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Abstract

In the first chapter, we introduce a new role of quotas, e.g., labor market quotas: the
attentional role. We study the effects of quota implementation on the attention allo-
cation strategy of a rationally inattentive (RI) manager. We find that quotas induce
attention: a RI manager who is forced to fulfill a quota, unlike an unrestricted RI man-
ager, never rejects minority candidates without acquiring information about them. We
also demonstrate that, in our model, quotas are behaviorally equivalent to subsidies. We
further analyze different goals that the social planner can achieve by implementing quo-
tas. First, quotas can eliminate statistical discrimination, i.e., make chances of being
hired independent from group identity. Second, when the hiring manager has inaccurate
beliefs about the distribution of candidates’ productivities, the social planner can make
the manager behave as if she has correct beliefs. Finally, we show how our results can be
used to set a quota level that increases the expected value of the chosen candidates.

In the second chapter, we study the information choice of exchange-traded funds
(ETF) investors, and its impact on the price efficiency of underlying stocks. First, we show
that the learning of stock-specific information happens at the ETF level. Further, our
results suggest that ETF investors respond endogenously to changes in the fundamental
value of underlying stocks, in line with the rational inattention theory. Second, we provide
evidence that ETFs facilitate propagation of idiosyncratic shocks across its constituents.

In the third chapter, I study how an optimal menu chosen by a social planner de-
pends on whether agents receive imperfect signals about her true taste (imperfect self-
knowledge) or the properties of available alternatives (imperfect information). Under
imperfect self-knowledge, it is not optimal to offer fewer alternatives than the number
of different tastes present in the population, unless noise is infinite (agents have no clue
about their true preferences). As noise increases, the social planner would offer menu
items that are closer together (more similar), in the limit only offering one choice match-
ing the mean preference in the population. However, under imperfect information, as
noise increases, the social planner prefers to restrict the number of alternatives. Whether
he makes them more or less similar is non-linear in noise.

v



vi



Abstrakt

abstrakt

vii



viii



Acknowledgments

I am extremely thankful to my supervisor, Filip Matějka, for his patient guidance, sup-
port, and constructive criticism. I am also grateful to Jan Zápal, who was always available
to discuss my research and encouraged me to aspire more. I would also like to express my
gratitude to Avner Shaked and Ole Jann, who were supportive and helpful throughout.

I am indebted to many other inspiring people, especially to Daniel Martin for valuable
discussions and help with organizing my research stay at Northwestern University. I am
thankful to my co-authors, Andrei Matveenko and Mariia Kosar. I would like to thank
all other academics who I met for numerous discussions of different parts of this thesis,
as well as participants in various seminars, conferences, and workshops, in which I had
opportunities to present my papers.

Furthermore, I also want to thank Andrea Downing, Grayson Krueger, and Deborah
Novakova, who provided academic writing support and performed the language editing of
this thesis. I am also grateful to the CERGE-EI community - faculty members, library,
and staff for their assistance. I would also like to express my special thanks to Elizaveta
Zasukhina for human support.

Lastly, and most importantly, I am thankful to my family, who accepted my choice
of academic study, though they were uncertain about what I have been doing all these
years. I especially thankful to my partner, Ekaterina Travova, who has made this journey
feel less isolating.

Financial support from the Charles University project GA UK project No. 36119 and
the ERC-2015-STG (H2020) project no. 678081 is gratefully acknowledged.

All errors remaining in this text are my responsibility.

Czech Republic, Prague Sergei
May 2022

ix



x



Introduction

In information-rich world, where every day we face a choice, it is often difficult to make

the best decision possible. The unifying theme of all three chapters of this dissertation

centers on the idea that people make mistakes and that there are different ways to pro-

vide assistance and/or affect others. In the first two chapters, we apply the theory of

rational inattention (RI), a disciplined model of how persons whose time and energy is

limited choose what information to acquire. The key assumption is that there is gener-

ally more information available than a decision maker can pay attention to, though she

can choose what information to focus on. In the first chapter, Andrei Matveenko and I

investigate the influence the influence of a new affirmative action policy on the behavior

of a rationally inattentive HR manager. In the second chapter, Maria Kosar and I study

the information choices made by exchange-traded funds (ETF) investors, and its impact

on the price efficiency of underlying stocks. the third chapter focuses on an environment

in which people makes mistakes because they have imperfect self-knowledge or imperfect

information. I study how optimal menus chosen by a social planner depend on the source

of mistakes.

In the first chapter, we focus on labor market quotas, which have become a heavily-

used governmental policy instrument in recent years. For example, in 2006, all pub-

licly listed companies in Norway were required to increase female representation on their

boards of directors to 40 percent. While there is a large body of literature that studies

the effect of quota implementation on market outcomes, there is a lack of research that fo-

cuses on individual decision-making when an agent is forced to fulfill a quota. We address
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this gap in the research and introduces a new role of quotas: the attentional role. We find

that quotas induce attention: RI manager who is forced to fulfill a quota, unlike an un-

restricted RI manager, never rejects minority candidates, without acquiring information

about them. We also demonstrate that, in our model, quotas are behaviorally equivalent

to subsidies. In addition, we analyze different goals that the social planner can achieve by

implementing quotas. First, quotas can help to eliminate statistical discrimination, i.e.,

make the chances of being hired independent of group identity. Second, when the hiring

manager has inaccurate beliefs about the distribution of candidates’ productivities, the

social planner can spur the manager behave as if she has correct beliefs. Finally, we show

how our results can be used to set a quota level that increases the expected value of the

candidates chosen.

In the second chapter, we consider exchange-traded funds (ETFs), which have gained

popularity among investors over the past decades, and have rapidly grown in terms of as-

sets under management and trading volume. These instruments have attracted attention

from both scholars and practitioners due to important asset pricing implications for their

underlying securities. However, there is still a question whether ETFs can facilitate stock-

specific price discovery, and what the net effect it has for the ETF underlying bundle. In

this chapter we investigate this question. First, we show that the learning of stock-specific

fundamental information can happen at the ETF level. More interestingly, our results

suggest that ETF investors endogenously respond to changes in the fundamental value

of underlying stocks, in line with the rational inattention theory. Second, we provide

evidence that this pattern of learning affects the ETFs underlying bundles, leading to

abnormal idiosyncratic volatility (AIV) co-movements across underlying stocks.

In the third chapter, I focus on situations when people choose from a discrete menu,

for example, when choosing an insurance plan, school for our children, or pension fund.

People often make mistakes in these important decisions, for two potential reasons. First,

we misperceive the true properties of alternatives, i.e., we have imperfect information.

Second, we misperceive our own tastes, i.e., we have imperfect self-knowledge. I study

how choosing an optimal menu by a social planner depends on the source of agent’s

mistakes. Under imperfect self-knowledge, it is not optimal to offer fewer alternatives

than the number of different tastes present in the population unless noise is infinite

(meaning that agents have no clue about their true preferences). As noise increases, the

social planner would offer menu items that are closer together (more similar), in the limit

only offering one choice matching the mean preference in the population. However, under

2



imperfect information, as noise increases, the social planner wants to restrict the number

of alternatives. Whether he makes them more or less similar is non-linear in noise.
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Chapter 1

Attentional Role of Quota Implementation

Co-authored with Andrei Matveenko (University of Copenhagen).

1.1 Introduction

Labor market quotas have become a heavily-used governmental policy instrument in

recent years. For example, in 2006 all publicly listed companies in Norway were required

to increase female representation on their boards of directors to 40 percent. Following

Norway’s lead, the European Union and several countries worldwide have passed similar

reforms (Bertrand et al. 2019). While there is a large body of literature that studies

the effect of quota implementation on market outcomes, there is a lack of research that

focuses on individual decision-making when an agent is forced to fulfill a quota. This

paper addresses the latter gap in the research and introduces a new role of quotas: the

attentional role.

We consider the following setup. A human resources (HR) manager in a large firm is

a rationally inattentive (RI) decision-maker. Each day she encounters a group of candi-

dates. First, she sees a candidate’s ethnicity and gender (or other observable character-

istics), which forms her prior beliefs about the candidate’s qualities and potential future

productivity levels. Subsequently, the manager can acquire additional information about

candidates – she can read resumes, ask questions, conduct tests, and use other learning

strategies. The key feature of the process is that the information acquisition is flexible

and endogenous – the manager does not have a fixed guide on how to learn about a
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potential worker’s future productivity. At the same time, she has cognitive (and/or time)

limitations. We model these limitations as costly information acquisition. Therefore, the

manager faces a trade-off between acquiring more precise information about candidates

and the cost of this information. After acquiring optimal information, the manager hires

the candidate with the highest expected value for the firm.

We follow the setup introduced by Matějka and McKay (2015), in which the agent is

uncertain about the values of available options. These values are modeled as an unknown

draw from the known distribution. The agent has an opportunity to receive additional in-

formation about the realization of the draw in the manner that is optimal given the costs,

which we model using the rational inattention framework introduced by Sims (2003). We

think of the labor market candidates as available options and candidates’ productivity

levels as the values of options. Matějka and McKay (2015) show that the choice of a RI

agent is typically stochastic and is characterized by the vectors of conditional and uncon-

ditional choice probabilities. In this paper, we explore the effect of quota implementation

on the behavior of a RI manager. We model a quota as a constraint on the unconditional

choice probability of choosing a candidate from a particular group. Due to the law of large

numbers, such a limitation on unconditional choice probability is essentially a limitation

on the share of workers from a particular group in the overall composition of workers in

the firm.

We analyze the behavior of the RI manager when quotas restrict her choice, and

compare it with an unrestricted case and the situation in which a social planner subsidizes

the manager’s choice of certain alternatives. We find that the choice probabilities of the

manager in the constrained problem have the form of a generalized multinomial logit as in

Matějka and McKay (2015) with an additional state independent component. In a choice

among N candidates with the realized values v(i|ω) for i ∈ {1, ..., N}, our modified logit

formula implies that the probability of choosing a candidate from group i is:

P(i|ω) =
qie

(v(i|ω)−ϕi)/λ∑N
j=1 qje

(v(j|ω)−ϕj)/λ
,

where λ is the marginal cost of information, the qi terms are quotas, and ϕi are state

independent components. The form of choice probabilities shows that the manager be-

haves as if the value of the candidate is lower by ϕi. That is, the ϕi component induces

an additive utility shifter in the decision-maker’s preferences. Therefore, if a choice of

a particular alternative is subsidized by −ϕi then such a subsidy has exactly the same

6



effect as the quota, which is the result we show in Section 1.3.3.

These adjustments to the logit model lead to the following change in the manager’s

behavior. If the choice problem is nontrivial, the RI manager who is forced to fulfill

a quota always acquires information about candidates (Proposition 2). This feature is

absent in the unconstrained problem, in which the manager has prior beliefs for which

she decides not to acquire any additional information.

Further, we analyze the implications of choosing different vectors of quotas by the

social planner. In Section 1.4 we prove that the social planner using quotas can induce

choice probabilities which coincide with those of the unrestricted RI manager with any

prior. This result has two immediate implications. Firstly, the social planner can always

find a quota that makes the probability of a certain candidate being hired independent

from the group identity, i.e. induces the fair (meritocratic) choice. Secondly, when the

manager has inaccurate prior beliefs about the distribution of candidates’ productivities,

the social planner using quotas can induce the manager to behave as if she has correct

beliefs.

Finally, using an example with candidates from two distinct social groups, we show a

scenario when the social planner maximizes the expected value of the chosen candidates

without taking into account the information costs. In general, the social planner benefits

by forcing the manager to fulfill quotas, but for some priors the social planner prefers not

to impose a quota.

Although we primarily focus on the effect of a quota in the labor market, the results

of our analysis can be applied to studying individual behavior in other areas, e.g. a quota

on the proportion of safe assets that must be in the portfolio of a financial manager or a

quota on the number of orders a taxi driver can reject when searching for a client using

peer-to-peer ride sharing applications (such as Uber, Lyft, or Yandex). We briefly discuss

these applications in Section 1.6.

In the next section we review the related literature. Section 1.3 states the formal model

of the manager’s behavior with quotas and subsidies. Section 1.4 studies how the social

planner can induce fair choice and correct wrong beliefs. Section 1.5 demonstrates the

implications of the model using the binary example and discusses the value maximizing

quota.
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1.2 Literature

Our work contributes to the research on affirmative action and labor market discrimina-

tion. Affirmative action is “...any measure, beyond simple termination of a discriminatory

practice, adopted to correct or compensate for past or present discrimination or to pre-

vent discrimination from recurring in the future” (U. S. Commission on Civil Rights, 1977

p. 2). One of the most hotly debated types of affirmative action is the implementation

of quotas. Coate and Loury (1993), in their famous paper, analyze a model of job as-

signment and show that quotas may lead to equilibria with persistent discrimination, due

to feedback effects between expected job assignments and incentives to invest in human

capital. Moro and Norman (2003) study the same problem in the general equilibrium

setting and confirm the possibility that quotas can hurt the intended beneficiaries. These

articles examine how affirmative action influences the behavior of the target group, and

then its interaction with the behavior of the firm. In contrast, our study aims to inves-

tigate the individual decision-making process under quotas and consequences for policy

design. A review of early studies on affirmative action can be found in Fang and Moro

(2010).

To date there is mixed empirical evidence of the effect of quotas on the quality of

workers and firm’s revenue. For example, Ahern and Dittmar (2012) show that firm

value declined with a law mandating 40% representation of each gender on the board of

public limited liability companies in Norway. They also show that the average age and

experience of the new female directors were significantly lower than that of the existing

male directors and argue that this change led to a deterioration in operating performance.

At the same time, Eckbo, Nygaard, and Thorburn (2019), using econometric adjustments

and a larger data set, argue that the effect of implementation of quotas on both the value

of firms and on the quality of directors was insignificant. Bertrand et al. (2019), exploiting

the same intervention, document that a quota resulted in significant improvement of the

average observable qualifications of the women appointed to the boards and a decrease

in the gender gap in earnings within boards. Besley et al. (2017), using Swedish data

on the performance of politicians, show that a gender quota on the ballot increased

the competence of male politicians. Ibanez and Riener (2018) use data from three field

experiments in Colombia and show that the gains from attracting female applicants far

outweigh the losses from deterring male applicants. Our paper proposes a mechanism

that can possibly explain why the evidence on consequences of quotas is mixed.
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Our study fits into the rational inattention literature, which originated in studies by

Sims (2003). As a benchmark, we use the modified multinomial logit model of (Matějka

and McKay 2015), in which agents choose between alternatives without precise informa-

tion about their values, but with an opportunity to study the options for some cost1.

We analyze this model with an additional constraint on the unconditional probabilities

of the choice of a certain alternative. Lindbeck and Weibull (2020) analyze investment

decisions with delegation to a RI agent. They find that optimal contracts for an agent

include a high reward for good investments and punishment for bad investments. Lip-

nowski, Mathevet, and Wei (2020) study a model where a principal provides information

to a RI agent, but does not internalize the agent’s cost of processing information. They

show that if there are more than two alternatives, a principal can improve material ben-

efits from the choice by manipulating information. We analyze a similar principal-agent

problem in Section 1.5.2, but with a different mechanism. We show that, for a set of

parameters, a principal can force the manager to acquire more information by defining

the level of quotas, and thereby increase the expected value of the manager’s choice.

Fosgerau, Sethi, and Weibull (2020) characterize equilibrium with a RI employer and

candidates who choose how much effort to invest before being screened and use it to

examine categorical inequality, including statistical discrimination, prejudice, and social

capital. Acharya and Wee (2020) consider a search and matching model with RI firms

and find that during recessions firms become more selective. The results of our paper

are complementary to these studies and can be used to investigate how affirmative action

influences equilibrium outcomes.

Bartoš et al. (2016), in a field experiment, show that HR managers and landlords

allocate their attention to job and rental applicants in line with the rational inattention

theory. For example, a non-European name or recent unemployment induces the HR

manager to read a job application and CV in less detail, which negatively affects the

probability of the applicant being invited for a job interview. The results of our study

predict the attention allocation of decision-makers, such as HR managers, in the presence

of quotas, i.e. whether they would blindly choose the quoted option or whether a quota

would lead to greater information acquisition about the target group. Thus, the results

of this study can provide a starting point for the empirical investigation of the effect of

a quota on attention allocation. A detailed review of the RI literature can be found in

1See also Caplin and Dean (2015) for an alternative method for characterizing solutions in a similar
environment.
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Maćkowiak, Matějka, and Wiederholt (2021).

Our study also relates to the discussion on whether directly administering an activity

is better than fixing transfer prices and relying on utility maximization to achieve the

same results in a decentralized fashion (Weitzman 1974). We contribute to the discussion

on this issue by comparing the behaviour of a manager operating under quotas and a

manager whose choice is subsidized by a social planner.

1.3 The model

This section begins with a benchmark model – we describe the standard RI problem as

in Matějka and McKay (2015) and Caplin, Dean, and Leahy (2019) and its implications.

Then, we state our problem with quotas and discuss the properties of the solution. Finally,

we analyze the RI problem with subsidies.

