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Abstract

Diamond and Dybvig (JPE, 1983) and the subsequent literature mod-
elled bank runs as a simultaneous-move game, even though empirical
evidence indicates that depositors have information about others´ deci-
sion. This paper introduces explicitly sequential moves into the Diamond-
Dybvig model. Depositors decide consecutively whether to withdraw their
funds or continue holding balances in the bank. If agents can observe the
actions of all previous depositors, I show that, contrary to Diamond and
Dybvig, there are no bank runs in equilibrium. However, when only with-
drawals are observed (and depositors do not know their exact position in
the sequence) bank runs re-emerge as possible outcomes. I also consider
a third setup in which keeping the funds in the bank is unobservable, but
depositors are allowed to make this decision observable, at a cost. If the
cost is moderate, then there will be no bank runs. This result suggests
that allowing for communication between the bank and the depositors can
help prevent bank runs.

JEL codes: C72, D82, G21
Keywords: bank run, sequential game, implementation, rationalizabil-

ity

1 Introduction

Empirical evidence suggest that bank runs may not be driven merely by the
deterioration of the fundamental variables a¤ecting the bank. Depositors may
decide to rush to the bank to withdraw their funds due to panic. For instance,
Calomiris and Mason (2003) analyse econometrically the Great Depression and
show that in January and February 1933 economic fundamentals leave unex-
plained a large part of the banking failures. Panic is a candidate to account
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for those unexplained failures. Several of the recent bank run episodes (Aba-
cus Federal Savings Bank (USA), Bank of East Asia (Hong Kong))1 which did
not have a recognizable fundamental reason began with a false (and malicious)
rumour which spread among depositors and ended up in a massive rush to the
bank.
Diamond and Dybvig (1983) in their classic paper set up a model which

explains how bank runs may occur even in absence of fundamental reasons.
Decisions in this model and in the subsequent literature are modeled as a
simultaneous-move game. However, empirical facts indicate that depositors can
observe to some extent the actions of other depositors. It is enough to read
descriptions of the banking panics in the nineteenth century (Sprague (1910))
or in the 1930´s (Friedman and Schwartz (1971), Wicker (2001)) which show
that there were withdrawing waves. For example, banking panic episodes during
the Great Depression lasted for months and withdrawals did not start at once
in each panic-stricken region. Starr and Yilmaz (2007) analyze a more recent
bank-run episode which a¤ected Turkey�s Islamic �nancial houses in 2001. They
study the behavior of depositors of di¤erent size (small, medium and large) us-
ing statistical analysis. In all of the groups, depositors were responsive to their
peers and to the observable behavior of depositors of other groups. Iyer and
Puri (2008) examine depositor level data for a bank that faced a run in India in
2001. They show that social network e¤ects (that is, observing what depositors
to whom one is connected do) are important regarding the decision-making.
This evidence suggest that sequentiality should be incorporated into models
studying bank runs.
This paper introduces in an explicit manner sequentiality into the Diamond

and Dybvig (1983) model. Diamond and Dybvig show in a setting with no
aggregate uncertainty that if depositors decide simultaneously, then demand
deposit contracts implement the e¢ cient allocation. However, bank runs are
also an equilibrium outcome. It occurs if not only the depositors with an imme-
diate need for their funds (called impatient depositors) withdraw, but also those
who do not need their money urgently (called patient depositors). Contrary to
the original model, we suppose that depositors decide one-by-one and nature
determines the type sequence according to which depositors make decisions.
For instance, consider two patient depositors and an impatient one. There are
three possible ways to arrange them in a line and nature picks one of these
possibilities. Imagine that the type vector (patient,impatient,patient) is chosen.
Nature �rst calls one of the patient depositors to decide whether she wants to
withdraw or wait (that is, leave the money deposited), then the impatient one
is called, and �nally the other patient depositor decides. We assume that the
type vector is unobservable, but, depending on the setting, decisions are com-
pletely or partially observable. Even though the number of depositors who need
immediately liquidity is constant in our model, there is uncertainty about the
type vector. Hence, the basic problem is how to interpret withdrawals. They

1For a concise description on the Abacus story, see Doug Camp-
bell (2005). About the second run, see, for example, the following url:
http://www.nytimes.com/2008/09/25/business/worldbusiness/25emerging.html.
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may be due to impatient depositors in need of liquidity or patient depositors
who have withdrawn in fear that the bank will not be able to pay later. In
the latter case, a patient depositor has incentives to withdraw as well. Another
important issue for any patient depositor2 is that they should take into account
that later-coming depositors may observe her action. Therefore, by waiting a
patient agent possibly can induce subsequent patient depositors to wait as well.
As decisions are taken one-by-one, the bank accumulates information about

the decisions of the depositors depending on which action is observable. The
bank reveals to each depositor all the available information it has about the
decision of earlier depositors. Andolfatto et al. (2007) used this assumption as
well, and in general it is in line with the literature which considers the bank as
a benevolent planner which acts in interest of the depositors.
We study three di¤erent informational scenarios. First, we show that when

all previous actions (withdrawal or waiting) are revealed to depositors, then
runs do not occur. Second, in the spirit of Peck and Shell (2003) we consider
the case in which the observability of actions is restricted to withdrawals. In
this setting depositors face uncertainty regarding their position in the type vec-
tor and run re-emerges as a possible outcome. However, we show in the third
setting, that it need not be the case. We allow (but do not require) depositors
to inform the later-coming depositors through the bank, at a cost, about their
decision to wait. Even though waitings are unobservable, if the cost is moder-
ate, then in the unique outcome of the game patient depositors will wait. The
mere existence of the option to inform about waitings is enough to make with-
drawal a dominated action for patient depositors in relevant information sets.
As a consequence, patient depositors who wait do not need to inform, so no
additional cost is incurred. Through this option to inform, the �rst best can be
implemented costlessly. Hence, sequentiality is enough to eliminate bank runs
and implement uniquely the ex ante e¢ cient allocation when waiting is or can
be made observable.
As argued before, coordination problems seem to be an important factor

during �nancial crises. A relevant policy objective is to design optimal insti-
tutions to avoid bank runs which cannot be explained by fundamental reasons.
The paper by Ennis and Keister (forthcoming) shows the di¢ culties of design-
ing mechanisms which can eliminate such bank runs. These bank runs may set
back considerably the �nancial intermediation and consequently the economic
growth, as shown by Ennis and Keister (2003). Although we do not formulate
concrete policy recommendations, our results indicate that policy should take
into account sequentiality and the underlying information structure.

1.1 Related literature

As already mentioned, Diamond and Dybvig (1983) show that the e¢ cient allo-
cation can be implemented through demand deposit contracts, but bank runs are

2 Impatient depositors always withdraw their money because of liquidity needs, so they do
not care about later payments.
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also an equilibrium outcome. In view of this possibility, they propose as solution
adding a suspension-of-convertibility clause to the deposit contract which elim-
inates the run equilibrium. In a recent paper, Ennis and Keister (forthcoming)
show that there are commitment problems related to the suspension of con-
vertibility, and these problems may create incentives which cause self-ful�lling
runs. Hence, the current state of art suggests that run equilibrium might be
unavoidable for mechanisms that attempt to implement the e¢ cient allocation
in an environment without aggregate liquidity uncertainty. In this paper, we
show that it need not be the case if we introduce sequentiality into the model.
In recent years, Green and Lin (2003) were the �rst to reconsider the im-

plementation problem posed by Diamond and Dybvig (1983). They used an
environment with aggregate liquidity uncertainty to show that runs do not oc-
cur necessarily. They show in a simultaneous-move setup that if depositors
have information about their position in the sequence of decision-making and
the deposit contracts o¤ered by the bank are less restrictive than those applied
by Diamond and Dybvig (1983), then the e¢ cient allocation can be uniquely
implemented. Subsequent papers highlighted that the result depends crucially
on supposing the independent determination of each depositor�s type (Andol-
fatto et al. (2007)) and showed that if types are correlated, runs reemerge as
equilibrium outcomes (Ennis and Keister (2008)).
Andolfatto et al. (2007) change the Green and Lin setup by assuming that

