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Abstract

We study a binary action network game with strategic complementarities.
An agent acts if the aggregate social influence of her friends exceeds a transfer
levied on the agent by a principal. The principal wishes to maximize the sum
of transfers while inducing everyone to act in a unique equilibrium. The model
represents a variety of social network environments with the primary applica-
tions being network goods and social media. We characterize optimal transfers,
showing that relative degree centrality matters: agents who are more popular
than their friends receive preferential treatment from the principal. We use this
observation to show that under some mild conditions complete core-periphery
networks are the most favorable for the principal to induce action. We further
compare networks in terms of the principal’s revenue and find that more unequal
networks where links tend to have a small-degree agent as at least one of the
endpoints deliver higher revenue.
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1 Introduction

The economics literature on social networks has thrived during the past few decades.
To an extent, the growing interest in this topic has been triggered by the proliferation
of online social networks. Social media platforms in charge of online networks medi-
ate multiple facets of economic life, ranging from commercial and political campaigns
to environmental and social activism. However, while theory papers have examined
the adoption and spread of behaviors in networks, less has been written on how ex-
ternal forces, exemplified by social media, or their clients, can exploit social influence
to solve coordination problems among individuals and which networks are the most
accommodating to such efforts. In this paper, we attempt to answer these questions.

We use a canonical model of a social network, where nodes represent individu-
als/agents, and edges represent links/friendships. An individual decides whether to
take an action such as buying a product, adopting a technological standard, taking a
stance on a contentious issue, etc. Acting creates a positive externality on her friends
who took the action as well, encouraging them to act. Social influence can be driven
by psychological factors such as conformism but it can also take the form of consump-
tion benefits when the underlying action involves purchasing a network good. A novel
feature of our model is the degree-dependent network effects: individuals with many
friends are less influenced by any one of them compared to their less popular peers.
In the context of social networks, this captures the idea that as someone gains more
connections it becomes no longer possible to pay the same attention to each one of
them. An agent acts if the aggregate influence of her friends exceeds a threshold. An
external force, or principal, wishes to induce everyone to act by manipulating their
thresholds. We let a threshold represent a transfer from an individual to the principal,
and the sum of thresholds be the principal’s revenue. However, it should be clear that
the thresholds can be interpreted in different ways. In a setting of a firm selling a
network good, it is a price net of the product’s intrinsic value. Another example is a
social media platform incentivizing its users to adopt an app, such as a messenger. Here
a threshold represents an adoption cost net of the subsidy provided by the platform.
While in the former case a firm maximizes the sum of prices, and in the latter case a
platform minimizes the sum of subsidies, both correspond to the principal maximizing
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the revenue in our setting. The transfer can be a monetary incentive, or represent re-
sources spent on a targeted advertisement that reduce the subjective cost of adoption.
A set of thresholds/transfers, or a mechanism, induces a binary action network game.

We study optimal mechanisms, i.e., mechanisms that maximize the revenue while
inducing everyone to act in a unique equilibrium. The requirement of uniqueness is a
cornerstone of our analysis that captures the concern that the principal cannot coor-
dinate a group of agents to act in accordance with her preferred equilibrium. Indeed,
experiments show that such an equilibrium tends to unravel (Devetag and Ortmann,
2007). Hence, the focus on the principal-preferred equilibrium is unjustified in environ-
ments where the principal lacks the ability to shape individual beliefs, as is arguably
the case in real-world social networks.

Our model speaks to applications of strategic complementarities in networks. One
application is that of a monopoly selling a network good. A concrete example would
be for the network to represent academic coauthorship with the good being an editing
software. As more coauthors come to use a specific software, the more they would be
willing to pay for it. Another quite different environment is that of social networks,
both online and offline. In online social networks, users are exposed to the opinions
and decisions of their connections. Advertisers, political campaigners, and often the
platforms themselves benefit from having more control over users’ decisions and exploit
social influence to achieve it. Since the revenues platforms make from selling ad space
increase with the success of these ads, the platforms’ interests are aligned with those of
the advertisers. They both want sales to increase and hence they both might seek more
control over users’ decisions. There are also other external forces that use the network
to promote a goal. Crowdfunding campaigns use networks to increase contributions.
Petition websites such as change.org or the UK Parliament’s petitions website bene-
fit from being influential and utilize social networks to promote their petitions. The
same applies to a variety of websites that promote initiatives of organized activities or
boycotts for moral reasons (e.g., ethicalconsumer.org). Similar initiatives take place
offline as well, including various government campaigns (e.g., pro-COVID vaccination
or anti-smoking). These initiatives often start with significant persuasive efforts to
recruit community leaders as supporters of the initiative with the intention that their
public visibility will induce others to support it as well. As we shall see, this feature of
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the incentive mechanism will arise from our formal analysis of the model.
Our first result characterizes an optimal mechanism. Such a mechanism induces a

