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Abstract

We study a novel mechanism design model in which agents arrive

sequentially and each in turn chooses one action from a set of ac-

tions with unknown rewards. The information that becomes available

affects the incentives of an agent to explore and generate new infor-

mation. We characterize the optimal disclosure policy of a planner

whose goal is to maximizes social welfare. One interpretation for our

result is the implementation of what is known as the ’Wisdom of the

crowds’. This topic has become more relevant during the last decade

with the rapid adaptation of the Internet.

∗We wish to thank Michael Borns for his invaluable editorial work.
†Ilan Kremer: Stanford University and the Hebrew University of Jerusalem, ikre-

mer@stanford.edu.
‡Yishay Mansour: Tel Aviv University, mansour@tau.ac.il. This research was sup-

ported in part by the Google Inter-university center for Electronic Markets and Auctions,
by The Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11), by a
grant from the Israel Science Foundation, by a grant from United States-Israel Binational
Science Foundation (BSF), and by a grant from the Israeli Ministry of Science (MoS).
§Motty Perry: University of Warwick and The Hebrew University of Jerusalem,

motty@huji.ac.il.

1



1 Introduction

The Internet has proven to be a powerful channel for sharing information

among agents. In doing so it has become a critical element in implementing

what is known as the ’Wisdom of the crowds’. Hence it is not that surprising

that one of the most important recent trends in the new Internet economy

is the rise of online reputation systems that collect, maintain, and dissemi-

nate reputations. There are now reputation systems for such things as high

schools, restaurants, doctors, travel destinations, and even religious gurus,

to name just a few. A naive view is that perfect information sharing through

the Internet allows for optimal learning and support the optimal outcome.

We argue that this is not the case and present here a first step toward a

characterization of the optimal strategy to share information when agents

behave strategically.

To examine these issues we study a novel mechanism design problem in

which agents arrive sequentially one after the other and each in turn chooses

one action from a fixed set of actions with unknown rewards. The agent’s

goal is to maximize his expected rewards given the information he possesses

at the time of arrival. A principal, whose interest is in maximizing the

social welfare, is the only one to observe all past outcomes and can affect

the agents’ choices by revealing some or all of his information. His problem

then is to choose an optimal disclosure/recommendation policy taking into

account that the agents’ short-term goals are not always in line with welfare

maximization.

To see why full transparency may not be optimal consider the following

simple example. Suppose that there are two alternatives, and agents share

common priors regarding the two alternatives where µj represent the prior

mean of alternative j = 1, 2. Each agent selects an action only once and sup-

pose that once an alternative is visited its deterministic payoff xj is realized,

and there is no further uncertainty about its payoff. The question is how

information is produced and shared among the different agents in order to
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maximize the social welfare. Consider first the case in which agents cannot

share their experience (in the context of the Internet this can be thought as

the pre-Internet age). Assuming that µ1 > µ2, then all agents will choose the

first alternative. Now suppose that there is perfect information sharing. The

first agent still chooses the first alternative, and unlike before, he now re-

ports his experience on the web-site so everyone can see. In case x1 < µ2 the

second agent will visit the second alternative and all other agents will choose

the better alternative and the outcome is efficient. However, if x1 > µ2 then

all agents will choose the first alternative despite the fact that from a social

perspective it is inefficient. There is a significant probability that the second

alternative is much better.

The reason why perfect information sharing is not optimal is that it does

not address the incentives of selfish agents, and thus does not allow for enough

exploration. Agents, in our set up (as they are in the Internet economy), not

only consume information but also produce information which in turn can

be consumed by others. However, information is a public good and as such

one needs to be careful in providing proper incentives for an agent to explore

and produce new information.

The new ’Internet Economy’ provides several related examples for which

our model is relevant. Web site such as yelp.com, TripAdvisor.com and

others try to collect information from users while making recommendations

to these users. In a sense a manager of such a web site can be viewed as

the social planner who implements what economists describe as the ’wisdom

of the crowd’. As we argue in this paper the manager of these web sites is

facing a non-trivial task as there is tension between gathering information

from users while making recommendations to the same users.

An interesting example is a company called Waze-Mobile which has devel-

oped a GPS navigation software that is based on the wisdom of the crowd.

Waze is a social mobile application providing free turn-by-turn navigation

based on the live conditions of the road 100% powered by users. As many
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drivers use this software, the more benefit it is to customers. When a cus-

tomer log in to Waze with his smartphone, he continuously send information

to Waze about his speed and location and this information, together with

information sent by others, enable Waze to recommend to this driver as

well as all other drivers an optimal route to their destination. But in order

to provide good recommendation, Waze must have drivers in every possi-

ble route. Indeed as was described by Waze president and co-founder (see

http://www.ustream.tv/recorded/21445754) they often recommend a driver

a particular route even though (indeed exactly because) they do not have

information about that route. The information transmitted by this driver is

then used to serve better future drivers. But in order not to deter drivers from

using the system, Waze must be very careful in how often they ”sacrifice”

drivers to improve the experience of others.