the bank not only observes but reveals to each depositor the actions of earlier
depositors. This is a key element in our �rst setting as well. However, they
maintain the environment with aggregate liquidity uncertainty and they suppose
that the payment to those who withdraw is the outcome of a lottery. Our paper
is set in an environment without aggregate liquidity uncertainty because of the
results by Ennis and Keister (forthcoming) who show the possibility of runs. We
think that it is important to show in this simpler setup that bank runs are not
unavoidable. We think also that it is more natural to assume that depositors
who decide to withdraw have a fair notion about the amount they will get, that
is why in our model, similarly to Diamond and Dybvig (1983), all depositors who
withdraw receive a constant amount �xed in the deposit contract (unless the
bank has run out of funds) instead of facing a lottery. These di¤erences imply
that our analysis is substantially di¤erent from theirs. The way the two papers
arrive at the solution testi�es it well. Andolfatto et al. (2007) use a backward
induction argument to show the no-run result and the analysis does not use the
fact that depositors know what has happened. The latter is crucial in our case,
and our result in the �rst setting rests heavily on depositors being able to �nd
out whether previous actions have been truthful or not. For example, whereas
in Andolfatto et al. (2007) the last depositor always acts truthfully, in our setup
it might not be the case if this last depositor infers that earlier there have been
patient depositors who have withdrawn. Another di¤erence between the Green-
Lin family of models and ours is that although in our model depositor´s type
determination is not independent, it does not a¤ect our no-run result.
Our second setting uses Peck and Schell´s (2003) assumption that only with-

drawals are observable. Apart from this assumption, their model is di¤erent,
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because they assume aggregate liquidity uncertainty, use contracts in the spirit
of Green and Lin and depositors play a simultaneous-move game without any
information being revealed to them about other depositors´ decision. In our
model, as a consequence of the unobservability assumption, the information the
bank can reveal to depositors is the number of previous withdrawals. Depositors
cannot be sure of their position in the line and this uncertainty is enough to
have bank runs in equilibrium.
Our third setting departs from the literature because we allow (but do not

require) depositors to inform the bank, at a cost, about their decision to wait.
Therefore, through this new action (called reporting) depositors can make ob-
servable their waiting. If they report the decision to wait to the bank, the bank
will reveal it to later-coming depositors. In the unique outcome patient deposi-
tors will wait without reporting, so the e¢ cient allocation can be implemented
uniquely and at no cost. The possibility of reporting can be seen as the pos-
sibility of a richer communication between the bank and the depositors. This
result is supported by �ndings of Iyer and Puri (2008) who analyse a micro data
set on a bank in India which has been run. They show that the longer and
deeper the bank-depositor relationship is, the less likely are depositors to run.
The possibility of reporting may be interpreted as sign of a deep bank-depositor
relationship.
The remainder of the paper is organized as follows. Section 2 introduces the

model. Section 3 discusses the outcome when all previous actions are observ-
able. Section 4 studies what happens if depositors know only about previous
withdrawals. In section 5, we discuss the consequences when depositors are
allowed but not obliged to report if they wait. Section 6 concludes.

2 The model

2.1 Environment and depositors

There are three periods (T=0,1,2) and a single homogeneous good. Consider
a �nite number (n > 2) of depositors. Each depositor is endowed with 1 unit
of the good in period 0. In period 0 each depositor is identical, and faces a
privately observed, uninsurable risk of being impatient (imp) or patient (pat).
Thus, the type set is � = fimp; patg and �i is depositor i0s realized type: Nature
chooses a constant number p 2 [2; n� 1] which determines the number of the
depositors who are patient.3 The rest of depositors is impatient. The number
of patient and impatient depositors is common knowledge.
Denote by (c1; c2) the consumption bundle of an depositor in the two periods.

We use the following utility function

u(c1; c2;�i) = u(c1 + �ic2);

3 If everybody is of either type, then our problem becomes irrelevant. If there is only one
patient agent, then the �rst-order conditions (to be derived later) imply that being truthful
is a dominant strategy for her.
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where �i is a binomial random variable with support f0; 1g. Types are pri-
vately learnt in period 1. After realization of types, if �i = 0, then the depositor
is impatient caring only about consumption in the period 1, otherwise she is
patient. The utility function, u : R2++ ! R is twice continuously di¤erentiable,
increasing, strictly concave, satis�es the Inada conditions and the relative risk-
aversion coe¢ cient �cu�� (c)=u� (c) > 1 for every c. depositors are expected
utility maximizers.
There is a constant-return-to-scale productive technology with the following

returns:

T=0 T=1 T=2
-1 0 R
-1 1 0

with R > 1, so depositors have to make a decision between (0; R) and (1; 0)
in period 1. The long-term return, R, is constant.

2.2 The �rst best and the bank

If a planner could observe each depositor�s type and assign an allocation based
on these types, then the resulting �rst-best allocation would solve

max (n� p)u(c1) + pu(c2)
s:t:
(n� p)c1 + [pc2=R] = n

In the formulation of the problem we imposed the optimality condition that
the n � p impatient depositors consume only in period 1, whereas the patient
depositors consume only in period 2 to earn the return on the deposit.
This problem yields the solution

u�(c�1) = Ru�(c
�
2);

which implies R > c�2 > c
�
1 > 1:

The rationale for a bank is the implementation of the �rst best. The bank
pooles the resources and o¤ers a simple demand deposit contract which speci�es
paying c�1 to the withdrawing depositors. The bank has to pay to withdrawing
depositors immediately c�1 (unless it has run out of funds) and cannot make
depositors wait and condition payment on information which is not available at
the time the depositor wants to withdraw. A bank working this way respects
the sequential service constraint. depositors who have waited receive a pro
rata share of the funds which were not withdrawn but were augmented by the
productive technology. Formally, we de�ne the period-2 consumption as

c2(�) =

(
max

n
0;

R(n�(n��)c�1)
�

o
if � > 0

0 if � = 0
;
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where � is the number of depositors who wait in period 1. As usual in the
literature, depositors are isolated and no trade can occur among them in period
1.
Since the optimal payments in both periods are readily established by the

parameters, obtaining the �rst best depends only on the actions of the patient
depositors, since impatient depositors always withdraw in period 1. Hence, we
focus on the decision of the patient depositors, since the only source of a run is
their possible miscoordination in the �rst period.

2.3 Decision, information and runs

The basic actions for any depositor in the �rst period are withdrawal (wi) and
waiting (wa). In one of the setups we will allow one more action, reporting
a waiting (r). Throughout the paper we consider pure-strategy equilibria. We
do not consider mixed equilibria or partial withdrawal, because ex post these
actions are not e¢ cient.4

We allow the bank to share the information it has with the depositors if
it helps to prevent runs. This is in line with the assumption that the bank
maximizes the expected utility of the depositors. We view the bank as a pro-
grammed machine which given the parameters calculates c�1 and then provides
the depositors with the available information and serves them if they withdraw,
excluding the possibility that the bank gives misinformation.
The sequence of decision (�n = (�1; :::; �n)) is exogenously determined in the

following way. The number of patient depositors (p) is known and nature chooses
at random p depositors in the line who will be patient (that is, her �i = 1) . The
remaining depositors will be impatient. There are

�
n
p

�
lines of length n with p

patient depositors, so these are the possible type vectors (or alignments). Each
possible alignment has the same probability, 1

(np)
. This assumption is the least

informative possible, re�ecting that we do not have a solid knowledge about the
order in which depositors go to the bank. Since our results do not depend on the
distribution of alignments, this exogeneity assumption is not crucial. Neither
the depositors nor the bank know the alignment, they only know n and p.
Let �i�11 2 �i�11 denote the partial type vector starting with depositor 1 up

to depositor i � 1; and let �ni+1 2 �ni+1 stand for a feasible continuation type
vector after depositor i. Thus, �i�11 = (�1; :::; �i�1) and �

n
i+1 = (�i+1; :::; �n).

Each depositor decides only once. This assumption is in line with the litera-
ture, but clearly it is not an innocuous one. Experiments (Garratt and Keister
(2008)) show that depositors are more likely to withdraw when given multiple
opportunities to do so, and in the real life depositors who wait may reconsider
their decision.
As a tie-breaking rule, we suppose that a patient depositor who is indi¤erent

between withdrawing and waiting will withdraw. This assumption is not crucial
for the argument.

4 If there is a run, then the e¢ cient action is to withdraw all the money with probability
one. Otherwise, a patient agent should leave all the money with probability one.
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We de�ne bank runs in a broad sense. We interpret a patient depositor
withdrawing in the �rst period as a (partial) bank run.
We will work with three di¤erent information setup. First, we will impose

a direct revelation mechanism, so that depositors have to report their decision.
Therefore, the bank has the exact history of the decisions, since both actions
are observable. This mechanism is the same as in Green and Lin (2003), but
in our setup depositors get to know the history. It can be considered as the
full information benchmark case. In the second setup we follow Peck and Shell
(2003) who claim that it is more natural to think that only those depositors
contact the bank who want to withdraw, so only withdrawals are observable.
In the last information setup patient depositors may report that they have
waited and this report will be seen by later-coming depositors. The reason of
choosing these setups is that the �rst two relate closely to existing papers with a
di¤erent modelling choices (simultaneous-move games with complex contracts)
and lead to di¤erent conclusions regarding the possibility of bank runs. The
third setup allows us to bridge the gap between the two results by showing that
by changing slightly and in a plausible way the game in the second setup we
obtain the same conclusion as in the full-information case. In principle, nothing
prevents depositors to report their decision to wait to the bank.

