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A new method for identifying what Cupid’s

invisible hand is doing. Is it spreading color

blindness while turning us more “picky”

about spousal education?
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Abstract

We develop a method suitable for detecting if racial homophily is on the rise and also if

the economic divide (i.e., the gap between individuals with different education levels and

thereby with different abilities to generate income) is growing in a society. We identify

these changes with the changing aggregate marital preferences over the partners’ race and

education level through their effects on the share of inter-racial couples and the share of

educationally homogamous couples. These shares are shaped not only by preferences, but

also by the distributions of marriageable men and women by traits. The method proposed

is designed to control for changes in the trait distributions from one generation to another.

By applying the method, we find the economic divide in the US to display a U-curve pattern

between 1960 and 2010 followed by its slightly negative trend between 2010 and 2015. The

identified trend of racial homophily suggests that the American society has become more and

more permissive towards racial intermarriages since 1970. Finally, we refute the aggregate

version of the status-cast exchange hypothesis based on the joint dynamics of the economic

divide and the racial homophily.
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1. INTRODUCTION

There is a growing consensus in the literature over the historical trend in income and wealth

inequality. In particular, it is a widely held view that these dimensions of inequality exhib-

ited a U-shaped pattern over the twentieth century in the US (see Piketty and Saez 2003,

Saez and Zucman 2016). Even though there is still an ongoing debate about the exact shape

of the trend, the stylized U-curve pattern itself has not been challenged (see Bricker, Hen-

riques, Krimmel, and Sabelhaus 2016, Auten and Splinter 2022, Geloso, Magness, Moore,

and Schlosser 2022).

The discourse in the educational assortative mating literature lags far behind the debate

about wealth and income inequality. There is no consensus over the qualitative historical

trends among those papers that identify the dynamics of inequality by analyzing changes in

marital sorting along individual’s income generating ability proxied by their final educational

attainment (see Rosenfeld 2008).

On the one hand, this is surprising, because unlike the studies on income and wealth

inequality, the papers in the assorative mating literature do not perform any perilous exercise

of patching together data from different sources. Their main input, the joint educational

distribution of couples, is provided by the statistical offices “packed up and parceled” ready

for analysis. Also, while under-reporting of income and wealth is a general concern of the

researchers, under-reporting of education level is not. On the other hand, the conflicting

findings in the assortative mating literature can be well explained by the diversity of methods

and indicators applied to identify what Cupid’s invisible hand is doing.

In this paper, we develop, apply and promote a new method that identifies changes in the

degree of assortative mating along education and race jointly. Our benchmark analysis is

performed on US census data from IPUMS on marriages and cohabitations in 1980 and 1990.

To complement the benchmark analysis, we also study more than five decades spanned by

1960 and 2015. We find the trend of the degree of sorting along the educational to be in

accord with the U-shaped historical trend of income inequality irrespective of controlling for
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sorting along race, or not. Hopefully, our new method will contribute to the catching up of

the assortative mating literature to the literature of income inequality.

The conflicting nature of the empirical results in the educational assortative mating lit-

erature can easily be detected in studies analyzing the 1980s using US data. For instance,

Eika, Mogstad, and Zafar (2019) find that the degree of sorting has increased gradually from

1940 to the 1980s, after which it has been stagnant. Greenwood, Guner, Kocharkov, and

Santos (2014) find that it has continued to increase even after 1980.

By contrast, Naszodi and Mendonca (2021) find the strength of aggregate preferences

for educational homogamy to have displayed a U-shape pattern over the second half of the

twentieth century and the first decade of the twenty-first century:1 it has decreased remarkably

over the 1980s, when the early boomers became less active on the marriage market and the

late boomers entered this market. They also document the substantial increase in sorting

in the 2000s, when the late generationX gradually replaced the early generationX on the

market.

The focus of the empirical analysis of this paper is on the most controversial decade,

the 1980s. Our results support the findings of Naszodi and Mendonca (2021), although we

apply a novel method relative to theirs. In particular, we control for sorting along race, while

they do not. Due to this substantial difference, it is absolutely not straightforward that our

empirical results should be even similar to theirs.

To gain insight on the importance of controlling for sorting along race, consider a hy-

pothetical society with all men and all women marry someone from the opposite sex from

their own generation when being young adults. There are two generations in this society:

the early generation and the late generation. The education level of the late generation is

1We use the term ’aggregate preferences for homogamy’ interchangeably with the terms

’degree of sorting’, ’degree of segmentation of the market’, ’strength of social barriers to

intermarriage’, ’width of the social gap between different groups’, because it is hardly possible

to distinguish them empirically.
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not different from that of the early generation. Moreover, people of a particular race tend to

have higher educational attainment than people of another race in both of the generations.

In addition, we make the following assumptions: (i) those belonging to the late generation

are exactly as much “picky” about spousal education as the members of the early generation

were when being young adults; and (ii) barriers to racial intermarriage have been reduced

from one generation to the next, i.e., less members of the late generation than in the early

generation have opposed to marry someone of a different race. Under these assumptions one

can mistakenly find the degree of educational sorting to be decreasing in this hypothetical

society if not controlling for changes in sorting along race.2

Finally, an additional motive for studying sorting along race and education jointly is

this. The assumption in point (ii) seems realistic based on NORC’s General Social Survey

conducted in 2017. The survey shows that those belonging to the generations born later, are

less likely to oppose having a family member marry someone of a different race.

In this paper, we find that the aggregate racial preferences revealed on the marriage market

are similar to those stated in the General Social Survey: both rank the late boomers to be

more permissive towards inter-racial marriages in comparison with the early boomers. Also,

we find that Cupid’s invisible hand continued to spread color blindness even after 1990 when

the members of the generationX gradually replaced the boomers on the marriage market; and

well after 1990 when the early Millennials arrived to the market. Case and Deaton (2021)

find one the three Fates, Decima to have acted similarly to Cupid: they identify the racial

gap in life expectancy to have also narrowed between 1990 and 2018.

As to the economic divide, we find that the identified change in revealed preferences for

2Conversely, suppose that aggregate preferences for well-educated partners are stronger in

the late generation than those were in the early generation. Further, let us assume that mar-

ital racial preferences are exactly the same in the two generations. Then, one can mistakenly

find that racial homophily is on the rise in this hypothetical society by studying inter-racial

marriages without controlling for the increase in the degree of sorting along the educational.
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spousal education is not sensitive to controlling for changes in racial preferences: late boomers

are found to be more permissive towards inter-educational marriages as well irrespective to

the model specification. We stress that it is far not a trivial finding in the light of the hypo-

thetical society exemplifying the omitted variable bias with correlating racial and educational

dimensions.

Assessing how the revealed marital preferences change over the spousal education is not

straightforward for the following reason: we can rarely observe preferences directly. However,

we can identify changes in preferences through their effects on the outcome of the matching

process.

The equilibrium on the marriage market depends not only on the marital preferences,

but also on the structural availability of potential partners with various traits. In reality,

the race-specific and gender-specific educational distributions vary a lot across generations.

Moreover, these changes can induce changes in preferences and vice versa. So, to identify the

revealed preferences for spousal education, we have to control not only for racial preferences,

but also for the traits’ distributions, as well as for some interaction effects.3

Some of the contributions of this paper are methodological and conceptual. First, we

identify the revealed preferences for spousal education by controlling for all the confounding

factors listed above. As we will see, it is a common but dubious practice in the literature to

either fail to control for each of these factors or to control for them inadequately.

Second, we do not apply the popular approach (followed by Breen and Salazar 2011,

Kremer 1997, Eika et al. 2019 inter alia) of defining the marriage–inequality nexus as the

potential effect of changing assortativity on a monetary dimension of inequality. Rather,

3In addition, identifying these preferences is even more challenging once the possibility of

remaining single is also taken into account. About this point, see Naszodi and Mendonca

(2022). They account for single people in a sophisticated way by distinguishing between

“singles by choice” (who do not even look for a partner) and “singles by chance” (who are

not successful at finding a partner acceptable by them).
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our paper joins the strand of the literature according to which changes in sorting itself is

considered to reflect a change in a specific dimension of inequality. This specific dimension of

inequality is seen by social stratification researchers as an indicator of the social gap between

different education groups (see Katrňák, Fuč́ık, and Luijkx 2012).

A related point to the analyzed type of marriage–inequality nexus is this. Typically,

the degree of marital sorting is characterized by a matrix-valued assortativity measure that

is difficult to be used for inter-temporal and cross-country comparisons due to its multi-

dimensional nature. We admit that it is useful to transform any matrix-valued assortativity

measure, – be it the matrix of odds-ratios forming the basis of the Althman’s index or any of

its alternatives –, to a scalar-valued measure before any comparative analysis. However, the

scalar-valued measure, that the matrix-valued assortativity measure is projected on, should

not necessarily be a measure of income or wealth inequality.

We find it much more appealing to project the sorting measure on the scalar-valued share

of homogamous couples.4 This operation allows us to study a non-monetary dimension of in-

equality: the contribution of the changing marital preferences to the prevalence of homogamy.

A positive (/negative) value of this indicator signals that the overall inequality (covering all

dimensions relevant on the marriage market including income, wealth, health, etc) is growing

(/diminishing) between the groups studied.

Performing comparative analysis with this marital educational inequality indicator (hence-

forth, MEI-indicator) has many advantages. Most importantly, the marriage data are far

more comparable both across countries and over time than the income data and the wealth

data since the former are not subject to various measurement issues.

The main methodological contribution of our paper is this. We develop a new method for

quantifying changes in aggregate marital preferences over two traits, e.g., race and education

level, or any other pair of traits characterized by a dichotomous variable and an ordered

categorical variable. The method we propose is a generalized version of the method developed

4This approach is also followed by Naszodi and Mendonca (2021).
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by Naszodi and Mendonca (2021). The latter works under the assumption that people sort

into marriages along a one-dimensional trait, e.g., education level. Henceforth, we refer to

our generalized new method as the GNM-method, while we refer to the original method as

the NM-method.5

Generalizing the NM-method is not as simple as adding a new explanatory variable to

a (log-)linear regression model, because not even the NM-method is (log-)linear. Also, its

generalization is more complicated than applying the original NM for different racial groups

separately. Such a simple approach can be limitedly suitable provided the marriage market

is not segmented perfectly along race.

Our paper is not the first that aims at meeting the challenge of analyzing sorting along

more than one dimension. The papers by Chiappori, Oreffice, and Quintana-Domeque (2011),

Galichon and Salanié (2021), Naszodi and Mendonca (2022) and Rosenfeld (2008) also belong

to the multidimensional matching strand of the assortative mating literature.

Chiappori et al. (2011) provide a closed-form solution of a multidimensional matching

model and then they test predictions of how spouses trade off education and non-smoking.

In the model by Galichon and Salanié (2021), the surplus from a marriage match depends

on the partners’ race, education, and some other traits unobserved by the econometrician.

In the full-fledged micro-founded model of Naszodi and Mendonca (2022), matches are made

with the Gale–Shapley (henceforth GS) algorithm and each individual is assumed to sort

along two characteristics: the marriageable person’s educational attainment, and his or her

reservation point (used as a proxy for the unobserved traits of the person and empirically

identified by the search criteria of a group of dating site users). Finally, Rosenfeld (2008)

examines sorting along three dimensions (race, education, and religion) in the US.

The distinctive feature of this paper compared to most papers in the multidimensional

marriage matching literature and also papers by Greenwood et al. (2014) and Eika et al.

(2019) in the single-dimensional matching literature is that our paper builds on a different

5See: https://en.wikipedia.org/wiki/NM-method.
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measure of aggregate marital preferences. The measure we use was first proposed to be

applied in the context of assortative mating by Liu and Lu (2006). It is a slightly modified

version of the Coleman-index (see Eq.15 in Coleman 1958). The Liu–Lu measure (henceforth

LL-measure) forms the basis of the NM-method and the GNM-method as well. It is different

from the conventional measures, such as the regression coefficient (applied by Greenwood

et al. 2014), the (generalized) marital sorting parameter (proposed and applied by Eika et

al. 2019), the marital surplus (developed by Choo and Siow 2006, while generalized and

applied by Chiappori et al. 2011, Galichon and Salanié 2021), and the odds-ratio (applied by

Rosenfeld 2008 inter alia).

