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Abstract

A present-biased decision maker (DM) faces a two-armed bandit problem whose

risky arm generates random payoffs at exponentially distributed times. The DM can-

not perfectly observe payoffs but receives informative feedback. Our main finding is

that, in the unique stationary Markov perfect equilibrium of the multi-self game, posi-

tive feedback supports greater equilibrium welfare than both negative and transparent

feedback. It does so by encouraging the DM to self-prospect — imagine one’s future

goals and outcomes when evaluating the present. We relate our results to findings in

psychology promoting the motivational effects of positive feedback, as well as more re-

cent findings regarding self-prospection theory.
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How does feedback motivate a person to experiment when they lack willpower? Consider

a person who can choose to engage in a risky activity, such as taking up a new hobby or

employment in a skilled sector. Not only might this process of self-discovery take time

and patience, but the person may also struggle with limited willpower. For instance, when

learning an instrument or language or training for a marathon, people might give up too

quickly if they doubt their talent and over-weigh their short-run struggle over their long-

run reward. Researchers might give up on great ideas too soon if their impatience to see

early results gets the better of them. Such behavior is ubiquitous and empirically well-

established.1

Common to these scenarios is the arrival over time of informative feedback that helps

the DM evaluate the risks involved. For instance, students receive feedback from their

teachers, and researchers from their peers. More generally, the market for personal coaches

in various aspects of life, ranging from physical trainers to professional and life coaches, is

built around the provision of feedback, oftentimes specifically to compensate for a lack of

willpower, and has seen enormous growth over the past decade.2

While limited willpower is well-known to generate a demand for “commitment devices”

that help the DM overcome their lack of self-control (Ashraf et al., 2006; Bryan et al., 2010),

the feedback received by the DM might also perform a similar role, working as a motivational

tool to help bolster their willpower (Bénabou and Tirole, 2003). Contrasting the effects of

positive and negative feedback on personal motivation, especially in the absence of personal

willpower, is of great practical relevance in the market for personal coaching. It is also a

topic of central interest in behavioral psychology (Hattie and Timperley, 2007; Fong et al.,

2018), where positive feedback is often cited as providing motivation through positive self-

affirmation. We contribute to this ongoing and important debate by developing a theoretical

model that allows us to formalize precisely how positive feedback can enhance motivation.
1See O’Donoghue and Rabin (2001) for a survey.
2The International Coaching Federation’s (ICF) 2023 Global Coaching Study reported that worldwide

growth of professional coaching services was around 54 percent over 2019-2022. See https://tinyurl.
com/mphdb7sy. The U.S. life coaching market is set to grow by almost 5 percent over 2023-2030. See
https://tinyurl.com/yer43yv8.
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In our infinite horizon, continuous time model, a single decision-maker (DM) faces a

two-armed bandit problem, comprising a safe arm (S) and a risky arm (R). S generates a

deterministic flow payoff, while R generates lump-sum rewards, taking two possible values

h1 > h0, that arrive at exponentially distributed times (Keller et al., 2005; Keller and Rady,

2015). The size of these rewards is determined by a hidden state θ ∈ {0, 1}, representing the

underlying trait the DM wishes to learn about. However, the DM cannot perfectly observe

rewards; they receive information through a feedback structure which hides certain reward

arrivals from the DM. Crucially, the DM has time-inconsistent preferences, which we model

through the continuous-time pseudo-exponential specification introduced in Harris and Laib-

son (2013). (See also Ekeland and Lazrak (2006); Karp (2007); Tan et al. (2021).) This

specification is flexible and in particular nests exponential and quasi-hyperbolic preferences

as special cases.

To capture limited willpower, we focus on the sophisticated problem, wherein the DM

is modeled as a sequence of different selves, and solve for subgame perfect equilibria of

the resultant multi-self game (Strotz, 1955; Phelps and Pollak, 1968). We further restrict

our attention to stationary Markov perfect equilibria (Bernheim and Ray, 1987; Harris and

Laibson, 2013, 2001), where the state variable is the DM’s (self-)belief regarding θ. In this

way, we are then able to determine to what extent the dynamics of feedback can substitute

for the DM’s lack of willpower by shaping their beliefs.

Our main finding is that in the unique equilibrium, positive feedback provides greater

welfare than either negative or transparent feedback. Specifically, positive feedback does

just as well as negative and transparent feedback for any prior belief, while there exist priors

at which it strictly dominates both. The result stems from how positive feedback enables

the DM to self-prospect. Self-prospection is the process of imagining one’s future events,

goals and life outcomes when evaluating the present.3 The defining property of positive

feedback — that it induces a positive trend in self-beliefs while the DM is actively learning

— allows the DM to consider a future in which they continue to experiment as their beliefs
3See https://tinyurl.com/4b8vu5yh for an overview.
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improve. In contrast, negative feedback generates a downward spiral of beliefs, and thus

at the point of quitting, the DM is entirely consumed by the outcome of experimentation

over the next instant. Simply put, positive (negative) feedback causes beliefs to drift away

(into) from the quitting region. We develop this intuition formally in Section 3.

Our connection to self-prospection goes further still. Stephan and Sedikides (2023)

argue how self-prospection can help motivate people through positive self-affirmation via

three distinct channels: self-esteem – the extent to which a person values themselves –,

coherence – the ability to create consistent goals and narratives over time – and self-control

– the ability to take actions in the present that serve long-term goals. In Sections 5.3-

5.6, we decompose our main characterization (Theorem 1) into these separate channels,

showing how positive feedback enhances the DM’s ability to self-prospect through each of

these channels, subsequently motivating them to experiment more in line with their long-

term goals. Thus, we provide a clear mechanism through which positive feedback enhances

motivation; it promotes self-affirmation by allowing the DM to self-prospect.

Beyond this direct contribution, the tractability of our model allows us to derive further

results. For instance, we show how regardless of the form of feedback, present-bias causes

the DM to exhibit indecision; they split their time between experimenting and not for a

positive time duration. Indecision is a result of the DM’s desire to procrastinate; knowing

that their future selves will bear the cost of experimenting, the current self would rather

play safe and avoid such costs themselves. This behavior cannot occur under exponential

discounting, and thus directly links lack of willpower to procrastination and indecision. This

link is well-documented empirically (Ferrari et al., 1995; Ferrari and Pychyl, 2007). We also

show how, as internal conflict disappears, the form of feedback becomes irrelevant (they

each induce the same behavior), whereas when it is severe, positive feedback is optimal.

This finding is consistent with evidence in the “goal orientation” literature (Dahling and

Ruppel, 2016).

Related Literature and Contribution – Our work contributes to a nascent liter-

ature studying the effects of information on incentives under present-bias. Carrillo and
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Mariotti (2000); Brocas and Carrillo (2000) study models of “strategic ignorance”, whereby

a present-bias DM is better off avoiding freely-available information, in order to manipu-

late self-beliefs and motivate further experimentation. Auster et al. (forthcoming) study an

optimal-stopping model where time-inconsistency derives from model uncertainty. As in

our Theorem 1, they find a role for randomized stopping, in contrast to the analogous time-

consistent setting, while again abstracting from a comparison of feedback structures. In Ali

(2011), the DM learns about their degree of self-control, rather than a parameter relevant

to flow-payoffs directly. Bénabou and Tirole (2002, 2003) are most closely related, ask-

ing whether the DM can benefit from selectively avoiding or forgetting certain information.

Their three-period models are however not long enough to nest certain phenomena captured

in our infinite horizon setting, for instance, our “self-control” effect (Lemma 2), while none

of these papers ask how the nature of the learning process itself can shape incentives.

By casting our model as a sequential game, we offer a new model of strategic experimen-

tation (Bolton and Harris, 1999; Keller et al., 2005; Keller and Rady, 2015). We highlight

several conceptual and technical parallels to these previous works, documented in Section

7.3. Despite the fact that ours is a sequential game with direct payoff externalities — both

distinct from previous works — we leverage these parallels by adapting existing proof tech-

niques to our setting when solving for equilibrium. Finally, our work shares similarities

to work studying “incentivized exploration” wherein information is distorted by a planner

facing a sequence of myopic agents (Che and Hörner, 2018; Kremer et al., 2014). Our

“self-control” (Lemma 2) sees the DM act explicitly in order to drive beliefs up and induce

further experimentation, knowing that they will be too impatient in the future.

The paper is structured as follows. We begin by studying the efficient benchmark in

Section 3, turning to an alternative, “single-player” benchmark in Section 4. These initial

insights begin to demonstrate the power of positive feedback in motivating the DM through

enhanced “self-prospection”. In Section 5 and 6, we offer the main findings of the paper

by fully characterizing the sophisticated solution of the model under positive, negative and

transparent feedback. We offer a brief discussion of our model in Section 7, and offer avenues
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for further research in Section 8.

2 Model

A decision-maker (DM) faces a two-armed bandit problem, comprising a safe (S) and risky

(R) arm, over a continuous, infinite time-horizon [0,∞). If played, S yields a constant flow

payoff of s, while R generates payoffs that depend on an unknown state of the world θ ∈

{0, 1}. Specifically, lump-sum payoffs hθ arrive in state θ according to a time-homogeneous

Poisson process with parameter λ ∈ (0,∞). The DM holds a prior belief p0 ∈ (0, 1) that

θ = 1. We assume that expected flow payoffs are greater under R than S if and only if

θ = 1:

Assumption 1.

g ≡ λh1 > s > λh0 ≡ f.

The DM has a unit resource that can be perfectly split between the two arms at any

instant. Let αt ∈ [0, 1] denote the share of resource devoted to R at time t ∈ [0,∞).

Feedback, beliefs – The DM imperfectly observes lump-sum payoff arrivals when

playing R, and receives information via a feedback structure. Formally, let G ≡ (Gt)t⩾0

denote the filtration generated by the payoff arrival process. A feedback structure φ =

(φ1, φ0) is a pair of G−adapted [0, 1]-valued processes φ1, φ0 that denote the probability a

lump-sum payoff is observed by the DM in state 1, 0 respectively, given that it arrives at

time t. We will be entirely concerned with the following three feedback structures:

• Transparent feedback: φ1,t = φ0,t = 1 for all t ∈ [0,∞). All payoff arrivals are

observed.

• Negative feedback: φ1,t = 1, φ0,t = 0 for all t ∈ [0,∞). Payoff arrivals are observed

only when θ = 1. Thus, in the absence of an arrival, the DM conflates no arrival with

payoffs that arrive when θ = 0.
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• Positive feedback: φ1,t = 0, φ0,t = 1 for all t ∈ [0,∞). Payoff arrivals are observed

only when θ = 0.

We often refer to the arrival of payoff g as a “breakthrough” or “good news” and payoff

f as a “breakdown” or “bad news”. To this end, where appropriate, we use the subscript

g for negative feedback (as good news is observed), b for positive feedback (bad news is

observed) and f for transparent feedback (full news is observed).

It may seem somewhat perverse that we refer to a feedback structure that conceals

breakthroughs as “positive”. To understand why, let pt denote the DM’s subjective proba-

bility at time t that θ = 1, based on all observable information up to that date.4 Given a

feedback structure, the evolution of beliefs follows a well-established law of motion: after

observing the payoff hθ, the DM’s belief pt jumps to θ, while absent observation of any

payoff, the belief pt evolves continuously according to

ṗt = λαt(φ0,t − φ1,t)pt(1− pt). (1)

This equation reveals our choice of terminology. During the “active” phase of play, —

when the DM is still uncertain regarding θ so that pt ̸= 0, 1 and αt > 0 — positive (negative)

feedback induces a positive (negative) drift in beliefs. We discuss this interpretation further

in Section 7.2.

Discount Function – The DM evaluates the present value of future payoffs according to

a pseudo-exponential discounting function (Harris and Laibson, 2013; Karp, 2007; Ekeland

and Lazrak, 2006). Specifically, for a given (measurable) sequence of actions (αt)t≥0, the

DM’s time-0 expected present-discounted average value is

E
[∫ ∞

0
γd̄(t)u(αt, pt) dt

]
, (2)

4Formally, let F ≡ (F)t≥0 be the filtration generated by the observed payoff process. Then pt = E(θ | Ft).
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where u(αt, pt) ≡ (1− αt)s+ αt(gpt + f(1− pt)) is the expected flow payoff and

d̄(t) ≡ e−(η+γ)t + (1− e−ηt)βe−γt. (3)

for η, γ ≥ 0 and β ∈ [0, 1]. For simplicity, we shall refer to this form of discounting as

(β, η)-discounting.

As discussed in Harris and Laibson (2013), (β, η)-discounting admits a natural, stochas-

tic interpretation. The DM is comprised of multiple selves whose arrival times are random

and follow a time-homogeneous Poisson process with parameter η. Each self scales down

the payoffs generated after the next self arrives by a fixed factor β. Since arrivals are gov-

erned by a Poisson point process, we may index selves by n ∈ N, with related arrival times

sn ∈ [0,∞) and inter-arrival times τn ≡ sn+1−sn ∈ [0,∞). We say that the “future” arrives

when the next self turns up. Formally, self n applies the discount factor dn(t) to the flow

utility at time sn + t, where

dn(t) =

 e−γt, t ∈ [0, τn)

βe−γt, t ∈ [τn,∞).
(4)

We adopt this approach throughout our paper. To this end, fix a (measurable) strategy

α̂ : [0,∞) → [0, 1] and a feedback technology (φ1, φ0), and consider self n arriving at time

sn. We define the continuation value for self n as

v(psn+τn , α̂) = Esn+τn

[∫ ∞

sn+τn

γe−γ(t−(sn+τn))u(α̂t, pt) dt

]
. (5)

Suppose that self n employs the strategy α : [0,∞) → [0, 1]. Then we define the current

value for self n as

w(α; psn , α̂) = Esn

[∫ sn+τn

sn

γe−γ(t−sn)u(αt, pt) dt+ βe−γτnv(psn+τn , α̂)

]
(6)

as the combined value self n gets from payoffs accruing both before and after the future
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arrives.