cascade of iterative elimination of dominated strategies, leading to the outcome where
everyone acts. But more importantly, the result highlights the role of relative rather
than absolute degree centrality in networks. We show that being more popular than
your friends guarantees preferential treatment from the principal. Such individuals pay
lower transfers (or receive higher subsidies) than the rest and take the role of network
leaders, allowing the principal to exploit their influence by raising transfers of their
friends, who expect leaders to act and are willing to pay these higher transfers.

We apply our characterization of optimal mechanisms to study the structural prop-
erties of networks that make achieving coordination easier for the principal. Put differ-
ently, we are interested in networks that guarantee higher revenue. Our motivation is
twofold. First, an interested party might want to compare exogenously given networks.
For instance, to predict the commercial success of a new network product a firm must
consider its associated network. Whether the product is a messenger or a specialized
editing software determines the structural properties of a relevant network, and hence
the product’s profitability. Second, the principal might have some control over the
network. For example, the newsfeed algorithm of Facebook partially determines how
active a link between users is. If the majority of user i’s posts are hidden from user j
and vice versa, then a nominal link would be rather inactive. Likewise, by means of
friends suggestions, the platform influences the likelihood of new links emerging.

Our main result is that under mild conditions complete core-periphery networks
guarantee the highest revenue and hence allow for the most effective coordination. In
these networks, the nodes are partitioned into two subsets, core and periphery. Every
core node is connected to all nodes and hence is a star, while every periphery node is
connected only to stars. A defining feature of core-periphery networks is that periphery
agents are not connected to each other. Our results suggest that this property generally
makes networks more attractive for the principal. We further show that one network
always delivers a higher revenue than another if it has more links with a small-degree
agent as at least one of the endpoints. The reason is that small-degree agents are more
susceptible to social influence and the principal can exploit it by charging them higher
transfers. For networks with the same degree sequence, this implies that the revenue is
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always higher in a more disassortative network where connections tend to be between
small- and high-degree agents.

In some settings a relevant question is the characterization of networks that deliver
the lowest revenue or, equivalently, require the most resources to induce action. For
instance, when the principal represents an adversarial entity trying to manipulate a
group by bribing its members, one might be interested in social structures that are the
most resilient to such manipulation. We show that for a given number of links, these
networks have as many isolated agents as possible, while other agents are tightly con-
nected to each other. Finally, we discuss several extensions that include heterogeneous
social influence and show that many insights from the original model continue to hold.

1.1 Related literature

The paper builds on a vast literature that studies how locally interacting individuals
coordinate their actions (Morris, 2000; Jackson and Yariv, 2007; Sadler, 2020a). These
papers consider games where players face a simple choice of whether to adopt some
behavior or not, and study how adoption levels and dynamics relate to characteristics
of social interaction networks. Using the binary action framework of this literature we
explore two novel questions: what are the optimal mechanisms for solving coordination
problems and which networks are more susceptible to manipulation by external forces?

Our analysis of influence mechanisms contributes to the literature on pricing and
influence in networks.1 Candogan et al. (2012), Fainmesser and Galeotti (2016), and
Bloch and Querou (2013) consider price-discriminating firms selling network goods
and explore how prices and welfare depend on network characteristics. They assume
a unique equilibrium and hence no coordination problems among consumers. Belhaj
and Deroïan (2019) study bilateral contracting in networks aimed at increasing the
sum of agents’ effort, and focus on equilibria that maximize the principal’s objective.
Computer science papers investigate the algorithmic aspects of pricing in networks

