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1 Introduction

One class of nonlinear time series models that has been widely applied, for exam-

ple, in macroeconomics and finance, contains regime-switching models. Among the

regime-switching models, the threshold autoregressive (TAR) model of Tong (1983)

is a classical one: it was widely studied (see Hansen, 2011, for an overview) and

applied (e.g., Potter, 1995a; Rothman, 1998). The TAR model is quite restrictive

though in the sense that no gradual change between regimes is allowed.

To overcome this limitation, the smooth transition autoregressive (STAR) model

was first introduced by Chan and Tong (1986) and further studied by Teräsvirta

(1994); see van Dijk et al. (2002) for a survey. The two-regime STAR model is given

by

yt “ x1
tβ1t1 ´ wpzt; θqu ` x1

tβ2wpzt; θq ` εt, t “ 1, . . . , T, (1)

where xt contains lagged values of the response variable yt, zt is a continuously

distributed transition variable, and wp¨; θq : R Ñ R is a smooth transition func-

tion known up to a finite-dimensional vector θ of parameters. The TAR model

would correspond to wpz; θq “ Ipz ą θq (if the discontinuity is neglected). Among

smooth transition functions, a popular choice of wpz; θ “ pµ, sq1q is the logistic

distribution function Λpz;µ, sq “ t1 ` expr´spz ´ µqsu´1, which is smooth and

monotonic. The corresponding logistic STAR (LSTAR) model has been used to

model business cycle asymmetry, for instance, where the regimes correspond to

expansions and recessions (Teräsvirta and Anderson, 1992; Skalin and Teräsvirta,

2002). Another practically applied transition function wp¨; θq is the exponential

function Gpz;µ, sq “ 1 ´ expr´spz ´ µq2ss, where the regimes are associated with

large and small absolute values of z. This so-called exponential STAR (ESTAR)

model has been applied, for example, to real exchange rate data (Taylor et al.,

2001; Sarantis, 1999). Finally, recent extensions of the two-regime STAR mod-

els (1) include the multiple-regime STAR model (van Dijk and Franses, 1999), the
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flexible-coefficient STAR model (Medeiros and Veiga, 2003, 2005), the time-varying

STAR model (Lundbergh et al., 2003), multivariate STAR (Taylor et al., 2000), and

transition models with endogenous explanatory variables (Areosa et al., 2011).

In the STAR model, the transition function wp¨; θq characterized by parameter θ

is assumed to be a known continuous function; typically, it is also bounded between

0 and 1. The assumption that the transition function has a certain parametric

form is however hardly justified. Moreover, using a misspecified transition function

may lead to inconsistent estimates and thereby wrong inference. Therefore, the

present paper introduces a more flexible model in which the transition function is of

an unknown form, possibly with a finite set of discontinuities: the semiparametric

transition (SETR) model. The SETR model has three main advantages over the

STAR model. First, the risk of model misspecification is substantially reduced as the

transition function is only assumed to be smooth (up a finite set of discontinuities).

Next, even though the estimator of regression coefficients does not rely on any

parametric form of the transition function, its rate of convergence to the true values

is the same as in the STAR model. Finally, estimates of the transition function

in the semiparametric transition model can be used to study important features of

the transition between the two regimes (e.g., the size and location of a jump or

overshooting behavior of the transition function).

On the one hand, the SETR model nests the TAR, ESTAR, and LSTAR models

and even the structural-break model if zt “ t{T is chosen. On the other hand, SETR

is a special case of the varying-coefficient model, which was studied by Chen and

Tsay (1993) and Hastie and Tibshirani (1993). The varying-coefficient model has

the form

Eryt|xt, zts “ x1
tmpztq, t “ 1, . . . , T, (2)

where mp¨q : R Ñ R is an unknown vector function and zt is a scalar index. Recent

works on model (2) include Hoover et al. (1998), Wu et al. (1998), and Fan and

Zhang (2000) on longitudinal data analysis and Chen and Tsay (1993), Cai et al.
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(2000), and Huang and Shen (2004) on nonlinear time series. Moreover, Zhang

et al. (2002), Fan and Huang (2005), and Ahmad et al. (2005) studied the partial

linearly varying-coefficient model in which some elements of vector function mp¨q

are constant. Recently, Chen and Hong (2012) designed a test of the STAR models

(1) versus the varying-coefficient model (2).

In the varying-coefficient models, the parameters of interest are functions mpztq

that are estimated nonparametrically. Consequently, they cannot reach the rate of

convergence typical for estimators of parametric models such as STAR and require

thus larger data sets for sufficiently precise inference. On the contrary, the SETR

model applies nonparametric estimation only to the transition function and the

regression coefficients of the explanatory variables xt, which are fixed in each regime,

converge to the true values at the same rate as the estimates of the parametric STAR

model (1).

The paper is structured as follows. In Section 2, the model and the identification

conditions are presented. In Section 3, an estimation method of the semiparametric

transition model is proposed. The consistency and asymptotic distribution of the

proposed estimator is discussed in Section 4. Finally, a simulation study and real-

data application of the SETR estimator are in Sections 5 and 6. All proofs are in

the Appendix.

Throughout the paper, the following notation is used. Let }x} “ px1xq1{2 for any

vector x P R
p and }X} “ trpX 1Xq1{2 for any p ˆ p matrix X . For a scalar function

wpztq of random variable zt, the (semi)norms used are }w}8 “ supzPR |wpzq| and

}w}8,ǫ “ supfzpzqąǫ |wpzq| for a given ǫ ą 0 and the density fz of zt. In addition,

let Ip¨q denote the indicator function,
PÝÑ the convergence in probability, and

dÝÑ the

convergence in distribution.
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2 The semiparametric transition model

Consider the following two-regime semiparametric transition model:

yt “ x1
tβ

0
1t1 ´ w0pztqu ` x1

tβ
0
2w

0pztq ` εt, t “ 1, . . . , T, (3)

where yt is an independent variable, xt P R
p is a vector of covariates, zt P R is a

continuous transition variable, and εt denotes the error term. The parameters of

interest, slopes β0
1 and β0

2 , are the true vectors of regression coefficients corresponding

to the first and second regimes, respectively, and w0p¨q is an unknown piecewise-

smooth transition function. When lagged dependent variables are included in the

explanatory variables xt, that is, xt “ p1, yt´1, yt´2, . . . , yt´p´1q1, model (3) can be

referred to as the semiparametric transition autoregressive model. The transition

variable zt can be exogenous or endogenous. For example in the STAR models, zt

was treated as a lagged dependent variable yt´d in Teräsvirta (1994) and as a linear

time trend t{T in Lin and Teräsvirta (1994). Both specifications of zt fit in this

paper, although we concentrate on random zt rather than a deterministic one here.

The structural-break model, the threshold model, and the smooth transition

model are special cases of the SETR model. Suppose zt “ t{T is a linear time trend

and the transition function equals Ipzt ě tB{T q for an unknown break point tB: then

SETR reduces to the structural break model. Similarly, when wpztq “ Ipzt ě zBq

for a random variable zt and an unknown threshold zB, model (3) becomes the

threshold model. Finally, assuming that transition function w0pztq has a parametric

form w0pzt; θq characterized by parameter θ yields the smooth transition model (1).

Similarly to many time series models, the estimation method considered here is

based on the (nonlinear) least squares (LS). Therefore, the true parameters β0
1 , β

0
2 ,
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and w0 described in model (3) should minimize the expected squared error:

min
β1,β2,w

Eryt ´ x1
tβ1t1´wpztqu ´ x1

tβ2wpztqs2 “ min
β1,β2,w

Eryt ´ x1
tβ1 ´ x1

tpβ2 ´ β1qwpztqs2.