What motivates us to use the LL-measure and not one of its alternatives? In part, the

findings of our supplementary analysis (to be presented in Subsection 3.2.1) form the basis of

our measure-selection. In the analysis, we impose the criterion against each martial sorting

measure to be monotonously decreasing in intergenerational mobility. The intuition behind

our criterion is that a society, where the pauper’s son has higher chance to became the

prince than in other societies, cannot be less open to accept marriages between paupers and

princesses in comparison with other societies. As we will see, this monotonicity condition is

violated by many of the well-known measures of marital sorting, but the LL-measure.

Our choice of characterizing aggregate marital preferences with the LL-measure is also

motivated by the fact that this measure has already been shown to have attractive analytical

and empirical properties in the single-dimensional assorted trait framework. In particular,

Liu and Lu (2006) claim that their measure can control for changes in the trait distribution,

while other measures cannot.

In addition, Naszodi and Mendonca (2021) show that among a comprehensive set of

assortativity measures and models, including the odds-ratio and the Choo and Siow (2006)

model, only the LL-measure and the Liu and Lu (2006) model characterize the revealed

marital preferences consistently with a survey on individuals’ declared marital preferences.

To wrap up this section, we visit again the main empirical findings together with the main
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contributions of our paper. (i) We find both the racial segmentation and the educational

segmentation of the American marriage market to have been declined over the 1980s. (ii)

Thereby, we confirm the finding of Naszodi and Mendonca (2021): young adults in 1990

(belonging to the generation of late boomers) are found to be less “picky” with respect to

their spouses’ education level than young adults have been in 1980 (belonging to the early

boomers) irrespective of controlling for sorting along race, or not. (iii) Consistently with the

income inequality literature, we find that marital educational inequality displayed a U-curve

pattern between 1960 and 2010 in the US.

As to the contributions of this paper, (i) we propose and apply a new method allowing

us to identify the trend of sorting along spousal education by controlling for sorting along

race (and also, the other way around). (ii) Our supplementary analysis presents some new

considerations in favor of characterizing the degree of sorting by the LL-measure. (iii) Finally,

we interpret our empirical findings in a broad context. In the introduction, we already shed

light on their relationship with the income inequality literature and the demography literature

identifying social gaps by the differences in group-specific life expectancies. In Section 5 we

discuss their relationship with the status-cast exchange hypothesis, some survey evidence,

and a historian’s narrative of the New Deal order and the neoliberal order.

The rest of the paper is structured as follows. Section 2 describes how we characterize the

equilibrium in the marriage market. Section 3 presents the method designed for identifying

changes in marital preferences: it introduces the original NM-method (applicable to study

sorting along a single dimension), motivates its use, and develops the GNM-method (suitable

for studying sorting along multiple dimensions).6 Section 4 applies the GNM-method using

US census data. In Section 5, we discuss the significance of the empirical findings. Finally,

Section 6 concludes the paper.

6Readers already familiar with the NM may turn directly to Subsection 3.3.
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2. CHARACTERIZING THE EQUILIBRIUM IN THE

MARRIAGE MARKET

In this study, marriage is interpreted broadly: no distinction is made between married and

unmarried couples. Accordingly, by “wives” and “husbands” we also mean romantic hetero-

sexual cohabiting partners.

In our analysis, the educational trait variable is an ordered categorical variable that can

take three possible values. Its value L stands for “low level of education” corresponding to

not having completed the high school; M denotes “medium level of education” corresponding

to having a high school degree, but neither a college degree nor a university degree; and H

stands for “high level of education” corresponding to holding at least a BA diploma.

Our race variable can take two possible values. In the benchmark specification, race

is either Black (B), or White (W ). The reason for not considering more than two racial

categories at a time is three-fold. First, we want to keep the number of model parameters

reasonably low. Second, once a trait is allowed to be multinomial, the NM-method works

only if this trait variable is ordered. It is definitely not the case with race. Third, as it will be

shown by the sensitivity analysis in Appendix B, our findings are robust to some alternative

choices of the dichotomous race variable.

Accordingly, in the benchmark case, we characterize the matching outcome by Table

1. We denote this contingency table by K. Its element Nh,w is the number of h,w-type

marriages with h,w ∈ {WL,WM,WH,BL,BM,BH}, where h denotes the husbands’ type

and w denotes the wives’ type. One’s type is given by one’s race and education level.

Knowing the contingency table K (i.e., the joint distribution of wives and husbands by

race and education level) allows us to compute some descriptive statistics that characterize

the equilibrium on the marriage market. In this paper, we use the share of educationally

homogamous couples that characterizes the equilibrium along the educational dimension. It

is denoted by SEHC(K) and calculated as (NBL,BL+NBL,WL+NWL,BL+NWL,WL+NBM,BM +
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Table 1: The K contingency table

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck
L NBL,BL NBL,BM NBL,BH NBL,WL NBL,WM NBL,WH NBL,·
M NBM,BL NBM,BM NBM,BH NBM,WL NBM,WM NBM,WH NBM,·
H NBH,BL NBH,BM NBH,BH NBH,WL NBH,WM NBH,WH NBH,·

W
h
it

e L NWL,BL NWL,BM NWL,BH NWL,WL NWL,WM NWL,WH NWL,·
M NWM,BL NWM,BM NWM,BH NWM,WL NWM,WM NWM,WH NWM,·
H NWH,BL NWH,BM NWH,BH NWH,WL NWH,WM NWH,WH NWH,·

Total N·,BL N·,BM N·,BH N·,WL N·,WM N·,WH N·,·

NBM,WM +NWM,BM +NWM,WM +NBH,BH +NBH,WH +NWH,BH +NWH,WH)/N·,·, where N·,·

denotes the total number of couples. Similarly, we characterize the equilibrium along the

racial dimension by the share of inter-racial couples : SIRC(K) = 1− (NB.,B. +NW.,W.)/N·,·,

where NB.,B. is the number of Black-Black couples, and NW.,W. is the number of White-White

couples.

It is worth to note that SEHC(K) and SIRC(K) are indicators of the “prevalence of

educational homogamy and racial exogamy”. These indicators are not directly informative

about the “preferences for educational homogamy and racial exogamy”. The next section

describes how preferences can be identified.

3. IDENTIFYING AGGREGATE MARITAL PREFER-

ENCES

Identifying changes in “preference for educational homogamy” and “preference for racial

exogamy” is a challenging task. The challenge stems mainly from the fact that preferences

are not directly observable. Therefore, we need to identify them through their effects on
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observed variables, such as SEHC(K) and SIRC(K).7

Both SEHC(K) and SIRC(K) are driven by multiple factors. In this paper, we control for

the effects of the factors, other than preferences, with a decomposition. For the decomposition,

we have to apply a decomposition scheme and construct counterfactuals.

As to the decomposition scheme, we follow Biewen (2014) and apply his additive decom-

position formula with interaction effects. As to the counterfactual construction, we follow

Naszodi and Mendonca (2021). They propose a method in a simple set up. Their method, the

NM-method, is suitable for studying sorting along a one-dimensional categorical trait. An-

other precondition of the applicability of the NM-method is that the categorical assorted trait

variable has to be either dichotomous (e.g. Black/White, or Black/non-Black, or White/non-

White), or, if it can take more than two possible values, the trait has to be ordered (such as

the level of educational attainment, or income quantile, or skier ability level).

In Subsection 3.3, we generalize the NM-method to two assorted traits after we introduce

the decomposition scheme in Subsection 3.1 and the NM-method in Subsection 3.2.

3.1. Decomposition scheme

For the empirical analysis, we use the additive decomposition scheme with interaction effects

promoted by Biewen (2014). In contrast to the popular sequential decomposition scheme,8 this

scheme allows us to identify the ceteris paribus effects of some factors net of their interaction

effects.9

7This approach is commonly applied to identify another directly unobservable phe-

nomenon, discrimination (see Oaxaca 1973 and Blinder 1973).

8The literature is not consistent with the terminology regarding the decomposition

schemes. For example, the sequential decomposition formula is referred to as a classical

Oaxaca–Blinder decomposition by Biewen (2012).

9This feature of the Biewen decomposition scheme distinguishes itself from the decom-

position scheme applied by Eika et al. (2019). Their decomposition method abstracts away
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For two factors (A and P ) and two time periods (t = 0 and t = 1), the decomposition

scheme we apply is

f(A1, P1)− f(A0, P0) =

due to ∆A︷ ︸︸ ︷
[f(A1, P0)− f(A0, P0)] +

due to ∆P︷ ︸︸ ︷
[f(A0, P1)− f(A0, P0)]

+ [f(A1, P1)− f(A1, P0)− f(A0, P1) + f(A0, P0)]︸ ︷︷ ︸
due to the joint effect of ∆A and ∆P

, (1)

where function f(At, Pt) maps the space spanned by the two factors into R.

In one of our specific applications of this decomposition scheme, function f(At, Pt) is

the SEHC(Kt), i.e., the observed share of educationally homogamous couples at time t ∈

{0, 1}. Under the assumption that the search and matching mechanism is frictionless, this

share is the function of (i) the observed availability At, i.e., the educational distributions of

marriageable men and women at time t; (ii) the directly unobservable preferences over the

partners’ education level Pt; and (iii) the interaction of availability and preferences.

If frictions exist (e.g. in the form of school segregation limiting what potential partners

can meet in school), those are natural to be thought of as the manifestations of certain

social barriers reflecting social norms and preferences for segregation. We account for them

with our decomposition as part of the effects of the directly unobservable preferences. It

aggregates the effects of a bunch of empirically equivalent phenomena (e.g. changing social

norms, changing social barriers, changing homophily, changing social gaps) that are all in

the center of our interest.

In Eq. (1), f(A1, P0), and f(A0, P1) represent the shares of educationally homogamous

couples under the counterfactuals that the factors are measured at different points in time.

For instance, f(A1, P0) is the share of educationally homogamous couples in an imaginary

generation whose gender-specific educational distributions are identical to the gender-specific

from the interaction-effects, or as they refer to those, the “general equilibrium conditions

(e.g. simultaneous determination of education distributions and returns)”.
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educational distributions of the generation most active on the marriage market at t = 1 and

whose marital educational preferences are identical to the marital educational preferences of

the generation most active on the market at t = 0.

Similarly to Eq. (1), the decomposition scheme for three factors (A, PR and PE) is

f(A1, PR1, PE1)− f(A0, PR0, PE0) =

due to ∆A (availability)︷ ︸︸ ︷
[f(A1, PR0, PE0)− f(A0, PR0, PE0)] +

+

due to ∆PR (racial preferences)︷ ︸︸ ︷
[f(A0, PR1, PE0)− f(A0, PR0, PE0)] +

due to ∆PE (educational preferences)︷ ︸︸ ︷
[f(A0, PR0, PE1)− f(A0, PR0, PE0)] +

+ f(A1,PR1,PE0)−f(A0,PR0,PE0)−f(A1,PR0,PE0)+f(A0, PR0,PE0)−f(A0,PR1,PE0)+f(A0,PR0,PE0)︸ ︷︷ ︸
due to the joint effect of ∆PR and ∆A

+

+ f(A1,PR0,PE1)−f(A0,PR0,PE0)−f(A1,PR0,PE0)+f(A0,PR0,PE0)−f(A0,PR0,PE1)+f(A0,PR0,PE0)︸ ︷︷ ︸
due to the joint effect of ∆PE and ∆A

+

+ f(A0,PR1,PE1)−f(A0,PR0,PE0)−f(A0,PR1,PE0)+f(A0,PR0,PE0)−f(A0,PR0,PE1)+f(A0,PR0,PE0)︸ ︷︷ ︸
due to the joint effect of ∆PE and ∆PR

+

+ residuum︸ ︷︷ ︸
due to the joint effect of ∆PR, ∆PE, and ∆A

(2)

In the specific settings of our empirical analyses, function f(At, PRt, PEt) denotes either

the observed share of educationally homogamous couples SEHC(Kt), or the observed share

of inter-racial couples SIRC(Kt) at time t ∈ {0, 1}. These shares are functions of the follow-

ing three factors and their interactions: (i) the observed availability At, i.e., the educational

and racial distributions of marriageable men and women at time t; (ii) the directly unob-

servable preferences over the partners’ race PRt; (iii) the directly unobservable preferences

over the partners’ education level PEt. The interaction effects of the factors represent joint,

inseparable effects.

