Structural versus Behavioral Remedies in the Deregulation of Electricity M arkets: An Experimental Investigation Guided by Theory and Policy Concerns*

Silvester van Koten, ${ }^{1}$
CERGE-EI, Prague
European University Institute, Florence
slvstr@gmail.com

Andreas Ortmann,
The University of New South Wales, Sydney
a.ortmann@unsw.edu.au, aortmann@gmail.com

Abstract

We try to better understand the comparative advantages of structural and behavioral remedies of deregulation in electricity markets, an eminent policy issue for which the experimental evidence is scant and problematic. Specifically, we investigate theoretically and experimentally the effects of the introduction of a forward market - considered a behavioral remedy by the European Commission -- on competition in electricity markets. We compare this scenario with the best alternative, the structural remedy of reducing concentration by adding one more competitor by divestiture. Our study contributes to the literature by introducing more realistic cost configurations, by teasing apart competition and asset effect, and by investigating competitor numbers that reflect the market concentration in the European electricity industries. Our experimental data suggest that introducing a forward market has a positive effect on the aggregate supply in markets with two or three major competitors, configurations typical for the newly accessed and the old European Union member states, respectively. Introducing a forward market also increases efficiency. In contrast to previous findings, our data furthermore suggest that the effect of introducing a forward market is stronger than adding one more competitor both in markets with two, and particularly three, producers. Our data thus provides some evidence for the position that behavioral remedies may be more effective than structural remedies. Competition authorities thus seem well advised, in line with EU law (European Commission, 2006a, p.11), to focus on introducing, or at least facilitating the emergence of, forward markets rather than on lowering market concentration by divestiture.

[^0]
1. Introduction

Concentration in generator markets remains a key problem in the EU electricity markets. The European Commission (2007a, p.7), for example, concludes: "At the wholesale level, gas and electricity markets remain national in scope, and generally maintain the high level of concentration of the preliberalization period. This gives scope for exercising market power."

The European Commission suggests structural remedies ${ }^{2}$ such as divestiture or asset swaps of power plants on a European scale (2007a, p.15), blocking mergers (2007a, p.12), auctioning large scale Virtual Power Plants (2007a, p.12), stimulating the entrance of new electricity generators (2007a, p.16), and increasing competition by enabling generators from abroad to sell electricity over crossborder transmission lines (2007a, p.8).

Several EU member states have experience with some of these structural remedies. For example, in the end of the nineties, the UK forced dominant electricity generators to divest plants; the two dominant electricity generators NationalPower and PowerGen together divested 6GW in 1996 and another 8 GW in 1999, thus lowering concentration (Green, 2006). However, beginning in 2000, the UK experienced mergers which reversed that trend. ${ }^{3}$ The UK also experienced a considerable degree of new entry. ${ }^{4}$ Belgium, France, Italy, Denmark, and the Netherlands are using, or used in the past, the auctioning of Virtual Power Plants ${ }^{5}$ to lower market power (Willems, 2006). Finally, several countries increased the capacity of cross-border transmission lines and harmonized their market regimes with neighboring countries to make it easier for generators to sell electricity over borders, thus increasing competition.

The encouragement of cross-border trading - while creating a larger, European, market - is likely to alleviate the concentration problem only marginally; many electricity companies have merged across borders, and have thus become players in neighboring countries (Matthes, Grashof, and Gores, 2007). Increasing competition is therefore done most efficiently - avoiding duplication of investment in generation assets ${ }^{6}$ - by divestiture; enforcing big incumbent power companies to sell parts of their

[^1]plants, and thus adding to the capacity of competing new entrants. Of interest are also "softer" remedies, such as discouraging incumbents to replace old plants and instead encouraging new entrants to build generation assets, as this is effectively a form of divestiture (no duplication of investment in generation assets).

In addition to such structural remedies, policy makers and regulators have shown interest in behavioral remedies ${ }^{7}$ that prevent electricity generators, through the appropriate organization of electricity markets, to be able to use their market power. The wording of EU law suggests that behavioral remedies ought to be the default setting : "Structural remedies should only be imposed either where there is no equally effective behavioural remedy or where any equally effective behavioural remedy would be more burdensome for the undertaking concerned than the structural remedy" (European Commission, 2006a, p.11).

Allaz and Vila (1993) make the theoretical case for the introduction of a forward market as a behavioral remedy that increases competitive pressure. ${ }^{8}$ Specifically, they show that a forward market lowers the amount of market power producers can exert. The contribution of Allaz and Villa (1993) is important since it has been argued that forward contracts are likely to decrease competition (Lévêque, 2006). Willems et al. (2009), drawing on Allaz and Villa (1993), give the following brief explanation of the effect. In the spot market every producer maximizes his profit given by the profit function $\pi_{i}=p\left[q_{i}+q_{-i}\right]\left(q_{i}-f_{i}\right)-c\left[q_{i}\right]$, where q_{i} stands for their own production, q_{-i} for the production of all other producers, and f_{i} for the number of units sold in the forward market. Differentiating this equation to q_{i} and setting equal to zero gives $0=\frac{d \pi_{i}}{d q_{i}} \Leftrightarrow-p^{\prime}[Q]\left(q_{i}-f_{i}\right)=p[Q]-c^{\prime}\left[q_{i}\right]$. This equation can be rewritten ${ }^{9}$ as $\frac{s_{i}}{E_{p}^{Q}}\left(1-\frac{f_{i}}{q_{i}}\right)=\frac{p[Q]-C^{\prime}\left[q_{i}\right]}{p[Q]}$, where s_{i} stands for the market share and E_{p}^{Q} for the price elasticity of demand. We can see from the formula that the markup (the right-hand side of the

[^2]equation) decreases in f_{i}, the number of units sold in the forward market. The more producers sell in the forward market, the closer the outcome in the spot market will be to the Walrasian outcome.

Welfare and consumer surplus thus increase in the number of units sold in the forward market. But do producers have incentives to sell units in the forward market? Allaz and Villa (1993) show that they do. Suppose that only one, privileged, firm could sell in the forward market. In that case this firm has a first mover's advantage. It can, by selling the right number of units in the forward market, reach the Stackelberg equilibrium, which has a higher profit for the privileged firm. Thus, no firm selling in the forward market cannot be a Nash-equilibrium. When all firms are entitled to sell in the forward market, they all end up worse off than when none of them had sold. This prisoner's-dilemma type result is standard textbook fare (e.g., Binmore 2007, chapter 10). Producers earn the highest profit if nobody sells in the forward market, but selling in the forward market is a strictly dominant action for each individual producer.

In this paper we investigate theoretically and experimentally the effects on competition of introducing forward markets in electricity markets. For relevant parameterizations, we compare the results of the introduction of a forward market with those of the best alternative remedy: reducing market concentration by divestiture. We do so for competitor numbers that reflect better the market concentration in the old European states than previous literature has done: We also use realistic cost configurations and tease apart competition and asset effect.

We show that, theoretically and behaviorally, the effects of introducing a forward market might be larger than adding one more competitor in markets both with two and three producers. Previously, Brandts, Pezanis-Christou, and Schram (2008) came to the opposite conclusion for the case of three initial competitors. The question whether the theoretical predictions of Allaz and Villa (1993) will materialize in the reality of a dynamic setting such as the EU electricity market has clear policy implications. An affirmative answer would suggest that regulators formulate guidelines for, and promote, the design of effective forward markets.

In the following section we first discuss the experimental design (i.e., the basic parameterizations, treatments, underlying working hypotheses) and experimental procedures as well as related literature. In section 3 we report the results focusing on aggregate quantity, efficiency, and production efficiency. In section 4 we conclude. The appendices contain robustness tests and instructions.

2 Experimental design and procedures

2.1 Treatments

We identify the effects of adding one more competitor through divestment and the effects of introducing a forward market, and then compare the effects.

We model the competition of generators in the spot and forward markets using the standard Cournot approach (see for example Borenstein \& Bushnell, 1999; LeCoq \& Orzen, 2006; Bushnell 2007; Newbery, 2009). The supply-function approach of Klemperer and Meyer (1989) has been argued to be a more accurate approach to model competition in electricity markets. The supply-function approach, however, is more complicated and predicts a wide continuum of equilibria which in turn brings about an equilibrium selection problem (see Devetag \& Ortmann, 2007, for a recent review). Wolak \& Patrick (2001) provide empirical evidence that dominant generators exert market power by declaring plants to be unavailable, thus shifting the supply curve and suggesting that the Cournot approach is an appropriate modeling choice. In addition, Willems et al. (2009) show that Cournot and supply-function approaches lead to comparable outcomes. In contrast, Green (2004) argues that that the Cournot approach does not accurately characterize producer behavior in England and Wales between 1985 and 2000.

Klemperer and Meyer (1989) show that the Cournot equilibrium outcome is the equilibrium with the maximal exertion of market power in the range of supply-function equilibria and hence, arguably, the natural benchmark. Brandt et al. (2008) show that this is also true for configurations with a forward market. The Cournot approach is thus not only relevant and interesting, but can be understood as a necessary first step for additional studies using the supply- function approach.

Table 1summarizes our treatments and indicates how they compare with earlier studies, namely LeCoq and Orzen (2006) and Brandts et al. (2008), about which more below.

Table 1: Treatment conditions

	2 producers	3 producers	4 producers
W ithout Forward M arket	$\mathrm{M} 2^{\#}$	$\mathrm{M}^{\#}$	$\mathrm{M} 4^{\dagger}$
W ith Forward M arket	$\mathrm{M} 2 \mathrm{~F}^{\#}$	$\mathrm{M}^{\#} \mathrm{~F}^{*}$	-
W ithout Forward M arket, zero costs	$\mathrm{M} 2 \mathrm{zc}^{\S}$	-	-
W ith Forward M arket, zero costs	$\mathrm{M} 2 \mathrm{Fzc}^{\S}$	-	-

\# The condition is different from the one tested in LeCoq and Orzen (2006) in that producers here face quadratic marginal costs.
\dagger The condition is different from the one tested in Brandts et al. (2008) in that the market has been created from the market with 3 producers not by entry, but by divestment; producers thus have the same set of assets as in the market with 3 producers.
§ The condition is identical to the one tested in LeCoq and Orzen (2006).

* The condition is identical to the one tested in Brandts et al. (2008).

A key characteristic is the number of producers in the electricity market. While there is some variance, assuming two producers for markets in the New EU Member States ${ }^{10}$ and three producers for markets in the old EU Member States ${ }^{11}$ seems a good approximation. ${ }^{12}$

Thus for the NMS-12 we compare outcomes in markets with two producers and without a forward market (M2) with outcomes in such markets with a forward market (M2F). We also compare the difference in outcomes with the difference in outcomes of markets with two (M2) and three producers (M3), when for the latter we add one more producer by means of divestiture. In other words, we compare the differences of M2F-M2 and M3-M2. The markets M2zc and M2Fzc are treatments to allow comparison of our results with the experimental results of LeCoq and Orzen (2006).

For the EU-15 we compare outcomes in markets with three producers and without a forward market (M3) with outcomes in such markets with a forward market (M3F). We also compare the difference in outcomes with the difference in outcomes of markets with three (M3) and four producers (M4), when for the latter re we add one more producer by means of divestiture. In other words, we compare the differences of M3F - M3 and M4 - M3.

2.2 Earlier experiments

LeCoq and Orzen (2006) conducted experiments in markets with two producers with and without a forward market and compared the outcomes with those in a market with four producers (with and without a forward market); importantly, their producers faced zero production costs. In line with earlier experiments, such as Huck et al. (2004), LeCoq and Orzen (2006) found that producers competed less (more) than predicted with two (four) producers. A forward market had a positive effect, but weaker than expected. Adding two more producers increased output significantly more than introducing a forward market.

LeCoq and Orzen (2006) consider the effects of a forward market in a market with two (and four) producers. While speaking possibly to the reality of electricity markets in the NMS-12 countries, the number of relevant competitors tends to be three for EU-15 countries. Moreover, the assumption that producers have zero marginal costs is unrealistic for all scenarios. In our experiment, producers

[^3]therefore face, more realistically (e.g., Newbery, 2002) and in line with Brandts et al. (2008), quadratic marginal costs.

Brandts et al. (2008) conducted experiments in markets with three producers with and without a forward market and compared the outcomes with those in a market with four producers (without a forward market). Producers had quadratic marginal costs. Brandts et al. (2008) find that a forward market significantly increases the quantity supplied, but that entry of a new generator increases the quantity supplied significantly stronger than the addition of a forward market.

Brandts et al. (2008) confound two effects in their study: a competition effect ${ }^{13}$ and an asset effect. The competition effect is brought about by an additional market participant; this makes the market more competitive and results in lower prices and a larger total number of units supplied. The asset effect is brought about by the additional production assets that are built and paid by a new entrant. Because Brandts et al. (2008) consider the entrance of a new generator, their treatment combines the competition and the asset effect: entrance increases competition, but also the aggregate size of production assets in the market, which reduces the aggregate cost and thus gives an extra incentive to increase production. Thus, assuming efficient production, any given level of aggregate production (the production of all producers together) is produced cheaper in the market with four producers than in the market with three producers. We conjecture that the asset effect confound led to an overestimation of the effects of adding one more competitor in the study of Brandts et al. (2008). Moreover, the welfare effects Brandts et al. (2008) reports are not conclusive, as they do not incorporate the costs of the increase in the asset base (the cost of building extra production plants). ${ }^{14}$

We therefore focus on the effect of divestiture as a benchmark for the effect of a forward market, thus eliminating the asset effect confound and insulating the competition effect. To allow for comparisons, we drew (to the extent possible) on Brandts et al. (2008) and on LeCoq and Orzen (2006) to parameterize our experiment.

