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Abstract:  In 1972, the mandatory minimum age at which a student could drop out of 

school in England and Wales was raised from 15 to 16, constraining roughly 15 percent of the 

student population. We exploit this discontinuous increase in educational attainment to estimate 

the impact of education on body mass index (BMI) and diabetes approximately 40 years later. 

While previous literature found no significant effect of education on health, they were not able to 

investigate whether these effects vary along the distribution of health outcomes. We are able to 

detect large effects on BMI in the upper quantiles of observed BMI, as large as 2 BMI points at 

the 90th percentile of BMI, from a baseline of 35.6. Using a genetic predictor of BMI, we also 

find that those with higher genetic risk of obesity see smaller reductions in BMI as a result of the 

increase in compulsory schooling while large reductions are seen in those with low genetic risk. 

Taken together our results point to the importance of considering heterogeneity when estimating 

the impacts of education on health. 
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I. Introduction 

Public policy evaluation research in economics commonly relies on the estimation of 

mean parameters within a certain population of interest. This reliance on mean effects is usually 

explained by data or empirical methods limitations or by the lack of credible measures of 

dimensions in which heterogeneity is believed to exist. While such mean estimates are 

important and informative to the policy debate, they might offer misguided lessons if the effects 

of a given policy vary widely across people from different walks of life. Previous research, for 

example, has shown that mean impacts can miss important distributional effects of welfare 

reform (Bitler, Gelbach and Hoynes 2006). In this paper we offer evidence that when evaluating 

the health effects of educational policies it is important to consider (at least) two dimensions of 

heterogeneity: health and genetic background.  

In order to test for heterogeneous effects of education on health we use data from the 

UK Biobank, an unprecedentedly rich dataset with 500,000+ participants born between 1934 

and 1971. Importantly, the data contain continuous physical measures of health and genotypic 

data, which allows us to document heterogeneity across the distribution of health and genetic 

background. In this paper, we focus on BMI and genetic predisposition to high BMI. We show 

that the effects of education significantly vary across the BMI distribution and for people with 

different genetic predisposition to high BMI, providing evidence that these underexplored 

sources of heterogeneity are important. 

 We exploit a natural experiment to overcome the endogeneity of schooling decisions 

and uncover the causal effects of education on health. England’s Raising of School Leaving Age 

(ROSLA) Order of 1972 increased the minimum school-leaving age from 15 to 16 years. 

Students born on or after September 1st 1957 had to stay in school until age 16, while students 

born before that date could drop out at age 15. Using a regression discontinuity design, we 

estimate that the reform increased average education by 0.15 years. By comparing the health 

(measured in 2006-2010) of individuals born before and after 9/1/1957, we can determine 



whether an increase in secondary schooling had a causal effect on health approximately 40 

years later.  

Education and health have been shown to be strongly associated in many periods and 

countries and for a wide range of health measures. Between 2001 and 2014, the richest 1% of 

men in the US could expect to live 14.6 years more than the poorest 1% (Chetty et al. 2016). 

Those who are more educated are also healthier while they are alive; they report being in better 

health and having fewer health conditions and limitations (Cutler and Lleras-Muney 2010 a, b). 

However, despite the robust empirical association between education and health the role of 

education as a determinant of health is still debated.   

A recent and growing literature exploits changes in compulsory schooling laws to study 

the causal effects of education on health (e.g. Lleras-Muney 2005; Oreopoulous 2007; Albouy 

and Lequien 2009; Silles 2009; Powdthavee 2010; Kemptner et al. 2011; Clark and Royer 2013; 

Jurges et al. 2013). This literature has produced mixed evidence across countries, time, 

outcomes, and subpopulations, resulting in no consensus on whether the reported correlation 

reflects causality from more education to better health. Reviewing recent research, Grossman 

(2015) concludes that “there is enough conflicting evidence (in these recent studies) to warrant 

more research on the question of whether more schooling does in fact cause better health 

outcomes.” 

One critical point that the previous literature failed to address is whether education has 

heterogeneous effects on health, affecting individuals from different health, social, and genetic 

backgrounds differently. In other words, the mechanisms that underlie the education-health 

relationship may be more relevant in some settings and for some populations than others. In 

particular, some mechanisms may have a positive effect on health while others may have a 

negative effect. Since the causal “reduced-form” effect of education on health is the result of 

positive and negative effects, the total effect may be positive, zero or negative depending on 

which mechanisms are operating in particular populations. 



There are many such mechanisms through which education can affect health. First, 

education affects income and available material resources. Grenet (2013) found that the 1972 

ROSLA increased earnings by 6.9% in males who would have dropped out at age 15 

otherwise.1 More material resources, in turn, can mean access to more/better quality health care 

and a healthier diet, but also more consumption of “bads” such as cigarettes that harm health. 

Second, education can increase knowledge; the more educated might be better informed about 

health risks and make better health decisions, including adopting better health behaviors. 

Goldman and Smith (2002) for example, show compelling evidence that the more educated are 

more likely to adhere to complex treatment regimens for diabetes and HIV. Cutler and Lleras-

Muney (2012) find that the more educated were faster in understanding new evidence of the 

negative health effects of smoking in the 1950s and 1960s, and in responding to such 

information by changing smoking behavior. It has also been hypothesized that, by improving 

status in society, education might reduce stress related to low social rank (see results from the 

Whitehall studies in Marmot et al. 1978, 1991). Finally, education might affect individual 

preferences, such as forward looking and risk taking behavior (Becker and Mulligan 1994; 

Perez-Arce 2011, Barsky et al. 1995). 

There are many ways that these relationships described above could be heterogeneous. 

For example, Carneiro, Heckman, and Vytlacil (2010) find that the financial returns to college 

attendance can be highly heterogeneous given unobservable characteristics. So if the primary 

causal pathway from education to health is through material resources, we would expect to see 

heterogeneous health returns to education. If there is variation in health production functions or 

health preferences, this heterogeneity will be further augmented. Many factors, including genes, 

may drive this this heterogeneous relationship. For instance, De Walque (2007) finds that 

college attendance decreases the chance that an individual will start smoking and increases the 
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 Oreopoulos (2006) estimates the effect of the 1942 ROSLA in the UK, which raised the minimum school 

leaving age from 14 to 15. He estimates that the returns to school are between 11% and 18%, depending 
on his specification. 



probability that individuals will quit conditional on having started smoking. Bierut et al. (2008) 

find, however, that genetic markers affect the way the body reacts to nicotine, increasing the 

number of cigarettes smoked and reducing the likelihood of quitting. Together, this suggests 

that the interaction of genes and education may have different impacts on health behaviors like 

smoking. 

The remaining sections of this paper are outlined as follows. Section 2 presents the 

institutional background of the educational system in the UK in 1972 and details of the ROSLA 

Order. Section 3 describes the data from the UK Biobank used in this analysis, including an 

explanation of the genetic variables constructed. Section 4 explains the empirical strategy and 

presents the results for the mean effects of education on health. In section 5, we describe the 

heterogeneity analysis and its results. Section 6 outlines the strategy to test how the effect of 

education on health varies by genotype. A discussion of all of these results is found in Section 

7. Section 8 concludes.  

II. Institutional background 

A. The 1972 Raising of School Leaving Age Order 

England and Wales’ Raising of School Leaving Age (ROSLA) Order of 1972 increased 

the minimum school-leaving age from 15 to 16 years. A more complete description of the details 

and historical context of this policy can be found in Clark and Royer (2013), though a brief 

summary is found here. This reform was unique for using date of birth to determine which 

students would be affect by the policy. More precisely, students born on or after September 1, 

1957 were required to remain in school until they turned 16 while students born before that date 

could drop out at age 15. In our data, this change forced roughly 15% of students to get an 

additional year of education. 

The 1972 ROSLA was not unanticipated. The 1944 Education Act, which raised the 

minimum school-leaving age to 15 years, included a provisions that the minimum age could be 

raised to 16 years in the future when the Minister of Education was convinced that such a 



change was possible to implement. In 1964, preparations began to be made, primarily involving 

building up the infrastructure to absorb the additional students. After 8 years, the ROSLA went 

into effect. 

B. Qualifications 

In addition to directly increasing students’ years of education, the ROSLA may have also 

given the students the chance to obtain qualifications they may not have received otherwise. 

The General Certificate of Education (GCE) Ordinary Level, also called the O-level or O level, 

was a school-leaving qualification offered in the UK between 1951 and 1987. The O-level was 

the typical examination taken by sixteen-year olds in grammar schools, which are more 

academically oriented. The O-level was predominantly exam-based with each subject as a 

separate O-level in its own right. The grading of the O-level changed over time but an O-level at 

grades A-C corresponded to a Level 2 qualification.  