Finally consider the recent controversy over the health care report-card

system. This system entails a public disclosure of patient health outcomes

at the level of the individual physician. Supporters argue that the system

gives providers powerful incentives to improve quality together with providing

patients with important information. Skeptics counter that report cards may

encourage providers to “game” the system by avoiding sick patients, seeking

healthy patients, or both. We look at this problem from a different angle

by asking how to optimally reveal the available information to maximize the

social welfare taking into account the users incentives.

We next present in Section 2 the simplest possible model that enables

us to study this problem. In the model the set of actions contains only

two deterministic actions with unknown rewards. Then in Section 3 the

principal’s optimal policy is characterized. To this end we first provide a

version of the revelation principle and then derive the optimal policy which

is shown to be intuitive and simple. In the optimal policy agent one always

choose the action with the higher mean and we denote his reward by r. If

r ∈ It then agent t is the first agent to whom the principal recommends to
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try the other action while for all agent t′ > t the recommendation is the

better of the two. The bulk of the analysis is devoted to fully characterize

the sequence {It}t∈T which is shown to be a monotone partition of the real.

As the number of agents increases the social welfare in the optimal policy

converges to the first-best welfare in the unconstrained mechanism. Our

focus is on the information channel and hence through out most of the paper

we restrict our attention to the case in which the principal can only control

the information that is available to agents and in particular is not allowed to

use transfers. In section 4 we allow the principal to use monetary transfers

in order to enhance incentives. It is shown that the essential properties of

the optimal policy are unaffected by the introduction of transfers.

1.1 Related Literature

The literature on informational cascades which originated with the work of

Bikhchandani, Hirshleifer, and Welch (1992) is probably the closest to the

model presented here. An informational cascade occurs when it is optimal

for an individual, who has observed the actions of those ahead of him, to

follow the behavior of the preceding individual without regard to his own

information. Our problem is different as we examine social planner who can

affect the information received by each individual while implementing the

optimal informational policy.

The agents in the model considered here are choosing from a set of two-

armed bandits (see the classical work of Rothschild (1974)). But unlike the

vast early work on the topic which was entirely about single-agent decision-

making, our work is along the lines of the more recent works on strategic

experimentation where several agents are involved, as in the work of Bolton

and Harris (1999) and Keller, Rady, and Cripps (2005), to name just a few.

The deviation from the single-agent problem is that an agent, in this multi-

agent setting, can learn from experimentation by other agents. Information is

therefore a public good, and a free-rider problem in experimentation naturally
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arises. It is shown that because of free-riding, there is typically an inefficiently

low level of experimentation in equilibrium in these models. In contrast,

in our model, free-riding is not a problem as agents have only one chance

to act, namely, when it is their turn to move. However, like in the above

models, in our model information transmission plays an important rule as

we let the planner choose what information to release and when. Again, our

contribution is in approaching the problem from a normative, mechanism

design point of view.

A related paper is Manso (2012) which studies an optimal contract design

in a principal-agent setting in which the contract motivates the agent to

choose optimally from a set of two-armed bandits. Yet, while in Gustavo’s

setup there is one agent who works for two periods, in our setup there are

multi-agents who choose sequentially.

The planner in our model is not allowed to use monetary transfers as

a tool to provide incentives. Mechanism design without monetary transfers

has been with us from the early days when the focus of interest was the

design of optimal voting procedures. One such model which also have the

sequential feature of our model is Gershkov and Szentes (2009) in which a

voting model is analyzed where there is no conflict of interest among voters

and information acquisition is costly. In the optimal mechanism the social

planner asks, at random, one voter at a time to invest in information and to

report the resulting signal. In our model the order according to which agents

arrive is given and known to every one. It is not difficult to see that if in

our set up agents do not know their place in line then the first-best outcome

is easily achieved. In recent years, the interest in this type of exercise has

gone far beyond voting, as for example in the paper of Martimort and Aggey

(2006) which considers the problem of communication between a principal

and a privately informed agent when monetary incentives are not available.

The paper by Kamenica and Gentzkow (2011) is very relevant to ours. They

consider a sender-receiver game in which the sender is required to reveal
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all the information she obtains but has control over the precision of this

information. They show that choosing a fully informative signal might not

be optimal and so is no information.

2 Model

We consider a binary set of actions A = {a1, a2}. The reward Ri of action

ai is deterministic, but ex-ante unknown. We assume that Ri is drawn inde-

pendently from a continuous distribution Di that is common knowledge and

we let µi = ERi∼Di [Ri]. Without loss of generality, we assume that µ1 ≥ µ2.

There are T agents who arrive one by one, choose an action, and realize

their payoff; they do not observe prior payoffs and only know their place

in line. The planner observes the entire history and commits to a message

(disclosure) policy, which in the general setup is a sequence of functions

M = {M̃t}t=1,...,T where M̃t : Ht−1 → Mt is a mapping from the set of

histories Ht−1 with length t− 1 to the set Mt of possible messages to agent

t.

The goal of agent t is to maximize his expected payoff conditional on

his information while the goal of the planner is to maximizes the expected

average reward, i.e., E[ 1
T

∑T
t=1Rt]. An alternative objective for the planner

would be to maximize the discounted payoff, E[
∑T

t=1 γ
txt], for some dis-

counting factor γ ∈ (0, 1). We focus on the average payoff as it is more

appropriate to our setup, but a similar result holds if the planner wishes to

maximize the discounted payoff.