2.3 Demand and supply

As in Brandts et al. (2008), the demand schedule is $p(Q)=M a x(0,2000-27 Q), Q \geq 0$.Also as in Brandt et al. (2008), we chose to program the demand side rather than have it enacted by experimental participants. This might reduce demand uncertainty which in turn is likely to influence (the speed of)

[^4]convergence in our market. We believe that this choice does not interact with the treatments in our experiment.

For some treatments we model generators as having quadratic marginal costs. Marginal costs of producing electricity usually have a hockey-stick shape, i.e., they are flat with a sharp increase when capacity constraints become binding (Newbery, 2002). We consider marginal quadratic costs to be a reasonable approximation to the real cost curves of electricity generators.

To be able to compare our results with those of Brandts et al. (2008), we also use the same specification of the costs for markets with three producers, abbreviated by M3 for the market without forward market and by M3F for the market with forward market. Brandts et al. (2008) set the marginal cost of producing the $i^{\text {th }}$ unit for a producer equal to $\mathrm{mc}_{3}(\mathrm{q})=2 \mathrm{x}^{2}$, cumulative costs can thus be calculated as $c_{3}(q)=\sum_{x=1}^{q} 2 x^{2}=\frac{2}{3} x^{3}+x^{2}+\frac{1}{3} x$.

The market with four producers, M4, is created from the market with three producers, M3, by divestiture; each of the three producers divests $1 / 4^{\text {th }}$ of their assets, and these three sets of assets are used to create a fourth, identical producer. The markets with two producers, M2 and M2F, are created from the market with three producers, M3, by reversing the divestiture process (merger): one of the producers is split in halves and their assets are merged to the two remaining producers to create two larger, identical, producers. With the cost function of a producer in M3 given, the cost functions of producers in M2 and M4 can be calculated: $\mathrm{C}_{2}[\mathrm{y}]=\frac{8 \mathrm{y}^{3}}{27}+\frac{2 \mathrm{y}^{2}}{3}+\frac{\mathrm{y}}{3}$, and $\mathrm{C}_{4}[\mathrm{y}]=\frac{32}{27} \mathrm{y}^{3}+\frac{4}{3} \mathrm{y}^{2}+\frac{\mathrm{y}}{3} .{ }^{15}$

The electricity generation asset base is the same for all three markets (M2, M3, and M4). Therefore, when generators make identical choices and the aggregate production is equal over different markets, the aggregate costs must also be equal. Table 2 summarizes the production costs for each generator in the market with two (M2), three (M3) and four (M4) generators, and highlights occurrences where the aggregate production in one market is equal to that in another market as bold and colored. For example,

[^5]the aggregate production in M2 (M4) is equal to that in M3 when the total number of units can be divided both by two (four) and three.

Table 2: ${ }^{16}$ O verview of aggregate cost of producing

M arket with two producers (after merger)					M arket with three producers (original market)					M arket with four producers (after divestment)				
Each Producer			Aggregate		Each Producer			Aggregate		Each Producer			Aggregate	
		$\begin{aligned} & \stackrel{-1}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \underset{\sim}{2} \\ & \stackrel{8}{6} \end{aligned}$		$\begin{aligned} & -1 \\ & \underline{0} \\ & \underline{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$					-1 0 0 0 0 0 0			$\begin{aligned} & \stackrel{-1}{2} \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{0}{2} \\ & 6 \end{aligned}$		$\begin{aligned} & -1 \\ & \underline{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hat{O} \\ & 0 \\ & 0 \end{aligned}$
N	MC	TC	$2 * \mathrm{~N}$	2* TC	N	MC	TC	$3 * N$	3*TC	N	MC	TC	4* N	4*TC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	2	2	1	2	2	3	6					
2	5	6	4	11						1	3	3	4	11
3	9	15	6	30	2	8	10	6	30					
4	16	31	8	62						2	12	15	8	62
5	24	55	10	111	3	18	28	9	84					
6	35	90	12	180	4	32	60	12	180	3	30	45	12	180
7	47	137	14	273	5	50	110	15	330					
8	60	197	16	394						4	54	99	16	394
9	76	273	18	546	6	72	182	18	546					
10	93	366	20	733						5	84	183	20	733
11	113	479	22	957	7	98	280	21	840					
12	133	612	24	1224	8	128	408	24	1224	6	123	306	24	1224
13	156	768	26	1536	9	162	570	27	1710					
14	180	948	28	1897						7	168	474	28	1897
15	207	1155	30	2310	10	200	770	30	2310					
16	235	1390	32	2779						8	221	695	32	2779
17	264	1654	34	3308	11	242	1012	33	3036					
18	296	1950	36	3900	12	288	1300	36	3900	9	280	975	36	3900
19	329	2279	38	4559	13	338	1638	39	4914					
20	365	2644	40	5287						10	347	1322	40	5287
21	401	3045	42	6090	14	392	2030	42	6090					
22	440	3485	44	6970						11	420	1742	44	6970
23	480	3965	46	7931	15	450	2480	45	7440					
24	523	4488	48	8976	16	512	2992	48	8976	12	502	2244	48	8976
25	567	5055	50	10109	17	578	3570	51	10710					
26	612	5667	52	11334						13	590	2834	52	11334
27	660	6327	54	12654	18	648	4218	54	12654					
28	709	7036	56	14073						14	684	3518	56	14073
29	761	7797	58	15593	19	722	4940	57	14820					
30	813	8610	60	17220	20	800	5740	60	17220	15	787	4305	60	17220

[^6]| 31 | 868 | 9478 | 62 | 18956 | 21 | 882 | 6622 | 63 | 19866 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 924 | 10402 | 64 | 20805 | | | | | | 16 | 896 | 5201 | 64 | 20805 |
| 33 | 983 | 11385 | 66 | 22770 | 22 | 968 | 7590 | | 22770 | | | | | |
| 34 | 1043 | 12428 | 68 | 24855 | | | | | | 17 | 1013 | 6214 | 68 | 24855 |
| 35 | 1104 | 13532 | 70 | 27064 | 23 | 1058 | 8648 | 69 | 25944 | | | | | |
| 36 | 1168 | 14700 | 72 | 29400 | 24 | 1152 | 9800 | 72 | 29400 | 18 | 1136 | 7350 | 72 | 29400 |
| 37 | 1233 | 15933 | 74 | 31867 | 25 | 1250 | 11050 | 75 | 33150 | | | | | |
| 38 | 1301 | 17234 | 76 | 34467 | | | | | | 19 | 1267 | 8617 | 76 | 34467 |
| 39 | 1369 | 18603 | 78 | 37206 | 26 | 1352 | 12402 | 78 | 37206 | | | | | |
| 40 | 1440 | 20043 | 80 | 40086 | | | | | | 20 | 1405 | 10022 | 80 | 40086 |
| 41 | 1512 | 21555 | 82 | 43111 | 27 | 1458 | 13860 | 81 | 41580 | | | | | |
| 42 | 1587 | 23142 | 84 | 46284 | 28 | 1568 | 15428 | | 46284 | 21 | 1549 | 11571 | 84 | 46284 |
| 43 | 1663 | 24805 | 86 | 49609 | 29 | 1682 | 17110 | 87 | 51330 | | | | | |
| 44 | 1740 | 26545 | 88 | 53090 | | | | | | 22 | 1702 | 13273 | 88 | 53090 |
| 45 | 1820 | 28365 | 90 | 56730 | 30 | 1800 | 18910 | | 56730 | | | | | |
| 46 | 1901 | 30266 | 92 | 60533 | | | | | | 23 | 1860 | 15133 | 92 | 60532 |
| 47 | 1985 | 32251 | 94 | 64501 | 31 | 1922 | 20832 | 93 | 62496 | | | | | |
| 48 | 2069 | 34320 | 96 | 68640 | 32 | 2048 | 22880 | 96 | 68640 | 24 | 2027 | 17160 | 96 | 68640 |

To help subjects focus on the decision task, we presented to our subjects costs that were rounded according to the following rounding rules:

- All numbers smaller than 100 were rounded to the nearest integer number.
- when a number was larger than 100 , it was rounded to the nearest 5 -fold
- when a number was larger than 1000 , it was rounded to the nearest 10 -fold
- when a number was larger than 10000 , it was rounded to the nearest 50 -fold

As a result these rounding rules, some of the aggregate total costs in Table 2 are different. The discrepancy is small however; on average of the absolute discrepancies is 0.12%. For the "rounded numbers" version of table 2, see table A1 in the Appendix.

The numbers we obtained after this rounding procedure were also the numbers we use to calculate the theoretical predictions. ${ }^{17}$

2.4 Theoretical Predictions and Hypotheses

With demand given and the cost function defined, the profit function is given by $\pi_{i, M S}=p\left[q_{i}+q_{-i}\right]\left(q_{i}-f_{i}\right)-c_{M S}\left[q_{i}\right]$ for each of the market sizes $M S \in[2,3,4]$, where the cost functions are defined as above by $c_{2}[y]=\frac{8 y^{3}}{27}+\frac{2 y^{2}}{3}+\frac{y}{3}, c_{3}(q)=\sum_{x=1}^{q} 2 x^{2}=\frac{2}{3} x^{3}+x^{2}+\frac{1}{3} x$, and

[^7]$C_{4}[y]=\frac{32}{27} y^{3}+\frac{4}{3} y^{2}+\frac{y}{3}$. We can now determine the Nash-equilibria for each of the treatments Table 3
shows the theoretical predictions for our treatments M2, M2F, M3, M3F, and M4. ${ }^{18}$

Table 3 shows the theoretical predictions. The prefix NE stands for Nash-equilibrium, Walras for the efficient solution, and JPM for Joint Profit Maximization (the monopoly solution). ${ }^{19}$

Table 3 Theor etical predictions electricity markets

	NE M2	NE 2F		NE M3	NE M 3F	NE M4	Walras $(\mathrm{n}=2)$	Walras $(\mathrm{n}=3)$	Walras $(\mathrm{n}=4)$	JPM $(\mathrm{n}=2)$	JPM $(\mathrm{n}=3)$	JPM $(\mathrm{n}=4)$
$\mathrm{q}_{\mathrm{ti}}^{\mathrm{f}}$	-	2	11	-	5	-	-	-	-	-	-	-
q_{ti}	20	20	22	$14 / 15^{20}$	15	11	$25 / 26^{21}$	17	13	16	11	8
q_{t}	40	40	44	43	45	44	51	51	52	32	33	32
p_{t}	920	920	812	839	785	812	623	623	596	1136	1109	1136
Prod. S.	31520	31520	28768	29537	27885	28768	21053	21063	19672	33572	33567	33572
Cons. S.	21060	21060	25542	24381	26730	25542	34425	34425	35802	13392	14256	13392
Total S.	52580	52580	54310	53918	54615	54310	55478	55488	55474	46964	47823	46964
Eff. (\%)	94.8	94.8	97.9	97.2	98.4	97.9	100	100	100	84.7	86.2	84.7

[^8]The theoretical predictions give us, for the particular parameterizations chosen, an indication of the effect on aggregate production and efficiency of introducing a forward market or adding one more competitor. For markets with three producers, both introducing a forward market and adding one more competitor increases aggregate production, but introducing a forward market increases aggregate production more. For markets with two producers, adding one more competitor increases aggregate production. Introducing a forward market increases aggregate production only if the higher Nashequilibrium is realized. In fact, aggregate production in that case is increased more than in the case of one more competitor. Using $\mathrm{q}(\mathrm{x})$ to denote aggregate production in market structure x^{22}, we thus conjecture that the remedies can be ranked as follows: $q(M 3 F)>q(M 4)>q(M 3)$. Likewise, both remedies also increase efficiency, but introducing a forward market again is predicted to increase efficiency the most. Using (x) to denote efficiency in market structure x , we thus conjecture that the remedies can be ranked as follows: $\quad(\mathrm{M} 3 \mathrm{~F})>\quad(\mathrm{M} 4)>\quad(\mathrm{M} 3)$.

For markets with two producers, both introducing a forward market and adding one more competitor increases aggregate production, but the existence of two Nash-equilibria makes it impossible to rank the remedies. We conjecture that the remedies can be ranked as follows: $q(M 2 F)$ > $q(M 2), q(M 3)>q(M 2)$, and $q(M 2 F)=q(M 3)$. Moreover, the theoretical results suggest that the effect of introducing a forward market is not as large as adding two more competitors; we thus conjecture $\mathrm{q}(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$. Both remedies also increase efficiency but again they cannot be ranked. We conjecture that: $(\mathrm{M} 2 \mathrm{~F})>(\mathrm{M} 2), \quad(\mathrm{M} 3)>(\mathrm{M} 2), \quad(\mathrm{M} 2 \mathrm{~F})=(\mathrm{M} 3)$, and $\quad(4)>\quad(\mathrm{M} 2 \mathrm{~F})$.

We also test for effects on production efficiency. As marginal costs are quadratic, production is fully efficient only if the aggregate production is evenly distributed over the producers. Like Brandts et al. (2008) we assume that more producers in a market should make it more difficult to achieve an even distribution, but that introducing a forward market should not have an effect. We thus conjecture $\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)<\Phi(\mathrm{M} 2), \Phi(\mathrm{M} 3 \mathrm{~F})=\Phi(\mathrm{M} 3)$, and $\Phi(\mathrm{M} 2 \mathrm{~F})=\Phi(\mathrm{M} 2)$. Table 4 summarizes our hypotheses.