Sophistication – As is typical in models with non-exponential discounting, there are

various notions of optimal behavior within our framework. Our main results pertain to

so-called sophisticated policies that treat each self as a separate player in a sequential, intra-

personal game, and solve for its subgame perfect equilibria. This concept thus captures

limited self-control; the DM perfectly understands their present-bias, but is unable to com-

mit to actions that ameliorate it.

We focus on stationary Markov perfect equilibria (SMPE), wherein each self plays a best

response to the strategies of future selves and use the same Markov strategy α : [0, 1] → [0, 1]

that depends only on the current belief p ∈ [0, 1].

Definition 1. For a Markov strategy α̃ : [0, 1] → [0, 1], let B(α̃) denote the set of Markov

strategies α′ such that α′ ∈ argmaxα′′ w(α′′; p, α̃) for all p ∈ [0, 1]. A SMPE of the intra-

personal game is then a function α : [0, 1] → [0, 1] such that α ∈ B(α).

Definition 2. A strategy α : [0, 1] → [0, 1] is a threshold strategy if α(p) = Ip≥
¯
p for some

¯
p ∈ [0, 1].

Naivité – In contrast, the naive solution to the problem facing the DM at time t

is to best-respond to the belief that their future selves do not face the same self-control

problem; specifically, they assume their future selves have β = 1 and thus will adopt the

time-consistent policy α∗, where α∗ maximizes (6) when β = 1.5

Definition 3. The naive solution of the intra-personal game is a function αn : [0, 1] → [0, 1]

such that for all p ∈ [0, 1], αn ∈ argmaxα′ w(α′; p, α∗).

3 Efficient (Exponential) Benchmark

To begin, we first characterize optimal experimentation in the exponential benchmark, as

first introduced in Presman (1990). This is a limiting case of our model; set either β = 1

5In this case, the restriction to Markov policies is without loss, as a best-response to Markov strategies
is necessarily Markovian.
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or η = 0.6

Proposition 1. With exponential discounting, the optimal policies are α∗
b(p) = α∗

f (p) =

Ip≥p∗ and α∗
g(p) = Ip>p∗, where

p∗ =
γ(s− f)

γ(g − f) + λ(g − s)
. (7)

The DM exclusively plays R so long as their belief is above p∗.7 Once their belief drops

below this level, they switch to exclusively playing S. The term λ(g − s) captures the

option value of learning; were φ0 = φ1 = 0, the option value effect disappears, and the DM

switches to safe at the myopic threshold

pm ≡ s− f

g − f
.

3.1 Myopic versus Prospective Option Value

While Proposition 1 shows that the various feedback structures lead to identical policies for

the DM, the result belies a fundamental difference in how these structures provide option

value to the DM.

Under negative feedback, beliefs drift downward absent news according to ṗt = −λpt(1−

pt). As such, the comparison facing the DM at time t is between playing S over [t,∞) and

playing R over [t, t + dt) and then S on [t + dt,∞) if no news arrives. (If a breakthrough

occurs over [t, t + dt), the DM clearly plays R thereafter.) Setting the value of these two

policies to be equal generates the first-order condition satisfied at the threshold belief p∗:

(gp+ f(1− p)) dt+Ω∗
g(λp dt) = s dt, (8)

where Ω∗
g =

∫∞
0 e−γt(g − s) dt = (g − s)/γ. The term Ω∗

g(λp dt) embodies what we call

myopic option value, as it measures the net present value of information that arrives only
6While the result is stated as an optimal policy, the policy is of course a SMPE of the (time-consistent)

intra-personal game when β = 1 but η > 0.
7The difference in the policies at p∗ is due to the direction of belief drift.
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within the next instant.

Under positive feedback, beliefs drift upward absent news according to ṗt = λpt(1− pt),

and so the relevant comparison is between playing R until they observe a breakdown and

playing S forever. The threshold belief p∗ now satisfies

gp+ f(1− p) + Ω∗
b(g − s)p = s, (9)

where

Ω∗
b =

Λ

G− Λ
=

∫∞
0 (1− e−λt)γe−γt dt∫∞

0 e−λtγe−γt dt
.

The quantity Λ
G−Λ measures the value of information under positive feedback. Crucially,

unlike with negative feedback, where the option value term relates to news arriving over

the next dt, positive feedback embodies prospective option value, as the term Ω∗
b(g − s)p

measures the net present discounted value of news arrivals over the entire future horizon.

Here then, we begin to see how positive feedback naturally induces the DM to self-prospect,

by forcing them to consider outcomes occurring in the distant future when making choices

in the present.

Under general discounting functions, the two quantities Ω∗
g(λp dt) and Ω∗

b(g − s)p need

not agree. However, under exponential discounting, they do, so that myopic and prospective

option value are equivalent, and so positive and negative feedback entail the same informa-

tional value. This is peculiar to the fact that in this case, both discounting and news arrivals

are stationary, and thus from today’s perspective, the relative discounted likelihood of news

arrivals over all future time, Λ/(G− Λ), is identical to the analogous quantity defined over

the next dt:
Λ

G− Λ
=

λ/(γ(γ + λ))

1/(γ + λ)
=

λ

γ
=

λ dt

γ dt
.

Finally, note that under this benchmark, positive and transparent feedback not only

deliver the same optimal switching time, but also induce identical optimization problems.

To see this, fix a switching threshold p∗. If the current belief pt ≥ p∗, then both positive
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Figure 1: Myopic and Prospective Option Value

0 1p∗ p

dt

Negative feedback

0 1p∗

Positive feedback

p

t → ∞

Left panel: under negative feedback, information arriving over the next instant is relevant. Right panel:
under positive feedback, information arriving over the entire future horizon is relevant.

and transparent feedback will dictate to play R until a breakdown is observed, whereas if

pt < p∗, they both dictate to play S forever. This equivalence, and the distinction with

negative feedback, is best seen by computing the optimal values v∗i for i ∈ {b, g, f} that

evaluate (5) at the optimal policy (note that v and w are equivalent in this setting) under

each feedback structure.

Lemma 1. For each i ∈ {b, g, f} and p ∈ [0, 1], let v∗i (p) denote (5) evaluated at α∗ and

psn+τn = p. Then

1. For all p ∈ (p∗, 1), v∗b (p) = v∗f (p) > v∗g(p).

2. For all p ∈ [0, p∗] ∪ {1}, v∗b (p) = v∗f (p) = v∗g(p).

Thus, the value of experimenting coincides precisely at the cut-off belief p∗, but at all

p ∈ (p∗, 1), positive and transparent feedback provide higher value. This result gives a sense

in which prospective option value might provide greater incentives for experimentation in

general, an intuition that we will see play out in the remaining analysis.

4 Single-Player Problem

Before turning to the fully sophisticated solution of the (β, η)-model, we first introduce

and characterize a useful single-player benchmark, wherein the DM is allowed to jointly
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maximize the strategies of each of their selves simultaneously, and thus relaxes the best-

response requirement in Definition 1. They nevertheless use their own discounted value as

their objective, and are still restricted to employ Markovian strategies.

Definition 4. The single-player solution of the intra-personal game is a function α : [0, 1] →

[0, 1] such that for all p ∈ [0, 1], α ∈ argmaxα′ w(α′; p, α′).

This benchmark serves as a useful link between the exponential baseline and the equi-

librium analysis that follows. In particular, the single-player solution is characterized by

first-order conditions that are directly analogous to those in the exponential baseline.8

Furthermore, by abstracting from strategic considerations, it will uncover any intrinsic dif-

ferences that may exist between the various feedback technologies.

Proposition 2. Let

Ω ≡ γ + ηβ

γ + η
.

Under negative feedback, the single-player solution is αg(p) = Ip>p1g
, where

p1g =
γ(s− f)

γ(g − f) + λΩ(g − s)
. (10)

Notice that the threshold p1g is identical in form to the exponential threshold p∗, with

the additional factor Ω scaling the option value term. Indeed, since beliefs again drift down

absent news, p1g satisfies exactly the same first-order condition as in the exponential setting,

but with (β, η)-discounting:

(gp+ f(1− p)) dt+Ω
g − s

γ
(λp dt) = s dt, (11)

where

Ω =

∫ ∞

0
d̄(t) dt =

∫ ∞

0
e−(η+γ)t + (1− e−ηt)βe−γt dt =

γ + ηβ

γ + η
. (12)

8Under exponential discounting, the Markovian restriction is without loss. This is not necessarily the case
here, and thus it is an open question as to what the open-loop optimal control policy is when the restriction
is relaxed.
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Now the net present value of this instantaneous experiment is

∫ ∞

0
d̄(t)(g − s) dt = Ω(g − s).

The term Ω exhibits various intuitive properties. First, it is strictly less than one, since

the present-discounted value of a breakthrough occurring in the next instant is ameliorated

by the factor β < 1. This, in turn, implies that p1g > p∗, so that the DM stops earlier

under (β, η)-discounting. Furthermore, limη→0Ω = limβ→1Ω = 1, so that the exponential

benchmark is recovered in both these time-consistent limits.

We next turn to positive feedback and show that in stark contrast to Proposition 1, the

single-player solutions across feedback structures no longer coincide.

Proposition 3. Let

Θ ≡ γ + η + λ

γ + ηβ + λ
, Ω1

b ≡
γ + ηβΘ

γ + η
.

Under positive feedback, the single-player solution is αb(p) = Ip≥p1b
, where

p1b =
γ(s− f)

γ(g − f) + λΩ1
b(g − s)

. (13)

Here, the option value term has a different scaling parameter Ω1
b , which itself is identical

to Ω but for the constant Θ. It is readily verified that Θ > 1, so that Ω < Ω1
b . Thus, we

arrive at our first key insight, namely that under (β, η)-preferences, prospective option value

is more powerful than myopic option value.

Corollary 1. p∗ < p1b < p1g < pm.

To understand this result, we can again find p1b through the same first-order approach

as in Section 3:

gp+ f(1− p) + Ω1
b(g − s)p = s, (14)
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where

Ω1
b =

∫∞
0 (1− e−λt)d̄(t) dt∫∞

0 e−λtd̄(t) dt

=

∫∞
0 (1− e−λt)

[
e−(η+γ)t + (1− e−ηt)βe−γt

]
dt∫∞

0 e−λt
[
e−(η+γ)t + (1− e−ηt)βe−γt

]
dt

(15)

=
γ + ηβΘ

γ + η
.

Under positive feedback, the DM values news arrival even after the future arrives, as is

evident from equation (15). However, whereas under exponential discounting, this made no

difference, under (β, η)-preferences it is a crucial distinction.

How then does the arrival rate of the future affect both myopic and prospective option

value? A first, direct effect is that more of the remaining time horizon is discounted by

β. This direct effect dampens the present-value of learning and is present in both myopic

and prospective option value. To see this, note that both Ω and Ω1
b holding Θ fixed are

decreasing in η. However, a second counter-veiling effect is that, once the future arrives, the

DM discounts exponentially thereafter, and thus the present-bias effect disappears. This

effect is only present within prospective option value, as it relates to events occurring beyond

the next instant. It is this effect that drives Ω < Ω1
b and hence p1b < p1g.

4.1 Self-Esteem

We term the effect embodied by this additional factor Θ the self-esteem effect, inspired

by Bénabou and Tirole (2002). Broadly speaking, self-esteem pertains to the evaluation

of one’s self (Smith and Mackie, 2007, p.107). The concept can be traced back to David

Hume’s seminal work, wherein he describes the synonymous concept of “self-love” as an

important input into personal motivation (Hume, 1751, Appendix 2.1). In particular, he

sees self-esteem as a driver of motivation, not a consequence. In this sense, our single-player

problem divorces the DM from strategic considerations, so that Corollary 1 suggests that

positive feedback naturally fosters self-esteem, in a way that negative feedback does not.
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Self-esteem is one of the three pillars of self-prospection theory, as discussed in the intro-

duction. In the equilibrium analysis that follows, we will see how the other two components

— self-control and coherence — are also best supported by positive feedback.

5 Equilibrium Analysis

5.1 Best Responses

Toward a recursive representation of an SMPE, suppose first that all future selves use the

strategy α̂, then v(α̂, p) ≡ v̂(p) must satisfy the differential equation

v̂(p) = s+ α̂(p) · [b(p, v̂)− c(p)], (16)

where

b(p, v̂) =
λpφ1

γ
(v̂(1)− v̂(p)) +

λ(1− p)φ0

γ
(v̂(0)− v̂(p))

+
λ(φ0 − φ1)

γ
p(1− p)v̂′(p),

c(p) = s− (gp+ f(1− p)),

v(1) = g and v(0) = s, while the current value function satisfies9

w(p) = s+
η

γ
[βv̂(p)− w(p)] + max

α∈[0,1]
α · [b(p, w)− c(p)], (17)

w(1) = Ωg and w(0) = Ωs. From the linearity of equation (17) in α, this requires the
9The reliance of w on α̂ via v̂(p) is suppressed in notation.
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following best-response condition to hold:

α(p)


= 1 if b(p, w) > c(p)

∈ [0, 1] if b(p, w) = c(p)

= 0 if b(p, w) < c(p),

(18)

where again, the reliance of w on v̂ in (17) demonstrates how the current self’s best-response

depends on α̂. A SMPE comprises then of three functions: the strategy α : [0, 1] → [0, 1],

the current value function w : [0, 1] → R and the continuation value function v : [0, 1] → R

such that w solves (17), v solves (16) and α is a maximizer of (17) for each p ∈ [0, 1] (or

equivalently, satisfies (18)).

The final required ingredient is the necessary boundary conditions for the above differ-

ential equations. The only required conditions are that both w and v be bounded; it is

readily seen that Ωs ≤ w(p) ≤ Ωg and s ≤ v(p) ≤ g. With these arguments in hand, we

can characterize a SMPE through the following definition:10

Definition 5 (Bellman System). The function α : [0, 1] → [0, 1] is an SMPE if there are

functions w, v : [0, 1] → R such that for all p ∈ [0, 1], (α,w, v) jointly solve (16), (17) and

(18), Ωs ≤ w(p) ≤ Ωg and s ≤ v(p) ≤ g.