3 All previous decisions are observable

In this setup we require that depositors state their action to the bank, so wait-
ings are observable. The bank shares all the available information it has with
the depositors, so each depositor knows the exact history of actions. This direct
revelation mechanism has been applied by Green and Lin (2003) in an envi-
ronment with complex contracts and simultaneous decision-making, in which
depositors have some notion about their position in the line. We use a sim-
ple contract and depositors know exactly what happened before in a sequential
decision-making setup.

3.1 The leading example

To get the intuition of what happens consider the following informal example
with four depositors.5 The interesting case is that with three patient depositors
and when all have to wait to make waiting worthwhile. Hence, there are four
possible alignments. Suppose that u(c2(� = 3)) > u(c�1) > u(c2(� � 2) and
3c�1 < 4, so patient depositors at position 1,2 and 3 would only want to wait if all
the other patient depositors wait. The optimal decision for a patient depositor
in the last position is easy. When she observes a history with 2 withdrawals she
withdraws, otherwise she waits.

5The most simple example is that of three agents with two impatient agents, where both
have to wait to make waiting worthwhile. Coordination in that setup is easy and does not
give the �avour of the argument we will use in the general case.
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Any history containing two waitings induces a patient depositor to wait.
A patient depositor observing only a waiting knows that she is in position 2
and by waiting she can induce the last patient depositor to wait. Hence, when
observing only a waiting, waiting is the best response for a patient depositor.
Consequently, if a patient depositor observes a waiting followed by a withdrawal,
then she knows that the depositor at position 2 must have been an impatient
depositor, so by waiting she can induce the last patient depositor to wait. A
patient depositor observing nothing knows that she is the �rst in the line. By
waiting she induces the other patient depositors to wait according to the previ-
ous results, so for a patient depositor in position 1 the best response is to wait.
As a consequence, if a patient depositor observes a withdrawal, then she knows
that it must have been an impatient depositor. Each later-coming patient de-
positor observing this withdrawal will come to the same conclusion. Then, the
best response when observing a withdrawal is to wait, because the subsequent
patient depositors will know that nobody lied. Hence, the patient depositor
at position 3 will wait, because this way she induces the last patient depositor
to wait as well. Thus, waiting is best response for a patient depositor when
observing

� nothing,

� a withdrawal,

� a waiting,

� (waiting, withdrawal),

� (withdrawal, waiting),

� any history containing two waitings.

As the game unfolds for a patient depositor no information set may emerge
to which withdrawal is the best response. Consequently, there will be no runs.
Before going to the general model, let us consider the importance of the

order. In the reasoning we used the exact order of moves to get the result.
Since the bank observes the exact history, this information is available in the
economy. If only aggregate numbers of waitings and withdrawals without order
were observable, then we do not get this result.6 In the Appendix A, we show
how run may emerge when only unordered aggregates are observed. Knowing
the exact order of previous actions helps to verify the truthfulness of the history.

3.2 The general case

Each depositor entering the bank may choose either to wait (wa) or withdraw
(wi). Denote by !i and �i the number of withdrawals and waitings in the
history of depositor in position i. Let hi 2 Hi be the history observed by
depositor in position i 2 f1; 2; :::; ng, where Hi is the set of feasible histories.

6Smith and Sorensen (1998) shows in more detail the di¢ culties of this approach.
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Therefore, it contains all the possible permutations of !i 2 f0; 1; 2; :::i� 1g
withdrawals and �i 2 f0; 1; 2; :::p� 1g waitings such that !i+�i = i�1. Denote
by ! 2 f0; 1; 2; :::ng the total number of withdrawals in period 1. The total
number of waitings is given by � = n� !.
The utility of a patient depositor is

ui(ai j �i = p; hi) =

8<: ui(c
�
1) if ai = wi and yi � c�1;

ui(yi) if ai = wi and c�1 > yi � 0;
ui(c2(�)) if ai = wa;

where yi is the funds the bank has when depositor i arrives, and c2(�) is
de�ned as before. When depositor i waits, she does not know her payo¤, because
it depends on what subsequent depositors do.
For simplicity, assume the extreme case that waiting is an optimal decision

if all patient depositors wait, so

u(c2(� = p)) > u(c
�
1) > u(c2(p > �)):

A pure strategy for depositor i is a map si : �i � Hi ! fwi;wag. Hence,
depositors have to specify what to do when being of either type at a given
position and observing all possible histories compatible with that position. Let
sji = (si; si+1; :::; sj) denote the strategies of depositors beginning with depositor
i up to depositor j. Notationally, si denotes the strategy, while si will stand for
the play implied by si. Hence, hi = (s1; s2; :::; si�1):
Henceafter, if we put si = �i, then it means that depositors should act

according to their type, that is, patient depositors wait and impatient ones
withdraw.
Since ex ante depositors ignore their type and position in the line, a strategy

is s = s1 � s2 � ::: � sn, where si is de�ned as before for any i 2 [1; n]. Before
the game starts each depositor has to specify what to do in any position upon
observing any possible history given their type. Being truthful means that
patient depositors wait, whereas impatient ones withdraw. The �rst best obtains
if all depositors act truthfully.

3.2.1 Alignment is public knowledge

It is instructive to see what happens if we eliminate the uncertainty of align-
ment. Suppose that the alignment, that is the type vector of depositors is
publicly known. This setup allows a patient depositor to know how many pa-
tient depositors are in front of her, how many come later and she knows exactly
at which positions they are. The most important information for a patient de-
positor is her relative position among the patient depositors. By eliminating the
uncertainty about the alignment we may apply standard backward induction to
�nd the best responses. We have the following result.

Proposition 1 When the alignment is public knowledge, in the unique subgame
perfect equilibrium each depositor acts truthfully.
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Proof. See Appendix B.
The intuition of this result is as follows. The last patient depositor�s decision

is straightforward. If there have been enough waitings before, so that with her
waiting the period-2 payment is high enough, then she waits, otherwise she
withdraws. Anticipating this decision, the next to the last patient depositor�s
decision is of the same nature, and by moving backwards all patient depositors�
decision rule becomes clear. Given these rules, as the game unfolds the �rst
best obtains.

3.2.2 Alignment is unknown

When alignments are not observable, depositors cannot apply the previous rea-
soning, because in general patient depositors will not know their relative position
among the patient depositors. The nice feature of the model when the align-
ment is known is that you know exactly what has happened (how many patient
depositors have lied) and you can predict exactly what will happen (how many
later-coming depositors will wait). Therefore, patient depositors do not need
beliefs. This is not true when the alignment is unknown, but still there are his-
tories for which the best response is clear regardless of beliefs. For any patient
depositor at any position,

BRk(hk j �k � �l � 1) = wa;

where k is the absolute position (and not the relative one) in the line. If the
kth depositor�s waiting makes waiting a better choice, then a patient depositor in
this position will wait. This best response can be applied only to a small subset
of histories which is not su¢ cient to determine the equilibria of the game. In
the case of histories for which the previous best responses do not apply, beliefs
are crucial in �nding the optimal action.
The game depositors play is one of incomplete information where beliefs are

important, so the solution concept we use will be perfect Bayesian equilibrium.
Let �(�ni+1 j hi; �i) denote depositor i0s belief about the continuation type vec-
tor conditional on the history and i0s type.7 Our formulation of the belief is
equivalent to �(�i�11 j hi; �i), that is the belief about the type of the preceding
depositors, because this belief coupled with the own type determines the belief
about the type of later-coming depositors.8

Regarding the formation of beliefs, we will use two restrictions:

1. a waiting at any position reveals that it must have been a patient depositor,
and

7 In the sense of Harsányi, the type of an agent is being patient or impatient and the history
she observes. Our abuse of equating type with only being patient or impatient does not a¤ect
the analysis, because we condition the strategy both on being patient or not and the history.

8 In our leading example, if a patient agent at the third position believes that the last agent
is an impatient one with certainty, then it is equivalent to believe that the previous agents
have been patient ones.
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2. if for a patient depositor the dominant strategy given history hi is to wait,
then observing a withdrawal in position i+1 reveals that the depositor at
that position is impatient.

