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Abstract

The large and growing applied Bayesian persuasion literature is sometimes criti-

cized for assuming that the sender can commit to an experiment that reveals a signal

based on the realized state of the world. This paper shows that if the sender’s pref-

erences are state-independent, the receiver is choosing between two actions, and the

state space is sufficiently rich, then the sender reaches the full-commitment payoff in

an equilibrium of the disclosure game with verifiable information. The latter setup

is more natural in the applications to judicial systems, electoral campaigns, product

advertising, financial disclosure, and job market signaling.
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1. INTRODUCTION

Suppose a sender is privately informed about the state of the world and would like to

convince a receiver to take his favorite action. The sender does not have commitment

power, but his messages are verifiable. On average, what is the best outcome that the

sender can hope for?

Persuasion with verifiable information plays an essential role in courtrooms, electoral

campaigns, product advertising, financial disclosure, job market signaling, and many

other economic situations. For example, in a courtroom, the prosecutor tries to persuade

the judge to convict the defendant by selectively presenting inculpatory evidence. In an

electoral campaign, a politician carefully chooses which campaign promises he can cred-

ibly make in order to win over voters. In advertising, a firm convinces consumers to

purchase its product by highlighting only specific product characteristics. In finance, a

CEO divulges only certain financial statements and indicators to board members in order

to obtain higher compensation. In a labor market, a job candidate lists specific certifica-

tions in order to make his application more attractive to an employer.

I consider the following formal model of persuasion with verifiable information.

There is an underlying continuous space of possible states of the world, which is a unit

interval. The sender is fully informed about the state of the world (he knows the point

on the unit interval), but his preferences do not depend on it. Metaphorically, I say that

the sender wants the receiver to approve his proposal. The receiver is uninformed about

the state of the world, which to her is payoff-relevant. The sender communicates with the

receiver using verifiable messages. Each messages is a subset of the unit interval, inter-

preted as a statement about the state of the world. Verifiability means that the message

contains the truth (the true state of the world), but not necessarily the whole truth (it may

contain other things, as well). The receiver chooses between two options: to approve or

reject the proposal.

How does the sender convince the receiver using verifiable information? Rather than

looking at the sender’s messages and the receiver’s beliefs, I focus on what the receiver

does in each state of the world. Since she chooses between two options, we can partition

the state space into two subsets: the states in which she approves the proposal and the
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states in which she rejects it. My first result says that a subset of the state space is an

equilibrium set of approved states if and only if it satisfies two constraints. The first is

the sender’s incentive-compatibility (IC) constraint, which ensures that the sender does not

wish to deviate toward a fully informative strategy that induces the receiver to act as if

she knows the state of the world. Conveniently, that is the only deviation of the sender

that needs to be checked. The second constraint is the receiver’s obedience constraint, which

ensures that the receiver approves the proposal whenever her expected net payoff from

approval is non-negative.

In the sender’s least preferred equilibrium, his ex-ante odds of approval are mini-

mized across all equilibria. The receiver learns whether she would approve under com-

plete information, and makes a fully informed choice. This is the equilibrium in which

full unraveling takes place.

In the sender’s most preferred equilibrium, his odds of approval are maximized sub-

ject to the receiver’s obedience constraint. Specifically, the sender pools the “good” states,

in which the receiver prefers to approve, with some of the “bad” states, in which the re-

ceiver prefers to reject. The solution is characterized by a cutoff value of the receiver’s

net payoff from approval: she approves whenever it is not too negative. When the re-

ceiver approves, her obedience constraint binds, and she is indifferent between approval

and rejection. The sender improves his ex-ante payoff over full disclosure because the

receiver approves in some of the “bad” states. In fact, in his most preferred equilibrium,

the sender reaches the commitment payoff. This observation bridges the gap between the

verifiable disclosure literature introduced by Milgrom (1981) and Grossman (1981), and

the Bayesian persuasion literature pioneered by Kamenica and Gentzkow (2011). The

sender does not need ex-ante commitment power; he can persuade the receiver with evi-

dence alone.

