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Abstract

We study the dynamics of the lags with which new technologies are adopted over

the last two centuries, and how intensively new technologies are demanded once they

are adopted. We document two new facts: there has been convergence in adoption lags

between rich and poor countries, while there has been divergence in the intensive margin

of adoption. Using a model of adoption and growth, we show that these changes in

the pattern of technology diffusion account for at least two thirds of the Great Income

Divergence between rich and poor countries since 1800.
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1 Introduction

There is increasing evidence that cross-country differences in technology are key to account for

existing cross-country differences in productivity. Rich countries tend to adopt new technolo-

gies faster than poor countries. Faster adoption allows rich countries to enjoy the productivity

gains that new technologies bring, leading to higher TFP and labor productivity. Comin and

Hobijn (2010) have quantified these effects and concluded that they account for at least 25%

of observed cross-country differences in productivity.

The rate of arrival of technologies to countries has evolved over the last two centuries.

Adoption lags have declined dramatically.1 Technologies invented in the nineteenth century

such as telegrams or railways often took many decades to first arrive to countries. In contrast,

new technologies such as computers, cellphones or the internet have arrived on average within

a few decades (in some cases less than one) after their invention. The decline in adoption

lags has surely not been homogeneous across countries. Anecdotal evidence suggests that the

reduction in adoption lags has been particularly significant in developing countries, where

technologies have traditionally arrived with longer lags.2

If this anecdotal evidence is representative and indeed adoption lags have converged, then

we should wonder how to square the cross-country dynamics of technology with the cross-

country dynamics of income. Cross-country differences in per-capita income have increased

dramatically over the last 200 years. A phenomenon known as the Great Divergence (Pritch-

ett, 1997, and Pomeranz, 2000). Maddison (2004) shows that the income gap between coun-

tries at the technology frontier, which he labeled as Western, and the rest of the world was

seven-fold in 2000, and that around 75% of this gap emerged in the last 180 years.3 If we focus

just on the last 50 years for which we have more precise estimates of income, it is well known

that cross-country income differences have not declined and probably they have increased.

How is that possible given the evolution of the distribution of adoption lags across countries?

In this paper, we explore the cross-country dynamics of technology and income over the

last two centuries. In particular, we investigate two questions. First, how have the relevant

dimensions of technology diffusion evolved across countries over the last 200 years. Second,

how have the cross-country evolution of technology dynamics affected the evolution of income

growth in different countries over the last 200 years. And, do they help us explain the Great

Divergence.

The contribution of the technology to a country’s productivity growth can be decomposed

in two parts. One part is related to the range of technologies used in the country. New

1See Comin and Hobijn (2010).
2Khalba (2007), Dholakia, Dholakia and Kshetri (2003).
3Maddison (2004) defines Western countries as the following 17 countries: Austria, Belgium, Denmark,

Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, Untied Kingdom, Australia, New
Zealand, Canada and the United States of America. To be more precise, the relative median income per-capita
Western to non-Western countries was 1.85 in 1820 and 7 in 2000.
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technologies embody higher productivity. Therefore, an acceleration in the rate at which new

technologies arrive in the country raises productivity growth. Productivity is also affected by

the penetration rate of new technologies. The more units of any new technology (relative to

income) a country uses, the higher the number of workers or units of capital that can benefit

from the productivity gains brought by the new technology. It follows then that increases in

the penetration of technology (or as we call it below, the intensive margin of adoption) raise

the growth rate of productivity.

To identify adoption lags (extensive margin) and penetration rates (intensive margin) of

technology, we follow Comin and Hobijn (2010) and Comin and Mestieri (2011). To illustrate

their strategy, consider Figures ?? and ?? which plot respectively the (log) of the tonnage

of steam and motor ships over real GDP in the UK and Indonesia and the (log) number of

computers over real GDP for the U.S. and Vietnam. One feature of these plots is that the

diffusion curves for different countries are similar, but displaced vertically and horizontally.

Comin and Hobijn (2010) show that, to a first approximation, this is a general property for

the diffusion curves of a given technology across countries. Given the common curvature of

diffusion curves, the relative position of a curve can be characterized by only two parameters.

The horizontal shifter informs us about when the technology was introduced in the country.

The vertical shifter captures the penetration rate the technology will attain when it has fully

diffused.

These intuitions are formalized with the help of a simple model of technology adoption and

growth. The model features both adoption margins, and has predictions about how variation

in these margins affect the curvature and level of the diffusion curve of specific technologies.

Using the CHAT data set,4 we identify the extensive and intensive adoption margins for

twenty significant technologies invented over the last 200 years in an (unbalanced) sample

that covers over 150 countries.

Figures ?? and ?? reveal our two main findings on the evolution of adoption patterns.

First, the horizontal shifter between the diffusion curves for steam and motor ships in the

UK and Indonesia is much larger than the horizontal shifter between the U.S. and Vietnam

for computers (131 years vs. 11). More generally, we show that cross-country differences in

adoption lags have narrowed. That is, adoption lags have declined more in poor/slow adopter

countries than in rich/fast adopter countries. This trend is not a recent phenomenon, but a

secular phenomenon that started 200 years ago. Second, the vertical gap between the curves

for ships in the UK and Indonesia are smaller than the vertical gap between the diffusion curves

of computers in the U.S. and Vietnam (0.9 vs. 1.6). In section 3, we show the generality of

this observation by documenting the divergence in the degree of penetration of technologies

across countries over the last 200 years.

After characterizing the dynamics of technology, we explore its consequences for the cross-

4Comin and Hobijn (2004) and Comin, Hobijn and Rovito (2008)
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country dynamics of income. To this end, we take advantage of the fact that our model of

adoption and growth has an aggregate representation that we can use to study its transitional

dynamics. Unlike the neoclassical growth model, ours does not have capital. The evolution

of the growth rate of the economy is instead associated with the evolution in the stock of

unadopted technologies, and with changes in adoption lags and in the intensive margin, which

we take as given. These forces help us better understand the dynamics of income growth

during the last two centuries.

Our model of adoption generates extremely protracted transitional income dynamics de-

spite not having physical capital, habit formation or other mechanisms used in macroeco-

nomics to generate slower transitions. For example, after a one-time permanent shift in the

growth rate of invention of new technologies (which captures the industrial revolution) the

half-life for income is approximately 80 years while the half-life for the growth rate in income

is 100 years. By way of comparison, the equivalent numbers in the neoclassical growth model

are 14 and 1 year.

After feeding in the estimated dynamics of technology adoption, the model generates

cross-country patterns of income growth that resemble very much those observed in the data

over the last two centuries. In particular, in developed economies, it took approximately one

century to reach the long-run growth rate of productivity (2%) while in developing economies

it takes twice as much, if not more. As a result, the model generates an increase in the income

gap between rich and poor countries by a factor of 5 which is approximately three-fourths

of the actual increase observed over the last two centuries. Finally, our preliminary results

suggest that enriching the model to have capital accumulation does not affect significantly

these findings.

Our findings are related to several lines of research. Our exploration is motivated by

Klenow and Rodŕıguez-Clare (1997) and Clark and Feenstra (2003) who find that neoclassical

dynamics are not very relevant to account for the cross-country distribution of productivity

growth over long intervals (the period 1960-85 for Klenow and Rodŕıguez-Clare (1997) and

the last 150 years for Clark and Feenstra (2003)). The model we use is a version of the models

used in Comin and Hobijn (2010) and Comin and Mestieri (2011). However, there are stark

differences with these previous attempts to explore empirically diffusion dynamics. First,

these authors do not study the cross-country dynamics of the adoption margins. Second, they

do not explore the transitional dynamics of the growth and adoption model. Third, they

do not study the implications of technology dynamics for the dynamics of income, they just

study the relationship between technology and the level of income in the steady state.

This paper is also related to the literature that has explored the drivers of the Great

Divergence. Part of this literature has emphasized the role of the expansion of international

trade during the second half of the nineteenth century. Galor and Mountford (2006) argue that

trade affected asymmetrically the fertility decisions in developed and developing economies,
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due to their different initial endowments of human capital, leading to different evolutions in

productivity growth. O’Rourke et al. (2012) elaborate on this perspective and argue that

the direction of technical change, in particular the fact that after 1850 it became skilled bias

(Mokyr, 2002), also contributed to the increase in income differences across countries. Trade-

based theories of the great divergence, however, need to confront two facts. Prior to 1850,

the technologies brought by the industrial revolution were unskilled-bias rather than skilled

bias (Mokyr, 2002). Why did incomes diverge also during this period. Furthermore, the trade

boom ended abruptly in 1913 with WWI and world trade reverted back and did not expand

until the 1970s. Yet, the great divergence continued at similar rates until now. Probably

motivated by these questions, another strand of the literature has emphasized studied the

cross-country evolution of Solow residuals and has found that they account for the majority

of the divergence (Easterly and Levine, 2000, Clark and Feenstra, 2003). These authors have

interpreted this finding as evidence on the importance of technology differences for the great

divergence. Our paper takes on that claim and measures the dynamics of technology across

countries to directly assess its importance.5

The rest of the paper is organized as follows. Section 2 presents the expository model.

Section 3 presents and implements the identification of the extensive and intensive margins of

adoption, and describes the trends we observe in the cross-country evolution of both adoption

margins. Section 4 characterizes the transitional dynamics of the model. Section 5 quantifies

the effect of the technology dynamics on the cross-country growth dynamcis and discusses the

results. Section 6 conducts some robustness checks, and section 7 concludes.

2 Model

Next we present a simple model of technology adoption and growth. Our model serves four

purposes.6 First, it precisely defines the intensive and extensive margins of adoption. Second,

it illustrates how variation in these margins affect the evolution of the diffusion curves for

individual technologies. Third, it helps us develop the strategies used to identify the extensive

and intensive margins of adoption in the data. Fourth, because ours is a general equilibrium

model with a simple aggregate representation, the expository model can be used to study the

dynamics of productivity growth. In particular, we use it to understand what factors account

for the different evolutions of productivity growth we have observed between rich and poor

countries over the last 200 years. For the sake of clarity, we assume that the adoption of

5Our analysis is also related to a strand of the literature that has studied the productivity dynamics after
the industrial revolution. Galor and Weil (2000), Hansen and Prescott (2002), Tamura (2003), Crafts (1997),
among others, provide different reasons why there was a slow growth acceleration in productivity after the
industrial revolution. These arguments are different from our mechanism but perfectly consistent with it.

6This model is inspired by Comin and Hobijn (2010) and Comin and Mestieri (2012).
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technologies occurs exogenously.7

2.1 Preferences and Endowments

There is a unit measure of identical households in the economy. Each household supplies

inelastically one unit of labor, for which they earn a wage w. Households can save in domestic

bonds which are in zero net supply. The utility of the representative household is given by

U =

∫ ∞
t0

e−ρt ln(Ct)dt (1)

where ρ denotes the discount rate and c, consumption. The representative household, maxi-

mizes its utility subject to the budget constraint (2) and a no-Ponzi game condition (3)

ḃt + ct = wt + rtbt, (2)

lim
t→∞

bte
∫ t
t0
−rsds ≥ 0, (3)

where b denotes the bond holdings of the representative consumer, ḃ is the increase in bond

holdings over an instant of time, and rt its return on bonds.

2.2 Technology

World technology frontier .– At a given instant of time t, the world technology frontier is

characterized by a set of technologies and a set of vintages specific to each technology. Each

instant, a new technology, τ , exogenously appears. To simplify notation, we omit time sub-

scripts, t, whenever possible. We denote a technology by the time it was invented. Therefore,

the range of invented technologies is (−∞, t].
For each existing technology, a new, more productive, vintage appears in the world frontier

every instant. We denote vintages generically by v. The productivity of a technology-vintage

pair has two components. The first component, Z(τ , v), is common across countries and it is

purely determined by technological attributes. In particular,

Z(τ , v) = eχτ+γv, (4)

where (χ+ γ)τ is the productivity level associated with the first vintage of technology τ and

γ(v − τ) captures the productivity gains associated with the introduction of new vintages.

In addition, we allow for a technology-country specific productivity, aτ . aτ may differ across

countries and, as we shall see below, it determines the relative penetration of a technology

across countries in the long term. Consequently, we call it the intensive margin of adoption.

7See Comin and Hobijn (2010) and Comin and Mestieri (2011) for straightforward ways to enodegnize these
adoption margins.
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Adoption lags .– Economies typically are below the world technology frontier. Let Dτ

denote the age of the best vintage available for production in a country for technology τ .

Dτ reflects the time lag between when the best vintage in use was invented and when it was

adopted for production in the country; that is, the adoption lag. The set of available vintages

for technology τ in this economy is Vτ = [τ , t−Dτ ].8

Intensive margin .– Production consists of several layers. Each technology-vintage (τ , v) –

vintage, for brevity – is embodied in an intermediate good. Intermediate goods are produced

competitively using final output. We assume that it takes one unit of final output to produce

one unit of intermediate good.

Intermediate goods are combined with labor to produce services associated with a given

vintage. In particular, let xτ ,v be the number of units of intermediate good (τ , v) used in

production, and Lτ ,v be the number of workers that use them to produce services. Then, the

amount of services associated with technology (τ , v), Yτ ,v, is given by

Yτ ,v = aτZ(τ , v)Xα
τ,vL

1−α
τ,v (5)

The term aτ in (5) represents factors that reduce the effectiveness of a technology in a

country. A key difference between aτ and Z(τ , v) is that while Z(τ , v) is specific to a vintage,

aτ affects symmetrically the productivity of all the vintages associated with a technology. As

we show below, this asymmetry has implications on how different adoption margins affect

diffusion curves.

Taken literally, aτ introduces cross-country differences in the productivity of the technol-

ogy in (5). However, we regard this formulation as a shortcut for a variety of factors that

may affect the penetration of the technology in the long term. Hence, we refer to aτ as the

intensive margin of adoption of a technology.

More generally, aτ can be driven by differences in the costs of producing the intermediate

goods associated witha technology, taxes, relative abundance of complementary inputs or

technologies, frictions in capital, labor and goods markets, barriers to entry for producers

that want to develop new uses for the technology, etc.9 Regardless of the specific nature of

aτ , what is relevant for our characterization of technology is that aτ affects the level of both

the output produced with the technology and the inputs associated with it. As we shall see

below, the identification strategy we implement allow us to compute the effect that aτ has on

productivity though its impact in the penetration of technology.