5.2 Main Result: Characterization of SMPE

Theorem 1.

1. There exists a unique SMPE under each of positive, negative and transparent feedback,

denoted by αb, αg and αf respectively. Furthermore, for each i ∈ {b, g, f}, there exist
10Formally, we say that w, v are solutions to their respective differential equations (17) and (16) in the

viscosity sense (Crandall et al., 1992). In particular, the equilibrium strategy under positive feedback exhibits
a discontinuity, and thus the usual Lipschitz conditions for uniqueness and existence of C1([0, 1])-solutions to
first-order ODEs do not apply. Nevertheless, we will adapt standard arguments (Kuvalekar and Lipnowski,
2020; Pham, 2009) to explicitly verify that at all regular states (Peskir and Shiryaev, 2006, §IV.9, VI.23),
the candidate solution to w is in C1([0, 1]). In the positive feedback case, w exhibits a kink (and is thus not
C1([0, 1])), but at an irregular state. These considerations are irrelevant in the transparent feedback case,
wherein neither w nor v are described by differential equations.
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¯
pi, p̄i such that

αi(p)


= 1 if p ≥ p̄i

∈ [0, 1] if p ∈ [
¯
pi, p̄i)

= 0 if p <
¯
pi

. (19)

2. For i ∈ {b, g, f}, αi is continuous and strictly increasing on [
¯
pi, p̄i), with αi(

¯
pi) = 0.

Both αg and αf are Lipschitz continuous on [0, 1]. αb is discontinuous at p̄b, with

limp↑p̄b αb(p) < limp↓p̄b αb(p) = 1, but is Lipschitz continuous everywhere else.

3. p∗ <
¯
pb <

¯
pf =

¯
pg < p̄f = p̄b < p̄g < pm.

The remainder of the section is devoted to providing a detailed explanation of the various

noteworthy features of Theorem 1, both in terms of their theoretical mechanisms as well as

their psychological interpretations.11 Figure 2 collects these insights and documents them

graphically by plotting the equilibrium current values w.

5.3 Procrastination and Indecision

We begin by briefly describing why no equilibrium in simple threshold strategies exists. As

an illustration, take the positive feedback case, and suppose that all future selves adopt the

strategy α′(p) = Ip≥p′ . Clearly, it is a dominant strategy to play S at p ≤ p∗, as the current

self does not fully internalize future payoffs, and R at p ≥ pm, as this is a dominant strategy

regardless. Thus, assume p′ ∈ (p∗, pm). The continuation value then exhibits a discontinuity

at p′, with limp↓p′ v(p) > s. To see this, note on the experimentation region, v is exactly

the value function under exponential discounting; after the future arrives, discounting is

exponential. As shown in Section 3, the only belief at which v can be continuous is p∗. While

this is not an issue in the single-player problem — as v is optimized over simultaneously to

w — in the equilibrium, v is taken as given by the current self, and thus such a discontinuity
11Through proving Theorem 1, we verify additional details that are omitted from the statement of the

result for brevity. For instance, in all cases we fully solve for the equilibrium value functions w and v in
closed form, and characterize the strategy on the region where [

¯
pi, p̄i) as the solution to an implicit equation.
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Figure 2: Equilibrium Current Value Functions

Ωs

Ωg

¯
pb

¯
pg p̄b p̄g 1

wg(p)

wb(p)

wf (p)

p

Blue lines: positive feedback. Red lines: negative feedback. Black lines: transparent feedback. For p ≥ p̄b,
the current value functions under both positive and transparent feedback coincide.

generates an incentive for randomization. Figure 3 demonstrates the argument graphically

by plotting the single-player solution, which is the special case that p′ = p1b .12

In essence, since the current self does not fully internalize the welfare of future selves,

they are happy to free-ride on the experimentation of future selves and spare themselves

the flow losses associated with experimentation today.13 We thus term this effect the pro-

crastination effect, inspired by O’Donoghue and Rabin (1999), as the DM delays costly

experimentation when they shouldn’t as it involves incurring costs in the immediate myopi-

crun.

12The argument is identical in the case of transparent feedback. Under negative feedback, the argument
is qualitatively similar but slightly more subtle, and turns on a discontinuity in v′(p) at p = p′, rather than
v(p).

13This effect is similar in spirit to the “free-rider” effect in experimentation games. See Section 7.3 for
details.
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Figure 3: Non-Existence of Threshold Equilibria

s

Ωs

0 1
p

p1bp∗

vb(p)

wb(p)

Blue line: current value under α′(p) = Ip≥p′ . Gray line: continuation value under α′(p). Gray dashed line:
continuation under α(p) = Ip≥p∗ .

Remark 1 (Procrastination Effect). No threshold equilibrium exists, regardless of the feed-

back structure.

We interpret the DM playing α(p) ∈ (0, 1) over a range of beliefs as indecision.14 Such

indecision cannot obtain in the time-consistent version of the model (Proposition 1), nor

in either the single-player or naive solutions (Propositions 2, 3 and Lemma 3), and thus

is a sharp expression of the assumption of limited self-control within our framework. The

relationship between lack of self-control, procrastination and indecision is well-documented

(Ferrari et al., 1995; Ferrari and Pychyl, 2007). Indeed, the former relates indecision directly

to decisional procrastination, the act of postponing a decision when faced with inner conflicts

and choices (Janis and Mann, 1980). Furthermore, recent studies find that indecision is
14See (Bolton and Harris, 1999, §8) for a discussion of how the time-division problem we study is isomorphic

to the problem where each self is allowed to randomize over αt ∈ {0, 1}. Our setting is less involved, as no
two selves act simultaneously. Nevertheless, rigorously formulating mixed strategies in our continuous time
setting is beyond the scope of the paper.
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positively correlated with impulsiveness (Barkley-Levenson and Fox, 2016). Our results

echo this finding, insofar as our equilibrium solution forces the DM to act in the present,

rather than make longer-lasting plans.

5.4 Self-Control

The procrastination effect is present under all forms of feedback. In contrast, positive feed-

back exhibits a strategic externality that is not present in the other cases; by experimenting,

the current self can push beliefs up, thereby encouraging their future selves to also exper-

iment.15 To see this, we prove an auxiliary result, namely that under negative feedback,

the lower threshold
¯
pg = p1g, the analogous single-player solution. Intuitively, when the

current self is at
¯
pg, they experiment in “isolation”, as any experimentation they perform

will terminate future experimentation, absent news. Thus, the first-order condition gov-

erning this lower threshold is identical to that governing p1g. By a similar token, under

transparent feedback, if the current self is at
¯
pf in a SMPE, any deviation to experiment

over the next dt will be followed by playing R, since beliefs will not have drifted up into the

region of greater experimentation. In contrast, under positive feedback, the current self can

positively affect the experimentation rate through the induced upward belief drift absent

news, thereby connecting them to their future selves.

Lemma 2 (Self-Control Effect).
¯
pb <

¯
pf =

¯
pg = p1g.

We term this effect the self-control effect. Control is the executive component of self-

affirmation, and refers to confidence in one’s ability to initiate actions that serve long-term

goals. Stephan et al. (2017) find that by projecting further into the future, individuals

attribute outcomes to their own willpower more, which in turn fortifies their commitment

to achieving desired outcomes. In the present context, we argue that positive feedback

engenders a sense of self-control. By inducing a positive trajectory of self-beliefs, positive

feedback enables the DM to “look to the future” and partially mitigate present-bias. In
15This effect is similar in nature to the “encouragement” effect found in experimentation games. See

Section 7.3.
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contrast, negative and transparent feedback isolates the DM from their future.

5.5 Coherence and Self-Doubt

Theorem 1 exhibits further behavioral features that unlike the procrastination and self-

control effects, have no direct analog in previous works on strategic experimentation. By

inducing a path of improving beliefs, positive feedback allows the DM to envisage a future

in which they are increasingly confident in their own abilities, which leads to behavior that

aligns more closely with their long-run goals. This notion is best captured through another

auxiliary result that compares the temptation to stop experimenting in equilibrium to that

within the naive solution (Definition 3):

Lemma 3 (Coherence effect). For each i ∈ {b, g, f}, let αn
i denote the solution to the naive

problem. Then there exist pni such that αn
b (p) = Ip≥pnb

, αn
f (p) = Ip≥pnf

and αn
g (p) = Ip>png .

Furthermore, p̄b = pnb and p̄f = pnf , while p̄g > png .

Recall that the naive solution pitches the current self against the strategy wherein all

future selves behave exponentially, and thus will experiment above p∗ (Proposition 1). But

note that under positive feedback, the upper threshold is best-responding to precisely the

same strategy; since beliefs drift up, future play will coincide with the efficient benchmark.

(The same logic holds under transparent feedback.) Hence, p̄b and pnb must coincide.

Under positive feedback, the current and future selves are all perfectly aligned with

their long-run goal at this belief. It is for this reason we call this effect the coherence effect.

Coherence is another pillar of self-affirmation theory. It refers to the ability of individuals to

create a consistent inner narrative, connecting current and future selves through a unified set

of goals. Experimental evidence shows how by imagining their future selves, people make

stronger connections between their present and future, reducing inner conflict (Stephan

et al., 2015). In contrast, under negative feedback, at the upper threshold the DM is

staring into a future plagued with indecision (α ∈ (0, 1)) leading ultimately to the untimely

termination of experimentation; beliefs will drift down into the region on which α gradually
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falls toward 0 at
¯
pb > p∗. Thus, the DM is trapped in a spiral of self-doubt, which unravels

the current self’s incentives to experiment, leading to p̄g > png .

5.6 Self-Esteem, Revisited

The final claim within Theorem 1 part 3) that demands explanation is why the upper

thresholds p̄g > p̄b. Putting together the various previous claims, it would suffice to show

that the naive thresholds png > pnb , which we verify now:

Lemma 4. png > pnb .

This result is directly analogous to why p1g > p1b in the single-player problem, and demon-

strates that the self-esteem effect is still at play in equilibrium. The intuition is very similar

to that developed in Section 4. At the threshold belief, the current self considers outcomes

of experimentation only for an additional instant under negative feedback, whereas, under

positive feedback, the current self knows that experimentation will continue (whether on

their watch or during the future selves’ tenure, who behave efficiently) unless a breakdown

occurs.

5.7 Uniqueness

We now provide a brief sketch of how the SMPE identified in Theorem 1 are unique. From

the form of equation (17), it is clear that there must be lowest and highest threshold beliefs

at which the DM is willing to play R in any SMPE. The former is bounded below by p1i for

each i ∈ {b, g, f}, as the single-player problem is a relaxation of the equilibrium problem.

The latter is clearly bounded above by the myopic threshold pm, as playing R is strictly

dominant at p > pm.

Take first the negative feedback case. Any SMPE must have a lower threshold exactly

equal to p1g. Suppose not, i.e. an SMPE exists such that
¯
pg > p1g. Note that at beliefs p ∈

[p1g,
¯
pg), the current self’s optimization problem is identical to the single-player counterpart;

since beliefs drift down absent news, they experiment in isolation. Thus, they would have a
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strict incentive to continue experimenting on [p1g,
¯
pg), a contradiction. Next, on the region

where αg ∈ (0, 1), the indifference condition b(p, w)− c(p) = 0 must necessarily be satisfied.

This equation generates an ODE governing w on this region, which admits a unique solution.

By indifference, equation (17) then implies that v is also uniquely determined by the linear

transformation (γ + η)w(p) = γs + ηβv(p). The strategy αg is then uniquely determined

via (16). It is readily shown that w(p) is continuous and strictly increasing on this region,

and thus so too is v(p) and hence αg(p). Furthermore, we show there exists a pc < pm such

that limp↑pc αg(p) = ∞, so that the upper threshold is then uniquely pinned down as the

belief p at which αg(p) = 1.

The positive feedback case works in reverse. First, we argue that the upper threshold

in any SMPE is necessarily the naive threshold pnb . This is because the upper threshold is

precisely the belief at which the current self is indifferent between playing R and S, given

that future play involves R being played at all higher beliefs, which is equivalent to the naive

optimality condition. On the region where αb ∈ (0, 1), w is again the unique solution to

an ODE, and is strictly increasing. The lower threshold is then uniquely determined as the

belief at which w(p) = Ωs, the present value of playing S forever. The transparent feedback

is the simplest; since beliefs do not drift continuously, turning the differential equations

(17) and (16) into a system of linear equations, one for each p, that can each be solved

independently.

Finally, the discontinuity of the equilibrium strategy αb under positive feedback is largely

a technical feature, reflecting that the current value function is strictly concave on [
¯
pb, p̄b)

and linear on [p̄b, 1], thus exhibiting a discontinuous second derivative at p̄b. Equation (17)

then implies that the current value v has a kink and αb a discontinuity. In general, it is

not possible to rank experimentation rates across feedback structures. (See Section 6 for

special cases where it is possible.)
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6 The Benefits of Positive Feedback

Theorem 1 provides a sharp characterization of equilibrium outcomes, and allows us to

contrast feedback structures through their effects on incentives and beliefs. But which

feedback structure provides the greatest welfare?

As is standard in time-inconsistent models, there is no single welfare criterion, as each

self has different intertemporal preferences. Nevertheless, we take the standard approach of

using the DM’s long-run discount factor as the appropriate weight on each instant (DellaVi-

gna and Malmendier, 2004; O’Donoghue and Rabin, 1999, 2001; Gottlieb and Zhang, 2021).

Thus, the welfare of a given strategy (αt)t≥0 is evaluated according to

W(α; p) = E
[∫ ∞

0
γe−γtu(αt, pt) dt | p0 = p

]
. (20)

Calculating equilibrium welfare is made straightforward by noticing that the long-run

criterion (20) is precisely the equilibrium continuation value function v(p), which was cal-

culated in each case when proving Theorem 1:

Proposition 4 (The Benefits of Positive Feedback).