THE VALUE OF COMMITMENT

To see why the sender does not benefit from commitment, let us revisit the canonical ex-

ample from Kamenica and Gentzkow (2011), in which a prosecutor wishes to persuade a

judge to convict a defendant. In their setup, the state of the world is binary: the defendant

could be guilty or innocent. The judge prosecutes if the probability that the defendant is
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guilty is above 0.5. The prior that the defendant is guilty is 0.3. The authors write, “The

judge knows 70 percent of defendants are innocent, yet she convicts 60 percent of them!”1

How does this happen? When the defendant is guilty (with the prior probability of 0.3),

the judge convicts them for sure. When they are innocent (with the prior probability of

0.7), the judge convicts them with probability 3/7.

Can we replicate this outcome if the prosecutor knows the true state of the world,

does not have ex-ante commitment power, but can send verifiable messages, which have

to include the true state? The answer is no. When the defendant is guilty, the prosecutor

has two available messages: “The defendant is guilty” (the fully revealing message) and

“The defendant could be innocent or guilty” (the fully uninformative message). Notice

that the second message is available in both states (i.e., when the defendant is innocent

or guilty). If the prosecutor sends this message when the defendant is guilty and the

judge convicts, then the prosecutor would also send that message when the defendant is

innocent. As a result, there is no incentive-compatible way for the prosecutor to get the

judge to convict all the guilty defendants, and some of the innocent ones.

Now consider the following continuous interpretation of the same situation. Suppose

that, instead of being innocent or guilty, the defendant has some level of guilt between 0

(0% guilty) and 1 (100% guilty). The prior is uniform on [0, 1]. The judge wishes to convict

the defendants who are at least 70% guilty. Note that from the judge’s point of view, the

prior that the defendant is sufficiently (over 70%) guilty is 0.3. At the same time, the judge’s

best response under incomplete information is to convict whenever the probability that

the defendant is sufficiently guilty exceeds 0.5. Thus, the continuous interpretation and

the example of Kamenica and Gentzkow (2011) tell the same story.

With a richer state space comes a richer message space: now, the prosecutor can send

any message that includes the actual state. In particular, the prosecutor can send the

message [0.4, 1] whenever the defendant is at least 40% guilty and the message [0, 0.4]

otherwise. When the judge hears the former message, she concludes that the defendant

is, on average, 70% guilty and convicts. The prosecutor has no profitable deviations from

this strategy. When the defendant is indeed at least 40% guilty, the prosecutor receives

1See Kamenica and Gentzkow (2011), p. 2591.
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Figure 1. The sender-preferred equilibrium of the verifiable-information game with uniform prior.
The prosecutor sends the message [0.4, 1] (blue) when the defendant is at least 40% guilty, and
[0, 0.4] otherwise. The judge convicts after the former message and acquits after the latter. The

judge convicts 60% of all defendants even though her prior is that 70% are innocent.

the largest possible payoff. When the defendant is less than 40% guilty, the prosecutor

cannot credibly claim otherwise.

Notice that the judge convicts all the defendants who are at least 70% guilty, as well as

3/7 of the defendants she considers innocent (those less than 70% guilty). In other words,

the verifiable-information game leads to the same prosecutor-preferred threshold of con-

viction at 40% as the Bayesian persuasion game. In Bayesian persuasion, this threshold

comes from calculating the optimal signal that persuades the judge to convict. In the

verifiable-information game, it comes from calculating the prosecutor-preferred message

that convinces the judge to convict. Regardless of the setup, the constraints are the same

and boil down to the judge’s interpretation of the signal realization (in Bayesian persua-

sion) or the message (in the verifiable disclosure game) as a recommendation to convict.

The richness of the message space allows for exactly the same solution.

RELATED LITERATURE

I assume that the sender communicates with the receiver using verifiable messages. This

communication protocol was introduced by Milgrom (1981) and Grossman (1981). Other

communication protocols include cheap talk (Crawford and Sobel, 1982) and Bayesian

persuasion (Kamenica and Gentzkow, 2011). Relative to these other models of commu-

nication, Bayesian persuasion makes the sender better off because it endows him with

ex-ante commitment power. Lipnowski and Ravid (2020) find that the sender’s maxi-

mal equilibrium payoff from cheap talk is generally strictly lower than his payoff under
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commitment. Consequently, a cheap-talk sender values commitment.2 In contrast to the

result of Lipnowski and Ravid (2020), I show that the sender does not necessarily benefit

from commitment if his messages are verifiable.

