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and furthemore using the definitions of Zj, ZU , and ZL

ˆ︁λACV =

⎛⎜⎜⎜⎜⎝
Z1 + ZL

1n−1 ⊗ (ZU + Z2 + ZL)
(ZU)M,: + (Z3)M,M IM,:

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n
ρ̂m + O( 1

n2 )
1
n
ρ̂m−1 + O( 1

n2 )
...

1
n
ρ̂1 + O( 1

n2 )
1
n
ρ̂0 + O( 1

n2 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n
P + ϵ1(n)

1n−1 ⊗

⎛⎝ 1
n

⎛⎝0m

1

⎞⎠+ ϵ2(n)
⎞⎠

1
n
0m + ϵ3(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1.85)

where P =
(︂
ρ̂m, ρ̂m−1, ..., ρ̂1, ρ̂0

)︂⊤
and ϵk for k ∈ {1, 2, 3} is a vector function that is

element-wise O( 1
n2 ).

With the explicit, albeit approximate (up to O( 1
n2 )), expression for ˆ︁λACV , we proceed with

proving the individual claims. Let us denote

λ∆ ≡ ˆ︁λACV − λCV =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n
P + ϵ1(n)

1n−1 ⊗

⎛⎝ 1
n

⎛⎝0m

1

⎞⎠+ ϵ2(n)
⎞⎠

1
n
0m + ϵ3(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎝
1n ⊗

⎛⎝ 1
n

⎛⎝0m

1

⎞⎠⎞⎠
1
n
0m

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1
n

⎛⎝P −

⎛⎝0m

1

⎞⎠⎞⎠+ ϵ1(n)

1n−1 ⊗ ϵ2(n)
ϵ3(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(1.86)

and furthermore

λ⊤
∆ϕ =

m+1∑︂
j=1

(︄(︃ 1
n

ρ̂m+1−j + ϵ1(n)j

)︃
lm,0
j +

n−1∑︂
i=1

ϵ2(n)jl
m,i
j + ϵ3(n)jl

m,n
j 1(j ≤ m)

)︄
⏞ ⏟⏟ ⏞

≡Qj

. (1.87)

Consider any j ∈ {1, 2, ..., m + 1}. From the definition of ϵk(n), k ∈ {1, 2, 3} it follows

42



that ∃C, n0 : ∀n ≥ n0:

0 ≤ |
√

nQj| ≤
√

n

⎛⎝(︃| 1
n

ρ̂m+1−j| + |ϵ1(n)j|
)︃

|lm,0
j |+

n−1∑︂
i=1

|ϵ2(n)j||lm,i
j | + |ϵ3(n)j||lm,n

j |1(j ≤ m)
⎞⎠

≤
√

n
1
n

ρ̂m+1−j|lm,0
j | +

√
n

n−1∑︂
i=1

C
1
n2 |lm,i

j | +
√

nC
1
n2 |lm,n

j |1(j ≤ m)

= 1√
n

ρ̂m+1−j|lm,0
j |⏞ ⏟⏟ ⏞

p−→0

+ 1√
n

C
1
n

n−1∑︂
i=1

|lm,i
j |⏞ ⏟⏟ ⏞

p−→0

+ 1√
n

C
1
n

|lm,n
j |1(j ≤ m)⏞ ⏟⏟ ⏞

p−→0

p−→ 0.

(1.88)

Considering that

−
m+1∑︂
j=1

|
√

nQj| ≤ −|
√

n
m+1∑︂
j=1

Qj| ≤
√

nλ⊤
∆ϕ ≤

m+1∑︂
j=1

|
√

nQj| ≤ |
√

n
m+1∑︂
j=1

Qj| (1.89)

it follows that
√

n(λACV − ˆ︁λCV )⊤ϕ
p−→ 0 (1.90)

via Squeeze theorem. To prove the second claim, note that

ˆ︁λ⊤
ACV

ˆ︁Vϕ
ˆ︁λACV

λ⊤
CV

ˆ︁VϕλCV

= (λCV + λ∆)⊤ ˆ︁Vϕ (λCV + λ∆)
λ⊤

CV
ˆ︁VϕλCV

= λ⊤
CV

ˆ︁VϕλCV + λ⊤
∆
ˆ︁VϕλCV + λ⊤

CV
ˆ︁Vϕλ∆ + λ⊤

∆
ˆ︁Vϕλ∆

λ⊤
CV

ˆ︁VϕλCV

.

(1.91)

Let us denote

ϵ̃1(n) = | 1
n

⎛⎝P −

⎛⎝0m

1

⎞⎠⎞⎠+ ϵ1(n)| (1.92)

e(n) = 1
n

⎛⎝0m

1

⎞⎠ . (1.93)
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From the definition of ϵk(n), k ∈ {1, 2, 3} it follows that ∃C, n0 : ∀n ≥ n0:

nλ⊤
∆
ˆ︁VϕλCV ≤ n|λ⊤

∆|| ˆ︁Vϕ||λCV |

≤ nσ̂2
(︂
(2m + 1)|ϵ̃1(n)|⊤Je(n) + n(2m + 1)|ϵ2(n)|⊤Je(n)

+ (2m + 1)|ϵ3(n)|⊤Je(n)
)︂

≤ nσ̂2(m + 1)
(︃

(2m + 1)C 1
n

1
n

+ n(2m + 1)C 1
n2

1
n

+ (2m + 1)C 1
n2

1
n

)︃
p−→ 0.

(1.94)

Where we utilized the fact that 1
σ̂2
ˆ︁Vϕ can be bounded from above by a block-Toeplitz matrix

with a matrix of ones (denoted by J) on the diagonal and first m sub/super-diagonals.
Similarly for

nλ⊤
∆
ˆ︁Vϕλ∆ ≤ n|λ⊤

∆|| ˆ︁Vϕ||λ∆|

≤ nσ̂2(|ϵ̃1(n)|⊤J |ϵ̃1(n)| + 2(n − 1)|ϵ̃1(n)|⊤J |ϵ2(n)| + (n − 1)2|ϵ2(n)|⊤J |ϵ2(n)|+

+ 2|ϵ̃1(n)|⊤J |ϵ3(n)| + 2(n − 1)|ϵ2(n)|⊤J |ϵ3(n)| + 2|ϵ3(n)|⊤J |ϵ3(n)|)

≤ nσ̂2(m + 1)2(C 1
n

1
n

+ 2(n − 1)C 1
n

1
n2 + (n − 1)2C

1
n2

1
n2 +

+ 2C
1
n

1
n2 + 2(n − 1)C 1

n2
1
n2 + C

1
n2

1
n2 ) p−→ 0.

(1.95)

Utilizing the Squeeze theorem, we obtain nλ⊤
∆
ˆ︁VϕλCV

p−→ 0 and nλ⊤
∆
ˆ︁Vϕλ∆

p−→ 0. By noting
that plim(nλ⊤

CV
ˆ︁VϕλCV ) = const we can invoke Slutsky’s theorem to obtain

ˆ︁λ⊤
ACV

ˆ︁Vϕ
ˆ︁λACV

λ⊤
CV

ˆ︁VϕλCV

= nˆ︁λ⊤
ACV

ˆ︁Vϕ
ˆ︁λACV

nλ⊤
CV

ˆ︁VϕλCV

p−→ 1. (1.96)

Proof of Proposition 3. Applying lemma 3 to the contrasts differential ∆ϕ, it follows
that

√
n(ˆ︁λACV − λCV )⊤∆ϕ

p−→ 0 (1.97)
ˆ︁λ⊤

ACV
ˆ︁V∆ϕ

ˆ︁λACV

λ⊤
CV

ˆ︁V∆ϕλCV

p−→ 1 (1.98)

noting that

tADM ≡ (ˆ︁λACV )⊤∆ϕˆ︁σACV /
√

n
=

√
n(λCV )⊤∆ϕ +

√
n(ˆ︁λACV − λCV )⊤∆ϕ

ˆ︁σCV
ˆ︁λ⊤

ACV
ˆ︁V∆ϕˆ︁λACV

λ⊤
CV
ˆ︁V∆ϕλCV

(1.99)
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and hence via Slutsky’s theorem

plim(tADM) = plim(tDM). (1.100)

Combing this with already established results from Proposition 2, both

tADM
d−→ N(0, 1) (1.101)

and
P (|tADM | > c) −→ 1 (1.102)

immediately follow.

Proof of Proposition 4. The proof is provided in Zhu and Timmermann (2020). Just
note that stationarity of

{︂
∆lm,i

m+1

}︂
follows from the stationarity of {Xt}.

Proof of Proposition 5. From Lemma 3 it follows that ∀k ∈ {1, ..., K}:

plim
(︂√

ñ ˆ︁L(k)
CV

)︂
= plim

(︂√
ñ ˆ︁L(k)

ACV

)︂
. (1.103)

As
√

ñ
(︂ ˆ︁L(1)

CV , ..., ˆ︁L(K)
CV

)︂ d−→ N(0, c2I) (1.104)

where c2 = E[∆lm,i
m+1] + 2∑︁∞

s=1 E[∆lm,i
m+1∆lm,i+s

m+1 ] (see Zhu and Timmermann (2020)), it
then immediately follows that also

√
ñ
(︂ ˆ︁L(1)

ACV , ..., ˆ︁L(K)
ACV

)︂ d−→ N(0, c2I). (1.105)

The rest of the proof coincides with Zhu and Timmermann (2020).

Proof of Proposition 6. Losses of both models are:

Lm
m+1(M1) = E

[︂
(Xm+1 − 0)2

]︂
= E

[︂
(c + ηm+1)2

]︂
= c2 + α0 (1.106)
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Lm
m+1(M2) = E

⎡⎢⎣
⎛⎝Xm+1 − 1˜︂m

˜︁m∑︂
t=1

Xt

⎞⎠2
⎤⎥⎦

= E

⎡⎢⎣
⎛⎝ηm+1 − 1˜︂m

˜︁m∑︂
t=1

ηt

⎞⎠2
⎤⎥⎦

= α0 + 1˜︂mα0 + 2
˜︁m−1∑︂
i=1

˜︂m − i˜︂m2 αi.

(1.107)

By setting
ς = Lm

m+1(M1)
Lm

m+1(M2)
(1.108)

and solving for c, we obtain

c =
⎛⎝ς

⎛⎝α0 + 1˜︂mα0 + 2
˜︁m−1∑︂
i=1

˜︂m − i˜︂m2 αi

⎞⎠− α0

⎞⎠0.5

. (1.109)
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1.8 Estimators

Estimator 1. To estimate parameters ρ and σ2, we utilize the following moment conditions
which relates to variance of contrasts differenced across different shifts x ∈ {0, 1 ..., nv−1}
of the estimation window:17

gx(lm, iv
j , l

m, (i+x)v
j−xv ; σ2, ρ) =

(︂
lm, iv
j − l

m, (i+x)v
j−xv

)︂2
−
(︂
2σ2 − 2σ2ρx

)︂
. (1.110)

We normalize individual moments by the number of pairs of contrasts

Nx = (m + v − xv)
(︂
nv−1 − x + 1

)︂
(1.111)

available and collect them to a single vector function

g(ϕ; σ2, ρ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
N0

∑︁nv−1−0
i=0

∑︁m+v
j=0v+1 g0(lm, iv

j , l
m, (i+0)v
j−0v ; σ2, ρ)

1
N1

∑︁nv−1−1
i=0

∑︁m+v
j=1v+1 g1(lm, iv

j , l
m, (i+1)v
j−1v ; σ2, ρ)

...
1

Nnv−1

∑︁nv−1−nv−1

i=0
∑︁m+v

j=nv−1v+1 gnv−1(lm, iv
j , l

m, (i+nv−1)v
j−nv−1v ; σ2, ρ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (1.112)

The estimates are solution to the following optimization problem:

argmin
σ2,ρ

g(ϕ; σ2, ρ)⊤Wg(ϕ; σ2, ρ) with W = diag(N0, N1, ..., Nnv−1). (1.113)

Instead of the two stage GMM, we weight directly by the precision of each moment to reduce
computational costs. Since parameter σ2 cancels out in the optimal weight computation
(see Algorithm 1), it is possible to further simplify the estimation by normalizing contrasts
beforehand and performing univariate search.

17We also tested moments based on products of contrasts but these tend to exhibit occasional erratic
behavior.
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1.9 Algorithms

Algorithm 1. Our goal is to express

ˆ︁λACV = ˆ︁V −1
ϕ B⊤

(︂
B ˆ︁V −1

ϕ B⊤
)︂−1

b (1.114)

with

B =
(︂
1⊤

n/v ⊗ I, I:,M
)︂

b =
⎛⎝0m

1
v
1v

⎞⎠ (1.115)

and Vϕ as defined in Eq. 1.23 without the need to numerically invert nor store ˆ︁Vϕ, which
is a square matrix of dimension (m + v)n

v
+ m.

Using lemma 2, we can express

ˆ︁V −1
ϕ B⊤ = 1

σ̂2

⎛⎜⎜⎜⎜⎝
Z1 + ZL

1n−1 ⊗ (ZU + Z2 + ZL)
(ZU)M,: + (Z3)M,M IM,:

⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
F1,1

1n−1 ⊗ F1,2

F1,3

⎞⎟⎟⎟⎟⎠ , (1.116)

B ˆ︁V −1
ϕ B⊤ = 1

σ̂2

(︂
Z1 + ZL + (n − 1) (ZU + Z2 + ZL) + I:,M (ZU)M,: + I:,M (Z3)M,M IM,:

)︂
≡ F2

(1.117)

with

• Z1 = I + ρ̂2

1−ρ̂2 LvU v

• Z2 = I + ρ̂2

1−ρ̂2 (LvU v + U vLv)

• Z3 = 1
1−ρ̂2 I

• ZU = −ρ̂
1−ρ̂2 U v

• ZL = −ρ̂
1−ρ̂2 Lv.