Table 4: Hypotheses

H q.1 (Quantity)	$\mathrm{H} \Omega .1$ (Efficiency)	$\mathrm{H} \Phi .1$ (Production Efficiency)
$-\mathrm{q}(\mathrm{M} 3 \mathrm{~F})>\mathrm{q}(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 3)$	$-(\mathrm{M} 3 \mathrm{~F})>(\mathrm{M} 4)>(\mathrm{M} 3)$	$-\Phi(\mathrm{M} 3 \mathrm{~F})=\Phi(\mathrm{M} 3)$
		$-\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)$

[^9]| H q.2 (Quantity) | $\mathrm{H} \Omega .2$ (Efficiency) | $\mathrm{H} \Phi .2$ (Production Efficiency) |
| :--- | :--- | :--- |
| $-\mathrm{q}(\mathrm{M} 2 \mathrm{~F})>\mathrm{q}(\mathrm{M} 2)$ | $-\quad(\mathrm{M} 2 \mathrm{~F})>\quad(\mathrm{M} 2)$ | $-\Phi(\mathrm{M} 2 \mathrm{~F})=\Phi(\mathrm{M} 2)$ |
| $-\mathrm{q}(\mathrm{M} 3)>\mathrm{q}(\mathrm{M} 2)$ | $-\quad(\mathrm{M})>\quad(\mathrm{M} 2)$ | $-\Phi(\mathrm{M} 3)<\Phi(\mathrm{M} 2)$ |
| $-\mathrm{q}(\mathrm{M} 2 \mathrm{~F})=\mathrm{q}(\mathrm{M} 3)$ | $-\quad(\mathrm{M} 2 \mathrm{~F})=\quad(\mathrm{M} 3)$ | |

Hq.3 (Quantity)	$\mathrm{H} \Omega .3$ (Efficiency)	
$-\mathrm{q}(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$	$-\quad(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$	

2.5 Experimental procedures

The experimental sessions were conducted in October 2009, December 2009, and April 2010 in Prague at the Center of Economic Research and Graduate Education and Economic Institute (CERGEEI). ${ }^{23}$ Our subjects were students at the Charles University or at the University of Economics. A total of 198 students participated. The session with a forward market lasted about 2 hours, the sessions without a forward market lasted about 90 minutes. At the beginning of each session, the English instructions were read to the subjects by the experimenter (Van Koten).

The market simulation was programmed in Z-Tree (Fischbacher, 2007).The demand schedule was pre-programmed. Experimental participants took on the role of producers and sellers only. They were not shown the demand schedule but were given on screen, and as printout, a payoff -table.

In the treatments with a forward market every round has two periods, the first period for the forward market and the second period for the spot market. In the first period, producers decide how many units to produce and sell in the forward market. Producers sell units to traders. The units that producers sell are promises to produce and deliver units to traders in the second period (in the spot market). The units that are sold in the forward market are thus produced later, in the second period. To help producers see the effect of their actions on their profits, we communicate to them the cost of their selling decision in the forward market and the resulting profit.

In the forward market two pre-programmed traders compete in prices for the total number of units that are offered. (We do not present the existence of traders to our subjects, who act as producers in the experiment. Because traders act rational, their actions define a demand schedule, and we present this

[^10]schedule to our subjects $)^{24}$. The trader that offers the highest price per unit wins all units. When they offer the same price - which they do in equilibrium - a winner is drawn at random. As the preprogrammed traders are rational and compete in prices, they can predict the Nash-equilibrium spot price and offer this price for the units offered in the forward market. The pre-programmed traders do not observe the number of units offered by each producer, only the total number of units. They assume that each producer offers an equal number of units (or as equal as possible) in the forward market. Using this assumption, ${ }^{25}$ the traders predict, conditional on the total number of units offered in the forward market, q^{f}, the Nash-equilibrium total production in the spot market: $q^{N E}\left(q^{f}\right) .{ }^{26} B y$ substituting the predicted total production in the spot market in the demand schedule, the traders predict the Nash-equilibrium price in the spot market: $p\left(q^{N E}\left(q^{f}\right)\right)$. As traders offer the Nash-equilibrium price for all units, $p\left(q^{N E}\left(q^{f}\right)\right)$ defines the demand schedule in the forward market. This forward market demand schedule is presented to producers in the first period of each round, so they can use this information when deciding how many units to offer for the forward market. At the end of the period, all producers are paid the number of units they produced in the forward market times the price per unit minus the production cost. Appendix A3 shows, conditional on the total production in the forward market (stage A), the predicted aggregate production and price in the spot market.

In the second period of each round, producers decide how many units to produce and sell in the spot market. The pre-programmed traders sell all the units they bought. The price per unit is determenid by substituting the number of units sold by all producers in the forward and spot market together for Q in the demand schedule $p(Q)=\operatorname{Max}(0,2000-27 Q)$. All producers are paid the number of units they produced in the spot market times the price per unit minus the production cost.

3. Results

We have 11 statistically independent data points for all treatments (each data point below we call "a group" consisting of the aggregate of sellers in a particular treatment); since each participant took part in one experimental session, data points are also statistically independent across treatments. None of the participants went bankrupt. Each treatment consisted of 24 rounds. For our statistical tests, we use only the last 12 rounds of the data, as the experiment is complicated and, we know - for example, from relatively easy auction experiments - that subjects need several rounds of trading to become familiar

[^11]with the laboratory environment before they react to the embedded incentives (Hertwig and Ortmann, 2001). Following LeCoq and Orzen (2006), we test for disparity with the Nash-equilibrium predictions using two-sided Wilcoxon one-sample signed-rank tests (two-sided signed-rank tests), unless indicated otherwise. For comparison between the averages of the treatment in our experiment, we use, following Brandts et al. (2008), F-tests based on an OLS regression of the dependent variable on the 5 treatment dummies, M2, M2F, M3, M3F, and M4, without a constant (F-tests). The error terms are adjusted for clustered data by using the robust Huber/White/sandwich estimator (Froot, 1989). To compare three ordered inequalities, we also run, following Brandts et al. (2008), a Jonckheere test, which makes no distributional assumptions. In addition, we ran robustness tests using, as did LeCoq and Orzen (2006), Wilcoxon rank-sum tests (rank-sum tests). These tests confirmed most of the results presented here. The results of these tests may be found in Appendix A2.

3.1. Aggregate Quantity

Figure 1 shows the evolution of total (aggregate) quantities sold per period, averaged over treatment groups. Treatments with two traders are represented by circles, with three traders by triangles, and with four traders by squares. The treatments without forward markets are represented by open circles, triangles or squares, the treatments with forward markets by filled circles or triangles.

The volume in all treatments starts out rather low ${ }^{27}$ but trade volume moves quickly into the direction of the Nash-equilibrium. Between rounds 8 and 12 behavior has stabilized.

[^12]Figure 1 : A ggregate production

Table 5 shows the overall average aggregate production per treatment group, with the standard error in parenthesis. ${ }^{28}$ The row below gives the size of the observed aggregated quantity relative to the Nash-equilibrium prediction in percentages.

Table 5 Production aver ages in the last 12 rounds

	M2	M2F	M3	M3F	M4
Average production	39.3 (1.52)	46.3 (2.06)	44.2 (1.22)	49.6 (0.61)	46.2 (0.98)
\% of NE prediction	98.7\%	$116 \% / 105 \%{ }^{29}$	102.9\%	110.1\%	105.0\%
Number of observations	$\mathrm{N}=11$	$\mathrm{N}=11$	$\mathrm{N}=11$	$\mathrm{N}=11$	$\mathrm{N}=11$
\% of NE prediction - earlier studies ${ }^{30}$	93,2\%, LeCoq and Or ren (2006) 92,7\%, Huck et al. (2004)	$\begin{gathered} 93,8 \%, \text { LeC oq } \\ \text { and Orzen (2006) } \end{gathered}$	$\begin{aligned} & \text { 102.7\%, Huck et } \\ & \text { al. (2004) } \\ & 98.9 \%, \text { Brandts } \\ & \text { et al. (2008) } \end{aligned}$	$\begin{gathered} \text { 103.6\%, Brandts } \\ \text { et al. (2008) } \end{gathered}$	113.7\%, LeCoq and Orzen (2006) 102.8\%, Brandts et al. (2008) 102.9\%, Huck et al. (2004)

[^13]Notice that in the M2 and M2F conditions the standard error is relatively high. Of the treatments without forward markets, M2 and M3 are not significantly different from the Nash-equilibrium predictions (two-sided signed rank test, both p-values > 0.32), while M4 is significantly larger (pvalue $=0.068$). Of the treatments with a forward market, the production in M3F is significantly higher than the Nash-equilibrium (p -values $=0.004$) and production in M2F is significantly higher than the low Nash-equilibrium (p -value $=0.021$), but is not significantly different from the high Nashequilibrium (p-value $=0.248$).

Without a forward market, when the number of competitors is equal to two (three or four), production tends to be smaller (larger) than the Nash-equilibrium, which is in line with earlier findings (LeCoq and Orzen, 2006; Huck, Normann, and Oechssler, 2004). We see no evidence for long-lasting collusion; indeed the data suggest the opposite. A regression of aggregate production on the period of the experiment shows a significant upwards slope, suggesting that over time, as subjects become more experienced with the task, they become less likely to collude.

Table 6: Effects of one more competitor and forward market on quantities, Hq.1, Hq.2, and Hq. 3

	OLS regression, with correction for clustering on group level, followed by an one-sided F-test on equality of the coefficients			Jonckheere test
Hq. 1 - Markets with 3 producers	$\begin{aligned} & q(\mathrm{M} 3 F)> \\ & q(\mathrm{M} 3)^{* * *} \\ & (p<0.001) \end{aligned}$	$\begin{aligned} & \mathrm{q}(\mathrm{M} 4)> \\ & \mathrm{q}(\mathrm{M} 3) \\ & (\mathrm{p}=0.105) \end{aligned}$	$\begin{aligned} & q(\text { M 3F) > } \\ & q(\text { M 4)*** } \\ & (p=0.002) \end{aligned}$	$\mathrm{q}(\mathrm{M} 3 \mathrm{~F}) \geq \mathrm{q}(\mathrm{M} 4) \geq \mathrm{q}(\mathrm{M} 3),$ with at least one of the inequalities being strict p-value $=0.0000$
	$\mathrm{N}=792$	$\mathrm{N}=924$	$\mathrm{N}=924$	$\mathrm{N}=1320$

Hq. 2 - Markets with 2 producers	$q(M 2 F)>$ $q(M 2) * * *$ $(p=0.003)$	$q(M 3)>$ $q(M 2)^{* *}$ $(p=0.006)$	$q(M 2 F)=q(M 3)$ $(p=0.374)$	$q($ M2F $) \geq q(M 3) \geq q(M 2)$, with at least one of the inequalities being strict*** p-value $=0.0000$.
Number of observations	$\mathrm{N}=528$	$\mathrm{~N}=660$	$\mathrm{~N}=660$	$\mathrm{~N}=924$

Hq.3	$\mathrm{q}(\mathrm{M} 4)>$ $\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$ $(\mathrm{p}=0.521)$
	$\mathrm{N}=792$

Table 6 presents the test for our hypothesis using F-tests based on an OLS regression and Jonckheere tests. ${ }^{31}$

Results testing Hypothesis q.1: In markets with 3 competitors, introducing a forward market increases production, and the effect is stronger than adding one more competitor, $q(M 3 F)>$ $q(M 3)$, and $q(M 3 F)>q(M 4)$.

We find partial support for Hypothesis q.1:

- $q($ M3F $) \leq q(M 3)$ is REJECTED in favor of $q(M 3 F)>q(M 3), p-v a l u e<0.001$.
- $q(M 4) \leq q(M 3)$ is NOT rejected in favor of $\quad(M 4)>q(M 3), p$-value $=0.105$.
- $q($ M3F $) \leq q(M 4)$ is REJECTED in favor of $q(M 3 F)>q(M 4), p-v a l u e=0.002$.
- $q(M 3 F)=q(M 4)=q(M 3)$ is REJECTED in favor of $q(M 3 F) \geq q(M 4) \geq q(M 3)$, with at least one of the inequalities being strict.

Introducing a forward market increases aggregate production 12% in markets with three competitors $(q(M 3 F)>q(M 3), p-v a l u e<0.001)$. This confirms earlier findings such as in Brandts et al. (2008). Adding one more competitor in markets with three competitors increases aggregate production 4%, and this effect is barely significant, p -value $=0.105$). We find that introducing a forward market increases the aggregate production by 7% more than increasing competition by adding one more competitor, and this difference is strongly significant $(q(M 3 F)>q(M 4), p-v a l u e=0.002)$.

Results testing Hypothesis q.2: In markets with 2 competitors, both introducing a forward market and adding one more competitor increases production, and the strength of the effects are of the same order, $q\left(\begin{array}{l}\text { 2F }\end{array}\right)>q\left(\begin{array}{l}\text { 2 }\end{array}\right), q(M 3)>q(M 2)$, and $q(M 2 F)=q(M 3)$.

We find support for Hypothesis q.2:

- $q(M 2 F) \leq q(M 2)$ is REJECTED in favor of $q(M 2 F)>q(M 2)$, p-value $=0.003$.
- $q(\mathrm{M} 3) \leq q(\mathrm{M} 2)$ is REJECTED in favor of $\mathrm{q}(\mathrm{M} 3)>\mathrm{q}(\mathrm{M} 2)$, p -value $=0.006$.
- $q($ M2F $)=q(M 3)$ is NOT rejected in favor of $q(M 2 F) \neq q(M 3), p-$ value $=0.374$.
- $q(M 2 F)=q(M 3)=q(M 2)$ is REJECTED in favor of $q(M 2 F) \geq q(M 3) \geq q(M 2)$, with at least one of the inequalities being strict, p -value $=0.0000$.