The �rst restriction eliminates the possibility of impatient depositors acting
mistakenly, whereas the second one does the same with patient depositors. Since
impatient depositors do not make mistakes, we have si : imp�Hi ! wi for all
i, so impatient depositors always withdraw. Hence, we focus on the truthfulness
of patient depositors�actions.
These restrictions amount to say that depositors are rational and it is com-

mon knowledge. The restrictions also show that beliefs depend on the history.
These assumptions allow us to use the iterated elimination of strictly dominated
strategies. It makes possible that for a subset of histories depositors can predict
how later-coming depositors will behave if they choose to wait.
Let us now formulate the equilibrium solution concept we are going to use.

De�nition 1 The strategy s and the belief � is a perfect Bayesian equilibrium
if X

�ni+1

�(�ni+1 j hi; �i)u
�
c�1; c2(hi; si; s

n
i+1); �i

�
�

�
X
�ni+1

�(�ni+1 j hi; �i)u
�
c�1; c2(hi; ~si; s

n
i+1); �i

�
for all i, and if �(�ni+1 j hi; �i) is consistent with Bayes�rule whenever pos-

sible.

The di¢ culty lies in the fact that hi; in general, is compatible with several
�i�11 , because any withdrawal may be due to a misrepresenting patient depositor.
Given s, using Bayes´ rule �(�ni+1 j hi; �i) determines what depositor i expects
to be the total number of waitings at the end of period 1 which de�nes her
payo¤ if she decides to wait.
A special case of �(�ni+1 j hi; �i) is when depositor i believes that all previous

actions have been truthful. We will introduce an even stricter de�nition which
we call truthful history.

De�nition 2 We call a history truthful, if using restrictions 1 and 2 it can be
unambigously veri�ed that all previous actions have been truthful.

Formally, a truthful history is one where hi = �
i�1
1 .9 It implies that �(�ni+1 j

hi; �i) = �(�
n
i+1 j �i1), so there are p�(�i+�i) patient and n�p�(!i+(1��i)) im-

patient subsequent depositors and any continuation alignment is equiprobable.
We require that using the restrictions depositors be able to verify the truthful-
ness of the history. By our common knowledge assumption any depositor able

9We have de�ned strategies as waiting (wa) and withdrawal (wi) and agents are either
patient (pat) or impatient (imp), so when we put hi = �i�11 , then we translate in a straight-
forward manner wa into pat and wi into imp:
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to verify the truthfulness of a history can be sure that all other depositors do
the same when observing the same history. When we speak about a truthful
history, then it is equivalent to speaking about a degenerate belief where it can
be veri�ed that all previous actions have been truthful. For example, in our
leading example we have found that the best response of a patient depositor
when observing a waiting is to wait, so using the restrictions a patient depositor
observing the history (wa;wi) concludes that it is a truthful history, because a
patient depositor in the second position would have waited. If a patient depos-
itor observes a truthful history, then she knows her relative position among the
patient depositors.
Our last de�nition before the main result of this section concerns imple-

mentability.

De�nition 3 The �rst best is strongly implementable if si(�i; �i�11 ) = �i and
�(�ni+1 j �i1) for all i 2 [1; n] is the unique perfect Bayesian equilibrium of the
game.

If for any depositor the belief to observe the truthful history and the strategy
to act truthfully is the unique perfect Bayesian equilibrium, then as a conse-
quence the �rst best obtains

Proposition 2 The �rst best is strongly implementable.

Proof. See Appendix C.
To get the intuition behind the proof, consider the following informal analy-

sis. A patient depositor observing p � 1 waitings at any position knows with
certainty that she is the last patient depositor, so her optimal action is to wait.
Thus, at any equilibrium the strategy for a patient depositor when observing
p� 1 waitings and at most n� p withdrawals should be to wait. Otherwise, she
would like to deviate unilaterally, because waiting dominates withdrawal.
Consider now the history consisting of p � 2 waitings and no withdrawals.

Knowing the best response of a patient depositor observing p � 1 waitings,
a patient depositor´s optimal action is to wait. But then the history ((p �
2) wa;wi) reveals that the last depositor must have been an impatient one.
Therefore, a patient depositor observing this history knows that she is the (p�
1)th patient depositor in the line and her best response is to wait, because this
decision induces the last patient depositor to wait as well. We may apply the
same line of reasoning to show that for any history beginning with p�2 waitings
any subsequent withdrawal must be a truthful one. A patient depositor upon
observing such a history knows exactly her relative position and she knows also
what the last patient depositor will wait, so her best response is to wait. Hence,
at any equilibrium the strategy for a patient depositor when observing a history
which begins with p � 2 waitings should be to wait. Otherwise, she would like
to deviate unilaterally. On the other hand, whenever a patient depositor upon
observing p� 2 waitings knows that she is the (p� 1)th patient depositor in the
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line10 , her best response is to wait. This is the case, because we have seen that
the last patient depositor will wait upon observing p� 1 waitings.
Consider the history consisting of p�3 waitings and no withdrawals. By the

previous result a patient depositor´s best response when observing this history
is to wait. Thus, the history ((p � 3) wa;wi) reveals that the last depositor
must have been an impatient one. Therefore, a patient depositor observing this
history knows that she is the (p�2)th patient depositor in the line. If she waits,
then the resulting history will have p�2 waitings and a patient depositor would
know that she is the (p�1)th patient depositor in the line, and her best response
would be to wait. The same argument holds for any history beginning with p�3
waitings and followed by at most n � p withdrawals. At any equilibrium the
strategy for a patient depositor when observing a history which begins with p�3
waitings should be to wait. Otherwise, she would like to deviate unilaterally.
Furthermore, whenever a patient depositor upon observing p�3 waitings knows
that she is the (p � 2)th patient depositor in the line, her best response is to
wait. This is the case, because the following patient depositor will observe p�2
waitings and will know that she (p � 1)th patient depositor in the line, so her
best response is to wait, as it will be the last patient depositor�s best response.
We can continue along the same lines to show that at any equilibrium the

strategy for a patient depositor when observing a history which begins with
[0; p� 1] waitings should be to wait. The reasoning excludes the possibility of
equilibria where patient depositors at the beginning of the line withdraw because
they believe that later-coming patient depositors will withdraw as well. If they
wait, then they can induce those later-coming patient depositors to wait as well.
As the game begins, based on the best responses if the �rst depositor is a patient
one, then she will be truthful, because she observes a truthful history. Hence,
the second depositor can be sure to observe a truthful history as well, implying
that she will also act truthfully. The same logic ensures that any later-coming
depositor can be sure to observe a truthful history to which the best response
is to be truthful, so the �rst best obtains.
In Appendix D, we show using our leading example, why run cannot happen

in equilibrium.

3.2.3 Rationalizability

We can make our result even stronger. The uniqueness of the equilibrium was
based on the idea that if for some histories waiting is the dominant strategy, then
for other histories (which led up to those histories) waiting will be dominant as
well. Hence, in an iterative manner we excluded strategies from the action sets
of depositors. This procedure is what rationalizability would do as well.
Rationalizability does not impose that the beliefs depositors hold about each

other should be equilibrium beliefs, it just states that a rational player only uses
strategies which are best responses to some beliefs the depositor holds about
the strategies of his opponents. It just attempts to answer the question what

10That is, she knows that all patient agents before her have been truthful.
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can be considered rational behavior in a noncooperative strategic situation. In
this sense, it is more general than the equilibrium concepts. Its main drawback
is the lack of clear predictions, but in our model it is not the case.
On the other hand, rationalizability uses all the available information the

game o¤ers, in particular it uses information provided by the play leading up
to the subgame starting with the depositor whose turn it is to decide. Thus,
although rationalizability seems to coarsen the concept of Nash equilibrium,
sometimes it helps to re�ne it by eliminating unreasonable equilibria as shown
by the seminal papers of Bernheim (1984) and Pearce (1984). Our case is an
example where rationalizability yields a clear prediction.
Rationalizability analyses use three assumptions following Pearce (1984):

1. depositors lacking an objective probability distribution over another player´s
choice of strategy form a subjective prior that does not contradict any of
the information at her disposal.

2. depositors are rational and maximize their expected utility.