Finally, f(A1, PR1, PE0), f(A1, PR0, PE1), f(A0, PR1, PE1), f(A1, PR0, PE0),

f(A0, PR1, PE0), f(A0, PR0, PE1) denote the shares (either SEHC, or SIRC) under different

counterfactuals, where the three factors are not measured the same year. For instance,
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f(A1, PR1, PE0) is the share of educationally homogamous couples (or the share of inter-racial

couples) in an imaginary generation whose gender-specific educational and racial distributions

are measured at t = 1; whose marital racial preferences are measured at t = 1; and whose

marital educational preferences are measured at t = 0.

Apparently, the challenge of identifying the changes in the unobservable factors through

their ceteris paribus effects on the observed shares boils down to determining the counterfac-

tual shares in the decomposition formula. Calculating the values of these shares is a trivial

task provided we know the corresponding counterfactual tables, i.e., the joint distributions

of husbands and wives under the counterfactuals.

Next, we will introduce how these counterfactual tables can be constructed with the NM-

method in the two-factor (A, P ) case and with the GNM-method in the three-factor (A, PR

and PE) case. Also, we motivate the choice of these methods.

3.2. The original NM-method

The NM-method transforms a contingency table observed at time tp into another contingency

table representing the counterfactual equilibrium matching outcome.10 Under the counter-

factual, the aggregate marital preferences are the same as at time tp, while the structural

availability is measured at time ta(6= tp). So, the counterfactual table is to be constructed

from availability Ata and preferences Ptp .

We characterize marital preferences at the aggregate level with the LL-measure. This

measure, as it was originally developed by Liu and Lu (2006), is a scalar-valued, ordinal

measure that can be applied if the assorted trait is a one-dimensional dichotomous variable

(e.g. taking the values L or H). The LL-measure was generalized by Naszodi and Mendonca

(2021) to characterize sorting along a one-dimensional multinomial trait variable. The gen-

eralized LL-measure is matrix-valued. First, we define the original LL-measure, before we

10The NM transformation method is implemented in Excel, Visual Basic, and R. It can be

downloaded from http://dx.doi.org/10.17632/x2ry7bcm95.2
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introduce its generalized version.

The original LL-measure is identical to the value taken by a function (f : N2×2 7→ R) that

assigns a scalar to a 2-by-2 contingency table, where the contingency table is of the form

Z2-by-2 =

NL,L NL,H

NH,L NH,H

 . (3)

NH,H (/NL,L) denotes the number of homogamous couples, where both spouses are H (/L)

type. NL,H (/NH,L) stands for the number of heterogamous couples, where the husbands

(/wives) are L-type, while the wives (/husbands) are H-type.

Furthermore, we introduce the notations NH,· = NH,H + NH,L, N·,H = NL,H + NH,H ,

N·,· = N·,H + N·,L. For a given triad of {NH,·, N·,H , N·,·}, Q = NH,·N·,H/N·,· denotes the

expected number of H,H-type couples under random matching. We define Q− as the biggest

integer being smaller than, or equal to, Q.

It is important to note that any actual realization of the joint distribution Zact,2-by-2 ∈ N2×2

with a given triad can be represented by any of its cells. For instance, the actual value of the

H,H cell, i.e., Nact
H,H , can represent Zact,2-by-2, because all the other three cells’ actual values

are uniquely determined by the triad and Nact
H,H . Therefore, there is a unique ranking of the

joint distributions with the same triad. This ranking is defined simply by the ranking of the

H,H cells: that table ranks higher which has higher value in its H,H cell.

The original LL-measure defines a ranking among the joint distributions with the same,

but also with different, triads by ranking their values at the H,H cell relative to all possible

values of NH,H conditional on the triad. Under the assumption of non-negative sorting (i.e.,

Q− ≤ Nact
H,H), the original LL-measure is equivalent to the simplified LL-measure defined as:

LLsim(Zact,2-by-2) =
Nact

H,H −min(NH,H |NH,·, N·,H , N·,·)

max(NH,H |NH,·, N·,H , N·,·)−min(NH,H |NH,·, N·,H , N·,·)
. (4)

The simplified LL-measure interprets as the “actual minus minimum over maximum minus
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minimum”.

Under non-negative sorting, min(NH,H |NH,·, N·,H , N·,·) = Q−. And irrespective of the

positive, negative, or random nature of sorting, max(NH,H |NH,·, N·,H , N·,·) = min(NH,·, N·,H).

By substituting these two equations to Eq. (4), we obtain

LLsim(Zact,2-by-2) =
Nact

H,H −Q−

min(NH,·, N·,H)−Q− . (5)

Eq.(5) defines the original LL-measure under non-negative sorting, which is the empirically

relevant type of sorting where the assorted trait is either the eduction level, or race.

Apparently, there are two extreme feasible matches that serve as benchmarks for the

construction of the simplified LL-measure. One of the extreme matches is the perfectly

positive match generated with the following matching rule: H-type individuals can marry

L-type individuals only if no H-type individual from the opposite sex remains available.11

Under this rule, LLsim takes its maximum value, which is one.

The other benchmark is obtained with the random matching rule. Under random match-

ing, Nact
H,H = min(NH,H |NH,·, N·,H , N·,·) = Q− and LLsim takes its minimum value, which is

zero.

Now, let us relax the assumption that the assorted trait is dichotomous by following

Naszodi and Mendonca (2021). In the multinomial case, the one-dimensional assorted trait

distribution can even be gender-specific. For instance, it is possible that the market distin-

guishes between n ≥ 2 different education levels of men, and m ≥ 2 different education levels

of women. So, the aggregate market equilibrium at time t is represented by the contingency

table Zt of size n×m.

If both the male-specific assorted trait variable and the female-specific assorted trait

11Alternatively, if the assorted trait is race, then the corresponding matching rule is this:

individuals with a given race can marry someone from a different race only if nobody from

the opposite sex and from their own race remains available.
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variable are one-dimensional, ordered, categorical polytomous variables, then the aggregate

marital preferences at time t can be characterized by the matrix-valued generalized Liu–Lu

measure (see Naszodi and Mendonca 2021). Its i, j-th element is

LLgen
i,j (Zt) = LLsim(ViZtW

T
j ) , (6)

where Zt is the n×m matrix representing the joint distribution; Vi is the 2× n matrix

Vi =

[ i︷ ︸︸ ︷
1 · · · 1

n-i︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
and W T

j is the m× 2 matrix given by the transpose of

Wj =

[ j︷ ︸︸ ︷
1 · · · 1

m-j︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
with i ∈ {1, . . . , n−1}, and j ∈ {1, . . . ,m−1}. This is how the LL-

measure is generalized for ordered, categorical, polytomous, one-dimensional assorted trait

variables.

Next, let us see how the (generalized) LL-measure is used by the NM-method for construct-

ing counterfactual tables. We denote the NM-transformed contingency table by NM(Ztp , Zta) =

Z∗
tp,ta , where the preferences are measured at time tp, while availability is measured at time

ta. Unlike Ztp and Zta , Z∗
tp,ta cannot be observed.

The counterfactual table Z∗
tp,ta should meet the following conditions. One condition is

LLgen(Z∗
tp,ta) = LLgen(Ztp). It makes the preferences the same under the counterfactual as

at time tp. The other set of conditions is on the availability which is given by a pair of

restrictions of Z∗
tp,tae

T
m = Ztae

T
m, and enZ

∗
tp,ta = enZta , where em and en are all-ones row

vectors of size m and n, respectively.

First, we present the solution for Z∗
tp,ta in the simplest case, where the assorted trait

variable is dichotomous, before we introduce the solution for the polytomous case.

In the dichotomous case, the counterfactual table Z∗
tp,ta to be determined is a 2-by-2 table,

just like the observed tables Ztp =

Np
L,L Np

L,H

Np
H,L Np

H,H

 and Zta =

Na
L,L Na

L,H

Na
H,L Na

H,H

. The solution

19



for its cell corresponding to the number of H,H-type couples is:12

N∗
H,H =

[
Np

H,H − int

(
Np

H,·N
p
·,H

Np

)] [
min

(
Na

H,·, N
a
·,H

)
− int

(
Na

H,·N
a
·,H

Na

)]
min

(
Np

H,·, N
p
·,H

)
− int

(
Np

H,·N
p
·,H

Np

) + int

(
Na

H,·N
a
·,H

Na

)
, (7)

where Np
H,H is the number of H,H-type couples observed at time tp. Similarly, Np

H,· (the

number of couples, where the husbands are H-type), Np
·,H (the number of couples, where

the wives are H-type), and Np (the total number of couples) are also observed at time tp.

Whereas Na
H,·, N

a
·,H , and Na are observed at time ta. So, Equation (7) expresses N∗

H,H as

a function of variables with known values. Regarding the values of all the other three cells

of Z∗
tp,ta , those can be calculated from N∗

H,H by using the condition on the row totals and

column totals of Z∗
tp,ta .

Next, let us see how the original NM-method works in the polytomous case, where the

counterfactual table NM(Ztp , Zta) = Z∗
tp,ta , as well as Ztp and Zta are of size n × m. It

is worth to note that NM(Ztp , Zta) depends on the row totals and column totals of Zta ,

but not on Zta itself. So, instead of thinking of the NM-method as a function mapping

Nn×m×Nn×m 7→ Rn×m, we should rather think of it as a function mapping Nn×m×Nn×Nm 7→

Rn×m. Accordingly, we will use the following alternative notation in the rest of this paper:

NM(Ztp , Ztae
T
m, enZta).

With this new notation, the problem for the multinomial, one-dimensional assortative

trait can be formalized as follows. Our goal is to determine the transformed contingency

table Z∗
tp,ta of size n×m under the restrictions given by the target row totals and the target

column totals observed at time ta: Rta := Ztae
T
m = Z∗

tp,tae
T
m, and Cta := enZta = enZ

∗
tp,ta . The

additional restriction is LLgen(Z∗
tp,ta) = LLgen(Ztp).

By using Eq.(6), we can rewrite the problem as follows. We look for Z∗
tp,ta , where

ViRta = ViZ
∗
tp,tae

T
m, and CtaW

T
j = enZ

∗
tp,taW

T
j ; and LL(ViZtpW

T
j ) = LL(ViZ

∗
tp,taW

T
j ) for

all i ∈ {1, ..., n − 1} and j ∈ {1, ...,m − 1}. The matrices Vk and Wp are defined the

12For the derivation of Eq. (7), see Naszodi and Mendonca (2021).
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same as under Eq.(6). For each i, j-pairs, these equations define a problem of the 2-by-2

form. Each problem can be solved separately by applying Eq.(7). The solutions determine

(n− 1)× (m− 1) entries of the Z∗
tp,ta table. The remaining m+ n− 1 elements of the Z∗

tp,ta

table can be determined with the help of the target row totals and target column totals.

3.2.1 A supplementary analysis

Naszodi and Mendonca (2021) visit many of the NM’s attractive empirical properties and

analytical properties, as well as the analytical properties of its transformed table. Here, we

present a supplementary analysis with a toy model providing further support for applying the

LL-measure and the NM. In our toy model there is achieved status and ascribed status. The

ascribed status represents heterogeneity unobserved by the econometrician. In this model,

the GS-algorithm matches men and women along the two statuses.13

It is intuitive to impose a monotonicity condition: the degree of marital sorting along the

achieved status cannot be low in those societies, where the intergenerational mobility is low

(i.e., the association between individuals’ achieved status and ascribed status is strong) since

both high degree of marital sorting and low intergenerational mobility are the manifestations

of the same phenomenon. This phenomenon is the general lack of “openness” of societies

(see Katrňák et al. 2012). As we will see, this monotonicity condition is violated if marital

sorting is quantified by any of its well-known measures, but the LL-measure.