There is an extensive applied Bayesian persuasion literature. It includes settings in

which pharmaceutical companies persuade the Food and Drug Administration to ap-

prove their drug (Kolotilin, 2015); schools persuade employers to hire their graduates

(Ostrovsky and Schwarz, 2010; Boleslavsky and Cotton, 2015); matching platforms per-

suade sellers to match with buyers (Romanyuk and Smolin, 2019); politicians persuade

voters (Alonso and Câmara, 2016; Bardhi and Guo, 2018); and governments persuade citi-

zens (Gehlbach and Sonin, 2014; Egorov and Sonin, 2019). My contribution is to show that

in all these applications, one can replace the assumption that the sender has commitment

power with the assumption that the sender‘s messages are verifiable.

2. MODEL

There is a state space Ω := [0, 1], one sender (he/him), and one receiver (she/her). The

game begins with the sender observing the state of the world ω ∈ Ω, which is drawn

from an atomless common prior distribution p > 0 over Ω.3 Having observed the state

of the world, the sender chooses a message m from the set M of all (Borel) subsets of Ω.

His message must be verifiable: he cannot send m if ω /∈ m.4 The sender’s preferences

depend only on the receiver’s action: his payoff us is 1 if the receiver approves and 0 if

she rejects.

2Lipnowski (2020) also notes that the sender reaches the commitment outcome with cheap talk if his value
function is continuous in the receiver’s posterior belief. That assumption is very restrictive: when the
receiver is choosing between two options and the sender’s preferences are state-independent, the sender’s
value function must be constant, meaning that no communication takes place under cheap talk, verifiable
information, and Bayesian persuasion. I thank Elliot Lipnowski for this insight.

3For a compact metrizable space S, ∆S denotes the set of all Borel probability measures over S, endowed
with a weak* topology. For q ∈ ∆Ω and any Borel subset of the state space W ⊆ Ω, Q(W) =

∫
W

q(ω)dω is

the measure of W, and q(· | ·) is the conditional probability distribution: q(ω | W) = 1 if W = {ω} and
q(ω |W) = q(ω)·1(ω∈W)

Q(W)
if Q(W) > 0.

4I borrow from Milgrom and Roberts (1986) the definition of a verifiable message as a subset of the state
space that includes the true realization. This method satisfies normality of evidence (Bull and Watson,
2004), which means that it is consistent with both major ways of modeling hard evidence in the literature.
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The receiver chooses between approval (action 1) and rejection (action 0). Her pref-

erences are described by a utility function u : {0, 1} × Ω → R. The receiver approves

(the proposal in) state ω if her net payoff from approval δ(ω) := u(1, ω)− u(0, ω) is non-

negative.5 I define the receiver’s complete-information approval set A := {ω ∈ Ω | δ(ω) ≥
0} to include all the states of the world she wishes to approve under complete information.

I assume that the receiver rejects the proposal under her prior belief, i.e. Ep[δ(ω)] < 0.

EXAMPLE 1 (THE PROSECUTOR AND THE JUDGE). Here I introduce the continuous ver-

sion of the seminal example from Kamenica and Gentzkow (2011). The sender is the

prosecutor and the receiver is the judge. The state of the world reflects how guilty the

defendant is, with values ranging from 0% guilty (0) to 100% guilty (1). The prosecutor

observes the state of the world drawn from the common uniform prior.

The judge wishes to convict the defendants who are “sufficiently guilty”. Specifically,

the judge has a (known) threshold for conviction v ∈ Ω; her net payoff from approval is

δ(ω) = 1 if ω ≥ v and δ(ω) = −1 if ω < v, and her complete-information approval set is

A = {ω ∈ Ω | ω ≥ v}. Figure 2 illustrates the preferences of the judge with v = 0.7.

0
(0% guilty)

0.7
(70% guilty)

1
(100% guilty)

judge’s approval set A

δ(ω) = 1

δ(ω) = −1

Figure 2. The state space Ω, with the judge’s threshold for conviction at v = 0.7. Her net payoff
from approval δ(ω) equals 1 if the defendant is at least 70% guilty, and −1 otherwise. She

prefers to convict whenever her net payoff from approval is positive.

5I assume that the receiver breaks ties in favor of approval when δ(ω) = 0. This tiebreaker is necessary for
the existence of the sender-preferred equilibrium, and is inconsequential in all other equilibria.
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EQUILIBRIUM OUTCOMES

I consider perfect Bayesian equilibria of this game. An equilibrium consists of three mea-

surable maps—a sender’s strategy σ : Ω → ∆M, a receiver’s approval strategy a : M →
{0, 1}, and a receiver’s belief system q : M→ ∆Ω—satisfying the conditions below.