The HR manager faces N candidates and wants to select the candidate with the

highest value for the employer. We refer to a candidate i as a candidate from a category

i. There are finitely many states of the world Ω, with ω ∈ Ω denoting a generic state. The

values of the candidates differ from state to state, v(i|ω) ∈ R is the value of the candidate

from category i ∈ {1, ..., N} in the state ω ∈ Ω. The decision-maker is uncertain about

the realization of the state of the world. However, she knows a distribution of possible

states of the world – this prior knowledge is described by a distribution µ ∈ ∆(Ω), where

∆(Ω) denotes the set of all probability distributions over Ω, we assume that µ(ω) >

0 ∀ω ∈ Ω. She can refine her knowledge by processing costly information about the

realization. Information processing results in a stochastic (possibly not purely stochastic)

choice and, at the optimum, the decision problem can be treated as a problem of choosing

conditional choice probabilities rather than the choice of information structure (Corollary

1 in Matějka and McKay 2015). We denote the conditional probability of a candidate i

being selected when the realized state is ω as P(i|ω).

1.3.1 Standard RI problem

The standard RI manager’s problem is formalized as follows.

Standard (unconstrained) RI problem. The manager’s problem is to find a vector function

of conditional choice probabilities PU = {PU(i|ω)}i,ω, i ∈ {1, ..., N}, ω ∈ Ω, (the super-

script “U” stands for “unrestricted”) that maximizes expected payoff less the information

10



cost:

max
{PU (i|ω)}Ni=1

{
N∑
i=1

∑
ω∈Ω

v(i|ω)PU(i|ω)µ(ω)− λκ(PU)

}
subject to

∀i ∈ {1, ..., N}, ∀ω ∈ Ω : PU(i|ω) ≥ 0, (1.1)

∀ω ∈ Ω :
N∑
i=1

PU(i|ω) = 1, (1.2)

where unconditional choice probabilities are

PU(i) =
∑
ω∈Ω

PU(i|ω)µ(ω), i ∈ {1, ..., N}. (1.3)

The cost of information is λκ(PU), where λ ∈ (0,+∞) is a given unit cost of information

and κ is the amount of information that the manager processes, which is measured by

the expected reduction in the entropy (Shannon 1948, Cover and Thomas 2012):

κ(PU) = −
N∑
i=1

PU(i) logPU(i) +
N∑
i=1

∑
ω∈Ω

PU(i|ω) logPU(i|ω)µ(ω). (1.4)

The entropy shape of the information cost is common in the literature on rational

inattention. Its use has been justified both axiomatically and through links to optimal

coding in information theory (see Sims (2003), Matějka and McKay (2015), and Denti,

Marinacci, and Montrucchio (2019) for discussions).

Matějka and McKay (2015) show that, at the optimum, the conditional probabilities

of choosing a candidate i ∈ {1, ...., N} follow the generalized logit form.

Theorem 1 (Matějka and McKay 2015). Conditional on the realized state of the world

ω ∈ Ω the optimal choice probabilities satisfy:

PU(i|ω) =
PU(i)ev(i|ω)/λ∑N
j=1PU(j)ev(j|ω)/λ

.

The shape of conditional choice probabilities is similar to a multinomial logit, but is

weighted with the coefficients PU(i), which are endogenous to the decision problem and

represent the probability of selecting a candidate i before the manager starts process-

ing any information. These adjustments to the logit model reflect the fact that some

candidates may, a priori, look better than others.
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An important property of the solution is that parameters of the model may exist for

which the manager decides not to acquire any information, and instead makes her decision

based solely on her prior knowledge. In this situation, she simply chooses the candidate

with the highest a priori expected value.2 In terms of the labor market, this means that

some categories of workers may not be given any attention and are consequently not hired.

As we show in the next section, the social planner can force the manager to receive at

least some information about the candidates – this can be achieved via the use of quotas.

1.3.2 Quotas

We consider a departure from the standard RI problem when the manager is not com-

pletely free in her choice. Instead, some authority limits her choice in that, for all cate-

gories, the share of the candidates hired from a category i should be equal to qi ∈ (0, 1).3

RI problem with quotas. The manager’s problem is to find a vector function of conditional

choice probabilities P = {P(i|ω)}i,ω, i ∈ {1, ..., N}, ω ∈ Ω, that maximizes expected

payoff less the information cost:

max
{P(i|ω)}Ni=1

{
N∑
i=1

∑
ω∈Ω

v(i|ω)P(i|ω)µ(ω)− λκ(P)

}

subject to (1.1)-(1.4) and

∀i ∈ {1, ..., N} : P(i) =
∑
ω∈Ω

P(i|ω)µ(ω) = qi, qi ∈ (0, 1), (1.5)

where q = (q1, ..., qN)T is the vector of quotas and

N∑
i=1

qi = 1.

2See Caplin and Martin (2017), who analyze a discrete choice problem of a RI agent with costly
information acquisition, and show that if there is a high quality default option the manager chooses zero
attentional effort.

3We focus on the case with binding quotas for all alternatives, since (a) if the quotas have a form of
weak inequality, then, if it is not binding, the solution is the same as the solution to the unconstrained
problem; and (b) the case with quotas only for some categories is considered in Appendix 1.D where we
show that results are similar. In addition, we restrict the quota vector to be interior because if some
of its components are 0, the problem boils down to the situation in which the choice is limited and the
solution coincides with the solution to the standard RI problem with restricted menu. When the quota
equals 1 for a particular category, the solution is trivial – the manager does not acquire any information.
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Choice probabilities at the optimum follow:

P(i|ω) =
qie

(v(i|ω)−ϕi)/λ∑N
j=1 qje

(v(j|ω)−ϕj)/λ
. (1.6)

This result is formalized in the following proposition:

Proposition 1. Choice probabilities that are the solution to the RI manager problem with

quotas are of a generalized logit form: logit choice probabilities with an additive state-

independent component. Conditional choice probabilities {P(i|ω)}i,ω, i ∈ {1, ..., N}, ω ∈
Ω, are the solution to the RI problem with quotas if they satisfy (1.5) and (1.6). Moreover,

the solution to the RI problem with quotas is unique.

Proof. See Appendix 1.A.1.

The terms ϕi are the Lagrange multipliers on the constraints on unconditional choice

probabilities. In choice probabilities they play the role of utility shifters, that is, the

manager’s behavior follows the logit rule, but with utilities which are changed by some

value that depends on the marginal cost of information, prior beliefs and the value of

a quota. In Section 1.3.3 we relate ϕ to subsidies which are required to be paid to the

manager when she hires workers from a certain category.

Proposition 1 states that the solutions to the standard RI problem and the RI problem

with quotas have a similar form. However, there is a crucial difference in the information

acquisition strategies of a RI manager with and without quotas. We express this in the

following proposition:

Proposition 2. If v(i|ω) − v(j|ω) is not constant across states ∀i, j ∈ {1, ..., N} and

i 6= j, then the RI manager with quotas always acquires information.

Proof. See Appendix 1.A.2.

Proposition 2 states that the employer will never blindly choose a candidate from a

certain group based only on her prior beliefs, but will acquire some information. The intu-

ition for this result comes from the fact that a quota forces the manager to choose not only

between candidates from different categories, but also between candidates from the same

category, which brings incentives for information acquisition. According to the condition

in Proposition 2, there is a beneficial deviation from the state-independent probabilities.

Therefore, the manager can benefit from acquiring at least some information in order to

improve her choice.
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The assumption that the cost of information is proportional to the expected reduction

in entropy is not crucial for Proposition 2 to hold. In particular, in Appendix 1.A.2 we

show that it holds for any posterior separable attention cost function (Caplin, Dean,

and Leahy 2021), with an extra assumption that the cost of marginal change in choice

probabilities is zero at the point of initial uncertainty. Also, let us note that in the case

which seems to be important in many applications, namely, when there is a fixed cost

to acquire any positive amount of information k > 0, Proposition 2 does not hold. For

example, the manager chooses not to acquire any information even when restricted by

quotas if v(i|ω)− v(j|ω) < k for all i, j ∈ {1, ..., N}, ω ∈ Ω.

1.3.3 Subsidies

We are interested in understanding how a manager’s attention strategy depends on the

particular form of affirmative action chosen by the government. One form of affirmative

action, and an alternative to quotas, is an employment subsidy policy, under which a firm

receives subsidies if it employs certain categories of workers (for survey see, e.g. Card,

Kluve, and Weber 2017). In this situation, the government does not have access to the

values of specific candidates for a firm and introduces the same subsidy for all possible

realizations of the values of candidates hired from a particular category.

Such a policy in our setting changes the values of candidates from v(i|ω) to v(i|ω) +

Si, ∀ω ∈ Ω, where Si is a subsidy for choosing a candidate from category i. Let us

begin the analysis with the definition of the RI problem with subsidies. If the government

introduces an employment subsidy policy, then the manager solves the following problem:

RI problem with subsidies. The manager’s problem is to find a vector function of condi-

tional choice probabilities PS = {PS(i|ω)}i,ω, i ∈ {1, ..., N}, ω ∈ Ω, (the superscript

“S” stands for “subsidy”) that maximizes expected payoff less the information cost:

max
{PS(i|ω)}Ni=1

{
N∑
i=1

∑
ω∈Ω

(v(i|ω) + Si)PS(i|ω)µ(ω)− λκ(PS)

}
,

subject to (1.1)-(1.4) and where Si is a subsidy for choosing a candidate i.

In this case, the solution to the manager’s problem follows the standard modified

generalized multinomial logit formula, but with the changed value of the candidate i by
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Si:

PS(i|ω) =
PS(i)e(v(i|ω)+Si)/λ∑N
j=1PS(j)e(v(j|ω)+Sj)/λ

. (1.7)

And unconditional choice probabilities are

PS(i) =
∑
ω∈Ω

PS(i|ω)µ(ω).

Equation (1.7) provides intuition about the nature of the additive component ϕ from

the solution to the RI problem with quotas. This component can be interpreted as the

government subsidies that are needed to be added to the values of candidates in order to

induce the RI manager to choose them with the required unconditional probabilities.

In the following proposition we establish formally that for any quotas q there exists

a subsidies vector S, such that the optimal behavior of a manager who is facing quotas

q is also optimal when she is facing subsidies S.

Proposition 3. For any vector of quotas q there exists a vector of subsidies S, such

that PS(i) ≡ qi, i ∈ {1, ..., N}, are optimal unconditional choice probabilities in the RI

manager problem with subsidies S. Moreover, optimal conditional choice probabilities in

the RI manager problem with quotas q are also optimal in the problem with subsidies S.

Proof. See Appendix 1.A.3.

Proposition 3 establishes the existence of subsidies such that for a given vector of quo-

tas there is a common optimum across the problems with subsidies and quotas. However,

the problem with subsidies might have several solutions and the desired quota might not

be achieved if the social planner chooses a subsidy policy. At the same time, such a sit-

uation is possible only in extreme cases with a very specific value co-movement pattern.

Proposition 4 states the condition that is sufficient for behavioral equivalence of quotas

and subsidies4.

Proposition 4. If for any vector {ζi}Ni=1 the values {e(v(i|·)+ζi)/λ}Ni=1 are affinely indepen-

dent in RΩ, i.e. there does not exist a set {aj}j 6=i such that
∑

j 6=i aj = 1 and

∀ω ∈ Ω : e(v(i|ω)+ζi)/λ =
∑
j 6=i

aje
(v(j|ω)+ζj)/λ, (1.8)

4In Appendix 1.C we provide a solution for a binary example with subsidies. We show that while the
behavior of the manager under quotas and subsidies is the same, the utility of the manager is different.
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then quotas and subsidies are behaviorally equivalent, i.e. for any q there exists S, such

that, in the problem with subsidies S, q is the unique vector of optimal unconditional

choice probabilities and optimal conditional choice probabilities in problems with quotas

and subsidies coincide.

Proof. See Appendix 1.A.4.

Let us note, that condition (1.8) is a stronger version of the affine independence

condition (see Matějka and McKay 2015, Caplin and Dean 2013). For example, in a

binary choice case affine independence requires that the values of the candidates are not

the same in all states of the world, while condition (1.8) requires that the values do not

differ by a state-independent constant in all states of the world. In addition, the results

of Propositions 3 and 4 are much more sensitive to the functional form of information

cost than the results of Proposition 2.

1.4 Effect of quotas on conditional choice probabilities

So far we have analyzed the manager’s problem for a given level of quota. In this section,

we analyze the features of conditional probabilities which the social planner can induce

by quotas. We start by stating a technical lemma which we apply later in the section.

Lemma 1. For any vector of weighting coefficients β ∈ [0, 1]N , such that
∑N

i=1 βi = 1,

there exists a vector of quotas q ∈ [0, 1]N , such that
∑N

i=1 qi = 1, which induces the

following choice probabilities as a solution to the RI problem with quotas q

∀i ∈ {1, ..., N}, ω ∈ Ω : P(i|ω) =
βie

v(i|ω)/λ∑N
j=1 βje

v(j|ω)/λ
. (1.9)

Proof. See Appendix 1.A.5.

Lemma 1 establishes an important feature of quotas: for any distribution of states of

the world the social planner can implement a vector of quotas such that the manager’s

behavior replicates the behavior of the unconstrained RI manager with any prior beliefs.

Now we consider two situations in which implementing such a quota is optimal.
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1.4.1 Fair quota

The original goal of affirmative action was, and for many policies still is, to ensure that

candidates are “treated [fairly] during employment, without regard to their race, creed,

color, or national origin” (John F. Kennedy 1961). In terms of our model this goal

is to ensure that the probability of a certain worker being hired does not depend on

group identity and depends only on the job-relevant characteristics of candidates. In this

section, we show that there exists a quota that achieves this goal.

Formally, the solution to the standard RI maximization problem is

∀i ∈ {1, ..., N}, ω ∈ Ω : PU(i|ω) =
PU(i)ev(i|ω)/λ∑N
j=1PU(j)ev(j|ω)/λ

, (1.10)

where PU(i) corresponds to the bias towards hiring a candidate from group i. Such choice

probabilities may result in a situation in which v(i|ω) = v(j|ω) for some i 6= j, ω ∈ Ω, but

PU(i|ω) > PU(j|ω) just because a candidate i comes from a group that seems a priori

better.

The goal of the social planner is to make choice probabilities depend on the realized

values only, i.e. eliminate PU(i) on the right-hand side in equation (1.10). The affirmative

action policy of such a social planner results in equal chances of being hired for candidates

with the same productivity.

One policy that aspires to achieve this goal is a blind or de-identified approach to

reviewing candidates (Goldin and Rouse 2000). In practice, however, it is not always

possible to fully hide the group identifier, since it can be approximated by other infor-

mation, which can lead to lower quality of the choice (see, for example, Ray and Sethi

(2010) and Antonovics and Backes (2014) on the adverse effects of color-blind affirmative

action). Moreover, such policies can have unexpected results and lower the representation

of the discriminated group if there exists positive discrimination (Hiscox et al. 2017).

Proposition 5 states that the social planner can choose such a quota, which we call

fair, that makes conditional choice probabilities dependent on candidates’ job-relevant

characteristics only. Therefore, the resulting choice outcomes with a fair quota are as if

there is a blind or de-identified policy. At the same time, by using a fair quota the social

planner can eliminate the bias, while keeping the information about the group identity.

Proposition 5. There exists a vector of quotas q and a function p : R× RN−1 → (0, 1)

such that p(v,v) is increasing in v and optimal conditional choice probabilities in the RI
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manager problem with quotas q do not depend on the candidate’s identity i ∈ {1, ..., N}
but only on the candidates’ values:

∀i ∈ {1, ..., N}, ∀ω ∈ Ω : P(i|ω) = p(v(i|ω),v(ω)),

where v(ω) = {v(j|ω)}j 6=i.

Proof. According to Lemma 1, there is a vector of quotas which induces the following

choice probabilities

∀i ∈ {1, ..., N}, ω ∈ Ω : P(i|ω) =
ev(i|ω)/λ∑N
j=1 e

v(j|ω)/λ
. (1.11)

Choice probabilities (1.11) depend on the candidates’ values only.

1.4.2 Inaccurate priors

Usually the literature highlights two types of discrimination: taste-based discrimination

(Becker 1957) and statistical discrimination (Phelps 1972). Without any additional as-

sumptions, the rational inattention theory allows us to model the latter type, which is

typically assumed to be driven by limited information about the particular candidate’s

characteristics and correct beliefs about the group distributions of the relevant outcome.

At the same time, people often have inaccurate beliefs about the performance distribu-

tions of particular groups (Bohren et al. 2020). Such misperceptions can not only increase

discrimination, but are also harmful for the manager, since she would acquire information

in a sub-optimal way and choose candidates with lower expected productivity. In this

section, we show that the social planner, who knows the correct distribution of produc-

tivities within and between different groups, can implement a quota that induces the

manager to behave as if she also has correct beliefs.

In terms of our model, misperception means that the manager has a wrong prior:

she believes that the distribution of possible states of the world is µW ∈ ∆(Ω), (the

superscript “W ” stands for “wrong”) while in reality this distribution is µ ∈ ∆(Ω). Such

an incorrect belief, if the choice of the manager is unconstrained, results in conditional

choice probabilities PW (i|ω). The optimal choice probabilities of a manager with a correct

belief are PU(i|ω).