The Certificate of Secondary Education (CSE) was a school-leaving qualification offered 

in the UK between 1965 and 1987. CSE courses and examinations were designed for students 

who were not thought likely to pass the O-levels. According to the 1978 Waddell Report, “the O 

Level examination [was] aimed at the upper 20 percent of the full ability range and CSE catering 

for the next 40 per cent.” Before the introduction of the CSE, the majority of schoolchildren left 

school without a nationally recognized qualification. CSE’s were available in both academic and 

vocational subjects with five pass grades ranging from 1 (highest) to 5 (lowest). CSE grade 1 

was equivalent to an O-level pass.  

In 1988 the O-Level and CSE were replaced in the United Kingdom by the GCSEs 

(General Certificate of Secondary Education). The GCSE is an academically rigorous 

qualification typically taken over two years with studies starting at the beginning of Year 10 

(ages 14-15) and final examinations taken at the end of Year 11 (ages 15-16). 



III. Data 

A. The UK Biobank 

We will use data from the UK Biobank, a large, population-based prospective study 

initiated by the UK National Health Service (NHS) (Sudlow et al. 2015). Between 2006 and 

2010, invitations were mailed to 9 million people between the ages of 40 and 69 who were 

registered with the NHS, which has contact details for an estimated 98% of the UK population. 

More than a half-million individuals responded and agreed to contribute data to the Biobank. 

The large sample size and the age range were chosen to allow a reliable assessment of the 

main determinants of common health conditions. 

Participants were assessed at 22 centers throughout the UK. The assessment 

comprised a self-completed touch-screen questionnaire; a brief computer-assisted interview; 

physical and functional measures; and collection of blood, urine, and saliva. Information about 

health status, lifestyle, diet, psychosocial factors, and cognitive function were collected through 

the self-completed touchscreen questionnaire and the computer-assisted interview. The 

Biobank also collected a series of physical measures: blood pressure, heart rate, grip strength, 

anthropometrics, spirometry, bone density, arterial stiffness, eye examination, a hearing test, 

and a fitness test. 100,000 participants also wore accelerometers that recorded physical activity 

for 7 days. Every participant was genotyped. Finally, the Biobank has linked its data to 

extensive NHS health records with hospital-inpatient, hospital-outpatient, and primary-care data, 

which are unique because of the nearly universal health coverage through UK’s NHS. 

While these data will eventually allow for a rich analysis of these detailed and more 

reliable measures of health, for this paper, we will focus on two outcomes: body mass index 

(BMI) and self-reported diabetes. We chose these outcomes as a starting point for a variety of 

reasons. First, these variables were immediately available for the entire data set. Second, these 

two traits have been shown to be strongly associated in previous literature (Diabetes Prevention 

Program Research Group 2002, Ford et al. 1997, Narayan et al. 2007, Sinha et al. 2002), so 



studying them jointly may shed further light on this relationship. Third, because BMI is a 

continuous measure, it will be possible to study the effect of the 1972 ROSLA on the distribution 

of BMI in addition to estimating the mean effects. Lastly, a very large genetic study of BMI 

(Locke et al 2015) has been performed, which allows us to generate a genetic predictor of BMI 

to study heterogeneous treatment effects by genetic risk. 

Since we are studying the effect of the 1972 ROSLA, which only applied to individuals 

living in England and Wales at the time of the reform, we would optimally restrict our sample to 

those living in those countries at age 15. The UK Biobank only collects data on an individual’s 

current residence and their country of birth. We therefore include only those individuals born in 

England and Wales as the best available proxy. Additionally, in order to reduce biases based on 

genetic ancestry, we restrict our analysis to those of European descent. A further discussion of 

this restriction is found in the following subsection on the genetic data. 

Summary statistics for the variables relevant to this study are found in Table 1. Given 

that our analysis will estimate effects local to the treatment threshold (i.e. those born in a 

window of September 1, 1957), Panels A and B of this table give results for those born within 10 

and 5 years of this date, respectively. In addition to a summary of the all of the individuals used 

in the analysis, we may be interested in a summary of these variable for those that were 

influenced by the reform (i.e. “compliers”). While these individuals can’t be identified after 

treatment, we can restrict our sample to those dropping out of school at age 15 within 5 years 

prior to the ROSLA. These results are found in Panel C of Table 1. 

From this table, we first notice that the variable for the age at which an individual left 

school is only available for part of the sample. This is because this question was only asked of 

the 65% of individuals who did not report having a college or university degree on a previous 

question. We will discuss the implications this has on our empirical strategy in the following 

sections. 



Second, we note that the sample is slightly overweight, with an average BMI of roughly 

27. To put this in context, a BMI in the range of 18.5 to 25 is considered healthy, a BMI in the 

range of 25 to 30 is considered overweight, and a BMI above 30 is considered obese. The 

sample of “compliers” has a mean BMI 1.2 points higher than that of the entire sample. At the 

time of data collection, which would be around age 60, the prevalence of diabetes reported in 

the sample is a little more than 3%, relative to a prevalence of more than 5% in the set of 

“compliers.” 

Last, our final sample is very large relative to previous literature. For instance, at the 

same bandwidth used to measure the first-stage effect of the 1972 ROSLA, we have 

approximately twice as many observations as Clark and Royer (2013). This will be very 

important since with samples as large as ours, we are much better powered to detect moderate 

mean effects and also are powered to estimate effects at various quantiles of the health 

distribution. 

B. Genetic Data 

The human genome is made up of strings of billions of molecules, or nucleotides, most 

of which are identical across the whole population. In approximately 10 million locations of the 

genome, however, an alternate nucleotide is found in more than 1% of the population. These 

locations are called single-nucleotide polymorphisms (SNPs) and the possible nucleotides 

observed at a SNP are called alleles. The alleles found at the various SNPs throughout the 

genome for an individual is called that individual’s genotype. 

Using saliva samples, each subject in the UK Biobank sample has been genotyped. This 

was done using the Affymetrix UK BiLEVE Axiom array on an initial 50,000 participants and 

using the Affymetrix UK Biobank Axiom array for the remaining 450,000 participants.2 This 

provided molecular genetic information at 641,018 markers throughout the genome. Using the 

known correlation structure of the human genome in European samples, the genotype was 
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imputed for millions of common SNPs found in these populations. In the current release of the 

data, these full genotypic results are available for roughly one-quarter of the sample. The full 

release should be available by mid-2016. 

As our measure of genetic risk for various outcomes, we will construct a polygenic score, 

which is defined as the weighted sum: 

 𝑆𝑖 = ∑ 𝑔𝑖𝑗𝑤𝑗𝑗  (1) 

where 𝑔𝑖𝑗 is the number of alleles for a given SNP 𝑗 for individual 𝑖 and 𝑤𝑗 is the weight for SNP 

𝑗. Previous work has shown that, although the explanatory power of each individual SNP is very 

small, a weighted sum of these SNPs with optimal weights could explain over 20% of the 

variation in educational attainment (EA) (Rietveld et al. 2013) and also over 20% of the variation 

in BMI (Locke et al 2015).  

To construct polygenic scores, we combine the genetic data with SNP weights drawn 

from large genome-wide association studies (GWAS). To avoid over-fitting, we are using GWAS 

that do not include UK Biobank data when calculating SNP weights. Specifically, the weights for 

EA come from Okbay et al. (2016) and the weights for BMI come from Locke et al (2015). To 

further improve the predictive power of the polygenic scores, the weights taken from these large 

GWAS will be corrected for correlation using modern techniques based on Bayesian methods 

(Vilhjalmsson et al. 2015). 

Interpretation of a polygenic score is not straightforward. They may be thought of as 

representing a set of causal pathways that begin with a person’s genes and end with the trait of 

interest, passing through any number of biological and environmental steps along the way. For 

example, the polygenic score may capture direct pathways to BMI, such as changing a person’s 

build. It may also simultaneously capture more complex pathways, such as altering how 

addictive nicotine is for a person, increasing their smoking if they grow up in an environment 



where they are likely to start smoking, which may reduce their BMI but also may have 

epigenetic consequences, triggering many other biological mechanisms influencing BMI. 

There are a couple threats to this causal interpretation. The common concern of reverse 

causality is not a problem in this case because an individual’s genes are randomly assigned at 

conception conditional on the genes of that individual’s parents. There are two forms of omitted 

variable bias, however, that may be concerning. First, if parental genes are a causal factor in 

their children’s health, some bias may be introduced since the genotype of parents and children 

are correlated. We note, however, that studies that have looked at the association between 

within-family (i.e., across siblings) differences in genotypes and within-family differences in BMI 

find similar results to the individual level analyses, which are susceptible to these parental 

effects. This suggests that, if parental effects are present at all in the polygenic score, they are 

not likely to play a large role in the predictive power of the score relative to the causal factors. 