This in turn allows us to compute ˆ︁λACV as

ˆ︁λACV =

⎛⎜⎜⎜⎜⎝
F1,1F3

1n−1 ⊗ (F1,2F3)
F1,3F3

⎞⎟⎟⎟⎟⎠ where F3 = (F2)−1 b, (1.118)
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which involves inversion and multiplication of matrices of dimensions no greater than
m + v.
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1.A Supplementary Results

Figure 1.6: A plot of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05 for
τ = 3. Whiskers represent 95% confidence intervals.
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Figure 1.7: A plot of rejection probabilities for DM, IM, ADM, and AIM tests at level 0.05 for
τ = 6. Whiskers represent 95% confidence intervals.

time-series ETS autoARIMA
Period m n time(ϕ) time(ˆ︁LCV ) time(ˆ︁LACV ) time(ϕ) time(ˆ︁LCV ) time(ˆ︁LACV )

Yearly 31.324 6.000 0.201 0.001 0.143 0.559 0.001 0.143
Quarterly 92.254 8.000 4.474 0.001 0.178 1.811 0.001 0.177
Monthly 216.300 18.000 51.619 0.002 0.391 23.717 0.002 0.388
Weekly 1022.039 13.000 4.293 0.003 7.563 7.517 0.003 6.653
Daily 2357.383 14.000 10.986 0.006 109.778 8.475 0.005 104.449

Hourly 853.865 48.000 680.157 0.006 3.285 2747.418 0.006 3.294
All 240.020 12.777 29.193 0.002 4.944 23.707 0.002 4.714

Table 1.4: Comparison of run-times of ˆ︁LCV and ˆ︁LACV . The table displays the mean number of
in-sample and out-of-sample observations m and n, and the mean run-times in seconds needed for

the computation of ϕ, ˆ︁LCV , and ˆ︁LACV .
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time-series ETS autoARIMA
Period Trending Seasonal N MSECV MSEACV ∆MSE [%] MSECV MSEACV ∆MSE [%]

Yearly 23000 97.77 88.81 -9.2*** 103.20 97.54 -5.5***
(2.84) (2.62) (3.38) (3.33)

F F 2214 229.60 215.83 -6.0** 305.21 301.61 -1.2
(15.69) (15.64) (22.34) (22.91)

F T 267 56.98 49.67 -12.8* 57.95 57.13 -1.4
(11.36) (9.56) (16.09) (14.89)

T F 15076 102.14 91.51 -10.4*** 101.06 93.03 -8.0***
(3.52) (3.12) (3.77) (3.63)

T T 5443 34.05 31.59 -7.2*** 29.18 29.00 -0.6
(2.45) (2.29) (2.73) (2.48)

Quarterly 24000 45.85 40.03 -12.7*** 51.48 46.68 -9.3***
(1.79) (1.50) (2.00) (1.81)

F F 1561 140.75 121.14 -13.9*** 153.42 130.69 -14.8**
(12.99) (10.99) (15.17) (12.79)

F T 681 92.94 75.12 -19.2 112.91 100.14 -11.3
(23.19) (15.49) (21.06) (18.33)

T F 14115 45.73 39.64 -13.3*** 48.18 43.56 -9.6***
(2.24) (1.93) (2.13) (1.81)

T T 7643 22.49 21.04 -6.4 31.27 30.53 -2.4
(1.67) (1.52) (3.22) (3.38)

Monthly 48000 27.98 25.77 -7.9*** 29.93 27.61 -7.8***
(0.63) (0.62) (0.70) (0.68)

F F 2574 98.69 81.02 -17.9*** 107.14 91.97 -14.2***
(6.26) (5.45) (6.92) (6.43)

F T 1964 29.62 26.98 -8.9* 33.68 30.22 -10.3**
(2.70) (2.60) (4.15) (3.65)

T F 21613 35.80 33.43 -6.6*** 37.27 34.67 -7.0***
(1.00) (1.04) (1.10) (1.09)

T T 21849 11.78 11.58 -1.7 13.24 12.80 -3.3*
(0.53) (0.53) (0.58) (0.57)

Weekly 359 13.17 9.86 -25.1** 9.90 10.60 7.1
(2.07) (2.04) (1.46) (2.15)

F F 54 24.45 22.62 -7.5 13.05 11.52 -11.7
(7.71) (11.45) (2.72) (2.15)

F T 3 2.44 1.48 -39.3 0.43 0.38 -11.7
(1.41) (0.73) (0.28) (0.20)

T F 257 11.77 7.85 -33.3** 9.81 11.35 15.7
(2.27) (1.44) (1.88) (2.95)

T T 45 8.31 6.58 -20.9 7.26 5.92 -18.4
(3.87) (2.65) (3.11) (2.26)

Daily 4227 4.86 4.66 -4.0 7.75 7.98 3.0
(1.22) (1.26) (2.30) (2.40)

F F 226 4.10 5.37 30.8 5.59 5.60 0.2
(2.82) (4.46) (3.93) (4.38)

F T 19 1.19 1.23 3.7 1.16 1.27 9.8
(0.79) (0.90) (0.83) (0.92)

T F 3535 1.92 1.63 -14.9** 1.89 1.65 -13.1**
(0.52) (0.52) (0.53) (0.54)

T T 447 28.66 28.42 -0.8 55.42 59.59 7.5
(10.64) (10.88) (21.12) (22.03)

Hourly 414 23.89 17.93 -24.9*** 86.50 76.90 -11.1
(3.57) (2.50) (18.51) (19.59)

F F 1 0.97 0.68 -29.7 0.01 0.01 -15.4
( NA) ( NA) ( NA) ( NA)

F T 125 51.78 36.26 -30.0*** 149.95 110.10 -26.6***
(9.40) (5.98) (37.47) (31.12)

T F 5 4.09 4.37 6.7 2.52 2.85 13.1
(3.78) (4.17) (1.93) (2.13)

T T 283 12.00 10.13 -15.5 60.26 63.81 5.9
(2.89) (2.38) (21.26) (25.13)

All 100000 47.27 42.71 -9.7*** 51.18 47.58 -7.0***
(0.84) (0.77) (0.99) (0.95)

Table 1.5: Comparison of ˆ︁LCV and ˆ︁LACV in terms of the loss estimation for forecast horizon τ
up to 3.

∆MSE [%] = MSEACV −MSECV

MSECV
100. Standard errors in brackets,

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.

52



time-series ETS autoARIMA
Period Trending Seasonal N MSECV MSEACV ∆MSE [%] MSECV MSEACV ∆MSE [%]

Yearly 23000 151.91 150.46 -1.0 151.66 154.00 1.5
(3.82) (3.79) (4.20) (4.33)

F F 2214 319.14 321.68 0.8 402.81 415.07 3.0
(20.30) (21.45) (27.49) (28.76)

F T 267 124.49 117.87 -5.3 116.15 118.38 1.9
(23.61) (22.36) (26.05) (24.57)

T F 15076 157.22 154.43 -1.8 149.01 149.57 0.4
(4.72) (4.53) (4.69) (4.78)

T T 5443 70.53 71.44 1.3 58.58 61.82 5.5*
(4.11) (4.23) (3.67) (3.73)

Quarterly 24000 71.74 67.99 -5.2*** 77.85 75.27 -3.3*
(2.54) (2.33) (2.73) (2.68)

F F 1561 208.50 194.95 -6.5 208.44 186.77 -10.4*
(18.54) (17.48) (19.66) (17.54)

F T 681 115.34 104.09 -9.8 136.70 129.78 -5.1
(20.29) (16.94) (23.21) (23.36)

T F 14115 75.65 70.89 -6.3*** 79.94 77.01 -3.7*
(3.43) (3.09) (3.34) (3.18)

T T 7643 32.72 33.50 2.4 42.07 44.42 5.6
(2.20) (2.26) (3.82) (4.35)

Monthly 48000 42.91 40.68 -5.2*** 45.15 43.06 -4.6***
(0.88) (0.88) (0.95) (0.94)

F F 2574 131.07 112.19 -14.4*** 139.13 123.49 -11.2***
(8.06) (7.20) (8.77) (8.30)

F T 1964 37.86 36.00 -4.9 44.71 40.78 -8.8*
(3.61) (3.51) (5.63) (5.10)

T F 21613 57.87 55.29 -4.5*** 58.95 56.52 -4.1***
(1.43) (1.51) (1.51) (1.52)

T T 21849 18.19 18.22 0.2 20.47 20.48 0.0
(0.79) (0.81) (0.86) (0.87)

Weekly 359 18.05 15.17 -16.0* 16.28 18.24 12.0
(2.47) (2.45) (2.59) (3.61)

F F 54 33.16 29.90 -9.8 18.80 16.86 -10.3
(8.83) (11.71) (3.82) (3.16)

F T 3 4.25 3.27 -23.1 6.26 5.47 -12.6***
(1.14) (0.56) (3.36) (3.17)

T F 257 14.99 11.80 -21.2 15.79 18.96 20.1
(2.50) (1.97) (3.32) (4.87)

T T 45 18.36 17.47 -4.8 16.68 16.61 -0.5
(8.32) (7.37) (6.97) (6.52)

Daily 4227 13.12 12.93 -1.5 22.83 23.60 3.4
(3.35) (3.43) (6.14) (6.44)

F F 226 6.66 7.94 19.3 9.10 8.79 -3.5
(3.65) (5.49) (4.97) (5.29)

F T 19 3.28 3.40 3.8 3.51 3.36 -4.2
(2.56) (2.87) (2.46) (2.50)

T F 3535 4.02 3.54 -11.9* 4.08 3.67 -9.8
(1.04) (1.01) (1.08) (1.06)

T T 447 88.81 90.08 1.4 178.95 189.55 5.9
(30.35) (31.10) (56.86) (59.77)

Hourly 414 36.26 32.67 -9.9 106.11 97.04 -8.5
(5.00) (4.10) (20.88) (22.04)

F F 1 1.83 1.18 -35.4 0.01 0.00 -93.3
( NA) ( NA) ( NA) ( NA)

F T 125 81.20 71.84 -11.5 193.90 152.58 -21.3**
(13.45) (10.86) (45.80) (39.93)

T F 5 3.39 2.75 -19.0 3.43 3.63 5.9
(2.73) (2.19) (1.58) (1.65)

T T 283 17.10 16.01 -6.4 69.53 74.50 7.2
(3.72) (3.10) (22.55) (26.91)

All 100000 73.53 71.19 -3.2*** 76.70 75.62 -1.4*
(1.17) (1.14) (1.29) (1.31)

Table 1.6: Comparison of ˆ︁LCV and ˆ︁LACV in terms of the loss estimation for forecast horizon τ
up to 6.

∆MSE [%] = MSEACV −MSECV

MSECV
100. Standard errors in brackets,

∗ ∗ ∗ p < 0.001, ∗ ∗ p < 0.01, ∗ p < 0.05.
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Chapter 2

Unrestricted, Restricted, and Regularized
Models for Forecasting Multivariate Volatility

This chapter was coauthored with Stanislav Anatolyev (CERGE-EI).

Originally published as:
Anatolyev, S., Staněk, F. (2022) "Unrestricted, Restricted, and Regularized Models for
Forecasting Multivariate Volatility", Studies in Nonlinear Dynamics & Econometrics,
2023, 27.2: 199-218.

2.1 Introduction

The knowledge of a covariance matrix of multivariate returns distribution is essential for
many tasks such as portfolio allocation, risk management, derivative pricing, analysis of
financial contagion, and so on. This has led to development of a variety of models for
forecasting covariance matrices such as the constant conditional correlation model (CCC)
of Bollerslev (1990), the dynamic conditional correlation model (DCC) of Engle (2002),
the BEKK model (Engle and Kroner, 1995) and extensions thereof. More recently, with
the machinery allowing the estimation of low frequency volatility from high frequency data
(Andersen et al., 2003; Barndorff-Nielsen and Shephard, 2004), ideas behind these models

55



were translated to realized covariance matrices. The Conditional Autoregressive Wishart
model (CAW henceforth) of Golosnoy et al. (2012) utilizes directly realized volatilities and
co-volatilities and models them via a BEKK-style dynamic equation. Among extensions
of BEKK/CAW are asymmetric BEKK Caporin and McAleer (2014), proximity-based
structured GARCH (Caporin and Paruolo, 2015), threshold CAW Anatolyev and Kobotaev
(2018), and others.

The dynamic equation in these models is constructed to simultaneously attain two,
somewhat conflicting objectives – to accurately capture both temporal and cross-sectional
dependencies in return (co-)volatilities, and to maintain a reasonable model parsimony. In
this regard, both the BEKK and CAW models are available in three variations of different
complexity: a full BEKK/CAW where the law of motion is parameterized by unrestricted
parameter matrices, a diagonal BEKK/CAW where these matrices are set to be diagonal,
and a scalar BEKK/CAW where these matrices are identity matrices multiplied by scalars.
While the full model offers highest flexibility in capturing the data generating process, it
suffers from a curse of dimensionality as the number of parameters determining the law of
motion increases at the rate O(n2) in the number of assets n, which frequently results in
imprecise estimation of model parameters and, as a consequence, in poor out-of-sample
predictive performance. Due to this demerit, researchers frequently opt for the diagonal or
even the scalar model (see e.g.: Caporin and McAleer, 2012; Laurent et al., 2012; Zhipeng
and Shenghong, 2018; Zolfaghari et al., 2020) rather than the full model.

In this chapter, we address the curse of dimensionality present in BEKK/CAW models by
allowing for a smooth transition among differently parameterized models. Namely, we
frame all three existing model variations – full, diagonal, scalar – as special cases of a
regularized full model. The regularized estimator applies a combination of the standard
ridge regularization towards zero (Hoerl and Kennard, 1970) that drives the full model
towards the diagonal model, and the ridge regularization towards homogeneity (Anatolyev,
2020) that drives the diagonal model towards the scalar model. Thus, the regularized
estimator naturally nests all three benchmarks – scalar, diagonal, full – and is hence
capable of optimally selecting among them, or between any of their combinations. This
allows us to assess the optimal degree of cross-sectional dependence or non-homogeneity
that helps forecasting performance.

We perform an extensive battery of out-of-sample forecast evaluations on Noureldin et al.
(2012) data-set of realized stock market co-volatilities of up to ten assets. We trace the
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influence of a number of assets n, as well as other factors affecting forecasting performance,
such as a length of the estimation window and the recency of estimated coefficients relative
to the forecasted period. Furthermore, we analyze the in-sample performance to assess
the degree, to which the additional flexibility of the diagonal and the full model helps to
account for the volatility dynamics.

Our experiments confirm the general superiority of more restricted models. The per-
formance of the full model deteriorates for higher n, while among the scalar, diagonal
and optimally regularized models, the diagonal model seems to be preferred, thought
the evidence is noisy and the margin is small. The regularization does not seem to
bring perceptible improvements indicating that cross-sectional dependencies are of limited
relevance. This can be attributed to a need to tune the regularization intensities, but even
in experiments with non-feasible optimal regularization, one can see that the maximal
achievable gains from regularization tend to be below 1%. Additionally, we observe that
increasing the length of the estimation window does not translate to more precise predic-
tions and that forecasting performance rapidly deteriorates as we increase the distance
between the forecasted period and the window on which parameters are estimated. The
superiority of more parsimonious scalar and diagonal models is also confirmed by analysis
of the in-sample performance. The additional flexibility of the full model delivers only a
very modest reduction of the correlation of transformed residuals.

The remainder of the chapter is structured as follows. Section 2.2 describes the canonical
models as well as the regularized estimator. Section 2.3 presents the empirical evaluation;
Subsection 2.3.1 describes the design of the empirical evaluation, Subsection 2.3.2 presents
results from a battery of out-of-sample forecasting evaluations, and Subsection 2.3.3 assess
the in-sample performance. Section 2.4 concludes. The Appendix contains tables and
figures with supplementary results.

2.2 Methodology

2.2.1 Canonical Models

Let us consider n assets living through time periods t = 1, . . . , T , and let Ft denote
observable information at t. The BEKK model (Engle and Kroner, 1995) describes
evolution of conditional second moments of the n-vector of returns, while the CAW
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model (Golosnoy et al., 2012) describes evolution of its conditional first moments of the
n × n-matrix of realized co-volatilities. However, the structure of their dynamic equations
for the object of interest is the same. This object of interest is a matrix Rt ∈ Rn2 that
represents, in the case of BEKK, the outer product of demeaned returns, and in the case
of CAW, the realized co-volatility matrix.

The BEKK/CAW model postulates the following law of motion for the conditional
expectation of Rt denoted St = E [Rt|Ft−1]. The canonical BEKK(p, q)/CAW(p, q) model
reads

St = CC⊤ +
q∑︂

i=1
AiRt−iAi

⊤ +
p∑︂

i=1
BiSt−iBi

⊤. (2.1)

Here, in the case of the BEKK model, Rt = (rt − µ) (rt − µ)⊤ , and rt|Ft−1 ∼ N (µ, St) is
a vector of n returns. In the case of the CAW model, Rt is a realized volatility matrix
computed from high frequency data, Rt|Ft−1 ∼ Wn (v, St/v), where Wn (v, S) represents
an n-dimensional Wishart distribution with v degrees of freedom and a scale matrix S.