DEFINITION 1. A triple (σ, a, q) is an equilibrium if

(i) ∀ω ∈ Ω, σ(· | ω) is supported on arg max
m∈M

us
(
a(m)

)
, subject to ω ∈ m;

(ii) ∀m ∈ M, a(m) = 1
(

Eq(· | m)[δ(ω)] ≥ 0
)

;

(iii) ∀m ∈ M such that
∫
Ω

σ(m | ω)dP(ω) > 0, q(ω | m) = σ(m | ω)·p(ω)∫
Ω

σ(m | ω′)dP(ω′) ;

(iv) ∀m ∈ M, supp q(· | m) ⊆ m.

In words, (i) states that the sender sends a message with positive probability only if

it maximizes his payoff; (ii) states that the receiver approves the proposal whenever her

expected net payoff from approval is non-negative under her posterior belief; (iii) states

that the receiver’s posterior beliefs are Bayes-rational on the equilibrium path; (iv) states

that the receiver’s posterior beliefs on and off the path are concentrated on the states in

which the sender can verify the message.

An outcome of the game is a description of what action the receiver takes for each

realization of the state of the world.

DEFINITION 2.

• An outcome α : Ω → [0, 1] specifies ∀ω ∈ Ω the probability α(ω) that the receiver

approves the proposal in state ω.

• An outcome α is an equilibrium outcome if it corresponds to some equilibrium.6

6Specifically, α is an equilibrium outcome if there exists an equilibrium (σ, a, q) such that ∀ω ∈ Ω, α(ω) =
∑

m∈M
σ(m | ω), where M := {m ⊆ Ω | a(m) = 1} is the set of messages that convince the receiver to

approve.
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• An outcome αc is a commitment outcome if it solves7

max
α

∫
Ω

αdP, subject to
∀ω ∈ Ω, 0 ≤ α(ω) ≤ 1,∫

Ω

αδdP ≥ 0. (1)

Some outcomes are deterministic, meaning that in every state ω the receiver either

approves or rejects the proposal with certainty. For such outcomes, we can partition Ω

into the states that the receiver approves and those that she rejects.

DEFINITION 3.

• An outcome α is deterministic if α(ω) ∈ {0, 1} for every ω ∈ Ω.

• The set of approved states W in a deterministic outcome α is W := {ω ∈ Ω | α(ω) = 1}.

3. ANALYSIS

DIRECT IMPLEMENTATION

Consider a deterministic equilibrium outcome with a set of approved states W. Suppose

that the sender learns that ω ∈ A. One message that is available to the sender in this

state (and unavailable in every other state) is {ω}. Since that message is verifiable, upon

receiving it, the receiver learns with certainty that the state is ω, and, since ω is in the

receiver’s complete-information approval set, she approves the proposal. Thus, in every

equilibrium, the receiver should be approving every ω ∈ A; otherwise, the sender has

a profitable deviation toward full disclosure. This observation gives rise to the sender’s

incentive-compatibility (IC) constraint

A ⊆W. (IC)

7Under commitment, the model in this paper is a version of the model of Alonso and Câmara (2016) with one
receiver and continuous state space. According to Kamenica and Gentzkow (2011), the optimal straight-
forward experiment is supported on the set {s+, s−}, where s+ induces the posterior q+ and leads to a
recommendation of approval, while s− induces the posterior q− and leads to a recommendation of rejec-
tion. The outcome then takes the form αc(ω) = prob(s+ | ω).
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Next, if the receiver approves every state in W, then she expects that on average,

her net payoff from approval is non-negative. Thus we obtain the receiver’s obedience

constraint

Ep[δ(ω) |W] ≥ 0. (obedience)

The first result of this paper allows us to restrict attention to deterministic outcomes

with sets of approved states W ⊆ Ω that satisfy these two constraints.

THEOREM 1. Every equilibrium outcome is deterministic. Furthermore, W ⊆ Ω is an equilib-

rium set of approved states if and only if it satisfies the sender’s (IC) constraint and the receiver’s

(obedience) constraint.