Another form of potential omitted variable bias stems from differences in genetic 

ancestry. Over time, non-assortative mating between groups of different ancestries can lead to 

differences in the frequency of certain alleles within that group, leading to correlation between a 

person’s genotype and their ancestry.3 If groups with different ancestries tend to have 

differences in health for non-genetic reasons, a genetic score may be highly predictive of the 

outcome of interest, though this association is also not part of a biological causal pathway.4 

To control for ancestry and avoid such bias, we will restrict our sample to those of 

European descent. In practice this this restriction will not significantly reduce our sample size 

since over 95% of our sample is of European descent. Additionally, we will include 15 principal 

components of the genetic data as controls. Since the primary information encoded in people’s 
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4
 The canonical example of stratification was first presented in Hamer (2000). Imagine that a polygenic 

score was produced that was highly predictive of chopstick use. Our primary hypothesis would not be that 
these genes increased manual dexterity or taste for sushi, but rather that the score loads on alleles that 
are more common in Asian populations. 



DNA is their ancestry, this has been shown to remove bias due to stratification almost entirely 

within European populations (Price et al. 2006). 

Lastly, since one way in which stratification is manifested is geographically, we can 

evaluate the degree of stratification in our data by considering the spacial distribution of the 

genetic score. Panel A of Figure 1 plots the mean polygenic score for each cell of a grid over 

England and Wales. Each cell is color-coded according to its quartile among all of the cells 

displayed. For the most part, this map appears to suggest a uniform distribution of scores, with 

perhaps a slightly higher concentration of lower genetic scores in the South-East in the vicinity 

of London. 

As a baseline comparison of what this map would look like when the polygenic score has 

no spacial correlation, we randomly generate a permutation of the score variables and generate 

the same map, which is found in Panel B of Figure 1. For Panel C, we first regress the score on 

a quadratic of latitude and longitude and a set of county fixed effects and plot the mean 

residuals of this regression. We see that this effectively removes any spacial correlation that 

may have been present in the raw scores. This highlights the need to verify that our results are 

robust to geographic controls and interactions if we’d like them to have a biological 

interpretation. 

IV. Mean Effect of Education on Health

A. Empirical Strategy 

We are first interested in estimating the mean effects of education on health. Due to 

biases introduced by reverse causality and omitted variables, we are unable to estimate this 

causal relationship by simple ordinary least-squares (OLS) estimation. Given that it is unlikely 

that parents were timing the birth of their children in response to the ROSLA that would go into 

effect 15 years later, we should be able to use the policy change as an instrument for 

educational attainment and calculate two-stage least squares (2SLS) estimates of the causal 

effects of an additional year of schooling at age 15 on health at the time of data collection. 



Where possible, we follow the empirical strategy in Clark and Royer (2013) so our 

results are comparable to theirs. Specifically, we use a regression discontinuity (RD) design to 

estimate the first-stage and reduced-form effects of the 1972 ROSLA. This approach effectively 

compares the outcomes of those born immediately before September 1, 1957 and those born 

after, dividing the sample into plausible control and treatment groups. In practice, we use the 

specification described in Lee and Lemieux (2010). More precisely, we estimate parameters of 

the equation 

𝑌𝑖 = 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑖 + 𝑓(𝐷𝑜𝐵𝑖) + 𝑿𝑖𝜷4 + 𝜀𝑖. (2)

where 𝑌𝑖 is some outcome of interest for individual 𝑖 (e.g., education or BMI); 𝐴𝑓𝑡𝑒𝑟𝑖 is one if the 

individual was born on or after September 1st 1957 (and 0 otherwise); 𝐷𝑜𝐵𝑖 is the individual’s

date of birth; and the vector 𝑿𝑖 contains a set of predetermined control variables such as 

gender.5 The function 𝑓(∙) captures birth-cohort trends in 𝑌𝑖.

There are two standard ways to model this trend: a local linear approach and a global 

polynomial approach. In the local linear specification, 𝑓(∙) is modeled as a linear function with 

different slopes before and after the discontinuity and observations distant from the discontinuity 

threshold are down-weighted. As may be inferred from its name, the global polynomial approach 

models 𝑓(∙) as a polynomial that may differ on either side of the discontinuity as well. The 

polynomial is usually limited to second or third order to avoid overfitting. Gelman and Imbens 

(2014) and Imbens and Kalyanaraman (2012) suggest, however, that local linear specifications 

tend to be more stable. For this reason, the results presented in this paper are based on a local 

linear specification.6 As is recommended in Imbens and Kalyanaraman (2012), we use a triangle 

kernel to weight the observations, and we use the optimal bandwidth rule proposed in that same 

paper to select the width of the kernel. We will additionally cluster the standard errors by month-

of-birth. 

5
 The inclusion of predetermined controls in equation (1) is not needed for identification but can improve 

the estimates’ precision. 
6
 We also report the global polynomial approach as a robustness check. 



A key assumption of the RD framework is that the mean potential outcomes of 𝑌𝑖—that 

is, the expected value of 𝑌𝑖 given an individual’s treatment status—is continuous across the 

discontinuity. If this wasn’t so, it would be impossible to disentangle the discontinuity in potential 

outcomes from the treatment effect. While it seems unlikely that such a discontinuity would arise 

in the population from one month to the next, this assumption may be violated if there is 

differential selection on either side of the threshold. We test for differential selection in two ways. 

First, we perform a McCrary Test (McCrary 2008), which tests for a discontinuity in the 

distribution of birth month over the threshold. More precisely, we estimate (2) where 𝑌𝑖 is a 

count of the number of individuals born in month 𝑖. Second, we test for balance in 

predetermined observable characteristics as suggested by Lee and Lemieux (2010). In this test, 

we estimate (2), where 𝑌𝑖 is some outcome determined before the ROSLA was implemented. In 

our case, we use an individual’s coordinates of birth and his or her genetic score for BMI and for 

educational attainment. 

In order to estimate the first-stage regression, we need a measure of the educational 

attainment of the individuals in the sample. The UK Biobank asked the question “At what age 

did you leave school?” though as explained in the previous section, this was only asked of the 

65% of respondents who reported not having graduated from college or university. Since the 

direct impact of the ROSLA was on those dropping out of school at age 15, a simple way to 

resolve this data limitation is to code individuals who have a college degree as having left 

school at some age greater than 16 and to estimate (2) for a binary outcome variable which 

indicates whether an individual was in school till at least age 16. 

This approach, however, may yield biased 2SLS estimates. While a simple human 

capital model would predict that there would only be a response in the number of students in 

school till age 16, a model with signaling (Lang and Kropp 1986), spillovers (Acemoglu and 

Angrist 2000), or ability learning may yield increases in the fraction of students remaining in 

school till many other ages. We can estimate the magnitude of the bias by performing RD 



regressions for binary outcomes indicating whether a student was still in school till various age 

thresholds other than age 16. Then the 2SLS will be inflated by a factor of 

 
∑ 𝛽1,𝑗𝑗

𝛽1,16
, (3) 

where 𝛽1,𝑖 is the 𝐴𝑓𝑡𝑒𝑟𝑖 coefficient from (2) corresponding to a specification where the outcome 

variable is an indicator of whether the individual is in school till age 𝑗. 

B. Results 

Scatter plots corresponding to the McCrary and balance tests are found in Figures 2 and 

3. Numerical results of these tests are contained in Table 2. These tests provide no evidence 

that there is any differential selection across the discontinuity threshold. In each case the point 

estimate is insignificant and the standard errors are precise enough to rule out even small mean 

differences. This reinforces our confidence that the assumptions underlying our empirical 

strategy are met, and we therefore continue with our analysis. 

Figure 4 shows a scatter plot of the fraction of individuals still in school binned by six-

month intervals. Figure 5 plots the corresponding discontinuity coefficients. Table 3 displays the 

results for various specifications of (2). 

These results show that the bulk of the increase in educational attainment was in the 

fraction remaining in school till age 16, increasing by around 15 percentage points.7 There also 

appears to have been a small, though significant, increase in students remaining in school till 

age 15. It is possible that this is due to stricter enforcement of existing compulsory schooling 

laws after the ROSLA Order. This effect would also be present if there was a small amount of 

misreporting. There also appears to be small, statistically-insignificant increases in the fraction 

of students still in school at ages 17 and 18.8 So it does not appear that the ROSLA led to large 
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Clark and Royer (2013). 
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 We don’t test other ages in our data since some individuals may be graduating college at older ages. 



increases at ages other than age 16. If we use the point estimates at all thresholds tested as the 

true impact at each age, these results suggest that our IV results may be inflated by about 5%. 