3. The structure of the game (including the two previous assumptions) is
common knowledge.

Our previous restrictions are in line with these three assumptions.
Formally, we are looking for the rationalizable strategies of depositor i after

observing the history and having a conjecture (ci(hi)) about what the other
depositors´ strategies are conditional on history hi being reached. The common
knowledge assumption implies that if given a history there is only one rational
conjecture that the depositor who is deciding may have, then all later-coming
depositors will know that at that point of the game that depositor must have
had that particular conjecture.
For any ci(hi) 2 S�i which represents depositor i´s conjecture about other

players´ strategies, let Ui(si; ci(hi)) denote for each si the expected utility of
depositor i given her conjecture. Then, i´s best response correspondence is

Bi(c
i(hi)) := arg max

si2Si
Ui(si; c

i(hi)):

We want to �nd the sets Ri(ci(hi)) of rationalizable strategies. We look for
strategies which are best responses conditional on having reached hi and the
conjectures depositor i may entertain. The sets are constructed recursively as
follows. First, let R0i := Si for each depositor i. Then, let

Rki (c
i(hi)) := Bi(�j2[1;n]nfigR

k�1
j (cj(hj))) 8i 2 [1; n] ;8hi 2 Hi; k = 1; 2; :::.

Thus, R1i (c
i(hi)) consists of depositor i´s possible best responses, conditional

on being at a node in hi and given the various conjectures that i might have
about the strategies chosen by the other depositors from the sets R0j = Sj . Then,
R2i (c

i(hi)) contains i´s possible best responses given the conjectures about the
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strategies chosen by other depositors from R1j (c
j(hj)), and so on. Each depositor

i has a well-de�ned limit set

Ri(c
i(hi)) := lim

k!1
Rki (c

i(hi)) = \1k=0Rki (ci(hi));

which is the rationalizable strategy set for depositor i.
The utility function of impatient depositors makes it clear that their unique

rationalizable strategy at any position given any history is to withdraw. We
restrict our attention to patient depositors. The intuition of our result is similar
to the previous one and has the following logic.
Consider any history containing p � 1 waitings. Obviously, for a patient

depositor the only rational conjecture given this history is that all patient de-
positors have already decided to wait. Therefore, the best response is to wait.
This is our �rst restriction.
Given this restriction, waiting is best response to any history which contains

p� 2 waitings and depositors can make sure that no withdrawal has been made
by patient depositors. (This is what we have de�ned earlier as truthful history
with p � 2 waitings.) This is the case, because by waiting a patient depositor
knows that the last patient depositor will wait as well, so all patient deposi-
tors will enjoy the highest possible payo¤. This implies the next restriction,
namely that to any history starting with p� 2 waitings the best response is to
wait. Consequently, if a history starting with p � 2 waitings and followed by
a withdrawal is observed, then the last depositor must have been an impatient
depositor. Hence, the previous reasoning has that the best response is to wait
which is our next restriction. This logic applies to any history starting with
p� 2 waitings and followed by at most n� p withdrawals.
We can repeat the same arguments with histories containing less and less

waitings, and so we restrict more and more the rationalizable strategies. Thus,
in the end we have that a patient depositor´s unique rationalizable strategy to
any history which may emerge is to wait. We have the following result.

Proposition 3 In the game, Ri(ci(hi)) = �i for 8i 2 [1; n] and 8hi 2 Hi:

Proof. See Appendix E.

Corollary 1 The �rst best is strongly implementable.

3.3 Relating to the literature

An alternative interpretation11 of the sequentiality is imagining the Diamond-
Dybvig model where the depositors coordinate on a run. Running means that
they form a queue at the door of the bank which will serve them in a sequential
manner. Diamond and Dybvig�s analysis ends there, while ours begins at this
point by posing the question: what is the outcome of the game if any depositor
can observe the actions of those who are in front of her and if she knows that
11This interpretation was suggested to me by Alfonso Rosa García.
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those coming later will know what she did. If you let people decide in this sit-
uation, then our result predicts that the patient depositors will not withdraw.
In turn, it means that the policies studied by Diamond and Dybvig (suspension
of convertibility and deposit insurance) are not necessary to avoid the bad out-
come. It is enough that depositors are aware of the fact that their decision will
be observed by later-coming depositors to implement the good equilibrium.
Green and Lin obtained a no-run result with a model with huge withdrawal

demand uncertainty, allowing the bank to write sophisticated contracts, but
restricting the depositors´ information to have some notion about the position
without knowing anything about the others´ decision. In contrast, we work
with simple contracts and no demand uncertainty, but allow the bank to share
available information with the depositors. This trade-o¤ in modeling choice
does not change the positive result of not having runs.

4 Only withdrawals observed

Peck and Shell (2003) assert that it is implausible that depositors contact the
bank at period 1 to say that they do not want to withdraw. It is more natural to
think that only those who want to withdraw will go to the bank. Thus, strategy
has to be based on the number of previous withdrawals, that is, the possible
strategy pro�le is of the form s = (s0; s2; :::; sn�1) where si : fimp; patg � i !
fwi;wag for i = 0; 1; :::; n� 1 tells what action to take when being either type
and observing i withdrawals. To exclude trivial cases, assume that at least two
waitings are needed to make waiting a better choice.
Run after any number of withdrawals is rationalizable, because the con-

jecture that all previous depositors have withdrawn and that all later-coming
depositors will withdraw as well does not contradict the available information
any depositor has. Contrary to the previous setup there is no observable his-
tory for which a patient depositor would eliminate withdrawal, so we cannot
restrict in any way the depositors´ strategy set. Given the proposed conjec-
ture withdrawal is a rationalizable strategy for a patient depositor, so run may
happen.

Proposition 4 Run is a rationalizable outcome.

Proof. See Appendix F.
It is easy to see that even if we impose equilibrium beliefs and use an equilib-

rium solution concept, run remains a possible outcome. Let us construct a run
strategy pro�le for patient depositors which allows for the maximum number
of withdrawals and which is an equilibrium candidate. The most obvious run
strategy candidate is the one prescribing to run when observing any number
of previous withdrawals. There is only one potential depositor who would like
to deviate: a patient depositor who knows to be the last depositor in the line.
Suppose that everybody up to the last depositor has withdrawn and the bank
still has some funds. Then, in case that this depositor is patient, her optimal
decision is to wait and consume more in the next period.
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Therefore, our proposed run strategy is

si =

�
wi if i < n� 1;
wa if i = n� 1 :

The game is as follows. Nature picks an alignment, players are called to
decide (wait or withdraw) sequentially, and each of them observes the number
of previous withdrawals. Again, the idea is that the bank knows how many
depositors have withdrawn and can share this information with the subsequent
depositors. Nevertheless, neither the bank, (and consequently) nor the deposi-
tors observe if a depositor decides to wait.

Proposition 5 The proposed run strategy is a perfect Bayesian equilibrium.

Proof. See Appendix G.
The intuition behind this result is easy. Since deviations from the run strat-

egy cannot be observed, no patient depositor can induce later-coming depositors
to wait by waiting. When waiting is observable, then being truthful makes possi-
ble that later-coming depositors have information about what happened before,
and then these depositors will �nd it pro�table to be truthful as well. In this
setup, being truthful is not revealing, depositors do not even know their posi-
tion, so it is not possible that there be enough information to eliminate run as
an equilibrium outcome.

5 Reporting is allowed

Up to this point we have shown that if everybody has to report and the history
is observable, then bank run does not occur. Nevertheless, by modifying the
game so that only withdrawals are observable, runs may happen. A way to
bridge the gulf between the results is to allow (but not to require) patient
depositors to report their waiting. It is a new game, since the available actions
(withdraw (wi), wait without reporting (wa), wait and report (r))12 and the
possible information sets are di¤erent. Since reporting to the bank in period
1 is not related to consumption, we allow for the possibility that it is costly.13

Intuitively, a patient depositor would like to report, because sending this signal
could induce subsequent patient depositors not to withdraw, and have a high
period-2 payment.
Assume a nonnegative and uniform cost for reporting in utility terms and

denote it by k. If k > u(c�2) � u(c�1), then the cost is so high that it does not
compensate for the potential gain in utility, so to make reporting a real option
suppose the opposite. Otherwise we have the previous setup where run is an
equilibrium outcome.

12Note that to report and withdraw does not make sense, so we do not consider it.
13How are reporting costs in real life? Our guess is that they are rather small as a conse-

quence of technological advances, like Internet banking. Notice that in Green and Lin (2003)
the compulsory reporting is not costly.
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If we change the setup by adding additional information, then we are back to
previously analyzed cases. If both the position and the alignment were known,
patient depositors would know their relative position. Hence, the game would
simplify to that in section 3.2.1 with the same outcome. Patient depositors
would not report, because it is costly and redundant. If only the position (i =
1; 2; :::n) was known, a patient depositor would know exactly how many patient
depositors have waited without reporting. It is simply (i�1)� (!i+�i), that is
the di¤erence between all previous actions and all observable actions. It means
that both waitings and withdrawals are observable, so we are back to section
3.2.2. with the same outcome. We do not need the costly reporting to obtain
the �rst best, so patient depositors would not use it. Nevertheless, in this setup
neither the position, nor the alignment is known. To give some �avour of this
new game consider the following example.