In our toy model, young people finalize their education determining their achieved status.

Then, their ascribed status is determined when they inherit wealth from their parents as

adults. Finally, they get married. They sort into couples along the pair of status traits.

13Matching with the GS-algorithm allows us to model interesting and complex interactions

in a manageable way. Unlike in the standard multinomial logit model of discrete choice, the

chances of a man of type x to be matched with a woman of type y rather than with z may

dependent not only on the numbers of type x men and type y women in the GS model, but

also on the population size of the type z women inter alia.
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Although both of the assorted traits can be observed by the potential partners of each

individual, it is only the achieved status that is observed by the econometrician.

For the sake of simplicity, we make the following assumptions. Each of the trait variables

is either low (L), or high (H). The two assorted traits are perfect substitutes in this model:

somebody with high ascribed status and low achieved status is just as attractive as somebody

with low ascribed status and high achieved status. This assumption governs how men with

various traits are ranked by women and also how women with various traits are ranked by

men.

Now, let us assume that people match using the GS-algorithm. We apply the aggregate

version of this algorithm that was proposed by Hsieh (2012). The aggregate GS-algorithm

characterizes the matching outcome at an aggregate level by determining the joint distribu-

tion of couples directly without determining who will be matched with whom.

The aggregate GS-algorithm works as follows in our model. First, it matches the H,H-

type men with the H,H-type women. If these groups are not equally large, e.g., the number

of H,H-type men exceeds the number of H,H-type women, then some H,H-type men will

be matched in the next step of the algorithm with some women who are of the second most

attractive types as being either L,H-type, or H,L-type. If there are too few L,H-type

and H,L-type women relative to the H,H-type men unmatched in the first step, then those

H,H-type men who remained single after the first two steps of the algorithm will be matched

either with L,L-type women, or remain single depending on the relative size of these two

groups.

Men who are of the second most attractive type, i.e., being H,L-type or L,H-type, are

matched similarly to the H,H-type men. However, they can enter the marriage market once

all the H,H-type men have left the market with their spouses. So, the H,L-type and the

L,H-type men select their spouses from the group of those women, who remained unmatched

after all the H,H-type men have already engaged with their partners. Finally, the L,L-type

men enter the market once the H,H-type, H,L-type and L,H-type men and their partners
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have already left the market. So, this is how the aggregate GS-algorithm determines the joint

distribution of couples in our toy model.

Next, let us take a numerical example with two hypothetical societies. In the first society,

the distributions of the marriageable men and women are given by the last column and the

last row of the KGS
1 table below.

The KGS
1 contingency table The KGS

2 contingency table

Wife

Low inheritance High inheritance

Education L H L H Total

H
u
sb

an
d

L
ow

i. L 400 0 0 0 400

H 0 0 0 0 0

H
ig

h
i. L 0 0 0 0 0

H 100 0 0 500 600

Total 500 0 0 500 1,000

Wife

Low inheritance High inheritance

Education L H L H Total

H
u
sb

an
d

L
ow

i. L 396 0 0 0 396

H 4 0 0 0 4

H
ig

h
i. L 6 0 0 0 6

H 89 5 5 495 594

Total 495 5 5 495 1,000

In this society there is absolutely no intergenerational mobility no matter how we quantify

this phenomenon: those who have low inheritance have low education level, while those who

have high inheritance have high education level. Once individuals are matched with the

aggregate GS-algorithm, the joint distribution of husbands and wives is given by the inner

part of table KGS
1 .

In the second hypothetical society of KGS
2 , there is intergenerational mobility: 1% of those

who have low inheritance are highly educated, and 1% of those who have high inheritance

are low educated both among men and women. So, the intergenerational mobility makes the

distributions of the marriageable men and women in this society different from those in the

first example. Accordingly, KGS
2 has row totals and column totals that are different from

those of the KGS
1 table. We assume that men and women in this second society are also

matched with the GS-algorithm. The aggregate outcome of the matching is given by the

inner part of table KGS
2 .

The econometrician cannot observe the inheritance, only the education levels. Accord-

ingly, the contingency table observed in the two societies are
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KGS, obs
1 =

400 0

100 500

 , and KGS, obs
2 =

402 0

98 500

 .

It is insightful to calculate some conventional measures of marital sorting both for KGS, obs
1

and KGS, obs
2 . These are reported by Table 2. Apparently, most of the results in this table are

counter-intuitive: almost all the indicators that supposed to quantify the degree of marital

sorting are either lower in the first society, where there is no intergenerational mobility, or,

the indicator is not defined.14

Table 2: Some conventional measures of marital sorting and the LL-measure

Regression coef. Regression coef. Correlation coef. Aggregate Odds-ratio Liu–Lu
(husbands’ (wives’ (between marital (cross- value
education is education is wives’ and sorting product-
explained by explained by husbands’ parameter ratio)
wives’ edu.) husbands’ edu.) education)

KGS, obs
1 0.800 0.833 0.816 1.815 not 1

KGS, obs
2 0.804 0.836 0.820 1.818 defined 1

Notes : The regression coefficient was applied by Greenwood et al. (2014), the aggregate
marital sorting parameter was proposed by Eika et al. (2019), while the odds-ratio was
applied by Rosenfeld (2008) inter alia. The marital surplus indicator developed by Choo and
Siow (2006) cannot be calculated without data on single individuals.

The only exception is the LL-measure: it quantifies marital sorting as being the same in

the two societies. So, unlike the conventional measures, the LL-measure does not violate the

monotonicity condition. This finding also supports the application of the LL-measure as an

aggregate measure of marital sorting. Thereby it is also in favor of the NM.

3.3. The GNM-method

In this section, we generalize the NM-method for the case where individuals sort along two

traits (that are assumed to be neither perfect complementers, nor perfect substitutes). The

14Mood (2010) raises a related issue with the odds-ratio based logistic regression analysis:

it cannot adequately control for unobserved heterogeneity.
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generalized NM-method, the GNM-method,15 works under the assumption that sorting along

the two dimensions is sequential: each individual is assumed to sort along the same dimension

first and then along the other dimension. In other words, individuals are assumed to have

lexicographic preferences over the assorted traits.

To be consistent with the empirical part of this paper, let us call one of the traits race

(taking the dichotomous nominal values W , or B), while we refer to the other assorted trait

as education (taking the ordered values L, M , or H).

Let us denote by tr the year at which marital preferences over partners’ race is measured.

Similarly, we denote by te the year when preferences over partners’ education level is mea-

sured, and we denote by ta the year when availability is measured. We observe the matching

outcomes at tr, te, and ta by observing the 2n-by-2m tables Kr, Ke, and Ka, respectively.

These tables are of the form of Table 1 and represent the joint traits distributions of husbands

and wives.

The GNM(Kr, Ke, Ka) would map N2n×2m × N2n×2m × N2n×2m 7→ R2n×2m provided the

GNM-method can be defined perfectly analogously to the NM(Ztp , Zta) function. However,

as we will see, the GNM does not assign a unique table to each element in its domain. In

fact, GNM(Kr, Ke, Ka) assigns a finite set of 2n-by-2m tables to each triad of {Kr, Ke, Ka}.

Next, we present how the GNM(Kr, Ke, Ka) works under the assumption that individuals

sort along the dichotomous race variable first. As the first step of the GNM-method, the

NM-method is applied in order to obtain the racial distribution of couples under the coun-

terfactual. In particular, we calculate NM(XKrY
T , XKaY

T ) and denote it by Z∗
tr,ta , where

matrix X =

[ n︷ ︸︸ ︷
1 · · · 1

n︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
and Y T is the 2m× 2 matrix given by the transpose of

Y =

[ m︷ ︸︸ ︷
1 · · · 1

m︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
. The 2-by-2 table Z∗

tr,ta represents the racial distribution of

15The GNM method is implemented in Stata, Matlab and R. It can be downloaded from

[link to Mendeley] .
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couples under the counterfactual.

As a second step of the GNM-method, the educational distribution of couples is calculated

under the counterfactual set of conditions that includes the racial distribution Z∗
tr,ta . The

challenge here is that we know only the gender-specific educational target distributions of the

population. However, we do not know the educational target distributions of husbands and

wives for each of the four marriage types BB,BW,WB,WW defined by race. By using a new

notation, what we do not know is v∗,race i,j
male , a column vector of size n, which is the educational

target distribution of husbands of race i married to women of race j (i, j ∈ {W,B}). Also,

we do not know v∗,race j,i
female , a row vector of size m, which is the educational target distribution

of wives of race i married to men of race j (i, j ∈ {W,B}).

If we knew the target distributions v∗,race i,j
male and v∗,race j,i

female then applying the NM-method

for the four racial types of marriages separately, could provide us a unique counterfactual

joint distribution of wives and husbands along both race and education.

The corresponding four NM transformations are defined as follows. For couples, where

both the wives and the husbands are of race B, it is

NM(Ke,1..n,1..m, v
*,race B,B
male , v*,race B,B

female ) = Z∗
race B,B , (8)

with the constraints defined by the target marginals: Z∗
race B,Be

T
m = v*,race B,B

male , enZ
∗
race B,B =

v*,race B,B
female , and the constraint defined by the counterfactual racial distribution: env

*,race B,B
male =

v*,race B,B
female eTm = Z∗

tr,ta,1,1.

For couples, where both the wives and the husbands are of race W , it is

NM(Ke,n+1..2n,m+1..2m, v
*,race W,W
male , v*,race W,W

female ) = Z∗
race W,W , (9)

with the constraints Z∗
race W,We

T
m = v*,race W,W

male , enZ
∗
race W,W = v*,race W,W

female , and env
*,race W,W
male =

v*,race W,W
female eTm = Z∗

tr,ta,2,2.

For inter-racial marriages, where the husbands are of race W and the wives are of race
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B, it is

NM(Ke,n+1..2n,m+1..2m, v
*,race W,B
male , v*,race W,B

female ) = Z∗
race W,B , (10)

with the constraints Z∗
race W,Be

T
m = v*,race W,B

male , enZ
∗
race W,B = v*,race W,B

female , and env
*,race W,B
male =

v*,race W,B
female eTm = Z∗

tr,ta,2,1.

Finally, for inter-racial marriages, where the husbands are of race B and the wives are of

race W , it is

NM(Ke,n+1..2n,m+1..2m, v
*,race B,W
male , v*,race B,W

female ) = Z∗
race B,W , (11)

with the constraints Z∗
race B,We

T
m = v*,race B,W

male , enZ
∗
race B,W = v*,race B,W

female , and env
*,race B,W
male =

v*,race B,W
female eTm = Z∗

tr,ta,1,2.

These four transformation problems are under-determined: in general, there is a set of

v∗,race i,j
male , v∗,race i,j

female pairs that fulfill all the constraints, while each pair define a unique set

of counterfactual tables of Z∗
race B,B, Z

∗
race B,W, Z

∗
race W,B, Z

∗
race W,W. So, in general, there are

multiple solutions for the counterfactual table.

Fortunately, lack of uniqueness of GNM(Kr, Ke, Ka) does not prevent us to perform coun-

terfactual decompositions. For the decompositions, we do not need to know what would be

the joint distribution of traits under the counterfactual. It is sufficient to know a partic-

ular moment of it: this moment is either the share of educationally homogamous couples

SEHC(GNM(Kr, Ke, Ka)), or the share of inter-racial marriages SIRC(GNM(Kr, Ke, Ka)).

The set of counterfactual constraints determine a finite number of possible counterfactual

tables. So, these constraints determine an interval for any scalar-valued moment of the coun-

terfactual joint distribution. This interval contains all possible values of the given moment.

Each interval of the outcome variable SEHC, or SIRC define the intervals of the components

of our interest, i.e., the contributions of changing preferences over the partners’ race and

education to the share of educationally homogamous couples, or the share of inter-racial

marriages.