1See Bloch (2016) for a comprehensive survey. An extensive literature on targeting and interven-
tions in networks uses distinct modeling approaches. Ballester et al. (2006) studies “key” players whose
removal induces the greatest change in equilibrium aggregate action; Talamàs and Tamuz (2017) and
Galeotti et al. (2020) consider welfare-maximizing interventions; Bimpikis et al. (2016), Vohra (2020),
and Sadler (2020b) consider influencing agents who update their beliefs in a DeGroot fashion.
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(Hartline et al., 2008; Arthur et al., 2009) and influence maximization (Kempe et al.,
2003).2 Similarly to the above papers, we use the linear threshold model of Granovetter
(1978), except that we explicitly address coordination problems, adopting the unique
implementation approach currently unexplored in the network literature.3

Several network formation models address the empirical ubiquity of core-periphery
networks (Bala and Goyal, 2000; Goyal and Joshi, 2003; Goyal et al., 2006; Hojman and
Szeidl, 2008; Galeotti and Goyal, 2010; König et al., 2014; Belhaj et al., 2016; Hiller,
2017; Herskovic and Ramos, 2020). For example, Hojman and Szeidl (2008) derive
periphery-sponsored stars as a unique equilibrium of a network formation game where
individuals benefit from indirect connections, and Galeotti and Goyal (2010) show that
core-periphery networks arise as a consequence of strategic information acquisition and
network formation. Belhaj et al. (2016) show that core-periphery networks maximize
welfare when agents choose an effort level in a game of strategic complements. Our
paper is complementary to this literature because it highlights that ubiquitous core-
periphery networks might be vulnerable to manipulation by external forces.

The unique implementation approach was pioneered by Segal (1999, 2003), who
develops a general contracting model, and Winter (2004), who explores incentives pro-
vision in organizations. Babaioff et al. (2012), Bernstein and Winter (2012), Halac
et al. (2020), and Halac et al. (2021) are prominent papers in this vein. We contribute
to this literature by incorporating local externalities captured by a social network.

The paper is organized as follows. We begin with the model and an example in
Section 2. In Section 3 we characterize an optimal mechanism. In Section 4 we compare
revenue across networks, while in Section 5 we characterize optimal networks. In Section
6 we discuss heterogeneous influence. All proofs are presented in the Appendix.

2A typical problem is to find k nodes such that if these nodes act, eventually the highest number of
other nodes also choose to act. By contrast, we look for a profile of thresholds such that in the unique
equilibrium everyone acts and the sum of the thresholds is maximal. Whereas the former problem is
NP-hard, we provide a simple solution to the latter one.

3The literature on network goods uses adoption-contingent prices (Weyl, 2010; Aoyagi, 2013),
whereas we study bilateral contracting where transfers are not contingent on actions of others.
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2 Model

2.1 Setup

There are n individuals (agents) indexed by i = 1, 2, . . . , n. Each individual i decides
whether to act (xi = 1), or not (xi = 0). Individuals interact through a social network,
represented by an undirected graph with a symmetric adjacency matrixG, where gij = 1

if and only if i and j are connected (friends) and gij = 0 otherwise; by convention gii = 0.
We let di denote the number of friends of i, i.e., di =

∑
j gij. Individuals are prone

to social influence that affects their incentives to take the action: they are encouraged
to act when more of their friends do. Specifically, given a network G and an action
profile x−i = (x1, . . . , xi−1, xi+1, . . . , xn), we normalize the payoff of individual i from
abstaining, xi = 0, to zero, i.e., Ui(0, x−i, G) = 0, and let the payoff from taking the
action, xi = 1, be

Ui(1, x−i, G) = f(di)
∑
j

gijxj − ti. (1)

The term
∑

j gijxj is the number of friends of i who choose to act, and f(di) > 0 cap-
tures a social influence exerted on i by each such friend. Hence, the payoff from acting is
linearly increasing in the number of active friends. We call f a social influence function,
and assume that it is a nonincreasing function of the number of friends of an individual,
i.e., f(m) ≥ f(m + 1) for m = 1, 2, . . . , n − 1. The assumption reflects the idea that
someone with more friends is swayed less by each one of them. The term ti ≥ 0 can be
viewed as a threshold: an individual chooses to act when her aggregate social benefit
from acting, f(di)

∑
j gijxj, exceeds her threshold ti. Because f(di) > 0, the resulting

simultaneous move game with complete information has strategic complementarities,
and, typically, there are multiple equilibria.