Before we proceed to characterize the optimal solution we note that one

can generalize our model so that the distribution of payoffs does not have

full support. The distribution does not even need to be continuous. These

assumptions are made to simplify the exposition. However, it is important

that while µ1 ≥ µ2 there is a positive probability that the first action’s payoff

is lower than µ2; that is, Pr(R1 < µ2) > 0; this holds when we assume full
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support. If, instead, Pr(R1 < µ2) = 0, then all the agents will only choose

the first action regardless of any recommendation policy. This follows as all

agents are certain that the payoff of the first action exceeds the mean of the

second action. In such a setup a planner will find it impossible to convince

agents to explore.

3 Optimal Truthful Mechanism for two ac-

tions

Let us first give an overview of the mechanism and the proof. We start by

providing a simple example that illustrates the main properties of the optimal

mechanism. Then in Subsection 3.2 we present some few basic properties

of incentive compatible mechanisms. In particular we establish a revelation

principle version for our set-up where we show that without loss of generality,

we can concentrate on recommendation mechanisms, that specify for each

agent which action to perform (Lemma 1). We show that once both actions

are sampled, the mechanism can always recommend the better action and

stay incentive compatible (Lemma 2).

In Subsection 3.3 we explore the incentive compatible constraint of the

agents, and show that any mechanism that is incentive compatible to the

worse a prior action, is incentive compatible to both (Lemma 3). This sim-

plifies the discussion to concentrate only on the incentives of the worse apriori

action.

Subsection 3.4 develops the optimal mechanism. We first show that

initially the optimal mechanism explores as much as possible (Lemma 4).

We then show that any value of the better a priori action which are lower

than the expectation of the other action, causes an exploration already by

the second agent (Lemma 5). The main ingredient in our proof is that the

lower realizations cause exploration before higher realizations (Lemma 6).

Finally, there is some value of the better action, that realizations above it
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cause the principal not to do any exploration.

This implies the optimal incentive compatible mechanism is rather simple.

The principal explores as much as he can (given the incentive compatible

mechanism) until a certain value (depending on T the number of agents) for

which it does not perform any exploration.

3.1 Example

Consider a simple example in which the payoff of the first alternative, R1, is

distributed uniformly on [−1, 5] while the payoff of the second alternative,

R2, is distributed uniformly on [−5, 5]. Assume also that T is large enough

so it is optimal to test the two alternatives as early as possible and from then

on to choose the better of the two.

Assume first what would happened in the case of full transparency. The

first agent chooses the first action. The second agent would choose the second

alternative only if the payoff of the first alternative is negative, R1 ≤ 0.

Otherwise he and all the agents after him will choose the first alternative, an

outcome which is suboptimal if T is large.

Now consider a planner who does not disclose R1 but instead recommends

the second alternative to the second agent whenever R1 ≤ 1. It is easy to

verify that in this case, the second agent would follow the recommendation.

The reason for this is that conditional on being recommended the second

alternative he concludes that the expected value of the first alternative con-

ditional on this recommendation is zero which is equal to the expected value

of the second alternative. Based on our assumption of T being sufficiently

large this implies that the outcome under this policy is more efficient than

the one under full transparency as we will have more experimentation by

the second agent. Hence, we can already conclude that full transparency is

sub-optimal. But we can do even better.

Consider next the third agent where things become more interesting. Sup-

pose that the planner policy is such that he recommends agent three to use
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the second alternative if one of two cases occurs (I) the second agent has

been recommended to test the second action (R1 ≤ 1) and based on the ex-

pirience of the second agent the planner knows that R2 > R1, and, (II)- the

third agent is the first to be recommended the second alternative because

1 < R1 ≤ 1 + x. When calculating the benefit from choosing the second

alternative agent three considers two cases:

I: R1 ≤ 1, R2 > R1 : in this case the third agent is certain that the

second alternative has already been tested by the second agent and was found

to be optimal; this implies that R2 > −1. When computing the expected

gain conditional on this event, one can divide it into two sub-cases: Ia :

R2 > 1, Ib : R2 ∈ [k − 1, 1]. The probability of these two events (conditional

on case I) are:

Pr(Ia|I) =
Pr(R2 > 1, R1 ≤ 1, R2 > R1)

Pr(R2 > 1, R1 ≤ 1, R2 > R1) + Pr(R2 ∈ [k − 1, 1], R1 ≤ 1, R2 > R1)

=
0.4 ∗ 1/3

0.4 ∗ 1/3 + 0.2 ∗ 1/3 ∗ 1/2
= 0.8

Pr(Ib|I) = 1− Pr(Ia|I) = 0.2

The gain conditional on (Ia) is: E(R2 − R1|Ia) = E(R2|R2 > 1) −
E(R1|R1 < 1) = 3 − 0 = 3. The gain conditional on Ib is E(R2 − R1|Ib) =

E(R2−R1|R1, R2 ∈ [−1, 1], R2 > R1) = 2/3. Hence, the gain conditional on

I is given by:

E(R2 −R1|I) =
0.8 ∗ 3 + 0.2 ∗ 2/3

0.8 + 0.2
=

38

15

The relative gain from following the recommendation when we multiply

by the probability of I is:

Pr(I) ∗ E(R2 −R1|I) =
2

2 + x
∗ 38

15

II : 1 < R1 ≤ 1 +x: Conditional on this case our agent is the first to test
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the second alternative. The expected loss conditional on this event is

E(R1−R2|II) = E [R1|R1 ∈ [1, 1 + x])]−E(R2) =
1 + (1 + x)

2
−0 =

2 + x

2
.