The social planner introduces a vector of quotas q. The quota enters the manager’s
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maximization problem as a binding constraint. The manager chooses the information

acquisition strategy given her beliefs and quota, and commits to a choice rule which,

in the manager’s opinion, will result in the required unconditional choice probabilities.

However, since the manager has incorrect beliefs, such an information acquisition strategy

results in choice probabilities which are different from the intended, and the constraint

is not actually satisfied. That is, the vector of quotas corresponds not to actual choice

probabilities but to the manager’s belief about them. At the same time, the social

planner, who knows the true distribution and wrong belief of the manager, can easily

verify whether the hiring strategy has been adjusted or not. Over time, the manager,

of course, realizes that the choice probabilities do not satisfy the constraint and updates

her belief. We focus on the short term effect of the quota and do not model the process

of belief updating.

We consider the following possible goal of the social planner – to “de-bias” the hiring

manager. That is, the social planner wants to make conditional choice probabilities

appear as if the manager has correct beliefs. More formally, to make P(i|ω) = PU(i|ω)

for all i ∈ {1, ..., N}, ω ∈ Ω. Proposition 6 states that the social planner can choose

a quota that achieves this goal. It is important to note that a quota is not simply

qi = PU(i), ∀i ∈ {1, ..., N}, but is adjusted to the prior of the manager.

Proposition 6. For any misperceived distribution of possible states of the world µW ∈
(0, 1) there exists such q which induces

∀i ∈ {1, ..., N}, ∀ω ∈ Ω : P(i|ω) =
PU(i)ev(i|ω)/λ∑N
j=1PU(j)ev(j|ω)/λ

= PU(i|ω),

where {PU(i|ω)}i,ω are conditional choice probabilities of a manager with the correct prior

belief.

1.5 Example with two groups of candidates

In this section, in order to illustrate the logic of the model, we consider a simple example

with two groups of candidates. We then use this setup and analyze the situation in which

the social planner wants to maximize the expected value of the chosen candidates without

taking into account the information costs of the manager.
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1.5.1 Setup

The manager chooses between two candidates from two different social groups, i ∈ {1, 2}.
There are two states of the world, ω ∈ {1, 2}. For simplicity, the type 1 candidate is the

safe choice that always has the constant value v(1) = v(1|1) = v(1|2) = C. The type 2

candidate is the risky choice, which can take values v(2|1) = 0 with the probability b and

v(2|2) = 1 with the probability 1− b. In a labor market context, we can assume that the

share b of workers from a category 2 has low productivity, while the share 1− b has high
productivity. These probabilities (or shares) are prior of the manager and she does not

know what the realization of the state of the world is. The manager has an opportunity

to acquire some costly information about the realization.

The manager’s choice is restricted in that, on average, the share q of hired candidates

should be type 2 (risky) and share 1− q of chosen candidates should be type 1 (safe). In

terms of our model the manager has restrictions on unconditional choice probabilities.

To solve the problem we must find conditional probabilities P(i|ω). We show in

Appendix 1.B that the solution is

P(2|0) =
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

,

P(2|1) =
q − bP(2|0)

1− b
.

It is worth noticing that in the formulas above conditional choice probabilities P(2|0)

and P(2|1) do not depend on the value of the safe candidate C, unlike in the unconstrained

RI problem. There are two intuitive explanations for this. First, it follows from Proposi-

tion 3 that the required unconditional choice probabilities can be achieved by subsidies.

In this example it is enough to subsidize (or put a fine on) candidates from the safe group,

making its value for the firm equal to some C̃(q), which, of course, does not depend on

the initial C. The second intuitive reason is as follows. Whereas an unrestricted manager

is interested in the relative payoffs of hiring candidates from different groups in the same

state, a quota-bounded manager compares the relative payoffs of hiring candidates from

the same group in different states.

For a given set of parameters, Figure 1.1 shows the expected reduction in entropy as a

function of b. In the standard RI problem, when b is close to 0 or 1 the manager decides not

to process information and selects one of the candidates with certainty. However, when
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the manager is forced to fulfill the quota, she always acquires information, and hence

there are no non-learning areas. For example, when b is close to 1, she is forced to choose

a risky candidate with positive probability, and it is profitable to acquire information in

order to choose the risky candidate with high value rather than pick a random candidate

from risky group.

At the same time, the quota-bounded manager can acquire less information than in

the standard RI problem (Figure 1.1). Accordingly, the effect of the quota on the amount

of acquired information is ambiguous.

Figure 1.1: Amount of information as a function of b and λ = 0.5, C = 0.5. The green
curve is for the standard RI problem and the red curves are for the quoted RI problem:
the solid curve is for q = 0.5, the dotted curve for q = 0.75 and the dashed curve for
q = 0.25.

We now explore how the quota affects the expected value of the chosen candidates.

In terms of the labor market this question can be restated in the following way: does

a quota necessarily mean that the expected value (or productivity) of the hired workers

will fall? The definition of the expected value of the chosen risky candidate can be found

below.

Definition 1. The expected value of the chosen risky candidate is (1−b)P(2|1)
P(2)

. This is the

ratio of the probability of the chosen risky candidate being of high value to the probability

of choosing any risky candidate.

Figure 1.2 illustrates that the expected value of the chosen risky candidate is higher

(lower) when the quota on it is smaller (larger) than the unconditional probability of

choosing it in the standard RI problem.
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Figure 1.2: The expected value of the risky candidate conditional on being chosen as
a function of b and λ = 0.5, q = 0.5, C = 0.5. The green curve is for the standard RI
problem and the red curve is for the quoted RI problem.

1.5.2 Value maximizing quota

We follow Lipnowski, Mathevet, and Wei (2020) and consider the following problem.

The social planner maximizes the expected value of the chosen candidate and does not

take into account the cost of information. This is reasonable, for instance, if positive

production externalities exist. However, while the manager is making hiring decisions

she may not take these externalities into account. Thus, the maximization problem of

the manager and the social planner (organization, industry as a whole, or government)

may differ. However, in contrast to Lipnowski, Mathevet, and Wei (2020), in our case the

social planner chooses the optimal quotas q and not the information structure available

to the manager. The maximization problem is

max
q

{
N∑
i=1

∑
ω∈Ω

v(i|ω)P(i|ω,q)µ(ω)

}
,

where P(i|ω,q) is a solution to the RI problem with the quota q.

We refer to the solution of this problem as a Value maximizing quota. In contrast to

information filtering proposed by Lipnowski, Mathevet, and Wei (2020), a quota allows

the social planner to increase the expected value of the chosen candidate even when the

state is binary.

Figure 1.3 illustrates the solution to the social planner’s problem as a function of b,

and λ = 0.5, C = 0.5. When the social planner maximizes the expected value of chosen

alternatives, there are still non-learning areas, but they are smaller than in the standard
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RI problem. The reason for the presence of the non-learning areas is as follows. Consider

the situation in which b is small, i.e. the probability of the risky candidate being good

is high and the manager chooses him with certainty without acquiring any information.

When the non-trivial quota is implemented, the manager will acquire some information

in order to find out whether the risky candidate is good or bad, but the improvement in

the expected value of chosen risky candidates would not compensate for the loss of good

risky candidates that were mistakenly rejected. Therefore, the social planner prefers not

to constrain the manager, or, in other words, he prefers to implement the quota that

would force the manager to always choose a risky candidate – the same action that the

manager would take without any constraints. Similar logic applies when the probability

of the bad state is high.

Outside these non-learning areas, the social planner induces the manager to acquire

more information than in the standard RI problem (Figure 1.5), and hence increases

the expected value of the chosen candidate (Figure 1.4). Thus, in this example, it is

optimal to establish a quota that is higher (lower) than the unconditional probability in

the standard RI problem when the state is more likely to be bad (good).5

Figure 1.3: Optimal quota as a function of b and λ = 0.5, C = 0.5. The green curve is
for the standard RI problem and the red curve is for the quoted RI problem.

5In our working paper we provide an example when the social planner has limited information about
the distribution of alternatives’ values. In this situation, setting a quota may decrease the expected value
of the chosen candidates.

23



Figure 1.4: The expected value of the chosen candidates as a function of b and λ = 0.5,
C = 0.5. The green curve is for the standard RI problem and the red curve is for the
quoted RI problem.

Figure 1.5: Amount of information as a function of b and λ = 0.5, C = 0.5. The green
curve is for the standard RI problem and the red curve is for the quoted RI problem.
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1.6 Conclusion

In this paper, we study the optimal behavior of a RI manager who is forced to fulfill

quotas when making a choice from a discrete menu. Whilst throughout the paper we

have used labor market settings to illustrate how quotas can influence the manager’s

attention allocation, the proposed model can also be used to analyze the effect of quotas

in other areas. For example, the model in Section 1.5.1 can be applied to analyze financial

interventions. Consider a situation in which the agent manages a financial portfolio and

chooses between risky and safe assets. The financial regulator wants to increase the

proportion of safe assets in the agent’s portfolio. Thus, the regulator imposes a quota.

This intervention can lead to higher screening efforts by the agent, and hence to the more

profitable and diversified portfolio.

The model can also be applied to analyze the effect of quotas that are nowadays used

in many mobile applications. For example, in many peer-to-peer ride sharing applications,

the driver does not know some details of the order before accepting it. In addition, she

faces a quota on the number of orders that she can reject. The primary goal of such

quotas is to ensure that drivers accept a sufficient number of orders that may not be as

profitable for her as some other orders. This restriction forces the driver to calculate the

benefits and costs of accepting an order based on the distance, road condition, traffic

congestion, etc. At the same time, such a policy can force the driver to switch to a

competing platform. Our model can be used to find the optimal quota that will be

beneficial for the platform and not too restrictive for the drivers.
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1.A Main proofs

1.A.1 Proposition 1

We use the Karush-Kuhn-Tucker theorem in order to find optimal choice probabilities.

The Lagrangian of the manager’s problem can be written as

N∑
i=1

∑
ω∈Ω

v(i|ω)P(i|ω)µ(ω)− λ

(
−

N∑
i=1

P(i) logP(i) +
N∑
i=1

∑
ω∈Ω

P(i|ω) logP(i|ω)µ(ω)

)

+
∑
ω∈Ω

ξi(ω)P(i|ω)µ(ω)−
∑
ω∈Ω

ψ(ω)(
N∑
i=1

P(i|ω)− 1)µ(ω)−
N∑
i=1

ϕi(
∑
ω∈Ω

P(i|ω)µ(ω)− qi),

where ψ(ω), ξi(ω) and ϕi ∈ R+ are Lagrange multipliers.

The first order condition with respect to P(i|ω) is

v(i|ω) + ξi(ω)− ψ(ω) + λ(logP(i)− logP(i|ω))− ϕi = 0. (1.12)

Let us first show that P(i|ω) > 0 for all i ∈ {1, ..., N}, ω ∈ Ω. Suppose to the contrary

that P (i|ω) = 0. Then the term −λ logP (i|ω) goes to infinity. The only terms which can

balance it in order to make the equation (1.12) hold are ψ(ω) and ϕi. Thus, either ψ(ω)

or ϕi goes to infinity. P (i|ω) cannot be zero for all ω ∈ Ω. That is, there exists a state

of the world ω′ in which P (i|ω′) > 0. In this state of the world ξi(ω′) = 0 and the first

order condition is

v(i|ω′) + λ logP(i)− λ logP(i|ω′)− ψ(ω′)− ϕi = 0.

Therefore ϕi cannot go to infinity because there is no other term which can balance it.

Thus, ψ(ω) goes to infinity. P (i|ω) cannot be zero for all i ∈ {1, ..., N}. That is, there

exists option j such that P (j|ω) > 0. The first order condition for this option is

v(j|ω) + λ logP(j)− λ logP(j|ω)− ψ(ω)− ϕj = 0.

The last first order condition cannot hold since there is nothing to balance minus infinity

of −ψ(ω). We have arrived to a contradiction, therefore, P(i|ω) > 0 for all i ∈ {1, ..., N},
ω ∈ Ω. Hence we have ξi(ω) = 0 and the first order condition (1.12) can be rearranged
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to:

P(i|ω) = P(i)e(v(i|ω)−ψ(ω)−ϕi)/λ. (1.13)

Plugging (1.13) into (1.2), we obtain:

eψ(ω)/λ =
N∑
i=1

P(i)e(v(i|ω)−ϕi)/λ,

which we again use in (1.13) and find:

P(i|ω) =
P(i)e(v(i|ω)−ϕi)/λ∑N
j=1P(j)e(v(j|ω)−ϕj)/λ

.

Finally, using (1.5) we obtain:

P(i|ω) =
qie

(v(i|ω)−ϕi)/λ∑N
j=1 qje

(v(j|ω)−ϕj)/λ
. (1.14)

The uniqueness of the optimal conditional choice probabilities and the sufficiency

follow from the fact that the maximand in the RI problem with quotas is a strictly concave

function, since the payoffs are linear in choice probabilities and the cost is strictly convex

(Theorem 2.7.2 in Cover and Thomas 2012).

1.A.2 Proposition 2

First, we relax the condition on the form of the cost function and prove a more general

result. In particular, let κ(P) be any posterior separable attention cost function (Def-

inition 2 in Caplin, Dean, and Leahy 2021). The properties of posterior-separable cost

functions guarantee that decision problems with such attention costs can be solved with

the method of Lagrange multipliers. Proposition 7 provides conditions under which the

RI manager with a posterior-separable cost function always acquires information.

Proposition 7. If (i) v(i|ω)− v(j|ω) is not constant across states ∀i, j ∈ {1, ..., N} and
i 6= j, and (ii) ∂κ(P)

∂P(i|ω)

∣∣∣
P(i|ω)≡P(i)

= 0 for all i ∈ {1, ..., N}, ω ∈ Ω, when P(i) > 0, then the

RI manager with quotas always acquires information.

Proof. Let us assume the opposite. If the manager does not acquire information, then

conditional choice probabilities are state-independent and coincide with quotas at the

optimum P(i|ω) ≡ Pi ≡ qi for all i ∈ {1, ..., N}, ω ∈ Ω. We use the Karush-Kuhn-Tucker
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theorem in order to analyze the optimal choice probabilities. The Lagrangian of the

manager’s problem can be written as

N∑
i=1

∑
ω∈Ω

v(i|ω)P(i|ω)µ(ω)− λκ(P)+

+
∑
ω∈Ω

ξi(ω)P(i|ω)µ(ω)−
∑
ω∈Ω

ψ(ω)(
N∑
i=1

P(i|ω)− 1)µ(ω)−
N∑
i=1

ϕi(
∑
ω∈Ω

P(i|ω)µ(ω)− qi),

where ψ(ω), ξi(ω) and ϕi ∈ R+ are Lagrange multipliers.

The first order condition with respect to P(i|ω) is

v(i|ω) + ξi(ω)− ψ(ω)− λ ∂κ(P)

∂P(i|ω)
− ϕi = 0. (1.15)

Let us show that the choice probabilities which coincide with the quotas cannot satisfy

equation (1.15). Since qi > 0, ξi(ω) = 0, and, according to condition (ii), ∂κ(P)
∂P(i|ω)

∣∣∣
P=q

= 0

for all i ∈ {1, ..., N}, ω ∈ Ω. This leaves

v(i|ω)− ψ(ω)− ϕi = 0.

The same holds for all other options. Therefore,

v(i|ω)− ψ(ω)− ϕi = v(j|ω)− ψ(ω)− ϕj.

Or

v(i|ω)− v(j|ω) = ϕi − ϕj.

This equation cannot hold for all realizations of ω. This is because the LHS of the above

equation is state-dependent, while the RHS is state-independent, which contradicts con-

dition (i).

The expected reduction in Shannon’s entropy cost function is a posterior-separable

cost function which satisfies the condition (ii) in Proposition 7. Therefore, the case in

Proposition 2 is a special case of Proposition 7.
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1.A.3 Proposition 3

For a given vector of quotas q there exists a vector of Lagrange multipliers ϕ which

corresponds to the optimal choice probabilities for the problem with quotas. Then, for

a given vector of quotas, we can construct a vector of subsidies S = −ϕ. In a problem

with such a vector of subsidies, the conditional choice probabilities

∀i ∈ {1, ..., N} : PS(i|ω) =
qie

(v(i|ω)+Si)/λ∑N
j=1 qje

(v(j|ω)+Sj)/λ

are optimal, since, by construction

∀i ∈ {1, ..., N} : qi =
∑
ω∈Ω

PS(i|ω)µ(ω),

hence, the conditions of Proposition 1 of Caplin, Dean, and Leahy (2019) are satisfied,

and PS is a vector function of optimal conditional choice probabilities for the problem

with subsidies.

1.A.4 Proposition 4

The condition (1.8) secures that the solution to the problem with subsidies is unique and

there does not exist another optimum due to Lemma S2 from the online Appendix to

Matějka and McKay (2015). The rest follows from Proposition 3.