[^14]In line with the theoretical predictions, introducing a forward market increases aggregate production with 18% in markets with two competitors and this increase is strongly significant ($\mathrm{q}(\mathrm{M} 2 \mathrm{~F}$) $>\mathrm{q}(\mathrm{M} 2)$, $\mathrm{p}-$ value $=0.003$). Adding one more competitor in markets with two competitors increases aggregate production with 12% and this increase is significant $(q(M 3)>q(M 2)$, p-value $=0.006)$. Introducing a forward market increases aggregate production with 5% more than adding one more competitor, but this effect is not significant $(\mathrm{q}(\mathrm{M} 2 \mathrm{~F})=\mathrm{q}(\mathrm{M} 2), \mathrm{p}$-value $=0.344)$. A Jonckheere test rejects q .1 in favor of $\mathrm{q}(\mathrm{M} 2 \mathrm{~F}) \geq \mathrm{q}(\mathrm{M} 3) \geq \mathrm{q}(\mathrm{M} 2), \mathrm{p}$-value $=0.0000)$, with at least one of the inequalities being strict.

Results testing Hypothesis q.3: Adding two more competitors does not increase production more than adding a forward market, $q(M 4) \leq q(M 2 F)$.

We find no support for Hypothesis q.3:

- $q(M 4) \leq q(M 2 F)$ is NOT rejected in favor of $q(M 4)<q(M 2 F), p-$ value $=0.521$.

Doubling the number of competitors does not increase production significantly more than introducing a forward market. This is in contrast with the theoretical predictions. Our data rather indicate the opposite ordering; $\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$ is 4% higher than $\mathrm{q}(\mathrm{M} 4)$. This is surprising as LeCoq and Orzen (2006) found that the production of two competitors with forward market is strictly lower than that of four competitors without a forward market. ${ }^{32}$

3.2. Efficiency

We define efficiency, following Brandts et al. (2008), as the joint consumer and producer surplus realized in the experiment divided by the maximum joint consumer and producer surplus (the Walrasian level of joint surplus). For the markets with a forward market, these measures are based on the outcomes in the forward and spot market together. Figure 2 show the evolution of efficiency per period, averaged over groups. Efficiency quickly converges and after period 8 its level is equal or higher than 90% for all treatments except M2. The highest efficiency levels in the last twelve periods are realized by treatments with forward markets, M2F and M3F. ${ }^{33}$

Figure 2: Efficiency percentages

[^15]

Table 7 shows the observed average efficiency level in the last 12 rounds, with the standard error in parenthesis. The row below gives the level of the observed average efficiency level relative to the Nash-equilibrium prediction in percentages. The efficiency levels are close to the Nash-equilibrium prediction; efficiency is significantly lower in M2 (p -value <0.068) and higher in M2F (p -value $=0.083$ in the low and 0.790 in the high Nash-equilibrium). This is mostly in line with earlier findings such as in Brandts et al. (2008).

Table 7 Efficiency aver ages in the last 12 rounds

	M2	M2F	M3	M3F	M4
Average efficiency as \% of Walras	$92.0(1.71)$	$95.5(1.73)$	$95.6(0.77)$	$98.7(0.32)$	$96.1(0.57)$
$\%$ of NE prediction	97.2%	$97.5 \% / 100.7 \%^{34}$	98.3%	100.5%	98.6%
$\%$ of NE prediction -	$\mathrm{N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$
\% earlier studies ${ }^{35}$	92.5%, LeCoq and Orzen (2006)	$93,6 \%$, LeCoq and Orzen (2006)	94.2%, Brandts et al. (2008)	96.7%, Brandts et al. (2008)	95.4%, Brandts et al. (2008) 109.3%, LeCoq and Orzen (2006)

Error! Not a valid bookmark self-reference. presents the results of the F-tests and Jonckheere test. ${ }^{36}$ Aggregate production in the market is the most important determinant of efficiency, as production inefficiency only has a minor influence. The results of the tests of hypotheses regarding efficiency thus closely follow those regarding aggregate production.

[^16]Table 8: Effects of one more competitor and forward market on efficiency, $H \Omega .1, H \Omega .2$ and $H \Omega .3$

	OLS regression, with correction for clustering on group level, followed by an one-sided F-test on equality of the coefficients			Jonckheere test
H . 1 - Markets with 3 producers	$\begin{aligned} & \Omega(\mathrm{M} 3 \mathrm{~F})> \\ & \Omega(\mathrm{M} 3)^{* * *} \\ & (\mathrm{p}<0.001) \end{aligned}$	$\begin{gathered} (\mathrm{M} 4)> \\ (\mathrm{M} 3) \\ (\mathrm{p}=0.293) \end{gathered}$	$\begin{aligned} & \Omega(\text { M 3F })> \\ & \Omega(\text { (} 4)^{* * *} \\ & (p<0.001) \end{aligned}$	$\Omega($ M 3F $) \geq \Omega($ M 4$) \geq \Omega$ (M 3), with at least one of the inequalities being strict p -value <0.001.
Number of observations	$\mathrm{N}=792$	$\mathrm{N}=924$	$N=924$	$N=1320$

H . 2 - Markets with 2 producers	$\begin{aligned} & \Omega(\mathrm{M} 2 \mathrm{~F})> \\ & \Omega(\mathrm{M} 2)^{*} \\ & (\mathrm{p}=0.075) \end{aligned}$	$\begin{aligned} & \Omega(\mathrm{M} 3)> \\ & \Omega(\mathrm{M} 2)^{* *} \\ & (\mathrm{p}=0.026) \end{aligned}$	$\begin{gathered} (\mathrm{M} 2 \mathrm{~F})=\quad(\mathrm{M} 3) \\ (\mathrm{p}=0.927) \end{gathered}$	$\Omega($ M $2 F) \geq \Omega($ M 3$) \geq \Omega$ (M 2), with at least one of the inequalities being strict*** p -value <0.001.
Number of observations	$N=528$	$N=660$	$\mathrm{N}=660$	$\mathrm{N}=924$

H .3	(M4) > (M2F) $(\mathrm{p}=0.351)$
Number of observations	$\mathrm{N}=792$

Results testing Hypothesis $\Omega .1$: In markets with 3 competitors, introducing a forward market increases efficiency, and the effect is stronger than addion one more competitor, Ω (M3F) $>\Omega$ (M 4), and Ω (M 3F) $>\Omega$ (M3).

We find partial support for Hypothesis .1:

- $\quad(\mathrm{M} 3 \mathrm{~F}) \leq(\mathrm{M} 3)$ is REJECTED in favor of $\quad(\mathrm{M} 3 \mathrm{~F})>\quad(\mathrm{M} 3)$, p-value<0.001.
- $\quad(\mathrm{M} 4) \leq(\mathrm{M} 3)$ is NOT rejected in favor of $\quad(\mathrm{M} 4)>\quad(\mathrm{M} 3), \mathrm{p}$-value $=0.293$.
- $\quad(\mathrm{M} 3 \mathrm{~F}) \leq(\mathrm{M} 4)$ is REJECTED in favor of $\quad(\mathrm{M} 3 \mathrm{~F})>\quad(\mathrm{M} 4), \mathrm{p}$-value<0.001.
- $\quad(\mathrm{M} 3 \mathrm{~F})=(\mathrm{M} 4)=(\mathrm{M} 3)$ is REJECTED in favor of $\quad(\mathrm{M} 3 \mathrm{~F}) \geq(\mathrm{M} 4) \geq \quad$ (M3), with at least one of the inequalities being strict, p -value <0.001.

Introducing a forward market in a market with three producers increases efficiency with 3.1% and this is strongly significant $\quad(\mathrm{M} 3 \mathrm{~F})>\quad(\mathrm{M} 3), \mathrm{p}$-value $<0.001)$. Adding one more competitor increases efficiency with a mere 0.5%, and this is not significant (NOT (M4) > (M3), p-value $=0.293$). The increase in efficiency from introducing a forward market is larger than that from adding one more competitor, and that effect is strongly significant ($\quad(\mathrm{M} 3 \mathrm{~F})>\quad(\mathrm{M} 4)$, p -value <0.001).

Results testing H ypothesis $\Omega .2$: In markets with 2 competitors, both introducing a forward market and adding one more competitor increases efficiency, and the strength of the effects are of the same order, $\Omega\left(\begin{array}{l}\text { 2F }\end{array}\right)>\Omega(\mathrm{M} 2), \Omega(\mathrm{M} 2 F)>\Omega(\mathrm{M} 2), \Omega(\mathrm{M} 2 \mathrm{~F})>\Omega(\mathrm{M} 3)$.

We find support for Hypothesis .2:

- $\quad(\mathrm{M} 2 \mathrm{~F}) \leq(\mathrm{M} 2)$ is REJECTED in favor of $\quad(\mathrm{M} 2 \mathrm{~F})>\quad(\mathrm{M} 2)$, p-value $=0.075$.
- $\quad(\mathrm{M} 3) \leq(\mathrm{M} 2)$ is REJECTED in favor of $(\mathrm{M} 3)>\quad(\mathrm{M} 2), \mathrm{p}$-value $=0.026$.
- $\quad(\mathrm{M} 2 \mathrm{~F})=(\mathrm{M} 3)$ is NOT rejected in favor of $\quad(\mathrm{M} 2 \mathrm{~F}) \neq(\mathrm{M} 3), \mathrm{p}$-value $=0.927$.
$(\mathrm{M} 2 \mathrm{~F})=(\mathrm{M} 3)=(\mathrm{M} 2)$ is REJECTED in favor of $\quad(\mathrm{M} 2 \mathrm{~F}) \geq \quad(\mathrm{M} 3) \geq \quad(\mathrm{M} 2)$, with at least one of the inequalities being strict, p -value <0.001.

Introducing a forward market increases efficiency with 3.5% and this is significant ((M2F) > (M3), p-value $=0.075$). Adding one more competitor increases efficiency with 1.1% and this is also significant $(\quad(M 3)>\quad(M 2), p$-value $=0.026)$. The increase in efficiency due to the introduction of a forward market is not significantly larger than that due to adding one more competitor (NOT ((M3F) $\neq(\mathrm{M} 4), \mathrm{p}$-value $=0.927$) .

Results testing Hypothesis $\Omega .3$: Adding two more competitors does not increase efficiency more than introducing a forward market, $\Omega(\mathrm{M} 2 \mathrm{~F}) \leq \Omega(\mathrm{M} 4)$.

We find no support for Hypothesis .3:
$(\mathrm{M} 4) \leq(\mathrm{M} 2 \mathrm{~F})$ is NOT rejected in favor of $\quad(\mathrm{M} 4)>(\mathrm{M} 2 \mathrm{~F}), \mathrm{p}$-value $=0.351$.
The effect of introducing a forward market with two competitors does not increase efficiently significantly less than doubling the number of competitors.

3.3. Production Efficiency

We define production efficiency, following Brandts et al. (2008), as the actual producer surplus divided by the producer surplus had production taken place in the most efficient manner. ${ }^{37}$ Figure 2 show the evolution of efficiency per period, averaged over groups. Efficiency quickly converges and after period 8 its level is mostly equal or higher than 90% for all treatments.

The treatments with 2 traders are represented by circles, with 3 traders by triangles, and with 4 traders by squares. The treatments without forward markets are represented by open rounds, triangles or squares, the treatments with forward markets by filled rounds or triangles. M3 is clearly lower than

[^17]M 2 , and M 2 F is most of the time in the middle. M4 is clearly lower than M3 and M3F, while there is no visible difference between M3 and M3F.

Figure 3: Production Efficiency

Table 9 shows the overall average of production efficiency in the last 12 rounds, with the standard error in parenthesis. The row below gives the size of the observed aggregated quantity relative to the Nash-equilibrium prediction in percentages.

Table 9 Production efficiency aver ages in the last 12 rounds

	M2	M2F	M3	M3F	M4
Average Production Efficiency	99.0	97.5	97.6	98.0	95.4
	(0.35)	(0.81)	(0.59)	(0.69)	(1.63)
Number of observations	$\mathrm{N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$	$\mathrm{~N}=11$

Table 10 Effects of one more competitor and forward market on productive efficiency, HФ.1 and HФ. 2

	OLS regression, with correction for clustering on group level, followed by a one-sided F test	
НФ. 1 - Markets with 3 producers	$\begin{aligned} & \Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)^{*} \\ & (\mathrm{p}=0.093) \end{aligned}$	$\begin{aligned} & \Phi(\mathrm{M} 3 \mathrm{~F})<\Phi(\mathrm{M} 3) \\ & (\mathrm{p}=0.666) \end{aligned}$
Number of observations	$\mathrm{N}=1001$	$\mathrm{N}=858$
НФ.2- Markets with 2 producers	$\begin{aligned} & \Phi(\mathrm{M} 3)<\Phi(\mathrm{M} 2)^{* *} \\ & (p=0.019) \end{aligned}$	$\begin{aligned} & \Phi(\mathrm{M} 2 F)<\Phi(\mathrm{M} 2)^{* *} \\ & (\mathrm{p}=0.046) \end{aligned}$
Number of observations	$\mathrm{N}=715$	$\mathrm{N}=572$

Table 10 presents the test for our hypothesis using F-tests based on an OLS regression and Jonckheere tests. ${ }^{38}$

[^18]Results testing Hypothesis ©.1: In markets with 3 competitors, introducing a forward market does not decrease productive efficiency, while adding one more competitor does, Φ (M 4) < Φ (M 3) and $\Phi(\mathrm{M} 3 F) \geq \Phi(\mathrm{M} 3)$.