1. For p ∈ [p̄b, 1): W(αb; p) = W(αf ; p) > W(αg; p).

2. For p ∈ (
¯
pg, p̄b): W(αb; p) > W(αf ; p) > W(αg; p).

3. For p ∈ (
¯
pb,

¯
pg]: W(αb; p) > W(αf ; p) = W(αg; p).

4. For p ∈ [0,
¯
pb] ∪ {1}: W(αb; p) = W(αf ; p) = W(αg; p).

Thus, positive feedback is (weakly) preferred to transparent feedback, and at times

strictly so, and is always strictly preferred to negative feedback. This result lies in stark

contrast to all previous variants of the model; the DM was indifferent between positive and

transparent feedback in the single-player problem, the naive problem and the exponential

benchmark. The discrepancy must then stem from the strategic forces present exclusively
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in the equilibrium problem. (Indeed, in any single-player problem, full information must be

(weakly) optimal.)

Motivation versus Information – Combining the insights acquired in Sections 5.3-

5.6, we see that both transparent and positive feedback engender coherence (Lemma 3)

and self-esteem (Lemma 4), but that only positive feedback promotes self-control (Lemma

2). Thus, the positive strategic value of linking the DM’s selves in time through positively

trending beliefs and bolstering self-control more than compensates for the informational

loss in concealing breakthroughs.16

Of course, were feedback to be “babbling” and provide no information whatsoever, i.e.

φ1 = φ0 = 0, the DM’s belief would remain unmoved, which is easily seen to be domi-

nated by.17 Evidence shows that praise that is deemed excessive or unrealistic is ignored

by children when forming beliefs about their abilities (Henderlong and Lepper, 2002). Re-

latedly, Finkelstein and Fishbach (2012) find that people who are certain of their abilities

(“experts”) respond to the informational content of negative feedback more effectively than

“novices”. More generally, a line of research emphasizes the role of negative feedback in

providing informational content (Mayer, 1996; Locke and Latham, 2002).

While the role for “constructive feedback” is absent from our framework, we view these

findings as echoing the fact that our DM benefits from being informed of breakdowns — in

some sense, the harshest form of negative feedback possible — as the information therein

allows them to better tailor their choices (they switch from R to S upon receiving this

news). This is yet another asymmetry with negative feedback; observing a breakthrough

does not alter the DM’s current action.

Goal Orientation – Proposition 4 echoes a wealth of literature within psychology,

both experimental and theoretical. The so-called “self-determination” theory suggests the

beneficial/detrimental impact of positive/negative feedback on motivation (Ryan and Deci,
16Our work thus connects to the literatures on strategic ignorance (Bénabou and Tirole, 2002; Carrillo

and Mariotti, 2000) and motivated beliefs (Bénabou and Tirole, 2004; Gottlieb, 2024) in economics.
17To see this, note that without information, the equilibrium strategy is α(p) = Ip≥pm , with v(p) =

α(p)[gp+ f(1− p)− s] + s. For p ≥ pm, γ[vf (p)− v(p)] = λgp+ λf(1− p) > 0, while for p < pm, vf (p) ≥ s,
hence vf (p)− v(p) ≥ 0. Thus, transparent feedback always dominates no feedback.
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2000). Ryan and Deci (2016) find strong evidence for this relationship in the context of

school children performing ability-related tasks.

More specifically, a line of research relating to “goal orientation” argues that having a

clearly defined set of goals can mitigate the detrimental impact of negative feedback, and

that conversely, less goal-oriented give up on ability-based tasks more easily when presented

with negative feedback (Dahling and Ruppel, 2016). As previously discussed, it is in general

not possible to determine whether or not positive feedback induces greater experimentation

at each p ∈ [0, 1], since on the region [
¯
pg, p̄b], we cannot in general sign αb(p) − αg(p)

unambiguously. We can however do so when the degree of internal conflict is either very

large or very small. We measure the degree of internal conflict by η, as the higher is η, the

less time is each self in control, and thus the more present is internal conflict in the mind

of the current self.

The following result shows that, in the quasi-hyperbolic case (η → ∞), positive feedback

exhibits higher rates of experimentation at all beliefs than both negative and transparent

feedback, whereas when η → 0, the manner of feedback becomes irrelevant. Figure 4 plots

equilibrium strategies in the case where η → ∞.

Lemma 5.

1. For each i ∈ {b, g, f}, as η → ∞, αi converges pointwise to strategies α∞
i that take the

form (19). Furthermore,

1) For p ∈ [0,
¯
p∞b ] ∪ [p̄∞g , 1]: α∞

b (p) = α∞
f (p) = α∞

g (p).

2) For p ∈ (
¯
p∞b ,

¯
p∞g ]: α∞

b (p) > α∞
f (p) = α∞

g (p).

3) For p ∈ (
¯
p∞g , p̄∞b ): α∞

b (p) > α∞
f (p) > α∞

g (p).

4) For p ∈ [p̄∞b , p̄∞g ): α∞
b (p) = α∞

f (p) > α∞
g (p).

2. For each i ∈ {b, g, f}, as η → 0, p̄i,
¯
pi → p∗.

While our results on coherence (Lemma 3) suggest that positive feedback can help to

mitigate conflicting personal goals, we view Lemma 5 above as providing a dual insight.
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Figure 4: Quasi-Hyperbolic Equilibrium Strategies (η → ∞)
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Namely, in the absence of any internal conflict (η = 0), experimentation incentives are

insensitive to the form of feedback provided, whereas when the internal conflict is strong (η

high), the DM experiments more when provided with positive feedback.

7 Discussion

7.1 Model Discussion

We take a moment to discuss the various features of our model. Our pseudo-exponential

discounting framework is taken from Harris and Laibson (2013). Its stationary, continuous-

time specification is highly tractable, affording us the power of dynamic programming de-

spite the inherent time-inconsistency, and delivering a unique SMPE. Furthermore, quasi-

hyperbolic discounting are nested in this setting, by taking η → ∞. We should note that

our stochastic arrivals interpretation is not innocuous; Tan et al. (2021) demonstrate in an

optimal-stopping setting with pseudo-exponential discounting that adopting the convention

where a continuum of agents each operate instantaneously can expand the equilibrium set.
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The assumption that payoff arrivals are imperfectly observed allows for direct compar-

ison between positive and negative feedback without rewriting the model and separates

payoffs from learning. Nevertheless, the analysis could be easily re-formulated to dispense

with this assumption. For instance, an equivalent formulation is where the DM receives

a flow payoff that is linear in the current belief pt if they experiment, with news arrivals

arriving independently from payoffs (Board and Meyer-ter-Vehn, 2013).

Our framework is built upon perfectly revealing Poisson learning processes. This is a

well-established approach within the strategic experimentation literature (Keller et al., 2005;

Keller and Rady, 2015) and beyond (Halac et al., 2017; Halac and Prat, 2016; Board and

Meyer-ter-Vehn, 2013), with these papers finding stark differences in equilibrium behavior

between good and bad news learning modes.18 Furthermore, recent models of informa-

tion choice based on good and bad news learning have delivered rich insights (Che and

Mierendorff, 2019; Auster et al., forthcoming).

Finally, we restrict attention to stationary Markov perfect equilibria of the intra-personal

game, clearly a strict subset of the set of all subgame perfect equilibria. Indeed, recent work

by Hörner et al. (2021) demonstrates that the Markov restriction is with loss in games of

strategic experimentation. Nevertheless, we take this approach for several reasons. First, it

keeps our work in line with the majority of works on both time-inconsistency (Harris and

Laibson, 2001, 2013; Luttmer and Mariotti, 2003; Karp, 2007) and strategic experimentation

(Bolton and Harris, 1999; Keller et al., 2005; Keller and Rady, 2015). Second, since our

motivation concerns the evolution of self-belief and the fostering of self-confidence, focusing

on equilibria in which the DM’s beliefs drive behavior is natural.

7.2 Feedback in Practice

As mentioned briefly in Section 2, we view a feedback structure that conceals breakthroughs

and thus induces a positive trend in beliefs while the DM is still actively learning as pro-

viding positive feedback. In this paper, we do not motivate the origins of different feedback
18See Hörner and Skryzpacz (2016) for a survey.
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structures. Nevertheless, to better relate our notions of feedback to those seen in practice,

consider an alternative formulation of a feedback structure. Let ϑ : [0,∞) → {0, 1, ∅} be

a G−adapted “reporting function” where ϑt denotes an instantaneous ‘report’ at time t,

observable to the DM, regarding payoff arrivals. Unlike in the baseline model, where ar-

rivals could only be concealed, here we do not constrain ϑ in this way. This approach can

replicate our three central feedback structures:

• Transparent feedback: Let ϑt = 0 (1) if a breakdown (breakthrough) occurs at time

t, and ϑt = ∅ if no payoff arrives at time t.

• Positive feedback: Let ϑt = 0 if a breakdown occurs at time t, and ϑt = 1 otherwise.

• Negative feedback: Let ϑt = 1 if a breakthrough occurs at time t, and ϑt = 0 otherwise.

The reporting functions above give a clearer sense of how our definition of feedback

capture practical settings. Take, for instance, positive feedback. The reporting function

above can be interpreted as ‘no news’ being conflated with ‘good news’. This is reminiscent

of how for instance a personal trainer might give encouraging feedback even in the absence

of supporting evidence.

7.3 Strategic Experimentation

Our analysis exhibits structural similarities to previous work on multi-player experimenta-

tion games (Bolton and Harris, 1999; Keller and Rady, 2015). We view these links as a

strength; not only do we leverage them in proving Theorem 1, but we view them as har-

monizing insights from disparate works. We take a moment to draw out these parallels in

greater detail.

The procrastination effect is similar to the “free-rider” effect found in previous works

on strategic experimentation. The free-rider effect describes a player’s incentive not to

experiment, instead letting other players experiment and generate valuable information that

they can subsequently use themselves. Our procrastination effect also turns on an incentive
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to free-ride on other selves’ experimentation and instead play safe. Heuristically, note that

more experimentation by future selves increases v, which from equation (17) for the current

value w can be seen to have the same effect as raising s, thus raising the value of playing S.

However, the externality is qualitatively different, as the current self in our setting does not

seek to procrastinate in order to use publicly-generated information themselves at a later

time.

The self-control effect is reminiscent of the so-called encouragement effect in the strategic

experimentation literature, which describes how an agent has an incentive to experiment

in order to generate information that subsequently encourages other agents to experiment,

which in turn generates valuable information for the agent.19 Similar to our analysis, Keller

and Rady (2015) identifies the presence of this effect with breakdown learning, while Keller

et al. (2005) shows how the effect is absent under breakthrough learning. Mechanically, the

reason is precisely the direction of belief drift absent arrivals, just as is here. Furthermore, in

those papers, the misalignment between players disappears at extreme beliefs, as a dominant

action exists.

However, there are some key differences. First, externalities are purely informational in

these papers, whereas in the current setting payoff externalities also exist. Hence, the current

agent seeks to encourage experimentation insofar as they care directly about the welfare of

future selves. Second, our game is sequential, generating qualitatively different incentives,

as discussed above. Beyond these underlying differences, our results differ in qualitative

ways. The single-player benchmark is reminiscent of both the cooperative and single-player

solutions studied in Keller et al. (2005) and Keller and Rady (2015), insofar as it strips

away all strategic externalities that might arise in the equilibrium solution of the model. It

is, however, distinct from both. In contrast to their cooperative solution, this benchmark

is not efficient, as the DM still maximizes according to their non-exponential discount

function. Furthermore, our single-player solution is a maximizer of (2) under the constraint
19Note that Bolton and Harris (1999) define the encouragement effect by examine how one player’s best-

response value is affected by another player’s action. We thank Sven Rady for pointing out this distinction
to us.
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that feasible policies are Markovian, and hence may not coincide with the unconstrained

open loop control maximizer of (2). Finally, equilibrium strategies are discontinuous under

positive feedback, in contrast to the symmetric MPE in Keller and Rady (2015).

8 Conclusion and Future Work

We presented a model in which a present-biased decision maker (DM) with limited willpower

faces an experimentation problem, and learns about its inherent risk through feedback. We

showed that by enabling the DM to “self-prospect” – imagining one’s self in the distant

future when evaluating one’s present –, positive feedback sustains greater welfare than

either negative or transparent feedback.

While the tractability of our framework allowed us to derive several results, we conclude

by highlighting potential avenues for future research within our broad agenda. First, while

our primary focus was comparing positive and negative feedback, it is a natural question

to ask more generally, what is the optimal form of feedback to provide such a person? We

have also abstracted from the important question of where feedback originates from. In

many instances, it is provided by a principal, whose interests may or may not be aligned

with the DM, and who may be able to contract with the DM in more complex ways. We

leave these interesting considerations for future work.
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A Proofs

A.1 Proof of Proposition 1

Positive Feedback – The DM’s problem is given by

v(p) = s+ max
α∈[0,1]

α · [bb(p, v)− c(p)], (A.1)

where the opportunity cost of playing R is

c(p) = s− [gp+ f(1− p)], (A.2)

and the discounted expected benefit of playing R is

bb(p, v) =
λ(1− p)

γ
(s− v(p) + pv′(p)). (A.3)

The boundary conditions are s ≤ v(p) ≤ g. The Bellman equation (A.1) is linear in α so admits a

bang-bang solution. If α = 0, v(p) = s, while if α = 1,

(γ + λ(1− p))v(p)− λp(1− p)v′(p) = λ(1− p)s+ γ(gp+ f(1− p)). (A.4)

Since v(p) ≤ g for all p ∈ [0, 1], (A.4) can only admit the particular solution

vb(p) = gp+
γf + λs

γ + λ
(1− p). (A.5)

The optimal cutoff is uniquely pinned down by the boundary condition vb(p
∗) = s, implying the

optimal threshold to be

p∗ =
γ(s− f)

γ(g − f) + λ(g − s)

and αb(p) = Ip≥p∗ . The optimal value function exhibits continuity (however possessing a kink at

p∗):

v∗b (p) =


gp+ γf+λs

γ+λ (1− p) if p ≥ p∗

s if p < p∗
. (A.6)
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Negative Feedback – The DM’s problem is now given by

v(p) = s+ max
α∈[0,1]

α · [bg(p, v)− c(p)], (A.7)

where c(p) is as in (A.2), and

bg(p, v) =
λp

γ
(g − v(p)− (1− p)v′(p)), (A.8)

subject to s ≤ v(p) ≤ g. Due to linearity in α, it is optimal to choose either α = 0 (so that vg(p) = s),

or α = 1 implying v(p) satisfies the first-order ordinary differential equation

(γ + λp)v(p) + λp(1− p)v′(p) = (γ + λ)gp+ γf(1− p). (A.9)

The differential equation (A.9) has a solution

vg(p) = gp+ f(1− p) + Cg(1− p)

(
1− p

p

) γ
λ

(A.10)

with some constant Cg. Suppose the DM uses S below the cutoff belief p∗g and R above. As is

standard, smooth pasting and value matching conditions apply, confirming the equality p∗g = p∗

(from straightforward algebra) and defining the constant of integration, providing

v∗g(p) =


gp+ f(1− p) + C̄g(1− p)

(
1−p
p

) γ
λ if p > p∗

s if p ≤ p∗
, (A.11)

where

C̄g =
(s− f)− (g − f)p∗

1− p∗

(
p∗

1− p∗

) γ
λ

. (A.12)

On the entire interval of beliefs [0, 1], the value function is smooth and convex (strictly convex on

(p∗, 1]).