Table 4 and Figure 6 display the impact of the ROSLA on mean BMI. The first two 

columns show the OLS relationship between BMI and remaining in school till age 16. The two 

middle columns show reduced-form estimates. The last two columns show 2SLS estimates, 

where we use the discontinuity to instrument for remaining in school till age 16. Columns 1, 3, 

and 5 show results without controls while columns 2, 4, and 6 show results that include sex, 

genetic scores for BMI and educational attainment, an indicator for being genotyped, fifteen 

principal components of the genetic matrix, month of birth fixed effects, county of birth fixed 

effects, and a quadratic of latitude and longitude at birth. 

The reduced-form suggests that there was a small decrease in BMI of 0.06 BMI points, 

though our results are not precise enough to rule out a zero effect from the 95% confidence 

interval. Table 4 also reports the 2SLS estimates of the impact of an additional year of 

education on BMI. It implies that the additional year of education at 16 lead to a decrease in BMI 

of approximately 0.5 BMI points, though this is unsurprisingly also insignificant. This is much 

smaller in magnitude than the OLS estimate of a decrease of 1 BMI point, however the standard 

errors on the 2SLS estimate are large enough that we can’t reject that these estimates are the 

same. 

The results for diabetes, which are found in Figure 7 and Table 5, are stronger. In this 

case, we estimate that the ROSLA decreased the prevalence of diabetes by more than 0.3 

percentage points.  We also estimate that the effect of an additional year of school on diabetes 

risk is a decrease of almost 3 percentage points, roughly double the OLS estimate. In the 

specification with controls, these estimates are significant at the 1% level. We note that that in 

the specifications without controls, both the reduced form and 2SLS estimates have a t-statistic 

of almost exactly two. As a result, we present these results with caution. 



V. Heterogeneous Effects 

A. Empirical Strategy 

An advantage of continuous measures of health such as BMI is that we are able to 

estimate how education affects different points of the BMI distribution rather than just the effect 

on the mean. We will do this in a number of ways. First, we will estimate a “reduced-form” 

quantile model, which will estimate the impact of the ROSLA on different quantiles of the BMI 

distribution for all individuals in the data. Second, as an “instrumental variable” counterpart to 

quantile estimation, we will implement a method by Frandsen, Frölich, and Melly (2012), which 

gives quantile treatment effects of the impact of an additional year of education on various 

quantiles of the BMI distribution for compliers. Lastly, we will create binary measures of BMI at 

several thresholds and estimate how an additional year of education affects the probability that 

an individual has a BMI above that threshold. Details of these approaches are found in the 

following paragraphs. 

Quantile estimation, introduced by Koenker and Bassett (1978), generates coefficients 

for the model 

 𝑃(𝑌𝑖 ≤ 𝛽0 + 𝛽1𝐴𝑓𝑡𝑒𝑟𝑖 + 𝑓(𝐷𝑜𝐵𝑖) + 𝑋𝑖𝜷4 | 𝐴𝑓𝑡𝑒𝑟𝑖, 𝐷𝑜𝐵𝑖 , 𝑋𝑖) = 𝜏 (4) 

for each quantile 𝜏, where the variables above are defined as in (2). This approach defines a 

function 𝛽1(𝜏), which represents how much quantile 𝜏 increases for those born after September 

1, 1957. More details can be found in Hao and Naiman (2007). 

Interpretation of the results of this model is not as straightforward as with mean effects. 

Specifically, this approach only estimates how the 𝜏-th quantile is affected as a result of the 

policy change, in contrast to estimating how much the BMI of the individual at the 𝜏-th quantile is 

affected as a result of the policy change. As a result, output of this estimator should be thought 

of as measuring the effect on the population as a whole rather than individuals. 

If we would like to treat quantile estimates as “the effect on the individuals at each 

quantile,” we would need an additional strong assumption of “rank invariance.” This assumption 



requires that the rank order of individuals remains the same before and after treatment. More 

precisely, for any two individuals, A and B, A would have a higher BMI than B when they both 

leave school at age 15 if and only if A would also have a higher BMI than B when they leave 

school at age 16. In the following section on genetic heterogeneity, we will show that this 

assumption is likely false since individuals around the same quantile of the BMI distribution 

appear to respond very differently to an extra year of schooling based on their genetic risk for 

obesity. 

In a traditional instrumental variable setting, it is assumed that the outcome for always-

takers (i.e. individuals who would remain in school until at least age 16 even without the 

ROSLA) wouldn’t change after the policy change. Therefore, you can estimate the effect on 

compliers by rescaling the average effect on the whole population by the fraction of compliers 

(i.e. individuals who would drop out at age 15 before the ROSLA but would be constrained to 

stay in school an additional year if they were part of the treated group). Since the distribution of 

BMI is possibly different for compliers than it is for always-takers, some quantile of BMI in the 

entire population may not correspond to the same quantile of BMI in the population of compliers. 

As a result, to estimate the effect on a quantile of the distribution of compliers, you must also 

transform the quantiles of the “reduced form” estimates so they correspond to the quantiles of 

the complier distribution. 

To do this, we follow the approach proposed by Frandsen, Frölich, and Melly (2012), 

which is a variation on a Wald Estimator that estimates quantile treatment effects in an RD 

setting. This approach relies on four assumptions: 

1. The probability of treatment changes discontinuously at the RD threshold, 

2. The distribution of potential outcomes is continuous across the RD threshold, 

3. No one who would be treated before the RD threshold is untreated after it, and 

4. There is positive density at the RD threshold. 



These assumptions are nearly identical to those of the standard RD design. The sole 

difference is assumption 2 which normally only requires that the expectation of potential 

outcomes be continuous across the RD threshold. Though this assumption is slightly stronger, 

the timing of the implementation of the ROSLA makes us think it is unlikely that any quantiles of 

the potential outcome distribution would discontinuously shift at the RD threshold. This is again 

supported by the smoothness of predetermined characteristics examined in the previous 

section. 

As a final specification, we will choose some BMI threshold 𝑡, and estimate the reduced-

form equation (2) where the outcome variable is an indicator of whether the individual has a BMI 

above 𝑡. We can then estimate by 2SLS the impact of a year of education on the probability that 

the individual has a BMI above 𝑡. 

We note that this specification is closely related to the quantile regression approach 

described above. Both approaches effectively estimate the difference in the cumulative 

distribution function of potential outcomes of compliers in the treated and untreated state. 

Quantile regression holds the percentile fixed and takes the horizontal difference of BMI while 

the secondary binary approach holds the BMI fixed and takes a vertical difference of percentile. 

B. Results 

Figure 8 shows a scatter plot of how the 25th, 50th, 75th, and 90th percentiles of the whole 

population vary grouping individuals in 6-month bins. These figures suggest that there is no 

discernible discontinuous change in these quantiles after the ROSLA at the 25th percentile and 

the median, though some effects may be seen at the upper quantiles. Figure 9 plots the 

estimated reduced-form discontinuity at a number of quantiles between the 10th and 90th. This 

figure also includes a dotted line that shows the quantile function of BMI before the reform. 

As can be seen, no effect significantly distinct from zero can be detected below the 40th 

percentile, which are quantiles corresponding to healthy weights (i.e. a BMI below 25). As we 

move up the distribution of BMI from this point, however, the estimated effect of the ROSLA on 



this portion on the distribution begins to peel away from the x-axis, achieving statistical 

significance for quantiles above the 70th. This means that the ROSLA is estimated to have had 

the overall effect of shifting the distribution from a less health to a more healthy range while 

having at most a minor impact on the health portion of the BMI distribution. Additionally, it 

appears that the distribution shifted most at quantiles corresponding to the least healthy levels 

of BMI. 

Figure 10 displays a similar figure corresponding to the IV estimates of the effect of an 

additional year of school on the BMI distribution of compliers. As expected, this figure has 

roughly the same shape, deviating from the x-axis at the same quantile corresponding to the 

transition from a healthy weight to overweight. One difference between Figure 10 and Figure 9 

is that the point of departure in the IV figure arrives at an earlier quantile than in the reduced-

form figure. This is because the group of always-takers, which are differenced out by this 

approach, tend to have a lower BMI on average. As a result, the 40th percentile of the whole 

distribution corresponds to the 20th percentile of the distribution of compliers. These effects are 

large, suggesting that an additional year of education decreases the 90th percentile of the BMI 

distribution by 2 BMI points from a baseline of 35. 