We find support for Hypothesis $\Phi .1$:

- $\Phi(\mathrm{M} 4) \geq \Phi(\mathrm{M} 3)$ is REJECTED in favor of $\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)$, p-value $=0.093$.
- $\Phi(\mathrm{M} 3 \mathrm{~F}) \geq \Phi(\mathrm{M} 3)$ is NOT rejected in favor of $\Phi(\mathrm{M} 3 \mathrm{~F})<\Phi(\mathrm{M} 3), \mathrm{p}$-value $=0.666$.

Adding one more competitor to M3 decreases the production efficiency with 2.4%, and this decrease is significant $(\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)$, p-value=0.093). Introducing a forward market does not lower production efficiency; the data rather suggest the opposite as efficiency is higher in the market with a forward market than in the market without one (though not significantly so).

Results testing Hypothesis Φ. 2: In markets with 2 competitors, introducing a forward market and adding one more competitor decrease productive efficiency, $\Phi(2 F)<\Phi(M 2)$, and $\Phi(3 F)<$ Ф(M3)

We find support for Hypothesis $\Phi .2$:

- $\Phi(\mathrm{M} 3) \geq \Phi(\mathrm{M} 2)$ is REJECTED in favor of $\Phi(\mathrm{M} 3)<\Phi(\mathrm{M} 2)$, p -value $=0.019$.
- $\Phi(\mathrm{M} 2 \mathrm{~F}) \geq \Phi(\mathrm{M} 2)$ is REJECTED in favor of $\Phi(\mathrm{M} 2 \mathrm{~F})<\Phi(\mathrm{M} 2), \mathrm{p}$-value $=0.046$.

Adding one more competitor to M2 decreases production efficiency with 1.4%. ${ }^{39}$ Introducing a forward market to a market decreases production efficiency with 1.5%. Both decreases are significant.

3.4 R ationality in the forward market

Using the assumption of rational behavior, Allaz and Villa (1993) derived that the forward price will be equal to the spot price. We indeed see this in our data for the treatments with a forward market: M2F and M3F. We estimated the relative markup of the spot market over the forward market price, defined by the difference between the two, divided by the average price: $P_{S-F}=\frac{P_{S}-P_{F}}{\frac{1}{2}\left(P_{S}+P_{F}\right)}$. The average of $\mathrm{P}_{\mathrm{S}-\mathrm{F}}$ over the last 12 rounds is 0.001 , which is not significantly larger than zero ($\mathrm{p}<0.97$). This indicates that traders are making an insignificantly small profit. The total number of units producers sell on the forward market thus accurately predicts the total number of units they sell on the spot market, which indicates rational behavior.

[^19]
3.5 Summary of results and comparison to earlier experiments

Table 11 summarizes our theoretical and experimental results for the aggregate production, together with the key results of earlier experiments. We do not summarize the data on efficiency and productive inefficiency because the data on efficiency closely follow the patterns of the data on aggregate production, while the effect of productive inefficiency is small and inconsequential (see section 3.3).

Table 11 Comparison of our results with those of earlier studies

		Theoretical predictions in our study	Results of earlier studies	Our study
Market with 2 competitors	One more competitor	+ 7.5\%	-	+12.1\% **
	FM	- Same (low Nashequilibrium) - $+10 \%$ (high Nashequilibrium)	$\begin{aligned} & +20.9 \% \text { *** } \\ & \text { (LeCoq\&Orzen, 2006) } \end{aligned}$	+ 17.8% ***
	Largest increase by	- One more Competitor: 7.5\% higher than FM (low Nashequilibrium) - Forward M arket: 2.3\% higher than OMC (high Nashequilibrium)	-	Forward M arket: 4.7\% higher than OMC (not significant)

Market with 3 competitors	One more competitor	+2.3\%	$\begin{aligned} & +19.6 \% * * * \\ & \text { (Brandts et al., } 2008 \text {) } \end{aligned}$	$\begin{aligned} & +4.4 \% \\ & \text { (not significant) } \end{aligned}$
	FM	+4.7\%	$\begin{aligned} & +9.5 \% \text { ** } \\ & \text { (Brandts et al., } 2008 \text {) } \end{aligned}$	+ 12.0% ***
	L argest increase by	Forward M arket: 2.3\% higher than One more competitor	One more Competitor: 9.2\% higher than $\mathrm{FM}^{* *}$ (Brandts et al., 2008)	Forward M arket: 7.3\% higher than OMC

Results contrast with earlier results
Results contradict earlier results

Our results show that in markets with three competitors, in line with our theoretical prediction and earlier experimental results (Brandts et al., 2008), introducing a forward market significantly increases aggregate production. Introducing a forward market increases aggregate production significantly more
than adding one more competitor, which is in line with our theoretical prediction, but contradicts the findings of Brandts et al. (2008) (the contradictory findings are indicated by the red background in Table 11). In line with our theoretical prediction, adding one more competitor increases aggregate production. The increase is, however, not significant, which is in contrast with the findings of Brandts et al. (2008). The lack of significance is likely caused by the relatively small number of observations.

In markets with two competitors, in line with earlier experimental results (LeCoq and Orzen, 2006), introducing a forward market significantly increases aggregate production. Our data suggest that this increase is larger than that of adding one more competitor: The difference is not significant but has a marginal significance in our robustness test. The lack of significance is also likely caused by the relatively small number of observations.

4. Conclusion

We have tried to better understand the comparative advantages of structural remedies and behavioral remedies of deregulation in electricity markets. We investigate theoretically and experimentally the effects of the introduction of a forward market on competition in electricity markets. We compared this scenario with the best alternative, reducing concentration by adding one more competitor by divestiture. Our work contributes to the literature by introducing the more realistic cost configurations of steeply increasing marginal costs, teasing apart competition and asset effect, and studying numbers of competitors that reflect better the market concentration in the European states.

Our experimental results suggest not only that the behavioral remedy of introducing a forward market in concentrated markets with two or three competitors is an effective remedy for increasing the aggregate supply, but also that this effect is larger than that of the structural remedy of adding one more competitor by divestment. This is a policy relevant discovery: competition authorities should, in line with the EU law rather focus on the behavioral remedy of introducing a forward market than on the structural remedy of lowering market concentration by divestiture.

At present, the EU has no single policy towards the design of forward markets for electricity. Such a policy might improve on the effectiveness of forward markets in the EU, as design is an important factor for the thickness of forward markets in EU countries (European Commission, 2007a, p.127). In Spain, for example, forward trading is de facto forbidden by design (European Commission, 2007a, p.127). In Greece forward trading has been made virtually impossible by design, as it has made trading in the pool mandatory (European Commission, 2007b, p.50). In contrast, in France the PowerNext exchange market allows for the trading of forward and future contracts of months, quarters, and years
ahead. Our study indicates that the design or evolution of such public forward exchanges as in France (and many other developed markets) should be encouraged, especially as the public observabillity of forward position is essential for the competition-increasing effect of Allaz and Villa (1993) to arise (Hughes and Jennifer, 1997).

Our results contradict the findings of Brandts et al. (2008). Brandts et al. (2008), who found a stronger effect for the structural remedy of adding one more competitor than for the behavioral remedy of introducing a forward market. Their result stems most likely from the confound of competition effect and asset effect. In Brandts et al. (2008) adding one more competitor not only increases competition, but also increases the aggregate asset base, which reduces the aggregate cost and thus gives an extra incentive to increase production. This asset effect is likely influential, as producers have steeply increasing costs. The welfare effects Brandts et al. (2008) reports are not conclusive, however, as they do not incorporate the costs of the increase in the asset base (the cost of building extra production plants). In our study we control for the asset effect by adding one more competitor by divestiture. As a result the effect of the structural remedy of adding one more competitor has is weaker and is now dominated by the effect of the behavioral remedy of introducing a forward market

5. References

Allaz, B. and Vila, J.-L. (1993). Cournot competition, forward markets and efficiency. Journal of Economic Theory, vol. 59(1), pp. 1-16.

Binmore, K. (2007). Playing for real. A Text on Game Theory. Oxford: Oxford University Press.
Borenstein, S. and Bushnell, J. (1999). An empirical analysis of the potential for market power in california's electricity market. Journal of Industrial Economics, vol. 47(3), pp. 285-323.

Brandts, J., Pezanis-Christou, P., and Schram, A. (2008). Competition with forward contracts: a laboratory analysis motivated by electricity market design. The Economic Journal, 118 (January), pp. 192-214.

Bushnell, J (2007). Oligopoly equilibria in electricity contract markets. Journal of Regulatory Economics, vol. 32(3), pp. 225-245.

Devetag, G., Ortmann, A. (2007). When and Why? A Critical Review of Coordination Failure in the Laboratory, Experimental Economics, vol. 10(3), pp. 331-344.

European Commission, 2006a. Council Regulation (EC) No 1/2003 of 16 December 2002 on the implementation of the rules on competition laid down in Articles 81 and 82 of the Treaty, Brussels: European Commision, OJ 2003R0001— EN— 18.10.2006.

European Commission, 2006b. Roundtable on remedies and sanctions in abuse of dominance cases, Brussels: European Commision, DAF/COMP/WD(2006)34.

European Commission (2007a). DG Competition report on energy sector inquiry.
European Commission (2007b). Prospects for the internal gas and electricity market.
European Commission (2008). Update of the nuclear illustrative programme in the context of the second strategic energy review.

Fischbacher, U. (2007). Z-Tree: Zurich Toolbox for Ready-made Economic Experiments, Experimental Economics, vol. 10(2), pp. 171-178.
Green, R. (1996). Increasing competition in the Brittish electricity spot market, The journal of Industrial economics, vol. 44(2), pp. 205-216.

Green, R. (2004). Did English generators play Cournot? Capacity withholding in the electricity pool. Working Papers 0410, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
Green, R. (2006). Market power mitigation in the UK power market, Utilities Policy 14, pp.76-89. Hertwig, R., Ortmann, A. 2001. Experimental practices in economics: A methodological challenge for psychologists? Behavioral and Brain Sciences 24, pp. 383-451.

Huck, S., Normann, H.-T. and Oechssler, J. (2004). Two are few and four are many: number effects in experimental oligopoly, Journal of Economic Behavior and Organization, vol. 53(4), pp. 435-46.
Hughes, J.S., Jennifer, L.K. (1997). Strategic forward contracting and observability, International Journal of Industrial Organization 16, pp. 121-133.
Klemperer, P.D., Meyer, M.A. (1989). Supply Function Equilibria in Oligopoly under Uncertainty, Econometrica, vol. 57(6), pp. 1243-1277.

LeCoq, C. and Orzen, H. (2006). Do forward markets enhance competition? Experimental evidence, Journal of Economic Behavior and Organization, vol. 61(3), pp. 415-31.
Lévêque, F. (2006). Antitrust enforcement in the electricity and gas industries: problems and solutions for the EU. The Electricity Journal, vol.19(5), pp. 27-34.

Mahenc, P., Salanié, F. (2005). Softening competition through forward trading, Journal of Economic Theory 116, pp. 282-293.

Matthes, F.C, Grashof, K., Gores, S. (2007). Power generation market concentration in Europe 19962005. An empirical analysis. Öko-Institut e.V. Available at www.oeko.de.

Liski, M. Montero, J-P. (2006). Forward trading and collusion in oligopoly, Journal of Economic Theory 131, pp 212 - 230.

Newbery, D. (2002). Predicting market power in wholesale electricity markets, EUI-RSCAS Working Papers 3, European University Institute, Robert Schuman Centre of Advanced Studies.

Newbery, D. (2002). Problems of liberalising the electricity industry, European Economic Review, vol. 46(4-5), pp. 919-27.
Van Koten and Ortmann, The unbundling regime for electricity utilities in the EU: A case of legislative and regulatory capture?, Energy Economics, vol. 30(6), pp. 3128-3140.

Willems, B. (2002). Modeling Cournot competition in an electricity market with transmission constraints. The Energy Journal, vol. 23(3).
Willems, B. (2006). Virtual divestitures, will they make a difference. Available at www.bertwillems.com.

Willems, B., Rumiantseva, I., and Weigt, H. (2009). Cournot versus supply functions: what does the data tell us? Energy Economics, vol. 31(1), pp. 38-47.

Wolak, F.A. and Patrick, R.H. (2001). The impact of market rules and market structure on the price determination process in the England and Wales electricity market. NBER Working Papers 8248, National Bureau of Economic Research.