Transparent Feedback – The DM solves

v(p) = s+ max
α∈[0,1]

α · [bf (p, v)− c(p)], (A.13)
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with

bf (p, v) =
λ(1− p)

γ
(v(0)− v(p)) +

λp

γ
(v(1)− v(p)), (A.14)

with v(0) = s, v(1) = g and the boundary conditions s ≤ v(p) ≤ g. The optimization problem is

linear in both α and v(p) so leads to the bang-bang solution with two linear branches: v(p) = s if

α = 0 and

vf (p) = gp+
γf + λs

γ + λ
(1− p) (A.15)

if α = 1. Value matching implies the optimal threshold p∗f = p∗ and the value function

v∗f (p) =


gp+ γf+λs

γ+λ (1− p) if p ≥ p∗

s if p < p∗

to coincide with v∗b (p).

A.2 Proof of Lemma 1

1. The equality v∗f (p) = v∗b (p) was verified explicitly in the proof of Proposition 1. Trivially, v∗g(p∗) =

v∗b (p
∗), v∗g(1) = v∗b (1). On (p∗, 1), the optimal value function under negative feedback is strictly

convex and thus strictly lower than v∗i (p), i ∈ {b, f}. Convexity follows from the direct calculation

of the second derivative

(v∗g(p))
′′ =

(
g − f − C̄g

γ + λp

λp

(
1− p

p

) γ
λ

)′

= C̄g
γ(γ + λ)

λ2p(1− p)

(
1− p

p

) γ
λ

and the fact that C̄g > 0 (since p∗ < pm).

2. Below the efficient threshold p∗, the optimal strategy is α∗ = 0 and v∗b (p) = v∗f (p) = v∗g(p) = s

regardless of the feedback mode. At p = 1, v∗b (1) = v∗f (1) = v∗g(1) = g.

A.3 Proof of Proposition 2

The DM solves:

v(p, α) = s+ α · [bg(p, v)− c(p)],

w(p) = s− η

γ
w(p) + max

α∈[0,1]
α · [bg(p, w)− c(p) +

ηβ

γ
v(p, α)], (A.16)
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with boundary conditions s ≤ v(p, α) ≤ g, Ωs ≤ w(p) ≤ Ωg, where c(·) and bg(·, ·) satisfy (A.2) and

(A.8), respectively, and v(1) ≡ v(1, 1) = g, w(1) = Ωg. The optimization problem (A.16) in the

Bellman system is linear in α, implying a threshold solution. Hereinafter, we omit the dependence of

v(p, α) on α where clear. If α = 0, then v(p) = s and w(p) = Ωs. If α = 1, then the value functions

satisfy the system of the differential equations

(γ + λp)v(p) + λp(1− p)v′(p) = (γ + λ)gp+ γf(1− p), (A.17)

(γ + λp+ η)w(p) + λp(1− p)w′(p) = (γ + λΩ)gp+ γf(1− p) + ηβv(p). (A.18)

(A.17) has a general solution (A.10) (with a constant C1
g that may differ from Cg), that helps us to

identify a form of the particular solution for (A.18). The solution of (A.18) is

w(p) = Ωgp+Ωf(1− p) + βC1
g (1− p)

(
1− p

p

) γ
λ

+K1
g (1− p)

(
1− p

p

) γ+η
λ

.

The constants C1
g , K1

g and the threshold p1g are obtained by imposing w(p1g) = Ωs (value matching

for the current value), w′(p1g) = 0 (smooth pasting for the current value), v(p1g) = s (value matching

for the continuation value). The last condition arises from the fact that the beliefs move continuously

in time through p1g, making it a regular boundary. Putting these calculations together, we arrive at

explicit solutions for the value functions:

v1g(p) =


gp+ f(1− p) + C̄g(1− p)

(
1−p
p

) γ
λ if p > p1g

s if p ≤ p1g

and

w1
g(p) =


Ωgp+Ωf(1− p) + βC̄1

g (1− p)
(

1−p
p

) γ
λ

+ K̄1
g (1− p)

(
1−p
p

) γ+η
λ if p > p1g

Ωs if p ≤ p1g

,
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where the constants C̄1
g , K̄1

g are

C̄1
g =

(s− f)− (g − f)p1g
1− p1g

(
p1g

1− p1g

) γ
λ

,

K̄1
g =

γ(1− β)

γ + η

(s− f)− (g − f)p1g
1− p1g

(
p1g

1− p1g

) γ+η
λ

.

The threshold is given by

p1g =
γ(s− f)

γ(g − f) + λΩ(g − s)
.

The continuation value v1g(p) is continuous but possesses a convex kink at p1g. The current value

function w1
g(p) is continuous and smooth on the entire interval [0, 1].

A.4 Proof of Proposition 3

The DM solves:

v(p, α) = s+ α · [bb(p, v)− c(p)],

w(p) = s− η

γ
w(p) + max

α∈[0,1]
α · [bb(p, w)− c(p) +

ηβ

γ
v(p, α)], (A.19)

with s ≤ v(p, α) ≤ g, Ωs ≤ w(p) ≤ Ωg, and where c(p) and bb(p, ·) are given by (A.2) and (A.3).

Due to linearity in α, this system admits a bang-bang solution with v(p) = s, w(p) = Ωs, when

α = 0 and v(p), w(p) satisfying the following system when α = 1:

(γ + λ(1− p))v(p)− λp(1− p)v′(p) = λ(1− p)s+ γ(gp+ f(1− p)), (A.20)

(γ + λ(1− p) + η)w(p)− λp(1− p)w′(p) = γ(gp+ f(1− p)) + λΩ(1− p)s+ ηβv(p). (A.21)

The boundary condition s ≤ v(p, α) ≤ g ensures that (A.5) is a solution to (A.20), so that the

right branch of the value function v∗b in the exponential case aligns with the right branch of the

continuation value function in the (β, η)-model. The differential equation (A.21) also admits only a

particular solution under the presence of the bounds Ωs ≤ w(p) ≤ Ωg:

w(p) = Ωgp+ C̄1
b (1− p), (A.22)

C̄1
b =

γ + λ+ ηβ

γ + λ+ η

γf

γ + λ
+

γ + λ+ ηβ

γ + λ+ η

γλs

(γ + λ)(γ + η)
+

ληβs

(γ + λ)(γ + η)
. (A.23)
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Value matching of the solutions for α = 0 and α = 1 for the current value function yields the desired

threshold value (13) and allows again for explicit solutions for the value functions:

v1b (p) =


gp+ γf+λs

γ+λ if p ≥ p1b

s if p < p1b

and

w1
b (p) =


Ωgp+ C̄1

b (1− p) if p ≥ p1b

Ωs if p < p1b

.

Both value functions are piecewise linear. The continuation value function exhibits a discontinuity

at p1b , while the current value function exhibits a convex kink at p1b .

A.5 Proof of Theorem 1

A.5.1 Part 1

Positive Feedback – Fix α′ : [0, 1] → [0, 1], the future selves’ strategy. The value functions

then satisfy the Bellman system

v(p, α′) = s+ α′(p) · [bb(p, v)− c(p)], (A.24)

w(p) = s+
η

γ
[βv(p, α′)− w(p)] + max

α∈[0,1]
α · [bb(p, w)− c(p)], (A.25)

with the boundary conditions

s ≤ v(p) ≤ g, (A.26)

Ωs ≤ w(p) ≤ Ωg, (A.27)

and where w(0) = Ωs, v(0) = s.

The current self’s best response, denoted by α∗
b , is determined by comparing the opportunity
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cost of playing R with the expected private benefit:

α∗
b(p)


= 1 if c(p) < bb(w, p)

∈ [0, 1] if c(p) = bb(w, p)

= 0 if c(p) > bb(w, p)

. (A.28)

Note that playing R is strictly dominant for p > pm. Hence, in any SMPE, there must exist

p̄b ≤ pm such that current self is indifferent between S and R at p̄b, but plays R exclusively at all

higher beliefs.

Lemma A.1. In any SMPE, p̄b = pnb , where pnb is the solution of the naive problem.

Proof. By definition 3, the naive problem is characterized by the Bellman system (A.24), (A.25),

along with the boundary conditions (A.26), (A.27), with α′(p) = Ip≥p∗ . Thus, the continuation

value function is given by (A.6). The resulting Bellman system is linear in α, hence it exhibits a

bang-bang solution, with switching threshold pnb . Clearly pnb > p∗, thus beliefs fall into three regions:

all selves play S (p < p∗), the current self plays S and the future selves play R (p ∈ [p∗, pnb )), and

all selves play R (p ≥ pnb ).

When all selves play the same action, the values are known and coincide with the single-player

solution: in the first region, the current value function is Ωs, in the third region, it is given by (A.22).

When the future selves play R (with the value v(p) = gp+ γf+λs
γ+λ ) and the current self plays S, the

current value function is given by:

w2(p) = s+
η

γ
[βv(p)− w2(p)],

w2(p) =
γ

γ + η

γs+ ηβf

γ + λ
+Ω

λs

γ + λ
+

ηβ

γ + η

γ(g − f) + λ(g − s)

γ + λ
p. (A.29)

The threshold that constitutes the best response to p∗ balances the value from the experimentation,

(A.22), and pulling S, (A.29):

w2(p
n
b ) = Ωgpnb + C̄1

b (1− pnb ).

This equation holds at

pnb ≡ γ(s− f)

γ(g − f) + λ γ(γ+λ+ηβ)
γ(γ+λ+η)+λη(1−β) (g − s)

,

defining the optimal naive threshold strategy αb(p) = Ip≥pn
b
. For the current self, experimentation
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yields higher value as belief increases, conditional on future selves experimenting at the belief p.

Thus, the current self commences experimentation at p̄b ≤ pnb .

We now argue that p̄b = pnb . Toward a contradiction, suppose future selves employs a strategy

α̃ such that α̃(p) = 1 for p ≥ p̃, where p̃ < pnb . We show that deviation S at some belief pwg ≥ p̃

is profitable. Consider the interval [p̃, pnb ). Here, the future selves play R, yielding v(p) = gp +

γf+λs
γ+λ (1− p). The present value to the current self from the putative deviation is then:

wdev(p
w
g ) =

γ

γ + η
s+

ηβ

γ + η
[gpwg +

γf + λs

γ + λ
(1− pwg )].

Comparing this value with the value from full experimentation (a linear function, given by (A.22))

gives wdev(p) > Ωgp+C̄1
b (1−p) on the interval [p̃, pnb ), thus generating the desired contradiction.

Thus, on the interval [p̄b, 1], both selves experiment. The differential equation (A.24) provides

the continuation value function on this interval:

v3(p) = gp+
γf + λs

γ + λ
(1− p).

From the Bellman equation (A.25), the current value w3(p) is the solution of the differential

equation

w3(p) = gp+ f(1− p) +
η

γ
[βv3(p)− w3(p)] +

λ(1− p)

γ
(Ωs− w3(p) + pw′

3(p))

with the boundary conditions (A.27). The problem the current self solves aligns with the single-

player problem (A.21) when both selves experiment. Thus, the solution coincides with (A.22) for

p ∈ [p̄b, 1]. One can also verify that c(p) < b(w3, p) for p ∈ (p̄b, 1], with equality at p̄b, so that on

(p̄b, 1],

w3(p) >
γ

γ + η
s+

ηβ

γ + η
v3(p)

and

w3(p̄b) =
γ

γ + η
s+

ηβ

γ + η
v3(p̄b). (A.30)

Using the condition c(p) = b(w, p) from (A.28), we obtain an explicit representation for w on
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the region of indifference:

λ(1− p)

γ
[w(0)− w(p) + pw′(p)] = s− gp− f(1− p). (A.31)

with the boundary condition w(p̄b) = w3(p̄b) (again, due to the indifference). The unique solution

for p < p̄b is given by

w2(p) =
γ + ηβ

γ + η
s− γ

λ
(s− f) +

γ

λ
(g − s)p ln

(
1− p

p

)
+ C̄eq

b p, (A.32)

C̄eq
b = Ωg − C̄1

b +
C̄1

b − Ωs+ γ
λ (s− f)

p̄b
− γ

λ
(g − s) ln

(
1− p̄b
p̄b

)
.

w2(p) is a concave and increasing function for p < p̄b.