When we multiply this by the probability of this event we get:

Pr(II) ∗ E(R2 −R1|II) =
x

2 + x
∗ 2 + x

2
=
x

2

Equating the gain and the loss yields x = 2.23. This implies that if agent

t = 3 is recommended the second action when I : R1 ≤ 1 and the planner

has learnt that the second action is optimal or when II : 1 < R1 ≤ 3.23

he will be willing to follow the recommendation. The computation for the

fourth agent is similar, and here we get that this agent will explore (i.e., be

the first to test R2) for the remaining values of R1, i.e., R1 ∈ [3.23, 5]. All

the remaining agents are recommended the better of the two actions.

The rest of the paper is devoted to show how this logic can be extended

to form the optimal policy and to show that the number of exploring agents

is a constant, independent of the number of agents.

3.2 Preliminary

We start the analysis with two simple lemmas that, taken together, estab-

lish that it is possible without loss of generality to restrict attention to a

special class of mechanisms in which the principal recommends an action to

the agents, and once both actions are sampled, the better of the two is rec-

ommended thereafter. The first lemma is an application of the well-known

Revelation Principle to our setup.

Definition 1 A recommendation policy is a mechanism in which at time t,

the planner recommends an action xt = aj and it is incentive compatible for

the agent to follow the recommendation, that is, E[Rj − Ri|xt = aj] ≥ 0 for

each ai ∈ A.
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Note that our definition of a recommendation policy includes the require-

ment that it is incentive compatible.

Lemma 1 For any mechanism M , there exists a recommendation mecha-

nism that yields the same expected average reward.

Proof: For an arbitrary mechanism M , let M j
t denote the set of all

messages that lead agent t to choose the action aj and let Hj
t−1 = (M j

t )−1

denote the corresponding set of histories that lead to a message from M j
t . It

follows that for each m ∈ M j
t we have E[Rj − Ri|m] ≥ 0. Now, consider a

recommendation mechanism that recommends action aj whenever the history

is in Hj
t−1. Note that this mechanism is also incentive compatible since for

each m ∈M j
t we have E[Rj −Ri|m] ≥ 0. Since it results in identical choices

by the agents it results in an identical payoff. 2

The next lemma allows us to narrow further the set of mechanisms that

we refer as the set of partition policies.

Definition 2 A partition policy is a recommendation policy that is described

by a collection of disjoint sets {Ij}T+1
j=2 . If R1 ∈ It then agent t is the first

agent for whom xt = a2 and for all t′ > t we have xt′ = max{a1, a2}. If

R1 ∈ IT+1 then no agent will be recommended to use the second action.

Lemma 2 If Π is an optimal recommendation mechanism, then Π is a par-

tition mechanism.

Proof: Note first that since µ1 ≥ µ2 the first agent would always choose

the first action. Also, since the principal wishes to maximize the average

reward, i.e., E[ 1
T

∑T
t=1Rt], it would always be optimal for him to recommend

the better action once he has sampled both actions. Hence, for each agent

j ≥ 2 we need to describe the realizations of Ri that would lead the planner

to choose agent j to be the first agent to try the second action. Clearly,

recommending the better of the two actions will only strengthen the IC of

the agent to follow the recommendation. 2
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A partition policy has two restrictions. The first is that it recommends

to the first agent action a1. This is an essential condition to be IC. The

second is that once it has sampled both actions it recommends the better

one. Clearly this is an essential property of being optimal. In what follows

we will restrict our attention to partition policies.

3.3 Incentive-Compatibility (IC) Constraints

Agent t finds the recommendation xt = a2 incentive compatible if and only

if

E(R2 −R1|principal recommends a2) ≥ 0 .

Note that this holds if and only if

Pr(principal recommends a2) ∗ E(R2 −R1|principal recommends a2) ≥ 0 .

We use the latter constraint, since it has a nice intuitive interpretation re-

garding the distribution, namely,∫
principal recommends a2

[R2 −R1]dπ .

Consider a partition policy that is given by the sets {It}; in this case we

have:

Pr(principal recommend a2) ∗ E(R2 −R1|(principal recommends a2)

=

∫
R1∈∪τ<tIτ ,R2>R1

[R2 −R1]dπ +

∫
R1∈It

[µ2 −R1]dπ .

The first integral represents “exploitation”, which is defined as the benefit

for the agent in the event that the principal is informed about both actions,
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i.e., R1 ∈ ∪τ<t Iτ . Obviously this integrand is positive. The second integral,

the “exploration” part, represents the loss in the case where the principal

wishes to explore and agent t is the first agent to try the second action. We

will show that in the optimal mechanism this integrand is negative.