The first part of the theorem says that every equilibrium outcome is deterministic:

the receiver either approves or rejects the proposal with probability one in every state of

the world. To verify this, suppose instead that in some state, the receiver mixes between

approval and rejection. Since the receiver sometimes approves, the sender has access to at

least one message that convinces the receiver to approve. But then the sender can deviate

and send that message with certainty so that the receiver approves with probability one.

Hence, every equilibrium outcome is deterministic.

Secondly, consider equilibrium (σ, a, q) with the set of approved states W. W must

satisfy the sender’s IC constraint, or else the sender can deviate to full disclosure. It

remains to show that if the sender induces approval in every state in W in the original

equilibrium, then W satisfies the receiver’s obedience constraint.

Let M := {m ∈ M | a(m) = 1} be the set of messages that convince the receiver

to approve. Notice that if the sender has access to a convincing message in state ω, then

he has to convince the receiver with probability 1 in that state. Thus, for every state

ω ∈W that the receiver approves, the sender must be sending convincing messages only,

or ∑
m∈M

σ(m | ω) = 1. Next, consider a convincing message m ∈ M. By the equilibrium

condition (iv), supp q(· | m) ⊆ m. Furthermore, m ⊆ W because if ω ∈ m such that

m ∈ M, then ω ∈W. Since every m ∈ M convinces the receiver to approve, we have

∫
W

δ(ω)
σ(m | ω)∫

W
σ(m | ω′)dP(ω′)

dP(ω) ≥ 0 ⇐⇒
∫
W

δ(ω)σ(m | ω)dP(ω) ≥ 0.
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Take the sum the above inequality over all convincing messages m ∈ M:

∑
m∈M

∫
W

δ(ω)σ(m | ω)dP(ω) =
∫
W

δ(ω) ∑
m∈M

σ(m | ω)︸ ︷︷ ︸
=1, ∀ω∈W

dP(ω) ⇐⇒ Ep[δ(ω) |W] ≥ 0.

Consequently, any equilibrium set of approved states W satisfies (IC) and (obedience).

Finally, suppose that W ⊆ Ω satisfies (IC) and (obedience). Then we can construct an

equilibrium that directly implements the set of approved states W. Let the sender send the

message W for every state within W and the message ΩrW for every state outside of W.

Formally, σ(W | ω) = 1(ω ∈ W) and σ(Wc | ω) = 1(ω ∈ Wc), where Wc := Ω rW. On

the path, the receiver only hears two messages, W and Wc. By (obedience), she approves

after message W because her expected net payoff from approval is non-negative. On the

other hand, she rejects after message Wc because her net payoff from approval is negative

for every ω ∈ Wc. In words, the sender sends two messages and the receiver interprets

them as a recommendation to approve or reject. Off the equilibrium path, let the receiver

be “skeptical” and assume that any unexpected message m /∈ {W, Ω r W} comes from

outside of her complete-information approval set, when possible. Formally,

∀m ⊆ A, supp q(· | m) ⊆ m, so that Eq[δ(ω)] ≥ 0,

∀m * A, m 6= W, supp q(· | m) ⊆ m r A, so that Eq[δ(ω)] < 0.

Then the sender has no profitable deviations: if ω ∈ W, he is getting the highest

possible payoff; if ω /∈W, then he cannot replicate the message W, and the receiver rejects

after every other message. Hence, (σ, a, q) is an equilibrium with the set of approved

states W. The proof of Theorem 1 is now complete.

Note that Theorem 1 is a version of the communication revelation principle for games

with verifiable information. According to Myerson (1986) and Forges (1986), any equilib-

rium outcome of a mediated sender–receiver game may be implemented truthfully and

obediently. In the present context, this means that (i) the sender truthfully reveals the

state of the world to the mediator, (ii) the mediator translates this report into an action

recommendation for the receiver, and (iii) the receiver obediently follows her recommen-
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dation. Which equilibrium outcome is to be implemented is decided by the mediator at

Step (ii). Conveniently, Theorem 1 also provides necessary and sufficient conditions for a

set of approved states to be implementable in equilibrium.

EQUILIBRIUM RANGE AND VALUE OF COMMITMENT

For the purposes of characterizing equilibrium outcomes, Theorem 1 allows us to restrict

attention to sets W ⊆ Ω satisfying (IC) and (obedience). I rank equilibria in terms of

the sender’s ex-ante utility, which is the same as his ex-ante odds of approval and equals

P(W), the prior measure of the set of approved states.