(4)

To motivate and explain the identification conditions, let us write the first-order

conditions for β0
1 , β

0
2 , and w0pztq corresponding to (4) conditionally on zt “ z :

Erxtytt1 ´ wpztqu ´ xtx
1
tβ1t1 ´ wpztqu2 ´ xtx

1
tβ2t1 ´ wpztquwpztq|zt “ zs “ 0, (5)

Erxtytwpztq ´ xtx
1
tβ1t1 ´ wpztquwpztq ´ xtx

1
tβ2wpztq2|zt “ zs “ 0, (6)

Erx1
tpβ2 ´ β1qtyt ´ x1

tβ1 ´ x1
tpβ2 ´ β1qwpztqu|zt “ zs “ 0. (7)

The parameters in (5)–(7) are not identified unless additional assumptions are im-

posed on the slope parameters and the transition function.

Assumption 1. Let txt, zt, εtu8
t“1 be a sequence of identically distributed random

vectors with marginal distributions of zt and εt being absolutely continuous such that

a) Erεt|Its “ 0 with It “ txt´j , zt´jujPN0
;

b) the true slope parameters β0 “ pβ0
1

1
, β0

2

1q1
are such that β0

1 ‰ β0
2 and β0 P B,

which is assumed to be a compact subset of R2p;

c) the infimum of eigenvalues of Erxtx
1
t|zt P Izs taken across all intervals Iz Ď R,

P pzt P Izq ě δ, is positive for any δ ą 0 and Erxtx
1
t|zt P Izs is continuous with

respect to the bounds of Iz.

Further, let W denotes the space of measurable functions w : R Ñ R that are

continuous up to a finite number of points s1, . . . , sJ P R, are uniformly bounded,

supzPR |wpzq| ă M ă `8, and are differentiable (from left or right at points

s1, . . . , sJ) with derivatives uniformly bounded by M such that all w P W satisfy

d) there exist intervals pa1, b1q, P pzt P pa1, b1qq ą 0, and pa2, b2q, P pzt P pa2, b2qq ą

0, such that wpztq “ 0 for zt P pa1, b1q and wpztq “ 1 for zt P pa2, b2q.
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Assumption 1.a claims that tεtu8
t“1 is a martingale difference sequence with re-

spect to the σ-field It generated by the current and past values of pxt, ztq. This

condition guarantees the conditional mean of yt is correctly represented by the

regression function in model (3). Condition 1.b requires the slope coefficients to

be different in the two regimes: otherwise, it is not possible to distinguish the

regimes and to identify the transition function (i.e., (7) would always equal zero

if β1 “ β2). The full-rank Assumption 1.c is similar to usual assumptions in the

threshold and structural-break models for identification (e.g., Assumption A2 in

Bai and Perron, 1998) and it can be seen as a weaker form of Assumption 1.7

in Hansen (2000), for instance: Epxtx
1
t|zt “ zq ą 0, which is sufficient for solv-

ing (7) and reduces to Epxtx
1
tq ą 0 if xt is independent of zt. (Note that only

pβ0
2 ´ β0

1q1Epxtx
1
t|zt P Izqpβ0

2 ´ β0
1q ą 0 is strictly necessary, see (7), but we impose

the positive definiteness as β0
1 and β0

2 are generally unknown.) The full-rank condi-

tion is imposed for any interval Iz with non-zero probability of zt P Iz to identify the

transition function w0pztq almost everywhere. If the aim is to identify only slopes

β1 and β2, much weaker assumption has to hold: two matrices Erxtx
1
t|zt P pa1, b1qs

and Erxtx
1
t|zt P pa2, b2qs have to be non-singular, where the intervals are defined in

Assumption 1.d.

Assumption 1 also defines the space of functions W, where the transition func-

tion is searched for. Although we assume differentiability of the functions, which

will be necessary later to derive the asymptotic distribution, assuming that func-

tions w are Lipschitz (within the intervals of continuity) uniformly on W would be

sufficient. Moreover, note that – without left or right continuity (or differentiability)

of functions at the points of discontinuity – the identification of w0 would not be

possible at those points.

Finally, Assumption 1.d ensures that the system described by model (3) is with

a positive probability in the first regime described by β0
1 (when zt P pa1, b1q) and

in the second regime defined by β0
2 (when zt P pa2, b2q). On the one hand, this is
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an identification assumption for w: if there are instead constants c1 ă c2 such that

wpztq “ c1 for zt P pa1, b1q and wpztq “ c2 for zt P pa2, b2q in model (3), Assumption

1.d is satisfied in model (3) for parameter vectors rβ0
1 “ β0

1p1 ´ c1q ` β0
2c1 and

rβ0
2 “ β0

1p1´c2q`β0
2c2 instead of original β0

1 and β0
2 . On the other hand, Assumption

1.d is essential for identification of the slope parameters β1 and β2 because they are

not identifiable by using other values of zt alone due to further unspecified wpztq.

More specifically, for tzt : wpztq ‰ 0 or 1u, the first-order condition (5) with respect

to β1 is equal to the first-order condition (6) taken with respect to β2 multiplied by a

scalar factor t1´wpztqu{wpztq. Although practical difference is likely negligible, this

assumptions excludes the LSTAR and ESTAR models as their transition functions

never reach 0 and 1. The SETR analog of LSTAR would be based on the assumption

that wpztq “ 0 if zt ă b1, P pzt P p´8, b1qq ą 0, and wpztq “ 1 if zt ą a2, P pzt P

pa2,`8qq ą 0. (Analogously to common practice in the structural-break estimation,

one could thus set that zt below its αth quantile and above its p1 ´ αqth quantile

correspond to the first and second regime, respectively.) Similarly, the SETR analog

of ESTAR would hinge on the assumption that wpztq “ 0 if |zt| ă b1, P pzt P

p´b1, b1qq ą 0, and wpztq “ 1 if |zt| ą a2, P pzt P p´8,´a2q Y pa2,`8qq ą 0.

The identification result is stated in the following theorem. Note that the tran-

sition function is identified only up to a set with fzpzq “ 0 (fz being the density of

zt), that is, the minimum of the LS criterion (4) is attained at β0 and any function

w such that }w ´ w0}8,ǫ “ 0 for any ǫ ą 0.

Theorem 1. If tyt, xt, ztu follow model (3) and Assumption 1 is satisfied, then

pβ0, w0q are uniquely identified in B ˆ W (up to a set with zero density in the case

of w0): it holds for any δ ą 0 and ǫ ą 0 that

inf
}β´β0}ąδ or }w´w0}8,ǫąδ

Eryt´x1
tβ1´x1

tpβ2´β1qwpztqs2 ą Eryt´x1
tβ

0
1´x1

tpβ0
2´β0

1qw0pztqs2,

(8)

where β P B and w P W.
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Although Theorem 1 establishes that the slopes and transition function can be

found by minimizing the (nonlinear) least squares criterion, the joint minimization

with respect to β “ pβ 1
1, β

1
2q1 and w is computationally cumbersome (see Section

3 for details). We therefore design an iterative algorithm that requires only linear

least squares estimation. Let us introduce the basic notation and concepts for this

algorithm.