Hence, for partition mechanisms we can express the IC constraint as∫
R1∈∪τ<tIτ ,R2>R1

[R2 −R1]dπ +

∫
R1∈It

[µ2 −R1]dπ ≥ 0 . (1)

Alternatively, this can be expressed as∫
R1∈∪τ<tIτ ,R2>R1

[R2 −R1]dπ ≥
∫

R1∈It

[R1 − µ2]dπ .

The following lemma shows that it is sufficient to consider the IC of action

a2.

Lemma 3 Assume that the recommendation xt = a2 to agent t is IC. Then

the recommendation xt = a1 is also IC.

Proof: Let Kt = {(R1, R2)|xt = a2} be the event in which the recom-

mendation to agent t is xt = a2. If Kt = ∅ then the lemma follows since

E[R1−R2] > 0. Otherwise Kt 6= ∅ and because the recommendation xt = a2

is IC we must have E[R2 −R1|Kt] ≥ 0. Recall however that by assumption

E[R2 −R1] ≤ 0.

Now, since

E[R2 −R1] = E[R2 −R1|Kt] Pr[Kt] + E[R2 −R1|¬Kt] Pr[¬Kt] ≤ 0,

it has to be the case that E[R2 − R1|¬Kt] ≤ 0 which in particular implies

that recommending xt = a1 is IC in the case of ¬Kt. 2

14



3.4 Optimality of the Threshold Policy

Definition 3 A threshold policy is a partition policy in which the sets It are

ordered intervals. Formally, it has a partition of R to intervals{It}T+1
t=2 where

I2 = (−∞, i2], It = (it−1, it] and IT+1 = (iT ,∞).

Note that IT+1 contains all the realizations of R1 after which the planner

recommends action 1 for all agents t ∈ {1, ..., T}. We shall associate the T+1

interval with a factitious agent. While the definition of a threshold policy is

clear, one can define policies that are threshold policies up to measure zero

events and achieve the same outcome. This observation is important when

we prove optimality of threshold policies. For that purpose it is important

to note that if {Ij}T+1
j=2 are not (up to measure zero events) ordered intervals

then there exist indexes t2 > t1 and sets B1 ⊆ It1and B2 ⊂ It2 such that: (1)

supB2 < inf B1 and (2) Pr[B1],Pr[B2] > 0.

The following simple claim establishes that in every period, the planner

will do as much exploration as the IC condition allows.

Lemma 4 Let Π∗ be an optimal partition policy and assume that in Π∗ agent

t + 1 ≥ 3 explores with some positive probability (i.e., Pr[It+1] > 0). Then

agent t has a tight IC constraint.

Proof: Assume by way of contradiction that agent t does not have a

tight IC constraint. Then we can “move”part of the exploration of agent

t+ 1 to agent t, and still satisfy the IC constraint. The average reward will

only increase, since agent t + 1, rather than exploring, will do the better of

the two actions, in the event that agent t explores instead of doing action a1.

To be precise, assume that the IC condition for agent t does not hold with

equality. That is,∫
R1∈It

[R1 − µ2]dπ <

∫
R1∈∪τ<tIτ ,R2>R1

[R2 −R1]dπ (2)
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Recall that It consists of those values r1 for which agent t is the first to

explore action a2 when R1 = r1. By assumption we have Pr[It+1] > 0. Note

that the RHS of (2) does not depend on It. Therefore, we can find a subset

Î ⊂ It+1 where Pr[Î] > 0 and then replace the set It with I ′t = It ∪ Î and the

set It+1 with I ′t+1 = It+1 − Î and still keep the IC constraint. The expected

average reward increases, since the only difference is when R1 ∈ Î and hence

the only change is in the expected rewards of agent t and t + 1. Before the

change, the expected sum of rewards of agents t and t + 1, conditional on

R1 ∈ Î , were µ2 + E[R1|R1 ∈ Î], while the new sum of expected rewards

(again conditional on R1 ∈ Î , ) is µ2 + E[max{R1, R2}|R1 ∈ Î], which is

strictly larger (since the prior is continuous). The IC constraint of agent

t+ 1 still holds, since we only removed exploration. None of the other agents

is affected by this modification. Therefore, we reached a contradiction that

the policy is optimal. 2

Lemma 5 Assume that policy Π is a partition policy and let B include the

values of the first action which are below the expectation of the second action,

and are not in I2. i.e.,1

B = {r1 : r1 ≤ µ2, r1 /∈ I2}.

If Pr[B] > 0 then a policy Π′ which is similar to Π except that now I ′2 = B∪I2
and I ′t = It−B for t ≥ 3, is a recommendation policy with a higher expected

average reward.

Proof: Consider the policy Π and let Bt = B ∩ It for t ≥ 3. Because

Π is a recommendation policy, agent t finds it optimal to follow the recom-

mendations and in particular to use action a2 when recommended. Next

consider the policy Π′ and observe that the incentives of agent t to follow

the recommendation to use action a2 are stronger now because for R1 ∈ Bt

1Recall that we assume that Pr[R1 < µ2] > 0.
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his payoff in Π is R2 while in Π′ it is max{R1, R2}. The agents t between

3 and T have a stronger incentive to follow the recommendation, since now

in the event of R1 ∈ Bt we recommend the better of the two actions rather

than a1. Because R1 < µ2 it is immediate that expected average rewards in

Π′ are higher than in Π.