We obtain the component-intervals by solving a maximization problem and a minimiza-
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tion problem with a scalar-valued objective function of either SEHC(GNM(Kr, Ke, Ka)), or

SIRC(GNM(Kr, Ke, Ka)). If SEHC is to be maximized under the counterfactual, the opti-

mization problem is:16

maxv∗,race i,j
male ,v∗,race i,j

female
SEHC(GNM(Kr, Ke, Ka)) , (12)

with i, j ∈ {W,B}, subject to the constraints on the independent elements of the vectors

v*,race i,j
male and v*,race j,i

female in the N2(n−1+m−1) space. These constraints are defined below Equations

(8), (9), (10), and (11). The other three optimization problems can be formalized similarly

to Equation (12).

In principle, the GNM-method can be applied not only when sorting along race precedes

sorting along education, but also when sorting along these two traits is in the reverse sequence.

The choice of sequence depends on which of the traits is considered to be more important

in the population studied. Our benchmark empirical analysis in this paper relies on the

assumption that Americans’ primary trait of sorting was race when being young adults.

However, we perform our analysis with the alternative assumption as well (see Appendix C).

3.3.1 A numerical example with the GNM-method

We illustrate the application of the GNM-method with a simple numerical example. To ease

the exposition, we consider two dichotomous traits. Individuals can either be Black (B) or

White (W ) and have attained a low (L) or high (H) education level. Suppose that the table

to be transformed, i.e, the seed table, is given by

16In the empirical application of the GNM in this paper, n = m = 3 making the parameter

space 8 dimensional. Any extension of the model that increases the number of racial cate-

gories, or the number of traits considered increases the number of parameters to be estimated

and makes the optimization problems challenging to solve.
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Ke = Kr =



46 142 7 29

98 2, 453 198 442

5 8 1,532 1,667

3 181 949 30,735


in the form of Table 1, where SEHC(Ke) =

92% and SIRC(Ke) = 2.3%. The target column totals and row totals are given by C =[
127 2, 665 1, 987 32, 661

]
and the transpose of RT =

[
170 3, 008 2, 627 31, 635

]
.

As the first step of the GNM, we aggregate the table Kr, the row totals R, and the column

totals C along the educational dimension. It results in the following seed table KRace, target

row total vector RRace, and column total vector CRace: KRace = XKrY
T =

2,733 676

197 34,883

,

RRace = XR =

 3,178

34,262

 and CRace = CY T =

[
2, 792 34, 648

]
.

Next, we apply the NM-method using formula (7). It yields NM(KRace, RRace, CRace) =2,605 573

187 34,075

 that we denote by Z∗
tr,ta . This matrix represents the joint racial distribution

of husbands and wives under the counterfactual.

As a second step, we take the following four 2-by-2 sub-matrices ofKe: K
BB
e =

46 142

98 2,453

,

KBW
e =

 7 29

198 442

, KWB
e =

5 8

3 181

, KWW
e =

1,532 1,667

949 30,735

 and solve for each sep-

arate problem defined by Equations (8), (9), (10), (11) and the constraints below them.

We set the target marginals to make the educational distribution over race consistent with

the counterfactual racial distribution Z∗
tr,ta calculated in the first step: RBB =

 β1

KRace
1,1 − β1

,

CBB =

[
β2 KRace

1,1 − β2

]
, RBW =

 R1 − β1

R2 −R1 + β1

, CBW =

[
C1 − β2 C2 − C1 + β2

]
,

RWB =

 R3 − β3

R4 −KRace
2,2 + β3

, CWB =

[
C3 − β4 C4 −KRace

2,2 + β4

]
, RWW =

 β4

KRace
2,2 − β3

,
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CWW =

[
β4 KRace

2,2 − β4

]
.

Obviously, the counterfactual table to be obtained with the GNM depends on the pa-

rameter vector β = [β1, β2, β3, β4]. In this numerical example presented with an illustra-

tive purpose, we choose β to maximize SEHC. The resulting counterfactual is given by

K∗
max, SEHC =



33 122 12 2

73 2,377 8 165

185 2 862 1,578

386 0 554 31,081


, where βmax, SEHC = [155 106 1, 416 2, 440].

We can calculate two descriptive statistics of K∗
max, SEHC: SEHC(K∗

max, SEHC) = 92.7% and

SIRC(K∗
max, SEHC) = 2%. To recall, the same statistics of the table Ke were SEHC(Ke) = 92%

and SIRC(Ke) = 2.3%. So, 0.7% increase in SEHC and 0.3% decease in SIRC can be

attributed to the change in the distributions of males and females along race and education

provided SEHC is maximized under the counterfactual of no change in preferences.

As opposed to this numerical example, in the empirical part of the paper we construct the

counterfactual and perform the decomposition not only by maximizing SEHC with the choice

of β, but also by minimizing SEHC, maximizing SIRC, and minimizing SIRC. These four

alternative specifications together represent model uncertainty. By performing the decom-

positions with each of the four alternative model specifications, we obtain interval estimates

for the contributions of the factors.

4. EMPIRICAL ANALYSIS

In the empirical analysis, we use decennial census data of the United States from IPUMS.

Our data covers heterosexual young couples with male partners aged 30 to 34 years. The

variable on the highest educational attainment can take three values: “less than high school”,
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“high school completed”, and “tertiary education completed”.17 The variable on race is

dichotomous, taking the values of “Black” or “White”.

Our benchmark analysis focusing on the 1980s is presented in Subsection 4.1. In Subsec-

tion 4.2, we study a much longer period spanned by 1960 and 2015.

Our motivation for using the census data only from 1980 and 1990 in our benchmark

analysis is twofold. First, as already mentioned in the introduction, there is a disagreement

about the trend of economic inequality in the 1980s among the papers identifying the trend

from the joint educational distributions of couples. Second, the share of individuals who

identify with more than one group in response to the race question in the census has grown

substantially since 2000, when the multi-race option was offered to the respondents the first

time. The modification of racial categories in 2000 does not affect the comparison of the data

from 1980 and 1990.

4.1. Benchmark analysis of the 1980s

This section presents the main results of decomposing changes in the share of educational

homogamous couples (SEHC) and the share of inter-racial couples (SIRC) in the US between

1980 and 1990. The census wave-specific contingency tables are presented in Tables 3 and 4.

As it is reported by Figures 1 and 2, the SIRC increased by 35.78 basis points, while the

SEHC increased by more than 4 percentage points (see the bold black markers in Figures 1

and 2) over the 1980s. So, both the prevalence of educational homogamy and the prevalence

of inter-racial marriages increased over the analyzed decade. These facts themselves are

hardly indicative about the changes in the factors of our interest, i.e., the preferences for

racial exogamy and educational homogamy.

By decomposing the 35.78 bps change in SIRC, we find the racial preferences to be the

most important driver of inter-racial marriages (see the light gray bars on Figures 1 a, or

17So, we work with the same three educational categories as Choo and Siow (2006), Naszodi

and Mendonca (2021).
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Table 3: Joint educational and racial distribution of young American couples in 1980

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 52,624 57,135 2,882 1,261 1,862 161 115,925
M 40,183 215,109 26,318 1,920 8,428 1,341 293,299
H 2,101 29,703 30,252 220 2,364 2,080 66,720

W
h
it

e L 420 380 20 391,812 355,816 11,933 760,381
M 400 2,082 241 366,104 2,473,432 253,857 3,096,116
H 120 881 722 26,231 831,013 834,386 1,693,353

Total 95,848 305,290 60,435 787,548 3,672,915 1,103,758 6,025,794

Source: IPUMS, US census 1980.
Note: The educational categories are L corresponding to not having completed the high
school; M corresponding to having a high school degree, but no tertiary level degree; and
H corresponding to holding a tertiary education diploma. Age of husbands/male partners is
between 30 and 34.

Table 4: Joint educational and racial distribution of young American couples in 1990

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 16,979 31,727 1,831 1,020 2,084 24 53,665
M 23,065 266,494 37,943 2,427 19,553 3,225 352,707
H 747 32,024 37,569 172 3,458 3,843 77,813

W
h
it

e L 522 733 51 288,490 326,968 13,244 630,008
M 221 6,594 1,375 273,737 3,012,395 425,235 3,719,557
H 197 1,349 2,163 12,978 628,489 877,171 1,522,347

Total 41,731 338,921 80,932 578,824 3,992,947 1,322,742 6,356,097

Source: IPUMS, US census 1990.
Note: same as below Table 3.

b in the positive range). In other words, the increasing prevalence of inter-racial marriages

among the young American adults in the 1980s can be attributed primarily to the fact that

one generation (the early boomers) with given racial marital preferences were replaced on

the marriage market by another generation (the late boomers) with more permissive racial

preferences towards exogamy. This finding is robust to estimating the eight-dimensional β
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parameter vector by minimizing the SIRC under the counterfactual, or maximizing it.

In addition, our finding is consistent with the results of the NORC’s General Social

Survey conducted in 2017.18 According to the survey, the share of those who would oppose

an intermarriage in their family, is substantially lower among the late boomers than among

the early boomers.19

Let us turn to the decomposition of ∆SEHC. We find that in the 1980s SEHC’s main driver

was the changing structural availability of men and women. If no other factors had changed,

then the SEHC would have increased by more than 7 percentage points (see the white bars

of Figures 2 a, or b). By contrast, the preferences for spousal education are calculated to have

played a negative effect on the SEHC : if only these preferences had changed over the 1980s,

then the SEHC would have decreased by almost 3 percentage points. This finding is robust

to estimating the eight-dimensional β parameter vector by minimizing, or maximizing the

SEHC (see the dark bars of Figures 2 a and b).

18See: https://www.pewresearch.org/social-trends/2017/05/18/2-public-views-on-intermarriage/.

19Although we interpret the difference between the responses of various cohorts interviewed

in the same year as evidence for the difference between the attitudes of their generations,

it has an alternative interpretation as well. According to the alternative view, as someone

gets older, the person is more likely to oppose inter-racial marriages irrespective of which

generation he or she belongs to. The choice between the ’generation-effect interpretation’

and the ’age-effect interpretation’ can be facilitated with data from the same survey to be

repeated in the coming years.
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Figure 1: Decomposition of changing prevalence of inter-racial couples in the US between
1980 and 1990.
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(a) Decomposition by maximizing SIRC
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(b) Decomposition by minimizing SIRC
Notes : The decomposition is conducted by using the additive decomposition scheme with

interaction effect (see Eq.2), while the counterfactual contingency tables are constructed with

the GNM-method (see Subsection 3.3) using data in Tables 3 and 4. Individuals are assumed

to sort along the racial dimension first.

Figure 2: Decomposition of changing prevalence of educational marital homogamy in the US
between 1980 and 1990.
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(a) Decomposition by maximizing SEHC
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(b) Decomposition by minimizing SEHC
Notes : same as under Figure 1.

How can we interpret these components? First, the generation of the late boomers (whose

matches were observed in 1990 when being young adults) was more permissive towards inter-

educational marriages than the generation of the early boomers (whose matches were observed

in 1980 when being young adults). This result is consistent with the finding of Naszodi and

Mendonca (2021). However, unlike them, in this paper we control for the racial dimension
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(i.e., the changing racial composition, racial preferences and the interaction of these two fac-

tors with any other factors). Therefore, our finding is free of the criticism that the identified

factor-contributions are potentially biased by omitting the racial factors.

Second, the decompositions of ∆SEHC and ∆SIRC over the 1980s suggest that controlling

for the racial dimension when identifying changes in preferences for spousal education can be

relevant in principle. This is because preferences for educational homogamy and preferences

for inter-racial marriages can change simultaneously. This is not only a theoretical possibility

occurring in a hypothetical society, but an empirical fact illustrated by the American society

in the 1980s.