Combining (A.28) and (A.25), we can relate w2(p) and v2(p) through a simple linear transform:

w2(p) = s+
η

γ
[βv2(p)− w2(p)]. (A.33)

The condition w2(p̄b) = w3(p̄b) implies continuity of v(p) at p̄b (v2(p̄b) = v3(p̄b)). To see this,

combine (A.30) and (A.33):

v2(p̄b) =
γ + η

ηβ
w2(p̄b)−

γ

ηβ
s =

γ + η

ηβ
w3(p̄b)−

γ

ηβ
s = v3(p̄b).

We can also verify that the smooth-pasting condition holds for the current value function at p̄b:

w2(p̄b) = s+
η

γ
[βv2(p̄b)− w2(p̄b)]

= s+
η

γ
[βv3(p̄b)− w3(p̄b)]

= s+
η

γ
[βv3(p̄b)− w3(p̄b)] + [bb(p̄b, w3)− c(p̄b)].

Hence, at the upper threshold bb(p̄b, w3) = c(p̄b) = bb(p̄b, w2). Using the definition of the expected

benefit function and the value matching for w(p), we have

w′
2(p̄b) =

γc(p̄b)

λp̄b(1− p̄b)
− Ωs

p̄b
+

w2(p̄b)

p̄b
=

γc(p̄b)

λp̄b(1− p̄b)
− Ωs

p̄b
+

w3(p̄b)

p̄b
= w′

3(p̄b).

We may use the explicit formula for w2 to derive the unique belief
¯
pb at which w2(p) reaches the
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level Ωs, so that S is played at all p <
¯
pb. In particular,

¯
pb satisfies the following equation

Ωg − C̄1
b +

C̄1
b − Ωs+ γ

λ (s− f)

p̄b
−γ

λ
(g − s) ln

(
1− p̄b
p̄b

)
=

γ

λ

(s− f)

¯
pb

− γ

λ
(g − s) ln

(
1−

¯
pb

¯
pb

)
(A.34)

and defines the strategy:

αb(p) =


1 if p ≥ p̄b

α̃b(p) if p ∈ [
¯
pb, p̄b)

0 if p <
¯
pb

, (A.35)

where α̃b(p) is defined by (A.33) and

v2(p) = s+ α̃b(p) · [bb(p, v2)− c(p)].

Lemma A.2. The function α̃b(p), determining the interior allocation, is continuous, strictly in-

creasing, with a bounded derivative on [
¯
pb, p̄b). At

¯
pb, α̃b(

¯
pb) = 0, and limp↑p̄b

αb(p) < 1.

Proof. The continuation value function v2(p) admits two representations on the interval [
¯
pb, p̄b).

First, (A.33) links the current and the continuation value functions

w2(p) =
γ

γ + η
s+

ηβ

γ + η
v2(p). (A.36)

Second, (A.24) implies that

v2(p) = s+ α̃b(p)

[
λ(1− p)

γ
[s− v2(p) + pv′2(p)]− [s− gp− f(1− p)]

]
.

Together with (A.36), this implies

w2(p)−
γ + ηβ

γ + η
s = α̃b(p)

γ + η(1− β)

γ + η
[(s− f)(1− p)− (g − s)p]. (A.37)

The left-hand side of (A.37) is a non-negative (zero at p =
¯
pb and positive on (

¯
pb, p̄b)), continuous,

strictly increasing function on the interval [
¯
pb, p̄b). The coefficient γ+η(1−β)

γ+η [(s−f)(1−p)− (g− s)p]

is a positive, strictly decreasing function on [
¯
pb, p̄b), so α̃b(p) is a non-negative, continuous, strictly

increasing function, and α̃b(
¯
pb) = 0.
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At p̄b, value matching for the current value function holds: limp↑p̄b
w2(p) = limp↓p̄b

w3(p), making

(A.37) equivalent to

lim
p↑p̄b

α̃b(p) = lim
p↓p̄b

γ + η

γ + η(1− β)
· w3(p)− Ωs

(s− f)− (g − f)p
=

η2β(1− β)

(γ + η(1− β))(γ + λ+ ηβ)
< 1.

The boundedness of the derivative follows from the positivity, boundedness, and bounded deriva-

tive of the right-hand side of expression (A.37), along with the boundedness and bounded derivative

of the left-hand side, all on the interval [
¯
pb, p̄b).

The continuation value function

vb(p) =


v3(p) if p ≥ p̄b

v2(p) if p ∈ [
¯
pb, p̄b)

s if p <
¯
pb

,

and the current value function

wb(p) =


w3(p) if p ≥ p̄b

w2(p) if p ∈ [
¯
pb, p̄b)

Ωs if p <
¯
pb

satisfy the system of the Bellman equations (A.24), (A.25) with the boundary conditions (A.26),

(A.27), with the maximum of w(p) achieved at αb(p), given by (A.35). The best-response analysis

demonstrates optimality for all p where w(p) is smooth. Due to smooth pasting obtaining at p̄b, w(p)

is smooth on the whole interval (
¯
pb, 1]. Equilibrium uniqueness is then a result of the uniqueness of

p̄b,
¯
pb and the interior allocation αb(p) for p ∈ [

¯
pb, p̄b) as given in (A.37).

Negative Feedback – Fix α′ : [0, 1] → [0, 1], the future selves’ strategy. The value functions

then satisfy the Bellman system

v(p, α′) = s+ α′(p) · [bg(p, v)− c(p)], (A.38)

w(p) = s+
η

γ
[βv(p, α′)− w(p)] + max

α∈[0,1]
α · [bg(p, w)− c(p)], (A.39)
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with the boundary conditions (A.26), (A.27) and with w(1) = Ωg, v(1) = g. Denote the current

self’s best response by α∗
g. We again arrive at the best-response system:

α∗
g(p)


= 1 if c(p) < bg(w, p)

∈ [0, 1] if c(p) = bg(w, p)

= 0 if c(p) > bg(w, p)

. (A.40)

Note that playing S is strictly dominant at p < p∗. Hence, in any SMPE, there must exist

¯
pg ≥ p∗ such that the current self is indifferent between S and R at

¯
pg, but plays S exclusively at

all lower beliefs.

Lemma A.3. In any SMPE,
¯
pg = p1g.

Proof. In any SMPE, the current value can never exceed w1
g , the solution of the single-player problem,

since in the single-player problem, optimization takes place over both the present and the future.

Therefore,
¯
pg ≥ p1g. Suppose future selves plays a strategy α̃ such that α̃(p) = 0 for all p ≤ p̃, where

p̃ > p1g. We show that a deviation by the current self to switching at a lower belief pwg ∈ (p1g, p̃) is

profitable. This follows from the fact that playing R exclusively on the interval (p1g, p̃) will generate

a current value w(p) > s. On the interval (p1g, p̃), v(p) = s and the current value function under full

experimentation satisfies

(γ + λp+ η)w(p) + λp(1− p)w′(p) = (γ + λΩ)gp+ γf(1− p) + ηβs.

The solution is

wdev(p) =
γf + ηβs

γ + η
+

[
γ(g − f)

γ + η
+ λ

ηβ(g − s)

(γ + η)(γ + λ+ η)

]
p+ C̄dev(1− p)

(
1− p

p

) γ+η
λ

,

where C̄dev is a constant of integration, defined by the value matching condition at p1g: wdev(p
1
g) = Ωs.

Moreover, at this point, the right derivative (wdev)
′
+(p

1
g) = 0. The function wdev(p) is convex and

strictly increasing, and hence wdev(p
w
g ) > s for all pwg ∈ (p1g, p̃).

Below
¯
pg, the continuation value function is v(p) = s and the current self has the value function

w(p) = Ωs (since p <
¯
pg < pm, c(p) > bg(w, p) = 0).

Next, on the indifference region where c(p) = bg(w, p), the value function w2(p) is the unique
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solution of the differential equation

λp

γ
[w(1)− w(p)− (1− p)w′(p)] = s− gp− f(1− p). (A.41)

subject to the boundary condition w2(
¯
pg) = Ωs. This pins down the constant of integration:

w2(p) =
γ

λ
(g − s) + Ωg +

γ

λ
(s− f)(1− p) ln

(
1− p

p

)
+ C̄eq

g (1− p), (A.42)

C̄eq
g = −

Ω(g − s) + γ
λ (g − s)

1−
¯
pg

− γ

λ
(s− f) ln

(
1−

¯
pg

¯
pg

)
.

Smooth pasting holds automatically at
¯
pg, which can be verified by estimating (A.41) at

¯
pg and

applying the value-matching condition. The Bellman equation (A.39) and the best response (A.40)

determine the relation between w2(p) and v2(p) and so the strategy α̃g in the indifference region is

defined by:

w2(p) =
γ

γ + η
s+

ηβ

γ + η
v2(p), (A.43)

v2(p) = s+ α̃g(p) · [bg(p, v2)− c(p)]. (A.44)

Lemma A.4. The function α̃g(p) (given by (A.43) and (A.44)) is a continuous, strictly increasing,

convex function on [
¯
pg, p

c), where

pc =
γ(s− f)

γ(g − f) + λ γ
γ+η(1−β) (g − s)

< pm,

and where α̃g(
¯
pg) = 0, limp↑pc α̃g(p) = +∞.

Proof. Substitute (A.42) and the expression for v2(p) (given by (A.43)) into (A.44):

w2(p)−
γ + ηβ

γ + η
s = α̃g(p)

[
γ + η(1− β)

γ + η
(s− f)(1− p)− γ + λ+ η(1− β)

γ + η
(g − s)p

]
(A.45)

The left-hand side of (A.45) is a non-negative (it takes zero value at
¯
pg and is positive on (

¯
pg, p

c)),

continuous, and strictly increasing function on [
¯
pg, p

c). The linear coefficient[
γ+η(1−β)

γ+η (s− f)(1− p)− γ+λ+η(1−β)
γ+η (g − s)p

]
is a positive, strictly decreasing function on [

¯
pg, p̄g).

Hence, α̃g(p) is a non-negative, continuous, strictly increasing function on [
¯
pg, p

c).

At p =
¯
pg, α̃(

¯
pg) = 0 as the left-hand side turns to zero, while the coefficient on the right-hand
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side does not. When p approaches pc, the coefficient on the right-hand side tends to 0 (whereas

w2(p)− γ+ηβ
γ+η s does not), thus proving limp↑pc α̃g(p) = +∞.

Convexity follows from the fact that α̃g can be represented as a ratio of a non-negative, increasing,

convex function divided by a positive, decreasing, linear function.

By Lemma A.4 and the intermediate value theorem, there exists a unique cut-off p̄g < pc < pm

such that α̃g(p̄g) = 1. We now conclude the proof of equilibrium uniqueness, by demonstrating that

the upper threshold in any equilibrium is necessarily equal to p̄g. Were it higher, indifference could

clearly not be maintained as p̄g is the highest point at which α̃g(p) ≤ 1. Were it lower, we will

explicitly construct a profitable deviation for the current self.

Lemma A.5. The following conditions are equivalent:

1. α̃g(p̄g) = 1;

2. p̄g satisfies the following equation:

γ

λ

γ + η

ηβ
(s− f)(1− p̄g) ln

(
1− p̄g
p̄g

)
+

γ + η

ηβ
C̄eq

g (1− p̄g) =

=
γ + η

ηβ
(s− f)(1− p̄g)−

γ + λ+ η

ηβ
(g − s)

(γ
λ
+ p̄g

)
− (g − f)(1− p̄g). (A.46)

Proof. In the interior allocation region, α̃g(p) is given by the equation (A.45). Consider this equation

at the point p̄g. Then, by definition, α̃g(p̄g) = 1. Substituting the explicit expression for w2(p̄g)

from (A.42) yields the result.

Lemma A.6. There exists a unique equilibrium of the form:

αg(p) =


1 if p ≥ p̃g

α̃g(p) if p ∈ [
¯
pg, p̃g)

0 if p <
¯
pg

, (A.47)

where p̃g = p̄g.

Proof. Suppose that the strategy αv
g taking the form (A.47) constitutes a SMPE. Consider a devia-
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tion of the form

αw
g (p) =



1 if p ≥ pwg

0 if p ∈ [p̃g, p
w
g )

α̃g(p) if p ∈ [
¯
pg, p̃g)

0 if p <
¯
pg

. (A.48)

We prove that if p̃g < p̄g, then both the continuation value and current value under the deviation

will exhibit a convex kink at p̃g, and hence there exists ε > 0 such that for all p ∈ [p̃g, p̃g + ε),

deviating to αw
g is profitable.

Under αv
g , the current value consists of three pieces, one in each of the three regions. When

p <
¯
pg, all selves use S and so vv1(p) = s, wv

1(p) = Ωs. When p ∈ [
¯
pg, p̃g), all selves use the interior

allocation α̃g(p), uniquely defined through (A.43) and (A.44). The continuation value function is

given by

vv2(p) =
γ

λ

γ + λ+ η

ηβ
(g − s) + g +

γ

λ

γ + η

ηβ
(s− f)(1− p) ln

(
1− p

p

)
+

γ + η

ηβ
C̄eq

g (1− p)

and the current value function satisfies the equation (A.41). When p ∈ [p̃g, 1], all selves play R and

hence the continuation value solves (A.38) with α′(p) = 1. The solution is:

vv3(p) = gp+ f(1− p) + C(1− p)

(
1− p

p

) γ
λ

(A.49)

for some constant C. The current value function is determined by the equation:

wv
3(p) = gp+ f(1− p) +

η

γ
[βvv3(p)− wv

3(p)] +
λp

γ
(Ωg − wv

3(p)− (1− p)(wv
3)

′(p)).

The solution is

wv
3(p) = Ωgp+Ωf(1− p) + βC(1− p)

(
1− p

p

) γ
λ

+K(1− p)

(
1− p

p

) γ+η
λ

.

Under the putative SMPE αv
g , the continuation value function is continuous, so that vv1(

¯
pg) = vv2(

¯
pg)

and vv2(p̃g) = vv3(p̃g). The second value matching condition defines the constant of integration C in

(A.49). Furthermore, the current value function is then necessarily smooth, satisfying both value

matching and smooth pasting conditions at the same points: wv
1(
¯
pg) = wv

2(
¯
pg), wv

2(p̃g) = wv
3(p̃g),
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(wv
1)

′(
¯
pg) = (wv

2)
′(
¯
pg), and (wv

2)
′(p̃g) = (wv

3)
′(p̃g).