For agent 2 we have only increased the IC, since E[R2−R1|R1 ∈ B] ≥ 0.

2

The discussion so far allows us to restrict attention to partition policies

in which: (i) once both R1 and R2 are observed, the policy recommends

the better action, (ii) the IC constraint is always tight, and (iii) the set

I2 ⊇ (−∞, µ2]. Next, we will argue that we should also require the policy

to be a threshold policy. Recall that for a non-threshold policy there exist

indexes t2 > t1 and sets B1 ⊆ It1and B2 ⊂ It2 such that: (1) supB2 < inf B1

and (2) Pr[B1],Pr[B2] > 0.

A useful tool in our proof is an operation we call swap that changes a

policy Π to a policy Π′.

Definition 4 A swap operation modifies the recommendations of two agents

t1 and t2 > t1. It takes a partition policy Π and subsets B1 ⊂ It1, B2 ⊂ It2

where supB2 < inf B1 to constructs a partition policy Π′ such that I ′t1 =

It1 ∪ B2 − B1 and I ′t2 = It2 ∪ B1 − B2, while other sets are unchanged, i.e.,

I ′t = It for t /∈ {t1, t2}. We say that a swap is proper if∫
R1∈B1

[µ2 −R1]dπ =

∫
R1∈B2

[µ2 −R1]dπ.

Since (−∞, µ2] ⊆ I2 we conclude that if the swap operation is proper then

for all R1 ∈ B2 ∪ B1 we have R1 > µ2 which in particular implies that

Pr[B2] > Pr[B1].

Lemma 6 Let Π be a recommendation policy and let Π′ be the policy result-

ing from a proper swap. Then Π′ is a recommendation policy in which the
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expected rewards of all agents are at least as high as in Π and for some agents

they are strictly higher.

Proof: Since the swap operation is proper we have inf B1 > supB2 ,

Pr[B2] > Pr[B1] and∫
R1∈B1

[µ2 −R1]dπ =

∫
R1∈B2

[µ2 −R1]dπ.

First we show that the swap does not change the expected reward of agent t1

conditional on a recommendation to choose action a2. From the perspective of

agent t1, the change is that in the case where r1 ∈ B1 the action recommended

to him at Π′ is a1 rather than the action a2 which is recommended to him at

Π, and in the case where r1 ∈ B2 it is a2 (at Π′) rather than a1 (at Π). Since

the swap operation is proper, his IC constraint at Π′ can be written as:∫
R1∈∪τ<t1Iτ ,R2>R1

[R2 −R1]dπ +

∫
R1∈It1

[µ2 −R1]dπ +

∫
R1∈B2

[µ2 −R1]dπ −
∫

R1∈B1

[µ2 −R1]dπ

=

∫
R1∈∪τ<t1Iτ ,R2>R1

[R2 −R1]dπ +

∫
R1∈It1

[µ2 −R1]dπ ≥ 0.

Therefore the swap does not change the expected reward of agent t1 and Π′

satisfies IC for this agent.

Next consider all agents except agents t2 and t1. Observe first that all

agents t < t1 and t > t2 do not observe any change in their incentives (and

rewards) and we are left with agents t where t1 < t < t2. The expected

rewards of these agents can only increase because the effect of the swap is

only on the first integral
∫

R1∈∪τ<tIτ ,R2>R1

[R2 − R1]dπ of the IC constraint

(see Eq (1)) which increases as a result of the swap because instead of the

set ∪τ<tIτ we now have ∪τ<tIτ ∪B2 −B1 and supB2 < inf B1.

Thus, it is left for us to analyze the incentives and rewards of agent t2 (and
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only when t2 ≤ T ) to follow the recommendation to choose action a2. First

observe that if r1 6∈ B1 ∪ B2 then Π and Π′ are identical, and hence the

only case to consider is when r1 ∈ B1 ∪ B2. The expected reward under Π

conditional on r1 ∈ B1 ∪B2 is

1

Pr[B1 ∪B2]

 ∫
R1∈B1,R2>R1

[R2 −R1]dπ +

∫
R1∈B2

[µ2 −R1]dπ

 ,
and the expected reward under Π′ is

1

Pr[B1 ∪B2]

 ∫
R1∈B2,R2>R1

[R2 −R1]dπ +

∫
R1∈B1

[µ2 −R1]dπ

 ,
We would like to show that∫
R1∈B1,R2>R1

[R2−R1]dπ+

∫
R1∈B2

[µ2−R1]dπ <

∫
R1∈B2,R2>R1

[R2−R1]dπ+

∫
R1∈B1

[µ2−R1]dπ,

which is equivalent to showing that (recall that the swap is proper)∫
R1∈B1

∫
R2>R1

[R2 −R1]dπ <

∫
R1∈B2

∫
R2>R1

[R2 −R1]dπ.

The last inequality is a simple consequence of

Pr[B2] > Pr[B1] and inf B1 > supB2.

This again implies that the IC constraint is satisfied for this agent and that

the swap operation increases his rewards. 2

Lemma 6 implies that an optimal policy must be a threshold policy. That

is, the sets {It}t∈T are restricted to being a set of intervals. Moreover, the IC

constraint holds for any agent t provided that there is a positive probability
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that agent t+ 1 will be asked to explore.