Production .–The services associates with different vintages of the same technology are

imperfect substitutes and can be combined to produce sectoral output, Yτ , as follows

8Here, we are assuming that vintage adoption is sequential. Comin and Hobijn (2010) provide a micro-
founded model in which this is an equilibrium result rather than an assumption.

9Comin and Mestieri (2012) discuss how a wide variety of distortions result in wedges in technology adoption
that imply a reduced form as in (5).
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Yτ =

(∫ t−Dτ

τ
Y

1
µ
τ ,v dv

)µ
, with µ > 1. (6)

Final good production is an aggregate of the output produced using different technologies

Y =

(∫ τ̄

−∞
Y

1
θ
τ dτ

)θ
, with θ > 1. (7)

where τ̄ denotes the most advanced technology adopted in the economy, that is the technology

τ for which τ = t−Dτ .10

2.3 Factor Demands and Final Output

We take the price of final output as numeraire. The demand for output produced with a

particular technology is

Yτ = Y p
− θ
θ−1

τ (8)

where pτ is the price of sector τ output. Both the income level of a country and the price of

a technology affect the demand of output produced with a given technology. Because of the

homotheticity of the production function, the income elasticity of technology τ output is one.

Similarly, the demand for output produced with a particular technology vintage is

Yτ ,v = Yτ

(
pτ
pτ ,v

)− µ
µ−1

, (9)

where pτ ,v denotes the price of the (τ , v) intermediate good. The demands for labor and

intermediate goods at the vintage level are

(1− α)
pτ ,vYτ ,v
Lτ ,v

= w (10)

α
pτ ,vYτ ,v
Xτ ,v

= 1 (11)

Perfect competition in the production of intermediate goods implies that the price of

intermediate goods equals their marginal cost,

pτ ,v =
w1−α

Z(τ , v)aτ
(1− α)−(1−α)α−α (12)

Combining (9), (10) and (11), the total output produced with technology τ can be ex-

10Again, we assume, for notational simplicity, that older vintages are adopted earlier than newer ones. Our
simulations do not impose this constraint.
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pressed as

Yτ = ZτL
1−α
τ Xα

τ , (13)

where Lτ denotes the total labor used in sector τ ,

Lτ =

∫ t−Dτ

τ
Lτ ,vdv, (14)

Xτ is the total amount of intermediate goods in sector τ ,

Xτ =

∫ t−Dτ

τ
Xτ ,vdv, (15)

and the productivity associated to a technology is

Zτ =

(∫ max{t−Dτ ,τ}

τ
Z(τ , v)

1
µ−1dv

)µ−1

=

(
µ− 1

γ

)µ−1

aτ︸︷︷︸
Intensive Mg

e(χτ+γmax{t−Dτ ,τ})︸ ︷︷ ︸
Embodiment Effect

(
1− e

−γ
µ−1

(max{t−Dτ ,τ}−τ)
)µ−1

︸ ︷︷ ︸
Variety Effect

(16)

This expression is quite intuitive. The productivity of a technology, Zτ , is determined by

the intensive margin, the productivity level of the best vintage used (i.e., embodiment effect),

and the productivity gains from using more vintages (i.e., variety effect). Adoption lags have

two effects on Zτ . The shorter the adoption lags, Dτ , the more productive are, on average, the

vintages used. In addition, because there are productivity gains from using different vintages,

the shorter the lags, the larger variety gains are.

The price deflator of technology-τ output is

pτ =

(∫ t−Dτ

τ
p
− 1
µ−1

τ ,v dv

)−(µ−1)

=
w1−α

Zτ
(1− α)−(1−α)α−α (17)

There exists an aggregate production function representation in terms of the aggregate labor

(which is normalized to one),

Y = AXαL1−α = AXα = A1/(1−α)(α)α/(1−α), (18)

with

A =

(∫ τ̄

−∞
Z

1
θ−1
τ dτ

)θ−1

(19)

where τ̄ denotes the most advanced technology adopted in the economy.
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2.4 Equilibrium

Given a sequence of adoption lags and intensive margins {Dτ , a(τ)}∞τ=0, a competitive equi-

librium in this economy is defined by consumption, output, and labor allocations paths

{ct, Lτ ,v(t), Yτ ,v(t)}∞t=0 and prices {pτ (t), pτ ,v(t), wt, rt}∞t=0, such that

1. Households maximize utility by consuming according to the following Euler equation:

Ċ

C
= r − ρ (20)

2. Firms maximize profits taking prices (equation 12) as given. This optimality condition

gives the demand for labor and intermediate goods for each technology and vintage,

equations (10) and (11) , for the output produced with a vintage (equation 9) and for

the output produced with a technology (equation 8).

3. Labor market clears

L =

∫ v̄

−∞

∫ v̄

τ
Lτ ,vdvdτ = 1 (21)

4. The resource constraint holds:

Y = C +X (22)

C = (1− α)Y (23)

Combining (21) and (10), it follows that the wage rate is given by

w = (1− α)Y/L (24)

Combining the Euler equation (20) and the resource constraint (23) we obtain that the

interest rate depends on output growth and the discount rate

r =
Ẏ

Y
+ ρ.

Equation (18) implies that output dynamics are completely determined by the dynamics

of aggregate productivity, A. Below, we explore in depth how productivity has evolved in

response to changes in χ, γ, adoption lags, and the intensive margin. For the time being, it is

informative to understand the growth rate of the economy along the balanced growth path.

To this end, suppose that Dτ and aτ are constant across technologies. Further, let’s make the

simplifying (and empirically relevant)11 assumption that θ = µ. Then, omitting technology

subscripts,

11As we show below, this is what we observe in our estimation.
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A =

(
(θ − 1)2

(γ + χ)χ

)θ−1

a e(χ+γ)(t−D). (25)

Naturally, a higher intensity of adoption, a, and shorter adoption lags (D) lead to higher

aggregate productivity. Along this balanced growth path, productivity and output grow at

rate (χ+ γ)/(1− α).

3 Technology Dynamics

To assess the effect of changes in technology adoption on income dynamics first it is necessary

to uncover the evolution of the extensive and the intensive margin. In this section, we describe

the estimation procedure we use to measure the intensive and extensive margins of adoption

for each technology-country pair. Then, we explore whether there are any significant trends

in the evolution of these adoption margins.

3.1 Estimation strategy

As in Comin and Hobijn (2010), we derive our estimating equation by combining the demand

for sector τ output, (8), the sectoral price deflator (17), the expression for the equilibrium

wage rate (24), and the expression for Zτ , (16). Taking logs we obtain

yτ = y +
θ

θ − 1
[zτ − (1− α) (y − l)] (26)

where lowercase letters denote logs.

It is easy to see from expression (16) that, to a first order approximation γ only affects yτ

through the linear trend. As we show in the appendix, this allows us to approximate the log

of Zτ , to a second order around the starting adoption date, as follows:

zτ ≈ ln aτ + (χ+ γ)τ + (µ− 1) ln (t− τ −Dτ ) +
γ

2
(t− τ −Dτ ) . (27)

Substituting (27) in (26) gives us the following estimating equation

ycτt = βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt, (28)

where ycτt denotes the log of the output produced with technology τ , yct is the log of output,

yct − lct is the log of output per capita, εcτt is an error term, and the country-technology specific

intercept, βc1, is equal to

βcτ1 = βτ3

(
ln acτ +

(
χ+

γ

2

)
τ − γ

2
Dc
τ

)
. (29)
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It is clear from (28) that the adoption lag is the only determinant of the curvature of the

diffusion curve. In particular, longer lags imply that fewer vintages available for production

and, because of the diminishing gains from variety, the steepness of the diffusion curve declines

faster than if more vintages had been already adopted. It is also clear that, for a given adoption

lag, the only driver of cross-country differences in the intercept βcτ1 is the intensive margin,

acτ . Intuitively, a lower level acτ generates a downward shift of the diffusion curve which, ceteris

paribus, leads to lower output associated with technology τ throughout its diffusion and, in

particular in the long-run.

Formally, we can identify differences in the intensive margin relative to a benchmark,

which we take to be the U.S., as

ln acτ =
βc1,τ − βUS1,τ

β3,τ

+
γ

2
(Dc

τ −DUS
τ ). (30)

When bringing the model to the data, we shall see that some of the technology measures

we have in our data set correspond to the output produced with a specific technology, and

therefore equation (28) is the appropriate model counterpart. Other technology measures,

instead, capture the number of units of the input that embody the technology (e.g. number of

computers). The model counterpart to those measures is Xτ . Towards deriving an estimating

equation for these measures, we can integrate (11) across vintages, take logs and obtain

xcτ = ycτ + pcτ + ln(α).

Substituting in for equation (28), we obtain the following expression which we use to estimate

the diffusion of the inputs that embody technology.12

xcτt = βcτ1 + yct + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct )) + εcτt, (31)

The procedure we use to estimate (28) and (31) consists in two parts. For each technology,

we first estimate the equation for the U.S. (our baseline country). Then, we re-estimate the

equation for each technology-country pair, imposing the technology specific estimates of βUS2

and βUS3 we have obtained for the U.S.13,14

12Note that there are two minor differences between (28) and (31). The first difference is that in the first
βτ3 is θ/ (θ − 1) , while in the second it is 1/(θ − 1). The second difference is that in the second the intercept
βcτ1 has an extra term equal to βτ3 ln(α).

13Note that the coefficients β2 and β3 in (28) are functions of parameters that common across countries, and
therefore their estimates should be independent of the sample used to estimate them. Our procedure is less
computationally intensive than estimating simultaneously the system of diffusion equations for all countries
imposing the restriction that β2 and β3 are common across countries.

14Comin and Hobijn (2010) show that for a large majority of technology-country pairs, it is not possible
to reject the null that β3 is common across countries. Furthermore, the estimated adoption lags are virtually
unaffected by this restriction.
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Before presenting the estimates we obtain from implementing this procedure, it is im-

portant discussing one extension that result from relaxing the homotheticity in production

implied by equation (7). In particular, after relaxing this assumption, we obtain the following

equation

ycτt = βcτ1 + βyy + βτ2t+ βτ3 ((µ− 1) ln(t−Dc
τ − τ)− (1− α)(yct − lct ))) + εcτt (32)

where the key difference is that now the income elasticity of technology is βy rather than

imposing it to be equal to 1.15 Our two part estimation procedure allows to estimate βy (along

with β2 and β3) from the diffusion curve in the baseline country and then to impose these

estimates when re-estimating the equation for all the technology-country pairs. Effectively

what this means is that we βy from the time series variation in technology and output for the

baseline country and then assume that the slope of the Engel curve is constant across countries.

Given that the baseline country has long time series that for many technologies cover much

of its development experience, we consider this to be a reasonable approximation.16

3.2 Data and estimation results

We implement our estimation procedure using data on the diffusion of technologies from the

CHAT data set (Comin and Hobijn, 2009), and data on income and population from Maddison

(2004). The CHAT data set covers the diffusion of many technologies for 171 countries over

the last 200 years. Because of the unbalanced nature of the data set we focus on a sub-sample

of technologies that have a wider coverage over rich and poor countries and for which the data

captures the initial phases of diffusion. The 25 technologies that meet these criteria are listed

in the Appendix and cover a wide range of sectors in the economy. Their invention dates

also span quite evenly over the last 200 years. It is worthwhile remarking that the specific

measures of technology diffusion in CHAT match the dependent variables in specification (28)

or in the equivalent specification in the extended model developed below. In particular these

measures capture either the amount of output produced with the technology (e.g., tons of

steel produced with electric arc furnaces) or the number of units of capital that embody the

technology (e.g. number of computers per capita).

The value added of this paper is not the estimation of the two adoption margins, as we

have done this elsewhere (Comin and Hobijn, 2010; Comin and Mestieri, 2012)–albeit with

fewer technologies. Accordingly, we describe the fit and summary statistics of the margins

briefly. As in Comin and Hobijn (2010), we use the plausibility and precision of the estimates

of the adoption lags from equation (28) as a pre-requisite to utilize the technology-country

15An elasticity of 1 is required for a balanced growth path to exist.
16See Comin and Mestieri (2011).
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pair in our analysis.17 We find that these two conditions are met for the majority of the

technology country-pairs (62%). For these technology country-pairs, we find that equation

(28) provides a very good fit for the data with a detrended R2 of 0.80 across countries and

technologies (Table 5).18

Tables 1 and 2 report summary statistics for the estimates of the adoption lags and

the intensive margin for each technology. The average adoption lag across all technologies

(and countries) is 50 years. We find significant variation in average adoption lags across

technologies. The range goes from 8 years for the Internet to 128 years for spinning spindles.

There is also considerable cross-country variation in adoption lags for any given technology.

The range for the cross-country standard deviations goes from 2 years for the Internet to 51

years for steam and motor ships.

We also find significant cross-country variation in the intensive margin. On average,

differences in the log intensive margin (relative to the U.S.) are on the order of -1, which

implies 40% level of adoption relative to the U.S.. More generally, there is significant cross-

country dispersion in the intensive margin. The range goes from 0.4 for mail to 1.79 to

cellphones. These summary statistics for the estimates of adoption lags and the intensive

margin of adoption are very consistent with those in Comin and Hobijn (2010) and Comin

and Mestieri (2012) which use smaller technology samples and estimate other versions of the

diffusion equation (28).

3.3 Evolution of adoption lags and intensive margin

One key goal of our analysis consists in studying the evolution of the cross-country dispersion

of the adoption lags and the intensive margins. To do that, we divide the countries in our

sample in two groups. We follow Maddison, and define a group of 12 Western, frontier,

countries19 and lump the rest on the category “Rest of the World.”For brevity we may refer

to the first group as “rich” and the second as “poor.” Then, we estimate the trends in the

adoption margins for both samples. These allows us to see whether there has been convergence

in adoption patterns between rich and poor countries.