The lower-triangular parameter matrix C ∈ Rn2 and general parameter matrices Ai ∈ Rn2

and Bi ∈ Rn2 determine the law of motion for volatility and are to be estimated along with
the other parameters.1 This specification offers several advantages. First, it guarantees,
by construction, the positive semidefinitness and symmetry of volatility predictions St

without requiring parameter restrictions on matrices {C, {Ai}q
i=1 , {Bi}p

i=1}. Second, in
its most general form, it allows one to model various dependencies between the current
volatility and past innovations or past volatility predictions across different assets through
the off-diagonal elements of matrices Ai or Bi, respectively.

In practice, however, restrictions on parameters are frequently made in order to reduce
the estimation noise at the cost of more probable misspecification. The most commonly
used model variations are the following (the abbreviations corresponding to the CAW
class):

1. fCAW: the full model with general parameter matrices: Ai ∈ Rn2 for 1 ≤ i ≤ q and
Bi ∈ Rn2 for 1 ≤ i ≤ p, resulting in n2(p + q) = O(n2) parameters in matrices A

and B.

2. dCAW: the diagonal model with zero restrictions on the off-diagonal elements: Ai =
1We maintain the standard assumption that the intercept matrix C is populated by 1

2n(n + 1)
parameters (Engle and Kroner, 1995; Golosnoy et al., 2012). For unique parameter identification, it is
conventional and convenient to restrict all the diagonal elements of C and the first diagonal elements of
all matrices Ai and Bi to be positive (Engle and Kroner, 1995).
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dg {ai,1, ai,2, . . . , ai,n} for 1 ≤ i ≤ q and Bi = dg {bi,1, bi,2, . . . , bi,n} for 1 ≤ i ≤ p,
resulting in n(p + q) = O(n) parameters in matrices A and B.

3. sCAW: the scalar model with zero restrictions on the off-diagonal elements and
equality restrictions across the diagonal elements: Ai = aiIn for 1 ≤ i ≤ q and
Bi = biIn for 1 ≤ i ≤ p, resulting in p + q = O(1) parameters in matrices A and B.

While the full BEKK/CAW offers highest flexibility, it is rarely used in practice due to its
excessive parametrization – for example, the full CAW(1, 1) model with 10 assets requires
estimation of 256 parameters. Instead, researchers frequently opt for the diagonal or even
scalar models.

2.2.2 Regularized Model

Maximum Likelihood Estimation

The parameters of equation (2.1) are estimated by the method of maximum likelihood.
Let us denote the model parameters by θ, and the log-likelihood for one observation by
ℓℓt. Then, θ = {C, {Ai}q

i=1 , {Bi}p
i=1 , µ} for the BEKK, and θ = {C, {Ai}q

i=1 , {Bi}p
i=1 , v}

for the CAW. The likelihood for observation t is

ℓℓt = log
(︃

(2π)− k
2 |St|−

1
2

)︃
− 1

2tr
(︂
S−1

t Rt

)︂

for the BEKK, and

ℓℓt = log

⎛⎜⎝ |Stv
−1|− v

2 |Rt|
v−n−1

2

2 vn
2 π

n(n−1)
4

∏︁n
i=1 Γ

(︂
v+1−i

2

)︂
⎞⎟⎠− 1

2tr
(︂
vS−1

t Rt

)︂

for the CAW. The maximum likelihood estimator solves the optimization problem

ˆ︁θML = arg max
θ

T∑︂
t=1

ℓℓt (2.2)

subject to the evolution equation (2.1) and possibly additional parameter restrictions listed
in subsection 2.2.1. The fCAW/fBEKK, dCAW/dBEKK and sCAW/sBEKK estimates
emerge depending on which additional constraints are imposed.
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Penalized Estimation

Regularization augments the log-likelihood in the optimization problem (2.2) by two
ridge-type (i.e., relative to the L2-norm) penalty terms.2 The first penalty punishes for
deviations of the off-diagonal elements from the zero value, providing regularization of
fBEKK/fCAW towards dBEKK/dCAW corresponding to classical “ridging towards zero”
(Hoerl and Kennard, 1970):

τf =
q∑︂

i=1

n∑︂
j=1

n∑︂
k ̸=j

A2
i,j,k +

p∑︂
i=1

n∑︂
j=1

n∑︂
k ̸=j

B2
i,j,k. (2.3)

The second penalty punishes for deviations of the diagonal elements from the common
value, providing regularization of dBEKK/dCAW towards sBEKK/sCAW corresponding
to “ridging towards homogeneity” (Anatolyev, 2020):

τd =
q∑︂

i=1

n∑︂
j=1

(︄
Ai,j,j − 1

n

n∑︂
k=1

Ai,k,k

)︄2

+
p∑︂

i=1

n∑︂
j=1

(︄
Bi,j,j − 1

n

n∑︂
k=1

Bi,k,k

)︄2

. (2.4)

This results in the following regularized maximum likelihood estimator:

ˆ︁θRML = arg max
θ

T∑︂
t=1

{︂
ℓℓt − λfτf − λdτd

}︂
(2.5)

subject to the evolution equation (2.1). The hyper-parameters λf and λd control the degree
of regularization applied to the off-diagonal and diagonal matrix elements, respectively:
λf is the intensity of ridging of fBEKK/fCAW towards dBEKK/dCAW, and λd is the
intensity of ridging of dBEKK/dCAW towards sBEKK/sCAW.

This specification naturally nests the full BEKK/CAW (λd = 0, λf = 0), the diagonal
BEKK/CAW (λd = 0, λf → ∞), and the scalar BEKK/CAW (λd → ∞, λf → ∞). Apart
from these three extreme cases, it also allows for intermediate states. We abbreviate this
model and technique corresponding to the BEKK/CAW class by rBEKK/rCAW, where
‘r’ stands for ‘regularized’.

2Another option would be LASSO (L1) regularization. While we did not experiment with this scheme,
we anticipate that the results would be qualitatively similar to ridge regression, as LASSO and ridge
often exhibit comparable behavior in terms of prediction accuracy in high-dimensional settings (see, e.g.,
Kim, 2014; Pereira et al., 2016).
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Feasible Penalization

In practice, the hyper-parameters λd and λf are not known ex-ante and need to be
tuned. We follow the usual tradition and select them a via fixed scheme time-series
cross-validation (see Clark and McCracken, 2013a): given a pair of candidate values of
hyper-parameters λd ∈ Λd = {λd,1, λd,2, . . . , λd,kd

} and λf ∈ Λf = {λf,1, λf,2, . . . , λf,kf
},

the model is estimated on a window of data {1, 2, . . . , T0}, and then evaluated on the
remaining {T0 + 1, T0 + 2, . . . , T} observations using a desired loss function; we use the
Stein loss (see Section 2.3). The optimal values of hyper-parameters are selected so that
they minimize the loss incurred in the validation sample {T0 + 1, T0 + 2, . . . , T}.

As computational complexity of large scale numerical optimization unfortunately makes
an exhaustive grid search for optimal values of λd and λf impractical even for moderately
sparse sets Λd and Λf , we opt for a sequential search for the optimal hyper-parameters,
starting with Λd and only then proceeding to Λf . Furthermore, one is able to further
reduce the run-time of numerical optimizations by sorting the sets Λd and Λf in descending
order and then proceeding so that the parameters estimated for λd,i (respectively, λf,i)
form a starting point of numerical optimization for λd,i+1 (respectively, λf,i+1), effectively
tracing the optimal ˆ︁θ as an approximately continuous function of λd (resp. λf) rather
than performing a search along a long optimization path from a common starting point.
This procedure is analogous to the practice of using estimates of more restricted models of
BEKK as starting values for more flexible models (Engle and Kroner, 1995) but applied to
a gradually changing degree of regularization rather than the extreme models themselves.
These measures make the regularized estimator not too much more computationally
expensive than the standard full BEKK/CAW.

Moreover, the fact that optimization on a less constrained parameter space utilizes solutions
found in a more restricted space as starting points reduces the possibility of converging to a
sub-optimal local maximum, an understandable concern given the scale of our optimization
problems. This is so because, by design, optimization in the less constrained parameter
space cannot ever attain a worse solution than the best solution already found in the
more restricted space including that of the most parsimonious sBEKK/sCAW, effectively
ruling out a whole range of potential sub-optimal local maxima.3

3A MATLAB package building upon the MFE toolbox (Sheppard, 2013) implementing the regularized
estimator for both BEKK and CAW is available at https://github.com/stanek-fi/RMV.
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2.3 Empirical Evaluation

2.3.1 Evaluation Design

Throughout this section, we restrict our attention to volatility modeling via the CAW
class of models for realized covariance matrices. The results for BEKK are qualitatively
similar; these results are available upon request. The main reason of focusing on the CAW
class is a wide availability of high frequency return data for modeling realized variances,
whose use generally improves forecast precision relative to GARCH-type models (see, e.g.,
Andersen et al., 2003; Golosnoy et al., 2012). In addition, the use of models for realized
volatility allows higher quality evaluation of forecasts as realized volatility is observable.
Furthermore, we set q = p = 1 as that represents arguably the most commonly used model
specification and because it also reduces computational burden.

Let ˆ︁Rt be a forecast of Rt made in the previous period. The Stein loss (James and Stein,
1961) that we exploit here for forecast evaluation,

LS

(︂
Rr, ˆ︁Rt

)︂
= tr

(︂ ˆ︁RtRr

)︂
− log

(︂
det

(︂ ˆ︁RtRr

)︂)︂
− n,

is coherent with the Wishart likelihood and is robust to volatility measurement in the
sense of Patton (2011). Along with the Stein loss, we exploit the Frobenius loss function

LF

(︂
Rr, ˆ︁Rt

)︂
= tr

(︃(︂
Rr − ˆ︁Rt

)︂(︂
Rr − ˆ︁Rt

)︂⊤
)︃

.

This is (along with a very similar Euclidean loss, see Laurent et al., 2012) a multivariate
extension of the quadratic loss in the scalar case, and is also robust in the sense of Patton
(2011). Among the two, the Stein loss generally exhibits less erratic behavior hence
allowing us to draw finer conclusions.4

We use the popular realized stock market volatility data-set from Noureldin et al. (2012)
covering 10 stocks (BAC, JPM, IBM, MSFT, XOM, AA, AXP, DD, GE, KO) from
2001-02-01 to 2009-12-31. In order to attain maximal external validity and to explore
different factors which might affect forecasting performance, we employ the following
experimental design, which also reflects on practitioners’ decisions to employ training
samples of arbitrary sizes. For each of n ∈ {2, 3, . . . , 10}, 4 distinct combinations of stocks

4We report the results for the Stein loss in the main text, and those for the Frobenius loss in the
Appendix.
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of size n are randomly selected (except the case n = 10 when only one combination is
available). For each combination, training windows of sizes T ∈ {2, 2.5, 3, 3.5, 4, 4.5, 5}
years5 are rolled through the sample with increment 0.5 year. For each position of the
window, a day ahead forecasts for the following 0.5 year are produced via estimated
scalar, diagonal, full, and regularized CAW (recall the acronyms sCAW, dCAW, fCAW
and rCAW, respectively). Finally, the quality of the forecasts is measured via the Stein
and Frobenius losses, and significance of the observed differences is tested via model
confidence sets (MCS) (Hansen et al., 2011). This setting assures a substantial variation
in both the estimation and evaluation data as well as in the assets under consideration.
In the case of rCAW, the regularization hyper-parameters λd and λf are selected from
Λd = Λf = {κ1, · · · κ8}, where κi =

(︂
exp(2(i − 1)) − 1

)︂
/10 for i = 1, . . . , 7 and κ8 = ∞,6

by evaluation on the validation set – the last 0.5 year of data in the training window. The
optimization itself is performed via a Newton-type optimizer with constraints accounted
for with the use of an active-set method. The optimality tolerance is set to 10−6 to
minimize the possibility of premature termination in almost flat regions of the objective
function. To reduce computational requirements, the BFGS algorithm suitable for large
scale problems such as this one is utilized in computation of Hessian updates.

2.3.2 Out-of-Sample Performance

As can be seen in Figure 2.1 displaying the average volatility alongside the average
performance of individual models and the selected λd and λf , the data-set spans two
volatile periods – the US stock market downturn of 2002 and the US housing crisis – as
well a relatively calm period from 2003 to 2007. Clearly, the out-of-sample performance
of all models as measured by the Stein loss deteriorates during the volatile housing crisis.
This is especially true for the fCAW whose relative performance, as measured by the ratio
of out-of-sample Stein loss (with the rCAW being the benchmark) and the average ranking
among the models, deteriorates when trained or evaluated on highly volatile periods.

This fact is also mirrored by the optimal hyper-parameters λd and λf selected, as we
can see that more stringent regularization is being chosen during the US housing crisis

5Due to space considerations, we choose not to display separate results for estimation windows of
non-integer sizes T ∈ {1.5, 2.5, 3.5, 4.5} years, thou they still do enter aggregate computations. Results
for these intermediate window lengths are, as expected, intermediate, and are available upon request.

6This scale was purposefully chosen so that it allows for very mild up to stringent penalties. The
cases λd = ∞ or λf = ∞ are implemented via corresponding restrictions on the likelihood maximization
problem.
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Figure 2.1: The three upper panels display the out-of-sample Stein loss, ratio of Stein losses
(where rCAW is the benchmark), average ranking (with 1 indicating the best model and 4 the
worst model), for individual models as a function of time. The three lower panels display the

optimal regularization hyper-parameters λd and λf selected, alongside with the average realized
volatility, as a function of time.

64



whereas less stringent regularization corresponding to lower λd (respectively, λf ) is being
chosen whenever dCAW (respectively, fCAW) performs notably well (e.g., during the 2003-
2007 tranquil period). This variability over time indicates that possible cross-sectional
dependencies might not be stable. Overall, however, we see that complete (κ8) or very
stringent regularization (κ7) are most frequent for both the diagonal and off-diagonal
elements.

Figure 2.2 displays in-sample and out-of-sample Stein losses for individual models relative
to the loss of rCAW. As to be expected, more parameterized models achieve better
in-sample performance, especially pronounced when the estimation window is short (which
presumably reflects higher within-window stability). However, the magnitude of the
observed differences between individual models is relatively small; for estimation windows
larger than or equal to three years, it is generally within 1%. As for the rCAW, which
optimally selects the degree of parameterization, the in-sample fit is comparable to that of
the dCAW. With regard to the out-of-sample Stein losses, the sCAW, dCAW, and rCAW
perform similarly (well within 1%), outperforming the much more parameterized fCAW
on average by 1%–6%, depending on a length of the training window.

To be able to discern these relatively small differences between the sCAW, dCAW, and
rCAW, Tables 2.1 and 2.2 provide a more detailed assessment of the out-of-sample
performance broken down to individual combinations of the number of assets n and the
training window length T . Table 2.1 depicts the average ranking of individual models
as measured by the Stein loss. The average ranking of all the three models is in the
neighborhood of 2.1, though slightly favoring the dCAW over the rCAW and sCAW, with
the difference being somewhat more sizable for longer training windows. Table 2.2 depicts
the frequency of rejection via the MCS at the 5% level for individual models, thus focusing
on how often the models perform notably badly. According to this measure, the dCAW
seems to be a slightly safer option relative to the sCAW or rCAW for situations with
more assets and longer estimation windows, though it should be noted that the evidence
is again not entirely conclusive. The most flexible fCAW model is, on average, rejected in
more than half of the cases.