Now suppose the current self employs the strategy αw
g (p). This divides the interval [0, 1] into four

distinct regions, given by (A.48). Examine the two intermediate regions: [
¯
pg, p̃g), where all selves

play α̃g(p), and [p̃g, p
w
g ), where future selves play R, while the current self deviates to S. When

p ∈ [
¯
pg, p̃g), the continuation and current value functions are given by αv

g , so that vv2(p) = vw2 (p)

and wv
2(p) = ww

2 (p). When p ∈ [p̃g, p
w
g ), vv3(p) = vw3 (p), and from the Bellman equation (A.39), the

current value function satisfies the equation

ww
3 (p) = s+

η

γ
[βvw3 (p)− ww

3 (p)]. (A.50)

To demonstrate that αw
g constitutes a profitable deviation from αv

g , we compare the right deriva-

tives of the current value functions at point p̃g. If w′
+(p) ≡ (wv

3)
′(p̃g) < (ww

3 )
′(p̃g), then there exists

ε > 0 such that for all p ∈ [p̃g, p̃g + ε), ww
3 (p) > wv

3(p) and so the deviation αw
g is profitable.

In the interior allocation region [
¯
pg, p̃g), the current value functions for the two strategies αv

g and

αw
g coincide. Moreover, they are linear transformations of the continuation value function, leading

to:

(wi
2)

′(p) =
ηβ

γ + η
(vi2)

′(p), i ∈ {v, w}.

Hence, we can express (wv
3)

′(p̃g) = (wv
2)

′(p̃g) =
ηβ
γ+η (v

v
2)

′(p̃g). From (A.50), (ww
3 )

′(p) = ηβ
γ+η (v

w
3 )

′(p)

and so at p̃g, (ww
3 )

′(p̃g) =
ηβ
γ+η (v

v
3)

′(p̃g). Therefore,

(wv
3)

′(p̃g) < (ww
3 )

′(p̃g) ⇐⇒ (vv2)
′(p) < (vv3)

′(p̃g).

To prove this inequality, consider the difference

(vv2)
′(p)− (vv3)

′(p̃g)

= −γ

λ

γ + η

ηβ
(s− f)

1

p̃g
− γ

λ

γ + η

ηβ
(s− f) ln

(
1− p̃g
p̃g

)
− γ + η

ηβ
C̄eq

g − (g − f) + C
γ + λp̃g
λp̃g

(
1− p̃g
p̃g

) γ
λ

=
γ

ηβ

γ + λ+ η

λ
(g − s)(

γ

λ
+ p̃g) + (g − f)(1− p̃g) +

γ

λ

γ + η

ηβ
(s− f)(1− p̃g) ln

(
1− p̃g
p̃g

)
−

− γ + η

ηβ
(s− f)(1− p̃g) +

γ + η

ηβ
C̄eq

g (1− p̃g) ≡ F (p̃g).

By (A.46), F (p̄g) = 0. To prove that F (p̃g) < 0 for p̃g < p̄g, we demonstrate that F (p̃g) is an
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increasing function of p̃g.

(F (p̃g))
′ =

γ(γ + λ+ η) + λη(1− β)

ληβ
(g − f) +

γ + λ+ ηβ

ηβ
(g − s)− γ

λ

γ + η

ηβ
(s− f)

1

p̃g
>0

+

+
γ

λ

γ + η

ηβ
(s− f) ln

(
p̃g

¯
pg

1−
¯
pg

1− p̃g

)
≥0

> 0,

where both inequalities are direct consequences of p̃g ≥
¯
pg. Hence, for p̃g < p̄g, (wv

3)
′(p̃g) <

(ww
3 )

′(p̃g), leading to a contradiction. Thus, p̃g = p̄g in a SMPE, which completes the proof of

uniqueness.

Given the equilibrium strategy (A.47), we can now define the value functions for the experimen-

tation region (p ≥ p̄g). In this region, the value functions v3(p) and w3(p) satisfy the system of the

differential equations (A.17), (A.18) with the boundary conditions v2(p̄g) = v3(p̄g), w2(p̄g) = w3(p̄g).

v3(p) = gp+ f(1− p) + ¯̄Ceq
g (1− p)

(
1− p

p

) γ
λ

,

w3(p) = Ωgp+Ωf(1− p) + β ¯̄Ceq
g (1− p)

(
1− p

p

) γ
λ

+ ¯̄Keq
g (1− p)

(
1− p

p

) γ+η
λ

,

where the constants are given by

¯̄Ceq
g =

γ + η

ηβ

(s− f)−
[
(g − f) + λ

γ+η (g − s)
]
p̄g

1− p̄g

(
p̄g

1− p̄g

) γ
λ

(A.51)

¯̄Keq
g =

[
−γ(1− β)

γ + η
[gp̄g + f(1− p̄g)] +

γ

η
s−

−γ

η

[
γ

λ
(g − s) + Ωg +

γ

λ
(s− f)(1− p̄g) ln

(
1− p̄g
p̄g

)
+ C̄eq

g (1− p̄g)

]]
1

p̄g

(
p̄g

1− p̄g

) γ+λ+η
λ

.

The first derivative of the current value function is continuous at the upper threshold p̄g. The

argument resembles the one for the positive feedback case. Two value-matching conditions and the

Bellman equation (A.39) provide us with bg(p̄g, w3) = c(p̄g) = bg(p̄g, w2). This equality, together

with w2(p̄g) = w3(p̄g), implies that the smooth pasting condition w′
2(p̄g) = w′

3(p̄g) holds.

Lemma A.7. Smooth pasting holds for the continuation value function at the upper threshold:

v′2(p̄g) = v′3(p̄g).
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Proof. Due to the continuity of v(p) and αg(p) at the upper threshold p̄g:

v2(p̄b) = s+ [bg(p̄g, v2)− c(p̄g)]

= gp̄g + f(1− p̄g) +
λp̄g
γ

(g − v2(p̄g)− (1− p̄g)v
′
3(p̄g))

= gp̄g + f(1− p̄g) +
λp̄g
γ

(g − v3(p̄g)− (1− p̄g)v
′
2(p̄g)).

Again, from the continuity

v2(p̄b) = v3(p̄b)

= s+ [bg(p̄g, v3)− c(p̄g)]

= gp̄g + f(1− p̄g) +
λp̄g
γ

(g − v3(p̄g)− (1− p̄g)v
′
3(p̄g)).

Hence, v′2(p̄g) = v′3(p̄g).

Therefore, the continuation value function is

vg(p) =


v3(p) if p ≥ p̄g

v2(p) if p ∈ [
¯
pg, p̄g)

s if p <
¯
pg

,

the current value function has a form

wg(p) =


w3(p) if p ≥ p̄g

w2(p) if p ∈ [
¯
pg, p̄g)

Ωs if p <
¯
pg

.

They satisfy the Bellman system of equations (A.38), (A.39) with the boundary conditions (A.26),

(A.27). w(p) attains its maximum at αg(p), given by (A.47). The optimality follows from the

best-response analysis, and the uniqueness is a result of Lemma A.6.

Transparent Feedback – The Bellman system that defines the equilibrium solution under

transparent feedback is

v(p, α′) = s+ α′(p) · [bf (p, v)− c(p)], (A.52)
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w(p) = s+
η

γ
[βv(p, α′)− w(p)] + max

α∈[0,1]
α · [bf (p, w)− c(p)], (A.53)

with the boundary conditions (A.26), (A.27) and with w(1) = Ωg, w(0) = Ωs, v(1) = g, v(0) = s.

The absence of the belief’s drift makes the system linear in w(p). The best-response is again given

by

α∗
f (p)


= 1 if c(p) < bf (w, p)

∈ [0, 1] if c(p) = bf (w, p)

= 0 if c(p) > bf (w, p)

. (A.54)

Due to linearity, in the indifference region (c(p) = bf (w, p)), the current value function is easily

solved for:

w2(p) = Ωs− γ

λ
(s− f) +

[γ
λ
(g − f) + Ω(g − s)

]
p. (A.55)

This gives us the expression for v2(p) on the interior region, which is unique due to the uniqueness

of w2(p):

w2(p) = s+
η

γ
[βv2(p)− w2(p)],

v2(p) = s− γ

λ

γ + η

ηβ
(s− f) +

γ + η

ηβ

[γ
λ
(g − f) + Ω(g − s)

]
p.

In a SMPE, the optimal action of the current self must coincide with the action α′ chosen by the

future selves. If all selves exclusively play S, the current value function achieves its minimum of

Ωs, and similarly, the continuation value is s. The threshold
¯
pf is determined thus by the condition

w2(p) = Ωs. More specifically,

¯
pf =

γ(s− f)

γ(g − f) + λΩ(g − s)
≡

¯
pg.

If all selves exclusively play R, the current value function w3(p) aligns with (A.22). The continuation

value function v3(p) is given by the equation (A.15). Simple algebra confirms that the point of

indifference between an interior allocation and full experimentation (w2(p) = w3(p)) is reached at

p̄f =
γ(s− f)

γ(g − f) + λ γ(γ+λ+ηβ)
γ(γ+λ+η)+λη(1−β) (g − s)

≡ p̄b, (A.56)
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completing the definition of the strategy:

αf (p) =


1 if p ≥ p̄b

α̃f (p) if p ∈ [
¯
pg, p̄b)

0 if p <
¯
pg

, (A.57)

where α̃f (p) satisfies

v2(p) = s+ α̃f (p) · [bf (p, v2)− c(p)].

Lemma A.8. The function α̃f (p) is a continuous, strictly increasing, convex function on [
¯
pg, p

c)

such that α̃f (
¯
pg) = 0, limp↑pc α̃f (p) = +∞, α̃f (p̄g) = 1.

Proof. From the equivalence of two representations of v2(p), the characterization of α̃f is given by

w2(p)−
γ + ηβ

γ + η
s = α̃f (p)

[
γ + η(1− β)

γ + η
(s− f)(1− p)− γ + λ+ η(1− β)

γ + η
(g − s)p

]
. (A.58)

The left-hand side of (A.58) is non-negative (specifically, it is zero at p =
¯
pg and positive for all

p ∈ (
¯
pg, p

c)), linear, and strictly increasing. The coefficient on the right-hand side is a positive

decreasing function that reaches 0 at pc. Hence, α̃f (p) is a non-negative, strictly increasing function

on [
¯
pg, p

c), attaining 0 at p =
¯
pg. In the limit p ↑ pc, the coefficient on the right-hand side tends to

0, while the function on the left-hand side remains positive, ensuring the limit limp↑pc α̃f (p) = +∞.

The result α̃f (p̄b) = 1 follows from straightforward algebra (evaluating (A.58) at p̄b).

Convexity follows from the fact that we can represent α̃f as a ratio of a non-negative, increasing,

linear function divided by a positive, decreasing, linear function.

The continuation value function

vf (p) =


v3(p) if p ≥ p̄b

v2(p) if p ∈ [
¯
pg, p̄b)

s if p <
¯
pg

,
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the current value function

wf (p) =


w3(p) if p ≥ p̄b

w2(p) if p ∈ [
¯
pg, p̄b)

Ωs if p <
¯
pg

,

satisfy the system of the Bellman equations (A.52), (A.53) with the boundary conditions (A.26),

(A.27), achieving the maximum at αf (p).

A.5.2 Part 2

Consider the strategy αg(p). From Lemma A.4, it follows that αg(p) is continuous on the interval

[0, 1], strictly increasing on the interval [
¯
pg, p̄g) (since, by construction, p̄g < pc), and αg(

¯
pg) = 0.

Within the intervals [0, p̄g)∪ (p̄g, 1], αg(p) remains constant, and so have a bounded derivative. Also

by Lemma A.4, within the interval [
¯
pg, p̄g), the derivative increases and approaches infinity only as

p ↑ pc > p̄g, remaining bounded within [
¯
pg, p̄g). Hence, αg(p) is Lipschitz continuous on [0, 1].

The argument for αf (p) follows the same principle, applying Lemma A.8 instead of Lemma A.4.

According to Lemma A.2, αb(p) is continuous on [
¯
pb, p̄b) with αb(

¯
pb) = 0, and αb(p̄b) < 1,

thereby exhibiting a discontinuity at p = p̄b. On the interval (p̄b, 1], the function αb(p) is constant,

thus Lipschitz continuous. Within the interval [0, p̄b), αb(p) remains continuous, with a bounded

derivative (Lemma A.2). Therefore, αb(p) is also Lipschitz continuous on [0, p̄b).

A.5.3 Part 3

Using (A.30) and the fact that

γ + ηβ

γ + η
>

γ(γ + λ+ ηβ)

γ(γ + λ+ η) + λη(1− β)
> 0,

we obtain the order
¯
pg < p̄b < pm. By construction,

¯
pi ≤ p̄i, i ∈ {b, g}. Moreover, p̄i ≤ pm and

¯
pi ≥ p∗, leaving two inequalities for the verification. To show that

¯
pb <

¯
pg, introduce the auxiliary

functions:

G1(p) ≡ Ωg − C̄1
b +

C̄1
b − Ωs+ γ

λ (s− f)

p
− γ

λ
(g − s) ln

(
1− p

p

)
G2(p) ≡

γ

λ

(s− f)

p
− γ

λ
(g − s) ln

(
1− p

p

)
.
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Then (A.34), the expression that defines the lower threshold for the positive feedback, transforms

into G1(p̄b) = G2(
¯
pb). G2(p) is a decreasing function on the interval [p∗, pm):

(G2(p))
′ =

γ

λ

[(s− f) + (g − s)] p− (s− f)

(1− p)p2
< 0.