Figure 1 plots, for each technology in our sample, the median adoption lag among the

western countries and among the rest of the countries in the world. The Figure suggests that

cross-country differences in adoption lags have narrowed. Table 3 formalizes this intuition by

regressing (log) adoption lags on their year of invention (and a constant). Column (1) reports

17Plausible adoption lags are those with an estimated adoption date of no less than ten years before
the invention date that is significant at 5% level. Precise are those with an standard error smaller than√

2003− invention date. This allows for older technologies to be more imprecisely estimated.
18To compute the detrended R2, we partial out the linear trend γτ and compute the R2 of the de-trended

data.
19These are the following: Austria, Belgium, Denmark, Finland, France, Germany, Italy, Netherlands, Nor-

way, Sweden, Switzerland, Untied Kingdom, Australia, New Zealand, Canada and the United States of America.
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Table 1: Estimated Adoption Lags

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 28 111 55 38 102 171 105
Ships 1788 41 122 54 47 144 179 104
Railways Freight 1825 39 77 33 31 75 123 56
Railways Passengers 1825 29 74 41 15 80 123 70
Telegraph 1835 38 50 31 18 42 96 44
Mail 1840 43 44 38 8 33 108 59
Steel (Bessemer, Open Hearth) 1855 39 67 33 14 78 108 45
Telephone 1876 49 51 31 8 54 91 51
Electricity 1882 74 51 22 18 56 72 33
Cars 1885 61 41 21 15 37 65 33
Trucks 1885 54 38 21 14 35 64 32
Tractor 1892 114 66 11 57 68 69 5
Aviation Freight 1903 36 43 14 28 44 63 19
Aviation Passengers 1903 40 30 15 16 25 53 18
Electric Arc Furnace 1907 39 49 19 22 56 78 35
Fertilizer 1910 85 47 9 39 48 54 7
Harvester 1912 56 40 15 20 42 52 16
Synthetic Fiber 1924 48 38 4 34 39 41 2
Blast Oxygen Furnace 1950 37 15 8 8 13 26 11
Kidney Transplant 1954 24 13 7 3 13 25 5
Liver Transplant 1963 20 19 4 15 18 25 3
Heart Surgery 1968 17 13 4 9 13 20 4
Cellphones 1973 79 13 4 9 14 18 5
PCs 1973 66 17 3 13 16 20 3
Internet 1983 57 7 3 2 7 11 3

Total 1213 45 35 10 39 85 47

the unconditional trend, that is, for the whole sample of countries. We confirm the finding

in Comin and Hobijn (2010) that it is downward sloping. That is, newer technologies have

diffused faster. Then, we run the same regression separately for the two groups of countries.

We find that the rate of decline in adoption lags is almost a 50% higher in poor than in rich

countries. In particular the annual rate of decline is around .9% for rich countries (see column

(3)) versus a 1.3% for poor countries (column (2)). Hence, there has been convergence in

adoption lags between rich and poor countries.

Figure 2 shifts the attention to the cross-country evolution of the penetration rates. In

particular, it plots for each technology the median intensive margin (relative to the U.S.)

among the western and non-western countries. The Figure suggests that the gap between

rich countries and the rest of the world in the intensive margin of adoption was smaller
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Table 2: Estimated Intensive Margin

Invention
Year Obs. Mean SD P10 P50 P90 IQR

Spindles 1779 28 0.0 0.7 -1.0 0.0 1.1 0.8
Ships 1788 41 -0.1 0.7 -0.8 -0.1 0.8 0.8
Railways Freight 1825 39 -0.1 0.4 -0.5 -0.1 0.5 0.5
Railways Passengers 1825 29 0.0 0.3 -0.5 -0.1 0.4 0.3
Telegraph 1835 38 -0.2 0.5 -1.0 -0.2 0.4 0.5
Mail 1840 43 -0.1 0.3 -0.7 -0.1 0.2 0.4
Steel (Bessemer, Open Hearth) 1855 39 -0.2 0.5 -0.7 -0.1 0.3 0.6
Telephone 1876 49 -0.8 0.9 -1.9 -0.6 0.2 0.9
Electricity 1882 74 -0.5 0.6 -1.2 -0.4 0.1 0.8
Cars 1885 61 -1.1 1.1 -2.2 -1.0 0.1 1.6
Trucks 1885 54 -0.8 1.0 -1.7 -0.8 0.2 1.2
Tractor 1892 114 -0.9 0.8 -2.0 -0.9 0.1 1.3
Aviation Freight 1903 36 -0.3 0.6 -1.3 -0.1 0.3 0.6
Aviation Passengers 1903 40 -0.4 0.7 -1.3 -0.3 0.3 0.7
Electric Arc Furnace 1907 39 -0.2 0.5 -1.1 -0.1 0.4 0.7
Fertilizer 1910 85 -0.9 0.8 -2.0 -0.8 0.1 1.3
Harvester 1912 56 -1.2 1.1 -3.0 -1.1 0.1 1.7
Synthetic Fiber 1924 48 -0.6 0.8 -1.8 -0.5 0.3 1.0
Blast Oxygen Furnace 1950 37 -0.8 1.0 -2.3 -0.4 0.1 1.3
Kidney Transplant 1954 24 -0.2 0.4 -0.9 -0.1 0.1 0.4
Liver Transplant 1963 20 -0.4 0.7 -1.7 -0.1 0.1 0.5
Heart Surgery 1968 17 -0.4 0.8 -1.8 -0.1 0.2 0.4
Cellphones 1973 79 -0.8 0.7 -1.9 -0.6 0.1 1.2
PCs 1973 66 -0.6 0.6 -1.4 -0.6 0.1 0.9
Internet 1983 57 -1.0 1.2 -2.2 -0.9 0.1 1.6

Total 1213 -0.6 0.8 -1.7 -0.4 0.2 1.0

for technologies invented at the beginning of the nineteenth century than for technologies

invented at the end of the twentieth century. Table ?? establishes this finding. We first

look at all countries of our sample. Column (1) shows that, on average, differences in the

intensive margin relative to the U.S. have widened over time. Then, we look at the evolution

of the intensive margin separately for rich and poor countries. Column (2) shows that, for

rich countries, the intensive margin has barely diverged from the U.S. declining at an annual

rate of .15%. This is in stark contrast to what we find in column (3) for poor countries, for

which the intensive margin (relative to the U.S.) has declined at a much faster speed, a 1.26%

annual rate. Hence, there has been a divergence in the intensive margin of adoption between

rich and poor countries.
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Figure 1: Convergence of Adoption Lags.

4 Income dynamics: Analytic Results

The final goal of this paper is to explore how the technology dynamics we have uncovered

affect the evolution of productivity growth across countries. Given the novelty of the model,

we first provide some analytic intuitions about the growth dynamics in the model. Then, in

the next section, we evaluate quantitatively its ability to generate the observed cross-country

income growth dynamics over the last 200 years with the help of simulations. In this section,

we analyze the special case α = 0. Recall from equation (18) that Y = A1/(1−α)(α)α/(1−α).

This simplifying assumption means final output is produced one-for-one with technology, as

opposed of having some curvature (α > 0). Indeed, the results presented in this section extend

to the case α > 0, but the same insights are obtained with this simpler model.

In our model, the relevant transitional dynamics are driven by three variables: adoption

lags, intensive margins and the growth of the technology frontier. Before studying the transi-

tional dynamics, it is helpful to discuss the sources of growth in our model when these three

variables are held constant.

As described in Section 2, at each instant of time, it appears the first vintage of a new

technology and a new vintage for all past technologies. Thus, the set of technologies available
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Figure 2: Divergence of the Intensive Margin

to an economy at time t is given by [−∞, t − Dt), and that the set of vintages of a given

technology is [τ , t−Dτ ) where τ is time of invention of the technology and Dτ the adoption

lag. Taking the time derivative of (19) and using (??), denoting a time derivative by a dot

and growth rates by g, we find that

gY = (θ − 1)

(
Zt−Dt
Y

) 1
θ−1

(1− Ḋt)︸ ︷︷ ︸
New Technology

+

∫ t−Dt

−∞

(
Zτ
Y

) 1
θ−1

gZτdτ,︸ ︷︷ ︸
Old Technologies

(33)

where

gZτ = γ

(
1 +

e
−γ
µ−1

(t−τ−Dτ )

1− e
−γ
µ−1

(t−τ−Dτ )

)
. (34)

The first term in (33) captures the growth imputable to a new technology being introduced

in the economy. This term has three parts. (1− Ḋt) captures the number of new technologies

introduced at instant t. If the adoption lag Dt does not change (i.e., Ḋt = 0), only one new

technology arrives in the economy at instant t. But if adoption lags decline (i.e., Ḋt < 0), the

flow of new technologies in the economy is greater than one. The effect on growth of the arrival
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Table 3: Evolution of the Adoption Lag

(1) (2) (3)
Dependent Variable is: Log(Lag) Log(Lag) Log(Lag)

World Western Countries Rest of the World

Year-1820 -0.011*** -0.0076*** -0.0113***
(0.004) (0.000441) (0.0004)

Constant 4.37*** 3.64*** 4.55***
(0.07) (0.07) (0.06)

Observations 1198 330 868
R-squared 0.44 0.33 0.59

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

of new technologies depends on two factors. First, the (inverse) of elasticity of substitution

between technologies (θ − 1). The more substitutable are different technologies, the smaller

the gains from having a new technology available for production. Second, the share of the

new technologies in output (i.e. (Zt−Dt/Y )1/(θ−1)).20 The higher the productivity embodied

in a technology, the larger the impact of its arrival on GDP growth. Note from (??) that

the share of a new technology in GDP depends both on its intensive margin and its vintage

(t−Dt).

The second term in (33) captures the increases of productivity due to the introduction of

new vintages in already present technologies. The contribution to overall growth is an average

of different sectoral growths gZτ weighted by the sector’s share in total output. Note from

(34) that the productivity of new technologies grows faster than for older ones because of the

larger gains from variety when few vintages have been adopted (i.e., for small t − τ − Dτ ).

Eventually, gZτ converges to γ, the long-run growth rate of productivity embodied in new

vintages.

4.1 Transitional dynamics after an acceleration in frontier growth

To make the mechanics of the model more transparent, we introduce the dynamics generated

by each mechanism sequentially. The first parameter change we consider is a permanent,

instantaneous increase in the growth rate of the technology frontier, from gOld to γ + χ, that

takes place at time T . In our view, the acceleration in the growth rate of the technology

frontier is a key property of the Industrial Revolution. Thus, we study how an economy

20Recall from (19) that Yt =

(∫ t−Dt
−∞ Z

1
θ−1
τ dτ

)θ−1
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Table 4: Evolution of the Intensive Margin

(1) (2) (3)
Dependent Variable is: Intensive Intensive Intensive

World Western Countries Rest of the World

Year-1820 -0.0034*** 0.0000*** -0.0062***
(0.0005) (0.000229) (0.0006)

Constant -0.24*** -0.00*** -0.30***
(0.06) (0.0598) (0.08)

Observations 1213 341 872
R-squared 0.06 0 0.15

Note: robust standard errors in parentheses,*** p<0.01. Each observation is re-weighted so that each technol-

ogy carries equal weight.

transitions from an original balanced growth path with growth gOld coming from the usage

of pre-Modern technologies to a new balanced growth path with growth χ+ γ. We keep the

intensive and extensive margins constant at their pre-Industrial levels in this initial exercise.

To explore the dynamics after an acceleration in frontier growth, it is convenient to de-

compose output as follows

Y (t) =

(∫ T

−∞
Z

1
θ−1
τ +

∫ t−D

T
Z

1
θ−1
τ

)θ−1

≡
(
X

1
θ−1

Old +X
1
θ−1

Modern

)θ−1

, (35)

gY = (1− s) gOld + s gModern, (36)

where XOld denotes the output produced with “old”, pre-Industrial Revolution, technologies,

XModern the output produced with Modern technologies. T denotes the advent of the Indus-

trial Revolution, s is the output share of modern technologies
(
XModern

Y

) 1
θ−1

, and gi denotes

the growth rate of i.

It is clear from (36) that the dynamics can come from the evolution of the sectoral growth

rates, gOld and gModern, or from changes in the output share of the modern sector, s. The next

proposition characterizes the evolution of output produced with modern and pre-industrial

technologies.

Proposition 1 After the economy starts adopting Modern technologies, Modern and pre-
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Industrial output are

XOld(t) = aAOlde
gOld(t−D), (37)

XModern(t) = aAModerne
(χ+γ)(t−D)h(t)θ−1, (38)

where a is the intensive margin, AOld, AModern are positive constants and h(t) is an S-shaped

function. It is increasing, convex for t < θ−1
γ ln

(
χ+γ
χ

)
+ T + D and concave thereafter, its

initial value is 0 and it reaches a plateau, limt→∞ h(t) = 1. Finally, it approaches smoothly

to its minimum and maximum values, h′(T +D) = limt→∞ h
′(t) = limt→∞ h

′′(t) = 0.21

Note that the output produced using Old technologies grows at rate gOld. Modern output,

instead, has two components that change over time.22 First, there is a log-linear trend,

(χ + γ)t, and second, a transient source of growth, h(t). The log-linear trend captures the

higher productivity embodied in new technologies and vintages (embodiment effect). This

term drives long-run growth. The transient term h(t) is S-shaped and eventually reaches a

ceiling, so it does not contribute to long-run output growth. This term originates from the

gains from variety of having more vintages and more technologies in production. In an initial

phase, the increment in productivity from the arrival of vintages is larger the more modern

technologies have arrived in the economy. Hence, the initial convexity of h(t). At some point,

though, the decreasing gains from variety to the number of modern technologies and to the

number of vintages within existing modern technologies kick in and h(t) becomes concave and

eventually plateaus.

Next we describe the shape of the transition to the new balanced growth path.

Proposition 2 The transition of the growth rate from the pre-Industrial balanced growth path

to Modern growth is S-shaped.

From (36), we know that the growth rate in the economy is a weighted average of the

growth of the modern and old sectors. The weights correspond to the output share of Modern

and pre-Modern technologies. We show in the Appendix that the share of the Modern sector

inherits the properties of the transient component h(t), so that the weight on modern output

is increasing and has an S-shape.

21The expression for h(t) is

h(t) =
χ(χ+ γ)

γ

(
1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

))
, (39)

where ∆t ≡ t−D − T .
22Here we are assuming that output produced with pre-Modern technologies keeps increasing independently

from the advent of the Industrial revolution. In Section B of the Appendix, we show how to embed this in the
framework of Section 2. The differences that we obtain are qualitatively minor, and quantitatively insignificant
for the relevant parameter range.
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If growth in the modern sector was only given by the embodiment effect (the log-linear

trend, χ + γ), modern output would grow at a constant rate. In this case, output growth

would be given by gY = (1− s)gOld + s(χ+ γ). It follows from this expression that aggregate

output growth would be increasing over time reaching (χ + γ) asymptotically. Furthermore,

gY would mimic the S-shape of the modern sector output share, s.