First, given some parameter values β P R
2p, the LS criterion (4) can be minimized

with respect to w or the first-order condition (7) can be solved to obtain value

wpztq at zt “ z. Although we do not assume Epxtx
1
t|zt “ zq ą 0, Assumption 1.c

guarantees Epxtx
1
t|zt P Izq ą 0 for any interval Iz Q z with length |Iz| ą 0. Equation

(7) can be thus used conditionally on zt P Iz (instead of zt “ z) to solve for wpzq

if |Iz| Ñ 0 and wpzq is continuous in Iz (the derivatives of wpzq are uniformly

bounded). This solution of (7) for a given β will be denoted

wpz, βq “ lim
|Iz|Ñ0

Erx1
tpβ2 ´ β1qpyt ´ x1

tβ1q|zt P Izs
Ertx1

tpβ2 ´ β1qu2|zt P Izs . (9)

On the other hand, given some transition function w, the slope estimates of

parameters β can be estimated by minimizing the LS criterion (4) with respect to β

only or solving the unconditional counterpart of (5)–(6) for β. Considering a given

w and using abbreviated notation ωt “ r1´wpztq, wpztqs1, the LS estimate of β given

w minimizes Eryt ´ pωt b xtq1βs2 and it can be denoted and expressed as

βpwq “ tErpωt b xtqpωt b xtq1|ztsu´1
Erpωt b xtqyt|zts (10)

since x1
tβ1t1 ´ wpztqu ´ x1

tβ2wpztq “ pωt b xtq1β. According to Theorem 1, it holds

that β0 “ βpw0q and }w0pzq ´ wpz, β0q}8,ǫ “ 0 for any ǫ ą 0.
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3 Estimation

Before discussing the estimation method, let pβT and pwT p¨q denote the unconditional

estimators of β0 and w0p¨q that minimize the sum of squared residuals (β “ pβ 1
1, β

1
2q1):

min
β,w

Tÿ

t“1

tyt ´ x1
tβ1 ´ x1

tpβ2 ´ β1qwpztqu2 . (11)

Similarly, let pβT pwq and pwT p¨, βq denote the conditional estimators of βpwq in (10)

and wp¨, βq in (9) given a fixed w and a fixed β, respectively.

Estimating the slope coefficients β and transition function w through direct

minimization in (11) is intractable in practice. One common strategy in regime-

switching models is concentration (e.g., see Hansen, 2000, for the TAR model and

Leybourne et al., 1998, for the STAR model). Given fixed β, the semiparametric

transition model in (3) can be viewed as a varying-coefficient model. Applying a

nonparametric estimator of the varying-coefficient literature (see Fan and Zhang,

2008, for a review) yields the conditional estimators pwT pz1, βq, . . . pwT pzT , βq. The 2p

slope coefficients are then estimated via minimizing the concentrated sum of squared

residuals:

pβT “ argmin
β

Tÿ

t“1

tyt ´ x1
tβ1 ´ x1

tpβ2 ´ β1q pwT pzt, βqu2 . (12)

This is however computationally demanding and could be difficult if p is large.

Instead of this traditional concentration approach, we propose an iterative esti-

mation algorithm. Based on Assumption 1.d, an initial consistent slope estimator

pβp0q
T is constructed by using the data that are purely from the first and second

regimes. Then the sum of squared residuals given β “ pβp0q
T is minimized locally

(in neighborhoods of points z1, . . . , zT ) to obtain the corresponding initial estimator

pwp0q
T “ pwT p¨, pβp0q

T q of the transition function. Next, the slope estimate is updated

to pβp1q
T “ pβT p pwp0q

T q by minimizing the sum of squared residuals given the initial es-

timate w “ pwp0q
T , and similarly, the transition-function estimate can be updated to
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pwp1q
T “ pwT p¨, pβp1q

T q. The procedure can be iterated by estimating pβpkq
T “ pβT p pwpk´1q

T q

and pwpkq
T “ pwT p¨, pβpkq

T q for k “ 2, 3, . . . . , K. In practice, we used K “ 2: given that

the initial estimates pβp0q
T and pwp0q

T are not very precise, pβp2q
T is the first slope estimate

based on an iterated and presumably more precise estimate pwp1q
T of the transition

function. This delivers fast estimation and consistent and asymptotically normal

estimator as shown later in Section 4.

In the rest of Section 3, we discuss first the choice of the initial slope estimator

pβp0q
T in Section 3.1, then the local nonparametric estimation of pwT p¨, βq in Section

3.2, and finally iterated LS estimator pβT pwq in Section 3.3.

3.1 Initial estimator of β

As the regions of the first and second regimes are assumed to be known, simple

consistent initial estimators pβp0q
1,T and pβp0q

2,T of β1 and β2 can be obtained by employing

the ordinary LS method in the regions of the first and second regimes, respectively.

For example, a researcher can assume the observations with zt ă qzpαq and zt ą

qzp1´αq follow purely the first and second regimes, respectively, where qzpαq denotes

the αth quantile of the zt distribution. As the researcher might be willing to assume

this only for a rather small α to avoid misspecification and there would thus be only

small numbers of observations in each regime, the initial estimators would be very

imprecise. In general, the same argument holds for any choice of intervals pa1, b1q

and pa2, b2q in Assumption 1.d that are assumed to be very short.

Given Theorem 1, we suggest the following improvement of the simple initial

estimator pβp0q
1,T and pβp0q

2,T described in the previous paragraph. Starting from short

intervals pa01, b01q Ď pa1, b1q and pa02, b02q Ď pa2, b2q, construct increasing sequences of

intervals pa0j , b0j q Ă pa1j , b1jq Ă . . . Ă paκj , bκj q for j “ 1, 2. For each pair of intervals

pak1, bk1q and pak2, bk2q, k “ 1, . . . , κ, estimate pβp0,kq
1,T and pβp0,kq

2,T , forming estimate pβp0,kq
T ,

compute the transition function pwp0,kq
T “ pwT p¨, pβp0,kq

T q, and evaluate the sum S2
k of

least squares (11). Then define the initial estimate by pβp0q
1,T “ pβp0,pkq

1,T and pβp0q
2,T “ pβp0,pkq

2,T
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for pk “ argmink“0,...,κ S
2
k , that is, the estimate minimizing the unconditional LS

criterion.

The benefit of the described procedure is that the estimation becomes insensitive

to the choice of the initial intervals pa01, b01q and pa02, b02q. On the one hand, choosing

too short initial intervals pa01, b01q Ř pa1, b1q and pa02, b02q Ř pa2, b2q, where pa1, b1q

and pa2, b2q are the longest intervals satisfying Assumption 1.d, does not affect the

estimate precision much since longer intervals pak1, bk1q and pak2, bk2q, k ą 1, are consid-

ered as well and the best fit is chosen. On the other hand, including long intervals

that do not satisfy Assumption 1.d, paκj , bκj q Ś paj, bjq, j “ 1, 2, does not affect the

consistency of this procedure as is verified later in Theorem 2 in Section 4.

3.2 Local linear estimator of wp¨, βq

Given β “ pβ 1
1, β

1
2q1 with β1 ‰ β2, the semiparametric transition model (3) can be

reformulated as a varying-coefficient model with a single covariate and no intercept:

ryt “ yt ´ x1
tβ1 “ x1

tpβ2 ´ β1qwpzt, βq “ rxtmpztq ` εt, (13)

where ryt “ yt ´ x1
tβ1, rxt “ x1

tpβ2 ´ β1q, and mpztq “ wpzt, βq.