Finally, Figure 11 shows the results for the series of RD specifications corresponding to 

various BMI thresholds and Figure 12 shows the corresponding IV estimates. As with the 

quantile regressions, these estimates suggest that the ROSLA had little impact on the BMI of 

individuals with an untreated potential outcome in a healthy range, but as we estimate the 

change in probability that a person has a BMI above thresholds in an unhealthy range, we are 

able to detect significant improvements in health. Based on the 2SLS coefficients, these 

improvements are as large as 9 percentage points at a BMI threshold of 30, from a baseline of 

33%. 

In contrast to the quantile regressions, where the discontinuities and BMI quantile had 

an approximately monotonic relationship, the effect at higher BMI levels seems to fall after a 



threshold of about 30. This is primarily driven by boundary effects. As we move to higher and 

higher BMI thresholds, the fraction of individuals with a BMI above that threshold gets smaller 

and smaller. If we would like to scale these coefficients so they are comparable across 

thresholds, we can divide them by the baseline fraction of individuals with a BMI above that 

threshold. Then the coefficients would be an estimate of the percent decrease in probability that 

an individual would have a BMI above a certain level as opposed to a percentage point 

decrease. These scaled reduced-form results are found in Figure 13. As can be seen, the trend 

of these coefficients more closely matches the patterns seen in the quantile regressions, 

suggesting that the ROSLA decreased the fraction of individuals with a BMI above each 

threshold over 30 by about 5%. 

VI. Genetic Heterogeneity 

A. Empirical Strategy 

In the previous section, we showed evidence that there is a significant amount of 

heterogeneity in the treatment effects of education on BMI. We may be interested in if this 

heterogeneity varies systematically by observable characteristics, such as an individual’s 

genetic risk for poor health. Genes are a particularly interesting trait to use in this context 

because they are assigned at birth and are immutable. In this section, we employ two related 

approaches: one using a parametric continuous specification and the other using a more 

nonparametric categorical specification. 

In both cases, we will estimate the following first-stage and reduced-form models 

 𝑌𝑖 = 𝑮𝑖𝜷0 + 𝐴𝑓𝑡𝑒𝑟𝑖 × 𝑮𝑖𝜷𝑔 + 𝑓(𝐷𝑜𝐵𝑖) + 𝑿𝑖𝜷4 + 𝜀𝑖 (5) 

where 𝑌𝑖, 𝐴𝑓𝑡𝑒𝑟𝑖 and 𝐷𝑜𝐵𝑖 are defined as before. In the continuous specification, 𝑮𝑖 is a vector 

consisting of a constant, an indicator of whether an individual has genetic data, and the genetic 

score for BMI described in section 3. This way, the element of 𝜷𝑔 associated with the score will 

measure how much an increase in the score is associated with an increase in the treatment 



effect. More precisely, the effect of the ROSLA on outcome 𝑌𝑖 for an individual with genetic 

score 𝑆𝑖 would be 

 𝛽𝑔,1 + 𝛽𝑔,3𝑆𝑖 (4) 

So in this case, we are just-identified for our 2SLS estimates, using the vector 𝐴𝑓𝑡𝑒𝑟𝑖 × 𝑮𝑖 to 

instrument for the endogenous vector 𝐸𝑑𝑢𝑖 × 𝑮𝑖, where 𝐸𝑑𝑢𝑖 is the binary variable of whether 

individual 𝑖 remained in school till age 16. 

In the categorical case, we first divide the sample into 4 groups: those without genetic 

data and three terciles based on each genotyped individual’s genetic BMI score. We then 

estimate (3), where 𝑮𝑖 is a binary vector indicating which group the individual is in. In this 

specification, the elements of the parameter 𝜷𝑔 may be interpreted as the effect of the ROSLA 

on the outcome 𝑌𝑖 for each group. Similarly, the corresponding 2SLS estimates may be 

interpreted as the effect of remaining in school till age 16 on the outcome. 

In each case, we may be worried that any results found may not be driven by biology but 

instead represent geographic variation in the score. To test this, we generate a set of rich 

geographic controls including a quadratic in latitude and longitude and county fixed effects. We 

then estimate (3), including an interaction of these controls with the 𝐴𝑓𝑡𝑒𝑟𝑖 variable. If the 

heterogeneity results are driven primarily by geographic variation in the genetic score, then we’d 

expect to see large attenuation in the interaction effects. 

B. Results 

First-stage results for the continuous and categorical specification are found in Table 6. 

A visual representation of the categorical results is found in Figure 14. We see here that there is 

a strong amount of heterogeneity in the degree of treatment, where each standard deviation 

increase in the BMI genetic score is associated with an increased first-stage effect of 2.3 

percentage points. In the categorical case, we see a highly significant 5 percentage point 

difference between those in the lowest BMI score tercile and those in the highest tercile. These 



relationships hold up in all specifications, including those where the discontinuity variable is 

interacted with the geographic controls. 

Comparable results for the reduced form specifications for BMI are found in Table 7 and 

Figure 15. We note that in the categorical specification, we estimate that the ROSLA decreased 

mean BMI of those with a low BMI score by 0.2 BMI points from a baseline of 26.1, while there 

was no real impact on those in the other BMI terciles. This is particularly striking given the first-

stage results described in the previous paragraph—the group that was most strongly treated by 

the ROSLA saw the smallest reductions in BMI. 

We may be interested if this relationship holds through the distribution as opposed to just 

at the mean. Remembering that the largest effects were seen in the highest quantiles of the BMI 

distribution, we estimate the same specifications as above for the effect of the ROSLA on the 90 

percentile of BMI conditional on the BMI score. These results are found in Table 8 and Figure 

16. We note that the same patterns hold in these regressions, though the point estimates tend 

to be roughly three to four times larger. As before, the largest effects on the 90th percentile of 

BMI are found in those with a low genetic score for BMI. 

Table 9 and Figure 17 contain the comparable results for diabetes risk. In this case, we 

see strongly significant main effects and heterogeneous effects. As before, these results are 

robust to the inclusion of geographic controls interacted with the discontinuity variable. In 

contrast to the results for BMI, however, we see the strongest effects in those in the highest BMI 

score tercile, with a reduction of 1 percentage point from a baseline of 5% and little reduction in 

the group with the lowest BMI scores. 

Two-stage least squares results are found in Table 10 and Figures 18 and 19. The 

patterns are similar to those seen in the reduced form specifications. These estimates suggest 

that staying in school till age 16 as opposed to dropping out at 15 leads to a reduction in BMI of 

1.5 BMI points in the group of individuals with the lowest BMI scores while little to no effect is 

scene in the group with the highest BMI scores. In contrast, those with the highest BMI score 



experience a decrease of around 6 percentage points in diabetes risk for the additional year of 

school relative to insignificant decreases in those with the lowest score. 

These results are surprisingly strong, which may call into question whether these results 

are primarily driven by chance. Fortunately, these estimates are based only on the 25% of the 

observations for which we currently have genetic data. The complete genetic data will become 

available within the next several months, which will allow us to verify if these results replicate in 

a sample three times as large as this one. 

C. Potential Biological Mechanisms 

As discussed in Section 3, these genetic heterogeneity results may be hard to interpret 

since the genetic score represents any number of unknown causal pathways. In this section, we 

attempt beginning to untangle some of these pathways and propose other tests that may 

elucidate the mechanisms driving the genetic heterogeneity observed. 

Given that the results described above are robust to the inclusion of rich geographic 

controls, we take this as evidence that the heterogeneity is driven primarily by biological 

processes. To understand these processes, we first turn to the literature to try to understand 

what is known about the regions of the genome where the polygenic score puts the most 

weight. Locke et al (2015) and Finucane et al (2015) use the GWAS results on which our BMI 

genetic score weights are based to separate out the primary sources of the signal. In both 

cases, they find that the strongest effects detected are concentrated in regions of the genome 

more strongly associated with the central nervous system. Locke et al further indicate that the 

strongest systems affected are those associated with central appetite regulation, learning, 

cognition, emotion and memory. On the other hand, they test for a concentration of signal in 

areas associated with the digestive, endocrine, and musculoskeletal systems and find nothing. 