However, controlling for the racial dimension does not seem to be essential in the con-

text of the specific empirical problem studied in this paper. The identified effect of changing

preferences for spousal education in the 1980s is not particularly sensitive to the model spec-

ification. Naszodi and Mendonca (2021) identify this effect on the SEHC to be -3 percentage

points without controlling for the racial dimension.20 In this paper, we identify the effect

to be of the same magnitude as being between -2.95 percentage points (see the dark bar of

Figure 2 b) and -2.66 percentage points (see the dark bar of Figure 2 a) in our benchmark

analysis. Obviously, the outcome of this specific sensitivity analysis does not imply that tak-

ing into account sorting along two dimensions would be unnecessary in any other empirical

application.

4.2. Analyzing multiple decades

In this subsection, we study the long-term trend in preferences for educational homogamy,

as well as the long-term trend in preferences for inter-racial marriages, between 1960 and

2015. We replicate the analysis in Subsection 4.1 for six periods (1960s, 1970s, 1980s, 1990s,

2000s and the five-years period of 2010–2015) to quantify the period-specific contributions

20See: Figures Naszodi Mendonca2021 Decomposition US 1980 2010 age3034.xlsm avail-

able from http://dx.doi.org/10.17632/x2ry7bcm95.2.
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of the changing educational preferences to the changes in the SEHC and the period-specific

contributions of the changing racial preferences to the changes in the SIRC.21 The former

defines the time series of the MEI-indicator, while the latter defines the time series of the

marital racial inclusiveness-indicator (henceforth MRI-indicator).22

We use the MEI-indicator to study what would have been the share of educationally

homogamous couples (SEHC) between 1960 and 2015 if only the educational preferences had

changed across the consecutive generations relative to its value observed in the benchmark

year of 1990. Similarly, we use the MRI-indicator to study what would have been the share of

inter-racial couples (SIRC) between 1960 and 2015 if only the racial preferences had changed

across the consecutive generations relative to the same benchmark year. These counterfactual

time series are presented by Figure 3.

21Appendix A presents the contingency tables for the census years 1960, 1970, 2000, 2010

and 2015 together with the detailed results of the decompositions.

22The time series of the MRI-indicator and that of the MEI-indicator are reported by

Tables 12 and 13 in Appendix A.
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Figure 3: Historical trends of the economic divide and the racial inclusiveness based on the
MEI-indicator and the MRI-indicator, respectively - sorting along education is assumed to
follow sorting along race
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Notes : the benchmark year is 1990. The maximum and the minimum change in SIRC and

SEHC attributed to changing racial or educational preferences over each decade (or 5 years in

case of the period 2010–2015) is obtained by performing the decompositions with maximizing

and minimizing SEHC and SIRC under the counterfactuals. The average SEHC and average

SIRC are given by the averages of the corresponding maximum and minimum values. The

three gray lines are coinciding, because the minimum and maximum counterfactual series of

SIRC, as well as their average series, are hardly different from each.

The trend of the economic divide together with the trend of the racial divide trace some

social and economic changes in the US. Over the 1960s, Cupid’s invisible hand used a double

edged sword: while one edge could substantially decrease the economic segmentation of the

market, the other edge shaping racial preferences has increased the market segmentation
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along the racial dimension.

In the 1990s, as well as in the first decade following the turn of the Millennium, Cupid’s

invisible hand used again a double edged sword. While it substantially decreased the racial

segmentation of the market, it increased the market segmentation along the economic dimen-

sion. This finding is perfectly in line with the main result of Case and Deaton (2021), who

identify the educational gap in life expectancy to have widened while racial gap has narrowed

after 1990 in the US.

Among the analyzed periods, the 1970s and the five-years period between 2010 and 2015

are the most similar to the 1980s. Over these three periods, the marriage market has become

less segmented both along the economic dimension and the racial dimension according to

our point estimates. However, these changes are less pronounced relative to the changes in

the 1980s (see the relative steepness of the gray line segments in the corresponding periods

and the relative slope of the black continuous line segments in the corresponding periods in

Figure 3). In addition, the model uncertainty reflected by our interval estimates suggests

that the trend of the economic divide is ambiguous after 2010.

5. Discussion of the empirical results

In this section, we interpret our empirical findings in a broad context. In particular, we shed

light on their relationship with the status-cast exchange hypothesis, some survey evidence,

and a historian’s narrative of the New Deal order and the neoliberal order.

5.1. Discussion of the results and the status-cast exchange hypoth-

esis

As a by-product of our analysis, we can reject the dynamic, aggregate version of the status-cast

exchange hypothesis. The static and individual level version of this hypothesis was originally

postulated by classic sociologists such as Davis (1941) and Merton (1941). According to their
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hypothesis, individuals from a given race with lower social status who racially intermarry

typically “exchange” their higher achieved socioeconomic positions for their partners’ higher

ascribed social status.

Similar to Rosenfeld (2005), we find even the implicit assumption of this hypothesis

highly problematic, because race is not hierarchical. Accordingly, we do not treat it as an

ordered variable in our analysis. However, we cannot avoid imposing the assumption that

race is hierarchical, otherwise, we can neither formalize, nor test, nor reject the status-cast

exchange hypothesis.

The dynamic and aggregate version of the hypothesis is the following. When aggregate

preferences for educational homogamy become weaker (i.e., the social gap between different

educational groups closes, or, in other words, the high educational trait depreciates on the

marriage market), the aggregate preferences for racial endogamy should become stronger

(i.e., the social gap should increase between different racial groups) provided the “terms of

trade” between the achieved status and the ascribed status is constant (as it is in our toy

model in Subsection 3.2.1).

Actually, we see just the opposite in our data: over the 1980s both types of aggregate

preferences became weaker (i.e., both the social gap between different racial groups and the

social gap between different educational groups were about to close. Or, in other words, the

segmentation of the marriage market has decreased both along the racial dimension and the

economic dimension).

The status-cast exchange hypothesis has never been popular. There have been many

theoretical critiques of the hypothesis. Also, several attempts have been made to empirically

refute it with mixed success (see Rosenfeld 2005 and Kalmijn 2010). This is not surprising in

light of the following fact. By measuring marital sorting with any of the commonly applied

indicators used in Subsection 3.2.1, one cannot reject the dynamic, aggregate version of the

status-cast exchange hypothesis. This is because contrary to our result, the late boomers

are found to be less permissive towards inter-educational marriages than the early boomers
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if these generations are compared on the basis of the odds-ratio, or any other measure from

the same family of indicators (see: Naszodi and Mendonca 2021).

5.2. Discussion of the results and some survey evidence

It is shown in the literature that the U-shaped pattern of educational homophily, also found

in this paper, is robust to being identified from certain survey data or the census data

“interrogated” by the NM. In particular, by using a survey from the Pew Research Center,

Naszodi and Mendonca (2021) find that the strength of aggregate preferences also displays

a U-shaped pattern if being identified from individuals’ self-reported preferences on spousal

education.

Naszodi (2023) and Naszodi (2022) confirm this finding. In particular, Naszodi (2023)

shows with a pseudo panel analysis of survey data from two waves that the differences between

the responses of the generations studied by Naszodi and Mendonca (2021) remain significant

after controlling for potential changes in marital preferences over the course of individuals’

lives. Naszodi (2022) also presents survey-based supporting evidence for the U-shaped pattern

of educational homophily: she finds the share of the most permissive survey respondents for

educational intermarriage to have displayed a hump-shaped pattern.

As to the racial preferences, we could use the NORC’s General Social Survey in this paper

to validate our finding on the decreasing racial endogamy after 1980.

Related to this approach, a question arises naturally. If surveys are able to track reliably

the trends in the center of our interest then why do we need any model or method for the

same purpose?

We have three answers. First, the US is unique in this respect: for most of the other

countries in the world, no similar surveys are available. So, researchers with an international

focus have to rely on population data of couples and a method fit for the purpose.

Second, even if there are surveys available for studying changes in preferences related to

spousal education and barriers to inter-racial marriages, it is difficult to construct survey
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questions suitable for studying either of these two phenomenon in itself.

Third, small sample surveys are typically not suitable for studying little but important

changes in the population. An example for such a phenomenon is the change in the share of

inter-racial marriages (and its driving factors) of the magnitude of being expressed in basis

points. Another example is the moderately changing trend of the economic gap in the US

between 2010 and 2015 (see Fig. 3). We could hardly identify these small changes from any

survey with the usual sample size.

5.3. Discussion of the results and a historian’s narrative

The historical trends identified with the MEI-indicator and the MRI-indicator are perfectly

in line with the narrative of Gerstle (2022). He also finds racism and economic inequality to

have had opposite trends before the late 1960s. He explains it as follows. The New Deal,

while successfully addressing economic inequality, failed to address racial equality. Otherwise

President Roosevelt could not have get his programme through the Congress, where the

congressmen from the white South had said “We’ll let your progressive economic policy pass.

As long as you don’t interfere with the racial hierarchies of Southern life”.

Some decades later, President Johnson committed the Democratic party to civil rights

and racial equality by passing the Civil Rights Act of 1964, the Voting Rights Act of 1965,

and by deciding by the US Supreme Court in 1967 that “anti-miscegenation” laws (forbidding

people of different races to marry) are unconstitutional. While all these three measures are

important milestones for racial equality, these have contributed to gradually losing support of

the Democrats by the white South. The oil price shocks in the 1970s and the war in Vietnam

are named by Gerstle (2022) as two additional blows on top of the racial divide that explain

why the election in 1980 was lost by President Carter, and why President Reagan could gain

popularity with his economic programme based on the neoliberal paradigm.

While the first turning point of the dark line in Figure 3 reflects the neoliberal turn, the

most recent turning point, – provided there was one around 2010 –, is probably the sign of
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a rising new economic paradigm. Future research using new data will tell whether the year

2010 can mark the beginning of a new era.

6. CONCLUSION

In this paper, we generalized the NM-method developed by Naszodi and Mendonca (2021).

While the original NM-method is suitable for studying marital sorting along one single trait

(e.g. education level, or race), our generalized method, the GNM-method can be used to

study sorting along two traits jointly. The GNM-method can be applied, for instance, to

quantify changes in sorting along the educational trait, while controlling for sorting along

the racial trait, or the other way around.

In the empirical part of this paper, we studied the intergenerational changes in Ameri-

cans’ marital racial preferences between 1960 and 2015. We quantified the changes in the

directly unobservable preferences through their effects on the share of inter-racial couples by

applying a series of decompositions. The effects we identified with the GNM are net of other

simultaneously emerging effects, such as the effects of changes in the educational marital

preferences, and the changes in availability of potential partners with various traits, as well

as the joint effects of changing preferences and availability.

In addition, we applied the GNM-method to study the intergenerational changes in Amer-

icans’ marital preferences over spousal education. Similarly to the changes in racial prefer-

ences, we identified the changes in preferences for spousal education with a series of decompo-

sitions by quantifying their ceteris paribus effects on the share of educationally homogamous

couples.

Our results obtained with the GNM are threefold. First, by decomposing the change in

the share of inter-racial couples over the 1980s, we found that American late boomers were

typically more permissive towards inter-racial marriages in 1990 than the early boomers were

in 1980. In other words, our decomposition supports the view that racial segmentation of
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the marriage market has moderated during the 1980s.

Second, and most importantly, we found that after controlling for the difference in the

aggregate racial preferences between the early boomers and the late boomers, as well as for the

difference between their structural availability, changing preferences for partners’ education

exerted a downward effect on the share of educationally homogamous couples over the 1980s.

This finding suggests that the social divide along the economic dimension (proxied by the

education level) was less pronounced among the late boomers in 1990 than it was among

the early boomers in 1980. To sum, Cupid’s invisible hand made the marriage market less

segmented both along the economic dimension and the racial dimension over the 1980s.

Third, by analyzing the marriage market between 1960 and 2015, we found that the 1980s

was a unique decade. In particular, it was very different from the 1960s, 1990s, and 2000s,

while it was somewhat different from the 1970s and the 2010–2015 period. In the 1960s,

1990s, as well as in the first decade following the turn of the Millennium, Cupid’s invisible

hand used a double edged sword: when one of its edges decreased the economic segmentation

of the market, its other edge shaping racial preferences increased the market segmentation

along the racial dimension, or the other way around. In the 1970s and between 2010 and 2015,

although the marriage market became less segmented both along the economic dimension and

the racial dimension, the changes were less pronounced relative to that in the 1980s. Still, we

can refute the dynamic, aggregate version of the status-cast exchange hypothesis with data

covering any of these three periods.