In the case of a smooth varying-coefficient function mp¨q, a number of estimators

are described in the literature. There are three main approaches to estimate smooth

mp¨q: kernel local polynomial smoothing (e.g., Wu et al., 1998; Fan and Zhang,

1999), polynomial splines (e.g., Huang et al., 2002, 2004), or spline smoothing (e.g.,

Hoover et al., 1998). In this paper, we opt for the local constant and local linear

smoothing method. The local linear estimator pmT pzq of mpzq is the a-minimizer of

min
aPR,bPR

Tÿ

t“1

rryt ´ rxtta ` bpzt ´ zqus2Khpzt ´ zq, (14)

where Khpvq “ Kpv{hT q{hT , Kpvq is a symmetric kernel function, and hT is the

bandwidth. The local constant estimator corresponds to (14) without term bpzt´zq.
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Solving the first-order conditions of (14) leads to

pmT pzq “ p1, 0q
#

Tÿ

t“1

9xt 9x1
tKhpzt ´ zq

+´1 Tÿ

t“1

9xtrytKhpzt ´ zq (15)

with vector 9xt “ rrxt, rxtpzt ´ zqs1. Analogously, the local constant estimator can be

expressed in the form (15) using rxt instead of 9xt.

Although the local linear smoother is sufficient for consistent estimation of the

slope parameters even if the transition function is discontinuous at a finite number of

points (see Section 4), the estimation of the transition function will possibly suffer.

Unfortunately, there is a rather limited research on the nonparametric estimation

of piecewise continuous functions with jumps in the context of varying-coefficient

models. In this work, we employ the generalization of the nonparametric estimation

procedure for discontinuous function that was originally designed for nonparametric

regression by Gijbels et al. (2007) and that was generalized to the varying-coefficient

models by Č́ıžek and Koo (2014). Its short description follows.

Let the conventional kernel function be Kcpvq “ Kpvq, where Kpvq is a symmet-

ric kernel with support r´1, 1s, and the left-side and right-side kernels be K lpvq “

Kpvq ¨Ipv P r´1, 0qq and Krpvq “ Kpvq ¨Ipv P p0, 1sq, respectively. Using these three

kernels, there are three sets of local linear (or local constant) estimates of mpzq and

their derivatives m1pzq:

rpajpzq,pbjpzqs “ argmin
a,b

Tÿ

t“1

rryt ´ rxtta ` bpzt ´ zqus2Kj
hpzt ´ zq, j P tl, r, cu, (16)

where superscripts l, r, c indicate whether the left-, right-, or two-sided hT -neighborhood

of z is used. The goodness of fit of the three estimates can be measured by their

weighted residual mean squares (WRMSs) defined by

WRMSjpzq “
řT

t“1
rryt ´ rxttpaj ` pbjpzt ´ zqus2Kj

hpzt ´ zq
řT

t“1
K

j
hpzt ´ zq

, j P tl, r, cu. (17)
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If mpztq is continuous at zt “ z, all three WRMSs are consistent estimates of

Erε2t |rxt, zts, while WRMSl is the only consistent estimate in the left hT -neighbourhood

of a jump point and WRMSr is the only consistent estimator in the right hT -

neighborhood of a jump point (cf. Proposition 2.2 in Gijbels et al., 2007, and

Theorem 3 in Č́ıžek and Koo, 2014). With this idea, the estimator of the varying

coefficient mp¨q is defined by

pmT pzq “

$
’’’’’’’’’’&
’’’’’’’’’’%

pacpzq, if diffpzq ď uT ,

palpzq, if diffpzq ą uTand WRMSlpzq ă WRMSrpzq,

parpzq, if diffpzq ą uTand WRMSlpzq ą WRMSrpzq,
palpzq ` parpzq

2
, if diffpzq ą uTand WRMSlpzq “ WRMSrpzq,

(18)

where diffpzq “ WRMScpzq ´ mintWRMSlpzq,WRMSrpzqu and the threshold value

uT ą 0 is such that uT Ñ 0 as T Ñ 8. Parameter uT can be determined along with

hT , for example, by the least-squares cross-validation (e.g., Yao and Tong, 1998).

3.3 Least squares estimator of βpwq

Given some transition function w, the semiparametric transition model is linear in

the slope parameter β. Hence, the ordinary LS estimation can be directly applied.

Denote ωt “ r1 ´ wpztq, wpztqs1. Similarly to (10), the sum of squared residuals

T´1
řT

t“1
tyt ´ pωt b xtq1βu2 is minimized with respect to β (with w fixed), which

yields the conditional LS estimator

pβT pwq “
#
1

T

Tÿ

t“1

pωt b xtqpωt b xtq1

+´1

1

T

Tÿ

t“1

pωt b xtqyt. (19)
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4 Asymptotic properties

In the asymptotic analysis, we consider absolutely regular time series and transition

functions from W constrained to piecewise smooth functions.

First, the definition of an absolutely regular (or β-mixing) process is given. Con-

sider a strictly stationary process tXtu8
t“1

and let F l
k be the σ-algebra generated by

tXtult“k. The β-mixing coefficients are defined by

βpmq “ sup
tPN

Er sup
APF8

t`m

|P pA|F t
1q ´ P pAq|s.

If limmÑ8 βpmq “ 0, the process tXtu8
t“1

is called β-mixing or absolutely regular.

Next, we define the class of smooth functions Cγ
MpX q on a bounded set X Ă R

d

following van der Vaart and Wellner (1996, p. 154); see also Ichimura and Lee (2010).

Let γ be the largest integer smaller than γ, and for any vector k “ pk1, . . . , kdq P N
d,

let the differential operator Dk “ B|k|

Bx
k1
1

...Bx
kd
d

for |k| “ řd
i“1

ki. Additionally, define

the function norm

}f}γ “ max
|k|ďγ

sup
x

|Dkfpxq| ` max
|k|“γ

sup
x “x1

|Dkfpxq ´ Dkfpx1q|
}x ´ x1}γ´γ ,

where the suprema are taken over all x and x1 in the interior of X . Then C
γ
MpX q is

the set of all continuous functions f : X ÞÑ R with }f}γ ď M .

To show the consistency of the estimators proposed in Section 3, the following

assumptions are introduced.

Assumption 2. Let the random variables xt, zt, εt and random vectors vt “ pv1t, v2t, ztq1

with v1t and v2t representing any element of vectors xt and px1
t, εtq1, respectively, sat-

isfy the following conditions:

a) process txt, zt, εtuTt“1 is strictly stationary and absolutely regular with β-mixing

coefficients βpmq, m P N, such that βpmq “ opm´p2`ξq{ξq as m Ñ 8 for some

ξ ą 0.
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b) the following moments are finite: E}xtx
J
t }2`ξ ă 8, E}εtxt}2`ξ ă 8, E|zt|2`ξ ă

8, and E|εt|2`ξ ă 8, where ξ is given in 2.a.

c) assuming that the support Z of zt is partitioned, Z “ Ť8
j“1

Ij, into bounded,

convex sets with nonempty interiors, the space W of transition functions con-

tains only piecewise continuous functions such that, after restricting them to

Ij, W|Ij belongs to C
γ
MpIjq for some γ ą 3 and j P N.

d) finally, let
ř8

j,k,l“1
maxtλpI3jklq, 1u ¨ max I3jkl ¨ Qrp1`δqp3`ξqs´1 pI3jklq be finite for

some δ ą 0, where the partition of R
3 “ Ť8

j,k,l“1
I3jkl is defined by I3jkl “

Ijˆrk, k`1qˆrl, l`1q, λpI3jklq denotes the Lebesque measure of I3jkl, max I3jkl “

supv“pv1,v2,v3q1PI3
jkl

maxt|v1|, |v2|, |v3|u, and QpI3jklq “ P pvt P I3jklq.

If txt, zt, εtuTt“1 is a series of independent random vectors, Assumption 2.a is auto-

matically fulfilled. Under dependence, the stationarity condition in Assumption 2.a

excludes time trends and integrated processes. Additionally, the mixing condition

in Assumption 2.a controls the degree of dependence in sequence txt, zt, εtuTt“1
and

is a standard assumption to guarantee the validity of the stochastic limit theorems.