1.A.5 Lemma 1

We start the proof by stating a lemma, which appears to be useful.

Lemma 2. Vector ϕ, which appears in the solution for the RI problem with subsidy q,

is continuous in q.

Proof. The idea of the proof is the following. We write an equation which provides an im-

plicit function between q and ϕ and show that the conditions of implicit function theorem

are satisfied, so ϕ is a continuously differentiable function of q, and thus, continuous.

Without loss of generality we normalize
∑N

i=1 ϕi to some constant c and assume that

λ = 1. Let us consider the following function:

F (q,ϕ) = q− E
[
q ◦ ev−ϕ

qT ev−ϕ

]
+ iTϕi− ci.

29



Here “◦” denotes element-wise multiplication, qT is the transpose of vector q, ev−ϕ

is a vector with elements evi−ϕi , i is a N -dimensional vector with all elements equal to

1, qT ev−ϕ is a scalar product. This function, if we consider the equality F (q,ϕ) = 0,

provides an implicit function between q and ϕ. Equality q− E
[
(q ◦ ev−ϕ)/(qT ev−ϕ)

]
=

0 is derived by plugging equation (1.6) into equation (1.5) and iTϕi − ci = 0 is the

normalization condition
∑N

i=1 ϕi − c = 0.

If we show that ∇ϕF is invertible, we can use the implicit function theorem, and thus

prove that q→ ϕ is a continuously differentiable correspondence. It is easy to show that

∇ϕF = E
[
diag(Q)−QQT

]
+ iiT ,

where Q = q◦ev−ϕ

qT ev−ϕ . E
[
diag(Q)−QQT

]
has rank N − 1 and is positive semi-definite

(PSD)6. Then the matrix

G = E
[
diag(Q)−QQT

]
+ iiT

is PSD. That is so since

zTGz = E
[
zT (diag(Q)−QQT )z

]︸ ︷︷ ︸
≥0

+ (zT i)2︸ ︷︷ ︸
≥0

≥ 0.

A PSD matrix has full rank if and only if it is positive definite (PD). That is, we

would like to show that zTGz 6= 0. Let us prove it by contradiction. Let us assume the

opposite: zTAz = 0. Then zT (diag(Q) − QQT )z = 0. Since the dimensionality of the

kernel of diag(Q) − QQT is one, the solution which has the form z = αi, α 6= 0 is the

only possible one. But in this case (zT i)2 = α2(iT i)2 = α2N2 > 0, since α 6= 0.

Therefore, the matrix G is PD, and thus it has full rank. We can apply an implicit

function theorem, and thus ϕ is continuous in q.

Let us now continue the proof. The idea of the proof is the following. First, we

consider a mapping A : q → (β ◦ eϕ)/(βT eϕ), where ϕ is a vector from solution (1.6)

and show that such mapping has a fixed point. Second, we show that the equation which

determines the fixed point coincides with a condition which is equivalent to equation

(1.9), thus proving the existence of quotas q which induce desired choice probabilities.

Throughout the proof, without loss of generality, we assume that λ = 1.

6See, for example, Fosgerau and Nielsen 2021.
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Let us consider the following mapping A : [0, 1]N → [0, 1]N :

A : q→ β ◦ eϕ

βT eϕ
,

where ϕ is a vector of Lagrange multipliers from equation (1.6).

Let us show that mapping A has a fixed point. According to Brouwer’s fixed point

theorem, there exists a fixed point of a continuous mapping of a compact convex set

to itself.7 The conditions of the theorem are satisfied, since the unit simplex in N -

dimensional Euclidean space is compact and convex, (β ◦ eϕ)/(βT eϕ) clearly belongs to

the unit simplex for any ω ∈ Ω, mapping A is continuous in q, since ϕ is continuous in

q (Lemma 2), and the vector of generalized logit choice probabilities is continuous in ϕ.

Let us show that the equation which determines the fixed point for mapping A and

the equation which determines the quota from Proposition 1 are equivalent. The fixed

point for mapping A is

A(q) = q =
β ◦ eϕ

βT eϕ
,

which can be rewritten as

log qi = log βi + ϕi − log(
N∑
j=1

βje
ϕj), ∀i ∈ {1, ..., N}. (1.16)

In order to satisfy equation (1.9), the vector q should be chosen to satisfy

∀i ∈ {1, ..., N} : P(i|ω) =
qie

v(i|ω)−ϕi∑
j qje

v(j|ω)−ϕj
=

βie
v(i|ω)∑

j βje
v(j|ω)

, ∀ω ∈ Ω.

The latter equation does not change if we multiply the nominator and denominator of

the LHS by
∑N

j=1 βje
ϕj . Therefore,

∀i ∈ {1, ..., N} :
qie

v(i|ω)−ϕi
∑N

j=1 βje
ϕj∑

j qje
v(j|ω)−ϕj

∑N
j=1 βje

ϕj
=

βie
v(i|ω)∑

j βje
v(j|ω)

, ∀ω ∈ Ω.

One of the possibilities of satisfaction of the last equation is

∀i ∈ {1, ..., N} : qie
v(i|ω)−ϕi

N∑
j=1

βje
ϕj = βie

v(i|ω), ∀ω ∈ Ω,

7It is important to notice that Brouwer’s fixed point theorem does not require the mapping to be
surjective.
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which implies

∀i ∈ {1, ..., N} : log qi = log βi + ϕi − log(
N∑
j=1

βje
ϕj). (1.17)

The latter equation coincides with equation (1.16) and, as we showed earlier, equation

(1.16) has a solution. Thus, there exists a quota q that induces choice probabilities (1.9).

1.B Solution for the example with two candidates

In order to find conditional probabilities P(i|ω) = qie
(v(i|ω)−ϕi)/λ∑N

j=1 qje
(v(j|ω)−ϕj)/λ

we must find ϕi.

According to Proposition 3 we can find a vector of subsidies that induces the same

behavior, and hence set S1 = ϕ1 = C. Therefore, the only parameter that we need to

find is ϕ2. Probabilities must satisfy the equation 1.5:

q =
qe(−ϕ2)/λ

qe(−ϕ2)/λ + (1− q)
b+ (1− b) qe(1−ϕ2)/λ

qe(1−ϕ2)/λ + (1− q)
.

Solving this equation for ϕ2 and plugging it into P(2|0) yields two solutions:

P(2|0) ∈ {
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (g + q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

,

−b− q + (b+ q − 1)e
1
λ −

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)

}.

The solution to the manager’s problem should be positive. Only the first root is positive.

This is so since the denominator 2(be
1
λ − b) is positive. For the root to be positive, the

nominator should be positive. The second root is negative since 4q(be
1
λ −b) is positive, so

the square root is larger than the term in front of the square root. For a similar reason,

the first root is positive.

That is, the solution to the manager’s problem is

P(2|0) =
−b− q + (b+ q − 1)e

1
λ +

√
(b+ q − (b+ q − 1)e

1
λ )2 + 4q(be

1
λ − b)

2(be
1
λ − b)
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and

P(2|1) =
q − bP(2|0)

1− b
.

1.C Details of the solution for the example with two

candidates: subsidies

We use the example from Section 1.5.1, but now the social planner sets up a subsidy for

the risky candidate: the manager receives extra payment of S if she chooses the risky

candidate. In this case, the solution has the standard modified multinomial logit form

but with the value of the risky candidate increased by S. Namely,

P(2|0) =
P(2)eS/λ

P(2)eS/λ + P(1)eC/λ

P(2|1) =
P(2)e(1+S)/λ

P(2)e(1+S)/λ + P(1)eC/λ
.

In order to compare the manager’s behavior under both policies we need to find a

level of subsidies for which the risky candidate would be chosen by the manager with the

required probability q:

(1− b)P(2|1) + bP(2|0) = q.

The unconditional probabilities in the case of the manager’s problem with subsidies

are as follows:

P(2) = max{0,min{1, −e
C/λ(−e(1+S)/λ + eC/λ − beS/λ + be(1+S)/λ)

(e(1+S)/λ − eC/λ)(−eS/λ + eC/λ)
}}

P(1) = 1− P(2).

Figure 1.6 shows the optimal subsidy that is necessary in order to equalize the un-

conditional probability of choosing the risky candidate to 0.5 as a function of b.

We see that for small b the social planner sets a financial penalty for choosing the

risky candidate. That is because the risky candidate is likely to be productive and the

manager would prefer to choose it more often than in half of the cases. In contrast, if

b is high, the social planner supports the choice of the risky candidate by establishing a

positive subsidy.

For high b the utility of the firm in the case of subsidies is higher than in the case
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Figure 1.6: Optimal subsidy as a function of b and λ = 0.5, q = 0.5, C = 0.5.

of quotas (Figure 1.7). Therefore, one can speculate that it is impossible to extract all

subsidies from the firm afterwards and hence it is more beneficial for firms to lobby for

subsidies rather than quotas.

Figure 1.7: Utility of the manager as a function of b and λ = 0.5, q = 0.5, C = 0.5.
The red curve is for the quoted RI problem and the brown curve is for the RI problem
with subsidies.

1.D Details of the solution for the model with non-

binding quotas

Let us assume that there are N alternatives and there is only one restriction on uncon-

ditional probabilities: P(1) = q. Accordingly, this constraint implies that
∑N

j=2P(j) =

1 − q. Then the Lagrangian of the manager’s problem described in Section 1.3.2 is as
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follows:

N∑
i=1

∑
ω∈Ω

v(i|ω)P(i|ω)µ(ω)− λ

(
N∑
i=1

P(i) logP(i) +
N∑
i=1

∑
ω∈Ω

PU(i|ω) logPU(i|ω)µ(ω)

)

−
∑
ω∈Ω

ψ(ω)(
N∑
i=1

P(i|ω)−1)µ(ω)−ϕ1(
∑
ω∈Ω

P(1|ω)µ(ω)−q)−ϕ2(
N∑
j=2

∑
ω∈Ω

P(j|ω)µ(ω)−1+q),

where ψ(ω), ϕ1, and ϕ2 are Lagrange multipliers. The first order condition with respect

to P(1|ω) is:

v(1|ω)− ψ(ω) + λ(logP(1)− logP(1|ω))− ϕ1 = 0,

and with respect to P(j|ω) is:

v(j|ω)− ψ(ω) + λ(logP(j)− logP(j|ω))− ϕ2 = 0.

Following the same procedure described in Section 1.3.2 this can be rearranged to:

P(1|ω) =
qe(v(1|ω)−ϕ1)/λ∑N

j=2P(j)e(v(j|ω)−ϕ2)/λ + qe(v(1|ω)−ϕ1)/λ
,

and

P(j|ω) =
P(j)e(v(j|ω)−ϕ2)/λ∑N

j=2P(j)e(v(j|ω)−ϕ2)/λ + qe(v(1|ω)−ϕ1)/λ
.

Therefore, the solution to the problem will be similar to that described in Section

1.3.2. The only difference is that now, for all alternatives for which the quota is not

binding and for which P(j) > 0, the additive state-independent component ϕ2 is the

same. This logic extends to any situation in which not all quotas are binding.
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Chapter 2

Inattentive Price Discovery in
Exchange-Traded Funds

Co-authored with Mariia Kosar (CERGE-EI).

2.1 Introduction

Exchange-traded funds (ETFs) have gained popularity among investors over the past

decades, and have rapidly grown in terms of assets under management and trading vol-

ume. These instruments have attracted the attention of both scholars and practitioners

due to the important asset pricing implications for their underlying securities. The most

well-documented concern about ETFs is their disposition to noise and factor trading that,

combined with the continuous arbitrage mechanism, may lead to propagation of noise to

the underlying assets (Bhattacharya and O’Hara 2020). However, there is still a question

regarding whether ETFs can facilitate stock-specific price discovery, and if yes what net

effect it has for the ETF’s underlying bundle.

In this paper we investigate this question. First, we show that the learning of stock-

specific fundamental information can occur at the ETF level. Moreover, our results

suggest that ETF investors endogenously respond to changes in the fundamental value

of underlying stocks, in line with the rational inattention theory1. Second, we provide

1A recent review of the rational inattention literature can be found in Maćkowiak, Matějka, and
Wiederholt (2021).
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evidence that this pattern of learning affects ETF’s underlying bundles, leading to prop-

agation of idiosyncratic shocks across underlying stocks.

We proceed in two steps. Firstly, in order to demonstrate that the information ac-

quisition can occur at the ETF level, we measure the response of ETF intraday prices to

earnings surprises. We use earnings surprises as a measure of stock-specific information

released at the time of announcement. We focus on capitalization-based ETFs that are

traded on U.S. exchanges and have international exposure. We then select only earnings

announcements that occur when underlying exchange is closed, and the U.S. exchange

is open. By design, this ensures that price discovery, if any, occurs at the ETF level.

Moreover, to make ensure that the responses we measure refer to the specified earnings

announcements, we select only announcements that were not surrounded by other an-

nouncements. Our results suggest that stock specific price discovery can occur at the

ETF level. In addition, the earnings response coefficients are statistically significant

only for announcements made by firms with large weights in their corresponding ETFs.

Furthermore, we differentiate between non-busy days, when there is relatively low news

pressure from the U.S. market in terms of macro and stock-specific announcements, and

busy information days.

Secondly, we conduct an empirical analysis of the spillover patterns from ETFs to the

stocks in their underlying bundles. Specifically, we compute the abnormal idiosyncratic

volatility (AIV) of ETFs and their constituents around earnings announcements (Yang,

Zhang, and Zhang 2020). The AIV measures to which extent the idiosyncratic volatility

on announcement days is abnormal compared to the aggregate idiosyncratic volatility

over a given period. Then, we estimate the relationship between the AIV of constituent

stocks and their corresponding ETFs when the underlying markets re-open. Our results

suggest that there is a significantly positive relationship between the AIV of constituent

stocks and their corresponding ETFs, which is significant only around earnings releases of

stocks with large weights in ETFs. This allows us to conclude that learning at the ETF

level affects underlying bundles, leading to abnormal co-movement in volatilities across

underlying stocks.

Finally, we show that the ETF AIV risk is priced in a sample of all ETF constituents.

The abnormal stock returns are loaded on the ETF AIV, which results in positive and

significant regression coefficients of future returns on the ETF AIV over a relatively long

time horizon (10 days). The relationship is reversed, which implies that the reaction of

returns to the ETF AIV was not fundamental.
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Literature. This study contributes to several strands of literature. Firstly, the re-

sults in this paper relate to the literature on the impact of financial innovation on the

efficiency of financial markets (Basak and Pavlova 2013, Appel, Gormley, and Keim 2016).

There is a growing academic literature on the effects of ETFs on the asset pricing of their

constituents. Many researchers treat ETFs mostly as venues for noise or factor trading,

and thus focus on propagation of non-fundamental and factor shocks from ETFs to under-

lying markets (Wang and Xu 2019, Filippou, Gozluklu, and Rozental 2019, Ben-David,

Franzoni, and Moussawi 2018, Shim 2018, Huang, O’Hara, and Zhong 2021, Israeli, Lee,

and Sridharan 2017, Glosten, Nallareddy, and Zou 2016, Levy and Lieberman 2019). Two

prominent reasons for such concerns are best summarized by Ben-David, Franzoni, and

Moussawi (2018) and Shim (2018). Ben-David, Franzoni, and Moussawi (2018) argue that

ETF investors are dominated by noise traders, who propagate non-fundamental shocks

to prices of underlying assets, amplifying non-fundamental volatility. Shim (2018) takes

a different approach,arguing that ETF markets are populated with informed traders who

are, however, factor-informed. He shows that, if factor price discovery occurs in ETFs,

rather than stocks, underlying securities tend to misreact to factor information. Both

approaches ascribe the key role in shock propagation from ETFs to underlying securities

to ETF arbitrage mechanism. However, some studies have reached a conclusion that, due

to benefits that such instruments bring to the market (i.e., low cost, high liquidity, and

hedging opportunities), ETFs can encourage informed trading and information transfers

around fundamental news releases, and thus improve the pricing efficiency of their un-

derlying stocks (Ciura 2016, Huang, O’Hara, and Zhong 2021, Bhojraj, Mohanram, and

Zhang 2020, Ernst 2021). For example, Bhojraj, Mohanram, and Zhang (2020) focus

only on top-weighted stocks and show that ETF mechanic bundle trades help to transfer

sector and market-wide information contained in company earnings announcements into

the stock prices of its peers, reducing their post-earnings announcement drift and thus

contributing to their price efficiency. This is consistent with Savor and Wilson (2016),

who show that investors learn both factor and asset-specific components from earnings

announcements.

Relative to these studies, we focus on the role of ETFs in transferring an asset’s value-

specific information to other assets2. We use identification strategy, which allows us to

2Bhattacharya and O’Hara (2018) theoretically show that ETFs may have a detrimental influence on
information propagation from one stock to another, since they can also transfer value-irrelevant firm-
specific shocks to their peers, which may lead to market instability and increased synchronicity between
stock prices.
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study how exactly ETF investors acquire information about their constituents, and to

evaluate the net effect of price discovery on the ETF level for underlying bundles.