However, modern output grows faster than the log-linear trend. Thus, aggregate output

growth will overshoot its long-run level (χ + γ), as illustrated in Figure 4. Whether this

over-shooting is quantitatively important depends on whether when the weight on modern

growth becomes close to one, the growth rate of the modern sector is substantially higher

than (χ+ γ).

Next, we assess the protractedness of the transition to the new balance growth path.

Proposition 3 The half-life in terms of levels and growth rates are approximately

tlevel1/2 ' D +
1

χ+ γ − gOld
ln

(
1

2

AOld
AModern

)
, (40)

tgrowth1/2 ' D +
1

χ+ γ − gOld
ln

(
AOld

AModern

)
. (41)

The first terms in both equations capture the fact that there is a lag between the advent

of the Industrial Revolution and when a country starts adopting Modern technologies. The

second terms capture the evolution of the transition conditional on having started to adopt

modern technologies. In particular, the term inside the brackets reflects the ratio of the

productivity of pre-modern output at the time of the Industrial Revolution to the Modern

sector (and, hence, long-term level of output). Intuitively, if the output produced with pre-

Modern technologies is “high”, it takes longer for modern output to become the major driver

of output per capita. This slows down the transition to the new balanced growth path.

4.2 Changes in the Adoption Lags and Intensive Margin

Next we study how changes in adoption lags and intensive margin affect the transitional

dynamics. Perhaps surprisingly, we show that the qualitative results we derived in the previous

section remain.

We start by considering a one period permanent change of adoption lags and the intensive

margin from its pre-Modern levels to their average Modern levels. Formally,

Dτ =

DOld for τ < T

DModern for τ ≥ T
aτ =

aOld for τ < T

aModern for τ ≥ T
(42)

where T denotes the first Modern technology.
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Proposition 4 Let the evolution of the adoption lag and the intensive margin be given by

(42), then pre-Industrial and Modern output are

XOld(t) = aOldAOlde
gOld(t−DOld), (43)

XModern = aModernAModerne
(χ+γ)(t−DModern)h(t)θ−1, (44)

where AOld, AModern are the same positive constants as in Proposition 3 and h(t) is the

same S-shaped function as in Proposition 3. h(t) is increasing, initially convex and concave

thereafter, reaching a plateau.23 Proposition 2 hold in this case. The half-lives of the system

in levels and growth rates are

tlevel1/2 ' DModern −
gOldDOld

χ+ γ − gOld
+

1

χ+ γ − gOld
ln

(
1

2

aOldAOld

aModernAModern

)
, (45)

tgrowth1/2 ' DModern −
gOldDOld

χ+ γ − gOld
+

1

χ+ γ − gOld
ln

(
aOldAOld

aModernAModern

)
. (46)

The changes in the adoption margins do not affect the pre-Modern sector. Growth in the

Modern sector does not depend on whether the adoption margins are the same before and

after the industrial revolution. Hence, the shape of the transition to the Modern growth era is

not affected by the changes introduced in (42). However, the changes in the adoption margins

have a quantitative impact on the transitional dynamics.

Because of the quantitative effect of changes in the adoption margins, we have delay using

our propositions to estimate the protractedness of the transitional dynamics of the model.

Now we are in a position to make such calculations. To this end, we calibrate D and a

using information on the averages of both margins over the Modern period (50 years and

40% of the US intensive margin, respectively).24Using Propositions 4, we estimate the speed

of convergence to the new balanced growth path.As discussed above, the first component of

the half lives is the adoption lag, D, which is 50 years. The second components reflects the

dynamics once adoption has started. Our calibrations imply a value for this second term of

60 years for the half life in levels and 100 years for the half life of the growth rate. Hence, the

resulting halflives are on the order of a hundred years.25

As shown in section 3, the evolution of the intensive margin and adoption lags has been

23More precisely, h(t) is increasing, convex for t < θ−1
γ

ln
(
χ+γ
χ

)
and concave thereafter, h(T +DModern) = 0,

limt→∞ h(t) = γ/χ(χ+ γ), h′(T +DModern) = limt→∞ h
′(t) = limt→∞ h

′′(t) = 0.
24The rest of the parameters we take from our baseline calibration, which is explained in Section 5. These

parameters are χ = γ = 1%, θ = 1.45 and initial output (normalized by a productivity term) of 75.
25To derive these simple analytic expressions we have neglected the effect of the evolution of the transient

component h(t), so the reader may wonder how much does it matter. In our simulations we find that the effect
of the transient component is important and it almost halves the contribution of the second term. However,
even so, the contribution of the second term remains important (30 and 50 years). The half-lives that we find
for the average country in our simulation are around 80 and 100 years for the levels and the growth, respectively
–which makes the dynamics still very protracted.
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smoother than in (42). A more realistic characterization of the evolutions of the extensive

and intensive margins is given by:26

Dτ =


do for τ < T,

do − d1τ for τ ∈ [T, T̄ ],

dm for τ > T̄ ,

ln aτ =


ao for τ < T,

ao − a1τ for τ ∈ [T, T̄ ],

am for τ > T̄ ,

(47)

where d1 = do−dm
T̄−T and a1 = ao−am

T̄−T are the trends in the adoption lags and intensive margin,

respectively. We conclude our analytic exploration of the transitional dynamics of the model

by characterizing the evolution of output after adoption margins change as in (47).

Proposition 5 Pre-Industrial output is described by XOld(t) = AOlde
gOldt. Modern Output is

a continuous, increasing function,

XModern(t) =

A0 e
(χ+γ+ga)t h0(t)θ−1 for t ∈ [T + d0, d0 + T̄ /(1 + d1)],

A1 e
(χ+γ)t h1(t)θ−1 for t > d0 + T̄ /(1 + d1),

(48)

where ga = d1(χ+ (1 + d1)γ)− (1 + d1)a1, h0(t) is S-shaped in the sense that it is continuous,

increasing, convex for any t < tc and concave thereafter, reaching a ceiling value as time ap-

proaches infinity. h1(t) is a continuous function defined as the CES aggregator (with elasticity
1

2−θ ) of e−χth0(T̄ ) and h(t − T̄ ). In the case that χ, γ � a1, d1 and d0 < T it is S-shaped

(increasing, initially convex and eventually concave reaching a ceiling). The transition from

the old growth rate to modern growth has two S-shaped transitions.27,28

The most noticeable property of the evolution of modern output is that, the evolution

of adoption margins affects trend growth in Modern sector output during the transition.

Specifically, the decline in the adoption lags accelerates the embodiment effect at the rate ga

26The specification we have estimated in section 3 differs slightly from (42) in that in section 3 we fit a linear
trend to the log adoption lag while in (42) the trend is fit to the level. Both approaches seem sensible to us
and, quantitatively, there are no significant differences between them.

27The expression for h0(t) is very similar to h(t),

h0(t) =
1

χ+ γd1 − a1

[
1− e−

χ+γd1−a1
θ−1

(1+d1)(t−d0)

]
− e−

d2
1γ

θ−1
(t−d0)

χ+ γ − a1

[
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
]
. (49)

See the Appendix for the expression of h1. The reason for having two S-shaped transitions is that we effectively
have two regimes and the transition is S-shaped for both. Hence, it can be the case that if ga is not very close
to zero (which is what happens in our calibration for the non-Western country), we observe a transition to
balanced growth χ+ γ in two steps. First, while we are in the regime τ ∈ [T, T̄ ] the growth rate converges to
χ+ γ + ga (in an S-shaped way), and once we enter the regime τ > T̄ , the economy grows from χ+ γ + g0 to
gm an that transition looks again as an S-shape. In the case that χ + γ + g0 > χ + γ, we would observe an
inverse S-shape.

28The Appendix characterizes the half-lives of the model with trends in the adoption margins. (See Propo-
sition 7).
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because more technologies and vintages are brought into production. This raises trend growth

by d1(χ + (1 + d1)γ). Similarly, an acceleration in the intensive margin of new technologies

increases the productivity embodied in new technologies increasing trend growth by −(1 +

d1)a1.
29

Proposition 5 points to the sources of cross-country differences in growth patterns. In

particular, it highlights, at least, three relevant dimensions. Differences in the initial adoption

lag, d0, generate differences in the growth acceleration brought by the arrival of modern

production technologies. Differences in the trends in adoption lags, d1, and in the intensive

margin, a1, affect the magnitude of the growth acceleration,ga, along the transition. As shown

in next section, these three factors are important to understand the cross-country patterns in

growth over the last two centuries.

Finally, one further implication of Proposition 5 is that the growth effects of a gradual

reduction in adoption lags depend separately on χ and γ beyond its sum. In other words,

productivity gains embodied in new technologies and in new vintages are not isomorphic. This

is the case because productivity gains embodied in new vintages, γ, lead to higher productivity

for both new and already adopted (modern) technologies, while increases in the productivity

embodied in new technologies only affects output growth through the productivity of newly

adopted technologies. This observation motivates the robustness checks we perform in next

section to the calibration of χ and γ.

5 Income Dynamics: Simulation Results

We use the expository model outlined in section 2 to evaluate quantitatively the effects of

dynamics in technology diffusion on the cross-country evolution of economic growth. In par-

ticular, we will focus on the two groups of countries defined by Maddison (2004) as “Western”

countries and the rest of the world .30

To simulate the model we need to calibrate a few parameters. First, we need to specify

the path for the world technology frontier. Prior to year T = 1765 (year in which James Watt

developed his steam engine),31 the technology frontier grows at 0.2% which is the growth

rate of western Europe according to Maddison (2004) from 1500 to 1800. After 1765, the

frontier grows at 2% per year. As shown in equation (25), the growth rate along the balanced

growth is equal to (γ + χ)/(1 − α). A priori, it is difficult to divide up the growth of the

29Where a1 is teh rate of decline of the intensive margin.
30Western countries consists of 12 (northern) European countries, Austria, Belgium, Denmark, Finland,

France, Germany, Italy, Netherlands, Norway, Sweden, Switzerland, United Kingdom, the Western off-shots,
Australia, New Zealand, Canada, United States, and Japan. In Section ?? also explore the implications of
the model for the group of countries with income in the bottom third of the world distribution according to
Maddison (2004).

31Alternatively, we can set, without any significant change to our findings, the beginning of the industrial
revolution at 1779, year of invention of the first technology in our sample, the mule spindle.
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frontier between these two parameters. Therefore, in our baseline simulation, we split evenly

the sources of growth in the frontier between γ and χ and conduct robustness checks to show

the robustness of our findings.

As shown in Proposition 3, aggregate productivity at time T, AT , affects the speed of the

acceleration induced by the industrial revolution. We set AT to match the relative income in

the U.S. in 1820 and in 2000. It is important to note that AT is the same across countries.

Finally, we need to calibrate the elasticities of substitution between vintages or between

technologies, which we assume are the same and equal to 1/(θ− 1). We back out the value of

θ from the estimates of βτ3. The implied values for θ are around 1.3, which are similar to the

values implied by the estimates of price markups from Basu and Fernald (1997) and Norbin

(1993).

Initial income differences .– Before quantifying the transitional dynamics in labor pro-

ductivity, it is worthwhile noting that our model has precise implications for productivity

gap between rich and poor countries at the time of the Industrial Revolution. In particular,

expressions (18) and (25) indicate how initial differences in adoption lags and in the intensive

margin affect the relative income of these countries in the pre-industrial revolution balanced

growth path. To this end, we make the reasonable assumption that the pre-industrial lags

and intensive margins are similar to those we estimate for the first technologies in our sample.

. Our estimates from Tables 3 and 4 imply that the difference between the average adoption

lag in the sample of Western countries and in other countries is 56 years in 1820. Further, the

average gap in the (log) intensive margin is 0.3. Assuming a pre-industrial growth rate of the

world technology frontier of .2% and using these estimates to proxy for the pre-industrial pro-

ductivity gap between the sample of rich countries and the rest, we can use equation (25) to

obtain that the income differences predicted by the model are of 51% exp(.2% ·56+ .3) = 1.51.

In Maddison’s data, the productivity gap between these countries in 1820 is 80%. Hence, our

model does generate sizeable pre-industrial income differences that account for more than

60% of those observed in the data.

Protracted dynamics .– Before exploring the model predictions for the cross-country dy-

namics of income, it is worthwhile evaluating the protactedness of the model transitional

dynamics. To this end, we consider the average country in our sample, and suppose that

there is an increase in the growth of the world technology frontier (γ + χ) like the one we

observed in the industrial revolution (from 0.2% to 2%). The average country is parametrized

so that its adoption lag and its degree of penetration (aτ ) are constant and equal to the aver-

age adoption lag and intensive margins across countries and over our sample of technologies.

In particular, the resulting D is 50 years and the intensive margin is 40% of the U.S. level.

Figure 5 plots the transition of the output in this representative economy to the new balanced

growth path (normalized by the long term trend). In the figure, we can see that the model

generates a very slow convergence to the new balanced growth path. The half-life of the out-

26



put gap relative to the Modern balanced growth path is 77 years while for output growth it is

104 years. These half-lives are almost an order of magnitude higher than the typical half-life

in neoclassical growth models (e.g., Barro and Sala-i-Martin 2003).

There are three reasons why our model generates such protracted dynamics. First, the

long adoption lags (50 years) imply that it takes this amount of time for the new technologies

(which embody the higher productivity gains) to arrive in the economy. Until then, there

is no effect whatsoever in output growth. Second, for a given growth in the modern sector

output, its impact in GDP depends on the share of the modern sector. Since the modern

sector’s share increases slowly, so does aggregate output. Third, as shown in Proposition 1,

the growth of the modern sector increases progressively since it is initially convex.

Cross-country evolution of income growth .– To evaluate the model’s power to account for

the Great Divergence, we simulate the evolution of output for Western countries and the rest

of the world after feeding in a (common) one time permanent increase in the frontier growth,

as well as the estimated evolutions for adoption lags and the intensive margin for each group

of countries (see Tables 3 and ??). The results from this exercise are reported in Figure 6

and Table 6.