Sufficient conditions such that the nonlinear autoregressive models (which contain

the TAR, STAR, and the semiparametric transition model for many transition func-

tions w) are geometrically ergodic and thus β-mixing under Assumption 2.b can be

found in Chen and Tsay (1993) and Meitz and Saikkonen (2010), for instance.

Furthermore, Assumption 2.b imposes that a sufficient number of moments ex-

ists. Assumption 2.b together with 2.a and 1.b are essential to guarantee the validity

of the law of large numbers (LLN) and the central limit theorem (CLT) for dependent

sequences (e.g., Arcones and Yu, 1994 and Davidson 1994, Section 24.4). Assump-

tion 2.c defines a class of functions such that LLN can be applied uniformly to this

class of functions (cf. van der Vaart and Wellner, 1996, Sections 2.7 and 2.8). The

transition functions have to be piecewise smooth and at least three times differen-

tiable in the continuity regions. Finally, Assumption 2.d is a technical assumption
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used again for the uniform LLN. It does not restrict variables with a bounded sup-

port, which are commonly used (or imposed by means of trimming) in semiparamet-

ric literature. For variables with infinite support, it requires that the probability of

observing large values are small. To facilitate an easy understanding, consider the

univariate equivalent of Assumption 2.d:
ř8

j“1
maxtλpIjq, 1u ¨max Ij ¨Qrδp3`ξqs´1pIjq.

As intervals Ij can be chosen of the maximum length 1 without loss of generality, the

sum is bounded by
ř8

j“1
|j`1| ¨tQrp1`δqp3`ξqs´1 prj,`8qq`Qrp1`δqp3`ξqs´1 pr´8,´jsqu.

Considering case of small ξ ą 0 so that p1 ` δqp3 ` ξq ă 3.5, this bound is finite if

the distribution of random variable vt has tails decreasing to zero proportionally to

or faster than 1{j7, for instance. This assumption can be further weakened (along

with the order of differentiability) if the error term εt is independent of transition

variable zt.

The following theorem establishes the consistency of the unconditional estima-

tors. This guarantees that minimizing the LS criterion (11) with respect to both β

and w leads to consistent estimates.

Theorem 2. Under Assumptions 1 and 2, it holds that pβT ´β0 PÑ 0, } pwT ´w0}8,ǫ Ñ

0 for any ǫ ą 0, and Et pwT pztq ´ w0pztqu2 Ñ 0 as T Ñ `8.

Since the estimation procedure suggested in Section 3 estimates the regression

coefficients β given an estimate of the transition function w and vice versa, it is

necessary to impose some conditions on the nonparametric estimator of wp¨, βq in

(13) in order to derive the asymptotic distribution of the slope parameters.

Assumption 3. Let ζT ą 0 such that ζT Ñ 0 as T Ñ `8, Zc
T be a subset of

the support Z of zt excluding all ζT -neighborhoods of discontinuities tsjuJj“1, Z
c
T “

Zz ŤJ

j“1
rsj ´ ζT , sj ` ζT s, and Upβ0, δq “ tβ P B : }β ´ β0} ă δu. It is assumed that

there exist δ ą 0 such that, for all β P Upβ0, δq and any 0 ă rδ ă δ,

a) P t pwT pz, βq P Wu Ñ 1 as T Ñ `8;
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b) estimator pwT pz, βq is uniformly bounded on Z ˆ B and uniformly consistent

on Zc
T : supzPZc

T
| pwT pz, βq ´ wT pz, βq| PÝÑ 0 as T Ñ `8 for any β P Upβ0, δq;

c) estimator pwT pz, βq is stochastically equicontinuous in β on Zc
T :

supzPZc
T
supβPUpβ0,δq suprβPUpβ,rδq | pwT pz, βq ´ pwT pz, rβq| PÝÑ 0 as T Ñ `8;

d) function wpz, βq has a uniformly bounded derivative with respect to β P Upβ0, δq:

supzPZc
T
supβPUpβ0,δq }Bwpz, βq{Bβ} ă 8;

e) the density of zt is bounded on Z.

While Assumptions 3.d and 3.e are additional regularity conditions, Assumptions

3.a–3.c are relevant to the properties of the conditional estimator of the transition

estimator. As mentioned in Section 3, general nonparametric estimators pwT p¨, βq of

univariate varying-coefficient model (13) are considered, where the response variable

ryt “ yt ´ x1
tβ1 and explanatory variables rxt “ x1

tpβ2 ´ β1q for fixed β1 and β2.

First, the estimates are supposed to converge to a function from the function space

W in Assumption 3.a as is common in semiparametric literature (e.g., Ichimura

and Lee, 2010). Next, Assumptions 3.b requires the nonparametric estimator to

be uniformly consistent. This condition is typically satisfied on compact subsets

of R, but can be extended to R for bounded functions. For the jump-preserving

varying-coefficient estimator introduced in Section 3.2, Assumption 3.b is verified by

Č́ıžek and Koo (2014, Theorem 4). Finally, the nonparametric estimator pwT p¨, βq is

required to be stochastically equicontinuous by Assumption 3.c similarly to Ichimura

and Lee (2010), who argue that this restriction holds for estimators continuously

differentiable in β P Upβ0, δq. Note that the estimator depends on β only via linear

transformations ryt and rxt.

In the following theorems, the consistency and asymptotic distribution of the

estimator proposed in Section 3 will be derived. The estimation starts with an

estimate pβp0q
T , which is consistent either by Assumption 1.d if one pair of intervals

is used or by Theorem 2 otherwise. Based on a consistent estimator qβT such as pβp0q
T
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or any subsequent iterations pβpkq
T , the transition function is estimated by pwT p¨, qβT q,

which is shown to be asymptotically equivalent to infeasible pwT p¨, β0q.

Theorem 3. If Assumptions 1–3 hold and qβT
PÝÑ β0, then supzPZc

T
| pwT pz, qβT q ´

pwT pz, β0q| PÑ 0 and Er pwT pz, qβT q ´ pwT pz, β0qs2 Ñ 0 as T Ñ `8.

An immediate consequence of Theorem 3 and Assumption 3.b is the weak consis-

tency of pwT p¨, qβT q. Note that the convergence in probability is in this case equivalent

to the convergence in mean due to uniformly bounded functions w and pwT .

Corollary 1. If Assumptions 1–3 hold and qβT
PÝÑ β0, supzPZc

T
| pwT pz, pβT q´wpz, β0q| PÝÑ

0 and Er pwT pzt, pβT q ´ wpzt, β0qs2 Ñ 0 as T Ñ `8.

The next step of the estimation procedure is based on a consistent estimate qwT of

the transition function such as pwp0q
T “ pwT p¨, pβp0q

T q or later iterations pwpkq
T “ pwT p¨, pβpkq

T q:

given the transition function, the slope parameters are estimated. To derive their

consistency and limiting distribution, the matrices entering the asymptotic variance

of the estimator have to introduced.

Assumption 4. Let the covariance matrices

Q0 “ Erpω0
t b xtqpω0

t b xtq
1s and V 0 “ Erε2t pω0

t b xtqpω0
t b xtq

1s

with ω0
t “ r1 ´ w0pztq, w0pztqs1

. We assume Q0 and V 0 to be finite and positive

definite.

Assumption 4 corresponds to the usual full-rank condition. With Assumptions

1–4, we first claim – similarly to Theorem 3 – that the difference between the slope

estimator pβT p qwT q and the infeasible estimator pβT pw0q based on the true transition

function w0 converges to zero in probability at a rate faster than T´1{2.