The explicit comparison G2(
¯
pg) < G1(p̄b) = G2(

¯
pb) leads to the desired inequality

¯
pg >

¯
pb. To show

p̄b < p̄g, introduce

H1(p) ≡
γ + η

ηβ

Ω(g − s) + γ
λ (g − s)

1− p
+

γ

λ

γ + η

ηβ
(s− f) ln

(
1− p

p

)
H2(p) ≡

γ + λ+ η

ηβ
(g − s)

γ + λp

λ(1− p)
+ (g − f) +

γ

λ

γ + η

ηβ
(s− f) ln

(
1− p

p

)
− γ + η

ηβ
(s− f)

and observe that H2(p) is an increasing function on the interval [p∗, pm]:

(H2(p))
′ =

γ + η

ηβ

[
(γ + λ)γ+λ+η

γ+η (g − s) + γ(s− f)
]
p− γ(s− f)

p(1− p)2
> 0.

The expression for the upper boundary of the interior region under negative feedback (A.46) is

equivalent to H1(
¯
pg) = H2(p̄g). From straightforward algebra, it follows that H2(p̄b) < H1(

¯
pg) =

H2(p̄g) and p̄b < p̄g.

A.6 Proof of Lemma 2

¯
pb <

¯
pf =

¯
pg follows from Theorem 1, part 3. The equality

¯
pg = p1g follows from Lemma A.3.

A.7 Proof of Lemma 3

The naive solution assumes future selves play the threshold strategy α̂i(p) = Ip≥p∗ , i ∈ {b, f},

α̂g(p) = Ip>p∗ (depending on the monitoring mode) and the current self responds optimally. The

current self solves the Bellman system that consists of (16), (17), (A.26), (A.27), where the strategy

of future selves is α′(p) = α̂i(p), i ∈ {b, g, f}. Due to the linearity of the system in α, the system

admits a threshold solution. The naive threshold pni is not below the efficient one pni ≥ p∗, splitting

the interval of beliefs into three regions: all selves play S, the current self plays S and the future

selves experiment, all selves play R.

Positive feedback – Follows immediately from Lemma A.1.
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Negative feedback – The future selves’ value function is given by (A.11). In the first region

(p ≤ p∗), the current self has the value Ωs. In the third region, where all selves experiment (p > png ),

the current value function satisfies the differential equation

(γ + λp+ η)w(p) + λp(1− p)w′(p) = γgp+ γf(1− p) + ηβv(p) + λΩgp,

v(p) = v(p) = gp+ f(1− p) + Cbr
g (1− p)

(
1− p

p

) γ
λ

. (A.59)

The solution has a form

w3(p) = Ωgp+Ωf(1− p) + βCbr
g (1− p)

(
1− p

p

) γ
λ

+Kbr
g (1− p)

(
1− p

p

) γ+η
λ

,

where Cbr
g and Kbr

g are some constants. In the region, where the current self plays S and the future

selves experiment, p ∈ (p∗, png ], the continuation value function remains (A.59), whereas the current

value changes:

w2(p) = s+
η

γ
[βv(p)− w2(p)]

w2(p) =
ηβ

γ + η
(g − f)p+

γs+ ηβf

γ + η
+

ηβ

γ + η
Cbr

g (1− p)

(
1− p

p

) γ
λ

.

The optimal threshold is determined by the standard value matching and smooth pasting conditions:

w2(p
n
g ) = w3(p

n
g ),

(w2)
′(png ) = (w3)

′(png ).

This generates the following implicit expression for the naive threshold:

γ + η

ηβ

(s− f)− [(g − f) + λ
γ+η (g − s)]png

1− png

(
png

1− png

) γ
λ

=
(s− f)− (g − f)p∗

1− p∗

(
p∗

1− p∗

) γ
λ

. (A.60)

Therefore, the optimal strategy for the current self is to play S for p ≤ png and to play R when

p > png , where png is defined by (A.60).

Corollary A.1. Represent the coefficients ¯̄Ceq
g (from (A.51)) and C̄g (from (A.12)) as the functions

of p̄g and p∗ respectively. Then (A.60) is equivalent to ¯̄Ceq
g (png ) = C̄g(p

∗).

To verify the inequality p̄g > png , consider the functions ¯̄Ceq
g (p) and C̄g(p). ¯̄Ceq

g (p) is decreasing
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on the interval [p∗, pm]:

sign( ¯̄Ceq
g (p))′ = sign

γ + η

ηβ

γ
λ (s− f)− [ γλ (g − f) +

(
1 + γ+λ

γ+η

)
(g − s)]p

p(1− p)2

(
p

1− p

) γ
λ


= sign

 γ(s− f)

γ(g − f) + λ
(
1 + γ+λ

γ+η

)
(g − s)

− p

 < 0,

where the last inequality is derived from the fact that

p ≥ p∗ >
γ(s− f)

γ(g − f) + λ
(
1 + γ+λ

γ+η

)
(g − s)

.

p̄g > png is equivalent to ¯̄Ceq
g (p̄g) < C̄g(p

∗) = ¯̄Ceq
g (png ), which follows from vg(p) < v∗(p) on the

interval (p̄g, 1) (efficiency of the exponential benchmark).

Transparent feedback – In the transparent feedback mode, the current value functions for

p < p∗ and p ≥ pnf admit the same representation as in the positive feedback case. Moreover, since

v∗b (p) = v∗f (p), we also have in the region [p∗, pnf ), the current value function coincides with that for

the positive feedback. Together with the same optimality conditions, it leads to pnf = pnb and so

pnf = p̄f .

A.8 Proof of Lemma 4

In the proof of Lemma 3, we introduced the functions ¯̄Ceq
g (p) and C̄g(p) such that C̄1

g (p
n
g ) = C̄g(p

∗),

which is equivalent to the equation (A.60). From straightforward algebra, we find that ¯̄Ceq
g (pnb ) >

C̄g(p
∗) = ¯̄Ceq

g (png ). Since ¯̄Ceq
g (p) is a decreasing function on the interval [p∗, pm], we conclude that

pnb < png .

A.9 Proof of Proposition 4

When p ∈ [0,
¯
pb], regardless of the feedback mode, the continuation value function equals s. At

p = 1, vb(1) = vf (1) = vg(1) = g, confirming the equality W(αb; p) = W(αf ; p) = W(αg; p) (proving

part 4).

We prove the remaining statements in several steps. First, we show that on the interval [p̄b, 1),

W(αb; p) = W(αf ; p). Second, we demonstrate that the strict inequality W(αb; p) > W(αf ; p) holds
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for p ∈ (
¯
pb, p̄b). In the final step we compare the welfare for transparent feedback and negative

feedback, showing that W(αf ; p) = W(αg; p) on (
¯
pb,

¯
pg] and W(αf ; p) > W(αg; p) on (

¯
pg, 1).

Consider the interval [p̄b, 1). As verified, p̄f = p̄b, and above this threshold, the value functions

in both modes exhibit the same form vi(p) = gp + γf+λs
γ+λ (1 − p), i ∈ {b, f}. Hence, both positive

and transparent feedback deliver the same welfare: W(αb; p) = W(αf ; p).

Next, consider the interval (
¯
pb, p̄b). We show that vb is strictly concave on this interval, while

vf is weakly convex, hence proving the desired result.

Lemma A.9. vb(p) is a strictly concave function on the interval (
¯
pb, p̄b).

Proof. Take the second derivative of the value function and verify the sign on the target interval

(vb(p))
′′ =

(
γ + η

ηβ

γ

λ
(g − s) ln

(
1− p

p

)
− γ + η

ηβ

γ

λ
(g − s)

1

1− p
+

γ + η

ηβ
C̄eq

b

)′

= −γ + η

ηβ

γ
λ (g − s)

p(1− p)2
< 0.

Lemma A.10. The value function for transparent feedback is piecewise linear, weakly convex on

the interval (
¯
pb, p̄b), and weakly concave on the interval (

¯
pg, 1).

Proof. The value function for transparent feedback is as follows:

vf (p) =


gp+ γf+λs

γ+λ (1− p) if p ≥ p̄b

s− γ
λ

γ+η
ηβ (s− f) + γ+η

ηβ

[
γ
λ (g − f) + Ω(g − s)

]
p if p ∈ [

¯
pg, p̄b)

s if p <
¯
pg

.

This confirms the result.

Given that the value functions match at the boundary points of the target interval, vf (
¯
pb) =

vb(
¯
pb) and vf (p̄b) = vb(p̄b), the inequality vf (p) < vb(p) holds for interior points p ∈ (

¯
pb, p̄b) (as per

Lemma A.9 and Lemma A.10). vf (p) = vg(p) = s within the interval [
¯
pb,

¯
pg], proving W(αf ; p) =

W(αg; p) (completing the proof for part 3). Finally, consider the interval (
¯
pg, 1).

Lemma A.11. vg(p) is a convex function on the interval (
¯
pg, 1).
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Proof. Consider first vg(p) on the interval (
¯
pg, p̄g] and take the second derivative.

(v(p))′′ =

(
−γ

λ

γ + η

ηβ
(s− f)

1

p
− γ

λ

γ + η

ηβ
(s− f) ln

(
1− p

p

)
− γ + η

ηβ
C̄eq

g

)′

=

=
γ + η

ηβ

γ
λ (s− f)

(1− p)p2
> 0.

so the function vg(p) is convex on this interval. Now consider vg(p) on the interval (p̄g, 1) and show

that it is also convex:

(v(p))′′ =

(
g − f − ¯̄Ceq

g

γ + λp

λp

(
1− p

p

) γ
λ

)′

= ¯̄Ceq
g

γ(γ + λ)

λ2p(1− p)

(
1− p

p

) γ
λ

so the sign of the derivative depends on the sign of the constant ¯̄Ceq
g , defined by (A.51).

The positivity of the coefficient ¯̄Ceq
g > 0 is equivalent to p̄g < pc. This inequality follows from

the construction of the upper threshold p̄g (Lemma A.4, Lemma A.5). On (
¯
pg, 1), vg(p) is smooth.

Smoothness on each interval (
¯
pg, p̄g) and (p̄g, 1) separately follows from the explicit form of the

functions, smoothness at p̄g follows from Lemma A.7. This ensures convexity on (
¯
pg, 1).

At the boundary points the value of the value functions coincide vf (
¯
pg) = vg(

¯
pg), vf (1) = vg(1),

so by Lemma A.10 and by Lemma A.11, vf (p) > vg(p) on (
¯
pg, 1). This proves W(αf ; p) > W(αg; p)

for p ∈ (
¯
pg, 1).

A.10 Proof of Lemma 5

Part 1 – For a fixed η, αb(p) is given by (A.35), with α̃b(p) on the interval (
¯
pb, p̄b) defined by

(A.37), αg(p) is given by (A.47) with α̃g(p) on the interval (
¯
pg, p̄g), defined by (A.45), and αf (p) is

given by (A.57) with α̃f (p) on the interval (
¯
pg, p̄b), defined by (A.58). As we take the limit, they

converge to:

α∞
i (p) =


1 if p ≥ p̄∞i

α̃∞
i (p) if p ∈ [

¯
p∞i , p̄∞i )

0 if p <
¯
p∞i

, (A.61)
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where limη→∞
¯
pi =

¯
p∞i , limη→∞ p̄i = p̄∞i , i ∈ {b, g, f} (where

¯
p∞f =

¯
p∞g , p̄∞f = p̄∞b ). The order of

the thresholds stated in Theorem 1 is preserved in the limit, resulting in:

¯
p∞b <

¯
p∞g < p̄∞b < p̄∞g . (A.62)

From (A.62) together with (A.61), it immediately follows that α∞
b (p) = α∞

f (p) = α∞
g (p) on the union

of the intervals [0,
¯
p∞b ]∪ [p̄∞g , 1], α∞

b (p) > α∞
f (p) = α∞

g (p) on (
¯
p∞b ,

¯
p∞g ] and α∞

b (p) = α∞
f (p) > α∞

g (p)

on [p̄∞b , p̄∞g ).

On the remaining interval (
¯
pg, p̄b), all α∞

i (p) are determined by α̃∞
i (p). For the fixed η, i ∈

{b, g, f}, these strategies are given by (A.37), (A.45) and (A.58), exhibiting the general form of

α̃i(p) = f1(wi(p))/f
i
2(p), where f1(wi(p)) ≡ wi(p) − Ωs is a linear and increasing function of wi(p),

and f i
2(p) is a linear and decreasing function. (

¯
pg, p̄b) is the region of the interior allocation, providing

wi(p) =
γ

γ + η
s+

ηβ

γ + η
vi(p).

Along with vb(p) > vf (p) > vg(p) (Lemma A.9, Lemma A.10, Lemma A.11), this leads to wb(p) >

wf (p) > wg(p), and consequently, f1(wb(p)) > f1(wf (p)) > f1(wg(p)). At the same time

f b
2(p) ≡

γ + η(1− β)

γ + η
(s− f)(1− p)− γ + η(1− β)

γ + η
(g − s)p,

ff
2 (p) = fg

2 (p) ≡
γ + η(1− β)

γ + η
(s− f)(1− p)− γ + λ+ η(1− β)

γ + η
(g − s)p,

so that limη→∞ f b
2(p) = limη→∞ ff

2 (p) = limη→∞ fg
2 (p), completing the proof:

α̃∞
b (p) = lim

η→∞

f1(wb(p))

f b
2(p)

= lim
η→∞

f1(wb(p))

ff
2 (p)

> lim
η→∞

f1(wf (p))

ff
2 (p)

= α̃∞
f (p),

α̃∞
f (p) = lim

η→∞

f1(wf (p))

ff
2 (p)

= lim
η→∞

f1(wf (p))

fg
2 (p)

> lim
η→∞

f1(wg(p))

fg
2 (p)

= α̃∞
g (p)

on the interval (
¯
p∞g , p̄∞b ).

Part 2 – The result for
¯
pg =

¯
pf = p1g (Lemma 2), which is given by (10), and p̄b = p̄f (Theorem

1, part 3), which is given by (A.56), is immediate. The thresholds
¯
pb and p̄g are given by the implicit

expressions (A.34) and (A.46) respectively. The result that limη→0
¯
pb = limη→0 p̄g = p∗ follows from

straightforward algebra.
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