The fact that rCAW largely fails to outperform dCAW, merely matching its performance,
can be attributed to two factors. First, it appears that sCAW and dCAW perform
similarly without much gain obtained via optimal selection of λd. With respect to λf , the
performance appears to quickly decline as we move towards less stringent regularization
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with no apparent intermediate region of improved performance relative to dCAW. In
order to see this, we have performed an additional experiment. Figure 2.3a depicts the
performance of sCAW and dCAW relative to the performance of non-feasible optimally
diagonally regularized dCAW, with λd chosen to be ex-post optimal in terms of loss.
The maximal achievable gains from diagonal regularization are generally below 1%.
Furthermore, the potential gains from regularization of off-diagonal elements relative to
dCAW are well bellow 0.3% as can be seen from Figure 2.3b depicting the performance of
dCAW and fCAW relative to the performance of the unfeasible optimally off-diagonally
regularized fCAW. Clearly, the off-diagonal regularization, no matter how stringent, fails
to substantially improve dCAW even when we abstract from tuning the optimal λf .

Second, the quickly changing nature of the process (see Figure 2.1) makes it difficult to
choose the optimal λd and λf and hence reap the already small improvements stemming
from regularization as displayed in Figures 2.3a and 2.3b.

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.15 2.14 1.97 2.15 1.92 1.86 1.87 1.88 1.89 1.98
3y 2.43 2.33 2.41 2.26 2.13 2.00 2.05 2.15 2.05 2.21
4y 2.53 2.42 2.38 2.43 2.35 2.29 2.22 2.27 2.11 2.35
5y 2.70 2.52 2.43 2.75 2.71 2.55 2.39 2.28 2.36 2.52
all 2.431 2.305 2.299 2.371 2.224 2.157 2.152 2.135 2.129 2.25

(a) sCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.26 2.14 2.28 1.94 2.02 2.19 2.10 2.05 2.00 2.11
3y 2.26 2.23 2.25 2.11 2.07 2.23 2.09 2.02 1.91 2.14
4y 2.28 2.22 2.22 2.03 2.03 1.97 1.94 2.07 2.00 2.09
5y 2.14 2.14 2.21 1.89 1.82 1.68 1.68 1.59 1.57 1.87
all 2.283 2.249 2.291 2.032 1.95 2.071 1.993 1.955 1.943 2.09

(b) dCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 3.30 3.46 3.56 3.68 3.92 3.85 4.00 3.96 4.00 3.75
3y 2.76 3.18 3.30 3.46 3.84 3.73 3.89 3.88 3.91 3.54
4y 2.39 2.94 3.11 3.28 3.42 3.64 3.69 3.56 3.67 3.28
5y 2.50 2.89 2.96 3.14 3.18 3.36 3.57 3.59 3.57 3.18
all 2.699 3.112 3.245 3.378 3.667 3.657 3.8 3.754 3.771 3.45

(c) fCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.30 2.26 2.19 2.23 2.14 2.11 2.04 2.11 2.12 2.16
3y 2.55 2.26 2.05 2.17 1.97 2.05 1.98 1.96 2.14 2.11
4y 2.81 2.42 2.29 2.26 2.21 2.10 2.14 2.10 2.22 2.28
5y 2.66 2.45 2.39 2.21 2.29 2.41 2.36 2.55 2.50 2.42
all 2.587 2.334 2.165 2.219 2.159 2.114 2.055 2.156 2.157 2.22

(d) rCAW

Table 2.1: Average ranking of individual models in terms of out-of-sample Stein loss (1 indicates
the best model, 4 indicates the worst model) for combinations of a number of assets n and length

of the estimation window T .

The factorial design of our experiments also allows us to address questions regarding
the optimal length of the estimation window and frequency with which the model needs
to be re-estimated. This is especially relevant because researchers, possibly due to
computational limitations associated with high dimensional optimization, frequently opt
for a fixed forecasting scheme (see eg. Lucheroni et al., 2019; Asai et al., 2020), in which
case a single estimated model is used throughout the whole out-of-sample period.

With respect to the former question (the optimal length of the estimation window), the
upper panel of Figure 2.4 depicts the out-of-sample Stein losses for different estimation
window lengths relative to the loss, which would be achieved if the estimation window
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Figure 2.2: Ratios of in-sample (the upper panel) and out-of-sample (the lower panel) Stein losses
of individual models (rCAW is the benchmark represented by the horizontal line) plotted for

different combinations of a number of assets n and length of the estimation window T .

length was equal to a benchmark of 2 years for the given out-of-sample part of the data
and the combination of assets. In line with expectations, for the fCAW, the ratios of
losses are generally below 1 implying that increasing the estimation window length leads
to a more precise forecast. However, for the dCAW and especially for the rCAW and
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(a)

(b)

Figure 2.3: Ratios of Stein losses of individual models and the loss which would be achieved
under the ex-post optimal regularization parameter λd (a) and λf (b) (benchmark, represented by
the horizontal line) plotted for different combinations of a number of assets n and length of the

estimation window T .

sCAW, increasing the estimation window length does not lead to a better forecasting
performance; in fact, it somewhat worsens it (in the case of the sCAW, on average by
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n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.09 0.16 0.12 0.14 0.18 0.17 0.19 0.14 0.15 0.15
3y 0.12 0.18 0.16 0.23 0.18 0.25 0.25 0.27 0.27 0.21
4y 0.19 0.14 0.14 0.17 0.17 0.19 0.25 0.28 0.11 0.19
5y 0.14 0.11 0.14 0.18 0.39 0.25 0.21 0.27 0.29 0.22
all 0.13 0.159 0.151 0.187 0.226 0.221 0.232 0.234 0.214 0.20

(a) sCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.23 0.16 0.36 0.26 0.29 0.37 0.39 0.28 0.31 0.29
3y 0.19 0.11 0.21 0.23 0.11 0.14 0.16 0.18 0.18 0.17
4y 0.31 0.14 0.17 0.17 0.14 0.19 0.19 0.22 0.22 0.19
5y 0.18 0.04 0.11 0.00 0.11 0.04 0.07 0.00 0.00 0.06
all 0.249 0.137 0.212 0.183 0.14 0.186 0.2 0.191 0.186 0.19

(b) dCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.47 0.52 0.64 0.76 0.88 0.89 0.89 0.92 0.92 0.77
3y 0.24 0.41 0.52 0.68 0.73 0.73 0.77 0.85 0.91 0.64
4y 0.25 0.31 0.33 0.50 0.67 0.67 0.83 0.78 0.89 0.57
5y 0.11 0.25 0.43 0.43 0.57 0.46 0.64 0.63 0.57 0.46
all 0.268 0.39 0.464 0.59 0.703 0.704 0.771 0.809 0.829 0.61

(c) fCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.34 0.28 0.36 0.32 0.35 0.29 0.33 0.27 0.23 0.31
3y 0.21 0.21 0.11 0.21 0.21 0.16 0.18 0.21 0.36 0.19
4y 0.28 0.22 0.14 0.19 0.22 0.25 0.28 0.37 0.44 0.26
5y 0.14 0.14 0.14 0.29 0.36 0.25 0.36 0.42 0.43 0.28
all 0.249 0.22 0.187 0.216 0.262 0.225 0.25 0.282 0.314 0.24

(d) rCAW

Table 2.2: Frequency of rejection of individual models via the MCS for the Stein loss at the 5%
level for combinations of a number of assets n and length of the estimation window T .

0.27% per additional year of the estimation window). This counter-intuitive behavior
may be attributed to changes of the data generating process, which penalize utilization of
more distant data points during estimation.

With respect to the latter question (the importance of re-estimation), the lower panel of
Figure 2.4 depicts the average Stein loss for individual out-of-sample observations with
different distance from the end of the estimation window relative to the average Stein
loss over the whole out-of-sample period.7 Clearly, one-day-ahead forecasts made for the
periods immediately following the estimation window are substantially better compared to
day-ahead forecasts made for more distant periods. This effect is sizable averaging to 22%
per year, completely dwarfing any differences that are observed among the sCAW, dCAW
and rCAW. The effect is stronger for more parameterized models such as the fCAW and
for larger numbers of assets n. Again, this indicates that the data generating process may
be changing, and/or that CAW-type models are likely to merely locally approximate the
process rather than to correctly describe it globally.

2.3.3 In-Sample Performance

In the previous subsection, we compare the models in terms of their out-of-sample
predictive performance as it is admittedly the single most relevant factor for practitioners.
The ranking of the models in terms of their in-sample performance, on the other hand, is
evident given their nested nature. Nonetheless, the assessment of in-sample performance
still serves a valuable role. While none of the models, not even the fCAW, can be reasonably

7The outlier period 2007-02-27 was removed from this analysis, as its relative value exceeds the sample
standard deviation by approximately ten times, heavily skewing the results.
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Figure 2.4: The upper panel displays ratios of out-of-sample Stein loss for lengths of estimation
window {3, 4, 5} years and the loss for the estimation window of only 2 years (benchmark

represented by the horizontal line) plotted for different combinations of a number of assets n and
individual models. The lower panel displays ratios of the average Stein loss for individual

out-of-sample observations with different distance from the end of the estimation window and the
average loss over the whole out-of-sample period (benchmark represented by the horizontal line)

plotted for different combinations of a number of assets n and individual models.
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expected to describe the data generating process perfectly in all its complexity, comparing
the in-sample performance of individual models offers valuable insights regarding the
poor forecasting performance of fCAW and the incapability of rCAW to deliver a superior
performance relative to sCAW and dCAW. More flexible models such as the fCAW should
explain the data generating process notably better than the sCAW to justify hundreds of
its additional parameters. Similarly, allowing for non-zero, albeit shrinked, off-diagonal
parameters in the case of rCAW is beneficial only to the extent to which these parameters
can actually genuinely help to explain the real volatility dynamics.

To assess the in-sample performance, we employ the extended Bartlett decomposition
method for Wishart processes as proposed in Alfelt et al. (2020). In particular, we compute

Ut =
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where Qt is the re-scaled matrix of errors and Ut is its lower-triangular Cholesky root. We
then compute transformed errors

et,i,j =

⎧⎪⎪⎨⎪⎪⎩
Ut,i,j for j < i

Φ−1
(︂
FΓ( v−i+1

2 ,2) ((Ut,i,j)2)
)︂

for j = i
(2.7)

and collect them to a single vector

et = (et,1,1, ..., et,n,1, et,2,2, ..., et,n,n)⊤ . (2.8)

As shown in Alfelt et al. (2020), if the model is correctly specified, the errors are IID
standard normal, i.e., et ∼ N (0k, Ik) with k = n(n + 1)/2. This convenient decomposition
allows us to separately assess how well CAW models account for different features of the
data generating process; an auto-correlation of et signals misspecification of the law of
motion for St, whereas a violation of et ∼ N (0k, Ik) signals deviations from the assumed
Wishart distribution and/or systematic prediction errors.

Table 2.3 displays average rejection rates across different window locations for selected
tests performed on et. In this exercise, the estimation window is set to T = 5 years to
obtain the largest possible power and the number of stocks is set to n = 10 to maximize
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the potential difference between the sCAW, dCAW and fCAW. Furthermore, we omit
results for the rCAW as the regularization is not justified when only the in-sample fit is
considered. For sCAW, dCAW and fCAW alike, all test (with the exception of t-test for
H0 : E[et] = 0k) reject the hypothesis that the data are consistent with the CAW(1, 1)
model; the et exhibits an excess variance, non-normality, and temporal correlations.
Considering the long estimation window and the power of these tests, these findings are
not surprising. CAW model rarely perfectly explain the observed data; in-sample errors
are often auto-correlated (Golosnoy et al., 2012; Alfelt et al., 2020), and inconsistent
with the assumption of Wishart distribution (Alfelt et al., 2020), with only the test
of H0 : E[et] = 0k usually exhibiting rejection rates close to 0 (see Alfelt et al., 2020).
Moreover, similar results are likely to be observed even when considering higher order
CAW models; in Golosnoy et al. (2012), increasing the model order from CAW(1, 1) to
CAW(3, 3) leads to a non-rejection of only one additional error auto-correlation (out of
15).

H0 : E[et] = 0k V ar(et) = Ik et ∼ N (µ, Σ) et ⊥⊥ et′

sCAW 0.571 1.000 1.000 1.000
dCAW 0.714 1.000 1.000 1.000
fCAW 0.000 1.000 1.000 1.000

Table 2.3: Average rejection rates at p = 0.01 across different window locations.
For each window location, null hypotheses were tested via the t-test, chi-squared test, Anderson
and Darling (1952) normality test, and multivariate Box and Pierce (1970) auto-correlation test

(with ⌊log(5 ∗ 252)⌋ = 7 lags), respectively.

To better assess the in-sample fit of different models, we also perform tests on individual
elements et,i,j rather than on the whole vector et, see Table 2.4. Despite its 198 additional
parameter relative to the sCAW, the fCAW does not deliver a markedly better in-sample
fit. It exhibits comparable rejection rates to the sCAW for all considered tests with
the exception of the univariate Box and Pierce (1970) test, where it offers a modest
8.6% reduction of the rejection rate. This shows that non-zero off-diagonal elements of
parameter matrices A and B generally fail to explain the residual error dependencies.
Interestingly however, errors et,i,j from the fCAW exhibit a smaller kurtosis relative those
of the sCAW (35.8 vs 42.2), as can be seen in Figure 2.7 in Appendix. This is indicative
of the fact that off-diagonal elements of parameter matrices A and B are used to better
accommodate outliers in the estimation window rather than to genuinely model the law
of motion for volatility. This also likely explains the poor performance of the fCAW, and
by extension, also the incapability of the optimal regularized rCAW to outperform the
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sCAW and dCAW.

H0 : E[et,i,j ] = 0 V ar(et,i,j) = 1 et,i,j ∼ N (µ, σ2) et,i,j ⊥⊥ et′,i,j Cov(et,i,j , et,i′,j′ ) = 0

sCAW 0.125 0.987 0.699 0.847 0.176
dCAW 0.109 0.987 0.714 0.875 0.177
fCAW 0.117 0.987 0.688 0.761 0.168

Table 2.4: Average rejection rates at p = 0.01 across different window locations and i, j.
For each window location and combination of i, j, null hypotheses were tested via the t-test,

chi-squared test, Anderson and Darling (1952) normality test, univariate Box and Pierce (1970)
auto-correlation test (with ⌊log(5 ∗ 252)⌋ = 7 lags), and t-test for correlation, respectively.

2.4 Conclusions

We perform an extensive forecasting experiment examining the performance of the sCAW,
dCAW, fCAW, and the regularized version thereof, rCAW, which nests all three via
ridge-type regularization towards zero and towards homogeneity. The results confirm
the poor predictive performance of the fCAW relative to more restricted models. The
performance of the sCAW and dCAW is comparable, slightly favoring the dCAW. The
optimal amount of regularization in the rCAW does not seem to bring any tangible
improvements in terms of forecasting performance, irrespective of how precise is tuning of
regularization intensity. This indicates that the cross-sectional volatility dependence is
not a major factor, at least as far as the forecasting performance is concerned.