Secondly, this paper is closely related to literature that links asset price responses to

investor inattention. While, there are many empirical studies that document this phe-

nomenon (for example, Hirshleifer, Lim, and Teoh 2009, DellaVigna and Pollet 2009,

Fedyk 2021), there is still a lack of empirical literature that studies endogenous investor

attention and shows how investors actually behave3. Chuprinin, Gorbenko, and Kang

(2019) show that firm size is a major determinant of the degree of investor research into

a specific stock around fundamental news releases. Li (2021) shows that the efficiency

of price reaction to a particular type of risk depends on the value-relevance of that risk.

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) demonstrate that mutual fund

managers optimally track information about aggregate shocks in recessions and idiosyn-

cratic shocks in booms. Recent studies by Hirshleifer and Sheng (2021) and Huang,

Huang, and Lin (2019) investigate how stock investors allocate attention between sys-

tematic and idiosyncratic information. We complement this literature by focusing on

endogenous investor attention4. However, we focus on ETF which, for example, in con-

trast to mutual funds, have a fixed weighting scheme that allows us to isolate the effect

of news releases on changes in the price of ETF, so that we can obtain a clear measure

of attention using intraday data5.

Finally, this project contributes to the strand of literature on the importance of foreign

investments into local financial markets (Figlio and Blonigen 2000, Levy and Lieberman

2019, Filippou, Gozluklu, and Rozental 2019). Specifically, we construct a diverse sample

of ETFs that focus on various country and sector indexes. From this diverse sample, we

are able to establish the impact of U.S. - traded ETFs on local stocks in their underlying

bundles.

The rest of the paper is organized as follows. In Section 2.2 we set up a basic theoret-

ical framework of investor’s behavior when she faces information constraint. Empirical

research design and data are outlined in Sections 2.3 and 2.4. Section 2.5 discusses the

3There are numerous theoretical papers that use endogenous inattention to understand co-movements
or sluggishness of prices, for example Coibion and Gorodnichenko (2012), Mackowiak and Wiederholt
(2009), Veldkamp (2006)

4See also Ben-David et al. (2021) who document competition for attention in the ETF space by
creating specialized ETFs.

5Ernst (2021) also studies ETF and presents empirical evidence that simultaneous trades of ETFs
with their announcing constituent stocks increase on earnings announcement days, and more so for stocks
with high weights in ETFs.
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results. Finally, Section 2.6 concludes.

2.2 Theoretical framework

We model the investor’s behavior following the literature on rational inattention, which

originated in studies by Sims (2003). For tractability, we consider a one period two-

dimensional tracking problem with quadratic loss6. The investor wants to track changes

in the value of the ETF: ∆V =
∑

iwi∆Vi, where ∆Vi are changes in the liquidation value

of stock i ∈ 1, 2 that enters the ETF with weight wi > 0. However she can process only

a finite amount of information. We model the limited ability to process information as a

constraint on uncertainty reduction, where uncertainty is measured by entropy (Shannon

1948, Cover and Thomas 2012). The problem is formalized as follows.

Standard (unconstrained) RI problem. The investor’s problem is to choose the joint dis-

tribution of the decision variable ∆V with the exogenous uncertainty ∆Vi, i ∈ {1, 2} so
as to maximize:

max
∆V

E[−(w1∆V1 + w2∆V2 −∆V )2],

where priors are

∀i ∈ {1, 2} : ∆Vi ∼ N(0, σ2
i ).

The investor can obtain independent signals about the individual liquidation value of

stock i:

∀i ∈ {1, 2} : si = ∆Vi + ei,

where the noise of signals is normally distributed, ei ∼ N(0, σ2
ei

). The variance of the

signals, σ2
ei
, is subject to investors choice.

The investor has a capacity constraint in the choice of signal7

∑
i

1

2
log(

σ2
i

σ2
i|si

)︸ ︷︷ ︸
ki

≤ k, (2.1)

6We show in Appendix 2.A.2 that results are qualitatively the same for the multi-dimensional tracking
problem. Also see Veldkamp (2006) for more general treatment of the problem.

7This can be motivated by investors having just 168 hours a week. An alternative way to model
the behavior is to assume information-processing costs, such that investors may be able to expand
their attention whenever needed. Therefore, investors attention to the specific asset will not depend on
information that is not directly relevant. Our empirical results (see Section 2.5.1) could be interpreted as
supporting both models. Hence, we remain agnostic on this question, and additional tests are needed to
separate these two models. See Azrieli (2021) for a discussion of the difference between model approaches.
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where σ2
i|si is a conditional variance of changes in the value of individual stock i, k

is the bound on the investor’s capacity to process information, and ki is the investor’s

attention to value-relevant information of the stock i.

In addition, the investor faces the no-forgetting constraint, i.e., condition that she can

not increase prior uncertainty about changes in the stock’s value:

σ2
i|si ≤ σ2

i . (2.2)

Because priors and noises are normal, σ2
i|si is a monotone function of σ2

ei
: σ2

i|si =
σ2
ei
σ2
i

σ2
ei

+σ2
i
.

In Appendix 2.A.1 we show that the problem of the investor reduces to the choice of σ2
i|si .

The solution to the problem is formalized in the following lemma:

Lemma 1. The optimal investor’s choice of conditional variances of changes in values of

individual stocks and attention to value-relevant information of stocks are:

σ2
i|si = min{σ2

i ,
w¬i
wi

√
e−2kσ2

i σ
2
¬i}

ki = max{0, 1

2
log(

wi
√
σ2
i

w¬i
√
e−2kσ2

¬i
)}. (2.3)

Proof. See Appendix 2.A.1.

Following Lemma (1) and taking derivatives of equation (2.3) with respect to stock

weights, the variance of changes in a stock’s value, and an investor’s capacity to process

information yields the following results:

Corollary 1 (Testable implications). An investor’s attention to a stock’s value-relevant

information is higher for

1.1. stocks with higher relative weights in the ETF;

1.2. stocks with higher volatility of changes in the value;

1.3. investors with higher information capacity.

According to Corollary (1.1) the ETF response should be higher for stocks with higher

weight in the ETF, controlling for other potential factors. Corollary (1.2) states that, if

the volatility of changes is high, which in terms of our empirical exercise means high earn-

ings surprises, then the response of the ETF price will be more efficient. Corollary (1.3)

indicates that, if investors have lower information capacity, then the ETF price efficiency
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with respect to stock information decreases. We test this by comparing the ETF price

response in busy days and in days with low numbers of informational announcements.

2.3 Empirical research design

2.3.1 ETF-level analysis

Identifying the response to announcements. The most challenging task in our

empirical exercise is to identify the response to the earnings announcement shock on ETF

level. The first challenge is to isolate the ETF price response to a specific constituent

stock earnings announcement. An average ETF contains dozens of stocks which can

make concurrent information releases. To attribute the ETF price response to a specific

earnings release, it is necessary to ensure that no other constituent in that ETF makes

a competing announcement within a chosen time window. To mitigate this problem, we

consider only announcements that are not surrounded by competing earnings releases8 in

the same ETF within a [-1 working day, +1 working day] non-announcement window9.

The second challenge is to attribute the ETF price response to the price discovery

on ETF level. Because of the continuous arbitrage process that occurs between ETFs

and their underlying bundles, it can be hard to identify where the price discovery occurs,

in the ETF or in it’s underlying bundle. To mitigate this issue, we consider only ETFs

with asynchronous trading hours with their underlying bundles. Those are ETFs that are

traded on U.S. exchanges, but have exposure to international markets. For this sample

of ETFs, we are able to observe their price responses when the underlying markets are

temporarily closed, but the companies on the underlying markets continue to release

earnings announcements. Further, to ensure that the ETFs and their underlying markets

do not interact during announcement windows, we require at least 6 hours time lapse from

an announcement to the next underlying market’s opening. This approach allows us to

identify ETFs as a source of price discovery, since the arbitrage mechanism is temporarily

switched off.

We include fund fixed effect to capture the differences in fund characteristics, mainly

the size and liquidity, which can significantly affect the speed and magnitude of fund
8Although information releases are not limited to earnings announcements, usually other information

releases are done together with the earnings releases as a part of quarterly/yearly disclosure.
9The choice of a non-announcement window is motivated by sample size considerations, as well as

by the empirical literature that usually employs a 3-day window for calculating the announcement price
response to earnings announcement on stock level.
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price response around information releases. We also include stock fixed effect to account

for differences in stock-specific characteristics that can affect the investors information

choice, such as market capitalization. Finally, day fixed effect is included to capture the

overall market differences common for all stocks and funds, for example, market volatility

and information quantity released during a particular day.

Empirical specification. To test if the investor’s attention to stock’s value-relevant

information is higher for stocks with higher relative weights in the ETF (Corollary 1.1)

and stocks with higher volatility of changes in the value (Corollary 1.2), we measure the

response of ETF prices to earnings surprises by computing earnings response coefficients

(ERC) over different time horizons for different ETF weight quaniles. ERC present

price elasticity with respect to information contained in earnings surprise (Blankespoor,

deHaan, and Marinovic 2020), and are obtained from regressing window returns around

earnings announcements on earnings surprise. The main empirical model of interest is:

reti,j,[0,τ ] = αSURi,j,t + βIWi,j∈q + γSURi,j,t ∗ IWi,j∈q + δi + δt + δj + εi,j,[0,τ ], (2.4)

where reti,j,[0,τ ] is the return over announcement window [0, τ ]; IWi,j∈q is the indicator

function that takes the value of 1 if the weight of stock j in the ETF i is in the qth

quartile of ETF weights distribution; SURi,j,t is the earnings surprise. δi, δt, δj are ETF,

stock, and day fixed effects.

Savor and Wilson (2016) show that earnings announcements are signals of the future

growth prospects of the firm, and use them as firm-level information events. We follow

Hirshleifer, Lim, and Teoh (2009) and define the earnings surprise of announcement j in

the ETF i on day t as:

SURi,j,t =
Earningsi,j,t − 1/K

∑K
k=1Earningsi,k,t

Pi,j,t
, (2.5)

where Pi,j,t is a closing price of stock j in the ETF i on day t, and a mean forecast of

earnings of all K analysts for announcement j in the last quarter prior to announcement

j is 1/K
∑K

k=1Earningsi,k,t.

We calculate the return reti,j,[0,t] over announcement window [0, τ ] as:

reti,j,[0,τ ] = log(Pi,j,τ )− log(Pi,j,0), (2.6)

where Pi,j,τ is price of the ETF i at τ hours past the announcement of stock j, where τ
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spans from 1 to 6 hours, at 1 hour intervals. Pi,j,0 is the last trading price of the ETF i

before earnings announcement j.

To ensure that we correctly measure the weight percentile of each announcing stock

j in the ETF i, we compute the respective weight percentiles in the full sample of each

ETF i constituents on day t.

To investigate whether the investor’s attention to stock’s value-relevant information is

higher for investors with higher information capacity (Corollary 1.3), we study the ERCs

on the busy vs. normal days on the U.S. stock market. The empirical model of interest

in this respect is the following:

reti,j,[0,τ ] = αSURi,j,t + +βSURi,j,t ∗ IWi,j∈q + γSURi,j,t ∗BUSYt+

θSURi,j,t ∗ IWi,j∈q ∗BUSYt + Controlsi,j + δi + δt + δj + εi,j,[0,τ ].
(2.7)

where busy day indicator variable BUSYt is defined as:

BUSYt = 1 if News Scoret > Q0.5 or N > Q0.5. (2.8)

In the above formula, News Scoret is the macroeconomic news score of each trading

day, and is computed following the methodology of (Xu, Yin, and Zhao 2018):

News Scoret =
1

N

N∑
1

Scorej,t,

where Scorej,t =
ESSj,t−50

50
is the normalized Event Sentiment Score (ESSj,t) for event j

on day t on U.S. market. The Event Sentiment Score indicates the extent to which an

event can influence a market price. N is the total number of news events on U.S. market

on day t.

2.3.2 Stock-level analysis

Empirical specification. In this section, we introduce an empirical model to test

whether learning patterns at the ETF level spill over to their underlying portfolios through

instant arbitrage between ETFs and their constituents after underlying markets re-open

following announcements. We adopt the approach of Yang, Zhang, and Zhang (2020),

who introduce the abnormal idiosyncratic volatility (AIV) as a measure of information

risk associated with earnings announcements. The AIV measures the extent to which the
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idiosyncratic volatility on announcement days is abnormal compared to the aggregate

idiosyncratic volatility over a given period. We consider quarterly earnings announce-

ments and, hence, use a quarter period. To measure the AIV of constituent stocks, for

each unique ETF i within our sample of fund-announcement data, we collect data on all

constituent stocks during our sample period (2016-2017). For each of these stocks, we

use data on Fama-French factors, and estimate the idiosyncratic returns with a 3 factor

Fama-French model using daily data:

retj,t = αj + βMKT
j MKTt + βSMB

j SMBt + βHML
j HMLt + εj,t, (2.9)

where retj,t are close-to-close returns stock j from day t − 1 to t; MKT is the value-

weighted market portfolio excess return over the risk-free rate; SMB is the size factor;

and HML is the value factor; and εj,t is the abnormal idiosyncratic return.

Next, for each stock j that entered fund i during the announcement day t we com-

pute the idiosyncratic volatility of a stock within a quarter for the announcement days

(IV AD), which are the trading session before an announcement that occurred during

off-exchange hours, and the next two trading sessions after the announcement; and for

non-announcement days (IV NAD) as the log of the standard deviations of the residual

from equation (2.9) during these days, assuming that there are 63 trading days in a

quarter. More specifically, we define:

IV AD
j,i,t = ln

√
63 ∗

∑
t∈AD ε

2
j,i,t

(nAD − 1)
,

IV NAD
j,i,t = ln

√
63 ∗

∑
t∈NAD ε

2
j,i,t

(nNAD − 1)
,

where nAD and nNAD are the number of days in the pre- and non-announcement periods,

respectively. We compute the AIV around announcement day t as the difference in log

idiosyncratic volatility:

AIVj,i,t = IV AD
j,i,t − IV NAD

j,i,t .

Similarly, we estimate the equation (2.9) for returns of ETF i from day t− 1 to t:

reti,t = αi + βMKT
i MKTt + βSMB

i SMBt + βHML
i HMLt + εi,t,
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where reti,t are close-to-close returns of fund i from day t − 1 to t; and εi,t is the

abnormal idiosyncratic return. We compute the idiosyncratic volatility of ETF i for

announcement days (IV FAD), which are the trading day on the U.S. market before an

announcement of stock j occurred, the trading day on the U.S. market on which the

announcement of stock j occurred, and the next day after the announcement; and for

non-announcement days (IV FNAD) in a given quarter as:

IV FAD
j,i,t = ln

√
63 ∗

∑
t∈AD ε

2
i,t

(nAD − 1)
,

IV FNAD
j,i,t = ln

√
63 ∗

∑
t∈NAD ε

2
i,t

(nNAD − 1)
.

Then, the AIV of ETF i around announcement day t is:

AIVi,t = IV FAD
j,i,t − IV FNAD

j,i,t .

We measure the relationship between the AIV of ETFs around the announcement and

the AIV of its constituent non-announcing stocks during the next open trading session

after the announcement. The empirical model is:

AIVj,i,t = αi + αj + αt +
∑
q

γqAIVi,tIWi,k∈q + Controlsj,t + ηj,i,t, (2.10)

where AIVj,i,t is the abnormal idiosyncratic volatility of stock j in ETF i on announcement

day t; AIVi,t is the abnormal idiosyncratic volatility of ETF i on announcement day t on

the U.S. market; IWi,k
is the indicator for announcing stock k in ETF i on announcement

day t being in the qth quartile of the ETF weights distribution. Following Ben-David,

Franzoni, and Moussawi (2018) and Yang, Zhang, and Zhang (2020), Controlsj,t include

the inverse of price of stock j on day t, 1
Pj,t

, the log of market capitalization of stock j

on day t, log(Mkt Capj,t), the log of Amihud illiquidity measure of stock j on day t,

log(Amihudj,t), and the lagged returns (retj,[−1], retj,[−3,−2], retj,[−6,−4]).

Mechanisms. Bhattacharya and O’Hara (2018) theoretically show that shocks from

ETFs are transmitted at a higher degree to the stocks with higher weights in ETFs. To

test this empirically, we add the weight of stock j in the ETF i on day t, Wi,j,t to our

empirical specification, and estimate the following model:
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AIVj,i,t = αi + αj + αt +
∑
q

γqAIVi,tIWi,k∈q +
∑
q

βqlog(Wi,j,t)IWi,k∈q

+
∑
q

βqAIVi,tlog(Wi,j,t)IWi,k∈q + Controlsj,t + ηj,i,t.
(2.11)

Following Ben-David, Franzoni, and Moussawi (2018) and Shim (2018), we also test

whether the arbitrage trades that occurs between ETFs and their underlying bundles can

explain the correlations between stocks and ETFs. The model of interest is as follows:

AIVj,i,t = αi + αj + αt +
∑
q

γqAIVi,tIWi,j∈q +
∑
q

βq∆i,j,tIWi,k∈q

+
∑
q

βqAIVi,t∆i,j,tIWi,k∈q + Controlsj,t + ηj,i,t.
(2.12)

We compute the intensity of arbitrage, ∆i,j,t, as the normalized change in the number of

the total shares of stock j held by each ETF i on day t:

∆i,j,t =
Sharesj,i,t − Sharesj,i,t−1

Sharesj,t
,

where Sharesj,i,t is the number of shares of stock j held by ETF i on day t; Sharesj,t is

the total number of shares of stock j on day t.