In addition to being interested in the regions of the genome where the signal of the score 

is concentrated, we may be interested in how scores for different traits may be related to the 

genetic score for BMI. While this does not reveal any causal relationship between the two traits, 



it may highlight the degree to which two traits share similar causal pathways. As our measure of 

this relationship, we use the genetic correlation, which signifies the correlation between the 

scores for a pair of traits if the weights for the score were estimated in an infinite sample. We 

draw these estimates from Bulik-Sullivan et al (2015), which reports the estimated genetic 

correlation for a large set of traits including BMI. Selected results are found in Table 11.9 Of the 

42 traits compared to BMI, 27 have a Bonferroni corrected p-value reaching statistical 

significance at the 5% level. The strongest correlations are found between BMI and other 

related measures of obesity, all having a correlation of nearly one. Diabetes and related traits 

(such as fasting insulin) are also strongly related with correlations around 0.5. At the next tier, 

traits related to educational attainment have a genetic correlation of about -0.3 and traits related 

to smoking behavior have a genetic correlation of 0.3. Other traits tested, including a number of 

mental and physical health outcomes, are estimated to have genetic correlations smaller in 

magnitude than that. 

Though genetic correlation provides insight into which traits are genetically related to 

BMI, this relationship is relevant for the direct effect of genes on the traits. We are instead 

interested in the common causal pathways related to the genetic heterogeneity of the effect of 

education on health. To estimate the overlap related to the interaction of the ROSLA and 

genetic risk, we create a genetic score for educational attainment based on the GWAS results of 

Okbay et al (2016), regress the genetic score for BMI on the genetic score for educational 

attainment, and estimate (3) using the residual of this regression in the place of the raw genetic 

score for BMI. The resulting coefficient from this specification will give an estimate of the 

                                                           
9
 Many of the traits contained in Bulik-Sullivan et al (2015) are related to one another. In selecting which 

traits to include in Table 11, we tried to only omit a trait if a close proxy was left in the remaining traits. 



contribution of the BMI score to treatment effect heterogeneity that is not captured by the 

pathways represented by the genetic score for educational attainment.10 

The results from this approach are found in Table 12. As we can see here, the 

coefficient corresponding to the residual of the BMI score falls by about 25% in the first-stage 

regressions and by about 20% in the diabetes regressions, suggesting that the majority of the 

sources of this heterogeneity are from pathways unique to the BMI score. There is very little 

difference, however, in the BMI regression coefficient when we use the residual of the BMI 

score. We highlight, however, that the amount of information we can infer from this analysis is 

limited. While decomposing the signal into “the fraction relevant to a genetic score for 

educational attainment” and its residual may be interesting in refining our hypotheses of the 

source of the heterogeneity observed, since we know little about the mechanisms that each 

score represents, forming strong conclusions from these results is not possible. 

A potential future line of analysis would be to skip the biological mechanisms, which 

researchers are still trying to understand and for which we have little data, and consider more 

distal steps in the causal chain. For instance, we can estimate the impact of the ROSLA on 

factors that we believe may be on the causal pathway for BMI, including earnings, occupation, 

caloric intake, and preventative health care. This approach will generate not causal estimates of 

the pathway (i.e. we won’t be able to distinguish between education causing increased earnings 

causing improved health and education causing improved health causing increased earnings), 

but we should be able to put bounds on which relationships are most closely related. 

VII. Robustness 

A. Bandwidth analysis 

The bandwidths used in the analyses of this paper are based on the optimal bandwidth 

algorithms proposed in Imbens and Kalyanaraman (2012). There are two competing forces at 
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 Educational attainment was used in this case because it is a trait related to this study where weights 
have been estimated in a large sample. In the future, a similar type of analysis can performed using 
scores for a variety of other traits. 



play in this parameter tuning problem, often referred to as the bias-variance trade-off. First, the 

wider the bandwidth, the more data are included, increasing the precision of the estimate. 

Second, the narrower the bandwidth, the less curvature there is in the running variable, which 

generates bias in the local linear model due to misspecification. 

In order to confirm that our results are robust to differences in bandwidth, we estimate 

the first-stage and reduced form models at a number of bandwidth between 0.5 and 1.5 times 

the optimal bandwidth. The coefficients associated with the discontinuity are found in Table 13 

and plotted in Figures 20 through 23. As can be seen, the magnitude of the effect is quite stable 

at all bandwidth considered, though the confidence intervals corresponding to wider bandwidths 

are tighter, as expected. Considering how linear the relationship is between month of birth and 

the outcomes we consider, seen in Figures 4, 6, 7, and 8, it is unsurprising that the point-

estimate varies little by bandwidth. 

B. Local Linear versus Global Polynomial Specifications 

While local linear specifications are often more stable than polynomial specifications, if 

there is curvature in the trend leading up to the discontinuity threshold, these estimates may still 

be substantially biased. While there appear to be limited local curvature in the scatter plots 

presented, we also perform a global polynomial specification, which includes all available data 

but allows for cubic trends that can differ before and after the discontinuity. We expect these 

estimates to be similar to those of the local linear specification. A comparison of the RD and 

2SLS estimates by both the local linear and global polynomial approaches is found in Table 14. 

In each case, the estimates based on a local linear and a global polynomial approach 

are statistically indistinguishable. We note, however, that the estimate for the global polynomial 

approach is approximately twice as large as the local linear approach for the reduced-from and 

2SLS specifications when the outcome is diabetes. Similarly, the quantile regression estimate 

for 90th percentile BMI is 32% larger in the global polynomial approach than in the local linear. 

Since our preferred specification (local linear) is the more conservative in each of these cases, 



we are not concerned by this difference. As a whole, we take these results as evidence that our 

results are at worst not driven by the specification of the trend, and they are possibly 

conservative estimates of the true effect. 

VIII. Discussion 

In this paper, we have identified several key empirical results. First, we find marginally 

significant evidence that the ROSLA decreased the diabetes risk of those affected by the 

reform. We also estimate that the reform decreased mean BMI in our sample, though this result 

is not statistically significant. By comparison, Clark and Royer (2013) find no significant effect for 

any of the health measures they considered, including BMI (they do not have a measure of 

diabetes).  

There are many possible explanations for why we detect an impact of the ROSLA on 

diabetes when Clark and Royer find no impact on any measure. Our primary hypothesis is that, 

with the exception of their data used for estimating the effect of education on mortality, their 

sample is roughly half the size of ours. As a result, their standard errors generally cannot rule 

out moderate effect sizes. For instance, their confidence interval of the impact of education on 

BMI comfortably contains our (insignificant) estimate of -0.53 BMI points. 

It may seem surprising that even with such a large sample size, we are not able to 

detect convincingly significant effects of the 1972 ROSLA. Part of the reason for this is a 

limitation of the study design. Since the standard errors are clustered by month of birth, and 

since the treatment variable does not vary within a cluster, there is a strictly positive lower-

bound on the size of the standard errors for a fixed number of clusters even with an arbitrarily 

large sample. In fact, since the optimal bandwidth is decreasing in sample size, there may be a 

point at which the increase in precision from adding addition observations is dominated by the 

loss in precision by removing clusters. Since the sample size in this study is so large, we 

anticipate that further increases in sample size would not further increase the precision of 

estimates of mean effects in an RD framework. 



This does not mean that an RD framework to study the mean effects of the ROSLA on 

health will be fruitless going forward. The magnitude of the standard errors are not only a 

function of the sample size and number of clusters but also of the residual variance. If 

subsamples are identified with less residual variance or if additional controls are added to 

absorb what is left of the residual variance, this could have the same effect as adding additional 

samples. For instance, the genetic score for BMI currently explains nearly 7% of the variance in 

BMI. Improving these genetic predictors and finding other predictors of comparable explanatory 

power are likely the best strategies for estimating these parameters with sufficient precision. 

As a second important empirical result, we find a significant amount of heterogeneity in 

the effect of education on different quantiles of the BMI distribution for compliers. This means 

that although the mean effect of education on BMI may be moderate, there are portions of the 

population for whom the effect is large. Conveniently, these large effects are concentrated in the 

high end of the BMI distribution, leading to a net compression of the distribution towards a more 

healthy range. This additionally may explain why the mean effect is difficult to detect: in the half 

of the population with BMI in a healthy range, education doesn’t appear to decrease. 

Third, using genetic data we are able to identify individuals for whom the effect of 

education on health is strongest. Oddly, the data suggest that those at high genetic risk for 

obesity tend to reduce their BMI least with an additional year of education relative to those with 

a low genetic risk for obesity. This seems to directly contradict the heterogeneity results which 

suggest that those with a high potential BMI absent treatment respond most to an additional 

year of schooling. These two results can be rationalized, however, with the understanding that 

there are many factors that influence BMI, including those with genetic and non-genetic roots. If 

these results hold up in the soon-available replication sample, these results simply suggest that 

an additional year of schooling more easily mitigates the non-genetic factors that lead to a high 

BMI. 