5.1 The leading example

Suppose that we have the same example as in section 3.1 with an impatient and
three patient depositors and to make waiting worthwhile no patient depositor
should withdraw.
Consider the observable history (r). A patient depositor observing it may

have two beliefs: (i) there was also a patient depositor who waited without re-
porting, (ii) the observed history coincides with the true history. Clearly, if the
history contained also an unobserved waiting, then for a patient depositor the
best response is to wait without reporting. In the other case reporting dominates
withdrawal, because the last patient depositor would observe two reports which
would make her wait and the reporting depositor would have u(c�2)� k > u(c�1).
Therefore, a patient depositor observing a report will not withdraw. As a conse-
quence, when observing (r; wi) depositors know that the withdrawal must have
been truthful. Hence, for a patient depositor observing this history reporting
dominates withdrawal. Since no patient depositor withdraws when observing
(r; wi), the best response is to wait without reporting. Anticipating this deci-
sion, a patient depositor´s best response observing (r) is also to wait without
reporting.
Let us see what happens if a patient depositor observes (wi). We have seen

that when the history begins with a report, then given any of the possible ensu-
ing histories later-coming patient depositors will not withdraw.14 Consequently,
for a patient depositor who observes nothing reporting dominates withdrawal,
so this depositor will not withdraw. Therefore, if an observable history begins
with a withdrawal, it must have been a truthful one. When observing (wi; r)
reporting dominates withdrawal, since when there are two reports in any observ-
able history, then the next patient depositor (if there is any) will wait without
reporting. Again, since the unique impatient depositor has already withdrawn
and no patient depositor observing (wi; r) withdraws, the best response is to

14A patient agent would best respond by withdrawing to an observable history (r; wi; wi),
but by our previous argument it cannot arise.
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wait without reporting. It implies also that when observing (wi) reporting dom-
inates withdrawal, because the ensuing information sets surely lead to higher
payo¤s than c�1. Moreover, waiting without reporting is the best response, be-
cause when observing a withdrawal a patient depositor knows that it was done
by the impatient depositor and if there are any later-coming patient depositors,
then those depositors will not withdraw.
As we have seen, if a patient depositor does not observe anything, then she

will not withdraw. But, will she report? No, since for a patient depositor the
best response to the observable history (wi) is to wait without reporting, so the
best response to observing nothing is to wait without reporting. Hence, when
observing either (;) or (wi) the best response is to wait without reporting, so
as the game unfolds the unique outcome is the �rst best and patient depositors
do not report.

5.2 The general case

The information set consists of the history which is observable and the own type.
We denote by Hobs

!j ;�j
the set of observed histories containing any permutation of

!j 2 f0; 1; 2; :::n� 1g withdrawals and �j 2 f0; 1; 2; :::p� 1g reports.15 Denote
any generic element of this set by hobs!j ;�j . Notice that it is possible that two (or
even more) patient depositors observe the same observable history.
Due to the unobservability of waitings, an depositor observing any history in

Hobs
!j ;�j

does not know her position, she just knows that she is at least in position
!j + �j + 1 and at most in position !j + p. The range of possible positions is
p� �j � 1 which makes the uncertainty larger than in the �rst setup.
A pure strategy for an depositor is a map s(�;Hobs) : fimp; patg �Hobs !

fwi;wa; rg, where Hobs = �(Hobs
!j ;�j

)
!j2f0;1;2;:::n�1g
�j2f0;1;2;:::p�1g

is the set of all possible

observable histories. Therefore, each depositor has to specify what to do when
observing any possible history and being of either type. We focus on patient
depositors, because impatient depositors always withdraw.
The unobservability of waitings without reporting makes it di¢ cult to verify

whether a strategy pro�le is a perfect Bayesian equilibrium or not. The di¢ -
culty lies in that an depositor observing a given history generally does not know
her exact position, so the calculation of the probability of possible continua-
tion alignments becomes too demanding. Fortunately, to �nd the rationalizable
strategies of this game is easier, so it will be our focus here.
We will modify in a natural way the restrictions on the formation of beliefs:

1´: a reporting at any position reveals that it must have been a patient de-
positor, and

15The order of actions is very important in the analysis, but this notation will prove to be
convenient.
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2´: if for a patient depositor given history hobs!j ;�j reporting dominates with-
drawal, then an observed withdrawal following the history must be due to
an impatient depositor.

The �rst restriction is equivalent to saying that impatient depositors always
withdraw. The second one states that patient depositors never play dominated
strategies.
To prove the main result of this section, we modify slightly the de�nition of

truthful history.

De�nition 4 We call a history truthful, if using restrictions 1´ and 2´ it can
be unambigously veri�ed that no patient depositor has withdrawn.

The only di¤erence compared to the previous de�nition is that this one allows
for unobserved waitings. We are ready to state the following result.

Proposition 6 The unique rationalizable strategy for patient depositors is to
wait.

Proof. See Appendix H.
The way to show that the unique rationalizable strategy is to be truthful will

be to consider observable histories and to see which strategies can be eliminated.
As a �rst step, patient depositors observing any history use both waiting and
withdrawal as rationalizable strategy. To obtain the �rst restriction, consider
a patient depositor observing a history with p � 1 reports. The only rational
conjecture which our depositor may hold is that she is the last patient depositor,
so her unique rationalizable strategy given these histories is to wait. Given
this restriction, to any truthful history with p� 2 reports reporting dominates
withdrawal for a patient depositor, because by reporting she gets u(c�2)�k which
is higher than the payo¤ she would get by withdrawing. Therefore, withdrawal
is not rationalizable when observing any truthful history with p�2 reports. The
easiest example of a truthful history with p�2 reports is the history consisting of
p� 2 reports. Since for this history reporting dominates withdrawal, a patient
depositor observing p � 2 reports followed by a withdrawal knows that the
withdrawal must have been a truthful one. Consequently, this history is also
a truthful one with p � 2 reports and by the same arguments as before, for
a patient depositor reporting dominates withdrawal. Along the same line of
reasoning, for any history starting with p � 2 reports and followed by at most
n�p withdrawals reporting dominates withdrawal for patient depositors. Hence,
we have eliminated withdrawal from their action set. As a consequence, we can
eliminate reporting also, because by waiting thay do not spend resources on
reporting, and although the last patient depositor will not observe the waiting,
but she will have a history for which reporting dominates withdrawal. The last
patient depositor (without knowing the she is the last) may reason in the same
way, so if a history starts with p � 2 reports, then the unique rationalizable
strategy for the last patient depositors is to wait. As a consequence, withdrawal
is not rationalizable when observing any truthful history with p� 3 reports and
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you can do the same analysis as in the case with p � 2 reports. By repeating
the same procedure with less and less reports, we obtain our result.
The proposition predicts a unique outcome of the game in which patient de-

positors do not report. The mere existence of reporting is enough to bring about
the �rst best. We need reporting to make withdrawal a dominated action, but
once it was dominated reporting becomes dominated as well. Such arguments
appear in models with "money burning", e.g. Ben-Porath and Dekel (1992).
A direct consequence of the proposition is the following corollary.

Corollary 2 The �rst best is strongly implementable.

The possibility of reporting can be seen as a metaphor of richer communi-
cation between the bank and its depositors. While the no-run result by Green
and Lin (2003) rests on complex contracts, our no-run result impinges on the
possibility of richer communication. As already noted, this result is in line with
the �ndings of Iyer and Puri (2008) which state that the longer and deeper the
relation ship between a depositor and the bank, the less likely is that depositor
to run.