6. Appendix

A1. Production costs

Table 12: Overview of aggregate cost of producing (rounded numbers)

M arket with two producers (original market)					$\begin{aligned} & \text { M arket with three } \\ & \text { producers } \\ & \text { (after first divestment) } \end{aligned}$					M arket with four producers (after second divestment)				
Each Producer			Aggregate		Each Producer			Aggregate		Each Producer			Aggregate	
		$\begin{aligned} & \text { H } \\ & \frac{\overrightarrow{B E}}{2} \\ & \frac{8}{6} \\ & \frac{0}{6} \end{aligned}$		$\begin{aligned} & \text { - } \\ & \frac{0}{0} \\ & \hat{0} \\ & \stackrel{o}{d} \end{aligned}$			$\begin{aligned} & \text { H } \\ & \frac{\square}{2} \\ & \frac{0}{2} \\ & \frac{8}{6} \end{aligned}$					$\begin{aligned} & \frac{3}{\square} \\ & \frac{\ddot{B}}{2} \\ & \frac{8}{6} \end{aligned}$		-1 $\underline{0}$ 0 0 0 0
N	MC	TC	2*N	2* TC	N	MC	TC	3*N	3*TC	N	MC	TC	4* N	4*TC
0	0	0	0	0	0	0	0	0		0	0		0	0
1	1	1	2	2	1	2	2	3	6					
2	5	6	4	12						1	3		4	12
3	9	15	6	30	2	8	10	6	30					
4	16	31	8	62						2	12	15	8	60
5	24	55	10	110	3	18	28	-	84					
6	35	90	12	180	4	32	60	12	180	3	30	45	12	180
7	45	135	14	270	5	50	110	15	330					
8	60	195	16	390						4	55	100	16	400
9	80	275	18	550	,	70	180	18	540					
10	90	365	20	730						5	85	185	20	740
11	115	480	22	960	7	100	280	21	840					
12	130	610	24	1220	8	130	410	24	1230	6	120	305	24	1220
13	160	770	26	1540	9									
14	180	950	28	1900		160	570	27	1710	7	170	475	28	1900
15	210	1160	30	2320	10	200	770	30	2310					
16	230	1390	32	2780						8	220	695	32	2780
17	260	1650	34	3300	11	240	1010	33	3030					
18	300	1950	36	3900	12	290	1300	36	3900	9	280	975	36	3900
19	330	2280	38	4560	13	340	1640	39	4920					
20	360	2640	40	5280						10	345	1320	40	5280
21	410	3050	42	6100	14	390	2030	42	6090					
22	430	3480	44	6960						11	420	1740	44	6960
23	490	3970	46	7940	15	450	2480	45	7440					
24	520	4490	48	8980	16	510	2990	48	8970	12	500	2240	48	8960
25	560	5050	50	10100	17	580	3570	51	10710					
26	620	5670	52	11340						13	590	2830	52	11320
27	660	6330	54	12660	18	650	4220		12660					
28	710	7040	56	14080						14	690	3520	56	14080
29	760	7800	58	15600	19	720	4940	57	14820					
30	810	8610	60	17220	20	800	5740		17220	15	790	4310	60	17240
31	870	9480	62	18960	21	880	6620	63	19860					
32	920	10400	64	20800						16	890	5200	64	20800
33	1000	11400	66	22800	22	970	7590		22770					
34	1050	12450	68	24900						17	1010	6210	68	24840

35	1100	13550	70	27100	23	1060	8650	69	25950					
36	1150	14700	72	29400	24	1150	9800	72	29400	18	1140	7350	72	29400
37	1230	15930	74	31860	25	1250	11050	75	33150					
38	1320	17250	76	34500						19	1270	8620	76	34480
39	1350	18600	78	37200	26	1350	12400	78	37200					
40	1450	20050	80	40100						20	1380	10000	80	40000
41	1500	21550	82	43100	27	1450	13850	81	41550					
42	1600	23150	84	46300	28	1600	15450	84	46350	21	1550	11550	84	46200
43	1650	24800	86	49600	29	1650	17100	87	51300					
44	1750	26550	88	53100						22	1700	13250	88	53000
45	1800	28350	90	56700	30	1800	18900		56700					
46	1900	30250	92	60500						23	1900	15150	92	60600
47	2000	32250	94	64500	31	1950	20850	93	62550					
48	2050	34300	96	68600	32	2050	22900	96	68700	24	2000	17150	96	68600

A 2. R obustness tests

A 2.1 Alternate statistical tests

As robustness tests, we ran one-sided Wilcoxon rank-sum tests, as in LeCoq and Orzen (2006), for our hypotheses on quantity, efficiency and productive efficiency.

Table 13 shows the result of the robustness tests on quantity. Overall they confirm our findings in the main test with two exceptions. The relationship $q(M 4)>q(M 3)$ is not significant anymore (p value $=0.154)$, but barely so. The relationship $q(M 2 F)>q(M 3)$ has a lower p-value and thus is significant $(p-$ value $=0.086)$.

Table 13: Test results quantity hypotheses

	One-sided two-sample Wilcoxon rank-sum (Mann-Whitney) test		
Hq. 1 - Markets with 3 producers	$\begin{aligned} & q(\text { M 3F })>q(\text { M 3 })^{* * *} \\ & (p<0.001) \end{aligned}$	$\begin{aligned} & \mathrm{q}(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 3) \\ & (\mathrm{p}=0.154) \end{aligned}$	$\begin{aligned} & q(\text { M 3F })>q(\text { M 4)*** } \\ & (p=0.010) \end{aligned}$
	$\mathrm{N}=22$	$\mathrm{N}=22$	$\mathrm{N}=22$

Hq.2 - Markets with 2 producers	$q(\mathrm{M} 2 \mathrm{~F})>q(\mathrm{M} 2)^{* *}$ $(p=0.01275$ $)$	$q(\mathrm{M} 3)>q(\mathrm{M} 2)^{* *}$ $(p=0.012)$	$q(\mathrm{M} 2 F)>q(\mathrm{M} 3)^{*}$ $(p=0.070)$
Number of observations	$\mathrm{N}=22$	$\mathrm{~N}=22$	$\mathrm{~N}=22$

Hq.3	$\mathrm{q}(\mathrm{M} 4)>\mathrm{q}(\mathrm{M} 2 \mathrm{~F})$ $(\mathrm{p}=0.794)$
	$\mathrm{N}=22$

Table 14 shows the result of the robustness tests on efficiency. Overall they confirm our findings in the main test; all relationships have the same levels of significance $(0.1,0.05$, or 0.01$)$ as in the main test..

Table 14: Test results for $H \Omega .1, H \Omega .2$ and $H \Omega .3$

	One-sided two-sample Wilcoxon rank-sum (Mann-Whitney) test		
H . 1 - Markets with 3 producers	$\begin{aligned} & \Omega(\mathrm{M} 3 \mathrm{~F})> \\ & \Omega(\mathrm{M} 3)^{* * *} \\ & (\mathrm{p}=0.002) \end{aligned}$	$\begin{array}{ll} (\mathrm{M} 4)> \\ (\mathrm{p}= \end{array}$	$\begin{aligned} & \Omega(\text { M 3F })> \\ & \Omega(\text { M } 4)^{* * *} \\ & (p<0.001) \end{aligned}$

		0.311 $)$	
Number of observations	$\mathrm{N}=22$	$\mathrm{~N}=22$	$\mathrm{~N}=22$

H . 2 - Markets with 2 producers	$\Omega(\mathrm{M} 2 \mathrm{~F})>\Omega(\mathrm{M} 2)^{*}$ $(\mathrm{p}=0.079)$	$\Omega(\mathrm{M} 3)>\Omega(\mathrm{M} 2)^{* *}$ $(\mathrm{p}=0.039)$	$(\mathrm{M} 2 \mathrm{~F})>\quad$ (M3) $(\mathrm{p}=$ 0.7251 $)$
			$\mathrm{N}=22$
Number of observations	$\mathrm{N}=22$	$\mathrm{~N}=22$	$\mathrm{~N}=22$

H .3	$(\mathrm{M} 4)>$ $(\mathrm{p}=0.603)$$\quad(\mathrm{M} 2 \mathrm{~F})$
Number of observations	$\mathrm{N}=22$

Table 15 shows the result of the robustness tests on production efficiency. Overall they confirm our findings in the main test with one exception: The relationship $\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)^{*}$ has a slightly higher pvalue and thus is no longer significant $(p$-value $=0.100)$, but barely so.

Table 15 Test results for $\mathrm{H} \Phi .1$ and $\mathrm{H} \Phi .2$

	One-sided two-sample Wilcoxon rank-sum $($ Mann-Whitney) test	
HФ.1 - Markets with 3 producers	$\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)$ $(\mathrm{p}=0.100)$	$\Phi(\mathrm{M} 3 \mathrm{~F})<\Phi(\mathrm{M} 3)$ $(\mathrm{p}=0.859)$
Number of observations	$\mathrm{N}=22$	$\mathrm{~N}=22$
HФ.2- Markets with 2 producers	$\Phi(\mathrm{M} 3)<\Phi(\mathrm{M} 2)^{* *}$ $(\mathrm{p}=0.041)$	$\Phi(\mathrm{M} 2 \mathrm{~F})<\Phi(\mathrm{M} 2)^{*}$ $(\mathrm{p}=0.079)$
Number of observations	$\mathrm{N}=22$	$\mathrm{~N}=22$

Notably, the robustness tests confirm the results we found in the main tests, and suggest that introducing a forward market may have also a stronger effect on competition than adding one more competitor in markets with two competitors.

A 2.2 Comparability data without costs

We ran treatments for markets with two producers without costs to allow comparisons with an earlier experiment on the effect of forward markets by LeCoq and Orzen (2006). Table 16 shows the theoretical predictions for these cases.

Table 16 Theoretical predictions no-cost markets

	NE M2-zc	NE M $2 F-z c$	Walras-zc $(\mathrm{n}=2)$	JPM-zc $(\mathrm{n}=2)$

$\mathrm{q}_{\mathrm{ti}}^{\mathrm{f}}$	-	16	-	-
q_{ti}	25	30	37	$18 / 19^{40}$
q_{t}	50	60	74	37
p_{t}	650	380	2	1001
Prod. S.	32500	22800	148	37037
Cons. S.	33075	47790	72927	17982
Total S.	65575	70590	73075	55019
Eff. (\%)	89.74	96.60	100	75.29

Figure 4 shows the evolution of total (aggregate) quantities sold per period, averaged over groups. The treatments without forward markets are represented by open rounds, the treatments with forward markets by filled rounds. Like all other treatments, the aggregate productions starts out rather low, 41 and then quickly jump up in the direction of the Nash-equilibrium. Between round 10 and 12 behavior stabilizes.

Figure 4: A verage aggregate quantities sold per period

[^20]
A verages by group

Table 17 shows that aggregate production tends to be significantly (p-values<0.093) smaller than the Nash-equilibrium, confirming results of LeCoq and Orzen (2006).

Table 17 Production A ver ages and comparison

A verages		
	M2zc	M2Fzc
Average production	41.6	
		(1.91)

Using a one-sided Wilcoxon rank-sum test we find that the increase in aggregate production due to a forward market is significant (p -value=0.014), confirming results of LeCoq and Orzen (2006). A robustness tests confirms this finding.

Table 18T ests

M ain tests		
one-sided Wilcoxon rank- sum test		M 2F zc>M 2zc** $(p=0.014)$
		$\mathrm{N}=11$

R obustness tests		
OLS regression with correction for clustering on group level, followed by one-sided F test on equality of the coefficients		M 2F zC> M 2zc*** $(p<0.010)$
		$\mathrm{N}=572$

Figure 4 shows the evolution of efficiency per period, averaged over groups. The treatments without forward markets are represented by open rounds, the treatments with forward markets by filled rounds. As producers have no production costs, production efficiency as defined in the main text is always

[^21]100%. Efficiency is thus determined by the aggregate production and the average efficiency in Figure 4 thus closely follows the aggregate average production (Figure 4).

Figure 5: A verage efficiency per period

Efficiency is lower than the Nash-equilibrium prediction. A two-sided Wilcoxon one-sample signedrank tests indicates that these differences are significant (p -values <0.017).

Table 19 Efficiency averages and comparison

	M2zc	M2Fzc
Average efficiency as \% of Walras	79.7 (2.10)	88.3 (2.37)
\% of NE prediction	89.8%	90.7%
	$\mathrm{~N}=11$	$\mathrm{~N}=11$
one-sided Wilcoxon rank-sum test		M 2F zc $>\mathrm{M} \mathrm{2zc}$ $(\mathrm{p}<0.010)$
		$\mathrm{N}=16$
OLS regression with correction for clustering on group level, followed by one-sided F test on equality of the coefficients	$\mathrm{M}=572$	$(\mathrm{p}=0.011)$
		$\mathrm{N}=572$

A 3. Predictions of the spot market price by our automated traders

M 2F-zc: T otal Production Stage A, Predicted Total Production and Resulting (Spot) Price

Total Production Stage A	Predicted (NE) Aggregate Production	$\begin{gathered} \text { Predicted } \\ \text { (NE) } \\ \text { price } \end{gathered}$	Total Production Stage A	Predicted (NE) Aggregate Production	Predicted (NE) price	Total Production Stage A	Predicted (NE) A ggregate Production	Predicted (NE) price
0	49.4	667	33	71.4	73	66	93.4	0
1	50.0	649	34	72.0	55	67	94.0	0
2	50.7	631	35	72.7	37	68	94.7	0
3	51.4	613	36	73.4	19	69	95.4	0
4	52.0	595	37	74.0	1	70	96.0	0
5	52.7	577	38	74.7	0	71	96.7	0
6	53.4	559	39	75.4	0	72	97.4	0
7	54.0	541	40	76.0	0	73	98.0	0
8	54.7	523	41	76.7	0	74	98.7	0
9	55.4	505	42	77.4	0	75	99.4	0
10	56.0	487	43	78.0	0	76	100.0	0
11	56.7	469	44	78.7	0	77	100.7	0
12	57.4	451	45	79.4	0	78	101.4	0
13	58.0	433	46	80.0	0	79	102.0	0
14	58.7	415	47	80.7	0	80	102.7	0
15	59.4	397	48	81.4	0	81	103.4	0
16	60.0	379	49	82.0	0	82	104.0	0
17	60.7	361	50	82.7	0	83	104.7	0
18	61.4	343	51	83.4	0	84	105.4	0
19	62.0	325	52	84.0	0	85	106.0	0
20	62.7	307	53	84.7	0	86	106.7	0
21	63.4	289	54	85.4	0	87	107.4	0
22	64.0	271	55	86.0	0	88	108.0	0
23	64.7	253	56	86.7	0	89	108.7	0
24	65.4	235	57	87.4	0	90	109.4	0
25	66.0	217	58	88.0	0	91	110.0	0
26	66.7	199	59	88.7	0	92	110.7	0
27	67.4	181	60	89.4	0	93	111.4	0
28	68.0	163	61	90.0	0	94	112.0	0
29	68.7	145	62	90.7	0	95	112.7	0
30	69.4	127	63	91.4	0	96	113.4	0
31	70.0	109	64	92.0	0			
32	70.7	91	65	92.7	0			