Further evidence. Finally, we test whether the AIV of ETF is priced. We follow

Eugene and French (1992) and estimate the following regression:

aretj,[t,t+m] = a+ b ∗ AIVj,i,t +
∑
q

γqAIVj,i,tIWi,j∈q + Controlsj,t + εj,t, (2.13)

where aretj,[t,t+m] is stock j’s cumulative abnormal return, which is the sum of abnormal

daily returns, εj,t, from the announcement on day t to day t+m; Controlsj,t are the same

as in previous regressions.
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2.4 Data

2.4.1 ETF-level data

Data on daily ETF constituents and their weights in each ETF comes from the ETFDB

database. We start with an initial ETF sample that includes all U.S. - traded capitalization-

based ETFs with international exposure that active during 2016-2017. We obtain the

respective ETF tickers from etf.com. We exclude all sector ETFs from our initial sample,

and keep only ETFs with country and regional exposure. Within each ETF, we split all

constituent stocks into percentiles by their corresponding weight in the ETF.

To construct a measure of surprise earnings, we collect data on quarterly earnings

announcements from I/B/E/S for each ETF constituent. Specifically, we retrieve the

following variables from I/B/E/S: the date and time of each announcement, official tickers

of the announcing stocks, announced earnings per share (EPS) and the analyst forecasts of

EPS for each announcement. The I/B/E/S and ETFDB are matched based on constituent

CUSIP.

We obtain daily prices of each announcing ETF constituent from Compustat Daily

International. We use this data to compute the earnings surprises. Compustat and

I/B/E/S data are matched based on a 6-digit CUSIP obtained from the 8-digit CUSIP

in I/B/E/S and from SEDOL in Compustat.

Data on the off-exchange hours of the underlying ETF markets and the opening hours

of the U.S. exchanges comes from tradinghours.com. Moreover, we require that there is

[-1 day, +1 day] non-announcement window around each announcement. We also ensure

that there is at least 6 hours after the announcement prior to the underlying market

opening. This procedure leaves us with 842 unique fund-announcement observations.

Data on high-frequency intra-day ETF prices comes from the Trades and Quotes

database. We use intra-day trades data to find all trades made during each announcement

day. TAQ trades include information on the date and exact time of a trade (up to a

millisecond), and data on the prices and sizes of trading orders. We sample the trades

data at 5 second frequency. We keep the last price in each 5 second interval, and sum up

all trades made during the respective interval to compute the trading volume. Finally,

we use price adjustment factors from the Compustat Quarterly database to account for

stock splits.

We use the full Dow Jones Edition of the RavenPack News Analytics database to
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compute the news score of each trading day. Out of all macroeconomic news related

to topics of business and economics, we select those with the highest relevance (Event

Novelty Score = 100).

Summary statistics appears in Table 2.5 in Appendix 2.B.

2.4.2 Stock-level data

We use data on 842 unique fund-announcement observations from in Section 2.3.2. For

each announcement, we identify all ETFs that hold the announcing stock, and all con-

stituents of such ETFs at the time of announcement. Next, we use the Compustat Inter-

national daily data on prices and shares outstanding of all identified ETF constituents

during period of 2016-2017.

We use the ETFDB data on weights and number of shares held by ETFs to compute

the intensity of arbitrage, ∆i,j,t, and the weight of each stock in each specific ETF.

Summary statistics appears in Table 2.6 in Appendix 2.B.

2.5 Results

2.5.1 ETF-level results

Table 2.1 shows the estimation results of the empirical model in Equation 2.4: Panel A

is for time windows before the announcement, and Panel B is for time windows after the

announcement. The response in returns occurs mostly before the information release,

which is in accordance with the literature on stock market information processing (Kim

and Verrecchia 1997, Bamber, Barron, and Stevens 2011, Back, Crotty, and Li 2018, Yang,

Zhang, and Zhang 2020). As estimates in Panel A suggest, the response of ETF returns to

announcements is strongest for stocks in the top percentiles of ETF weight distribution.

Specifically, the coefficients of the interaction terms SUR∗1Weight>Q0.75 become significant

and positive 4 hours before the announcement10, and the coefficients for third and second

quartile become positive and significant 2 hours before the announcement. At the same

time, there is no significant effect of the announcement on stocks with weight in the first

quartile of the distribution. This means that the higher the weight of the stock the earlier

and more efficiently traders would react to information about it.
10The coefficient 0.126 means that one unit increase in earnings surprise leads on average to 13%

increase in log ETF return (e0.126 = 1.13).
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These results provide a strong evidence in support of Corollaries 1.1 and 1.2: investors

rationally adjust their attention in response to earnings announcements. These findings

cannot be explained by liquidity and transaction costs, because we control for time,

fund, and stock specific factors. Moreover, they are not consistent with the salience

explanation that investors’ attention is drawn to those earnings surprises which are most

different relative to the average (Bordalo, Gennaioli, and Shleifer 2013).

We evaluate the model in Equation 2.7 to test Corollary 1.3: traders with less cogni-

tive capacity acquire less information. The results are presented in Table 2.2: Panel A

is for time windows before the announcement, and Panel B is for time windows after the

announcement. We find the similar pattern in return responses: stocks response before

the information release, and stocks with higher weights in ETFs start response to the

announcement earlier than others. Notably, the results suggest that there is no differ-

ence in responses to announcements occurred on busy and non-busy days. Hence, the

results of this exercise cannot be strongly interpreted in favor of Corollary 1.3. However,

while these results hold for almost all time windows, one hour before the announcement

the coefficients for three highest quartiles on busy days become positive and significant.

Before that, the coefficients for these variables, while being insignificant, had negative

sign. One of possible explanations for this is that on busy days traders react more slug-

gishly to announcements and they catch up with that information later. These results

are consistent with Corollary 1.3, as well as with the distraction effect theory (Hirshleifer,

Lim, and Teoh 2009): the arrival of extraneous news causes prices to react sluggishly to

relevant news about a firm. However, we cannot distinguish between purely rational and

behavioral explanations and, therefore, further research is needed.
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Table 2.1: Earnings response coefficients of ETFs around earnings announcements

Dependent variable: window return

Panel A. Before the announcement
-6h -5h -4h -3h -2h -1h

SUR 0.108 0.071 -0.059 0.012 -0.039 0.023
(0.139) (0.132) (0.100) (0.087) (0.088) (0.038)

1Weight∈[Q0.25,Q0.5] 0.0002 0.0002 0.001 0.0003 0.001∗ -0.0002
(0.001) (0.001) (0.001) (0.001) (0.0004) (0.0002)

1Weight∈[Q0.5,Q0.75] 0.0001 0.0001 0.0003 0.0001 0.001 0.0002
(0.001) (0.001) (0.0004) (0.0004) (0.0005) (0.0003)

1Weight>Q0.75 -0.001 -0.001 0.0003 0.0001 0.001 0.00003
(0.001) (0.001) (0.001) (0.001) (0.001) (0.0003)

SUR ∗ 1Weight∈[Q0.25,Q0.5] -0.085 -0.047 0.006 0.017 0.153∗∗ 0.085∗∗
(0.077) (0.075) (0.064) (0.057) (0.072) (0.042)

SUR ∗ 1Weight∈[Q0.5,Q0.75] -0.076 -0.042 -0.009 0.022 0.139∗∗ 0.059
(0.066) (0.068) (0.059) (0.055) (0.069) (0.036)

SUR ∗ 1Weight>Q0.75 0.036 0.049 0.126∗∗ 0.134∗∗ 0.174∗∗ 0.045
(0.094) (0.094) (0.061) (0.054) (0.082) (0.037)

Fixed effects Yes Yes Yes Yes Yes Yes
Observations 913 917 917 917 921 923
R2 0.639 0.603 0.843 0.808 0.764 0.799

Panel B. After the announcement
+1h +2h +3h +4h +5h +6h

SUR 0.028 -0.002 -0.087∗∗ -0.041 -0.159 -0.091
(0.026) (0.042) (0.043) (0.039) (0.228) (0.407)

1Weight∈[Q0.25,Q0.5] -0.0001 -0.0002 -0.001 -0.001∗∗ -0.001 -0.004∗
(0.0002) (0.0003) (0.001) (0.001) (0.001) (0.002)

1Weight∈[Q0.5,Q0.75] 0.0001 0.0003 -0.0001 -0.0001 0.0004 -0.003
(0.0003) (0.0002) (0.0004) (0.0005) (0.001) (0.003)

1Weight>Q0.75 -0.0004 0.0001 -0.0004 -0.0004 0.0005 -0.004
(0.0004) (0.0003) (0.001) (0.001) (0.001) (0.003)

SUR ∗ 1Weight∈[Q0.25,Q0.5] 0.011 0.040 0.023 0.042 0.050 -0.017
(0.012) (0.037) (0.036) (0.042) (0.051) (0.080)

SUR ∗ 1Weight∈[Q0.5,Q0.75] 0.007 0.037 0.015 0.025 0.037 -0.025
(0.012) (0.029) (0.029) (0.033) (0.041) (0.074)

SUR ∗ 1Weight>Q0.75 -0.041 0.019 0.047 0.078∗∗ 0.066∗ -0.207
(0.038) (0.034) (0.032) (0.033) (0.038) (0.185)

Fixed effects Yes Yes Yes Yes Yes Yes
Observations 923 923 923 923 923 923
R2 0.753 0.787 0.627 0.718 0.745 0.702
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table presents estimates of regression of ETF returns over specified announcement window
(-6,...,+6 hours around the announcement) on a measure of earnings surprise of a stock within corre-
sponding ETF, SUR. IW/∈q is the indicator function that takes the value of 1 if the weight of stock in
the ETF is in the qth quartile of ETF weights distribution. Standard errors are clustered at fund level
and reported in parentheses. We use fund, stock, and day fixed effects. The description of variables is
in Section 2.3.1. The sample period is 2016-2017.
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Table 2.2: Earnings response coefficients of ETFs around earnings announcements -
normal vs. busy days

Dependent variable: window return

Panel A. Before the announcement
-6h -5h -4h -3h -2h -1h

SUR 0.147 0.102 -0.114 0.008 -0.022 0.065∗
(0.138) (0.134) (0.082) (0.064) (0.126) (0.035)

SUR ∗ 1Weight∈[Q0.25,Q0.5] -0.192∗ -0.103 -0.037 -0.139 0.116 0.006
(0.110) (0.101) (0.082) (0.094) (0.240) (0.030)

SUR ∗ 1Weight∈[Q0.5,Q0.75] 0.102∗ 0.084 0.081 0.075 0.186∗ -0.021
(0.052) (0.072) (0.067) (0.063) (0.108) (0.020)

SUR ∗ 1Weight>Q0.75 0.050 0.038 0.149∗∗ 0.117∗∗ 0.194 -0.032
(0.117) (0.119) (0.062) (0.054) (0.133) (0.021)

SUR ∗BUSY 0.015 0.075 0.873∗ 0.527 -0.146 -0.117
(0.631) (0.587) (0.486) (0.459) (0.214) (0.115)

SUR ∗ 1Weight∈[Q0.25,Q0.5] ∗BUSY 0.040 0.019 -0.009 0.134 -0.004 0.128∗
(0.137) (0.135) (0.107) (0.115) (0.227) (0.067)

SUR ∗ 1Weight∈[Q0.5,Q0.75] ∗BUSY -0.250∗∗ -0.167 -0.146 -0.079 -0.086 0.130∗∗
(0.107) (0.120) (0.092) (0.099) (0.098) (0.057)

SUR ∗ 1Weight>Q0.75 ∗BUSY 0.114 0.165 -0.076 0.006 -0.093 0.151∗∗
(0.284) (0.277) (0.164) (0.159) (0.145) (0.072)

Fixed effects Yes Yes Yes Yes Yes Yes
Observations 902 906 906 906 910 912
R2 0.638 0.598 0.841 0.802 0.758 0.770

Panel B. After the announcement
+1h +2h +3h +4h +5h +6h

SUR 0.054∗ 0.011 -0.036 0.017 -0.110 0.030
(0.029) (0.045) (0.034) (0.031) (0.230) (0.464)

SUR ∗ 1Weight∈[Q0.25,Q0.5] −0.090∗∗ -0.038 -0.045 -0.033 -0.037 -0.242
(0.036) (0.035) (0.041) (0.051) (0.083) (0.249)

SUR ∗ 1Weight∈[Q0.5,Q0.75] 0.0004 0.039∗∗∗ 0.008 0.003 -0.003 -0.065
(0.016) (0.014) (0.020) (0.038) (0.041) (0.159)

SUR ∗ 1Weight>Q0.75 -0.058 -0.021 -0.022 -0.021 -0.075 -0.368
(0.052) (0.036) (0.050) (0.063) (0.069) (0.239)

SUR ∗BUSY -0.084 0.059 −0.748∗∗∗ −0.644∗ -0.371 -0.358
(0.089) (0.607) (0.280) (0.362) (0.377) (0.679)

SUR ∗ 1Weight∈[Q0.25,Q0.5] ∗BUSY 0.107∗∗∗ 0.079 0.073 0.094 0.114 0.317
(0.039) (0.059) (0.060) (0.112) (0.132) (0.291)

SUR ∗ 1Weight∈[Q0.5,Q0.75] ∗BUSY 0.011 -0.002 0.008 0.039 0.063 0.127
(0.024) (0.048) (0.042) (0.099) (0.098) (0.215)

SUR ∗ 1Weight>Q0.75 ∗BUSY 0.0004 0.101 0.221 0.314 0.408∗ 0.757∗∗
(0.062) (0.073) (0.222) (0.232) (0.245) (0.340)

Fixed effects Yes Yes Yes Yes Yes Yes
Observations 912 912 912 912 912 912
R2 0.732 0.776 0.622 0.701 0.720 0.741
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table presents estimates of regression of ETF returns over specified announcement window
(-6,...,+6 hours around the announcement) on a measure of earnings surprise of a stock within corre-
sponding ETF, SUR. Other variables are: the indicator function that takes the value of 1 if the weight
of stock in the ETF is in the qth quartile of ETF weights distribution, IW/∈q; dummy variable that takes
the value 1 when the average news score or the number of relevant events on the U.S. market that day
is larger than median, BUSY . Standard errors are clustered at fund level and reported in parentheses.
We use fund, stock, and day fixed effects. The description of variables is in Section 2.3.1. The sample
period is 2016-2017.

2.5.2 Stock-level results

Table 2.3 shows the results of the estimation of the empirical models (2.10)-(2.12). They

suggest that the AIV of non-announcing constituent stocks increases with the AIV of their
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corresponding ETFs. Moreover, the effect is significant only around announcements for

stocks that are above the 75th percentile of ETF weight distribution, which is consistent

with the results above. This result holds across all three models and suggests that ETFs

could be a source of increased idiosyncratic stock-level volatility that is transferred to the

underlying stocks.

We do not find any evidence that the weights of constituents stocks influence the

relationship between the AIV of stocks and ETFs (column 2), nor do arbitrage trades of

Authorized Participants (column 3). It contradicts the findings of Ben-David, Franzoni,

and Moussawi (2017), who show that ETF-level shocks are translated to underlying stocks

at larger magnitudes if the stock has greater weight in the ETF. However, Bhattacharya

and O’Hara (2018) outline a possible no-arbitrage mechanism - direct learning from ETFs

prices by stock investors that potentially could be observed in our setting too.