In the sender-worst equilibrium, the set of approved states W minimizes the sender’s

ex-ante utility across all equilibria. Thus, the (IC) constraint binds and W = A. In this

equilibrium, the receiver approves the proposal if and only if she approves it under com-

plete information. Hence, the sender-worst equilibrium is outcome-equivalent to full dis-

closure (or full unraveling), which is salient in the verifiable-information literature.8

In the sender-preferred equilibrium, the set of approved states W maximizes the

sender’s ex-ante utility across all equilibria. Mathematically,

W = arg max
W⊆Ω

P(W), subject to
A ⊆W,

Ep[δ(ω) |W] ≥ 0.

The second result of this paper describes the solution to this problem.

THEOREM 2. The sender-preferred set of approved states W is characterized by a cutoff value

c∗ > 0 such that

• the receiver a.s. approves the proposal if δ(ω) > −c∗ and rejects it if δ(ω) < −c∗;9

• whenever the receiver approves the proposal, her expected net payoff from approval is zero:

Ep
[
δ(ω) |W

]
= 0.

Furthermore, the sender-preferred equilibrium outcome is a commitment outcome.

8See, e.g., Milgrom (1981), Grossman (1981), Milgrom and Roberts (1986), and the review by Milgrom (2008).

9Almost surely with respect to the prior distribution p.
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First, notice that the receiver’s obedience constraint binds; otherwise we could in-

crease the value of the objective while still satisfying that constraint. Secondly, suppose

that the sender-preferred set of approved states W is not characterized by a cutoff value

for the receiver’s net payoff from approval. Then there exist two sets X, Y ⊆ Ω, of positive

and equal measure, such that W includes X, W does not include Y, yet the receiver’s net

payoff from approval is higher for any state in Y than for any state in X. Consider an al-

ternative set of approved states W∗ formed by replacing X with Y, i.e. W∗ = (W rX)∪Y.

The sender has the same ex-ante payoff at W∗ and W, because the sets X and Y have the

same measure. But the (obedience) constraint for W∗ is loose, while for W it is binding.

This is because every state in Y is “cheaper” in terms of the constraint than each state in

X. Thus, we can improve upon both W and W∗, which is a contradiction.

Next, let us compare the problems of (i) finding the sender-preferred equilibrium

outcome and (ii) finding the commitment outcome. In (i), we maximize the ex-ante mea-

sure of the set of approved states subject to the (IC) and (obedience) constraints. In (ii),

the sender maximizes his ex-ante utility subject to an obedience-like constraint on the re-

ceiver. Crucially, under commitment, the sender does not face an IC constraint. Also, a

commitment outcome may not be deterministic.

A commitment outcome is characterized by a cutoff value for the receiver’s net pay-

off of approval, for the same reason W is.10 That is, the receiver certainly approves (re-

jects) the states with a net payoff from approval above (below) some threshold. Fur-

thermore, that threshold is negative, since the receiver certainly approves every state in

her complete-information approval set. Hence, any commitment outcome satisfies the

sender’s IC constraint.

Next, consider a (possibly non-deterministic) commitment outcome αc with the cutoff

value c̃ of the receiver’s net payoff from approval. Let D := {ω ∈ Ω | 0 < αc(ω) < 1}
be the set of states the receiver approves and rejects with a positive probability. Note that

since αc is characterized by the cutoff value c̃, δ(ω) = −c̃ for every ω ∈ D.

The next step shows that if αc is non-deterministic (whenever P(D) > 0), we can

10Alonso and Câmara (2016) prove that if the state space is finite, then the solution under commitment fea-
tures a cutoff state.
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construct a deterministic commitment outcome α̃ by partitioning D into two subsets and

letting the sender recommend one action on each subset with certainty. Specifically, let

α̃(ω) = αc(ω) for all ω /∈ D and α̃(ω) = 1(ω ∈ X) for all ω ∈ D, where X ⊆ D solves

∫
D

αcdP =
∫
D

α̃dP = P(X).

Thanks to the continuity of the state space, such partitioning does not affect the ob-

jective function of the sender or the obedience constraint of the receiver.11 Consequently,

there always exists a deterministic commitment outcome. Since this commitment out-

come satisfies the sender’s IC constraint, it is also an equilibrium outcome.