2.2 External influence

Consider the principal who influences individuals by choosing their thresholds. Specif-
ically, we interpret a threshold ti as a transfer from individual i to the principal. An
influence mechanism is a profile of transfers, i.e., a vector t = (t1, . . . , tn). Because the
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game between the agents might have multiple equilibrium outcomes, we require that the
principal chooses the transfers in order to induce a unique equilibrium where all agents
act. Formally, an influence mechanism t is incentive-inducing (INI) if x = (1, . . . , 1) is
a unique Nash equilibrium of the simultaneous move game induced by t. Clearly, such
influence mechanisms exist because the principal can make acting a dominant strategy
for each agent i by offering ti = 0. Moreover, if t is INI, then so is each t′ < t. How-
ever, the principal also wants to maximize the revenue while inducing action. Influence
mechanism t is optimal if it has the highest revenue among all INI mechanisms, i.e.,∑
ti ≥

∑
t′i for each INI mechanism4 t′. The maximal revenue that the principal can

achieve while incentivizing all agents to act depends on the social network. Networks
that deliver a higher revenue are more attractive to the principal. A network is optimal
if its optimal influence mechanism has the highest revenue across all networks.

One application of our model is to a firm selling a network good. The principal is a
firm who posts an individual price, pi ≥ 0, and a threshold is given by ti = pi−v, where
v > 0 is an intrinsic value of the network good. Clearly, the firm chooses prices that are
weakly higher than the value and maximizing the revenue is equivalent to maximizing
the sum of the thresholds. Another example is when the principal is a social media
platform willing to incentivize its users to adopt a new online application, such as a
messenger, by providing a subsidy si ≥ 0 to each adopting user i. Adoption is costly
and so a threshold is given by ti = c − si, where c > 0 is a cost of adoption.5 In this
case the platform sets the subsidy of each user weakly below the cost, and will also act
as if it maximizes the sum of the thresholds.

In the remainder of this section we present an example based on a social influence
function naturally arising in certain settings. We use the example to illustrate the
construction of optimal influence mechanisms and compare the revenue across networks.

Example 1. Consider the case where individuals directly care about a proportion and

4Note, however, that a set of INI mechanisms is not closed, so an optimal INI mechanism may
not exist. Let I ∈ Rn be a set of INI mechanisms and Ī ∈ Rn be its closure. Formally, we say that
influence mechanism t∗ is optimal if t∗ ∈ arg maxt∈Ī

∑
ti. Hence, although our optimal mechanism t∗

may admit multiple equilibria, for every ε > 0 there exists an INI mechanisms t′ revenue from which
is only ε smaller, i.e.,

∑
t∗i − ε =

∑
t′i.

5In this situation we also assume that social influence alone is not enough to induce an agent to
act, i.e., dif(di) < c for each i.
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Figure 1: Comparing the principal’s revenues across networks.

an absolute number of friends who take the action.6 Then the social influence of each
such friend on agent i is given by

f(di) = α +
1

di
,

where α ≥ 0 is a constant part of the social influence from an acting friend. When α is
small an individual cares mostly about the relative proportion of acting friends, whose
number becomes important as α grows. We begin by illustrating the construction of
optimal influence mechanisms in each of the networks in Figure 1 and then compare
the corresponding revenues.

First, note that, in any network, the principal must induce at least one of the agents
to act even when no one else does (otherwise there will be an equilibrium in which no
one acts). Hence the transfer of one of the agents must be at most zero. In a complete
network in panel (a), all agents are symmetric in the network and therefore we can let
agent 1 pay t1 = 0. Second, in the complete network one of the remaining agents must
pay at most α+ 1/3; otherwise there is an equilibrium where only agent 1 acts. Again,
by symmetry we can let t2 = α + 1/3. Similarly, to induce one of the two remaining
agents to act when both, 1 and 2 act, the principal must ask for a transfer of at most
2α+2/3. Let t3 = 2α+2/3. Finally, agent 4 must pay at most t4 = 3α+1. In fact, this

6The examples of such situations studied in the literature include models of social comparison
(Ghiglino and Goyal, 2010) and conformity (Liu et al., 2014). For example, Ghiglino and Goyal
(2010) discuss two situations, when local aggregate action matters and when local average matters,
and provide justification for each case. Both cases are subsumed by our model.
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is an optimal influence mechanism for the complete network with the revenue of 6α+2.
Next consider a line network in panel (b). In an optimal influence mechanism we let
t1 = 0 to induce agent 1 to act when no one else does. Now to induce 2 to act when
only 1 does we let t2 = α+1/2. Furthermore, to induce 3 and 4 to act when 1 and 2 do,
we let t3 = t4 = α+ 1. The corresponding revenue is 3α+ 5/2. Finally, a star network
in panel (c) has an optimal influence mechanism where t1 = 0 and t2 = t3 = t4 = α+1.
Note that agent 2 can pay more than in the line network because all her friends are
now active. The revenue is 3α + 3.