In contrast to the genetic heterogeneity results for BMI, the heterogeneity for diabetes 

goes in the opposite direction: those at high genetic risk for BMI see the largest reductions in 

diabetes risk relative to those with low genetic risk for BMI. This may partially be due to 

boundary effects since on 2.5% of individuals with a low BMI score report having diabetes while 

4.8% of high BMI score individuals report it. This result, however, does highlight that BMI and 

diabetes are not as strongly related as expected; the largest decreases in diabetes are seen in 

a group for which there is no comparable decrease in BMI. Future work is needed to understand 

what behaviors may be changing (e.g. diet or exercise) that play a more significant role. 

IX. Conclusion 

In this paper, we have presented evidence that the effects of education on health are 

strongly heterogeneous through the population. This may explain why even in our data with 

sample of unprecedented size, along with several previous studies of the impact of education on 

health, have had difficulty detecting significant effects. This result may be important for policy 

makers who need to project the potential welfare impacts of reforms that increase the 

educational attainment of the population. While the mean effects on long-term health may only 

be moderate, large effects can be seen is certain segments of the health distribution, in this 

case as measure by BMI. 

It is also of interest that some of the heterogeneity can be predicted by observable 

characteristics, in this case genotype. While it is not feasible to expect targeted interventions 

meant to improve health by increasing the educational attainment of some groups based on 

their genotype, this research is a good proof-of-concept that similar approaches could very likely 

be successful in other settings. For instance, smokers may choose to use genetic information to 

inform themselves about how successful various expensive pharmaceutical interventions may 

be meant to help them quit. 

This paper makes a very simple first attempt at understanding the biological 

mechanisms that drive the observed heterogeneity. This analysis suggests that the BMI score is 



primarily driven by regions of the genome related to cognitive function, such as central appetite 

regulation, learning, cognition, emotion and memory. We also found that, while some of the 

heterogeneity was driven by variation common to a genetic predictor of educational attainment, 

the majority of the heterogeneity is driven by variation independent of the EA score. More 

careful work to understand these mechanisms should be conducted. 

This paper leaves many question open for future research. First, some of the results 

reported are only marginally significant. Over the next few months as the complete genetic data 

of the UK Biobank are made available, we will be able to check if these results are replicated in 

the full sample. Second, as more precise GWAS estimates become available and tools for 

creating more predictive genetic scores are developed, it may be possible to produce sufficiently 

precise estimates of the mean effects of education on health that have thus far eluded research. 

Third, this paper does not take full advantage of the rich variable available in the UK Biobank. In 

the future, we will use several of the continuous, direct measures of health, such as spirometry 

tests, blood pressure, and glucose levels. We hope that these variables will lead to more 

precise estimates since they should be less susceptible to error due to misreporting and will 

allows us to estimate effects on the distribution of health as we did with BMI in the paper. 
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Table 2: McCrary Test and Balance Tests

McCrary Test

(1) (2) (3) (4) (5)

Count North Coord. East Coord. BMI Score EA Score

After -9.6 -0.016 0.009 0.026 0.017

(19.2) (0.014) (0.011) (0.022) (0.021)

Linear Trend X X X X X

Bandwidth 58 66 62 91 93

N 117 121,663 113,843 42,751 43,735

*** p < 0.01, ** p < 0.05, * p < 0.10

Balance Tests

Note: This table reports the results of a McCrary test and balance tests for

predetermined variables. In the balance test for the BMI and educational

achievement scores, the data are restricted to those for whom genetic data are

available. These estimates come from a local linear framework with a triangle kernel

where the bandwidth of the kernel is selected by Imbens and Kalyanaraman (2012).

In all specifications, the linear trend is allowed to vary before and after the

discontinuity. Standard errors are clustered by month of birth.





Table 4: Mean Effect of Education on BMI

BMI (1) (2) (3) (4) (5) (6)

Edu16 -1.263*** -1.081*** -0.421 -0.525

(0.0475) (0.0471) (0.367) (0.371)

After -0.0548 -0.0646

(0.0472) (0.0453)

Linear Trend X X X X X X

Controls X X X

N 208,129 208,129 208,129 208,129 208,129 208,129

R2 0.008 0.044 0.001 0.040 0.005 0.043

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports OLS, reduced-form, and 2SLS estimates of the effect of

the 1972 ROSLA on BMI. The indicator variable Edu16  identifies individuals still

in school at age 16. These estimates come from a local linear framework with a

triangle kernel where the bandwidth of the kernel is selected by Imbens and

Kalyanaraman (2012) (110 months). In all specifications, the linear trend is

allowed to vary before and after the discontinuity. Controls in the marked

columns include sex, genetic scores for BMI and educational attainment, an

indicator for being genotyped, fifteen principal components of the genetic matrix,

month of birth fixed effects, county of birth fixed effects, and a quadratic of

latitude and longitude at birth. Standard errors are clustered by month of birth.

OLS Reduced-Form 2SLS



Table 5: Mean Effect of Education on Diabetes

Diabetes (1) (2) (3) (4) (5) (6)

Edu16 -0.019*** -0.018*** -0.023* -0.030***

(0.0019) (0.0019) (0.012) (0.011)

After -0.00302* -0.0037***

(0.0015) (0.0014)

Linear Trend X X X X X X

Controls X X X

N 210,302 210,302 210,302 210,302 210,302 210,302

R2 0.004 0.011 0.002 0.010 0.004 0.010

*** p < 0.01, ** p < 0.05, * p < 0.10

OLS Reduced-Form 2SLS

Note: This table reports OLS, reduced-form, and 2SLS estimates of the effect of the

1972 ROSLA on diabetes. The indicator variable Edu16  identifies individuals still in

school at age 16. These estimates come from a local linear framework with a triangle

kernel where the bandwidth of the kernel is selected by Imbens and Kalyanaraman

(2012) (111 months). In all specifications, the linear trend is allowed to vary before and

after the discontinuity. Controls in the marked columns include sex, genetic scores for

BMI and educational attainment, an indicator for being genotyped, fifteen principal

components of the genetic matrix, month of birth fixed effects, county of birth fixed

effects, and a quadratic of latitude and longitude at birth. Standard errors are clustered

by month of birth.



Table 6: Genetic Heterogeneity in the First-Stage

Edu16 (1) (2) (3) (4) (5) (6)

After 0.160*** 0.148*** 0.148***

(0.0111) (0.00600) (0.00605)

BMI Score x After 0.0245*** 0.0235*** 0.0230***

(0.00473) (0.00458) (0.00460)

Low BMI Score x After 0.134*** 0.124*** 0.125***

(0.0132) (0.00972) (0.00973)

Mid BMI Score x After 0.160*** 0.148*** 0.147***

(0.0120) (0.00910) (0.00892)

High BMI Score x After 0.185*** 0.174*** 0.173***

(0.0143) (0.00866) (0.00870)

Linear Trend X X X X X X

Controls X X X X

Geography x After X X

N 86,036 86,036 86,036 86,036 86,036 86,036

R2 0.058 0.080 0.088 0.058 0.080 0.088

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports the heterogeneity of the first stage estimates of the effect of the

1972 ROSLA on the fraction of students still in school at age 16 (Edu16 ). In the

categorical specification, Low , Mid , and High BMI Score  correspond to binary variables

identifying which tercile of the BMI score distribution the individual is in. These estimates

come from a local linear framework with a triangle kernel where the bandwidth of the

kernel is selected by Imbens and Kalyanaraman (2012). In all specifications, the linear

trend is allowed to vary before and after the discontinuity. Controls in the marked columns

include sex, genetic scores for BMI and educational attainment, an indicator for being

genotyped, fifteen principal components of the genetic matrix, month of birth fixed effects,

county of birth fixed effects, and a quadratic of latitude and longitude at birth. In the

categorical specification, the categorical variable is also included directly as a control.

Standard errors are clustered by month of birth.