Further analysis shows that for the sCAW and dCAW, increasing the length of the
estimation window typically does not lead to a better forecasting performance; oftentimes,
the converse is true. Furthermore, we observe a very quick performance deterioration
when one-day-ahead forecast are made using a model estimated on more distant segments
of data, indicating possible model misspecification and/or changes in the data generating
process. Overall, based on the results, we would recommend to perform multivariate
volatility forecasting via diagonal variants of volatility models estimated on a short rolling
window, to achieve the best forecasting performance.

While we have performed all experiments with the canonical CAW(1,1) model, we con-
jecture that the tendencies we have discovered also carry over to other models with a
similar structure of the dynamic volatility equation – more general CAW and BEKK mod-
els, various extensions thereof (Caporin and Paruolo, 2015; Caporin and McAleer, 2014;
Anatolyev and Kobotaev, 2018), and extensions with a block structure, these tendencies
being applicable for blocks of assets.
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There are several possible avenues for future research. A natural extension would be to
validate these results using a wider universe of assets and more recent data. While our
dataset from 2001-02 to 2009-12 covers the global financial crisis of 2007-2009, it would be
valuable to examine whether the subpar performance of more complex models extends to
the COVID-19 market crash in 2020 and the turbulent period in 2022. Another interesting
direction would be to investigate the impact of regularization on the performance of BEKK-
X type models with exogenous variables xt ∈ Rk, which are commonly appended to the
modeling equation in the form Dxt−1x

⊤
t−1D

⊤ (see Engle and Kroner, 1995; Thieu, 2016).
These models also suffer from overparametrization, making them potential candidates
for regularization. We can distinguish two cases in which this regularization could be
implemented. In the first case, where the vector xt contains the same type of univariate
variable measured for all assets (i.e., k = n), regularization can be performed similarly to
the method demonstrated in this chapter. Here, regularization of the diagonal elements
of parameter matrix D would induce homogeneity, while regularization of off-diagonal
elements would regulate cross-dependence. In the more common situation where xt

contains marketwise variables common to all assets, such as inflation or unemployment, a
different approach is needed. In these cases, it would be sensible to perform regularization
of individual columns of D towards homogeneity to unify the effects of these exogenous
variables on individual assets.

The regularization scheme developed in this study, which shrinks diagonal elements towards
homogeneity and off-diagonal elements towards zero, has potential applications beyond
volatility forecasting. One promising area is the estimation of sample covariance matrices in
Feasible Generalized Least Squares (FGLS). FGLS, while possessing desirable asymptotic
properties, often perform worse than Ordinary Least Squares (OLS) with robust errors in
small samples, primarily due to the additional degrees of freedom required for covariance
structure estimation (see, e.g., Angrist and Pischke, 2009, Section 3.4.1.). By nesting
OLS as a special case of such a regularized estimator and inferring the optimal degree of
regularization via leave-one-out cross-validation, one might safeguard FGLS against poor
performance relative to OLS, similarly as in DiCiccio et al. (2019), González-Coya and
Perron (2024), and Chaudhuri and Renault (2023).
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2.A Supplementary Results

Figure 2.5: Differences of the in-sample (the upper panel) and out-of-sample (the lower panel)
Stein losses of individual models and rCAW (benchmark represented by the horizontal line) plotted

for different combinations of a number of assets n and length of the estimation window T .
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Figure 2.6: Ratios of in-sample (the upper panel) and out-of-sample (the lower panel) Frobenius
losses of individual models and rCAW (benchmark represented by the horizontal line) plotted for

different combinations of a number of assets n and length of the estimation window T .

76



n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.11 2.24 2.23 2.17 1.96 1.97 2.00 1.94 1.89 2.06
3y 2.21 2.38 2.46 2.26 2.10 2.18 2.11 1.99 2.14 2.20
4y 2.61 2.61 2.88 2.60 2.40 2.54 2.47 2.14 1.78 2.49
5y 2.88 2.77 3.07 3.18 3.18 3.13 3.00 2.94 3.07 3.01
all 2.42 2.471 2.597 2.489 2.346 2.389 2.345 2.192 2.157 2.39

(a) sCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.47 2.72 2.84 2.78 2.88 2.87 2.96 2.92 3.00 2.82
3y 2.36 2.50 2.80 2.89 2.80 2.96 3.05 3.08 3.09 2.83
4y 2.44 2.53 2.86 2.56 2.81 2.94 2.94 3.11 3.22 2.81
5y 2.39 2.32 2.54 2.57 2.57 2.71 2.50 2.68 2.71 2.55
all 2.431 2.588 2.781 2.719 2.814 2.836 2.861 2.974 3.043 2.77

(b) dCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.98 2.84 2.76 2.84 3.04 3.17 3.12 3.36 3.39 3.05
3y 2.81 2.93 2.48 2.77 3.02 2.93 2.91 3.06 3.00 2.88
4y 2.36 2.47 2.08 2.53 2.67 2.50 2.44 2.48 2.89 2.46
5y 2.21 2.36 2.11 2.00 1.82 2.07 2.21 2.34 2.29 2.16
all 2.628 2.643 2.41 2.594 2.692 2.736 2.761 2.831 2.914 2.68

(c) fCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 2.45 2.20 2.17 2.21 2.12 1.99 1.92 1.78 1.73 2.07
3y 2.62 2.19 2.27 2.08 2.08 1.93 1.93 1.88 1.77 2.10
4y 2.58 2.39 2.18 2.32 2.13 2.01 2.14 2.27 2.11 2.25
5y 2.52 2.55 2.29 2.25 2.43 2.09 2.29 2.04 1.93 2.28
all 2.52 2.298 2.212 2.198 2.149 2.039 2.034 2.004 1.886 2.16

(d) rCAW

Table 2.5: Average ranking of individual models in terms of out-of-sample Frobenius loss (1
indicating the best model and 4 indicating the worst model) for combinations of number of assets n

and length of the estimation window T .

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.11 0.12 0.14 0.14 0.02 0.14 0.15 0.12 0.08 0.12
3y 0.02 0.21 0.14 0.14 0.09 0.07 0.14 0.06 0.09 0.10
4y 0.11 0.17 0.14 0.06 0.03 0.06 0.03 0.04 0.00 0.07
5y 0.07 0.07 0.11 0.18 0.25 0.21 0.18 0.22 0.29 0.17
all 0.071 0.137 0.151 0.122 0.1 0.114 0.132 0.098 0.1 0.11

(a) sCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.21 0.30 0.26 0.18 0.22 0.37 0.33 0.33 0.46 0.28
3y 0.07 0.21 0.14 0.16 0.16 0.14 0.16 0.20 0.09 0.15
4y 0.17 0.11 0.08 0.06 0.03 0.06 0.08 0.07 0.11 0.08
5y 0.11 0.04 0.07 0.11 0.14 0.18 0.04 0.10 0.14 0.10
all 0.141 0.188 0.155 0.126 0.147 0.193 0.175 0.189 0.2 0.17

(b) dCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.23 0.24 0.28 0.26 0.37 0.31 0.29 0.36 0.39 0.30
3y 0.17 0.23 0.11 0.21 0.23 0.30 0.23 0.30 0.18 0.23
4y 0.17 0.17 0.06 0.08 0.17 0.06 0.08 0.09 0.11 0.11
5y 0.11 0.14 0.07 0.04 0.07 0.11 0.11 0.15 0.00 0.10
all 0.16 0.199 0.133 0.162 0.219 0.189 0.193 0.229 0.229 0.19

(c) fCAW

n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 all

2y 0.17 0.14 0.18 0.20 0.20 0.19 0.19 0.18 0.23 0.18
3y 0.10 0.16 0.14 0.11 0.09 0.07 0.07 0.08 0.00 0.10
4y 0.14 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.04
5y 0.14 0.14 0.11 0.11 0.11 0.14 0.07 0.15 0.14 0.12
all 0.141 0.152 0.126 0.112 0.097 0.107 0.096 0.1 0.1 0.12

(d) rCAW

Table 2.6: Frequency of rejection of individual models via the MCS for the Frobenius loss at the
5% level for combinations of a number of assets n and length of the estimation window T .

Figure 2.7: Distributions of et,i,j for individual models plotted against N (0, 1) distribution
function.
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Chapter 3

Designing Time-Series Models With
Hypernetworks

An early version of this chapter appeared in a pre-print Staněk (2023a).

3.1 Introduction

According to the classification by Januschowski et al. (2020), time-series forecasting
approaches can be broadly divided into two strains: The conventional approach, known
as local modeling, involves selecting the most appropriate parametric model for a given
family of forecasting tasks, often based on expert judgment. This model is then applied to
each individual observed series independently. On the other hand, global models consider
all observed time-series jointly. In extreme cases, this can be done via pooling, thus
disregarding the information regarding which data belong to which series altogether and
estimating a single global model (see e.g. Montero-Manso and Hyndman, 2021). However,
it is often beneficial to utilize this information to help account for possible heterogeneity
among the data generating processes (DGPs henceforth) underlying the series, an approach
aptly dubbed the localization of global models (Godahewa et al., 2021). This is typically
performed by grouping the series either with time-series clustering techniques based on
time-series features (Bandara et al., 2020) or directly according to model performance
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(Smyl and Kuber, 2016; Smyl, 2020) and estimating a specialized global model on each
cluster. By adjusting the number of such clusters, one can then regulate the degree of
globality/locality.

We present an alternative method that helps bridge the gap between these two extremes.
A global model, which instead of deriving a single forecasting function for all time-series,
outputs a function parameterized by a latent parameter vector specific to each series,
thereby acknowledging the potential heterogeneity of DGPs. Accounting for heterogeneity
through the latent parameter space, rather than clustering, offers the advantage of
equally accommodating a mixture of several different types of DGPs as well as a family
of continuously varying DGPs. Alternatively, this approach can also be viewed as a
data-driven alternative to manually designing a parametric model for a group of related
prediction tasks, an endeavor which typically requires considerable statistical expertise
and domain knowledge.

Specifically, by connecting an encoder-decoder network that accepts a task identifier
to the parameters of another network responsible for processing inputs and generating
predictions for that task, we enable a simultaneous search across the space of parametric
functions and their associated parameter values. Importantly, the resulting hyper-network
allows for complete backpropagation and does not rely on the computation of higher-order
derivatives for training, unlike alternative approaches (see e.g., Finn et al., 2017; Li et al.,
2017). This allows, even with relatively limited computational resources, the design a
parametric model that is finely tuned for a specific family of tasks, using the allotted
degrees of freedom per task to capture the variability between tasks.

Abstracting from the time-series nature of the data, the method belongs to a broader
category of meta-learning and/or multi-task learning methods, depending on how exactly
it is deployed in practice. Meta-learning aims at designing/training a model based on
multiple observed tasks so that it performs well when adapted with training data of a yet
unseen task from the same family, and subsequently evaluated on the test data of that
task. In contrast, multi-task learning aims to achieve optimal performance on new data
from tasks that were used for the initial training. For an excellent review of these two
closely related fields, please refer to Hospedales et al. (2021), Huisman et al. (2021), or
Zhang and Yang (2022), respectively.

We demonstrate the performance of the model in two applications. First, we show that
the proposed model substantially outperforms MAML (Finn et al., 2017) and other
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state-of-the-art meta-learning approaches on the sinusoidal regression task, a synthetic
problem introduced in Finn et al. (2017) commonly used to benchmark various meta-
learning approaches. In the second application, we apply the model to the time-series from
the M4 forecasting competition, following the evaluation framework of Montero-Manso
and Hyndman (2021). A simple linear model localized via MtMs outperforms both the
corresponding global model applied on pooled data and models localized via clustering
for the majority of series. In the third application, we apply the model to the forecasting
challenge of the M6 Financial Forecasting Competition (see Makridakis et al., 2022).
There, the model secured 4th place in the forecasting challenge, which, combined with
the results of the investment challenge, ultimately resulted in the 1st place in the overall
duathlon ranking.

The remainder of the chapter is structured as follows. Section 3.2 lays out the statistical
framework and motivates the proposed model. Section 3.3 introduces the model. Section
3.4 demonstrates its superior performance on the sinusoidal regression task. Section 3.5
demonstrates the performance of the model on time-series from the M4 forecasting com-
petition. Section 3.6 details its application to the M6 Financial Forecasting Competition.
Section 3.7 concludes. Section 3.8 and Appendix 3.A contain proofs and supplementary
materials, respectively.

3.2 Statistical Framework

In this section, we formulate the problem in terms of the meta-learning objective, as it
is typically a more relevant paradigm for time-series forecasting. Following the notation
of Hospedales et al. (2021), we denote a task as T = {Dtrain, Dval}.1 This task consists
of data generated by some DGP split into a training set Dtrain = {(xt, yt)}K

t=1 used for
estimating model parameters, and a validation set Dval = {(xt, yt)}N

t=K+1 for which we
aim to make predictions. The vector xt ∈ Rdx typically contains lagged values of yt ∈ Rdy

or some transformation of these values. Tasks are distributed according to an unknown
distribution p(T ).

1Hospedales et al. (2021) allow for a slightly more general setup in which the loss function may also
differ across tasks. However, this level of generality is not necessary for our purposes, so we suppress it
for ease of exposition.
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In the framework a model consists of two components: the prediction function

ŷt = fω(xt; θ̂) (3.1)

which outputs predictions of yt based on the predictors xt, and the estimation function

θ̂ = κω(Dtrain) (3.2)

which outputs the vector of task-specific parameters θ̂ ∈ Θ given the observations Dtrain.
Both functions, fω(·) and κω(·), are further parameterized by a vector of meta parameters
ω ∈ Ω, which are not directly dependent on the task T and generally encompass any prior
decisions regarding the model (e.g., the choice of an appropriate model and its particular
specification, estimation procedures, regularization techniques applied when estimating
θ̂ etc.). To clearly differentiate between the meta parameters ω and the task-specific
parameters θ, we will refer to the latter as mesa parameters, following Hubinger et al.
(2021).

The quality of the model is assessed by the loss incurred on the evaluation set, denoted
by L(Dval; θ̂, ω), with

L(D; θ̂, ω) = 1
|D|

∑︂
(xt,yt)∈D

γ
(︂
yt, fω(xt; θ̂)

)︂
(3.3)

where the function γ measures the discrepancy between yt and the prediction ŷt. Typically,
to align the process of finding the optimal parameters θ, the estimation θ̂ = κω(Dtrain) is
likewise performed by numerically minimizing the incurred loss over the training set:

θ̂ = κω(Dtrain) ≈ arg min
θ∈Θ

L(Dtrain; θ, ω). (3.4)

Oftentimes, the information contained in ω regarding which forecasting function fω(·) to use
and the most appropriate estimation function κω(·) is determined through expert judgment,
based on informal prior knowledge regarding the task and/or ad-hoc hyperparameter
tuning. By considering a family of tasks distributed according to p(T ), we can formalize
the problem of finding the most suitable model; ω such that, when observing Dtrain and
adapting accordingly through θ̂, the expected performance on yet unobserved Dval will be
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minimized. Formally:

ω∗ = arg min
ω∈Ω

E
T ∼p(T )

[L(Dval; θ̂, ω)]

s.t.: θ̂ = κω(Dtrain) ≈ arg min
θ∈Θ

L(Dtrain; θ, ω).
(3.5)

Solving this problem is not feasible as the distribution p(D) is unknown. However, given
a collection of M observed tasks {T (m)}M

m=1, it is, at least in theory, possible to solve the
finite sample equivalent of the problem instead:

ω̂ = arg min
ω∈Ω

1
M

M∑︂
m=1

L(D(m)
val ; θ̂

(m)
, ω)

s.t.: θ̂
(m) = κω(D(m)

train) ≈ arg min
θ∈Θ

L(D(m)
train; θ, ω).