Thus, to fully characterize the optimal policy, all that is left for us to

identify is the threshold θ, such that if r1 ≤ θ then some agent t will explore

action a2. The threshold θ, which is a function of T, together with the

intervals {It}Tt=2, fully characterize the optimal policy Πopt. Solving for θ is

the topic of the following subsection.

3.5 The Optimal Threshold Policy

Consider first the case where T is infinite. In this case exploration is max-

imized as the planner wishes to explore for any realized value of the first

action, r1. The optimal policy is defined by an increasing sequence of thresh-

olds i1,∞ < i2,∞... where for t = 2

i2,∞∫
R1=−∞

[R1 − µ2]dπ = 0

For t > 2 as long as it,∞ <∞, we have

it+1,∞ = sup

i|
∫

R1≤it,R2>R1

[R2 −R1]dπ ≥
i∫

R1=it,∞

[R1 − µ2]dπ


If it,∞ = ∞ then we define it′,∞ = ∞ for all t′ ≥ t. Note that if it+1,∞ < ∞
then the above supremum can be replaced with the following equality

∫
R1≤it,R2>R1

[R2 −R1]dπ =

it+1,∞∫
R1=it,∞

[R1 − µ2]dπ (3)

Consider the case when T is finite. As we shall see the planner will ask fewer

agents to explore. Consider the t-th agent. The RHS is the expected loss

due to exploration by the current agent is r1 − µ2. The expected gain in
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exploitation, if we explore, is (T − t)E[max{R2 − r1, 0}]. We will set the

threshold θt for agent t to be the maximum r1 for which it is beneficial to

explore. Let θt be the solution to

(T − t)E[max{R2 − θt, 0}] = θt − µ2

If there are T − t agents left then θt is the highest value for which it is still

optimal to explore; Note that θt is decreasing in t. Our main result is:

Theorem 7 The optimal policy, Πopt, is defined by the sequence of thresholds

it,T = min{it,∞, θτ},

where τ is the minimal index for which it,∞ > θt.

Next, we argue that even when T is arbitrarily high, exploration is limited

to a finite number of agents.

Theorem 8 Let t∗ = min{t|it =∞}; then t∗ ≤ µ1−µ2
α

where

α =

∫
R1≤i2,R2>R1

[R2 −R1]dπ

≥ Pr[R2 ≥ µ2] · Pr[R1 < µ2] · (E[R2|R2 ≥ µ2]− E[R1|R1 < µ1])

Since t∗ is finite, the principal is able to explore both actions after t∗ agents.

The proof appears in the Appendix but we can provide the intuition

here. Consider (3), the LHS represents the gain agent t expects to receive

by following the recommendation of the principal who has already tested

both alternatives. It is an increasing sequence as for higher t the planner

becomes better informed. This implies that this terms can be bounded from

bellow when we consider agent t = 2. The RHS represents the expected loss

the agent expects to experience when he is the first agent to try the second
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alternative. The sum of the RHS over all t is the difference in means µ1−µ2.

The proof is based on these two observations when we sum the LHS and

RHS.

The above theorem has important implications. Consider the first-best

outcome in which the principal can force agents to choose an action. The

above theorem implies that for any T the aggregate loss of the optimal mecha-

nism as compared to the first-best outcome is bounded by (µ1−µ2)
2

α
.As a result

we conclude that:

Corollary 9 As T goes to infinity the average loss per agent as compared to

the first-best outcome converges to zero at a rate of 1/T . Apart from a finite

number of agents, t∗, all other agents are guaranteed to follow the optimal

action.

The above theorem has important implications. Consider the first-best

outcome in which the principal can force agents to choose an action. The

above theorem implies that for any T the aggregate loss of the optimal mech-

anism as compared to the first-best outcome is bounded by (µ1−µ2)
2

α
.

4 Cash Incentives- A planner with a budget

We first suppose that the planner has a budget and can spend up to $X to in-

duce exploration and improve total welfare. We then endogenize the choice of

X. We assume that agents’ utility is additive with respect to cash incentives.

If the principal offers a cash incentive of x to follow his recommendation to

take the second action then the IC constraint is given by:

E(R2 −R1|principal recommends a2) ≥ −x

We assume that the principal maximizes social welfare subject to the budget

constraint. One could also solve for the optimal X by comparing it to the
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total benefit from being able to induce more exploration. Given that our

result holds for an arbitrary X this would not change our conclusion so we

focus on the former formulation. We also assume that the offer is binding,

namely, the cash incentive is dependent on performing the recommended

action.

Assuming X is exogenously fixed, then the principal follows a disclosure

policy similar to the one described in Section 3 when transfers were not

allowed with two small differences. One is that for some distributions it

might be optimal to explore first action two even though µ1 > µ2. In what

follow we assume that this is not the case and extending the result to follow

to this case is immediate. The more substantial difference is that now the

planner can induce more exploration by promising cash payments. The proof

follows similar logic to the proofs above and consequently, we will do here

with an outline only and omit some of the details.