Table 7: Genetic Heterogeneity in the Reduced-Form for BMI

BMI (1) (2) (3) (4) (5) (6)

After -0.0714 -0.0757 -0.0788

(0.0664) (0.0642) (0.0643)

BMI Score x After 0.0661 0.0633 0.0626

(0.0489) (0.0480) (0.0478)

Low BMI Score x After -0.197** -0.201** -0.207**

(0.0891) (0.0854) (0.0861)

Mid BMI Score x After 0.0199 0.0242 0.0252

(0.0962) (0.0916) (0.0912)

High BMI Score x After -0.0192 -0.0328 -0.0376

(0.0952) (0.0931) (0.0926)

Linear Trend X X X X X X

Controls X X X X

Geography x After X X

Mean BMI (Low Score) 26.1 26.1 26.1

Mean BMI (Mid Score) 27.4 27.4 27.4

Mean BMI (High Score) 28.9 28.9 28.9

N 208,129 208,129 208,129 208,129 208,129 208,129

R2 0.020 0.040 0.041 0.016 0.036 0.037

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports the heterogeneity of the reduced-form estimates of the effect

of the 1972 ROSLA on mean BMI. In the categorical specification, Low , Mid , and

High BMI Score  correspond to binary variables identifying which tercile of the BMI

score distribution the individual is in. These estimates come from a local linear

framework with a triangle kernel where the bandwidth of the kernel is selected by

Imbens and Kalyanaraman (2012). In all specifications, the linear trend is allowed to

vary before and after the discontinuity. Controls in the marked columns include sex,

genetic scores for BMI and educational attainment, an indicator for being genotyped,

fifteen principal components of the genetic matrix, month of birth fixed effects, county

of birth fixed effects, and a quadratic of latitude and longitude at birth. In the

categorical specification, the categorical variable is also included directly as a control.

Standard errors are clustered by month of birth.



Table 8: Genetic Heterogeneity in the Reduced-Form for the 90th Percentile of BMI

90th Percentile BMI (1) (2) (3) (4) (5) (6)

After -0.161 -0.208* -0.157

(0.152) (0.121) (0.124)

BMI Score x After 0.257** 0.223** 0.224***

(0.110) (0.0884) (0.0826)

Low BMI Score x After -0.489** -0.388*** -0.460***

(0.200) (0.141) (0.138)

Mid BMI Score x After -0.211 -0.213 -0.188

(0.224) (0.224) (0.192)

High BMI Score x After 0.149 0.148 0.115

(0.246) (0.225) (0.198)

Linear Trend X X X X X X

Controls X X X X

Geography x After X X

90th ptile BMI (Low Score) 31.6 31.6 31.6

90th ptile BMI (Mid Score) 33.6 33.6 33.6

90th ptile BMI (High Score) 36.0 36.0 36.0

N 208,129 208,129 208,129 208,129 208,129 208,129

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports the heterogeneity of the reduced-form estimates of the effect of

the 1972 ROSLA on the 90th percentile of BMI. In the categorical specification, Low ,

Mid , and High BMI Score  correspond to binary variables identifying which tercile of the

BMI score distribution the individual is in. These estimates come from a local linear

framework with a triangle kernel where the bandwidth of the kernel is selected by Imbens

and Kalyanaraman (2012). In all specifications, the linear trend is allowed to vary before

and after the discontinuity. Controls in the marked columns include sex, genetic scores for

BMI and educational attainment, an indicator for being genotyped, fifteen principal

components of the genetic matrix, month of birth fixed effects, county of birth fixed

effects, and a quadratic of latitude and longitude at birth. In the categorical specification,

the categorical variable is also included directly as a control. Standard errors are

clustered by month of birth.



Table 9: Genetic Heterogeneity in the Reduced-Form for Diabetes

Diabetes (1) (2) (3) (4) (5) (6)

After -0.0056** -0.0062*** -0.0061***

(0.0022) (0.0021) (0.0021)

BMI Score x After -0.0053*** -0.0053*** -0.0052***

(0.0018) (0.0017) (0.0017)

Low BMI Score x After -0.00022 -0.00077 -0.00086

(0.0029) (0.0029) (0.0029)

Mid BMI Score x After -0.0064** -0.0067** -0.0067**

-0.0032 (0.0031) (0.0030)

High BMI Score x After -0.010** -0.011*** -0.011***

(0.0040) (0.0039) (0.0039)

Linear Trend X X X X X X

Controls X X X X

Geography x After X X

Mean Diabetes (Low Score) 0.025 0.025 0.025

Mean Diabetes (Mid Score) 0.035 0.035 0.035

Mean Diabetes (High Score) 0.048 0.048 0.048

N 210,302 210,302 210,302 210,302 210,302 210,302

R2 0.004 0.010 0.011 0.004 0.009 0.010

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports the heterogeneity of the reduced-form estimates of the effect of the 1972

ROSLA on diabetes. In the categorical specification, Low , Mid , and High BMI Score  correspond to

binary variables identifying which tercile of the BMI score distribution the individual is in. These

estimates come from a local linear framework with a triangle kernel where the bandwidth of the

kernel is selected by Imbens and Kalyanaraman (2012). In all specifications, the linear trend is

allowed to vary before and after the discontinuity. Controls in the marked columns include sex,

genetic scores for BMI and educational attainment, an indicator for being genotyped, fifteen principal

components of the genetic matrix, month of birth fixed effects, county of birth fixed effects, and a

quadratic of latitude and longitude at birth. In the categorical specification, the categorical variable is

also included directly as a control. Standard errors are clustered by month of birth.





Table 11: Selected Genetic Correlations with BMI

Trait rg SE

Weight-related
Childhood Obesity 0.732*** (0.046)

Extreme BMI 1.027*** (0.025)

Obesity Class 1 1.02*** (0.010)

Obesity Class 2 1.046*** (0.016)

Obesity Class 3 0.933*** (0.052)

Overweight 1.019*** (0.012)

Waist-Hip Ratio 0.579*** (0.025)

Diabetes-related
Fasting Glucose 0.312*** (0.053)

Fasting Insulin 0.65*** (0.062)

Fasting Proinsulin 0.348 (0.163)

Type-2 Diabetes 0.361*** (0.044)

Education-related
Childhood IQ -0.173 (0.057)

College -0.242*** (0.033)

Years of Education -0.279*** (0.035)

Smoking-related
Cigarettes per Day 0.287*** (0.073)

Ever/Never Smoked 0.204*** (0.041)

Former/Current Smoker -0.185** (0.054)

Height-related
Extreme Height -0.09 (0.033)

Height -0.093*** (0.021)

Blood Results
HDL -0.382*** (0.039)

Total Cholesterol 0.023 (0.032)

Triglycerides 0.267*** (0.044)

LDL 0.082 (0.038)

Mental Health
Bipolar -0.071 (0.041)

Depression -0.015 (0.064)

Schizophrenia -0.095*** (0.025)

Other diseases
Coronary Artery Disease 0.217*** (0.045)

Crohn's Disease 0.021 (0.038)

Rheumatoid Arthritis -0.051 (0.046)

*** p < 0.01, ** p < 0.05, * p < 0.10

Notes: Genetic correlations (rg) are drawn from

Bulik-Sullivan et al (2015). Complete results and

descriptions of each trait may be found in that

paper. Significance values are based on

Bonferroni-corrected p-values for the full set of

traits tested in Bulik-Sullivan et al.





Table 13: Bandwidth Analysis

(A) First Stage (1) (2) (3) (4) (5)

After 0.151*** 0.144*** 0.139*** 0.136*** 0.133***

(0.00666) (0.00576) (0.00519) (0.00501) (0.00491)

Bandwidth 23 35 47 59 71

N 40,965 62,405 84,272 106,581 128,903

R2 0.086 0.081 0.079 0.079 0.079

(B) BMI (1) (2) (3) (4) (5)

After -0.0595 -0.0490 -0.0646 -0.0815** -0.0960**

(0.0599) (0.0505) (0.0453) (0.0412) (0.0390)

Bandwidth 56 83 110 137 164

N 101,086 151,445 205,907 265,719 307,130

R2 0.041 0.040 0.040 0.039 0.038

(C) Diabetes (1) (2) (3) (4) (5)

After -0.00446** -0.00353** -0.00365*** -0.00374*** -0.00354***

(0.00185) (0.00158) (0.00138) (0.00126) (0.00120)

Bandwidth 57 84 111 138 165

N 103,023 153,298 208,129 267,453 308,544

R2 0.009 0.009 0.010 0.010 0.011

*** p < 0.01, ** p < 0.05, * p < 0.10

Note: This table reports the first-stage estimate and reduced-form estimates for

BMI and diabetes for a variety of bandwidths ranging from 0.5 to 1.5 times the

optimal bandwidth selected by  Imbens and Kalyanaraman (2012). In each panel,

column (3) corresponds to the optimal bandwidth. These estimates come from a

local linear framework with a triangle kernel. In all specifications, controls are

included for a linear trend that is allowed to vary before and after the

discontinuity, sex, genetic scores for BMI and educational attainment, an

indicator for being genotyped, fifteen principal components of the genetic matrix,

month of birth fixed effects, county of birth fixed effects, and a quadratic of

latitude and longitude at birth. Standard errors are clustered by month of birth.




















