6 Conclusion

Most of the literature on bank runs uses a simultaneous-move approach to model
the depositors´ decision. In contrast, we model it using a sequential focus. We
�nd that in an environment in which each previous action is observable, the
coordination problem pointed out by Diamond and Dybvig does not emerge.
When we restrict the observable information to withdrawals, then runs occur.
Nonetheless, they disappear if we allow depositors to report the bank their
decision to wait. Besides the no-run result, this last case is interesting because
no reports are made to the bank. The mere existence of reports is enough
to obtain the �rst best. In the �rst two setups, we prove our result both by
using an equilibrium solution (concretely, perfect Bayesian equilibrium) and
rationalizability, while for the last setup we use only rationalizability.
Although we do not study explicitly policy issues, our results have a clear

policy message. Sequentiality matters in depositors´ decision-making, so it must
be taken into account when designing the optimal policy.
Our results rest heavily on the concept of the bank as a benevolent institution

which serves the depositors; an assumption adopted by much of the literature.
When taking into account that the bank possibly follows self-interest as well
(see Andolfatto and Nosal (2008)), then the potential agency problems may
question our results, although competition in the banking sector may mitigate
these problems.
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8 Appendix

8.1 Appendix A

Consider the same example, but now the previous actions are unordered. The
optimal decision for a patient depositor in the last position is as before. When
she observes 2 withdrawals and a waiting she withdraws, otherwise she waits.
We focus on patient depositors at the �rst three positions. Consider the follow-
ing strategies

s3(wi;wi) = s3(wa;wi) = s2(wi) = s1(;) = wi;
s3(wa;wa) = s2(wa) = wa;

where the subscript denotes the position in the line and in the brackets there
are the unordered previous actions. Do these strategies form a run equilibrium?
Notice that given these strategies as the game unfolds, the information set

(wa;wi) cannot emerge. Therefore, the unique candidate for pro�table uni-
lateral deviation is the information set in which a patient depositor does not
observe anything, that is the depositor at the �rst position in the line. The
deviation consists in waiting instead of withdrawing. There are 3 alignments
which begin with a patient depositor. If a patient depositor at this informa-
tion set waits, then in two of the three cases in which the second depositor is
a patient one the �rst best is achieved. This is the case, because this second
depositor will wait inducing the third patient depositor to follow suit as well.
Nevertheless, when the second depositor is the impatient one, then the strategies
imply that the later-coming patient depositors withdraw. For the parameters
R = 1; 1, 
 = 6 and the utility function u(c) = c1�
=(1 � 
),16 the proposed
strategy pro�le is an equilibrium. The utility of withdrawing is �0; 149, while
by waiting the expected utility for a patient depositor at the �rst position is
�0; 205, so a patient depositor at the �rst position would withdraw.

8.2 Appendix B

Proof. The last patient depositor´s best response in any known alignment is
to wait if and only if with her waiting � is so high that c2(�) > c�1. Denote the
minimum � for which it is true by ~�, It is given by c2(~�) > c�1 � c2(~� � 1), and
notice that ~� � p. If the last patient depositor observes at least ~� � 1 waitings,
then she will wait, otherwise she withdraws. Note that there is no uncertainty
here. Now consider the next to the last patient depositor. Knowing what the
last patient depositor will do, her best response is to wait if she observes at least
~��2 waitings, otherwise she withdraws. By following the same line of argument,
16For this utility function we have

c�1 =
4

1 + 3R
1�




; c�2 = R
1

 c�1:
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it is easy to write in general the best response of any patient depositor:

BR� =

�
wa if �� � ~� � (p+ 1� �)

wi otherwise
;

for � 2 [1; p] where the subscript � denotes the �th patient depositor in the
line.
Now consider how the game unfolds. The �rst patient depositor waits, be-

cause 0 � ~�� p. The second patient depositor also waits, because 1 � ~�+1� p,
and so on. In the end, all patient depositors will wait yielding � = p, so the
�rst best obtains. To get this result we need less than knowing with certainty
the alignment. It is enough that patient depositors know their position among
the patient depositors.

8.3 Appendix C

The proof has two parts. First, we show that the best response when observing
a truthful history is to be truthful. In the second step, we argue that as the
game unfolds, only truthful histories are observed, so these best responses lead
to the �rst best.
Denote by Htr(�) the set of truthful histories which contain � waitings (and

any !̂ 2 [0; n� p] withdrawals). Notice that characterizing features of the set are
the number of waitings and truthfulness, but not the position of the depositor
observing any element of the set. It is in line with our previous �nding that not
the absolute position, but the relative position among the patient depositor is
what really matters for a patient depositor.

Lemma 1 Assume that once an element in Htr(�̂) is reached all subsequent
depositors will act truthfully, that is, si(�i; htr(�i � �̂)) = �i for i = �̂ + !̂ +
1; :::; n, where htr(�i � �̂) 2 Htr(�i � �̂). Then, for the set of truthful histories
which contain �̂ � 1 waitings (and any !̂ 2 [0; n� p] withdrawals), we have
s�̂+!̂(��̂+!̂; h

tr(� � 1)) = ��̂+!̂.

Proof. The lemma assumes that once a truthful history containing �̂ waitings
and at most n � p withdrawals is reached, for any possible continuation align-
ment later-coming patient depositors will wait. Therefore, the only equilibrium
strategy when observing a truthful history with �̂ � 1 waitings is to act truth-
fully. If a patient depositor observes htr(�̂�1) 2 Htr(�̂�1), then by waiting she
will cause a history which belongs to Htr(�̂). By our assumption, all subsequent
depositors will be truthful, so the �rst best obtains yielding the highest obtain-
able payo¤ to the patient depositors. Since any truthful history is equivalent to
a degenerate belief, given such a history the unique perfect Bayesian equilibrium
strategy is to be truthful, since there is no unilateral pro�table deviation.
The previous induction step can be used repeatedly.

Corollary 3 Assume that for the set of truthful histories which contain �̂ wait-
ings (and any !̂ 2 [0; n� p] withdrawals) we have si(�i; htr(�i � �̂) = �i
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for i = �̂ + !̂ + 1; :::; n. Then, for the set of truthful histories which con-
tain �� 2 [0; �̂ � 1] waitings (and any !̂ 2 [0; n� p] withdrawals), we have
s��+!̂+1(���+!̂+1; :) = ���+!̂+1.

Proof. In the previous lemma we have shown the case when ��= � � 1. What
happens if a patient depositor observes a truthful history with ��= ��2 and !̂ 2
[0; n� p] withdrawals? By waiting, the resulting history will be a truthful one
with �̂ � 1 waitings and !̂ 2 [0; n� p] withdrawals. By our common knowledge
assumption all subsequent depositors will know that up to depositor �̂ + !̂ � 1
all actions have been truthful, so by the previous lemma all subsequent actions
will be truthful as well. The resulting �rst best yields the highest possible payo¤
to any patient depositor, so there is no unilateral pro�table deviation. Hence,
given the belief embodied in the history the unique perfect Bayesian equilibrium
strategy is to be truthful. The same argument can be applied to any truthful
history with ��2 [0; �̂ � 1] waitings.
Consider a patient depositor who observes a history which contains p � 1

waitings and !i 2 [0; n� p] withdrawals, so each patient depositor other than
the one who observes the history has waited. Any such history is a truthful one,
and the only equilibrium strategy is si(pat; htr(p � 1)) = wa because it leads
to the �rst best which yields the highest obtainable payo¤. Therefore, we may
apply the corollary to this set of truthful histories.

Lemma 2 For the set of truthful histories which contain ��2 [0; p� 1] wait-
ings (and any !̂ 2 [0; n� p] withdrawals), we have s��+!̂+1(���+!̂+1; htr(��)) =
���+!̂+1.

Proof. Apply corollary to Htr(p� 1).
The previous lemma determines the best responses for any history that may

come up in the game. Moreover, all these histories will be truthful! This is
the case, because - for instance - any history starting with waitings is truthful,
and since our strategy prescribes truthful action to these histories the result-
ing histories must be truthful as well. Any withdrawal after histories starting
with waiting(s) must be due to impatient depositors. If a history begins with a
withdrawal, then it is truthful, because a patient depositor would have waited
according to the best responses we have found, so histories starting with with-
drawals will be truthful as well.

Proposition 7 The strategy si(�i; �i�11 ) = �i and the belief �(�
n
i+1 j �i1) for all

i is the unique perfect Bayesian equilibrium of the game.

Proof. Consider the history consisting of ��waitings and no withdrawal, where
��2 [0; p� 1]. The unique compatible belief is that it is a truthful history, so
by the previous lemma s��+1(���+1; �

��
1) = ���+1. As a consequence, the history

starting with �� waitings and followed by a withdrawal reveals that the last
depositor must have been an impatient depositor. Therefore, a patient depositor
observing this history knows that it is a truthful one, so s��+2(���+2; �

��+1
1 ) = ���+2.

This argument shows that any history starting with ��2 [0; p� 1] waitings must
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be a truthful one, so the previous lemma applies to them. Now consider how
the game unfolds. If the �rst depositor is patient, then her belief is �(�n2 j
;; pat) = �(�n2 j pat) which corresponds to our de�nition of a truthful history.
The previous lemma ensures that her optimal action is to wait. Thus, the
second depositor can be sure to observe a truthful history, so her optimal action
is to act truthfully as is the case for each later-coming depositor. depositors
at any position can be sure to observe a truthful history to which the unique
equilibrium strategy is to be truthful.
As a consequence of the proposition we have the following corollary.