Theorem 4. If Assumptions 1–4 hold and estimator qwT satisfies Er qwT pztq´w0pztqs2 Ñ
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0, then it holds for T Ñ `8 that

?
T ppβT p qwT q ´ pβT pw0qq PÝÑ 0.

Finally, the limiting distribution of the infeasible estimator pβT pw0q (assuming

known w0) is derived in Theorem 5, and by Theorem 4, this distribution describes

asymptotically also the feasible estimator pβT p qwT q.

Theorem 5. Under Assumptions 1–4,

?
T tpβT pw0q ´ β0u dÝÑ Np0, Q0´1

V 0Q0´1q.

The asymptotic variance of the infeasible and feasible estimators thus corre-

sponds to the variance of the linear least-squares estimator of model (3) with a

known transition w0. In practice, the asymptotic variance in Theorem 5 can be esti-

mated directly by taking the finite sample equivalents of Q0 and V 0 since a consistent

estimate of w0 is obtained as a part of the estimation procedure. In particular, if the

estimation stops after κ iterations, one can define pωt “ r1´ pwT pzt, pβpκq
T q, pwT pzt, pβpκq

T qs1

and pεt “ yt´ppωtbxtq1 pβpκq
T and estimate Q0 and V 0 by pQT “ 1

T

řT

t“1
ppωtbxtqppωtbxtq1

and pVT “ 1

T

řT
t“1

pε2t pqωt b xtqpqωt b xtq1.

5 Simulation study

In this section, the performance of the proposed estimator of the semiparametric

transition (SETR) model is evaluated by Monte Carlo simulations. Furthermore,

these simulations provide a comparison with the existing parametric estimators of

the TAR and LSTAR models.

Four different data generating processes (DGPs) are considered. All DGPs are

based on the semiparametric transition model (3) and an autoregressive model of
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order 2:

yt “ rβ1;0 ` β1;1yt´1 ` β1;2yt´2st1 ´ wpztqu ` rβ2;0 ` β2;1yt´1 ` β2;2yt´2swpztq ` εt,

where errors εt „ Np0, 1q are independent and identically distributed and the true

values of the regression coefficients used in the simulation are β1;0 “ ´0.25, β1;1 “

0.4, β1;2 “ ´0.6 and β2;0 “ 0.25, β2;1 “ ´0.8, β2;2 “ 0.2. The functional forms of the

weighting function wpztq and their arguments are listed below (Up0, 1q denotes the

uniform distribution on interval r0, 1s):

DGP1a wpzq “ Ipz ą τq with τ “ 0.4 and zt “ yt´2;

DGP1b wpzq “ Ipz ą τq with τ “ 0.4 and zt “ t{T , where t “ 1, . . . , T ;

DGP2 wpzq “ r1 ` expt´νpz ´ τqus´1 with ν “ 2, τ “ 0.4, and zt “ yt´2;

DGP3 wpzq “ 0.5r1 ´ cost4πpz ´ 0.1qusIpz P r0.1, 0.85sq ` Ipz ą 0.85q and zt „

Up0, 1q are independent and identically distributed;

DGP4 wpzq “ pz´1{2 ´ 1qIpz P r0.2, 0.7sq ` Ipz ą 0.7q and zt „ Up0, 1q are inde-

pendent and identically distributed.

The DGP1a is a TAR model, where the transition function is piecewise constant

with discontinuity at 0.4. Although the case of deterministic transition variable zt

is not in the focus of this paper, DGP1b replicates DGP1a for the case of zt being

time. The DGP2 corresponds to the standard LSTAR model, where the shape

parameter ν “ 2 so that the logistic function is flat enough to be distinguished from

the indicator function of DGP1. While DGP1 and DGP2 use the lagged dependent

variable in the role of the transition variable, the last two DGP3 and DGP4 rely on

a uniformly distributed transition variable independent of εs and ys´1, s ď t, and

moreover, they are not nested in neither TAR, nor LSTAR models. The transition

function in DGP3 is continuous and reaches both regimes two times (see Figure
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3), whereas the transition function in DGP4 is discontinuous with two jumps (see

Figure 4). In all cases, the order of the baseline autoregressive process is 2 and is

assumed to be known.

For each data-generating process, 1000 samples of sizes T “ 200, 400, and 800 are

generated and estimated by the TAR, LSTAR, and the semiparametric transition

procedure (SETR), where the weighting function is estimated by the local-constant

estimator of varying-coefficient model (13) assuming continuity of w (SETR/C)

or by the jump-preserving local-constant estimator of (13) designed by Č́ıžek and

Koo (2014) for piecewise smooth functions w with jumps (SETR/J). In both cases,

the quartic kernel is used and the bandwidth hT and parameter uT in (18) are

determined by least squares leave-one-out cross-validation. The proposed SETR

estimation uses 4 initial estimators (for each of the two regimes), which are based

on the data below the αth quantile and above the p1´αqth quantile of the transition

variable zt for α “ 0.05, 0.10, 0.20, and 0.40. Furthermore, the estimation involves

two iterations: (i) based on the initial estimates pβp0q
T , the initial weighting function

pwp0q
T is estimated; (ii) the LS estimate pβp1q

T corresponding to pwp0q
T is obtained and pwp1q

T

is computed given pβp1q
T ; as the initial estimators pβp0q

T are typically rather imprecise,

the procedure is repeated again so that (iii) based on the estimates pβp1q
T and pwp1q

T ,

the corresponding LS estimate pβp2q
T and the weighting function pwp2q

T are estimated

and reported (see Section 3 for details). Regarding the TAR and LSTAR models,

the transition parameters τ and ν are determined by a grid search. All estimates

are summarized by means of their bias and mean squared error (MSE).

5.1 TAR results

The estimation results for the TAR model are summarized in Tables 1 and 2 for

DGP1a and DGP1b, respectively; sample sizes cover T “ 200, 400, and 800. The

TAR and LSTAR estimates provide best and precise estimates as both correspond

to the specified DGP: the grid for the transition parameter ν was reaching up to
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Table 1: Biases and MSEs of all estimator for DGP1a and T “ 200, 400, and 800.

TAR LSTAR SETR/C SETR/J

T Bias MSE Bias MSE Bias MSE Bias MSE

200 pβ1,0 0.001 0.142 -0.008 0.149 -0.007 0.257 0.016 0.201
pβ1,1 -0.009 0.078 -0.003 0.079 0.041 0.142 0.012 0.133
pβ1,2 -0.004 0.133 -0.006 0.137 0.038 0.189 0.029 0.165
pβ2,0 0.002 0.215 0.018 0.227 0.124 0.399 0.046 0.338
pβ2,1 0.005 0.072 0.000 0.073 -0.010 0.123 0.005 0.128
pβ2,2 -0.004 0.124 -0.010 0.127 -0.052 0.168 -0.023 0.148

400 pβ1,0 -0.004 0.093 -0.009 0.095 -0.024 0.162 0.010 0.115
pβ1,1 -0.005 0.055 -0.002 0.055 0.049 0.110 0.007 0.088
pβ1,2 -0.004 0.091 -0.005 0.091 0.025 0.125 0.016 0.103
pβ2,0 0.008 0.149 0.014 0.150 0.136 0.287 0.029 0.214
pβ2,1 0.005 0.052 0.002 0.052 -0.017 0.090 0.003 0.083
pβ2,2 -0.004 0.083 -0.007 0.084 -0.048 0.118 -0.011 0.097

800 pβ1,0 -0.001 0.066 -0.003 0.066 -0.027 0.110 0.012 0.075
pβ1,1 -0.001 0.038 0.000 0.038 0.045 0.090 -0.001 0.064
pβ1,2 -0.002 0.063 -0.003 0.063 0.017 0.084 0.010 0.068
pβ2,0 -0.003 0.102 -0.000 0.103 0.123 0.224 0.005 0.149
pβ2,1 0.002 0.035 0.001 0.034 -0.020 0.068 0.002 0.058
pβ2,2 -0.001 0.058 -0.001 0.058 -0.042 0.084 -0.002 0.066
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Table 2: Biases and MSE of all estimator for DGP1b and T “ 200, 400, and 800.