(3.6)

3.3 Model

The bi-level optimization problem presented in Eq. 3.6 is generally computationally
demanding. It may be feasible to estimate {θ(m)}M

m=1 for a limited set of different model
specifications Ω = {ωi}dΩ

i=1, and choose the model fωi
(·) that yields the best out-of-sample

performance over {D(m)
val }M

m=1. However, this approach quickly becomes untenable when
the set Ω is large or even uncountable, for example, when considering a continuum of
possible models rather than a limited set of predefined model specifications.

In addressing this problem, we adopt the following two simplifying assumptions:

A1: The estimation function κω(·) outputs the global minimizer of the in-sample
loss:

∀ω ∈ Ω ∀D(m)
train ∈

(︂
Rdx × Rdy

)︂K
∃!θ∗ ∈ Θ : (3.7)

κω(D(m)
train) = θ∗ = arg min

θ
L(D(m)

train; θ, ω). (3.8)

A2: The training is conducted using a train-train split:

ω̂ = arg min
ω

1
M

M∑︂
m=1

L(D(m)
train; θ̂

(m)
, ω)

s.t.: θ̂
(m) = κω(D(m)

train).
(3.9)

Assumption A1 is pragmatically motivated by our aim, which is finding optimal parametric
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models. This is in stark contrast to the widely popular family of meta-learning approaches
derived from MAML (Finn et al., 2017) that primarily concentrate on estimation routines.
There, ω typically represents the initial value of θ used in the estimation routine κω or
some additional information on how to adapt from θ (see, for example, Finn et al. (2017),
Li et al. (2017), and Park and Oliva (2019)).

Assumption A2 implies that the training is not conducted with the train-val split (i.e.,
with D(m)

val in the outer optimization problem and D(m)
train in the inner optimization problem),

which is typical for meta-learning. Instead, it is done with a train-train split (i.e., using
D(m)

train in both the outer and inner optimization problems), as is common in multi-task
learning. In this setup the validation datasets D(m)

val are still utilized, but typically for
early stopping of the training process rather than being directly included in the objective
function. This assumption is substantial because the training process, in this case, may not
strictly correspond to how the model will be deployed in practice. That is, to the situation
when observing a completely new task, T (M+1), and being asked to adapt θ(M+1) based on
D(M+1)

train to predict y in D(M+1)
val while keeping ω fixed. Despite this, it appears justifiable

in light of recent studies that demonstrate that for meta-learning, the commonly adopted
train-val split might not always be preferable to a simpler train-train split (Bai et al.,
2021) and that meta-learning and multi-task learning problems are closely connected
(Wang et al., 2021)

The introduction of these assumptions substantially simplifies the optimization problem,
as shown in the following proposition.

Proposition 1. Under assumptions A1 and A2, there exist functions f(·; β) : Rdx → Rdy

parameterized by β ∈ B and g(·; ω) : Θ → B parameterized by ω ∈ Ω, such that the
solution of

{︄
ω̂,
{︃

θ̂
(m)
}︃M

m=1

}︄
= arg min

ω∈Ω
{θ(m)}M

m=1
∈ΘM

1
M

M∑︂
m=1

1
K

K∑︂
i=1

γ(y(m)
i , f(x(m)

i ; g(θ(m); ω))) (3.10)

coincides with the solution of the bilevel optimization problem introduced in Eq. 3.6.

The proposition demonstrates that under A1 and A2, the bilevel optimization problem in
Eq. 3.6 collapses to a much simpler, single-level optimization problem. In this equivalent
formulation, the model fω(·, θ(m)) is conveniently separated into two components: the base
model f(·; β(m)), parameterized by β(m), which processes features to generate predictions,
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and a meta module g(θ(m); ω), which, based on the mesa parameter vector θ(m), outputs
the corresponding β(m). Thus, in effect, Proposition 1 allows for a simultaneous search
over both parametric functions fω and their corresponding mesa parameters {θ(m)}M

m=1.

Going back to the comparison with the clustering approach to the localization of global
models, Proposition 1 allows one to deploy a distinct forecasting function for each time-
series. These functions lie in the function space indexed by theta chosen to best describe
the observed heterogeneity between individual series, instead of choosing a handful of
functions in the unrestricted function space, one for each cluster, as is done in the case of
clustering.

To allow for maximal flexibility, we express both the base model f(·; β) and the meta
module g(·; ω) as feedforward neural networks. The total size of the network f(·; β),
represented by dβ = card(β) , controls the level of complexity with which the predicted
values ŷt depend on the input xt. The size of the mesa parameters dθ = card(θ) corresponds
to the number of degrees of freedom allotted to each task m and thus regulates the degree
of globality/locality of the model.2 Finally, the size of the network g(·; ω), represented
by dω = card(ω), controls the nonlinearity of the model’s response to mesa parameters
θ(m). Network g does not necessarily have to be fully connected. To reduce computational
complexity, it is possible to leave some output nodes as orphaned constants, allowing
the mesa parameters θ(m) to affect only a part of the base model f , such as only its last
layers.3

Importantly, given that the optimization problem in Eq. 3.10 is unconstrained and
that both the meta parameters ω and the task-specific mesa parameters {θ(m)}M

m=1 are
optimized at the same level, the standard backpropagation techniques can be applied,
considerably facilitating the training of the model.

When implementing the model, it is convenient to equivalently express the array of
mesa parameters {θ(m)}M

m=1 as a single neural network layer without any constants or
nonlinearity. This layer takes, as input, the one-hot encoding of the task q = em ∈ {0, 1}M

and outputs the corresponding vector of mesa parameters θ(m) = (θ(1), ... , θ(M))q. The
entire model can then be expressed as depicted in Figure 3.1. For brevity, we will refer

2If setting dθ = 1 would still yield too much flexibility, it is also possible to further regularize the mesa
parameters. Allowing the regularization penalty to tend towards infinity renders the adaptation via θ
ineffective, causing the model to collapse into a pure global model.

3This is motivated by the fact that adaptation predominantly occurs by altering the head of the
network (Raghu et al., 2019; Lin et al., 2020).
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to it simply as MtMs henceforth to emphasize the simultaneous training of both global
meta parameters ω and task-specific mesa parameters {θ(m)}M

m=1.

Figure 3.1: A diagram of the MtMs model for an illustrative example with 6 features and 5 tasks.
The process of generating forecasts proceeds from the right to left. First, a one-hot encoded vector
q, denoting to which task the observation belongs, is multiplied by a matrix of mesa parameters

(θ(1), ... , θ(M)) to extract the corresponding task-specific mesa parameter vector θ. This vector is
then passed to the meta module g(θ;ω) to generate task-specific parameters β of the base model
f(x;β). Lastly, the network f(x;β) is used to process the corresponding feature vector x and

generate the prediction ŷ.

Despite being trained under the multi-task learning paradigm, the model can be deployed
for both multi-task and meta-learning problems. For multi-task learning, the model can
be used as is without any further optimization. By providing more data from an already
observed task m m, predictions can be made using fω̂(·; θ̂

(m)) = f(·; g(θ̂(m); ω̂)) with the
corresponding estimated mesa parameter vector θ̂

(m).

For meta-learning applications, we leverage Proposition 1, which states that the solution
ω̂ from Eq. 3.10 can, under simplifying conditions A1 and A2, be interpreted as a
parametric model fω̂(·; θ) = f(·; g(θ; ω̂)) that, out of all competing parametric models
ω′ ∈ Ω, delivers the smallest expected loss on a new task T (M+1). To forecast y

(M+1)
t of

this previously unobserved task, it is therefore sufficient to perform optimization over the
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space of task-specific mesa parameters θ ∈ Θ:

θ̂
(M+1) = arg min

θ∈Θ

1
K

K∑︂
t=1

γ(y(M+1)
t , f(x(M+1)

t ; g(θ; ω̂))), (3.11)

while holding the model representation ω̂ fixed.

Note that this optimization is performed only in the low-dimensional space Rdθ and can
be done using either backpropagation or conventional numerical optimization methods.
In this sense, it is completely analogous to finding the parameters of any other parametric
model. The only difference is that the functional form of the model fω̂(·; θ), as represented
by ω̂, is not presupposed by the researcher but instead is derived in a data-driven way
specifically for the given family of prediction problems p(T ) in the initial meta-learning
phase. Similar to a conventional parametric model manually crafted by a human expert,
the parameter vector θ typically influences the prediction function fω̂(·; θ) = f(·; g(θ; ω̂))
in an interpretable way, as demonstrated in the applications presented later in this chapter
(see Section 3.4 and Section 3.5). Further, though not addressed in this chapter, the
fact that θ̂

(M+1) is an extremum estimator allows inferences regarding model parameters,
provided that regularity conditions are met.

This method belongs to the strain of meta-learning research where hypernetworks or
embeddings are used to perform adaptation to individual tasks at a lower-dimensional
manifold of the parameter space (see e.g. Lee and Choi, 2018; Zintgraf et al., 2019;
Zhao et al., 2020; Flennerhag et al., 2020; von Oswald et al., 2022; Nava et al., 2023;
Ramanarayanan et al., 2023). The main point of differentiation is that in these studies,
hypernetworks are generally used to facilitate fine-tuning of network weights while retaining
the MAML paradigm of bilevel optimization, where the inner optimization is restricted
to a few gradient steps due to computational constraints. In contrast to this approach
of fine-tuning network weights, MtMs sidestep the bilevel problem formulation by virtue
of assumption A2, which, in turn, allows one to interpret mesa parameters {θ(m)}M

m=1

as global optimizers of some underlying parametric model crafted specifically for the
family of tasks p(T ). This is essential, as multistep task adaptation has been shown to be
crucial in meta-learning (Lin et al., 2020). In this respect, the model is closely related to
the seminal work of Shamsian et al. (2021), where a similar architecture with a custom
training algorithm (pFedHN) is proposed for the task of personalized federated learning.

The MtMs model is also related to the fields of model selection and, by extension,
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model/forecast combination (for a comprehensive review, see Wang et al., 2023). Revisiting
the example of a finite set of dΩ possible model specifications Ω = {ωi}dΩ

i=1, as is common
in model selection and forecast combination literature, a model selection algorithm can
be represented as a function A : D(m)

train → {1, 2, ..., dΩ}. This function takes as input the
training data D(m)

train of a single series m and returns an index of the most appropriate
model. The resulting prediction is then computed via:

ŷ
(m)
t = fw

A(D(m)
train

)
(x(m)

t ; θ̂
(m)) with θ̂

(m) = κω
A(D(m)

train
)
(D(m)

train). (3.12)

The algorithm A selecting the most suitable model can take various forms. These include
comparing in-sample performance while controlling for model complexity (Wei, 1992)
or evaluating pseudo out-of-sample performance (Zhang and Yang, 2015; Inoue et al.,
2013). More closely aligned with our proposed model, A can also be trained in a prior
meta-learning stage on a group of diverse time-series, leveraging cross-learning. A notable
example of this approach is the FFORMS model by Talagala et al. (2023). This model
trains a tree-based algorithm which, based on a vector of time-series features computed
from D(m)

train, determines which parametric model {fωi
, κωi

} should be applied to deliver
the best performance.

In this light, forecast combination can be viewed as an extension of model selection, that
allows for choices both among the set of models {fωi

, κωi
}dΩ

i=1 and also among their linear
combinations. Specifically, for A : D(m)

train → RdΩ , the resulting forecasts are expressed as:

ŷ
(m)
t =

dΩ∑︂
i=1

A(D(m)
train)[i] ∗ fwi

(x(m)
t ; θ̂

(m)) with θ̂
(m) = κωi

(D(m)
train). (3.13)

These combinations can range from basic models that assign equal weight to each compon-
ent model which, despite their simplicity, often exhibit surprisingly strong performance
(Wang et al., 2023), to more complex models that use meta-learning to train A. An
example of the latter is FFORMA (Montero-Manso et al., 2020), an extension of the
FFORMS model that employs a tree-based approach to determine the weights A(D(m)

train)[i]
of individual models based on time-series features.

Note that, compared to FFORMA, the MtMs model goes one step further in flexibility to
accommodate a broader range of data generating processes. Rather than searching for the
most suitable forecasting function among the dΩ pre-specified families of functions (within
each such family, the most suitable prediction function is found through optimization of
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θ̂ ∈ Θ), MtMs aims to non-parametrically derive a single parametric model whose vector
of parameters θ is best suited to accommodate the between-task variability observed in
{T (m)}M

m=1. This is especially beneficial in situations in which none of the pre-specified
models (or their combinations) would accurately explain the DGPs sampled from p(T ).
Furthermore, it is important to highlight that the optimization for {ω̂, {θ̂

(m)
}M

m=1} is
performed simultaneously, rather than in two steps in which, first, the most appropriate θ̂

(m)

is found for each model, and only then, with these parameters fixed, the auxiliary model
for model weights A is estimated, as is done in FFORMA or forecast combination more
generally. This is relevant, as the poor performance of more complex forecast combination
schemes typically observed in empirical applications, a phenomenon dubbed the forecast
combination puzzle, seems to be driven by the suboptimal two-step optimization with
which the optimal weights are typically derived (Frazier et al., 2023). MtMs, by its very
construction, does not suffer from this issue.4

3.4 Application: Sinusoidal Regression Task

To evaluate the potential of the MtMs to find the most appropriate parametric model for
a given family of prediction problems, we first consider a simulation exercise originally
proposed by Finn et al. (2017) to test the performance of MAML. Since then, this
environment has frequently been used to compare competing meta-learning methods.

In particular, the tasks T (m) = {D(m)
train, D(m)

val } are generated according to the following
DGP:5

A(m) ∼ U(0.1, 5)

b(m) ∼ U(0, π)

x
(m)
i |A(m), b(m) ∼ U(−5, 5)

y
(m)
i |x(m)

i , A(m), b(m) = A(m) ∗ sin(x(m)
i + b(m))

(3.14)

The goal is to find the best model that can predict y
(m)
i based on x

(m)
i for i > K after

4We are thankful to Prof. Andrey Vasnev for suggesting this connection.
5As the sinusoidal regression task is a cross-sectional exercise, we index individual observations by i

rather than t to highlight that they are conditionally IID.
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observing only D(m)
train, as measured by the mean squared error:

Lm(D(m)
val ; θ̂

(m)
, ω) = 1

N − K

N∑︂
i=K+1

(y(m)
i − fω(x(m)

i ; θ̂
(m)))2

s.t.: θ̂
(m) = κω(D(m)

train)
(3.15)

For fair comparison, we follow Finn et al. (2017) and set the base model to be a feedforward
neural network with two hidden layers of size 40 and ReLU non-linearities. The number
of mesa parameters, dθ, is set to 2 and the meta module g(·; ω) is a simple fully connected
feedforward network with no hidden layers or non-linearities. For training of the MtMs, it
is entirely sufficient to use only 1000 distinct tasks. This is far fewer then the 70000 task
originally used in Finn et al. (2017) and in the followup studies. Likewise, the training is
done with a fraction of the computational resources. It takes approximately 0.5 hour on a
consumer grade mid-range CPU, which is in sharp contrast to the powerful GPU units
used for training in other studies. Other simulation details follow Zhao et al. (2020) and
are available in the replication repository6.