The model generates sustained differences in the growth rates of Western and non-Western

countries for long periods of time. Output growth starts to accelerate at the beginning of the

nineteenth century in the Western economy reaching its peak around 1900 at a rate slightly

above 2%. At this point, it slowly converges to the steady state growth of 2%. For the non-

Western country, instead, growth does not increase from the pre-industrial rate until the end

of the nineteenth century. Growth in the poor country slowly accelerates, but it is still around

1.5%, by year 2000. The gap in growth between the rich and poor countries is considerable.

Annual growth rates differ by more than 0.6% for 80 years. The peak gap is reached at around

1900 at 1.3%. From then, the gap declines monotonically until reaching 0.5% by 2000. Table

6 reports the average growth and growth gaps of our simulation and Maddison (2004). The

patterns and levels in our data trace quite well Madison’s.

The sustained cross-country gap in growth produced by the model leads to a substantial

gap in income per capita. In particular, our model generates a 2.8 income gap between the

Western countries and the rest of the world. Maddison (2004) reports an actual income

widening by a factor of 3.8 between Western countries and the rest of the world since the

Industrial Revolution.32 Hence, most of the variation in the income gap between Western and

32We have computed the increase in relative output per capita from Maddison (2004). We restrict our
attention to countries for which we have data on technology adoption. In our sample, the median non-Western
countries had approximately 68% of the income per capita of the median Western country in 1700. In 2000,
this figure was 14%. If instead we looked at the ratio of the 90th to the 10th percentile in our data, we would
find that in 1700, it was 2.6 and in 2000, it was 17.9. (so the relative increase is 6.9. Lucas (2004) numbers
for English speaking countries, Japan and northern Europe relative to the rest of the world are in the same
ballpark. The Western countries increase their income from 1750 to 2000 by 20, while the rest of the word
multiplied it by around 4, which again gives a increase of the relative gap of 5.
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non-Western countries in the last two centuries is accounted for.

The role of initial conditions and changes in adoption lags .– After showing that the model

does a remarkable job in reproducing the cross-country dynamics of income growth over the

last two centuries, it is worthwhile dissecting the mechanisms at work. We start this task by

simulating the dynamics of our model after a common acceleration of the technology frontier

for both countries. To this end, we keep constant at their initial level the adoption lags

and intensive margin in each country. Figure 7 shows that these initial conditions are an

important source of cross-country income divergence. In particular, longer adoption lags in

the non-Western country imply a delay of 80 years to start benefiting from the productivity

gains of the Industrial Revolution. As a result, the income gap increases by a factor of 2.7 by

year 2000.

Of course, this estimate does not provide an accurate assessment of the contribution of

adoption lags to the great divergence because adoption lags did not remain constant over

the last 200 years. As we have shown in Section 3.2, cross-country differences in adoption

lags have declined. To assess more precisely the role of adoption lags in cross-country growth

dynamics, we simulate the evolution of our two model economies after a common acceleration

in frontier growth allowing for the specific evolutions of adoption lags that we observe in the

data. The intensive margins are kept constant at the pre-industrial levels. Figure 8a presents

the results from this simulation. It is clear that cross-country differences in adoption lags are

a key driver of income divergence during the nineteenth century. In particular, prior to the

non-Western country start adopting Modern technologies and quickly overtaking the Western

country, the income gap reaches a level of 1.5. However, after that, the faster reduction in

adoption lags in the poor country induces higher growth rates in the non-Western country.

As a result, during the twentieth century income converges, and the relative income between

the two countries is .95 by 2000.

The role of the intensive margin .– The income dynamics induced by adoption lags suggest

that the evolution of the intensive margin may be necessary to explain why the great diver-

gence continued during the twentieth century. To explore this hypothesis more rigorously,

we simulate the evolution of the two economies following the acceleration of the common

technology frontier, and feeding in the estimated dynamics of the intensive margin. In this

simulation, we keep adoption lags constant at the pre-industrial levels.

Figure 8b presents the dynamics of income growth in each country. The first observation

is that the divergence in the intensive margin of technology generates a very significant diver-

gence in income growth between the rich and the poor country. In this simulation, the growth

acceleration in the poor country starts much later than in the baseline (Figure 6). This is a

consequence of omitting the productivity gains from a reduction in adoption lags in the poor

country. Another perspective on this same issue is that the decline in the intensive margin

reduces productivity growth by a magnitude that, initially, is equivalent to the gains brought
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by the industrial revolution to the poor countries.

It is also evident from Figure 8b that the rich country grows less, especially during the

nineteenth century, than in the baseline. This is a reflection of the productivity gains brought

by the reduction in adoption lags for rich countries. Furthermore, as shown in the bottom

panel of Figure 8b, the growth gap between rich and poor countries during the nineteenth

century is smaller when we omit the evolution of the adoption lags. Despite that, the poor

country’s growth rate falls behind the rich, and this gap does not begin to close until the

second half of the twentieth century. By 2000, the income gap between the rich and the poor

country would have increased by a factor of 4.7.33

To sum up, the findings from our simulations are as follows:

1. The model is capable of generating a Great Divergence where income per capita between

rich and poor countries increases by a factor of five over the last 200 years, which

represents most of the actual increase in the income gap observed in the data.

2. The presence of long adoption lags generates very protracted transitional dynamics.

3. Large cross-country differences in adoption lags explain much of income divergence

during the nineteenth century between rich and poor countries.

4. The Great Divergence continued during the twentieth century because of the divergence

in the penetration rates (i.e., intensive margin of adoption) between rich and poor

countries.

6 Robustness

Next we show that these findings are robust to alternative (i) calibrations, (ii) definitions

of the samples of rich and poor countries, and (iii) estimates of the intensive and extensive

margin.

6.1 Calibration of γ and χ

The results discussed above assumed that the productivity growth after the Industrial Rev-

olution was equally shared between the productivity growth of new technologies (χ) and of

new vintages (γ). Given the difficulty of calibrating the contribution of these two sources of

growth, it is necessary to study the robustness of our findings to the relative contributions

33One side comment we find interesting is that, shutting down the dynamics of adoption lags leads to more
protracted dynamics transitional dynamics, as illustrated by Figure 8b. As anticipated above, this shows that
the protractedness of the transitional dynamics is related to the length of the adoption lags. One prediction
of the model is that the reduction in adoption lags we have observed in the last 200 years should lead to faster
transitions at the (low) frequencies we are focusing on.
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of new technologies and new varieties to balanced growth. To this end, we redo our baseline

simulation under two polar assumptions. We first assume that all steady state growth comes

from the development of better vintages, and then assume that all growth comes from the

arrival of new, more productive, technologies.

Figure 9a depicts the dynamics of productivity growth in the first case, i.e., when all growth

comes from new varieties being introduced in the economy. The most remarkable observation

is that the poor country growth rate catches-up with the rich faster than in the baseline

calibration. The reason is intuitive. Once the differences in adoption lags becomes small,

both countries adopt new technologies at similar rates. Note that in this economy, growth

comes from (i) expanding the range of varieties available, (ii) new vintages of a technology

being more productive than older ones. There are no additional productivity gains from

introducing new technologies. In other words, new technologies are not more productive

than older technologies. Vintages of new technologies are as productive as vintages from old

technologies (conditional on a vintage of the same age). Hence, in this scenario, differences

in the intensive margin have a less damaging effect than in our baseline exercise. The reason

is that the only gains from adopting new technologies come from increasing the varieties

available in the economy. As the adoption lags of the poor countries converge to the rich

countries, the growth rate of the two economies tends to converge because, conditional on

adopting a technology, both countries adopt new vintages at the same rate. Hence, both

economies expand the range of varieties of new technologies at the same rate and enjoy the

same productivity gains, because the only source of growth in this economy comes from

expanding the number of varieties and newer varieties being more productive. The income

gap generated over two hundred years in this case is 2.5, which implies that the simulation

accounts for 60% of the 4 fold difference that was actually generated over this time period.

Figure 9b shows the polar case, in which all productivity growth comes from the adoption

of new technologies. In this case, the poor country lags behind more than in the baseline case.

The reason is that in this case the effect of differences in the intensive margin of adoption are

magnified. Note that in this case, all the productivity gains from adopting a new technology

come from (i) new technologies being more productive than older technologies, (ii) gains from

variety from adopting new vintages. Crucially, new vintages of a technology are not more

productive than older ones. Hence, the marginal gains from expanding the range of varieties

for a given technology are decreasing over time. This implies that the gains from convergence

in adoption lags (i.e., vintages of new technologies being adopted at the same rate between

rich and poor countries) has very little bite in this set up.

The modest gains from variety in the model imply that the key engine for long-run growth

is the gains from adoption of new technologies. This makes the divergence in the intensive

margin of adoption across countries much more salient. Recall that differences in the intensive

margin of adoption are isomorphic to differences in the productivity of a technology. Hence,
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the divergence in the intensive margin makes the new technologies being adopted in poor

countries relatively less productive than in rich countries. Given that this is the primary

source of growth in this economy, this makes poor countries grow at a very slow rate. In other

words, new technologies being less adopted in the intensive margin prevent poor countries

from reaping all the benefits of new technologies –even when the differences in adoption

lags are negligible between the two countries. The simulation generates a 3.1-fold income gap

differential between the two countries, which coincides with the magnitude found by Maddison

(2004).

6.2 Alternative definitions of non-western

We analyze how sensitive our results are to aggregating all non-Western. We compare re-do

our exercise comparing now Western countries and countries in the bottom third of the income

distribution in 2000.

6.3 Non-homotheticities in production

In this section, we explore how robust our predictions are once we allow for non-homotheticities

in the production function. We depart from our baseline estimating equation (28) by allowing

the coefficient on income to be different than one. We follow the same strategy as Comin and

Mestieri (2012). We use the time series variation in GDP in the United States to compute

the elasticity of income, and then use this estimate for all countries. When estimating the

income elasticity for the United States, we want to distinguish between the short and long

run income elasticities, since the former is likely to capture cyclical variation in the demand

for investment goods. This presumption is confirmed by our estimates, where we find that

the long-run income elasticity is around 2, while the short-run is three times higher.

As in Comin and Mestieri (2012), the estimates obtained allowing for non-homotheticities

are very similar to our baseline estimates. In fact, the correlation between them is almost

.9. The additional flexibility allowed in the model comes at the cost of a lower precision

in the estimates of the adoption lag for three U.S. technologies: ships, mail and electricity.

This creates the minor problem of having a less precise estimate for the United States in the

intensive margin. Since we do not want to have as baseline intensity for the technology an

imprecise estimate, we use the average intensive margin of Western countries as a reference

point rather than the U.S.. Which country is taken as baseline is irrelevant for comput-

ing the cross-country dispersion measures. However, the mean intensive margin of adoption

may be affected; therefore, the average intensive margin is not directly comparable with the

homothetic case.
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7 Conclusions

TO BE DONE
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Klenow, P. and Rodŕıguez-Clare, A. (1997). The neoclassical revival in growth economics:

Has it gone too far? In NBER Macroeconomics Annual 1997, Volume 12, NBER Chapters,

pages 73–114. National Bureau of Economic Research, Inc.

Lucas, R. E. (2000). Some macroeconomics for the 21st century. Journal of Economic Per-

spectives, 14(1):159–168.

Lucas, R. E. (2004). Industrial revolution: Past and future. The Region, 18(1):4.

Maddison, A. (2004). Contours of the world economy and the art of macro-measurement

1500-2001. Ruggles Lecture.

Norbin, S. (1993). The relation between price and marginal cost in u.s. industry: A contra-

diction. Journal of Political Economy, 101(6):1149–64.

Pritchett, L. (1997). Divergence, big time. Journal of Economic Perspectives, 11(3):3–17.

Dholakia, N, R. Dholakia and N. Kshetri (2003), “Internet Diffusion,” The Internet En-

cyclopedia, edited by Hossein Bidgoli, New York: Wiley.

Khalba, K., (2007), “The Adoption of Mobile Phones in Emerging Markets: Global Dif-

fusion and the Rural Challenge,” 6th Annual Global Mobility Roundtable 2007 Center for

Telecom Management Marshall School of Business, University of Southern Califonia.

33



A Detailed derivation of the Equilibrium Conditions

Derivation of equation (16): This follows from

Zτ =

(∫ max{t−Dτ ,τ}

τ
Z(τ , v)

1
µ−1dv

)µ−1

(50)

= aτe
(χ+γ)τ

(∫ t−Dτ

τ
e

γ
µ−1

(v−τ)
dv

)µ−1

=

(
µ− 1

γ

)µ−1

aτe
(χ+γ)τ

(
e

γ
µ−1

(t−Dτ−τ) − 1
)µ−1

(51)

Derivation of equation (25): Using the definition of the production function and inte-

grating, we have that

A =

(∫ τ̄

−∞
Z

1
θ−1
τ dτ

)θ−1

=

(
θ − 1

γ

)θ−1(∫ τ̄

−∞

[
aτe

(χ+γ)τeγ(t−Dτ−τ)
] 1
θ−1
(

1− e−
γ
θ−1

(t−Dτ−τ)
)
dτ

)θ−1

.

With a constant D and a, we find

A = a

(
θ − 1

γ

)θ−1(θ − 1

χ
− θ − 1

χ+ γ

)θ−1

e(χ+γ)(t−D), (52)

after rearranging, we obtain (25).

Derivation of equation (27): Start considering a second order approximation of Zτ

around t−Dτ − τ = 0,

Zτ ' aτe(χ+γ)τ

[
∆t

(
1 +

1

2

γ

µ− 1
∆t

)]µ−1

(53)

We can further simplify the expression of lnZτ by using the first order Taylor approximation

ln(1 + x) ' x for small x, yielding

lnZτ ' ln aτ + (χ+ γ)τ + (µ− 1) ln ∆t+
γ

2
∆t. (54)

Equation (27) is obtained then by direct substitution.
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B Description of the evolution of the output produced with

Old technologies over time

Suppose that the change in the technology frontier is an instantaneous increase in the growth

rate of the technology frontier, from χo+γo to γ+χ, that takes place at time T . We keep the

intensive and extensive margins constant at their pre-Industrial levels in this initial exercise.

Proposition 6 Before adoption of Modern technologies, the economy is in a balanced growth

path with growth rate χo + γo,

Y (t) = Ae(χo+γo)t. (55)

After an economy starts adopting Modern technologies, output produced with Old technologies

is

XOld(t) = Aoe
γotd(t)θ−1, (56)

where Ao is a positive constant, d(t) is an increasing, concave function, with initial value
γo

χo+γo
and limt→∞ d(t) = 1.