Our empirical findings have the following messages for policy-making. Reinventing those

policies that made the late boomers different from the early boomers has the potential to

reverse the trend of growing economic inequality without deepening the racial divide in the

US society. The steadily enhancing inclusiveness along the racial dimension we identified

makes it unlikely that the twenty-first century’s US voters would buy a mix of a New Deal-

like programme and racial hierarchies despite the fact that such a mix has been successfully

sold to the twentieth century’s voters by President Roosevelt.
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Appendix A: contingency tables from 1960–2015 and the

detailed results of the decompositions

In this appendix, we present the joint educational and racial distributions of young American

couples for 1960 (see Table 5), 1970 (see Table 6), 1980 (see Table 7), 1990 (see Table 8),

2000 (see Table 9), 2010 (see Table 10) and 2015 (see Table 11). In addition, we present the

detailed results of the decompositions (see Tables 12 and 13).

Table 5: Joint educational and racial distribution of young American couples in 1960

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 204,208 61,758 3,990 1,394 896 0 272,246
M 30,279 51,913 5,782 498 797 199 89,468
H 1,792 6,674 8,475 0 100 0 17,041

W
h
it

e L 1,296 699 0 1,133,043 707,071 13,251 1,855,360
M 100 399 0 420,587 1,277,885 66,433 1,765,404
H 0 298 200 32,461 427,101 223,858 683,918

Total 237,675 121,741 18,447 1,587,983 2,413,850 303,741 4,683,437

Source: IPUMS, US census.
Note: The educational categories are L corresponding to not having completed the high
school; M corresponding to having a high school degree, but no tertiary level degree; and
H corresponding to holding a tertiary education diploma. Age of husbands/male partners is
between 30 and 34.
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Table 6: Joint educational and racial distribution of young American couples in 1970

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 122,395 67,428 3,305 905 901 0 194,934
M 43,778 105,066 7,516 600 2,308 500 159,768
H 1,106 9,610 10,516 300 300 300 22,132

W
h
it

e L 100 100 0 623,133 472,580 12,817 1,108,730
M 200 802 100 409,333 1,641,091 96,840 2,148,366
H 100 502 100 22,745 451,532 318,353 793,332

Total 167,679 183,508 21,537 1,057,016 2,568,712 428,810 4,427,262

Table 7: Joint educational and racial distribution of young American couples in 1980

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 52,624 57,135 2,882 1,261 1,862 161 115,925
M 40,183 215,109 26,318 1,920 8,428 1,341 293,299
H 2,101 29,703 30,252 220 2,364 2,080 66,720

W
h
it

e L 420 380 20 391,812 355,816 11,933 760,381
M 400 2,082 241 366,104 2,473,432 253,857 3,096,116
H 120 881 722 26,231 831,013 834,386 1,693,353

Total 95,848 305,290 60,435 787,548 3,672,915 1,103,758 6,025,794

Table 8: Joint educational and racial distribution of young American couples in 1990

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 16,979 31,727 1,831 1,020 2,084 24 53,665
M 23,065 266,494 37,943 2,427 19,553 3,225 352,707
H 747 32,024 37,569 172 3,458 3,843 77,813

W
h
it

e L 522 733 51 288,490 326,968 13,244 630,008
M 221 6,594 1,375 273,737 3,012,395 425,235 3,719,557
H 197 1,349 2,163 12,978 628,489 877,171 1,522,347

Total 41,731 338,921 80,932 578,824 3,992,947 1,322,742 6,356,097
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Table 9: Joint educational and racial distribution of young American couples in 2000

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 6,904 17,186 1,105 913 2,126 315 28,549
M 15,440 225,551 40,729 2,390 25,304 4,577 313,991
H 839 24,122 39,414 98 3,897 4,868 73,238

W
h
it

e L 195 463 45 157,436 187,298 12,903 358,340
M 469 8,023 1,367 140,842 1,902,425 439,786 2,492,912
H 61 1,576 2,801 6,929 383,492 929,669 1,324,528

Total 23,908 276,921 85,461 308,608 2,504,542 1,392,118 4,591,558

Table 10: Joint educational and racial distribution of young American couples in 2010

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 4,558 12,631 1,528 654 2,187 687 22,245
M 9,542 140,427 38,904 1,642 25,624 6,777 222,916
H 232 18,790 47,176 239 5,269 6,538 78,244

W
h
it

e L 482 608 237 153,199 152,920 13,759 321,205
M 275 8,858 3,281 90,567 1,376,757 482,266 1,962,004
H 0 1,367 4,567 4,327 265,891 948,595 1,224,747

Total 15,089 182,681 95,693 250,628 1,828,648 1,458,622 3,831,361

Table 11: Joint educational and racial distribution of young American couples in 2015

Wife/female partner
Black White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 4,234 9,589 709 219 1,360 855 16,966
M 6,742 121,614 46,744 1,186 25,536 8,370 210,192
H 877 21,103 47,801 305 7,192 13,375 90,653

W
h
it

e L 214 229 0 115,950 131,152 15,198 262,743
M 586 9,363 3,317 71,361 1,226,193 508,341 1,819,161
H 50 1,799 4,236 9,708 270,053 1,058,477 1,344,323

Total 12,703 163,697 102,807 198,729 1,661,486 1,604,616 3,744,038
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Table 12: Results of the decompositions - outcome variable: share of inter-racial couples
(SIRC), period: 1960–2015, racial categories: Black and White, sorting is along the racial
dimension first

1960- 1970- 1980- 1990- 2000- 2010-
’70 ’80 ’90 ’00 ’10 ’15

Total change in SIRC 3.65 22.99 35.78 52.45 51.30 27.99
due to

Id
en

ti
fi
ca

ti
on

:
m

ax
im

iz
at

io
n

∆ distributions (∆A) 7.87 13.80 10.85 34.50 8.47 22.19
∆ racial preferences (∆PR) = MRI -4.06 10.03 26.22 15.74 46.72 5.95
∆ educational preferences (∆PE) 0.00 0.00 0.00 0.00 0.00 0.00
interaction between ∆A and ∆PR -0.16 -0.84 -1.29 2.21 -3.89 -0.16
interaction between ∆A and ∆PE 0.00 0.00 0.00 -0.01 0.00 0.01
interaction between ∆PR and ∆PE 0.00 0.00 0.00 0.00 0.00 0.00
interaction among ∆A, ∆PE, ∆PR 0.00 0.00 0.00 0.01 -0.01 -0.01

m
in

im
iz

at
io

n

∆ distributions (∆A) 7.87 13.80 10.85 34.50 8.47 22.19
∆ racial preferences (∆PR) = MRI -4.07 10.03 26.21 15.74 46.72 5.95
∆ educational preferences (∆PE) 0.00 0.00 0.00 0.00 0.00 0.00
interaction between ∆A and ∆PR -0.15 -0.84 -1.28 2.22 -3.89 -0.16
interaction between ∆A and ∆PE 0.00 0.01 0.00 0.00 0.00 0.00
interaction between ∆PR and ∆PE 0.00 0.00 0.00 0.00 -0.01 0.00
interaction among ∆A, ∆PE, ∆PR 0.00 0.00 0.00 0.00 0.01 0.00

Source: Authors’ calculation using US census data from IPUMS.
Notes : The decompositions are conducted by using the additive decomposition scheme with
interaction effects (see Eq.2), while the counterfactual contingency tables are constructed
with the GNM-method (see Subsection 3.3). The educational categories are “low level of ed-
ucation” corresponding to not having completed the high school; “medium level of education”
corresponding to having a high school degree; and “high level of education” corresponding
to holding a tertiary education diploma. Age of husbands/male partners is between 30 and
34.
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Table 13: Results of the decompositions - outcome variable: share of educationally homog-
amous couples (SEHC), period: 1960–2015, racial categories: Black and White, sorting is
along the racial dimension first

1960- 1970- 1980- 1990- 2000- 2010-
’70 ’80 ’90 ’00 ’10 ’15

Total change in SEHC 1.82 2.78 4.72 0.63 -1.02 -0.76
due to

Id
en

ti
fi
ca

ti
on

:
m

ax
im

iz
at

io
n

∆ distributions (∆A) 4.28 3.74 7.77 -0.35 -4.93 0.25
∆ racial preferences (∆PR) 0.06 0.14 0.09 -0.26 0.08 0.35
∆ edu. preferences (∆PE) = MEI -2.67 -0.62 -2.66 0.44 4.49 -0.32
interaction between ∆A and ∆PR 0.14 -0.21 -0.28 0.50 0.02 0.02
interaction between ∆A and ∆PE 0.30 -0.15 -0.37 0.97 -0.80 -0.67
interaction between ∆PR and ∆PE -0.10 -0.24 0.01 0.43 -1.21 -0.18
interaction among ∆A, ∆PE, ∆PR -0.20 0.12 0.17 -1.11 1.31 -0.20

m
in

im
iz

at
io

n

∆ distributions (∆A) 4.41 3.68 7.57 -0.75 -5.43 -0.42
∆ racial preferences (∆PR) -0.04 -0.11 -0.25 -0.45 -0.51 -0.44
∆ edu. preferences (∆PE) = MEI -2.80 -0.71 -2.95 0.38 3.22 -0.72
interaction between ∆A and ∆PR -0.05 0.11 0.33 0.54 0.65 0.46
interaction between ∆A and ∆PE 0.16 -0.26 -0.08 0.06 0.58 0.06
interaction between ∆PR and ∆PE 0.02 -0.03 0.44 0.50 0.54 0.13
interaction among ∆A, ∆PE, ∆PR 0.12 0.10 -0.34 0.35 -0.08 0.18

Source: Authors’ calculation using US census data from IPUMS.
Notes : Same as under Table 12.
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Appendix B: Sensitivity analysis with respect to the

racial categories

In this appendix, we check the sensitivity of the decomposition results to our choice of the

racial categories in the benchmark analysis. Here, we use the racial categories White/non-

White and Black/non-Black (rather than Black/White).

Figures 4 and 6 present the results of our robustness checks for the SIRC with the

White/non-White categories, and with the Black/non-Black categories, respectively. In both

cases, the results are qualitatively the same as in our benchmark analysis: the MRI-indicator

has increased over the 1980s, irrespective of the racial categories used.

The robustness check for the SEHC is plotted in Figures 5 and 7. The estimated con-

tribution of changing educational preferences to the prevalence of educational homogamy is

of the same magnitude and has the same sign as in the benchmark analysis. It is in the

[-2.09; -2.08] percentage points range if the White/non-White categories are used, while it

is calculated to be -2.7 percentage points if the Black/non-Black categories are used. To

recall, the same effect was calculated to be in the [-2.66; -2.95] percentage points range in the

benchmark analysis. All in all, the MEI-indicator has decreased over the 1980s, irrespective

of the racial categories used.
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Figure 4: Decomposition of changing prevalence inter-racial couples in the US between 1980
and 1990 (Racial categories used: White and non-White)
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(a) Decomposition by maximizing SIRC
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(b) Decomposition by minimizing SIRC
Notes : The decompositions are conducted by using the additive decomposition scheme with

interaction effects (see Eq.2), while the counterfactual contingency tables are constructed

with the GNM-method (see Subsection 3.3) using data in Tables 14 and 15. Individuals are

assumed to sort along the racial dimension first.