TAR LSTAR SETR/C SETR/J

T Bias MSE Bias MSE Bias MSE Bias MSE

200 pβ1,0 -0.001 0.116 -0.004 0.117 -0.002 0.129 0.007 0.127
pβ1,1 -0.005 0.077 0.001 0.079 0.000 0.136 -0.026 0.135
pβ1,2 -0.002 0.070 -0.006 0.071 -0.010 0.101 0.006 0.096
pβ2,0 0.003 0.100 0.005 0.101 -0.024 0.103 -0.007 0.102
pβ2,1 -0.009 0.089 -0.012 0.090 0.052 0.127 0.022 0.115
pβ2,2 -0.024 0.091 -0.027 0.092 0.012 0.105 -0.008 0.101

400 pβ1,0 0.000 0.082 -0.002 0.082 -0.006 0.094 0.001 0.092
pβ1,1 -0.004 0.055 -0.001 0.056 0.007 0.100 -0.010 0.095
pβ1,2 0.002 0.050 0.000 0.050 -0.007 0.073 0.003 0.069
pβ2,0 0.007 0.071 0.008 0.071 -0.014 0.070 0.002 0.071
pβ2,1 -0.004 0.065 -0.005 0.065 0.041 0.088 0.013 0.075
pβ2,2 -0.012 0.066 -0.014 0.066 0.015 0.072 -0.004 0.069

800 pβ1,0 -0.001 0.055 -0.002 0.056 -0.006 0.064 -0.001 0.063
pβ1,1 -0.001 0.040 0.001 0.040 0.009 0.072 -0.006 0.072
pβ1,2 0.000 0.036 -0.001 0.036 -0.008 0.053 0.001 0.052
pβ2,0 0.000 0.046 0.001 0.046 -0.017 0.048 -0.002 0.046
pβ2,1 -0.002 0.046 -0.003 0.046 0.031 0.061 0.007 0.050
pβ2,2 -0.007 0.046 -0.007 0.046 0.015 0.051 -0.002 0.048
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Figure 1: The mean estimates (dashed line) and 5% and 95% quantiles (dotted lines)
of the transition function in DGP1a with T “ 400; the solid line depicts the true
transition function. The left and right panels correspond to SETR/C and SETR/J
estimates, respectively.

ν “ 1000 and the logistic transition function can thus became numerically identi-

cal to the discontinuous transition of TAR. Regarding the SETR estimation, both

SETR/C and SETR/J provide consistent estimates in the sense that the biases and

mean squared errors (MSE) decrease with an increasing sample size; the MSEs even

support the
?
n convergence rate of the semiparametric estimators in that the MSEs

at n “ 800 are approximately half of the MSEs at n “ 200. It is however noticeable

that the SETR/J, which accounts for the discontinuity of the transition function,

exhibits much smaller biases than the SETR/C. The source of the SETR/C bias

is visible on Figure 1, where the average of estimated weight functions is presented

along with the corresponding 90% confidence bands. Whereas SETR/C estimates

are significantly biased, SETR/J exhibits much smaller bias and its confidence band

includes the true transition function.

Comparing SETR/J to the parametric TAR and LSTAR estimates, the paramet-

ric estimates are more precise: the overall MSE of SETR (across the full vector of

parameters) is approximately 10%–30% higher depending on the model and sample

size; the difference is most likely related to the nonparametric estimation of a dis-
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Table 3: Biases and MSE of all estimator for DGP2 and T “ 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

pβ1,0 0.081 0.153 0.027 0.262 0.044 0.265 0.062 0.287
pβ1,1 -0.158 0.179 -0.004 0.118 0.024 0.113 0.021 0.115
pβ1,2 0.013 0.121 0.013 0.171 0.043 0.182 0.053 0.193
pβ2,0 -0.356 0.395 -0.004 0.451 -0.027 0.390 -0.057 0.423
pβ2,1 0.177 0.203 0.009 0.117 0.003 0.105 0.013 0.108
pβ2,2 0.102 0.143 0.007 0.171 0.011 0.162 0.020 0.174

continuous function. One can also note that the estimates are overall more precise

in the case of DGP1b with the deterministic transition variable than in the case of

DGP1a with the lagged dependent variable acting as the transition variable.

5.2 LSTAR results

The estimation results for the LSTAR model are summarized in Tables 3, from now

on only for T “ 400. The LSTAR model and estimator provides now correct para-

metric specification and provide thus best results in terms of very small bias and

MSE. On the other hand, TAR is misspecified, which manifests itself by relatively

large bias of some parameter estimates. Further, both SETR/C and SETR/J provide

consistent estimates with relatively small biases and MSEs, which are surprisingly

close to those of LSTAR: the precision of the parametric and semiparametric esti-

mation is on the same level. Since the transition function is now smooth, SETR/C

is more precise than SETR/J, which accounts for the possible discontinuities of the

transition function and provides thus slightly more noisy estimates of the transition

function. The difference is not very large though as can be seen from the transition

function estimates on Figure 2.
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Figure 2: The mean estimates (dashed line) and 5% and 95% quantiles (dotted
lines) of the transition function in DGP2 with T “ 400; the solid line depicts the
true transition function. The left and right panels correspond to SETR/C and
SETR/J estimates, respectively.

5.3 Cosinus function

Another example of model with a continuous transition function is DGP3 with the

corresponding estimation results in Tables 4 and the transition function estimates

on Figure 3 (again for T “ 400). In this case, both parametric models – TAR and

LSTAR – are misspecified, which leads to substantial biases in both cases. On the

other hand, both SETR/C and SETR/J provide consistent estimates with relatively

small biases and the smallest MSEs. Since the transition function is again smooth,

SETR/C should be more precise than SETR/J, but the difference between the two

methods seems negligible.

5.4 Two-jump function

Finally, we present the results for DGP4, which includes two jumps with a smooth

transition between them, see Figure 4. Also in this case, both parametric models,

TAR and LSTAR, are misspecified, which leads to substantial biases in both cases

– see Table 5 for the simulation results (T “ 400). The semiparametric transition
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Table 4: Biases and MSE of all estimator for DGP3 and T “ 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

pβ1,0 0.130 0.178 0.122 0.177 -0.003 0.095 -0.002 0.096
pβ1,1 -0.307 0.372 -0.282 0.364 0.033 0.124 0.031 0.126
pβ1,2 0.201 0.250 0.185 0.245 -0.023 0.096 -0.022 0.096
pβ2,0 -0.060 0.136 -0.053 0.137 0.008 0.091 0.007 0.092
pβ2,1 0.153 0.247 0.130 0.246 -0.036 0.122 -0.033 0.125
pβ2,2 -0.104 0.175 -0.089 0.176 0.022 0.096 0.020 0.097

Table 5: Biases and MSE of all estimator for DGP4 and T “ 400.