Proof For output produced before a country starts adopting modern technologies, τ < T ,

we have that equation (52) holds, and hence

Y = XOld = ao

(
(θ − 1)2

χo(χo + γo)

)θ−1

e(χo+γo)(t−Do). (57)

Once the adopted technologies are τ > T , the output produced with technologies with τ < T

grows only due to new vintages appearing and being more productive

XOld = a

(∫ T

−∞
dτ

∫ t−Do

τ
dve

χoτ+γov
θ−1

)θ−1

(58)

= a

(
θ − 1

γo

∫ T

−∞
dτ

(
e
χoτ+γo(t−Do)

θ−1 − e
(χo+γo)τ
θ−1

))θ−1

(59)

= a

(
(θ − 1)2

γoχo

)θ−1

e(χo+γo)T eγo(t−Do−T )

(
1− χo

χo + γo
e
−γo(t−Do−T )

θ−1

)θ−1

. (60)

Equation (56) follows from arranging the terms appropriately. It is immediate to verify that

d(Do + T ) = γo
χo+γo

and limt→∞ d(t) = 1. Taking the derivative of d(t), we have that it is

positive and the second derivative negative, which completes the proof.

Note that if we assume that pre-Modern technologies were equally productive χo = 0,

we obtain exactly equation (37). If χo > 0 then there is an adjustment after the industrial

revolution coming from the fact that only better vintages contribute to growth in the pre-
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Modern output. In any case, as χo + γo � χ+ γ, this transition is of no significance for the

transition to Modern growth and can be disregarded.

C Proofs and Derivations of Section 4

Proof of Proposition 1: For the output produced with pre-Modern technologies, we have

that by assumption,it grows at rate gOld, so the solution to dY/dt = gOld with the boundary

condition that at time D output is Y (D) is given (37) with Ao = Y (D). For the output

produced with modern technologies, applying (19) for only modern technologies, we have

that

XModern = a

(∫ t−D

T
dτ

∫ t−D

τ
dve

χτ+γv
θ−1

)θ−1

(61)

= a
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(62)
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(63)

= ae(χ+γ)(t−D)
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θ − 1
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(
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χ(T−(t−D))
θ−1
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(64)
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)
− 1
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(
1− e−

(χ+γ)∆t
θ−1
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(65)

where ∆t ≡ t−D − T . This last expression can be identified with (38), where

h(t) =
χ(χ+ γ)

γ

(
1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

))
. (66)

It is readily verified that h(D + T ) = 0 and limt→∞ h(t) = 1. The derivative of h(t) can be

expressed as
γ(θ − 1)

χ(χ+ γ)
h′−

χ∆t
θ−1 − e−

(χ+γ)∆t
θ−1 , (67)

from where it is apparent that h′(D+T ) = 0 and limt→∞ h
′(t) = 0. The second time derivative

verifies
γ(θ − 1)2

χ(χ+ γ)
h′−

χ∆t
θ−1 + (χ+ γ)e−

(χ+γ)∆t
θ−1 . (68)

It is readily verified that limt→∞ h
′′(t) = 0. Algebraic manipulation shows that h(t) is convex

for ∆t < θ−1
γ ln

(
χ+γ
χ

)
.
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Proof of Proposition 2: First we show that the weights on the modern growth sectors

have an S-shape. Note that

(
XOld

Y

) 1
θ−1

=
1

1 +
(
X1
X0

) 1
θ−1

, (69)

XModern

XOld
∝ e(χ+γ−go)t

[
1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)]θ−1

. (70)

Taking the time derivative of (69) it is readily verified that this share declines over time.

Moreover, the sign of the second derivative of (69) coincides with the sign of(
d

dt

(
XModern

XOld

) 1
θ−1

)2

−

(
1 +

(
XModern

XOld

) 1
θ−1

)
d2

dt2

(
XModern

XOld

) 1
θ−1

. (71)

Note that in the case that
(
XModern
XOld

) 1
θ−1

is concave, the share is unambiguously convex.

As we previously discussed for the damp factor, this occurs for sufficiently large t. To see

that, denoting by g ≡ χ+γ−go
θ−1 , abusing notation substituting t ≡ ∆t and taking the explicit

derivatives of the share, it can be verified that the sign of (71) coincides with the sign of

egt
(
h′2 − h′′(t)h(t)

)
−
(
g2h(t) + 2gh′(t) + h′′(t)

)
. (72)

Using the properties derived in Proposition 1 for h(t) that the first and second derivative

vanish for large t, it is immediate to verify that the limit as t approaches infinity of (72) is

positive. Similarly, when a country starts to adopt technologies of the industrial revolution

(for t = 0 after the change of variables), equation (72) simplifies to −h′′(0) < 0. So we he

have that the share on pre-Modern output is initially concave and eventually becomes convex.

Hence, the share on Modern output is initially convex and eventually concave.34

From (36) we can see how the S-shape of the weights translates into an S-shape for the

growth rate of output during the transition to the new balanced growth path. If gModern =

χ+γ, then we would have an exact S-shape for the growth rate of aggregate output. However,

from our discussion of the damp-factor, we know that gModern can grow at a faster than χ+ γ

for some transient period, while the dynamics of the damp factor are relevant. Hence, this

can give rise to some over-shooting of the long-run growth rate if when the weight on modern

growth becomes close to one, the growth rate of the modern sector is substantially higher

than χ+ γ.

34We have not shown that there exists a t∗ below which a share is convex and concave thereafter, even
though out simulations suggest so.
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Proof of Proposition 3: Start with the half-life of the growth rate. The definition of the

half-life is

χ+ γ

2
=

(
XM (t1/2)

Y (t1/2)

) 1
θ−1

gM (t1/2) +

(
XO(t1/2)

Y (t1/2)

) 1
θ−1

gO, (73)

where we are shortening the subindices, M for Modern, O for Old and

gM = χ+ γ + (θ − 1)
h′(t)

h(t)
. (74)

Rearranging, equation (73) becomes

(χ+ γ + 2(θ − 1)gh(t1/2))XM (t1/2)
1
θ−1 = (χ+ γ − 2gO)XO(t1/2)

1
θ−1 . (75)

This is a transcendental equation, which cannot be solved analytically. Before proceeding, we

state the following result. The average value of the function e−βt for t ∈ [0, T ] is

< e−βt >=
1

T

∫ T

0
e−βtdt =

1− e−βT

βT
. (76)

We proceed by averaging h(t) and h′(t) to make (75) analytically solvable,

(χ+ γ + 2(θ − 1) < gh >)XM (t1/2)
1
θ−1 = (χ+ γ − 2gO)XO(t1/2)

1
θ−1 . (77)

Denoting by

α ≡
(

(χ+ γ + 2(θ − 1) < gh >

χ+ γ − 2gO

)θ−1

, (78)

equation (77) is

αAMe
(χ+γ)(t−D)h(t)θ−1 = AOe

gO(t−D), (79)

where we are taking the normalization T = 0. As stated before, we proceed by averaging h(t)

to make the problem analytically solvable, which yields,

t = D +
1

χ+ γ − gO
ln

(
AO

αAM < h(t) >θ−1

)
. (80)

Finally, note that if in the approximation of the averages we would have taken a large T , we

would have obtained that < h(t) >' 1 and that gh ' 0. In this case, α ' 1 (as χ+ γ � gO)

and we would obtain the result reported in the paper. This shows the result for the half-life

of the growth.
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Calibration of the half-life of growth We discuss the making of the quantitative exercise

next. We take χ = γ = 1%, θ = 1.4. To approximate h(t), we take T = 80 years (which

is in line from what we obtain in the simulations for the time it takes h(t) to reach 1). If

β = χ
θ−1 ∼ 1/40, we have that βT = 2, < e−βt >= 1−e−2

2 ' .43, while if β = χ+γ
θ−1 ∼ 1/20

which gives βT = 4 and < e−βt >= 1−e−4

4 ' .25. Thus we have that

1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)
' 100(1− .43)− 50(1− .25) = 19.5, (81)

1

θ − 1

(
e−

χ∆t
θ−1 − e−

(χ+γ)∆t
θ−1

)
' 10

4
(.43− .25) = .45. (82)

This implies that gh = .45/19.5 ' 2.3%, thus

α =

(
2% + 2 · .4 · 2.3%

2%− .4%

).4
=

(
3.84%

1.6%

).4
= 1.42.

Next, we have that

AM < h(t) >θ−1= αaξ

(
(θ − 1)2

γ
<

1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)
>

)θ−1

(83)

where ξ is a parameter in the production function that ensures that output in 1820 is consistent

with the data, its value is our baseline calibration is around 5. Quantitatively this takes the

value of

AM < h(t) >θ−1= 1.42 · 4

10
· 5
(
.42

.01
19.5

).4
' 30 (84)

Finally, taking the initial average income per capita before the industrial revolution at sub-

sistence levels ($400) we can compute expression (80)

tgrowth
1/2 −D =

1

2%
ln

(
400

30

)
' 130 years (85)

If instead of using the averages, we would have used the approximation of a large T , we would

have obtained

AM < h(t) >θ−1= aξ

(
(θ − 1)2

χ(χ+ γ)

)θ−1

' 30 years. (86)

Thus, this assumption seems quite innocuous as yields very similar results.

Derivation of the half-life of output Next, we derive the half-life of output. Define

Ỹ (t) =
Y (t)

aMAMe(χ+γ)(t−D)
. (87)
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By construction, limt→∞ Ỹ (t) = 1. Hence, the definition of the half-life is

Ỹ (0) +
1

2
(1− Ỹ (0)) = Ỹ (t1/2), (88)

where we are taking the normalization T = 0. This is a transcendental equation, so to make

further progress we substitute the transient part of modern output

1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)
(89)

for its average value (more on this on the calibration below), which we denote by κ. Denoting

the left hand side of (88) by C, we can re-write as

aOAO

aMAM

(
C

1
θ−1 − κ

1
θ−1

)θ−1
= e(χ+γ−gO)(t−D). (90)

Solving for t we have that

t = D +
1

χ+ γ − gO
ln

 aOAO

aMAM

(
C

1
θ−1 − κ

1
θ−1

)θ−1

 . (91)

Note that the expression reported in the paper has a 2 instead of the constant
(
C

1
θ−1 − κ

1
θ−1

)θ−1
.

To obtain the exact expression reported in the paper, see below, in which we use an alternative

normalization.

Calibration of the half-life of levels We take Y (0) to be the subsistence level in Maddison

(2004) of $400, taking χ = γ = 1% and θ = 1.3,
(

(θ−1)2

χ(χ+γ)

)θ−1
= 14.5 which implies that

Ỹ (O) =
400

.4 · 14.5
= 69. (92)

This implies that

C = 69− .5 · 68 = 35 (93)

The average value of the transient term (89) we already calculated in (81) to be 19.5. Thus,

we have that (
C

1
θ−1 − κ

1
θ−1

)θ−1
= (35

1
.4 − 19.5

1
.4 ).4 = 31.5 (94)

Substituting into (164) we have that

t−D =
1

1.8%
ln

(
400

.4 · 14.5 · 31.5

)
= 40 years. (95)
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Alternative definition of half-life. If we study the half life of the output gap relative to

BGP,

Ȳ (t) =
aMAMe

(χ+γ)(t−D)

Y (t)
, (96)

we obtain similar results, but we can obtain a sharper characterization. As before, by con-

struction, limt→∞ Ỹ (t) = 1. However, now Ȳ (t) is an increasing function. The definition of

the half-life is

Ȳ (0) +
1

2
(1− Ȳ (0)) = Ȳ (t1/2), (97)

but now, using (92), we know that Ȳ (0) ' 0, which allows to further simplify the half-life

definition to
1

2
' Ȳ (t1/2). (98)

Following the previous steps and approximating the average of h(t) by its long-run level, one

obtains that
aOYO

aMAM

(
2

1
θ−1 − 1

)θ−1
= e(χ+γ−gO)(t−D). (99)

As 2
1
θ−1 � 1, we can approximate the last equation by (40).

Proof of Proposition 4 With the definition of the evolution of the intensive and extensive

margins (42), we have that Old and Modern output is calculated as in Proposition 1. Applying

the definition of evolution of margins we just have to substitute D for DOld in the computation

for Old output and D for DModern in the computation of Modern output. The rest of the claims

in the proposition, can be derived analogously to Propositions (42), (35) and (??) replacing D

for DModern. An additional correction appears linearly, t1/2 = DModern− gO
χ+γDOld + . . . when

re-doing the algebra. Note, however that DModern � gO
χ+γDOld, so this could be in principle

neglected.

Proof of Proposition 5: The derivation for output of the Old sector is as in Proposition

1. Next, we characterize Modern output. First, we analyze the case in which τ < T̄ . Note

that the range of integration for a given technology that is being used goes from [τ , t−Dτ ],

where t denotes current time and Dτ is the lag of technology τ . Without loss of generality,

normalize the advent of the Industrial revolution T = 0. Recall the parametrization on the

evolution of the margins of adoptions, which in this range we simply denote by Dτ = d0−d1τ

and ln aτ = a0 − a1τ . To map Dτ into the time space, note that the first technology will be

adopted at time t = d0 and that the range of available technologies at time t can be written

as [0, t − (d0 − d1(t − d0))] = [0, (1 + d1)(t − d0)]. The range of vintages of technology τ at

time t is given by the difference between the time the last adopted vintage and the time of

adoption of the first one, t− (τ +Dτ ), vτ ∈ [τ , t−Dτ ]. The output produced using modern
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technologies can be written as

Xm =

(∫ t−Dt

0
dτ

∫ t−Dτ

τ
dv [aτZ(τ , v)]

1
θ−1

)θ−1

(100)

= ea0

(∫ (1+d1)(t−d0)

0
dτ

[
e

(χ−a1)τ
θ−1

∫ t−(d0−d1τ)

τ
dve

γv
θ−1

])θ−1

(101)

= ea0

(
θ − 1

γ

)θ−1
(∫ (1+d1)(t−d0)

0
dτe

(χ−a1)τ
θ−1

[
e
γ(t−(d0−d1τ))

θ−1 − e
γτ
θ−1

])θ−1

(102)

= ea0

(
θ − 1

γ

)θ−1
(∫ (1+d1)(t−d0)

0
dτ

[
e

(χ+d1γ−a1)τ+γ(t−d0)
θ−1 − e

(γ+χ−a1)τ
θ−1

])θ−1

(103)

= ea0

(
θ − 1

γ

)θ−1(
...θ−1 e

γ(t−d0)
θ−1

(
θ − 1

χ+ γd1 − a1

)[
e
χ+γd1−a1

θ−1
((1+d1)(t−d0)) − 1

])
− . . .(

...θ−1 . . .− θ − 1

χ+ γ − a1

[
e
χ+γ−a1
θ−1

((1+d1)(t−d0)) − 1
])θ−1

(104)

= ea0

(
(θ − 1)2

γ

)θ−1

exp
[(

(γ + χ− a1)(1 + d1) + d2
1γ
)

(t− d0)
]

(105) 1

χ+ γd1 − a1

[
1− e−

χ+γd1−a1
θ−1

(1+d1)(t−d0)
]
− e−

d21γ

θ−1
(t−d0)

χ+ γ − a1

[
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
]θ−1

.