Additionally, the results of the estimation of the model (2.13) in Table 2.4 show that

the AIV of ETFs is priced in the higher quartiles of ETF weights distribution. That

is, the abnormal stock returns are loaded on the ETF’s AIV, which is visible from the

positive and significant coefficients on the AIV of stocks with weights primarily in fourth

quartile. The relationship is then reversed after 10 days, implying that abnormal returns

overreact to the ETF AIV, and the overreaction is subsequently corrected.
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Table 2.3: The effect of the AIV of ETFs on the AIV of non-announcing stocks

Dependent variable: AIV of non− announcing stock
(1) (2) (3)

AIV 0.002 -0.0004 -0.003
(0.004) (0.004) (0.004)

AIV *1W∈[Q0.25,Q0.5] -0.003 0.0002 0.001
(0.004) (0.004) (0.004)

AIV *1W∈[Q0.5,Q0.75] 0.005 0.006∗ 0.004
(0.004) (0.004) (0.004)

AIV *1W>Q0.75 0.020∗∗∗ 0.022∗∗∗ 0.021∗∗∗
(0.004) (0.004) (0.005)

AIV *W 0.007∗∗
(0.003)

AIV *W*1W∈[Q0.25,Q0.5] -0.015∗∗
(0.006)

AIV *W*1W∈[Q0.5,Q0.75] -0.005
(0.004)

AIV *W*1W>Q0.75 -0.008∗∗
(0.004)

AIV *∆ 0.588
(0.778)

AIV *∆*1W∈[Q0.25,Q0.5] -2.324
(1.594)

AIV *∆*1W∈[Q0.5,Q0.75] -2.053∗∗∗
(0.792)

AIV *∆*1W>Q0.75 -0.888
(0.839)

Controls Yes Yes Yes

Fixed Effects Yes Yes Yes
Observations 174,789 259,235 434,024
R2 0.220 0.236 0.204
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table presents estimates of regression of the non-announcing stock abnormal idiosyncratic
volatility on the abnormal idiosyncratic volatility of ETF during the next open trading session after the
announcement (AIV). Other variables are: the indicator for announcing stock in ETF on announcement
day being in the qth quartile of ETF weights distribution, IW ; the weight of non-announcing stock in
ETF, W ; intensity of arbitrage, ∆. Controls include the inverse of price of non-announcing stock, 1

P ,
the log of market capitalization of non-announcing stock, log(Mkt Cap), the log of Amihud illiquidity
measure of non-announcing stock, log(Amihud), and the lagged returns of non-announcing stock (ret[−1],
ret[−3,−2], ret[−6,−4]). We use fund, stock, and day fixed effects. Standard errors are clustered at stock
level and reported in parentheses. The description of variables is in Section 2.3.2. The sample period is
2016-2017.
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Table 2.4: The effect of the AIV of non-announcing stock on abnormal stock returns

Dependent variable: Fama-French Adjusted Cumulative Returns
aret[t,t+1] aret[t,t+5] aret[t,t+10] aret[t,t+20] aret[t,t+30]

AIV -0.0003∗∗ -0.0003 -0.001∗∗∗ -0.003∗∗∗ -0.006∗∗∗
(0.0002) (0.0002) (0.0003) (0.001) (0.001)

AIV *1W∈[Q0.25,Q0.5] 0.0002 0.0002 0.001∗∗∗ 0.012∗∗∗ 0.015∗∗∗
(0.0002) (0.0003) (0.0004) (0.001) (0.002)

AIV *1W∈[Q0.5,Q0.75] 0.0003∗∗ 0.0001 0.001 -0.002∗ 0.001
(0.0002) (0.0003) (0.0004) (0.001) (0.001)

AIV *1W>Q0.75 0.001∗∗∗ 0.001∗∗∗ 0.003∗∗∗ 0.0003 -0.002
(0.0002) (0.0003) (0.0004) (0.001) (0.002)

Controls Yes Yes Yes Yes Yes

Fixed Effects Yes Yes Yes Yes Yes
Observations 466,440 466,421 445,708 423,597 412,269
R2 0.108 0.110 0.194 0.115 0.104
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Note: This table presents estimates of regression of the non-announcing stock cumulative abnormal
return for a given period on the abnormal idiosyncratic volatility of non-announcing stock within a given
ETF (AIV). IW is the indicator for announcing stock in ETF on announcement day being in the qth

quartile of ETF weights distribution. Controls include the inverse of price of non-announcing stock, 1
P ,

the log of market capitalization of non-announcing stock, log(Mkt Cap), the log of Amihud illiquidity
measure of non-announcing stock, log(Amihud), and the lagged returns of non-announcing stock (ret[−1],
ret[−3,−2], ret[−6,−4]). We use fund, stock, and day fixed effects. Standard errors are clustered at stock
level and reported in parentheses. The description of variables is in Section 2.3.2. The sample period is
2016-2017.

2.6 Conclusion

In this paper, we show that ETFs can be venues for stock-specific price discovery, and that

their learning patterns of stock-specific information are consistent with rational inatten-

tion theory. Further, we show that these learning patterns are transferred to underlying

bundles of ETFs, leading to increased price co-movements in constituent stocks around

information releases. Therefore, stock specific shocks in the ETF can affect underlying

market prices, even when such information is irrelevant for a particular underlying asset

and, hence, it could lead to greater volatility overall. These results suggest that even

rational behavior of constrained individuals combined with the design of the new finan-

cial instruments could be a potential weakness for the system, and should be taken into

account when thinking about future regulations.

We highlight several directions for future investigation. First, while this paper pro-

vides empirical evidence suggesting that ETF prices reflect stock-specific information, it is

not entirely clear why investors would trade ETFs instead of stocks around stock-specific

news releases. One possible explanation is that ETFs are simply more liquid (Ernst 2021).

Future work could analyze the liquidity of ETFs around earnings announcements of their

constituents to shed light on this question.
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Second, we do not find evidence that arbitrage explains information transfer from

ETFs to underlying bundles. Therefore, it could be interesting to explore alternative

mechanisms of information transfer, which could explain the learning process fully.

Finally, we find evidence of rational endogenous information acquisition. At the same

time, the result, that there is a higher response of window returns to the earnings sur-

prise on non-busy days, are inconclusive and also consistent with behavioral inattention

theories (Hirshleifer, Lim, and Teoh 2009). Moreover, there is a question of whether in-

vestors face information costs or constraints (Azrieli 2021). Exploring and distinguishing

different forces behind these results could be a fruitful direction for future research.
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2.A Proofs

2.A.1 Proof of Lemma 1

We start by solving the maximization problem for given exogenous signals s1 and s2:

max
∆V

E[−(w1∆V1 + w2∆V2 −∆V )2|s1, s2]. (2.14)

The first order condition is:

∆V ∗ = E[w1∆V1 + w2∆V2|s1, s2].

Then we plug optimal ∆V ∗ into equation (2.14) and obtain:

E[(w1∆V1 + w2∆V2 − E[w1∆V1 + w2∆V2|s1, s2])2|s1, s2]

= −w2
1V ar[∆V1|s1]− w2

2V ar[∆V2|s2]

= −w2
1σ

2
1|s1 − w

2
2σ

2
1|s2 .

Therefore, now we can reformulate the maximization problem in terms of conditional

variances of changes in the values of individual stocks:

max
σ2
1|s1

, σ2
1|s2

−w2
1σ

2
1|s1 − w

2
2σ

2
1|s2 , (2.15)

subject to (2.1) and (2.2).

From the constraint (2.1) we obtain σ2
1|s1 = e−2k σ

2
1σ

2
2

σ2
2|s2

and substitute it to the maxi-

mization function (2.15):

max
σ2
2|s2

−w2
1σ

2
2|s2 − w

2
2e
−2kσ

2
1σ

2
2

σ2
2|s2

.

The first order conditions yields:

σ2
1|s1 =

w2

w1

√
e−2kσ2

1σ
2
2

σ2
2|s2 =

w1

w2

√
e−2kσ2

1σ
2
2.

Then we apply the non-forgetting constraint (2.2) and obtain Lemma 1.
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2.A.2 The multi-dimensional rational inattention problem

Above, we considere the two-dimensional problem. The only difference now is that an

ETF consists of N ∈ R independent stocks with weights wi, i ∈ 1, ..., N . Following the

same steps as in Appendix 2.A.1, it is easy to show that the solution to this problem is:

∀i ∈ 1, ..., N : σ2
i|si = N

√√√√∏N
j=1 w

2
2

w4
i

e−2k

N∏
j=1

σ2
i .

Therefore, the comparative statics results are similar to the two-dimensional problem,

and hence the latter could be considered without loss of generality.

2.B Summary statistics

Table 2.5: Summary statistics for ETF-level analysis

Statistic N Mean St. Dev. Min Q25 Q75 Max

reti,j,[−6,0] 913 0.001 0.010 −0.030 −0.002 0.004 0.182

reti,j,[−5,0] 917 0.001 0.009 −0.043 −0.002 0.003 0.182

reti,j,[−4,0] 917 0.001 0.006 −0.043 −0.002 0.003 0.028

reti,j,[−3,0] 917 0.0005 0.005 −0.026 −0.001 0.002 0.023

reti,j,[−2,0] 921 0.0003 0.004 −0.029 −0.001 0.001 0.022

reti,j,[−1,0] 923 0.00005 0.002 −0.025 −0.0004 0.001 0.012

reti,j,[0,1] 923 0.00001 0.002 −0.022 −0.0004 0.001 0.021

reti,j,[0,2] 923 0.00002 0.003 −0.025 −0.001 0.001 0.027

reti,j,[0,3] 923 −0.0001 0.005 −0.100 −0.001 0.001 0.030

reti,j,[0,4] 923 −0.00004 0.006 −0.100 −0.001 0.002 0.030

reti,j,[0,5] 923 −0.00003 0.007 −0.100 −0.001 0.002 0.030

reti,j,[0,6] 923 0.0003 0.014 −0.100 −0.002 0.002 0.375

SUR 932 −0.0002 0.027 −0.417 −0.002 0.002 0.496

SUR1Weight<Q0.25
161 0.0018 0.0416 -0.1006 -0.0023 0.0018 0.4962

SUR1Weight∈[Q0.25,Q0.5]
205 -0.0021 0.0337 -0.4168 -0.0011 0.0021 0.1743

SUR1Weight∈[Q0.5,Q0.75]
263 0.0012 0.0225 -0.1504 -0.0025 0.0020 0.1743

SUR1Weight>Q0.75
968 -0.0011 0.0079 -0.0419 -0.0017 0.0012 0.0227

BUSY 919 0.408 0.492 0.000 0.000 1.000 1.000

Note: The variables in the table are: ETF returns over specified announcement window (-1,...,+6 hours
around the announcement), ret; measure of earnings surprise of a stock within a corresponding ETF,
SUR; the indicator function that takes the value of 1 if the weight of stock in ETF is in the qth quartile of
ETF weights distribution, IW∈q; dummy variable that takes the value 1 when the average news score or
the number of relevant events on the U.S. market that day is larger than median, BUSY. The description
of variables is in Section 2.3.1. The sample period is 2016-2017.
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Table 2.6: Summary statistics for stock-level analysis

Statistic N Mean St. Dev. Min Q25 Q75 Max

aretj 497,538 0.0004 0.019 −0.872 −0.009 0.008 0.536

areti 497,538 −0.0002 0.006 −0.050 −0.002 0.002 0.043

AIVi 497,538 −0.245 0.713 −6.334 −0.686 0.229 2.243

AIVj 497,515 −0.363 0.646 −5.074 −0.720 0.073 2.088
1
P

497,538 0.823 43.393 0.00000 0.024 0.184 9,015.100

log(Mkt Cap) 497,538 22.117 1.936 14.275 20.653 23.322 32.067

ret[−1] 497,538 0.001 0.023 −1.361 −0.008 0.010 2.324

ret[−3,−2] 497,529 0.0003 0.035 −2.335 −0.008 0.009 2.341

ret[−6,−4] 497,486 0.002 0.056 −2.362 −0.011 0.015 2.345

Amihud 471,070 0.00000 0.00004 0.000 0.000 0.00000 0.016

log(Amihud) 466,512 −18.003 2.340 −49.451 −19.588 −16.397 −4.146
∆ 463,472 −0.00001 0.003 −0.850 0.000 0.000 0.850

W 497,538 0.167 1.194 0.000 0.010 0.100 99.400

Note: The variables in the table are: Fama-French adjusted cumulative abnormal returns of non-
announcing stock, aretj , and ETF, areti; the abnormal idiosyncratic volatility of ETF, AIVi, and
non-announcing stock in given ETF, AIVj ; the inverse of price of non-announcing stock, 1

P ; the log
of market capitalization of non-announcing stock, log(Mkt Cap); the lagged returns of non-announcing
stock (ret[−1], ret[−3,−2], ret[−6,−4]); Amihud illiquidity measure of non-announcing stock, Amihud, and
the log of it, log(Amihud); intensity of arbitrage, ∆; and the weight of non-announcing stock in ETF,
W. The description of variables is in Section 2.3.2. The sample period is 2016-2017.

60



Chapter 3

Optimal Menu when Agents Make Mistakes

3.1 Introduction

In real life, we often face choices from a discrete menus; for example, when choosing an

insurance plan, a school for our children, or a pension fund. When confronted with these

important decisions, we often make mistakes for two potential reasons. First, we may

misperceive the true properties of alternatives, i.e., we have imperfect information. For

example, individuals can be uninformed and underestimate potential cost savings from

changing prescription drug plans (Kling et al. 2012), not be fully informed about crucial

aspects of an insurance plan (Handel and Kolstad 2015), and, when choosing a car, we

may think of fuel costs as scaling linearly in miles per gallon instead of gallons per mile

(Allcott 2013). Second, we can misperceive our own tastes, i.e., we have imperfect self-

knowledge. For example, individuals overestimate their attendance and their likelihood

of cancelling automatically renewed memberships when choosing a gym contract (DellaV-

igna and Malmendier 2006). We are generally myopic in decision-making, can lack skill

predicting our own tastes and risk preferences, and we can be led to erroneous choices

thought by fallible memory and incorrect evaluation of past experiences (Kahneman 1994,

Heckman, Jagelka, and Kautz 2021).

In the examples above, a government or other social planner can regulate the size of the

menu from which consumers choose and the properties of alternatives within it. The social

planner cannot possibly know the individual tastes of a particular agent and, hence, is not

able to provide the first best alternative for each agent. However, knowing characteristics
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of the overall population, including probabilities of mistakes and distribution of tastes,

he can construct a menu of alternatives, referred to as an optimal menu, that maximizes

the sum of the expected utilities of agents.

I analyze an optimal menu under the assumptions that agents misperceive either

the true properties of available alternatives or their own tastes. In two limiting cases,

when the misperception is insignificant or consumers choose an alternative randomly, the

optimum menu is identical under both types of misperceptions. For intermediate degrees

of rationality, dependence of the optimum choice set on the precision of choice is complex.

We use a simple setting and numerical calculations, and demonstrate that when agents

misperceive the available options, it is optimal to limit choices when the probability of

making mistakes is moderately high. Further, it could be optimal to construct a menu

with more distinct alternatives. In contrast, when agents misperceive their own tastes, it

is optimal to limit choice only when agents choose randomly, and to propose alternatives

that are more similar when there is a greater probability of a mistake.

The intuition behind the results is that, when agents misperceive the properties of

alternatives, every additional alternative in the menu has the benefit of providing more

choice (matching the agents’ taste more precisely) at the cost of increasing the probability

and magnitude of mistakes. Thus, the more similar the alternatives are, the more difficult

it is for the agent to differentiate between them. Therefore, it could be optimal to

construct a menu with more distinct alternatives, to decrease the probability of a mistake,

depending on the distribution of tastes in the population. When the probability of a

mistake is large, it becomes optimal to remove options that could induce large utility

loss, and to leave one option that matches the mean taste in the population.

In contrast, when agents have imperfect self-knowledge, the probability of a mistake

depends only on the midpoints between properties of alternatives. Thus, the probability

of a mistake would not be decreased if alternatives were differentiated. Moreover, since

the probability of mistakes affected by alternatives linearly, it is weakly beneficial to

introduce more alternatives into the menu.

The discussion about individuals misperceiving the true properties of alternatives and

accordingly failing to choose the best one goes back at least as far as Luce (1959), who

analyzes agent choice subject to random noise. Mirrlees (1987) and Sheshinski (2016)

study the welfare maximization problem when agents misperceive the true properties of

alternatives. They show that, while, the choice should not be limited when the agents

are completely rational, the optimum choice-set is a singleton when the probability of a
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mistake is relatively high. In contrast, this paper focuses on comparing optimal menu

allocations in two situations: when the agent misperceives either the true properties of

alternatives or her own taste.

In recent years, a growing literature in industrial organization has analyzed the sit-

uation in which a firm interacts with boundedly rational agents. For a classic textbook

treatment, see Anderson, de Palma, and Thisse (1992); more recent papers include Ka-

menica (2008), Hefti (2018), Persson (2018), and Gerasimou and Papi (2018). A review

of other studies on complexity and manipulation can be found in Spiegler (2016). The

main focus of this literature is on the market environment, and the agents’ limitations

arise solely from misperception of the true properties of available alternatives. This study

considers two sources of mistakes and focuses on the welfare maximization problem.

In addition, this paper proposes a new explanatory insight into the choice paradox

(Schwartz 2004), i.e., the effect when a larger choice set sometimes decreases the satis-

faction of individuals and ultimately can lead to rejection of an offer. This phenomenon

has been observed, for example, when consumers purchased jam and chocolate (Iyengar

and Lepper 2001) and when they made more important decisions such as a choice of 401k

pension plans (Iyengar, Huberman, and Jiang 2004), or decided on participation in an

election (Nagler 2015)1. Several studies suggest that the existence of the choice paradox

and the efficiency of corresponding interventions, such as categorization of goods, de-

pend on whether consumers are familiar with products or not (Chernev 2003, Mogilner,

Rudnick, and Iyengar 2008). There are numerous models that attempt to explain this

evidence (Irons and Hepburn 2007, Sarver 2008, Ortoleva 2013, Kuksov and Villas-Boas

2010). While my study does not focus on a particular mechanism, it suggests that the

existence of this phenomenon and relevant interventions depend on the source of mis-

takes in the decision making process. Thus, when agents misperceive the true properties

of alternatives, we can observe choice overload, and limiting the menu size could be a

welfare maximizing intervention. However, when agents have imperfect self-knowledge,

we would not observe the choice overload and, hence, should not limit the choice.