Table 3.1 shows the mean squared error achieved by the MtMs for 5-shot learning and
10-shot learning. For comparison, we include the losses of commonly used meta-learning
methods on this task (the performance of competing methods is taken from Park and Oliva
(2019) and Zhao et al. (2020)). The proposed MtMs model outperforms all benchmark
methods by an order of magnitude for both 5-shot learning and 10-shot learning of the
sinusoidal task. In fact, the losses are in both cases very close to the theoretical minimum
of 0, indicating that the MtMs is capable of recovering the data-generating process to
such a degree that, when faced with only as few as 5 observations {x

(m)
i , y

(m)
i } from task

m, it is able to almost perfectly infer y
(m)
i as a function of x

(m)
i for the whole range [−5, 5].

Figure 3.2 (resp. 3.3) shows predictions of the model fω(x; θ) as a function of x for different
values of mesa-parameters θ for K = 5 (resp. K = 10). As is apparent from Figure 3.2,
plotted prediction functions closely resemble different sine waves, indicating the MtMs is
indeed capable of correctly determining that each generated task follows a sine function
with varying phase and amplitude. However, the mesa parameters θ = [θ1, θ2] explaining
the variability between tasks do not directly correspond to the amplitude A and phase b.
Instead, θ1 regulates the amplitude (negatively), but to a lesser degree, it also regulates
the phase (positively), while θ2 primarily regulates the phase (positively) and, to a lesser

6https://github.com/stanek-fi/MtMs_sinusoidal_task
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Figure 3.2: MtMs predictions for sinusoidal task (K = 5)
Plots of fω(x; θ) as a function of x for different values of the mesa parameter vector θ. In the

upper panel, the first mesa parameter θ1 varies while θ2 is fixed to its median value. In the lower
panel, the second mesa parameter θ2 varies while θ1 is fixed to its median value.
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Figure 3.3: MtMs predictions for sinusoidal task (K = 10)
Plots of fω(x; θ) as a function of x for different values of the mesa parameter vector θ. In the

upper panel, the first mesa parameter θ1 varies while θ2 is fixed to its median value. In the lower
panel, the second mesa parameter θ2 varies while θ1 is fixed to its median value.
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degree, it also regulates the amplitude. This is not surprising, as there are infinitely many
parametric models that are observationally equivalent to the DGP described in Eq. 3.14.
In particular, any two vectors in R2 that are linearly independent are capable of spanning
the whole space of [b, A] just as well as the basis vectors used in Eq. 3.14. The MtMs
hence generally converges to one of these equivalent parametrizations, not necessarily to
the exact same parametrization used to simulate the data. In Figure 3.3, the prediction
functions approximate sine waves even more closely, as K = 10 allows more accurate
identification of the between-task variability.

Method K = 5 K = 10
MAML (Finn et al., 2017) 0.686±0.070 0.435±0.039

LayerLR (Park and Oliva, 2019) 0.528±0.068 0.269±0.027

Meta-SGD (Li et al., 2017) 0.482±0.061 0.258±0.026

MC1 (Park and Oliva, 2019) 0.426±0.054 0.239±0.025

MC2 (Park and Oliva, 2019) 0.405±0.048 0.201±0.020

MH (Zhao et al., 2020) 0.501±0.082 0.281±0.072

MtMs (ours) 0.022±0.003 0.014±0.001

Table 3.1: Losses for sinusoidal task
Mean squared errors and corresponding 95% confidence intervals for different meta-learning

methods.

Admittedly, the sinusoidal regression problem is relatively favorable to the MtMs because
the data are generated using a clearly defined low-dimensional model, and MtMs is, at its
core, a method for recovering unknown parametric models. To demonstrate that the good
performance is not limited to artificial tasks like this one, in the next sections, we apply it
to real-life forecasting problems posed in the M4 and M6 forecasting competition.

3.5 Application: M4 Forecasting Competition

To assess the ability of the MtMs model to localize global time-series forecasting models
in more general settings than those encountered in M6, we also perform an extensive
evaluation on the data from the M4 forecasting competition (Makridakis et al., 2020). We
follow the evaluation framework of Montero-Manso and Hyndman (2021), who demon-
strated the surprising performance of simple global models, including a simple pooled OLS
with lagged values of the time series as regressors. We extend this forecasting exercise
by exploring the extent to which the performance of the pooled OLS can be improved
through localization via time-series clustering and MtMs.
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Following Montero-Manso and Hyndman (2021), we focus on time-series with yearly,
quarterly, monthly, and weekly frequencies (for forecast horizons of 6, 8, 18, and 13,
respectively, using the recursive forecasting scheme) and use the MASE loss function with
scaling applied as a preprocessing step. The feature vectors contain lagged values of the
given time-series: x

(m)
t = [y(m)

t−1 , y
(m)
t−2 , . . . , y

(m)
t−dx

]⊤. For a time-series m of length dm, the
design matrix is defined as X(m) = [x(m)

dx+1, x
(m)
dx+2, . . . , x

(m)
dm

]⊤, and the dependent variable
vector is y(m) = [y(m)

dx+1, y
(m)
dx+2, . . . , y

(m)
dm

]⊤. By stacking {y(m)}M
m=1 and {X(m)}M

m=1, one can
obtain the design matrix and dependent variable vector for pooled regression to estimate
the pooled β for all time-series of a given frequency. Likewise, after performing time-series
clustering to account for heterogeneity across series, one can obtain β for each cluster of
similar series.

To mimic the same settings with MtMs, we set f(x; β(m)) = x⊤β(m), and define g(θ; ω)
as a simple neural network with no hidden layer or nonlinearity: β(m) = g(θ(m); ω) =
ωb + ωwθ(m), where ωb ∈ M(dx, 1) and ωw ∈ M(dx, dθ). The predictions for time-series m

can hence be expressed as

ŷ(m) = X(m) (ωb + ωwθ(m))⏞ ⏟⏟ ⏞
β(m)

. (3.16)

This expression shows that this special case of MtMs is analogous to performing PCA in
the latent space of unobservable true regression coefficients {β∗(m)}M

m=1. The bias vector ωb

captures the central tendency of {β∗(m)}M
m=1 and corresponds to the action of demeaning

variables prior to PCA. The column vectors of matrix ωw are optimized to best explain
the variability of the true unobserved {β∗(m)}M

m=1, analogous to the loading vectors of
individual principal components. The task-specific parameter vector θ(m) measures the
exposure to variance-explaining factors ωw[:, i] for a given time-series, and corresponds to
the row m of the score matrix from PCA.

Similarly to PCA, dimensionality reduction can be performed by choosing the number of
factors (dθ) used to explain the variability of {β∗(m)}M

m=1. Choosing dθ = 0 is equivalent to
estimating a pooled regression on the time-series, whereas choosing dθ = dx is equivalent to
estimating a separate regression for each time-series m. In practice, given that the DGPs
of many time-series are likely similar, only a handful of factors ωw[:, i] are necessary to
successfully explain most of the variability across time-series. Note that, unlike principal
component regression (see, e.g., Hadi and Ling, 1998), where the dimensionality reduction
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is performed on the pooled design matrix as a preprocessing step, here the reduction is
performed in the latent space of regression coefficients jointly with the estimation. In this
sense, it is similar to reduced-rank regression (Izenman, 1975), with the exception that we
are searching for a lower-dimensional representation of a set of regression coefficients across
multiple tasks/time-series, rather than within a single dataset with multiple dependent
variables.

Table 3.2 displays the average MASE for OLS localized via MtMs with dθ = 2 on the M4
datasets. To facilitate training, we leverage the fact that the optimal {{ωb, ωw}, {θ(m)}M

m=1}
can be derived iteratively in closed form under the L2 loss7, and we use these estimates to
initialize MtMs. After initialization, the training is performed using backpropagation with
the Adam optimizer, a learning rate of 0.001 and a minibatch size of 1,000 time-series
under the MASE loss. For comparison with conventional localization techniques, we
cluster the time-series into {2i}10

i=2 clusters using k-means on stl_features (seasonality
& trend), entropy and acf_features (autocorrelation) from the tsfeatures package
(Hyndman et al., 2023) and estimate regression coefficients for each cluster individually.
For each frequency, we set the number of lags dx to the maximum value according to the
shortest series, following the setup of Montero-Manso and Hyndman (2021). For reference,
we also include the performance of OLS on the pooled dataset and two widely used
local models: ETS (Hyndman et al., 2002b) and auto.arima (Hyndman and Khandakar,
2008b).

With the exception of the yearly frequency, where localization provides only marginal
improvements and where the two degrees of freedom per series likely lead to over-fitting,
OLS localized via MtMs outperforms non-localized OLS and OLS localized via clustering
across all cluster sizes. Furthermore, the simple linear parametric model derived in a
data-driven way via MtMs;

ŷ
(m)
t = fω(x(m)

t ; θ(m)) = x
(m)⊤
t (ωb + ωwθ(m)) (3.17)

7Eq. 3.16 can be expressed for all tasks m simultaneously as ŷ = X(θ̃ ⊗ Idx+1)vec(ω) where

ŷ =
[︂
ŷ(1)⊤, . . . , ŷ(M)⊤

]︂⊤
, X = blkdiag({X(m)}M

m=1), ω = [ωb, ωw], θ =
[︁
θ(1), . . . , θ(M)]︁⊤, and

θ̃ = [1,θ]. This results in to first-order conditions for vec(ω): vec(ω) =
(︁
H⊤H

)︁−1
H⊤y where

y =
[︁
y(1)⊤, . . . , y(M)⊤]︁⊤ and H = X(θ̃ ⊗ Idx+1). First-order conditions for {θ(m)}M

m=1 are {θ(m) =(︁
Q⊤Q

)︁−1
Q⊤(y(m) −X(m)ωb)}M

m=1 where Q = X(m)ωw. By iterating over these two sets of first-order
conditions, {{ωb, ωw}, {θ(m)}M

m=1} converge to their joint optimal values.
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with {ωb, ωw} fixed, outperforms conventional local models crafted by human experts on
all frequencies except yearly.

model Yearly Quarterly Monthly Weekly

ETS 3.478 1.164 0.948 2.513
auto.arima 3.407 1.161 0.929 2.542

OLS (pooled) 3.059 1.222 0.957 2.275
OLS (2 clusters) 3.011 1.218 0.950 2.246
OLS (4 clusters) 2.990 1.225 0.953 2.179
OLS (8 clusters) 3.020 1.229 0.949 2.194

OLS (16 clusters) 3.075 1.220 0.952 2.181
OLS (32 clusters) 3.132 1.214 0.950
OLS (64 clusters) 3.188 1.210 0.949

OLS (128 clusters) 3.258 1.205 0.943
OLS (256 clusters) 3.304 1.201 0.939
OLS (512 clusters) 3.402 1.197 0.936

OLS (1024 clusters) 3.538 1.197 0.930
OLS (localized via MtMs) 4.050 1.133 0.911 2.104

Table 3.2: Losses for the M4 datasets
Mean MASE losses for individual models on yearly, quarterly, monthly, and weekly datasets from
the M4 competition. Bold text indicates the best-performing model for each frequency. Losses of
OLS with more than 16 clusters for the weekly frequency are not available due to an insufficient

number of observations to estimate OLS on all clusters.

Similarly to sinusoidal regression, the simple structure of the model allows us to visualize
the heterogeneity across DGPs identified in the datasets. As an example, Figure 3.4
displays the column vectors ωw[:, 1] and ωw[:, 2] for the monthly frequency. Parameter
θ[2] primarily regulates the persistence of the DGP (positively affecting the dependence
on lag 1) and seasonality (negatively affecting the dependence on lags {12, 24, 36}). To
a lesser extent, it also captures seasonality at lag 6, likely driven by time-series with
bi-annual seasonal behavior. Parameter θ[1] also regulates persistence (negatively) and
seasonality (negatively), but in addition appears to influence the decay of seasonal
behavior, as evidenced by the gradually decreasing values of ωw[:, 1] corresponding to lags
{13, 14, 25, 26, 37, 38}. By varying these two parameters θ[1] and θ[2], we can approximately
span the space of regression coefficients corresponding to DGPs encountered in the M4
monthly dataset.
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Figure 3.4: Estimated column vectors of ωw for the M4 monthly dataset

97



3.6 Application: M6 Forecasting Competition8

The M6 Financial Forecasting Competition (see Makridakis et al., 2022) spanned from
March 2022 to February 2023 and focused on a universe of 100 assets: 50 S&P 500
stocks and 50 international ETFs. In the forecasting challenge, participants were tasked
with predicting probabilities for each asset’s next 4-week returns falling into one of five
quintiles relative to other assets in the universe. The accuracy of these predictions
was assessed using the ranked probability score (RPS) loss after the 4-week period had
passed. In the investment challenge, participants were required to submit portfolio weights
for the upcoming 4-week interval. These portfolios were then evaluated based on risk-
adjusted returns (IR). Additionally, participants competed in a duathlon, which combined
both forecasting and investment challenges. The duathlon ranking was computed as an
arithmetic mean of participants’ ranks in the forecasting and investment challenges. This
section describes the methods we employed for our submissions, which achieved 4th place
in the forecasting challenge, 6th place in the investment challenge, and ultimately secured
the 1st place in the duathlon.

MtMs, while broadly applicable, is especially well-suited for time-series forecasting, where
the number of observations is typically insufficient to apply nonparametric methods on a
per-series basis, but where multiple realizations of similar (but not necessarily ex-ante
identical) time-series are available. In particular, in the case of M6, it allowed us to
perform a search over the space of prediction functions parameterized by some latent
parameter vector specific to each asset, as opposed to finding a single prediction function
for all assets, as one would do when applying a conventional nonparametric model on
pooled data. The latent parameter vector can absorb heterogeneity in DGPs across assets,
hence improving the performance.

In the context of the forecasting challenge in the M6 competition, each task m represents
a single asset. The variable y

(m)
t ∈ {0, 1}5 serves as an indicator for the quintile to which

the returns of asset m belong within the 4-week interval t, and x
(m)
t is a feature vector

used for prediction.

8The model specification evolved slightly during the competition. This section details
the model’s state as of the 12th and final submission. For the evolution of the model, please
refer to the original repository https://github.com/stanek-fi/M6 which contains unaltered
scripts used for the submissions.
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3.6.1 Data augmention

To enhance training stability and performance, we augment the dataset with assets beyond
the 100 specified in the M6 universe. Data augmentation is particularly advantageous
for the MtMs model, as even if additional assets have substantially different DGPs from
those in the M6 universe, these variations are likely to be absorbed by θ(m).