EXAMPLE 2 (THE PROSECUTOR AND THE JUDGE). Consider the setting from Example 1,

and suppose that the judge’s threshold for conviction is v = 0.7.

In the sender-worst equilibrium, the set of approved states is W = [0.7, 1], which

coincides with the judge’s complete-information approval set. That is, the judge convicts

if and only if the defendant is at least 70% guilty, which is what she would do under

complete information.

In the sender-preferred equilibrium, the prosecutor maximizes the odds of convic-

tion subject to the judge’s (obedience) constraint, which states that, given the message W,

the judge’s average net payoff from approval is non-negative. Recall that the judge’s net

payoff from approval equals 1 if the defendant is guilty (i.e., if ω ∈ [0.7, 1]) and −1 if

the defendant is innocent (i.e., if ω ∈ [0, 0.7)). Thus, to maximize the odds of conviction,

the prosecutor pools the guilty defendants with as many innocent ones as possible, while

making sure that on average across this pool, the judge still wants to convict. Mathemat-

ically, the prosecutor selects β ∈ [0, 0.7) to solve
1∫

0.7
dP +

0.7∫
β

dP = 0. For the uniform prior,

we get β = 0.4. Figure 3 illustrates the sender-preferred equilibrium.

As Kamenica and Gentzkow (2011) remark of their example, “This leads the judge

to convict with probability 60 percent. Note that the judge knows 70 percent of defen-

11The value of the sender’s objective function is the same, because
∫
D

αcdP =
∫
D

α̃dP = P(X). The receiver’s

constraint is also the same:
∫
D

δαcdP = −c̃ ·
∫
D

αcdP = −c̃ ·
∫
D

α̃dP = −c̃ · P(X).
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0
(0% guilty)

0.7
(70% guilty)

0.4
(40% guilty)

1
(100% guilty)

δ(ω) = 1

δ(ω) = −1

Figure 3. The sender-preferred set of approved states W = [0.4, 1] when the prior is U[0, 1]. The
receiver’s expected net payoff from approval after receiving the message [0.4, 1] is zero, because

the area under δ(ω) taken over the judge’s complete-information approval set (solid blue) is equal
to the area above δ(ω) outside of the judge’s complete-information approval set (dashed blue).

dants are innocent, yet she convicts 60 percent of them!”12 In the setup of this paper, the

prosecutor reaches the same outcome without having to commit to an experiment. He

does so by using an equilibrium strategy of saying “The defendant is guilty” whenever

the defendant is at least 40% guilty, and “The defendant is innocent” otherwise. All he

needs is sufficient evidence of his claim that the defendant is indeed at least 40% guilty.

4. ROBUSTNESS

Here I discuss how the two main results of this paper, the recommendation principle of

Theorem 1 and the no benefit from commitment result of Theorem 2, generalize to more

complex environments. Specifically, I extend the model in two directions. Firstly, I show

that both results hold in the model with many (independent) receivers. Secondly, I show

that if a receiver is choosing among three or more actions, the recommendation princi-

ple still holds, but the sender-preferred equilibrium outcome may or may not reach the

commitment payoff.

12In the sender-preferred equilibrium, every defendant in [0.4, 1] is convicted, which is 60% of all defendants.
Since the judge considers the defendants in [0, 0.7] innocent, 70% of the defendants are innocent ex ante.
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MANY RECEIVERS

Suppose there is a set I = {1, . . . , n}, n ≥ 2, of receivers. Each receiver’s payoff depends

only on the state ω and her own action. More specifically, receiver i ∈ I has some net

payoff from approval δi(ω) that defines her complete-information approval set Ai. The

sender’s preferences are state-independent and weakly monotone in each receiver’s ac-

tion. (For example, the sender could be a prosecutor and the receivers jurors, with the

prosecutor needing to convince at least half of the jurors to reach the desired verdict.)

Assume that the sender communicates with each receiver in private: he chooses mi ∈ M

such that ω ∈ mi for every i ∈ I, and receiver i observes only her own message mi.

As in the one-receiver case, we can define an outcome as a set of approved states

Wi ⊆ Ω for each receiver i ∈ I. Since the receivers are independent, we can claim that in

equilibrium, receiver i ∈ I approves Wi if and only if it satisfies her obedience constraint.