This last expression can be rewritten as

Xm(t) = Ame
gmtf(t) (106)

where

Am = ea0

(
(θ − 1)2

γ

)θ−1

e−d0((γ+χ−a1)(1+d1)+d2
1γ) (107)

gm = (γ + χ− a1)(1 + d1) + d2
1γ (108)

f(t) =

 1

χ+ γd1 − a1

[
1− e−

χ+γd1−a1
θ−1

(1+d1)(t−d0)
]
− e−

d21γ

θ−1
(t−d0)

χ+ γ − a1

[
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
]θ−1

Next we analyze the properties of f(t). First, note that the first instant of time in which

technology is adopted, t = d0, f(d0) = 0 and limt→∞ f(t) =
(

1
χ+γd1−a1

)θ−1
. To further

analyze the behaviour of the damp factor f(t) it is useful to rewrite it as f(t) = h(t)θ−1, note
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that

f ′θ−2h′(t), (109)

f ′′θ−2
[
(θ − 2)h(t)−1h′2 + h′′(t)

]
, (110)

gf ≡ (ln f(t))′ = (θ − 1)
h′(t)

h(t)
, (111)

g′f = (θ − 1)
h′′(t)h(t)− h′2

h(t)2
. (112)

The time derivative of h(t) is

(θ − 1)h′(t) = (1 + d1)e−
χ+γd1−a1

θ−1
(1+d1)(t−d0) . . .

. . .− e−
γd21(t−d0)

θ−1

[
(1 + d1)e−

χ+γ−a1
θ−1

(1+d1)(t−d0) − γd2
1

χ+ γ − a1

(
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
)]

Result 1: h′(t) > 0 for t > d0, h′(d0) = 0 and limt→∞ h
′(t) = 0. Proof: By direct

substitution it is verified that h′(d0) = 0. To show that h′(t) > 0. Suppose that it is true, and

rearrange,

(1 + d1)e−
χ+γd1−a1

θ−1
(1+d1)(t−d0) > e−

γd21(t−d0)

θ−1 (1 + d1)e−
χ+γ−a1
θ−1

(1+d1)(t−d0) . . .

. . .− e−
γd21(t−d0)

θ−1
γd2

1

χ+ γ − a1

(
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
)

(1 + d1)e
−(χ+γd1−a1)(1+d1)+d21γ

θ−1
(t−d0) > (1 + d1)e−

χ+γ−a1
θ−1

(1+d1)(t−d0) − γd2
1

χ+ γ − a1

(
1− e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
)

(1 + d1)e
γ
θ−1

(t−d0) > (1 + d1)− γd2
1

χ+ γ − a1

(
e
χ+γ−a1
θ−1

(1+d1)(t−d0) − 1
)

Note that the left hand side is an increasing function of t while the right hand side is decreasing.

Moreover the left hand side equals the right hand side at t = d0, establishing the result claimed

for t > d0. Finally, the result that limt→∞ h
′(t) = 0 follows directly from taking the limit of

h′(t). QED

Result 2: h(t) is convex for t0 ≤ t < t∗ and concave thereafter. Moreover,

limt→∞ h
′′(t) = 0. Proof: The expression for (θ − 1)2h′′(t) is

−(1 + d1)2(χ+ d1γ − a1)e−
χ+d1γ−a1

θ−1
(1+d1)(t−d0) + e−

(1+d1)(χ+γ−a1)+d21γ

θ−1
(t−d0) ·(

(1 + d1)(2γd2
1 + (1 + d1)(χ+ γ − a1)) +

γd2
1

χ+ γ − a1
− γd2

1

χ+ γ − a1
e−

χ+γ−a1
θ−1

(1+d1)(t−d0)

)
.

Evaluating this expression at t = d0 yields (1 + d1)(1 + d2
1)γ > 0. Next, conjecture that
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θ − 1)2h′′(t) > 0. This implies that

(1 + d1)2(χ+ d1γ − a1)e−
χ+d1γ−a1

θ−1
(1+d1)(t−d0) < e−

(1+d1)(χ+γ−a1)+d21γ

θ−1
(t−d0)·(

(1 + d1)(2γd2
1 + (1 + d1)(χ+ γ − a1)) +

γd2
1

χ+γ−a1
− γd2

1
χ+γ−a1

e−
χ+γ−a1
θ−1

(1+d1)(t−d0)
)

⇐⇒

(1 + d1)2(χ+ d1γ − a1)eγ(t−d0) <(
(1 + d1)(2γd2

1 + (1 + d1)(χ+ γ − a1)) +
γd2

1
χ+γ−a1

− γd2
1

χ+γ−a1
e−

χ+γ−a1
θ−1

(1+d1)(t−d0)
)

This last expression is indeed satisfied for t = d0 (as is the same expression we evaluated

before). Note that the left hand side is an increasing function that tends to infinity, while the

right hand side is a decreasing function that tends to minus infinity. Thus, at some t∗ ≥ t0

this inequality will cease to be true, and (θ − 1)2h′′(t) < 0 in that range. Finally, the result

that limt→∞ h
′′(t) = 0 follows directly from taking the limit of h′′(t). QED

We briefly discuss how the behaviour of h(t) can inform our analysis on f(t) and its

derivatives. Using equation (109) it is immediate to verify that f ′(t) inherits the properties of

h′(t), and hence, f ′(t) is increasing and f ′(d0) = limt→∞ f
′(t) = 0. Similarly, using (112), we

conclude that gf is increasing and g′f (d0) = limt→∞ g
′
f (t) = 0. Moreover limt→∞ f

′′(t) = 0. It

can be verified too that limt→d0 f
′(t) =

(1+d1+d2
1+d3

1)γ
(θ−1)2 > 0.

Next we analyze the case in which τ > T . (the time corresponding to the transition is

t = d0 +T/(1 +d1). Note that the output produced with Modern technologies can be divided

in the output produced using technologies τ ∈ [0, T ] and the subsequent technologies, τ > T .

The output produced using the first range of technologies can be computed as we have done
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before,

Xm0(t) =

(∫ T

0
dτ

∫ t−Dτ

τ
dv [aτZ(τ , v)]

1
θ−1

)θ−1

(113)

= ea0

(∫ T

0
dτ

[
e

(χ−a1)τ
θ−1

∫ t−(d0−d1τ)

τ
dve

γv
θ−1

])θ−1

(114)

= ea0

(
θ − 1

γ

)θ−1(∫ T

0
dτe

(χ−a1)τ
θ−1

[
e
γ(t−(d0−d1τ))

θ−1 − e
γτ
θ−1

])θ−1

(115)

= ea0

(
θ − 1

γ

)θ−1(∫ T

0
dτ

[
e

(χ+d1γ−a1)τ+γ(t−d0)
θ−1 − e

(γ+χ−a1)τ
θ−1

])θ−1

(116)

= ea0

(
θ − 1

γ

)θ−1(
e
γ(t−d0)
θ−1

(
θ − 1

χ+ γd1 − a1

)[
e
χ+γd1−a1

θ−1
T − 1

]
− θ − 1

χ+ γ − a1

[
e
χ+γ−a1
θ−1

T − 1
])θ−1

(117)

= ea0

(
(θ − 1)2

γ

)θ−1

exp [γ(t− d0)] (118)((
θ − 1

χ+ γd1 − a1

)[
e
χ+γd1−a1

θ−1
T − 1

]
− e−

γ
θ−1

(t−d0) θ − 1

χ+ γ − a1

[
e
χ+γ−a1
θ−1

T − 1
])θ−1

Note that this is an increasing function. Write output produced Xm0(t) = C(Aegt −B)θ−1

X ′gtm0(θ − 1)(Aegt −B)θ−2 > 0. (119)

The second derivative is

X ′′gtm0 +B)θ−2g2A
(
A(θ − 2)(Aegt −B)−1 + 1

)
. (120)

It is clear that (120) is asymptotically positive. Whether or not it is always positive, depends

on whether

AegT −B > A(θ − 2),

which depends on parametric assumptions.

Next we derive the output produced with τ > T using in equation (??) in which case the

adoption margins are constants and we denote T ≡ ti
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Xm1 = a

(∫ t−D

ti

dτ

∫ t−D

τ
dve

χτ+γv
θ−1

)θ−1

(121)

= a

(
θ − 1

γ

∫ t−D

ti

dτ

(
e
χτ+γ(t−D)

θ−1 − e
(χ+γ)τ
θ−1

))θ−1

(122)

= a

[
θ − 1

γ

{
θ − 1

χ

(
e
χ(t−D)+γ(t−D)

θ−1 − e
χti+γ(t−D)

θ−1

)
− θ − 1

χ+ γ

(
e

(χ+γ)(t−D)
θ−1 − e

(χ+γ)ti
θ−1

)}]θ−1

(123)

= ae(χ+γ)(t−D)

[
θ − 1

γ

{
θ − 1

χ

(
1− e

χ(ti−(t−D))

θ−1

)
− θ − 1

χ+ γ

(
1− e

(χ+γ)(ti−(t−D))

θ−1

)}]θ−1

(124)

= ae(χ+γ)(t−D)

[
(θ − 1)2

γ

{
1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)}]θ−1

(125)

where ∆t ≡ t−D − ti and a = ea0

Note that the results we have derived for t < T apply directly to Xm1 because the transient

part of (125) is a particular case of the case analyzed previously for d1 = a1 = 0. In this case,

taking the second derivative of h(t) one can find a closed form expression for the threshold t∗

above which h(t) becomes convex. It is t∗ = θ−1
γ ln

(
χ+γ
χ

)
.

Next, note that the total modern output produced when technologies τ > T have been

adopted is

Xm =

(
X

1
θ−1

m0 +X
1
θ−1

m1

)θ−1

. (126)

As both Xm0 and Xm1 are increasing functions of time, it is immediate to verify that Xm

is increasing over time. To gain further insight on its behaviour, note that (118) and (125)
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can be written as

Xm0 = Ae(χ+γ)t
(
Be−

χ
θ−1

t − Ce−
χ+γ
θ−1

t
)θ−1

, (127)

Xm1 = Ae(χ+γ)t
(
De−

χ+γ
θ−1

t − Ee−
χ
θ−1

t + F
)θ−1

, (128)

A = ea0

(
(θ − 1)2

γ

)θ−1

, (129)

B =
e−

γ
θ−1

d0

χ+ γd1 − a1

(
e
χ+γd1−a1

θ−1
T − 1

)
, (130)

C =
1

χ+ γ − a1

(
e
χ+γ−a1
θ−1

T − 1
)
, (131)

D =
e
χ+γ
θ−1

T

χ+ γ
, (132)

E =
e
χT−γdm
θ−1

χ
, (133)

F =
γe−

χ+γ
θ−1

dm

χ(χ+ γ)
. (134)

Using (126), we have that

Xm = Ae(χ+γ)t

(D − C)e−
χ+γ
θ−1

t − (E −B)e−
χ
θ−1

t + F︸ ︷︷ ︸
h(t)


θ−1

(135)

Denoting by h(t) the terms inside the parenthesis, we have that

(θ − 1)h′−
χ+γ
θ−1

t + χ(E −B)e−
χ
θ−1

t, (136)

(θ − 1)2h′′2(D − C)e−
χ+γ
θ−1

t − χ2(E −B)e−
χ
θ−1

t, (137)

where

D − C =
e
χ+γ
θ−1

T

χ+ γ
− 1

χ+ γ − a1

(
e
χ+γ−a1
θ−1

T − 1
)
, (138)

=
1

χ+ γ − a1

[
1 + e

χ+γ
θ−1

T
(

1− e−
a1
θ−1

T
)
− a1e

χ+γ
θ−1

T

χ+ γ

]
, (139)

E −B =
e
χT−γdm
θ−1

χ
− e−

γ
θ−1

d0

χ+ γd1 − a1

(
e
χ+γd1−a1

θ−1
T − 1

)
, (140)

In general, the properties of h′(t) and h′′(t) depends on the combination of several parameters.
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To gain some insight, consider the case in which χ, γ � a1, d1,

D − C =
1

χ+ γ
, (141)

E −B =
1

χ

(
e−

γd0
θ−1 + e

χT
θ−1

(
e−

γdm
θ−1 − e−

γd0
θ−1

))
. (142)

In this case, (θ − 1)h′(T ),

−e−
χ+γ
θ−1

T + e−
χT+γd0
θ−1 + e−

γdm
θ−1

(
1− e−

γ
θ−1

(do−dm)
)
. (143)

A sufficient condition for h′(t) to be increasing for all t ≥ T is that d0 < T . That is the initial

lag has to be relatively small compared to the transition period. For the second derivative,

we have that

(χ+ γ)e−
χ+γ
θ−1

t − χe−
χ
θ−1

t
(
e−

γd0
θ−1 + e

χT−γdm
θ−1

(
1− e−

γ
θ−1

(do−dm)
))

. (144)

This shows already that asymptotically, (i.e., for large t) h′′(t) < 0. Similar to the analysis of

the first derivative, we have that evaluated at t = T , a sufficient condition for equation (144)

to be positive is d0 < T . In this case we would have an S-shape.

Next, we study the behavior of the share

s =
1

1 +
(
Xm
Xo

) 1
θ−1

.