Corollary 4 The �rst best is strongly implementable.

8.4 Appendix D

Consider the leading example which has that u(c2(� = 3)) > u(c�1) > u(c2(� �
2) and 3c�1 < 4, so patient depositors at position 1,2 and 3 would only want to
wait if all the other patient depositors wait. The optimal decision for a patient
depositor in the last position is easily de�ned. When she observes a history
with 2 withdrawals she withdraws, otherwise she waits. We know also that if
a patient depositor observes any history containing 2 waitings, then her best
response is to wait.
Thus, in any equilibrium we should have

s3(wa;wa) = wa;

s4(wa;wa;wi) = s4(wa;wi; wa) = s4(wi;wa;wa) = s4(wi;wi; wi) = wa;

s4(wa;wi; wi) = s4(wi;wi; wa) = s4(wi;wa;wi) = wi;

where the subscript in the strategy denotes position and we have the history
in brackets.
The previous strategies also imply that we must have

s2(wa) = wa;

because otherwise a patient depositor would deviate unilaterally and receive
u(c�2), the highest possible payment.
Run happens if at least one of the patient depositors withdraws. When

patient depositors at the beginning of the line wait, then later-coming patient
depositors will wait as well, so to generate a run we should have the �rst patient
depositors withdraw. Hence, we propose the following strategies:

s1(;) = wi;

s2(wi) = wi;

s3(wa;wi) = s3(wi;wa) = s3(wi;wi) = wi:
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THIS IS NOT OK. GIVEN s2(wa) = wa AGENT CAN UPDATE HER
BELIEFS WHEN OBSERVING (WA;WI) ! �3(�2 = pat j (wa;wi)) = 0, SO
s3(wa;wi) =WI IS NOT OPTIMAL
If these strategies really form an equilibrium, then depositors at any position

should observe histories consisting only of withdrawals. It is straightforward to
compute the beliefs on the proposed equilibrium path.
Whether we have a perfect Bayesian equilibrium with run boils down to the

question if a deviation at the �rst position is pro�table or not. If a patient
depositor at the �rst position deviates, then subsequent depositors will observe
histories which ex ante have zero probability. The only way that the deviation
is not pro�table could occur if the second depositor is an impatient one (who
consequently withdraws), and the third depositor believes that the withdrawal
has been due to a patient depositor, so her best response is to withdraw.17

But is that belief possible? Given s2(wa) = wa, only an impatient depositor
would withdraw, so a patient depositor observing (wa;wi) cannot believe that
the second depositor has been untruthful. Consequently, a patient depositor at
the �rst position would deviate, so the proposed strategies do not form a run
equilibrium.

8.5 Appendix E

We use the same de�nition of truthful history as before. Remember that we
focus on patient depositors.

Lemma 3 If waiting is the unique rationalizable strategy to any truthful history
containing at least �̂ waitings, then it is the unique rationalizable strategy to any
truthful history with �̂ � 1 waitings.

Proof. If a patient depositor observing any truthful history with �̂�1 waitings
waits, then she knows that all later-coming patient depositors will observe a
truthful history containing at least �̂ waitings, so they will wait. This means
that in the end all patient depositors wait which yields the highest possible payo¤
for patient depositors. Thus, waiting is the unique rationalizable strategy.

Corollary 5 If waiting is the unique rationalizable strategy to any truthful his-
tory containing at least �̂ waitings, then it is the unique rationalizable strategy
to any truthful history with [�̂ � 1; 0] waitings.

Proof. Apply the previous lemma repeatedly.
Apply the corollary to any history containing p � 1 waitings (a necessarily

truthful history) to obtain the proposition.

17Notice that a deviation at the �rst position results in a gain in two of the three possible
alignments. Nevertheless, it is possible to �nd parameters such that the losses of the third
alignment outweigh the gains of the other two.
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8.6 Appendix F

To illustrate the possibility of a run, consider the leading example when only
withdrawals are observed. The possible histories are: observing 0; 1; 2 or 3
withdrawals. In the last case, a patient depositor knows to be in the last position
and her best response is to wait to earn the interest rate. A patient depositor
observing a di¤erent number of withdrawals may believe to be in the following
positions:

wi possible position
0 1,2,3
1 2,3,4
2 3,4

We cannot restrict in any way these conjectures, so for example a patient
depositor observing 2 withdrawals may attach a high probability of being in po-
sition 3. As a consequence, she should withdraw. Similarly, a patient depositor
observing a withdrawal may believe to be at the second position and she may
believe that later-coming patient depositor will withdraw, so her best response
to this conjecture is to withdraw. These conjectures are possible because wait-
ings are not observable. We do not claim that run is the unique outcome, we
say that it is a possible outcome.

8.7 Appendix G

Proof. We assumed that at least two patient depositors should wait to make
waiting a better choice. Nevertheless, the strategy ensures that at most one
depositor will wait. This happens if there are funds in the bank for the last
depositor and this last depositor is patient. Unilateral deviations are not prof-
itable, because waitings are not observable. No patient depositor can induce
later-coming patient depositors to deviate from the run strategy.
Consider the leading example as an illustration. The proposed strategy for

patient depositors would be

si = wi for i = 0; 1; 2;

s3 = wa;

where a patient depositor who knows to be the last would wait and earn the
return. Given these strategies on the equilibrium path depositors know their
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position. The implied beliefs on the equilibrium path are the following

�(�44 j 2wi; pat) =

�
imp with prob. 13 ;
pat with prob. 23 :

�(�43 j 1wi; pat) =

8<: pat; imp with prob. 13 ;
imp; pat with prob. 13 ;
pat; pat with prob. 13 :

�(�42 j ?; pat) =

8<: pat; pat; imp with prob. 13 ;
pat; imp; pat with prob. 13 ;
imp; pat; pat with prob. 13 :

The interesting thing about this setup is that information sets o¤ the equilib-
rium path are not observed. Thus, if a patient depositor deviates later-coming
patient depositors will not know about it. There is no evidence on deviations,
nor is there any clue which would suggest that a previous patient depositor
did so. Having the previous beliefs and knowing that a deviation will not be
detected results in that deviations are not pro�table. Therefore, the best any
depositor can do is to follow her prescribed strategy.

8.8 Appendix H

We use the same de�nition of truthful history as before and again we focus on
patient depositors. Denote an element of the truthful histories with �̂ reports
by htr(�̂) 2 Htr(�̂).

Lemma 4 If waiting is the unique rationalizable strategy to any truthful history
containing at least �̂ reports, then it is the unique rationalizable strategy to any
truthful history with �̂� 1 reports.

Proof. For a patient depositor observing any truthful history with �̂�1 reports
reporting dominates withdrawal, because by reporting she induces all later-
coming patient depositors to wait and she gets u(c�2)�k, whereas by withdrawing
she only would receive u(c�1). Thus, withdrawal is not a rationalizable strategy
for a patient depositor observing any htr(�̂ � 1) 2 Htr(�̂ � 1). Given this, a
withdrawal after such a truthful history must be due to an impatient depositor,
so the new history is also a truthful history with �̂�1 reports. Hence, reporting
dominates withdrawal again. Applying the same argument, any withdrawal after
any htr(�̂� 1) 2 Htr(�̂� 1) must be truthful, so these histories will be truthful
as well. Hence, for patient depositors observing these histories, reporting will
dominate withdrawal. Knowing that no patient depositor will withdraw once
any htr(�̂� 1) 2 Htr(�̂� 1) is reached, means that a patient depositor does not
need to report to avoid that later-coming depositors withdraw. Therefore, the
best response to any htr(�̂� 1) 2 Htr(�̂� 1) is to wait.

Corollary 6 If waiting is the unique rationalizable strategy to any truthful his-
tory containing at least �̂ reports, then it is the unique rationalizable strategy to
any truthful history with [�̂� 1; 0] reports.
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Proof. Apply the previous lemma repeatedly.
A patient depositor observing any history containing p�1 reports knows that

the history is truthful. Thus, we can apply the corollary. As a consequence,
a patient depositor observing nothing knows that the history is truthful, so
her unique rationalizable strategy is to wait. Given this, a patient depositor
observing a withdrawal knows that it must have been an impatient depositor,
so the history is truthful. She will wait, as any patient depositor after observing
at most n�p withdrawals. Hence, the �rst best obtains, and no patient depositor
reports.
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