Figure 5: Decomposition of changing prevalence of educational marital homogamy in the US
between 1980 and 1990 (Racial categories used: White and non-White)
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(a) Decomposition by maximizing SEHC
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(b) Decomposition by minimizing SEHC
Notes : The decompositions are conducted by using the additive decomposition scheme with

interaction effects (see Eq.2), while the counterfactual contingency tables are constructed

with the GNM-method (see Subsection 3.3) using data in Tables 14 and 15. Individuals are

assumed to sort along the racial dimension first.
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Figure 6: Decomposition of changing prevalence inter-racial couples in the US between 1980
and 1990 (Racial categories used: Black and non-Black)
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(a) Decomposition by maximizing SIRC
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(b) Decomposition by minimizing SIRC
Notes : The decompositions are conducted by using the additive decomposition scheme with

interaction effects (see Eq.2), while the counterfactual contingency tables are constructed

with the GNM-method (see Subsection 3.3) using data in Tables 16 and 17. Individuals are

assumed to sort along the racial dimension first.

Figure 7: Decomposition of changing prevalence of educational marital homogamy in the US
between 1980 and 1990 (Racial categories used: Black and non-Black)
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(a) Decomposition by maximizing SEHC
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(b) Decomposition by minimizing SEHC
Notes : The decompositions are conducted by using the additive decomposition scheme with

interaction effects (see Eq.2), while the counterfactual contingency tables are constructed

with the GNM-method (see Subsection 3.3) using data in Tables 16 and 17. Individuals are

assumed to sort along the racial dimension first.
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Table 14: Joint educational (L,M,H) and racial (White, non-White) distribution of young
American couples in 1980

Wife/female partner
non-White White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

n
on

-W

L 67,771 63,599 3,922 4,463 5,726 341 145,822
M 51,108 255,632 36,127 5,983 27,546 3,162 379,558
H 4,463 52,378 70,538 620 8,774 7,603 144,376

W
h
it

e L 4,105 3,984 221 391,812 355,816 11,933 767,871
M 13,264 29,803 3,304 366,104 2,473,432 253,857 3,139,764
H 1,921 9,667 9,129 26,231 831,013 834,386 1,712,347

Total 142,632 415,063 123,241 795,213 3,702,307 1,111,282 6,289,738

Table 15: Joint educational (L,M,H) and racial (White, non-White) distribution of young
American couples in 1990

Wife/female partner
non-White White

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

n
on

-W

L 32,247 39,317 2,466 3,060 5,708 302 83,100
M 34,433 335,016 52,581 5,635 46,716 6,732 481,113
H 2,399 57,733 100,060 331 10,009 11,771 182,303

W
h
it

e L 2,564 4,419 358 288,490 326,968 13,244 636,043
M 7,809 48,707 8,646 273,737 3,012,395 425,235 3,776,529
H 898 11,480 17,995 12,978 628,489 877,171 1,549,011

Total 80,350 496,672 182,106 584,231 4,030,285 1,334,455 6,708,099
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Table 16: Joint educational (L,M,H) and racial (Black, non-Black) distribution of young
American couples in 1980

Wife/female partner
Black non-Black

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 52,624 57,135 2,882 1,521 1,942 201 116,305
M 40,183 215,109 26,318 3,081 10,490 1,541 296,722
H 2,101 29,703 30,252 320 2,885 2,461 67,722

n
on

-B

L 560 500 20 413,446 369,548 13,314 797,388
M 460 2,603 341 392,735 2,558,211 268,250 3,222,600
H 140 1,041 802 30,674 868,203 888,141 1,789,001

Total 96,068 306,091 60,615 841,777 3,811,279 1,173,908 6,289,738

Table 17: Joint educational (L,M,H) and racial (Black, non-Black) distribution of young
American couples in 1990

Wife/female partner
Black non-Black

Edu. L M H L M H Total

H
u
sb

an
d
/

m
al

e
p
ar

tn
er

B
la

ck

L 16,979 31,727 1,831 1,137 2,246 24 53,944
M 23,065 266,494 37,943 3,258 23,315 3,845 357,920
H 747 32,024 37,569 208 4,013 4,380 78,941

n
on

-B

L 630 877 51 307,615 341,562 14,464 665,199
M 226 7,657 1,644 295,065 3,145,368 449,762 3,899,722
H 197 1,457 2,428 15,454 670,217 962,620 1,652,373

Total 41,844 340,236 81,466 622,737 4,186,721 1,435,095 6,708,099
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Appendix C: Sensitivity analysis with respect to the sequence of

sorting along the two traits

The benchmark analysis assumes that individuals sort into couples along the racial dimen-

sion before they sort along the educational dimension. The motivation for this assumption is

twofold. First, the problem is computationally simpler under the assumption of the bench-

mark analysis. It requires to estimate only eight parameters. By contrast, the alternative

sequence of sorting involves the estimation of twelve parameters.

Second, it is reasonable to assume that the primary trait of sorting was race in 1980, 1990,

2000, and 2015 since the LL-value characterizing the racial segmentation of the marriage

market was much higher than any of the cells of the LL-matrix characterizing the economic

segmentation of the market.

In particular, the LL-measure for racial sorting is LLsim(XK1980Y
T ) = 0.988, where

matrix X =

[ n︷ ︸︸ ︷
1 · · · 1

n︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
and matrix Y =

[ m︷ ︸︸ ︷
1 · · · 1

m︷ ︸︸ ︷
0 · · · 0

0 · · · 0 1 · · · 1

]
are defined as before,

while K1980 is reported by Table 3.

Regarding the sorting along education, LLgen(HK1980H
T ) =

[
0.425 0.911

0.889 0.640

]
, where H =

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

. Apparently, LLsim(XK1980Y
T ) is higher than any of the entries of matrix

LLgen(HK1980H
T ).

Similarly, in 1990, LLsim(XK1990Y
T ) = 0.969 is also higher than any of the elements of

LLgen(HK1990H
T ) =

[
0.434 0.900

0.910 0.540

]
(to check, see K1990 reported by Table 4).

Also, LLsim(XK2000Y
T ) = 0.957, and LLgen(HK2000H

T ) =

[
0.451 0.885

0.922 0.556

]
.

In 2015, LLsim(XK2015Y
T ) = 0.923, while LLgen(HK2015H

T ) =

[
0.536 0.869

0.865 0.601

]
.

However, in 2010, the joint distribution of couples along education was more differ-

ent from the joint distribution under random matching (and therefore, it was more close

12



to the hypothetical outcome of the perfectly positive match) in a certain segment of the

market than the joint distribution of couples along race: LLsim(XK2010Y
T ) = 0.927, while

LLgen(HK2010H
T ) =

[
0.558 0.884

0.947 0.618

]
. We typeset by bold the cell of the LLgen(HK2010H

T )

higher than LLsim(XK2010Y
T ). This fact raises doubt on whether race has always been the

primary trait of sorting.

In this appendix, we assume that individuals sort into couples along the educational

dimension first. The historical counterfactual trend of SIRC and the trend of SEHC are

presented by Figure 8 under the assumption of reversed sequence of sorting (relative to the

sequence of sorting assumed in the benchmark analysis).
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Figure 8: Historical trends of the economic divide and the racial inclusiveness based on the
MEI-indicator and the MRI-indicator, respectively - sorting along race is assumed to
follow sorting along education level
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Notes : the benchmark year is 1990. The maximum and the minimum change in SIRC

and SEHC attributed to changing racial or educational preferences over each decade (or 5

years in case of the period 2010–2015) is obtained by performing the decompositions with

maximizing and minimizing SEHC and SIRC under the counterfactuals. The point estimates

are the averages of the maximum and minimum values. The three gray lines are coinciding,

because the minimum and maximum counterfactual series of SIRC, as well as their average

series, are hardly different from each other. The detailed results of the decompositions of

changes in SIRC and SEHC across the consecutive generations are presented by Tables 18

and 19.

By comparing Figures 3 and 8, we find both the historical trend of the economic divide

and the historical trend of the racial inclusiveness to be robust to the assumed sequence of
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sorting along the two traits.

Table 18: Results of the decompositions - outcome variable: share of inter-racial couples
(SIRC), period: 1960–2015, racial categories: Black and White, sorting is along the edu-
cational dimension first

1960- 1970- 1980- 1990- 2000- 2010-
’70 ’80 ’90 ’00 ’10 ’15

Total change in SIRC 3.65 22.99 35.78 52.45 51.30 27.99
due to

Id
en

ti
fi
ca

ti
on

:
m

ax
im

iz
at

io
n

∆ distributions (∆A) 5.58 16.98 10.13 29.04 1.62 22.19
∆ racial preferences (∆PR) = MRI -5.61 6.29 18.92 8.84 30.92 5.95
∆ educational preferences (∆PE) -2.31 -1.94 -0.66 -3.90 -8.71 0.00
interaction between ∆A and ∆PR 3.73 -2.37 1.40 7.09 8.10 -0.16
interaction between ∆A and ∆PE 2.42 3.53 0.94 6.72 8.75 0.01
interaction between ∆PR and ∆PE 1.21 2.09 -1.39 3.17 10.02 0.00
interaction among ∆A, ∆PE, ∆PR -1.36 -1.59 6.43 1.49 0.59 -0.01

m
in

im
iz

at
io

n

∆ distributions (∆A) 5.58 16.98 10.13 29.04 1.62 22.19
∆ racial preferences (∆PR) = MRI -5.61 6.29 18.92 8.84 30.92 5.95
∆ educational preferences (∆PE) -2.31 -1.94 -0.66 -3.90 -8.71 0.00
interaction between ∆A and ∆PR 3.73 -2.37 1.40 7.09 8.10 -0.16
interaction between ∆A and ∆PE 2.42 3.53 0.94 6.72 8.75 0.01
interaction between ∆PR and ∆PE 1.21 2.09 -1.39 3.17 10.02 0.00
interaction among ∆A, ∆PE, ∆PR -1.36 -1.59 6.43 1.49 0.59 -0.01

Source: Authors’ calculation using US census data from IPUMS.
Notes : The decompositions are conducted by using the additive decomposition scheme with
interaction effects (see Eq.2), while the counterfactual contingency tables are constructed
with the GNM-method (see Subsection 3.3). The educational categories are “low level of ed-
ucation” corresponding to not having completed the high school; “medium level of education”
corresponding to having a high school degree; and “high level of education” corresponding
to holding a tertiary education diploma. Age of husbands/male partners is between 30 and
34.
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Table 19: Results of the decompositions - outcome variable: share of educationally homog-
amous couples (SEHC), period: 1960–2015, racial categories: Black and White, sorting is
along the educational dimension first

1960- 1970- 1980- 1990- 2000- 2010-
’70 ’80 ’90 ’00 ’10 ’15

Total change in SEHC 1.82 2.78 4.72 0.63 -1.02 -0.76
due to

Id
en

ti
fi
ca

ti
on

:
m

ax
im

iz
at

io
n

∆ distributions (∆A) 4.51 4.23 7.88 -0.26 -4.81 0.25
∆ racial preferences (∆PR) 0.00 0.00 0.00 0.00 0.00 0.35
∆ edu. preferences (∆PE) = MEI -2.92 -1.44 -2.56 0.83 3.92 -0.32
interaction between ∆A and ∆PR 0.00 0.00 0.00 0.00 0.00 0.02
interaction between ∆A and ∆PE 0.23 -0.01 -0.60 0.06 -0.12 -0.67
interaction between ∆PR and ∆PE 0.00 0.00 0.00 0.00 0.00 -0.18
interaction among ∆A, ∆PE, ∆PR 0.00 0.00 0.00 0.00 0.00 -0.20

m
in

im
iz

at
io

n

∆ distributions (∆A) 4.51 4.23 7.88 -0.26 -4.81 0.25
∆ racial preferences (∆PR) 0.00 0.00 0.00 0.00 0.00 0.35
∆ edu. preferences (∆PE) = MEI -2.92 -1.44 -2.56 0.83 3.92 -0.32
interaction between ∆A and ∆PR 0.00 0.00 0.00 0.00 0.00 0.02
interaction between ∆A and ∆PE 0.23 -0.01 -0.60 0.06 -0.12 -0.67
interaction between ∆PR and ∆PE 0.00 0.00 0.00 0.00 0.00 -0.18
interaction among ∆A, ∆PE, ∆PR 0.00 0.00 0.00 0.00 0.00 -0.20

Source: Authors’ calculation using US census data from IPUMS.
Notes : Same as under Table 18.
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