The quotient in the previous expression can be written as,

y ≡
(
Xm

Xo

) 1
θ−1

=
X

1
θ−1

m0 +X
1
θ−1

m1

X
1
θ−1
o

= C0e
g0t + C1e

g1th(t) (145)

where C0, C1 are two constants, g0 < g1, and h(t) is given by equation (125),

1

χ

(
1− e−

χ∆t
θ−1

)
− 1

χ+ γ

(
1− e−

(χ+γ)∆t
θ−1

)
(146)

with ∆t = t − T. It is immediate to verify that y is an increasing function (as it is the sum

of two increasing functions). Thus, s is decreasing over time. Taking the second derivative

over time of s, one finds that the sign of the second derivative is the same as the sign of[
ẏ2 − (1 + y)ÿ2

]
, using that

ẏ = g0C0e
g0t + g1C1e

g1th+ C1e
g1tḣ (147)

ÿ = g2
0C0e

g0t + g2
1C1e

g1th+ 2g1C1e
g1tḣ+ C1e

g1tḧ (148)
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Using the fact that h(T ) = ḣ(T ) = 0, ḧ(T ) = γ, we have that
[
ẏ(T )2 − (1 + y(T ))ÿ(T )2

]
is

g2
0C

2
0e

2g0T − (1 + C0e
g0t)(g2

0C0e
g0T + C1γ) < 0. (149)

Thus, s is initially concave. That is, there exist a ε > 0 such that if t ∈ [T, T + ε] then

ẏ(t)2 − (1 + y(t))ÿ(t)2 < 0.

Next, using that limt→∞ h(t) = χ/γ(χ+γ), limt→∞ ḣ(t) = 0 and limt→∞ ḧ(t) = 0, we find

that

lim
t→∞

ẏ(t)2 − (1 + y(t))ÿ(t)2 ∼ lim
t→∞

(
χ

γ(χ+ γ)
− 1

)
e2g1t. (150)

Hence, the asymptotic behavior depends on whether χ ≶ χ(χ+γ). Note that given that both

χ and γ are on the order of 1/100, we have that χ > χ(χ+ γ), and hence s is asymptotically

convex.35

Proposition 7 Suppose that the half-life of the system for levels and growth is reached for

τ ∈ [T, T̄ ]. Then, the half-life of the system and the half-life of the growth rate for the Western

countries can be approximated by

tlevel1/2 = do −
χ+ γ

ga
(do − dm) +

1

ga
ln

C1

(
(θ−1)2

χ(γ+χ)

)θ−1

eao−am

 (151)

tgrowth1/2 = d0 +
1

χ+ γ + γa − g0
ln


(
χ+γ−2gO
χ+γ+2ga

)θ−1
Y (d0)(

(θ−1)2

γ(χ+γd1−a1)

)θ−1
ea0

 (152)

(153)

where Y (d0) denotes the income level when Industrial Revolution technologies starts to be

adopted and C is some positive constant.

Proof of Proposition 7: In this proof we will not provide the level of detail of the Proof

of Proposition 3, as the derivations are analogous. We assume that the half life is achieved

in the regime where τ < T . We assume directly that the transient part h(t) ' 1 (which we

only assumed in the end of 3. Under these assumptions, the definition of the half-life for the

35For example, in the baseline case, we have that χ = γ = 1%, so that the asymptotic behavior is convex
1

100
> 1

100
2

100
. In fact, under the assumption that χ = γ, the condition for an asymptotic convex behavior is

that χ < 50%.
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growth rate is

(
XM (t1/2)

Y (t1/2)

) 1
θ−1

gM (t1/2) +

(
XO(t1/2)

Y (t1/2)

) 1
θ−1

gO =
χ+ γ

2
, (154)

2XM (t1/2)
1
θ−1 gM + 2XO(t1/2)

1
θ−1 gO ' (χ+ γ)Y (t1/2)

1
θ−1 , (155)

(χ+ γ + 2ga)XM (t1/2)
1
θ−1 = (χ+ γ − 2gO)XO(t1/2)

1
θ−1 , (156)

ea0

(
(θ − 1)2

γ(χ+ γd1 − a1)

)θ−1

egm(t−d0) =

(
χ+ γ − 2gO
χ+ γ + 2ga

)θ−1

Y (d0)egO(t−d0).(157)

Thus,

tgrowth
1/2 = d0 +

1

gm − g0
ln


(
χ+γ−2gO
χ+γ+2ga

)θ−1
Y (d0)(

(θ−1)2

γ(χ+γd1−a1)

)θ−1
ea0

 (158)

Next, we derive the half-life in levels. Define

Ỹ (t) =
Y (t)

eam
(

(θ−1)2

χ(χ+γ)

)θ−1
e(χ+γ)(t−dm)

. (159)

By construction, limt→∞ Ỹ (t) = 1. Hence, the definition of the half-life is

Ỹ (0) +
1

2
(1− Ỹ (0)) = Ỹ (t1/2), (160)

where we are taking the normalization T = 0. This is a transcendental equation, so to make

further progress we assume that the transient part of growth is h(t) ' 1,36 Denoting the left

hand side of (159) by C, we can re-write as

C
1
θ−1 =

ea0

(
(θ−1)2

γ

)θ−1
e(χ+γ+ga)(t−d0)

eam
(

(θ−1)2

χ(χ+γ)

)θ−1
e(χ+γ)(t−dm)


1
θ−1

+

 Y (d0)egO(t−dO)

eam
(

(θ−1)2

χ(χ+γ)

)θ−1
e(χ+γ)(t−dm)


1
θ−1

(161)

C
1
θ−1 =

e
ga(t−do)−(χ+γ)(do−dm)

θ−1

(θ−1)2

χ(γ+χ)e
(am−ao)
θ−1

(
(θ − 1)2

γ
+
(
e−a0Y (d0)e(gO−χ−γ−ga)(t−dO)

) 1
θ−1

)
. (162)

To solve for this equation analytically, we approximate the second term in parenthesis for its

average value. Using the following notation

κ =
(θ − 1)2

γ
+ <

(
e−a0Y (d0)e(gO−χ−γ−ga)(t−dO)

) 1
θ−1

> (163)

36One could do as in the proof of Proposition 3 and take the average values.
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t can be expressed as

tlevel
1/2 = do −

χ+ γ

ga
(do − dm) +

1

ga
ln

C
(

(θ−1)2

κχ(γ+χ)

)θ−1

eao−am

 (164)

D Data

The twenty-five particular technology measures, organized by broad category, that we consider

are:

1. Steam and motor ships: Gross tonnage (above a minimum weight) of steam and

motor ships in use at midyear. Invention year: 1788; the year the first (U.S.) patent

was issued for a steam boat design.

2. Railways - Passengers: Passenger journeys by railway in passenger-KM.

Invention year: 1825; the year of the first regularly schedule railroad service to carry

both goods and passengers.

3. Railways - Freight: Metric tons of freight carried on railways (excluding livestock

and passenger baggage).

Invention year: 1825; same as passenger railways.

4. Cars: Number of passenger cars (excluding tractors and similar vehicles) in use. Inven-

tion year: 1885; the year Gottlieb Daimler built the first vehicle powered by an internal

combustion engine.

5. Trucks: Number of commercial vehicles, typically including buses and taxis (excluding

tractors and similar vehicles), in use. Invention year: 1885; same as cars.

6. Tractor: Number of wheel and crawler tractors (excluding garden tractors) used in agri-

culture. Invention year: 1892; John Froelich invented and built the first gasoline/petrol-

powered tractor.

7. Aviation - Passengers: Civil aviation passenger-KM traveled on scheduled services

by companies registered in the country concerned. Invention year: 1903; The year the

Wright brothers managed the first successful flight.

8. Aviation - Freight: Civil aviation ton-KM of cargo carried on scheduled services by

companies registered in the country concerned. Invention year: 1903; same as aviation

- passengers.
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9. Telegraph: Number of telegrams sent. Invention year: 1835; year of invention of

telegraph by Samuel Morse at New York University.

10. Mail: Number of items mailed/received, with internal items counted once and crossâeborder

items counted once for each country. Invention year: 1840; the first modern postage

stamp, Penny Black, was released in Great Britain.

11. Telephone: Number of mainline telephone lines connecting a customer’s equipment

to the public switched telephone network. Invention year: 1876; year of invention of

telephone by Alexander Graham Bell.

12. Cellphone: Number of users of portable cell phones. Invention year: 1973; first call

from a portable cellphone.

13. Personal computers: Number of self-contained computers designed for use by one

person. Invention year: 1973; first computer based on a microprocessor.

14. Internet users: Number of people with access to the worldwide network. Invention

year: 1983; introduction of TCP/IP protocol.

15. Spindles: Number of mule and ring spindles in place at year end. Invention year: 1779;

Spinning Mule invented by Samuel Crompton.

16. Synthetic Fiber: Weight of synthetic (noncellulosic) fibers used in spindles Invention

year: 1924; Invention of rayon.

17. Steel: Total tons of crude steel production (in metric tons). This measure includes steel

produced using Bessemer and Open Earth furnaces. Invention year: 1855; William Kelly

receives the first patent for a steel making process (pneumatic steel making).

18. Electric Arc Furnaces: Crude steel production (in metric tons) using electric arc

furnaces. Invention year: 1907; invention of the Electric Arc Furnace.

19. Blast Oxygen Furnaces: Crude steel production (in metric tons) in blast oxygen

furnaces (a process that replaced Bessemer and OHF processes). Invention year: 1950;

invention of Blast Oxygen Furnace.

20. Electricity: Gross output of electric energy (inclusive of electricity consumed in power

stations) in Kw-Hr. Invention year: 1882; first commercial power station on Pearl Street

in New York City.
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21. Fertilizer: Metric tons of fertilizer consumed. Aggregate of 25 individual types, cor-

responding to broadly Ammonia and Phosphates. Invention year: 1910; Haber-Bosch

process to produce ammonia is patented in 1910.

22. Harvester: Number of selfpropelled machines that reap and thresh in one operation.

Invention year: 1912; The Holt Manufacturing Company of California produces a self-

propelled harvester. Subsequently, a selfpropelled machine that reaps and threshes in

one operation appears.

23. Kidney Transplant: Number of kidney transplants performed. Invention year: 1954;

Joseph E. Murray and his colleagues at Peter Bent Brigham Hospital in Boston per-

formed the first successful kidney transplant.

24. Liver Transplant: Number of liver transplants performed. Invention year: 1963; Dr.

Thomas Starzl performs the first successful liver transplant in the United States.

25. Heart Transplant: Number of heart transplants performed Invention year: 1968;

Adrian Kantrowitz performed the first pediatric heart transplant in the world on De-

cember 6, 1967 at Maimonides Hospital.

E Tables
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Time Period
1820-1900 1900-2000

Simulation Western Countries .69% 2.16%
Non-Western Countries .27% 1.45%
Difference .42% .71%

Maddison Western Countries 1.1% 2.0%
Rest .4% 1.2%
Difference West-Rest .7% .8%

Table 6: Growth rates of GDP per capita. Simulation results and growth rates from Maddison
(2004)

F Simulation and Calibration of the Production Function in

Section 5

The simulations reported in the paper are a discrete time model, in which at each period of

time a new technology and a new vintage of all technologies appear. We run first the model

forward to reach a BGP at a growth rate of .2% holding the adoption margins constant. We

normalize the output at the initial point of the initial revolution so that it is equal for all

countries that we simulate. Then we start reducing the adoption lag and the intensive margin

for the new technologies that appear, holding the evolution of the productivity of the “Old”

ones at pre-Industrial levels (as explained in the model).

The simulations reported in the paper normalize the output produced using the pre-

Modern technologies as follows. The production function we are working with could be written

in general as

Y (t) = C
[
(ξOldAOld(t))

1
θ−1 + (ξModernAModern(t))

1
θ−1

]θ−1
. (165)

We normalize ξModern = 1, as the presumption is that we have a good description of the

Modern growth process,

Y (t) = C
[
(ξOldAOld(t))

1
θ−1 +AModern(t)

1
θ−1

]θ−1
. (166)

Next, we use the fact that for the Western countries we know much income grew since the

our “start” of the industrial revolution (1765) –we interpolate output growth from Maddison

(2004) to obtain this number– up to an arbitrary date T̄ , which we take to be 1820. Denote
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by α the ratio Y (T̄ )/Y (1765). Then, to match the increase in relative output, we have that

ξOld =
AModern(T̄ )[

(αAOld(1765))
1
θ−1 −AOld(T̄ )

1
θ−1

]θ−1
. (167)

Finally, to match the level of output at the “start” of the industrial revolution, we have that

C =
Y (1765)

ξOldAOld(1765)
. (168)

Note that the dynamics are independent of the term C. So for our purposes, we can re-scale

the output at the start of the Industrial Revolution to 1.

Given that we simulate the evolution of a system to its initial pre-Modern growth rate, the

level of output at a given point of time is different depending on the levels of adoption. We

can rewrite the production function as
[
(CξOldAOld(t))

1
θ−1 + (CAModern(t))

1
θ−1

]θ−1
. Hence,

the normalizing initial term CξOld is different for each of our countries. Indeed, the term ξOld

is, on the contrary technology specific, as it contains information on the relative productivity

of pre-Industrial to Modern technologies. In other words, the ratio of CξOld to C Hence, once

we pin it down for the Western countries from equation (167), we use it in the rest of the

simulations.

G Figures
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Figure 3: Adoption of Telephone for four countries.

Figure 4: Generic Evolution of the growth rate in the transition to Modern growth.
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Figure 5: Slow transitional dynamics.

(a) Consumption gap relative to the Modern BGP (b) Growth path to Modern BGP

This simulation corresponds to the transition to the new balanced growth path after an acceleration

of the technological frontier from .2% to 2% for a country with a constant lag as the average lag in

our sample (50 years) and average intensive margin (40% of the U.S. productivity level). The star *

denotes the half-life.

Figure 6: Growth of Western and non-Western countries imputing the estimated evolution of
the intensive and extensive margins.
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Figure 7: Growth of Western and non-Western countries with only an acceleration of the
technology frontier. Both margins of adoption are held constant.

(a) Dynamics due only to a decline in lags. (b) Dynamics due to the divergence in the intensive
margin.

Figure 8: Role played by the different margins of adoption.
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(a) Dynamics with productivity gains from new varieties only.

(b) Dynamics with productivity gains from new technologies only.

Figure 9: Role played by the different margins of productivity gains
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