We augment the original 50 stocks and 50 ETFs with an additional 450 stocks and 450
ETFs. These assets are selected from a pool of assets with sufficient trading activity9

(must be at least 0.5 times the minimal trading activity observed in the M6 universe) and
price history (must span from at least 2015 to the current date) to match the volatility
observed in the M6 universe (the top 450 stocks/ETFs with the highest likelihood of their
volatility being observed among the stocks/ETFs in the M6 universe are selected). Finally,
the additional 450 stocks and 450 ETFs were randomly divided into 9 additional M6-like
universes in order to compute quintiles y

(m)
t of returns.10

In addition to augmentation across the dimension M , we calculate quintiles y
(m)
t and

features x
(m)
t for 4-week intervals shifted by 1, 2, and 3 weeks relative to the actual start

of the competition (2022-03-07). Assuming the time-series y
(m)
t and x

(m)
t are stationary,

such augmentation does not alter the objective in any way and allows us to effortlessly
quadruple the amount of data per asset m, further enhancing the stability of the training
process.11

3.6.2 Features

As features x
(m)
t , we utilize an indicator for whether a given asset is an ETF, its own

lagged 4-week returns and volatilities (up to lag 7), and an array of technical trading
indicators from the TTR package (Ulrich, 2021), calculated based on historical prices. We
opt for TTR because it offers a unified interface, allowing us to generate a diverse set of
features programmatically without requiring extensive supervision or manual adjustments.
A complete list of all 81 features is provided in Table 3.3 in Appendix 3.A.12 Finally, we

9Measured by the product of the daily traded volume and the closing price.
10Note that computing quintiles based on all 900 additional assets at once does not generally align

with the original objective.
11All the features in x

(m)
t were either normalized by price or differenced to induce stationarity.

12Some indicators are multivariate and/or are computed with different lengths of the rolling window.
The feature selection process involved initially training an XGBoost model (Chen et al., 2023) using all
available technical trading indicators from TTR and subsequently pruning the least important features.
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impute missing values with medians, and normalize the features to zero mean and unit
variance. Missing observations, which comprise 0.947% of the dataset, are predominantly
found at the beginning of each series. These gaps result from our having insufficient
number of prior data points to calculate certain features and do not appear to substantially
influence the results.

3.6.3 Model & training

The base model f(·; β) is a feedforward neural network comprising two hidden layers with
32 and 8 units, featuring leaky ReLU nonlinearity and a dropout rate of 0.2. The output
layer has 5 units and utilizes a softmax transform. The meta module g(·; ω) is a trivial
feedforward network with no hidden layers or nonlinearity. One mesa parameter (dθ = 1)
is allotted to each asset, influencing the weights and biases of the final layer in f(·; β).
The architecture of the entire model is displayed in Figure 3.5.

To train the model, we utilize data from 2000 to 2022 for training, reserving the remaining
data for testing. Given the high sensitivity of hypernetworks to their initialization (Beck
et al., 2023), our training process consists of two steps. In the first step, the base model is
trained on pooled data without taking into account which data belongs to which task.
This training is conducted under the RPS loss using the Adam optimizer with a learning
rate of 0.01, a minibatch size of 200, and early stopping.

In the second step, the trained weights from the first step serve as an initialization for
the bias of the meta module g(·; ω). Meanwhile, the weights of the meta module are
initialized uniformly on the interval [−1, 1], and mesa parameters {θ(m)}M

m=1 are set to 0.
This means that the optimization begins from a point where the MtMs model is already
proficient at predicting y

(m)
t , and the objective now is primarily to capture any systematic

differences among the DGPs of individual assets through the mesa parameters {θ(m)}M
m=1.

The optimization is carried out iteratively using the Adam optimizer, with gradually
decreasing learning rates, minibatches consisting of 100 randomly selected assets and early
stopping. We employ this repeated training scheme because MtMs can be challenging to
train, with the optimizer often struggling to adjust the model weights for improved test
loss on the initial attempt. Multiple iterations are typically required. Finally, to make
predictions, we can readily employ mesa parameters θ(m) corresponding to the original
asset universe without any further training (i.e., a multi-task learning scenario).
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Figure 3.5: A diagram of the MtMs model applied to M6. In the case of M6, there are 1000
tasks/assets (100 specified by the organizers and 900 from the additional 9 auxiliary M6-like

datasets). Each asset is allotted one univariate mesa parameter θ, which, through the meta module
g(θ;ω), determines the parameters β of the network f(x;β). This network then processes the

corresponding feature vector x to generate the prediction ŷ. The meta module g(θ;ω) is a trivial
single-layer neural network that connects θ to the weights and biases of the last layer of the
network f ; βconnected. The remaining nodes corresponding to parameters βorphaned are not

influenced by θ and are hence constant across all tasks/assets.
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Although the rankings of individual assets are intrinsically related (with exactly 20 assets
belonging to each quintile within each universe), we choose to disregard this dependence
and submit predictions ŷ

(m)
t = f(x(m)

t , g(ˆ︁θ(m); ˆ︁ω)) without any post-processing or further
adjustments.13 While harmonizing the predictions could potentially yield performance
improvements, we did not pursue this as the universe’s size of 100 assets is adequate to
ensure that y

(m)
t is at least approximately unrelated in this regard.

3.6.4 Implications for Investment Decisions

The M6 competition organizers documented a significant disconnect between forecasting
accuracy and investment performance. Analyses show almost zero correlation between the
two, with only one team outperforming the investment benchmark over four quarters, and
none across all twelve months. Notably, the top performing forecasting teams constructed
inefficient portfolios, while the best investment teams submitted less accurate forecasts
(Makridakis et al., 2023).

Our analysis of forecasts generated by the MtMs model seems to align with this finding
and offers a possible explanation for this seemingly paradoxical disconnect between the two
challenges. Despite the model’s predictions performing well when measured by RPS loss14,
attaining an RPS of 0.15689, they contain surprisingly little information about expected
returns. This severely limits their practical utility for forming investment portfolios, except
for risk management purposes. Figure 3.6 shows the predicted probabilities of the 1st
(resp. 2nd) quintile plotted against predicted probabilities of the 5th (resp 4th) quintile
for individual assets throughout the competition. Predictions generally traverse along the
diagonal line, implying that an increased probability of exceptionally good performance,
relative to other assets, is accompanied by an increased probability of exceptionally poor
performance, and vice versa, thus failing to provide any clear recommendations on which
positions to take. This finding appears to align with the efficient market hypothesis (see,
e.g., Malkiel, 2005), which posits that it is impossible to achieve abnormal returns based

13The only exceptions are the predictions for the DRE stock during submissions 10-12. After DRE
stock was acquired by PLD, it exhibited zero price changes from that point forward. To address this,
we overrode the predictions with observed frequencies with which a hypothetical asset with zero returns
would belong to individual quintiles.

14Disentangling the precise causes of the model’s relatively good performance is challenging. However,
the training metrics suggest that the considered assets are relatively homogenous. The most significant
improvements over naive predictions were achieved through joint training, with adaptation playing a
secondary role. MtMs nonetheless still provided the advantage of using a much broader universe of assets
for training without concerns about their dissimilarity to the assets specified by the organizers.
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on information contained in the price history.

In general, the predictability of quintiles of rank does not necessarily imply predictability
of expected returns; many DGPs for asset returns with identical means are compatible
with non-uniform and predictable quintiles. Even the minor asymmetries in quintile
predictions (i.e., a situations in which P̂ (quintilem,t = 1) ̸= P̂ (quintilem,t = 5) or
P̂ (quintilem,t = 2) ̸= P̂ (quintilem,t = 4)) occasionally observed in Figure 3.6 are not
necessarily indicative of mean predictability. Instead, they are likely caused by a varying
degree of asymmetry in the distribution of returns across different assets.

This posed a challenge regarding how to best approach the investment challenge in which
we also participated. Given the lack of information in predictions regarding the expected
returns, which would allow us to attain abnormal returns, we opted to use the investment
challenge as ancillary to the prediction challenge and to strategically regulate the risk
depending on the current ranking to improve the chances of securing a good enough
rank in the duathlon challenge.15 In particular, to maximize the probability of securing
the top rank, it is desirable to take more risky positions when one ranks poorly in the
public leaderboard, attempting to improve otherwise hopeless positions. Conversely, more
conservative positions might be warranted if one already holds a sufficiently good rank
and only wishes to maintain it.

A formalization of this type of approach as a dynamic programming problem and analysis
of its performance is beyond the scope of this chapter, but can be found in (Staněk,
2023b). The simulations suggest that employing such an adversarial portfolio strategy can
significantly improve the likelihood of achieving a favorable rank within the leaderboard.
This effect is particularly notable for the highest rankings; the probability of securing the
1st place is approximately 3 times higher than expected by chance, comparable to that of
a participant consistently generating double the market returns. The advantage for less
extreme placements is less pronounced, with the probability of securing the 20th place or
better being approximately 1.5 times higher than expected by chance.

15As the objective is defined in terms of risk-adjusted returns, it is challenging to directly control risk
by forming portfolios with varying degrees of return variability. To circumvent this issue, we leveraged
the competitive nature of the competition, where only relative performance matters, and the fact that
participants were primarily taking long positions. By varying the proportion of short positions in the
portfolio, one can control the extent to which returns of the submitted portfolio would be negatively or
positively correlated with the returns of other participants at large.
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Figure 3.6: Predicted probabilities of the 1st quintile plotted against the probabilities of the 5th
quintile (upper panel) and predicted probabilities of the 2nd quintile plotted against the

probabilities of the 4th quintile (lower panel).
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3.7 Conclusions

We propose a meta-learning/multi-task model based on hypernetworks. This approach
enables the creation of a parametric model specifically optimized for a particular family of
prediction tasks. In this way, the model’s parameters are used to capture any between-task
variability, while features of the DGP that are approximately invariant across tasks are
learned from the pooled data. Unlike other meta-learning approaches, the training of the
model does not rely on the computation of higher-order derivatives and can be done via
standard backpropagation techniques, considerably reducing the computational resources
required.

The model outperforms state-of-the-art meta-learning approaches on the sinusoidal re-
gression task by an order of magnitude. It is capable of almost perfectly recovering the
underlying parametric model (or one of its equivalent representations) and delivering
near-oracle-level performance. In the second application, we apply MtMs under the
multi-task learning paradigm to the time-series from the M4 forecasting competition,
following the evaluation framework of Montero-Manso and Hyndman (2021). A simple
linear model localized via MtMs outperforms both the corresponding global model applied
on pooled data and models localized via clustering for the majority of series. Moreover,
this very simple parametric linear model derived in a data-driven way through MtMs
outperforms conventional widely used local models such as ETS (Hyndman et al., 2002b)
and auto.arima (Hyndman and Khandakar, 2008b) on the majority of series. The third
application in which we showcase the model is the M6 Financial Forecasting Competition.
There, the MtMs model allowed us to leverage a much broader universe of assets for
training while also acknowledging potential heterogeneity among the assets. The model
attained an RPS of 0.15689, securing the 4th place in the forecasting challenge and
ultimately the 1st place in the overall duathlon ranking.

These three applications clearly demonstrate the potential of MtMs in solving difficult
prediction problems where neither pure global nor pure local models are completely
appropriate. An exciting area for further research, which we plan to explore, is to
test its applicability on a broader range of meta-learning problems, especially few-shot
image recognition—a typical domain of meta-learning approaches—and general few-shot
reasoning tasks.
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3.8 Proofs

Proof of Proposition 1. Define g(θ(m); ω) = {θ(m), ω} and f(·, β(m)) = fβ(m)[2](·; β(m)[1])
with B = Θ × Ω. Under A1 and A2, the bilevel optimization problem in Eq. 3.6 reads as
follows:

ω̂ = arg min
ω

1
M

M∑︂
m=1

1
K

K∑︂
i=1

γ(y(m)
i , f(x(m)

i ; g(θ(m); ω)))⏞ ⏟⏟ ⏞
≡Q(ω,{κω(D(m)

train)}M
m=1)

s.t.: θ̂
(m) = κω(D(m)

train)

= arg min
θ

1
K

K∑︂
i=1

γ(y(m)
i , f(x(m)

i ; g(θ; ω))).

(3.18)

The assumption of existence and uniqueness of the inner optimization problems (A1)
guarantees that the objective Q(ω, {κω(D(m)

train)}M
m=1) is properly defined. Let us denote

the set of solutions to the bilevel problem (Eq. 3.18) as Ω∗
B ⊂ Ω, and the ω component of

the set of solutions to the single-level problem (Eq. 3.10) as Ω∗
S. The fact that Ω∗

B = Ω∗
S

directly stems from the fact that the individual components (m) of the outer optimization
objective Q(·) coincide with the inner optimization objectives:

Let ω∗ ∈ ΩB. By virtue of optimality,

∀ω ∈ Ω : Q(ω∗, {κω∗(D(m)
train)}M

m=1) ≤ Q(ω, {κω(D(m)
train)}M

m=1). (3.19)

From the definition of κω and the additivity of Q(·), it also holds

∀ω ∈ Ω ∀{θ(m)}M
m=1 ∈ ΘM : Q(ω, {κω(D(m)

train)}M
m=1) ≤ Q(ω, {θ(m)}M

m=1). (3.20)

Combining these, we obtain

∀ω ∈ Ω ∀{θ(m)}M
m=1 ∈ ΘM : Q(ω∗, {κω∗(D(m)

train)}M
m=1) ≤ Q(ω, {θ(m)}M

m=1) (3.21)

which implies ω∗ ∈ ΩS.

Let ω∗ ∈ ΩS, and let {θ∗(m)}M
m=1 ∈ ΘM be the corresponding θ component of the solution.

By virtue of optimality,

∀ω ∈ Ω ∀{θ(m)}M
m=1 ∈ ΘM : Q(ω∗, {θ∗(m)}M

m=1) ≤ Q(ω, {θ(m)}M
m=1). (3.22)
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Since κω(D(m)
train) ∈ Θ, it follows that

∀ω ∈ Ω : Q(ω∗, {θ∗(m)}M
m=1) ≤ Q(ω, {κω(D(m)

train)}M
m=1). (3.23)

From the definition of κω and additivity of Q(·), it also holds

Q(ω∗, {κω∗(D(m)
train)}M

m=1) ≤ Q(ω∗, {θ∗(m)}M
m=1). (3.24)

Combining these, we obtain

∀ω ∈ Ω : Q(ω∗, {κω∗(D(m)
train)}M

m=1) ≤ Q(ω, {κω(D(m)
train)}M

m=1), (3.25)

which implies ω∗ ∈ ΩB.
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3.A Supplementary Results

Source Feature Transformation
own Volatility(lag = [1,2,3,4,5,6,7])
own Return(lag = [1,2,3,4,5,6,7])
own IsETF
TTR ADX
TTR aroon
TTR ATR(n=[7, 14, 28]) Norm.
TTR BBands Norm.
TTR CCI
TTR chaikinAD diff(1)
TTR chaikinVolatility
TTR CLV
TTR CMF
TTR CMO
TTR CTI
TTR DEMA Norm.
TTR DonchianChannel Norm.
TTR EMA Norm.
TTR EVWMA Norm.
TTR GMMA(short=10, long=[30, 60]) Norm.
TTR HMA Norm.
TTR KST
TTR MACD
TTR MFI
TTR OBV diff(1)
TTR PBands Norm.
TTR ROC
TTR RSI
TTR runPercentRank(n=100)
TTR SMI
TTR SNR(n=[20,60])
TTR TDI Norm.
TTR TRIX
TTR ultimateOscillator
TTR VHF
TTR volatility
TTR williamsAD diff(1)
TTR WPR
TTR ZLEMA Norm.

Table 3.3: Features x(m)
t used as input to the model. The transformation “Norm.” indicates that

the feature is normalized by the price of the asset while the transformation “diff(1)” denotes first
differencing.
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