M 2F: T otal Production Stage A , Predicted T otal Production and Resulting (Spot) Price

Total Production Stage A	Predicted (NE) Aggregate Production	Predicted (NE) price	Total Production Stage A	Predicted (NE) A ggregate Production	Predicted (NE) price	Total Production Stage A	Predicted (NE) Aggregate Production	Predicted (NE) price
0	40.0	921	33	47.3	723	66	66.0	218
1	40.2	915	34	47.5	717	67	67.0	191
2	40.4	909	35	47.7	711	68	68.0	164
3	40.6	903	36	48.0	705	69	69.0	137
4	40.9	897	37	48.2	699	70	70.0	110
5	41.1	890	38	48.4	693	71	71.0	83
6	41.3	884	39	48.6	688	72	72.0	56
7	41.6	878	40	48.8	682	73	73.0	29
8	41.8	872	41	49.0	676	74	74.0	2
9	42.0	866	42	49.3	670	75	75.0	0
10	42.2	860	43	49.5	664	76	76.0	0
11	42.5	854	44	49.7	659	77	77.0	0
12	42.7	848	45	49.9	653	78	78.0	0
13	42.9	842	46	50.1	647	79	79.0	0
14	43.1	836	47	50.3	641	80	80.0	0
15	43.3	830	48	50.5	636	81	81.0	0
16	43.6	824	49	50.7	630	82	82.0	0
17	43.8	818	50	51.0	624	83	83.0	0
18	44.0	812	51	51.2	619	84	84.0	0
19	44.2	806	52	52.0	596	85	85.0	0
20	44.5	800	53	53.0	569	86	86.0	0
21	44.7	794	54	54.0	542	87	87.0	0
22	44.9	788	55	55.0	515	88	88.0	0
23	45.1	782	56	56.0	488	89	89.0	0
24	45.3	776	57	57.0	461	90	90.0	0
25	45.6	770	58	58.0	434	91	91.0	0
26	45.8	764	59	59.0	407	92	92.0	0
27	46.0	758	60	60.0	380	93	93.0	0
28	46.2	752	61	61.0	353	94	94.0	0
29	46.4	746	62	62.0	326	95	95.0	0
30	46.7	740	63	63.0	299	96	96.0	0
31	46.9	734	64	64.0	272			
32	47.1	728	65	65.0	245			

M 3F: Total Production Stage A, Predicted Total Production and Resulting (Spot) Price

Total Production Stage A	Predicted (NE) Aggregate Production	$\begin{array}{\|c\|} \hline \text { Predicted } \\ \text { (NE) } \\ \text { price } \end{array}$
0	43.2	833
1	43.4	829
2	43.5	824
3	43.7	820
4	43.9	816
5	44.0	811
6	44.2	807
7	44.3	803
8	44.5	799
9	44.7	794
10	44.8	790
11	45.0	786
12	45.1	781
13	45.3	777
14	45.5	773
15	45.6	769
16	45.8	764
17	45.9	760
18	46.1	756
19	46.2	752
20	46.4	747
21	46.6	743
22	46.7	739
23	46.9	735
24	47.0	730
25	47.2	726
26	47.3	722
27	47.5	718
28	47.6	713
29	47.8	709
30	48.0	705
31	48.1	701
32	48.3	697

Total Production Stage A	Predicted (NE) Aggregate Production	Predicted (NE) price
33	48.4	693
34	48.6	688
35	48.7	684
36	48.9	680
37	49.0	676
38	49.2	672
39	49.3	668
40	49.5	663
41	49.7	659
42	49.8	655
43	50.0	651
44	50.1	647
45	50.3	643
46	50.4	639
47	50.6	635
48	50.7	630
49	50.9	626
50	51.0	622
51	51.2	618
52	52.0	596
53	53.0	569
54	54.0	542
55	55.0	515
56	56.0	488
57	57.0	461
58	58.0	434
59	59.0	407
60	60.0	380
61	61.0	353
62	62.0	326
63	63.0	299
64	64.0	272
65	65.0	245
30		

Total Production Stage A	Predicted (NE) A ggregate Production	Predicted (NE) price
66	66.0	218
67	67.0	191
68	68.0	164
69	69.0	137
70	70.0	110
71	71.0	83
72	72.0	56
73	73.0	29
74	74.0	2
75	75.0	0
76	76.0	0
77	77.0	0
78	78.0	0
79	79.0	0
80	80.0	0
81	81.0	0
82	82.0	0
83	83.0	0
84	84.0	0
85	85.0	0
86	86.0	0
87	87.0	0
88	88.0	0
89	89.0	0
90	90.0	0
91	91.0	0
92	92.0	0
93	93.0	0
94	94.0	0
95	95.0	0
96	96.0	0

A 4. Sheets given to the subjects
(M 2, M 2zc, M 3, M 4)

Production	Price/Unit
0	2000
1	1973
2	1946
3	1919
4	1892
5	1865
6	1838
7	1811
8	1784
9	1757
10	1730
11	1703
12	1676
13	1649
14	1622
15	1595
16	1568
17	1541
18	1514
19	1487
20	1460
21	1433
22	1406
23	1379
24	1352
25	1325
26	1298
27	1271
28	1244
29	1217
30	1190
31	1163
32	1136
1	
1	

Total Production and Resulting Price

Production	Price/Unit	Production	Price/Unit
33	1109	66	218
34	1082	67	191
35	1055	68	164
36	1028	69	137
37	1001	70	110
38	974	71	83
39	947	72	56
40	920	73	29
41	893	74	2
42	866	75	0
43	839	76	0
44	812	77	0
45	785	78	0
46	758	79	0
47	731	80	0
48	704	81	0
49	677	82	0
50	650	83	0
51	623	84	0
52	596	85	0
53	569	86	0
54	542	87	0
55	515	88	0
56	488	89	0
57	461	90	0
58	434	91	0
59	407	92	0
60	380	93	0
61	353	94	0
62	326	95	0
63	299	96	0
64	272		
65	245		

(M 2F, M 2Fzc, M 3F)
A ggregate Production and Resulting Price in STAGE B

A ggregate number of Units in Stage $A+B$	Resulting Price in STAGE B	A ggregate number of Units in Stage $A+B$	Resulting Price in STAGE B	A ggregate number of Units in SPOT M arket	Resulting Price in STAGE B
0	2000	33	1109	66	218
1	1973	34	1082	67	191
2	1946	35	1055	68	164
3	1919	36	1028	69	137
4	1892	37	1001	70	110
5	1865	38	974	71	83
6	1838	39	947	72	56
7	1811	40	920	73	29
8	1784	41	893	74	2
9	1757	42	866	75	0
10	1730	43	839	76	0
11	1703	44	812	77	0
12	1676	45	785	78	0
13	1649	46	758	79	0
14	1622	47	731	80	0
15	1595	48	704	81	0
16	1568	49	677	82	0
17	1541	50	650	83	0
18	1514	51	623	84	0
19	1487	52	596	85	0
20	1460	53	569	86	0
21	1433	54	542	87	0
22	1406	55	515	88	0
23	1379	56	488	89	0
24	1352	57	461	90	0
25	1325	58	434	91	0
26	1298	59	407	92	0
27	1271	60	380	93	0
28	1244	61	353	94	0
29	1217	62	326	95	0
30	1190	63	299	96	0
31	1163	64	272		
32	1136	65	245		

(M 3F)
Total Production STAGE A and Resulting Price in STAGE A

Total production STAGE A	Price STAGE A
0	833
1	829
2	824
3	820
4	816
5	811
6	807
7	803
8	799
9	794
10	790
11	786
12	781
13	777
14	773
15	769
16	764
17	760
18	756
19	752
20	747
21	743
22	739
23	735
24	730
25	726
26	722
27	718
28	713
29	709
30	705
31	701
32	697
1	

Total production STAGE A	Price STAGE A
33	693
34	688
35	684
36	680
37	676
38	672
39	668
40	663
41	659
42	655
43	651
44	647
45	643
46	639
47	635
48	630
49	626
50	622
51	618
52	596
53	569
54	542
55	515
56	488
57	461
58	434
59	407
60	380
61	353
62	326
63	299
64	272
65	245

Total production STAGE A	Price STAGE A
66	218
67	191
68	164
69	137
70	110
71	83
72	56
73	29
74	2
75	0
76	0
77	0
78	0
79	0
80	0
81	0
82	0
83	0
84	0
85	0
86	0
87	0
88	0
89	0
90	0
91	0
92	0
93	0
94	0
95	0
96	0
7	
7	0
7	0

(M 2F)
Total Production STAGE A and Resulting Price in STAGE A

Total production STAGE A	Price/unit STAGE A
0	921
1	915
2	909
3	903
4	897
5	890
6	884
7	878
8	872
9	866
10	860
11	854
12	848
13	842
14	836
15	830
16	824
17	818
18	812
19	806
20	800
21	794
22	788
23	782
24	776
25	770
26	764
27	758
28	752
29	746
30	740
31	734
32	728
1	
1	
1	

Total production STAGE A	Price/unit STAGE A
33	723
34	717
35	711
36	705
37	699
38	693
39	688
40	682
41	676
42	670
43	664
44	659
45	653
46	647
47	641
48	636
49	630
50	624
51	619
52	596
53	569
54	542
55	515
56	488
57	461
58	434
59	407
60	380
61	353
62	326
63	299
64	272
65	245

Total production STAGE A	Price/unit STAGE A
66	218
67	191
68	164
69	137
70	110
71	83
72	56
73	29
74	2
75	0
76	0
77	0
78	0
79	0
80	0
81	0
82	0
83	0
84	0
85	0
86	0
87	0
88	0
89	0
90	0
91	0
92	0
93	0
94	0
95	0
96	0
7	
7	

> (M 2F zc)

Total Production STAGE A and Resulting Price in STAGE A

Total production STAGE A	Price/unit STAGE A
0	667
1	649
2	631
3	613
4	595
5	577
6	559
7	541
8	523
9	505
10	487
11	469
12	451
13	433
14	415
15	397
16	379
17	361
18	343
19	325
20	307
21	289
22	271
23	253
24	235
25	217
26	199
27	181
28	163
29	145
30	127
31	109
32	91
1	

Total production STAGE A	Price/unit STAGE A	Total production STAGE A	Price/unit STAGE A
33	73	66	0
34	55	67	0
35	37	68	0
36	19	69	0
37	1	70	0
38	0	71	0
39	0	72	0
40	0	73	0
41	0	74	0
42	0	75	0
43	0	76	0
44	0	77	0
45	0	78	0
46	0	79	0
47	0	80	0
48	0	81	0
49	0	82	0
50	0	83	0
51	0	84	0
52	0	85	0
53	0	86	0
54	0	87	0
55	0	88	0
56	0	89	0
57	0	90	0
58	0	91	0
59	0	92	0
60	0	93	0
61	0	94	0
62	0	95	0
63	0	96	0
64	0		
65	0		

(M2, M 2F)
Production Costs

| $\begin{array}{c}\text { Units } \\ \text { Produced }\end{array}$ | $\begin{array}{c}\text { Marginal } \\ \text { Costs }\end{array}$ | $\begin{array}{c}\text { Total } \\ \text { Costs }\end{array}$ | | $\begin{array}{c}\text { Units } \\ \text { produced }\end{array}$ | $\begin{array}{c}\text { M arginal } \\ \text { Costs }\end{array}$ |
| :---: | ---: | ---: | :--- | ---: | ---: | \(\left.\begin{array}{c}Total

Costs\end{array}\right]\)
(M 3, M 3F)
Production Costs

Units Produced	Marginal Costs	Total Costs
0	0	0
1	2	2
2	8	10
3	18	28
4	32	60
5	50	110
6	70	180
7	130	280
8	160	410
9	200	570
10	240	770
11	290	1010
12	340	1300
13	390	2030
14	450	2480
15	510	2990
16	580	3570
17	650	4220
18	720	4940
19	800	5740
20	880	6620
21	970	7590
22	1060	8650
23	1150	9800
24	1250	11050
25	1350	12400
26	1450	13850
27	1600	15450
28	1650	17100
29	1800	18900
30	1950	20850
32	2050	22900

(M 4)

Production Costs Units produced	M arginal Costs	Total Costs
0	0	0
1	3	3
2	12	15
3	30	45
4	55	100
5	85	185
6	120	305
7	170	475
8	220	695
9	280	975
10	345	1320
11	420	1740
12	500	2240
13	590	2830
14	690	3520
15	790	4310
16	890	5200
17	1010	6210
18	1140	7350
19	1270	8620
20	1380	10000
21	1550	11550
22	1700	13250
23	1900	15150
24	2000	17150

[^0]: *We thank Libor Dušek, Anna Gunnthorsdottir, Morita Hodaka, Axel Ockenfelds, Paul Pezanis-Christou, participants at the ESA 2010 conference, and participants of a seminar at the Australian School of Business for their excellent comments. We are grateful for financial support from the REFGOV Integrated Project funded by the 6th European Research Framework Programme - CIT3-513420, research center grant No.LC542 of the Ministry of Education of the Czech Republic implemented at CERGE-EI, and the Robert Schuman Centre for Advanced Studies of the European University Institute.
 ${ }^{1}$ Corresponding author

[^1]: ${ }^{2}$ The European Commission (2006b, p.6) defines structural remedies as "changes to the structure of an undertaking. The most obvious one is the divestiture of an existing business."
 ${ }^{3}$ In 2002 one of the largest generators, PowerGen, merged with TXU Europe, thus adding 3GW to its capacity (Green, 2006).
 ${ }^{4}$ The policy of allowing distributors to sign long-term contracts with independent power producers promoted entry of new the electricity producers, mainly with new Combined-Cycle-Gas-Turbine (CCGT) generation technology (Newbery, 2002). ${ }^{5}$ When a generator sells a Virtual Power Plant, he sells part of his production capacity to other generators. This divestiture of generation capacity is called virtual as no production capacity changes hand, and the selling generator remains the owner of all its generation plants (Willems, 2006).
 ${ }^{6}$ Entry of new generators is generally not the most efficient solution to increase competition. When there is no need for new generation investment, entry, by adding excessive capacity, imposes deadweight losses on the market that can be larger than the gains of increased competition (Green, 1996). Divestiture is in such case the best alternative solution.