TAR LSTAR SETR/C SETR/J

Bias MSE Bias MSE Bias MSE Bias MSE

pβ1,0 0.064 0.158 0.062 0.166 0.005 0.102 0.004 0.105
pβ1,1 -0.162 0.291 -0.158 0.314 0.021 0.132 0.010 0.125
pβ1,2 0.106 0.198 0.103 0.215 -0.013 0.102 -0.006 0.098
pβ2,0 -0.085 0.134 -0.082 0.138 -0.005 0.087 -0.002 0.086
pβ2,1 0.202 0.268 0.196 0.277 -0.017 0.122 -0.012 0.118
pβ2,2 -0.133 0.185 -0.128 0.190 0.010 0.090 0.007 0.088
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Figure 3: The mean estimates (dashed line) and 5% and 95% quantiles (dotted
lines) of the transition function in DGP3 with T “ 400; the solid line depicts the
true transition function. The left and right panels correspond to SETR/C and
SETR/J estimates, respectively.

methods SETR/C and SETR/J provide consistent estimates with relatively small

biases and the smallest MSEs. Due to discontinuities of the transition function,

SETR/J is slightly better than SETR/C. The difference is not very large though

as the biases of the transition function estimates are similar in both cases (see

Figure 4). The reason behind this seemingly surprising results, especially in com-

parison to DGP1a and DGP1b, is the bandwidth choice: the cross-validation selects

for SETR/C a smaller bandwidth in the presence of two breaks than in the case of a

constant function with one break only, which leads to a more precise approximation

of the discontinuous weight function.

To sum up, the estimation of the semi-parametric transition model performs

well in all cases. Obviously, the MSEs of the estimates from the semiparametric

estimation are larger than those from the parametric estimations, when the DGPs

are correctly specified in the case of TAR or LSTAR. But the gap is relatively

small in the case of TAR and practically negligible in the case of LSTAR and the

semiparametric procedure offers extra flexibility in modeling the transition function.
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Figure 4: The mean estimates (dashed line) and 5% and 95% quantiles (dotted
lines) of the transition function in DGP4 with T “ 400; the solid line depicts the
true transition function. The left and right panels correspond to SETR/C and
SETR/J estimates, respectively.

6 Application to GDP

To demonstrate the use of the proposed semiparametric transition model, we analyze

the quarterly GDP of the USA in years 1948–2007. The GDP and GNP series have

been analyzed in the context of threshold autoregression or multiple regime models

by many authors, for example, by Potter (1995b) or Tiao and Tsay (1994); see

Hansen (2011) for an overview of this line of research. In particular, we consider the

logarithm of the growth of quaterly GDP in two time periods (similarly to Clements

and Krolzig, 1998): from 1948–1990 and from 1960–2007 as some authors suspect

that the post-war behavior was characterized by a different dynamics than later

at the end of the 20th century. (Although the proposed model can be theoretically

extended to multiple regimes and even structural breaks, estimating a more complex

model is not feasible due to a small sample size.) As in Potter (1995b), the baseline

model is AR(5) without the third and fourth autoregressive terms (although their

omission does not affect results much). This model led to more stable results than

the AR(2) model used in some works concerning the GNP and GDP series in the
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Table 6: Coefficient estimates for the TAR and SETR model of US GDP based on
AR(5).

1948–1990 1960–2007
TAR SETR TAR SETR

Regime 1
AR(1) 0.210 0.392 0.736 0.380
AR(2) -0.859 -1.222 -2.231 -0.107
AR(5) -0.069 0.374 1.166 0.621

Regime 2
AR(1) 0.326 0.274 0.256 0.204
AR(2) -0.006 -0.057 0.167 0.135
AR(5) -0.175 -0.257 -0.155 -0.472

Threshold -0.187 — -0.692 —

USA in the sense that the estimation results were not overly sensitive to changes

in the time span or the bandwidth parameter. The transition variable zt is chosen

as the second lag of the dependent variable in agreement with practically all papers

analyzing these series.

The estimation was performed by the algorithm described in Section 3, where

we assume that observations with the values of the transition variable below its 5%

quantile or above its 95% quantile are completely in regime 1 or regime 2. Recall

that this constraint is also imposed on the estimates of the transition function wpztq.

The estimation was performed by the jump-preserving local-constant estimator of

Č́ıžek and Koo (2014), see Section 3. Its bandwidth was fixed to h “ 1.5 for easier

comparison across time periods (the cross-validated bandwidth ranges from 1.1 to

2.0 depending on exact time interval), but the threshold value uT was chosen by

leave-one-out cross-validation on a grid from 0.1 to 1.0. Estimation employes the

quartic kernel.

The estimation results are reported in Table 6 along with the TAR estimates

traditionally used for this kind of analysis. Although the magnitude of the coeffi-

cients cannot be directly compared as the SETR model involves a general weighting

function, both TAR and SETR estimates exhibit common patterns: similarly to
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Figure 5: Transition function estimates for the semiparametric transition model of
US GDP based on AR(5): 1948–1990 in the left panel and 1960–2007 in the right
panel. The circles indicate the values of the transition variable observed in the data
set.

Potter (1995b), for instance, the AR(1) coefficients are positive in all regimes, but

the AR(2) coefficients are negative in regime 1, which corresponds to small values of

zt (below threshold in TAR), that is, to recession. In regime 2, which corresponds

to large values of zt (above threshold in TAR), the AR(2) coefficients are close to

zero or positive depending on the time period used. (Note that the substantially

negative AR(2) coefficient of the TAR model for data 1960–2007 is likely due to

a highly imprecise estimate of regime 1 as there are only 8 observations below the

threshold and the baseline model has 4 parameters).

The estimates of the transition function wpztq for both periods are in Figure

5. In both cases, one can notice a discontinuity in the weighting functions at or

above ´1, which is also a feature of the TAR model. However as zt increases, the

transition function tends to gradually increase towards 1 for large values of zt. Note

that these characteristics of the transition function are not specific to the particular

choice of bandwidth. Further, the oscillation of the estimates for years 1948–1990

around zt “ ´1 is caused by the lack of data in that area, which leads both to
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volatile estimates and a large uncertainity in the selection of the right-, left-, or

symmetric-estimates, see (18). Altogether, these results provide some evidence in

favor of the semiparametric transition model by demonstrating that, for example,

TAR might be too restrictive in some situations, even though a formal rejection of

TAR would have to be based on confidence bands and, due to their likely width, a

larger sample size.

7 Conclusion

The traditional TAR and STAR models both rely on the parametric form of the

transition function. When the transition function differs from what these models

assume, the estimation results often become biased and inconsistent. To remedy this

problem, we develop the semiparametric transition model that generalizes the two-

regime (smooth) transition model by assuming an unknown transition function. We

propose an iterative estimation procedure for the semiparametric transition model

which is based on the straightforward application of (local) least squares. Practically

any consistent estimator discussed in the varying-coefficient literature can be used

to estimate the conditional transition function as long as it is stochastically equicon-

tinuous in its dependent variable and regressors. The consistency and asymptotic

normality for the regression-coefficients estimator are derived in the paper, while

the transition-function estimates are only shown to be consistent.

The simulation study using different types of transition functions indicates that

the slope estimators from the parametric estimations of the TAR and STAR models

are sensitive to the choice of the transition functions. On the other hand, the

estimation of the proposed SETR function performs similarly to the parametric

procedures (with a correctly specified transition function) if the transition function

is smooth. Hence, the semiparametric transition model is a practically applicable

alternative even in the parametric settings such as STAR.
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In this paper, only a single transition variable and a two-regimes case are con-

sidered. Similar to the STAR model, the SETR model can be extended to a linear

combination of several transition variables and to multiple regimes scenarios. More-

over, the asymptotic properties of the estimator of the transition function should be

further investigated. Finally, asymptotic distribution and tests can be developed in

future research for studying the features of the transition function (e.g., overshooting

behaviour).
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