If X ≥ µ1 − µ2 the principal can convince the second agent to explore

regardless of the realization of R1 and he can obtain the efficient outcome

(ignoring of course the cost of X).2 In the more interesting case when X <

µ1 − µ2, the principal will use X to convince the second agent to explore

only if R1 is not too high and no cash incentive is offered to agent t > 2. In

particular

i2 = sup

i| X ≥
i∫

−∞

[R1 − µ2]dπ

 .

To see why this must be the case note first that as Lemma 4 can be

generalized along the following lines; If agent t + 1 ≥ 3 explores with some

positive probability (i.e., Pr[It+1] > 0) then agent t has a tight IC constraint.

Furthermore, using the same ‘swap’ argument one can also show that the

2Note that the planner can use even slightly smaller X to get this effect, since there is
some value θT , such that if R1 > θT the optimal policy never explores. Hence conditioned
on exploring, the value is slightly less than µ1.
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optimal disclosure policy is threshold policy, {It}T+1
t=2 where I2 = (−∞, i2],

It = (it−1, it] and IT+1 = (iT ,∞). Thus the principal’s optimal policy Π is

given by the intervals {It}T+1
t=2 and a sequence of cash incentives {xt} where∑

xt ≤ X.

Assume by contradiction that agent t+ 1 > 2 is provided cash incentive,

xt+1 > 0 to use the second alternative. Consider a policy Π∗ which is the

same as Π except that now the transfers are

x∗t = xt + xt+1 and x∗t+1 = 0

and we adjust the intervals accordingly:

I∗t = (it−1, i
∗], and I∗t+1 = (i∗, it+1]

where i∗ is defined by:

i∗∫
R1=it−1

[µ2 −R1]dπ = −x∗t

Since,

it+1∫
R1=it−1

[µ2−R1]dπ =

it∫
R1=it−1

[µ2−R1]dπ+

it+1∫
R1=it

[µ2−R1]dπ = xt+xt+1 = x∗t ,

we have that
it+1∫

R1=i∗

[µ2 −R1]dπ = 0,

and it follows that the IC constraint is satisfied for agents t and t+1. Finally,

we reach a contradiction as exploration is expedited, and hence we improve

the expected average return. Since we can apply this argument to any agent

t ≥ 3, we have established the following theorem,
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Theorem 10 In the optimal policy the monitory incentives would be given

only to agent 2.

We first describe the optimal policy for T being infinite, we set i2 so that:

i2,∞∫
R1=−∞

[R1 − µ2]dπ = −X

For t > 2 and as long as it,∞ <∞, we have:

it+1,∞ = sup

i|
∫

R1≤it,∞,R2>R1

[R2 −R1]dπ ≥
i∫

R1=it,∞

[R1 − µ2]dπ


As in the case with no budget when one considers a finite T then one needs

to adjust the above intervals. At time t the planner compares the potential

benefits to the remaining T −t−1 agents to the cost of t taking a suboptimal

action. This trade-off is given by θt and one then defines the intervals as

it,T = min{it,∞, θτ}.

Theorem 11 The optimal policy with cash incentive budget X, Πopt
X , is de-

fined by the sequence of thresholds

it,T = min{it,∞, θτ},

where τ is the minimal index for which it,∞ > θt, and agent 2 is offered a

cash incentive of min{µ1 − µ2, X}.

Consider now the case of a planner who raises X at a cost of δX for some

δ > 0.3 Absent such cost, X, can be viewed as a transfer among agents that

has no welfare implication; the social planner simply raises X through taxes

3One can imagine that the social planner obtains the needed money by collecting taxes
and the δ represents the distortion caused by this.
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and uses it to subsidize exploration. The cost can be viewed as a deadweight

loss that is associated with taxation and does affect aggregate welfare. The

above result implies that when X is not too high then the social planner

will choose to conceal some information. We argue that when X is chosen

endogenously for δ > 0 that is arbitrary small, the social planner will choose

X not too high so that he will indeed hide some information. The reason

why this is true is that the benefit from asking the second agent to explore

is decreasing in X to zero.

Theorem 12 The optimal X when the cost is δX is X∗such that Πopt
X∗ sat-

isfies i2.T <∞.
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A Missing proofs

Proof of Theorem 8: Given our characterization it is sufficient to focus

on the case when T =∞. Consider the summation oh the RHS in (3):

∞∑
t=2

it+1,∞∫
R1=it,∞

[R1 − µ2]dπ = lim
t→∞

it,∞∫
R1=i2,∞

[R1 − µ2]dπ

since
i2,∞∫

R1=−∞
[R1−µ2]dπ = 0 and since

∫
R1≤x

[R1−µ2]dπ is increasing in x we

conclude that:

∞∑
t=2

it+1,∞∫
R1=it,∞

[R1 − µ2]dπ ≤ lim
x→∞

∫
R1≤x

[R1 − µ2]dπ = µ1 − µ2

Looking at the summation of the LHS

∞∑
t=2

∫
R1≤it,R2>R1

[R2 −R1]dπ

we note that
∫

R1≤x,R2>R1

[R2 − R1]dπ is increasing in x. The fact that it is

increasing in t implies that if we let

α ≡
∫

R1≤i2,R2>R1

[R2 −R1]dπ
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we then have

α ≤
∫

R1≤it,R2>R1

[R2 −R1]dπ

Hence, this sum can be bounded from below by t∗α, which implies the claim.

2
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