The rest of the paper is organized as follows. The next section presents the model

setup. Section 3.3 discusses a simple model with two agents, to illustrate the intuition

behind the results, and then provides numerical simulations with populations of agents.

1Further discussion on empirical evidence when choice opportunities can harm consumer can be found,
for example, in Scheibehenne, Greifeneder, and Todd (2010) or Chernev, Bockenholt, and Goodman
(2015).
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The last section concludes.

3.2 Model

A population of M ≥ 2 agents chooses from a set of N ≥ 2 alternatives. The utility of

the agent i ∈ {1, ...,M} from the alternative j ∈ {1, ..., N} is U j
i = −(ti − vj)2, where

ti ∈ R is the taste (bliss point) of i and vj ∈ R is the property of j. T ≥ 2 is the number

of unique tastes in the population. The agent misperceives parameters of the model. I

describe two versions of the model:

– with misperceived true properties of alternatives: the agent observes a signal

ϑji = vj + eji , where vj is a true property of the option, and noise eji is a random variable

drawn from the distribution with mean zero and variance σji . She chooses the alternative

with the signal that is a closest match to her taste2, i.e., solves the following problem:

max
j∈{1,...,N}

−(ti − ϑj)2.

– with misperceived own true taste: the agent observes a signal τi = ti + ei,

where ti is the true taste of the agent, and noise ei is a random variable drawn from

the distribution with mean zero and variance σi. She chooses the alternative with the

property that is a closest match to the signal of her taste, i.e., solves the following problem:

max
j∈{1,...,N}

−(τi − vj)2.

In both versions of the model, if there are several alternatives that solve the agent’s

problem, then the agent chooses randomly between them.

The social planner maximizes overall welfare by choosing a number and properties of

available alternatives, i.e., the optimal menu:

max
N,vj∀j∈{1,...,N}

M∑
i=1

N∑
j=1

P j
i U

j
i ,

where P j
i is the probability that the agent i chooses option j. I assume that N ≤ T :

the maximum number of options that the social planner could propose is equal to the

2For discussion on when this behavior is optimal for the agent, see Weibull, Mattsson, and Voorneveld
(2007).
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number of tastes in the population.3

The problem has the following time-line:

1. The social planner observes (i) distributions of mistakes, and (ii) what the tastes

in the population are, and (iii) the number of agents with each taste.

2. He chooses the optimal menu.

3. Agents observe signals.

4. They choose an alternative from the menu.

3.3 Solution

The solution to the welfare maximization problem depends on the size of the noise.

Regardless of the source of mistakes, when there is no noise, the social planner creates a

menu with alternatives that match tastes perfectly; when noise is infinite, it is optimal

to limit choices and provide only one alternative that matches the mean taste in the

population. This result is formalized in Propositions 1 and 2.

Proposition 8. If σji = 0 or σi = 0 ∀(i, j), then N = T , vj = ti.

Proof. Since Ui ≤ 0 ∀i ⇒ max(
∑M

i=1

∑N
j=1 P

j
i U

j
i ) = 0 which is obtained when N = T ,

vj = ti.

Proposition 9. If σji →∞ or σi →∞ ∀(i, j), then N = 1 and vj =
∑
ti

M
.

Proof. If σji → ∞ or σi → ∞, then all alternatives are a priori the same for agents

P j
i = 1

N
. The solution to the welfare maximization problem is N = 1 and vj =

∑
ti

M
.

In the next subsection, I illustrate the solution to the model for the intermediate cases

using a model with uniformly distributed noise and two agents. Then I show that the

results obtained are valid for the larger population of agents with continuous distribution

of noise using numerical simulations.

3I make this assumption because the welfare function is not monotone in the number of options: for
example, if for a given distribution, the optimal number of alternatives is 4, then the solution to the
welfare maximization problem automatically includes any number that is divisible by 4.
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3.3.1 Two agents

There are two agents, i ∈ {1, 2}, with tastes symmetrically allocated around zero, t1 =

−t2 < 0.4 The social planner could propose at most two options, j ∈ {1, 2}. I assume

that v1 ≤ v2. The situation when v1 = v2 is identical to the situation when the social

planner proposes only one alternative and limits the agents’ choice.

I assume that the noise is uniformly distributed, eji and ei ∼ U(−b,+b). Therefore,

the social planner expects that agent 1 chooses the first option with probability P 1
1 and

the second option with probability P 2
1 . Agent 2 chooses similarly.

In the case of misperceived true properties of alternatives, the probabilities are as

follows:

P 1
1 = min

(
1,max

(
0, 1− 0.5 ∗ (v

1−v2+2b)
2b

)2
))
, P 2

1 = 1− P 1
1 .

P 1
2 = min

(
1,max

(
0, 0.5 ∗ (v

1−v2+2b)
2b

)2
))
, P 2

2 = 1− P 1
2 .

In the case of misperceived true own tastes, the probabilities are as follows:

P 1
1 = min

(
1,max

(
0,

v1+v2

2
−(t1−b)
2b

))
, P 2

1 = 1− P 1
1 .

P 1
2 = min

(
1,max

(
0,

v1+v2

2
−(t2−b)
2b

))
, P 2

2 = 1− P 1
2 .

To obtain an analytical solution for both cases, I have to make an additional heroic

assumption that v1 = −v2.5 This symmetry assumption simplifies the characterization

of the solution.6 The solution to the welfare maximization problem is formalized in

Propositions 10 and 11.

Proposition 10. In the case of misperceived true values of alternatives, the welfare

maximization problem has the following solution:

– small noise (b ≤ |ti|): v1 = −v2 = t1;

– medium noise (|ti| < b < 4|ti|): v1 = −v2 = −b2−4bt1
3t1

;

– large noise (4|ti| ≤ b): v1 = v2 = 0.

Proof. See Appendix 3.A.
4It is without loss of generality, because, for any two distinct tastes one always can re-scale tastes to

be symmetrically allocated around zero.
5It also could be interpreted as if the welfare function satisfies the Ralwsian principle of social justice,

i.e., overall welfare is based on the welfare of society’s worse-off member.
6Without a symmetry assumption, the solution for the situation when the agent misperceives the

true properties of alternatives would be asymmetrical and (possibly) not unique. The solution for the
situation when the agent has imperfect self-knowledge would be the same.
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Proposition 11. In the case of misperceived true own tastes, the welfare maximization

problem has the following solution:

– small noise (b ≤ |ti|): v1 = −v2 = t1;

– medium and large noise (|ti| < b): v1 = −v2 = − t21
b
.

Proof. See Appendix 3.B.

Accordingly, when the noise is small (b ≤ |ti|), in both cases the social planner pro-

poses options that match the tastes of the agents perfectly, and they choose the option

closest to their true taste with certainty. When the noise is significantly large (|ti| < b),

then the solution depends on the source of mistakes. If agents misperceive the true prop-

erties of alternatives, it is optimal to limit the choice when the noise is finitely large.

However, when agents misperceive their tastes, it is optimal to propose two alternatives

with different properties for any finite noise.

In addition, if agents misperceive the true properties of alternatives, there exists noise

(|ti| < b < 2|ti|) when the difference in the properties of proposed alternatives increases

in the noise, i.e., ∂v1

∂b
< 0 and ∂v2

∂b
> 0. However, if agents misperceive their tastes, the

social planner always proposes alternatives that are more similar as the noise becomes

greater.

Intuition

The results are driven by the fact that if a taste is unclear, the distance between true

taste and the properties of the options is distorted in the same way for all options, while

if the properties of the options are unclear, this distortion is different for any option.

In particular, denote t1 as t and v1 as v and rewrite the probability that the agent

makes the wrong choice (i.e., she chooses the alternative that is not the closest to her

true taste) as follows. In the case of misperceived true properties of alternatives:

P 2
1 = P 1

2 = 0.5(
2v + 2b

2b
)2.

In the case of misperceived true own tastes:

P 2
1 = P 1

2 =
v+(−v)

2
− t+ b

2b
.

Therefore, when the noise originates from the misperception of alternatives, placing
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options close to each other increases the probability of a mistake, which is a nonlinear

function of v. Thus, there is an inverted U-shaped curvilinear relationship between the

optimal property of the alternative v and the size of the noise, as depicted in Figure 1.

Thus, when the noise is significant, but still small (|ti| < b < 2|ti|), the social planner

wants to distance the properties of alternatives from each other. In this situation, the

loss from the decrease in utility, if the correct choice is made, is smaller than the gain

from the decrease in the probability of making the wrong choice. However, when the

noise is moderately large (2|ti| ≤ b < 4|ti|), it is not profitable to distance the properties

of alternatives farther away from each other. The loss from the decrease in utility in the

case of the correct choice outweighs the gain from the decrease in the probability of the

wrong choice. Therefore, the social planer chooses properties of alternatives closer to each

other. When the probability of making the wrong choice is significantly high (4|ti| ≤ b),

it is optimal to propose alternatives with identical properties.

However, when agents misperceive their tastes, the probability of making a mistake

depends linearly on the midpoint between properties of alternatives. Therefore, it is not

beneficial to differentiate properties of alternatives, since doing so does not decrease the

probability of making the wrong choice. Accordingly, the social planner chooses v by

equalizing the marginal gain of locating an option closer to the center for the second

agent (reducing the loss in the case of making the wrong choice) and marginal loss for

the first agent (reducing the gain in the case of making the correct choice), given the

probabilities of making mistakes.

Figure 3.1: Optimal property of the first alternative as a function of b and t1 = −1.
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3.3.2 Many agents

Setup

There is a single-peaked population of agents with a variety of tastes T = 7. When

agents misperceive the true properties of alternatives, eji is assumed to be identically

and independently Gumbel distributed. The Gumbel distribution has fatter tails than

a Normal distribution; however, the difference between them is often indistinguishable

empirically (Train 2002). At the same time, the difference between Gumbel distributed

variables, which is used to calculate the probabilities of an agent’s choices, follows the

Logistic distribution. This significantly simplifies the numerical simulation. Therefore,

the probability that agent i chooses option j is:

P j
i =

exp(U j
i /λ)∑N

i exp(U j
i /λ)

.

When agents misperceive their own true tastes, ei is assumed to be identically and

independently Logistic distributed.7 In this case, the probability that agent i chooses

option j is:

P j
i =

∫ vj+vj+1

2

vj−1+vj

2

exp( ti−v
j

0.5λ
)

0.5λ(1 + exp( ti−v
j

0.5λ
))2
dvj.

In both situations, higher values of λ correspond to larger variance and, hence, to a

greater probability of making a mistake. I solve for every possible menu size and then

select the one that maximizes welfare.8

Results

The solution with the optimal number of alternatives and optimal menu allocation is pre-

sented in Figures 2-5 for different λ. The grey bars (histogram) correspond to the number

of agents with a particular taste. The optimal properties of alternatives are defined by

vertical lines. The optimal number of options is stated above the graphs. In some sit-

uations, there are fewer vertical lines than the optimal number of alternatives, because

there are several identical options that match the same taste. Intuitively, additional op-

tions with repeated values increase the probability that agents will choose a particular

7In this case, I do not use the Gumbel distribution, since it is asymmetric. The asymmetry property
skews the optimal menu, complicating the visual comparison. However, the qualitative results of the
welfare analysis with the Gumbel distribution are identical to the analysis with the Logistic distribution.

8Calculations are performed in R using the "optimx" package.
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alternative. Thus, when one taste is more salient in the population, it is beneficial to

highlight the alternative that matches this taste.9,10

Figure 2 shows that, when the noise is small, it is optimal to provide alternatives that

match tastes perfectly under both kinds of mistakes.

Figure 3.2: Optimal menu allocation when agents misperceive the true properties of
alternatives or their own tastes, and λ = 0.1. The red lines indicate the optimal properties
of alternatives. The histogram shows the distribution of agents.

Figures 3 and 4 show the optimal menus for the situation when the noise is significantly

large. When agents misperceive the true properties of alternatives, it is optimal to limit

the choice (Figures 3). When the probabilities of making mistakes increase, the social

planner decreases the menu size. When agents misperceive their own taste, it is not

optimal to limit their choice (Figures 4). Thus, the social planner proposes 7 alternatives

with unique properties for any noise. When the probabilities of making mistakes increase,

he allocates alternatives closer to each other and to the mean taste in the population.

It is worth noticing that the effect of the decrease in the inequality of the tastes is

similar to the decrease in noise. Figure 5 shows the optimal menu allocation for different

populations of agents with the same variety of tastes T = 7, but with lower density of

agents with the most frequent (mode) taste tmode = 0. In this situation, when agents

9Mirrlees (2017) refers to such manipulation as "advertising". One possible type of "advertising" is
nudges. For example, it was shown that setting an option as a default increases the probability that this
alternative will be chosen. See Thaler and Sunstein (2008) for additional discussion on the topic.

10One way to avoid the presence of identical options in the menu is to introduce the following probability
function: P j

i =
m(j)P j

i∫
m(y)Py

i dy
, where m(j) is a density of alternatives with identical properties (Mirrlees

2017). This formula relates to the modified multinomial logit model by Matějka and McKay (2015).
Accordingly, another possible explanation for the "advertising" effect is prior knowledge of agents about
options in a menu.
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Figure 3.3: Optimal menu allocation when agents misperceive the true properties of
alternatives for different noise (λ = 1 on the left and λ = 2 on the right graph). The red
lines indicate the optimal properties of alternatives. The histogram shows the distribution
of agents.

misperceive the true properties of alternatives (left graph, Figure 5), the social planner

proposes more alternatives to agents, compared to the optimal menu for a population

with higher density of agents with mode taste (left graph, Figure 3). Similarly, when

agents misperceive their own tastes (right graph, Figure 5), the social planner proposes

7 alternatives, but allocates them further away from each other and from the mean taste

in the population, compared to the optimal menu for a population with a higher density

of agents with mode taste (left graph, Figure 4).

71



Figure 3.4: Optimal menu allocation when agents misperceive their own tastes for
different noise (λ = 1 on the left and λ = 2 on the right graph). The red lines indicate
the optimal properties of alternatives. The histogram shows the distribution of agents.

Figure 3.5: Optimal menu allocation when agents misperceive the true properties of
alternatives (left graph) or their own tastes (right graph) and λ = 1. The red lines
indicate the optimal properties of alternatives. The histogram shows the distribution of
agents.
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3.4 Conclusion

Although there is a large body of literature that studies problems with agents who make

mistakes, there is still a lack of studies that analyze a discrete choice problem with

heterogeneous agents and a social planner. This paper provides the solution to the

welfare maximization problem, and shows that if agents misperceive the true properties

of alternatives, the optimal menu differs significantly from one when agents misperceive

their own tastes. Therefore, this study suggests that, when designing a menu set, one

should take into account not only the demand for a particular alternative, but also the

probability and source of making a mistake.
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3.A Proof of Proposition 3

Because of the symmetry assumption, the welfare maximization problem could be reduced

to the choice of one variable v1 = v ≤ 0. I denote t1 = t < 0. If b < |t|, then the

probability of a mistake equals zero and the first best allocation is optimal. Therefore, I

consider a situation when b ≥ |t| and 0 ≤ P j
i ≤ 1 ∀i, j. Then the welfare maximization

problem is the following:

max
v
W (v) =

{
(1− 0.5(

2v + 2b

2b
)2) · −2(t− v)2 + 0.5(

2v + 2b

2b
)2 · −2(t+ v)2

}
.

The derivative with respect to v is the following:

0.5(t− v)2(2b+ 2v)− 0.5(t+ v)2(2b+ 2v)−

0.25(t+ v)(2b+ 2v)2 + 2(t− v)(b2 − 0.125(2b+ 2v)2) = 0.

This equation has two solutions:

v = 0,

v =
−b2 − 4bt

3t
.

Since v ≤ 0, the second solution exists only for b ≤ 4|t|. Moreover, when b = 4|t|, then
v = 0 and the two solutions coincide. In this situation the welfare is W (b = 4|t|) = −2t2.

At the same time, if one substitutes v = −b2−4bt
3t

into the maximization problem, then

W (b = |t|) = 0 and W > −2t2 for any |t| < b < 4|t|. Therefore, for b < 4|t| the welfare

is maximized when v = −b2−4bt
3t

; for b ≥ 4t it is optimal to provide the menu with two

identical alternatives v1 = v2 = 0.

3.B Proof of Proposition 4

If the b < |t|, then the probability of a mistake equals zero and the first best allocation

is optimal. Therefore, I consider a situation when b ≥ |t| and 0 ≤ P j
i ≤ 1 ∀i, j. Then the

welfare maximization problem is the following:

max
v

{−t+ b

2b
· −(t− v)2 + (1− −t+ b

2b
) · −(t+ v)2+

t+ b

2b
· −(t+ v)2 + (1− t+ b

2b
) · −(t− v)2

}
.
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The derivative with respect to v is the following:

−4(t2 + bv) = 0.

Therefore, the solution to the welfare maximization problem is:

v = −t
2

b
.
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