[^2]: ${ }^{7}$ The European Commission (2006b, p.8) defines a behavioral remedy as "a measure that obliges the concerned undertaking(s) to act in a specific way".
 ${ }^{8}$ It has been suggested to us that a forward market also constitutes a structural remedy. We are agnostic on that issue; after all it's just a label. We note that we follow the definitions of the EC which defines measures that nudge towards particular actions as behavioral remedies and measures that change the structure of a producer (such as divesture) as a structural remedy. In general, behavioral remedies are easier to implement than structural remedies.
 ${ }^{9}$ Multiplying the left side by $\frac{p[Q] \cdot q_{i} \cdot Q}{p[Q] \cdot q_{i} \cdot Q}$ gives $-p^{\prime}[Q]\left(q_{i}-f_{i}\right) \cdot \frac{p[Q] \cdot q_{i} \cdot Q}{p[Q] \cdot q_{i} \cdot Q}=p[Q]-C^{\prime}\left[q_{i}\right]$. Rearranging gives $-p^{\prime}[Q] \frac{Q}{p[Q]} \frac{q_{i}}{\left.\frac{\left(q_{i}-f_{i}\right.}{}\right)} q_{i}=\frac{p[Q]-c^{\prime}\left[q_{i}\right]}{p[Q]}$.

[^3]: ${ }^{10}$ The New EU Member States are the states that acceded to the EU in or after 2004. With the exception of Cyprus and Malta these are all post-communistic countries: Bulgaria (BG), Cyprus (CY), the Czech Republic (CZ), Estonia (EST), Hungary (H), Lithuania (LT), Latvia (LV), Malta (M), Poland (PL), Romania (RO), Slovakia (SK), and Slovenia (SLO). ${ }^{11}$ The old EU Member States are the states that acceded to the EU before 2004. These are: Austria (A), Belgium (B), England (UK), Germany (D), Denmark (DK), Spain (E), France (F), Finland (FIN), Greece (GR), Italy (I), Ireland (IRL), Luxembourg (L), the Netherlands (NL), Portugal (P), Sweden (S).
 ${ }^{12}$ The average Hirsch-Herfindahl Index (HHI) for the old (West-European) EU members in 2006 was equal to 3786, which is close to the case where three symmetrical firms compete ($\mathrm{HHI}=3333$). The new (Central- and East European) EU members had in 2006 a HHI equal to 5558 , which is closer to the case where two symmetrical firms compete ($\mathrm{HHI}=5000$) (Van Koten and Ortmann, 2008).

[^4]: ${ }^{13}$ Brandts et al. (2008) call this "the number effect". We use "competition effect" as we believe it is a more descriptive term.
 ${ }^{14}$ Building electricity generation is very costly, and when the problem is a lack of competition but not a shortage of electricity production capacity, entrance leads to a wasteful duplication of assets (Green, 1996).

[^5]: ${ }^{15}$ With identical choices in the respective markets, the aggregate production in M3 and M4 is equal when it can be divided by both 3 and 4 . Formally, when, for $n \in \bullet^{+}$, the four producers in M4 each produce $3 n$ units, then their aggregate production is $4 \cdot 3 n=12 n$; when the three producers in M3 each produce $4 n$ units, then their aggregate production is $3 \cdot 4 \mathrm{n}=12 \mathrm{n}$. As a result, the aggregate costs must be the same in these cases. Thus
 $4 \cdot c_{4}[3 \cdot y]=3 \cdot c_{3}[4 \cdot y]$ and $c_{4}[y]=\frac{3}{4} \cdot c_{3}\left[\frac{4}{3} \cdot y\right]=\frac{32}{27} y^{3}+\frac{4}{3} y^{2}+\frac{y}{3}$. In the same way, it follows that $c_{2}[y]=\frac{3}{2} \cdot c_{3}\left[\frac{2}{3} \cdot y\right]=\frac{8 y^{3}}{27}+\frac{2 y^{2}}{3}+\frac{y}{3}$. Notice that for marginal costs holds the equality: $c_{2}^{\prime}\left[\frac{3}{2} y\right]=c_{3}^{\prime}[y]=c_{4}^{\prime}\left[\frac{3}{4} y\right]$. Conforming to intuition, the marginal cost of a producer in M3 thus increases faster (slower) than in M2 (M4).

[^6]: ${ }^{16}$ Numbers have been rounded to the nearest whole number.

[^7]: ${ }^{17}$ Using the not rounded numbers gives virtually identical theoretical predictions.

[^8]: ${ }^{18}$ The Nash-equilibria have been numerically determined with Mathematica programs. The set of programs can be downloaded as a RAR file named "Nash-Equilibria with Forward Markets.RAR", at
 https://sites.google.com/site/slvstrnl/ElectricityMarketsExperiment. The predictions are based on the cost functions with numbers rounded according to the rounding procedure described above. Predictions based on the continuous cost functions are, except for the M2F condition, mostly identical: the chosen quantities are identical, and the difference in total surplus is lower than 0.02%. In the M2F condition the chosen quantities in the low Nash-equilibrium are lower when using the continuous functions - it is 40 instead of 42 . As a result the difference in total surplus is relatively high: 1.8%.
 ${ }^{19}$ The markets JPM ($\mathrm{n}=3$) , JPM ($\mathrm{n}=4$), NE C3.0, NE C3.2, Walras ($\mathrm{n}=3$), Walras $(\mathrm{n}=4)$ and NE C4.0 in this experiment are identically to those in Brandts et al. (2008), and our predictions are almost identical to the ones reported in their paper. Key differences are: Using the functions without a rounding procedure, we find that for the Nash-equilibrium with three producers (M3) the price is equal to 839 rather than 866, as reported in Brandts et al. (2008). We find that for the Nashequilibrium with four generators (M4), the price is equal to 677 rather than 704 . Also, the producer surplus of M4 is equal to 27635 rather than 27638 . For the welfare maximizing outcome with four generators, Walras ($n=4$), we find that all three generators produce 14 units and one of them 15 units, instead of all of the generators producing 14 units. Total welfare is therefore 60799 and not 60788 . For the monopoly case with four generators, JPM $(n=4)$, two generators produce 9 units and two 8 units, instead of all of them 8 units. As a result the producer surplus is higher, 34832 instead of 34728 , the consumer surplus is lower, 15147 instead of 17010 , and efficiency is lower, 82.2% instead of 85.1%.

 For the Nash-equilibrium with three producers and a forward market (M3F), we find a unique symmetrical Nashequilibrium in pure strategies where each producer sells 5 units in the forward market, and 10 additional units in the spot market. This is different from Brandts et al. (2008), who for the treatment with the forward market (M3F) consider partially mixed strategies (for the choice of additional units) and find an equilibrium where each producer sells 6 units in the forward market, and an additional 9 with probability .944 and 10 with probability 0.056 . As we find a unique symmetric Nashequilibrium in pure strategies, we do not follow Brandts et al. (2008) in broadening the equilibrium concept for one treatment case (no mixed strategies are considered for the other treatments). In any case, the total (expected) production by all three producers we find and the one reported by Brandts et al. (2008) are the same -45 units.
 ${ }^{20}$ One generator produces 15 units, the other two 14 units.
 ${ }^{21}$ One generator produces 26 units, the other two 25 units.

[^9]: ${ }^{22}$ To facilitate comparisons with related literature, we use the same notation as Brandts et al. (2008). Also parts of our presentation have been inspired by Brandts et al. (2008).

[^10]: ${ }^{23}$ We obtained in October 2009 four data points for each treatment, in December 2009 four data points for M2zc, M2Fzc, M2F, M2, ,M3, and three data points for the treatments M3F and M4, and in April 2010 three data points for M2zc, M2Fzc, M2F, M2, M3, and four data points for the treatments M3F and M4. The original game plan was to obtain four data points for all treatments also in December 2009. Unusual numbers of no-shows for treatments M3F and M4 derailed that plan. Several pilot sessions were run during the summer of 2009. None of the subjects in the pilot (mostly CERGE-EI students) participated in the regular sessions.

[^11]: ${ }^{24}$ The full consolidated instructions can be downloaded at https://sites.google.com/site/slvstrnl/ElectricityMarketsExperiment.
 ${ }^{25}$ Violation of this assumption affects the prediction only minimally.
 ${ }^{26}$ This procedure is virtually identical to the one used in LeCoq and Orzen (2006).

[^12]: ${ }^{27}$ It is likely that these trajectories are anchored by the examples in the instructions; in the examples we used low numbers to facilitate understanding of the basic relationships.

[^13]: ${ }^{28}$ The standard error is computed based on the values of the averages for each group over the last 12 rounds.
 ${ }^{29}$ The first number gives the percentage of efficiency relative to the low production Nash-equilibrium, the second number relative to the high production Nash-equilibrium.
 ${ }^{30}$ The averages by Huck et al. (2004) reported here are based on their meta-analysis of 19 experiments with Cournot competition. A Wilcoxon signed-rank test indicates that our results are not significantly different from their results (p-values for M2, M3 and M4 are $0.155,0.657$ and 0.534 respectively). Compared with Brandts et al. (2008), the production is significantly higher in condition M3F ($\mathrm{p}<0.006$) and not significantly different in the conditions M3 (p-value $=0.213$) and M4 (p -value $=0.534$). Compared with LeCoq and Orzen (2006), production is significantly higher in conditions M2F (pvalue $=0.010$ for the low and p-value $=0.033$ for the high Nash-equilibrium) and M4 (p-value $=0.010$) and not significantly different in condition M2 (p-value= 0.182). For comparison, we also ran treatments with zero production costs, M2zc and M2Fzc. In these treatments the average production is 83% of the Nash-equilibrium prediction, which is significantly lower than LeCoq and Orzen (2006) found (both p-values < 0.041). The results of these tests may be found in Appendix A2.

[^14]: ${ }^{31}$ As a robustness test we also compared the averages for the groups using a two-sample Wilcoxon rank-sum (MannWhitney) test. The hypotheses accepted (rejected) are the same, except for Hypothesis 2.b (which becomes insignificant) and Hypothesis 3.c (which becomes significant). See the Appendix for a detailed analysis.

[^15]: ${ }^{32}$ In the experiment of LeCoq and Orzen (2006) competitors incurred no costs in production, unlike in our experiments. This indicates that, in contradiction with theory, production costs might play a relevant role in the competitiveness of markets.
 ${ }^{33}$ See the Appendix for graphs of efficiency levels per period for the individual treatment together with the Nashequilibrium prediction.

[^16]: ${ }^{34}$ The first number gives the percentage of efficiency relative to the high production Nash-equilibrium, the second number relative to the low production Nash-equilibrium.
 ${ }^{35}$ Using a Wilcoxon signed-rank test to compare with the results reported by Brandts et al. (2008) shows that in our results efficiency is significantly higher (p -values $=0.003$ for M3, M3F and M4). Compared with LeCoq and Orzen (2006, efficiency is significantly higher in condition M2F (p-value $=0.062$ for the low Nash-equilibrium and p-value $=0.050$ for the high Nash-equilibrium), significantly lower in condition M4 (p -value $=0.003$) and not significantly different in M2 (p -value= 0.131).
 ${ }^{36}$ The robustness tests, one-sided Wilcoxon rank-sum tests, confirmed our results at the same significance levels.

[^17]: ${ }^{37}$ Given the quadratic marginal cost function this implies an as even as possible division of units over the producers.

[^18]: ${ }^{38}$ Robustness tests confirm our results, but show a weaker significance (p-value $=0.100$) for $\Phi(\mathrm{M} 4)<\Phi(\mathrm{M} 3)$.

[^19]: ${ }^{39}$ Running, in addition, a Jonkheere test rejects $\Phi(\mathrm{M} 4) \leq \Phi(\mathrm{M} 3) \leq \Phi(\mathrm{M} 2)$ in favor of $\left.\Phi(\mathrm{M} 4) \leq \Phi(\mathrm{M} 3) \leq \Phi(\mathrm{M} 2)\right)$, with at least one of the inequalities being strict, p -value $=0.0000$.

[^20]: ${ }^{40}$ One generator produces 18 units, the other 19 units.
 ${ }^{41}$ We believe this might be a primer effect of the instructions, which presented examples with rather low numbers to facilitate understanding of the basic relationships.

[^21]: ${ }^{42}$ The averages by Huck et al. (2004) are based on a meta-analysis of 19 experiments with Cournot competition. A Wilcoxon signed-rank test indicates that our results are not significantly different from their results (all p-values >0.327). The percentage of the Nash-equilibrium prediction we found in condition M3F is significantly higher than the percentage Brandts et al. (2008) found (p<0.0425).