At the same time, since the sender’s preferences are monotone in every receiver’s action,

Wi should also satisfy the sender’s IC constraint for each i ∈ I. We thus obtain a gener-

alization of the recommendation principle that accommodates multiple receivers. Using

this, we can characterize the set of equilibrium payoffs of the sender. In his least pre-

ferred equilibrium, the sender reveals the state of the world to each receiver, i.e. W i = Ai

for every i ∈ I. In his most preferred equilibrium, the sender chooses (W1, . . . , Wn) so as

to maximize his objective subject to each receiver’s obedience constraint. In that equilib-

rium, we see by the same argument as in the one-receiver case that the sender reaches the

full-commitment payoff.

ONE RECEIVER CHOOSING AMONG 3+ ACTIONS

Suppose now that there is one receiver, who chooses her action from a set J = {0, 1, . . . , k}
with k ≥ 2. Define the receiver’s complete-information approval set for action j as the set Aj

consisting of all states of the world in which she prefers to take action j when she is

fully informed. Also suppose that the sender’s preferences are state-independent, and

his payoff is increasing in the receiver’s action.

An outcome is now a partition of the state space into k + 1 subsets, (W0, W1, . . . , Wk),

some of which may be empty, where Wj ⊆ Ω consists of the states in which the receiver
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takes action j ∈ J. The receiver’s obedience constraint states that she plays action j in state

ω ∈ Wj, because that action maximizes her utility given her posterior belief p(· | Wj).

Next, the sender’s IC constraint states that he cannot profitably deviate to full disclosure;

that is, if ω ∈ Aj, then ω ∈ Wj ∪ · · · ∪Wk. As a result, in environments in which the

receiver has multiple actions, the recommendation principle generalizes as follows: a

partition (W0, W1, . . . , Wk) of the state space is an equilibrium outcome if and only if, for

every action j ∈ J, Wj satisfies the IC and obedience constraints.

As it turns out, when k ≥ 2, the sender may or may not reach the commitment pay-

off in his most preferred equilibrium. Intuitively, in Bayesian persuasion, the sender can

commit to a signal that recommends an intermediate action most of the time. In equilib-

rium, such a solution may violate the sender’s IC constraint for the highest action. The

determination of necessary and sufficient conditions for the equivalence of payoffs re-

mains an open problem which I leave for further research. However, once a commitment

outcome is known, it is easy to check whether it is implementable in equilibrium. The

answer is affirmative if the outcome satisfies the sender’s IC constraint for every action.

Consider the following example from Gentzkow and Kamenica (2016), in which the

receiver has three actions available. For each action a ∈ {0, 1, 2}, the receiver’s utility is

u(a, ω) = 3aω− a2; her complete-information approval sets are A0 =
[
0, 1

3

)
, A1 =

[1
3 , 2

3

)
,

A2 =
[2

3 , 1
]
. Given the belief q ∈ ∆Ω, the receiver prefers to take action 2 if Eq[x] ≥ 2

3 ,

action 1 if Eq[ω] ∈
[

1
3 , 2

3

)
, and action 0 otherwise. The sender’s payoff is given by us(0) =

0, us(1) = 1, and us(2) = 3. The prior is uniform. The authors find that one way to reach

the commitment payoff is by inducing action 0 on
[
0, 8

48

]
, action 1 on

[
11
48 , 21

48

]
, and action

2 on
[

8
48 , 11

48

]
∪
[

21
48 , 1

]
. Clearly, in this commitment outcome the sender does not have

profitable deviations toward full disclosure: if ω ∈ A2, then the receiver is playing a2; if

ω ∈ A1, then the receiver is playing a1 or a2. Thus, we can conclude that this commitment

outcome is also an equilibrium outcome.

5. CONCLUSION

This paper studies how an informed sender with state-independent preferences can use

verifiable information to persuade a receiver to approve his proposal. I find that the
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equilibrium outcomes can be characterized as the sets of approved states that satisfy the

receiver’s obedience constraint and the sender’s incentive-compatibility constraint. In

the sender-worst equilibrium, information unravels, and the receiver acts as if fully in-

formed. The sender-preferred equilibrium is the commitment outcome of the Bayesian

persuasion game. Consequently, when the sender’s preferences are state-independent

and the receiver is choosing between two actions, the sender reaches the full-commitment

payoff using only evidence, with no need for commitment power, as long as the message

space is sufficiently rich.
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