Two observations are in order. First, note that the principle achieves a higher rev-
enue in the star network than in the line network, regardless of the influence function
f . We revisit the example in Section 4, where we introduce and characterize a domi-
nance order on networks with respect to the principal’s revenue. Second, the principal
obtains a higher revenue in the complete network if α > 1/3, and in the star network if
α < 1/3. Both graphs belong to a general class of core-periphery networks. In Section
5 we prove our main result that an optimal network is indeed a core-periphery. We also
show that the above social influence function results in a “bang bang” solution, where
generically either a star or a complete network is optimal.

3 Optimal influence mechanisms

We begin our investigation by characterizing optimal influence mechanisms for any
network. We show that individuals who have more connections than their friends have
are asked to pay lower transfers. This allows the principal to exploit their influence by
extracting surplus from their less popular friends.

Fix a network G. We generalize the construction of the optimal influence mecha-
nisms given in Example 1. We say, an influence mechanism t is tight if it is INI and
there does not exist another INI influence mechanism t′ such that for some i we have
ti < t′i and tj = t′j for all j 6= i. In words, if t is tight, then we can not increase
the transfer of any single agent without violating the requirement of the uniqueness of
equilibrium where all agents choose to act. Clearly, an optimal influence mechanism is
tight. It turns out that there is surjection between a set of permutations of agents and
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a set of tight influence mechanisms.7

Lemma 1. An influence mechanism t = (t1, . . . , tn) is tight if and only if there exists
a permutation π such that for all i,

ti = f(di)
∑

j:π(j)<π(i)

gij, (2)

where π(i) denotes a place of i in the permutation π.

Given a permutation of agents, we can use (2) to construct a tight influence mech-
anism. In this mechanism every agent transfers to the principal the social benefit
obtained from her friends that are earlier in the corresponding permutation. Notice
that despite the fact that in equilibrium everyone acts, in a tight influence mechanism
the principal does not extract the entire social benefit from each agent. For instance, in
Example 1 a permutation that corresponds to the constructed optimal influence mech-
anism in a complete network is (1, 2, 3, 4). Here the transfer of agent 2 is equal to her
social benefit from agent 1 acting, i.e., α+ 1/3. However her equilibrium social benefit
from acting is 3α + 1, and so she is left with a surplus of 2α + 2/3.

Intuitively, a permutation represents an order in which agents iteratively eliminate
dominated strategies. Indeed, in any incentive-inducing influence mechanism, there
must exist an agent who acts regardless of other agents’ decisions. That is, acting
is her dominant strategy. This agent appears first in the permutation, and so her
transfer is given by her social benefit when no one else acts, namely zero. Similarly,
there must exist one agent for whom acting is a dominant strategy conditional on the
first agent acting (otherwise we would have an equilibrium where all agents but the
first one stay still). This agent is placed second in the permutation, and pays just as
much as is her social benefit given that the first agent is acting, and so on. Hence,
for each incentive-inducing mechanism we can inductively construct a corresponding
permutation of agents.

Given the above lemma, finding an optimal mechanism reduces to a simpler prob-
lem of maximizing over permutations. For any permutation π, the revenue in the

7All the proofs are deferred to the Appendix.
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corresponding tight influence mechanism t = (t1, . . . , tn) is∑
i

ti =
∑
i

f(di)
∑

j:π(j)<π(i)

gij,

=
∑

ij:π(j)<π(i)

gijf(di), (3)

where the last line follows from rearranging the summation. Each link in a network
contributes a single term to (3). Specifically, suppose there is a link between i and j, i.e.,
gij = 1. If π(j) < π(i), then the link contributes f(di) to (3), and if π(j) > π(i), then
the link contributes f(dj). Since f is nonincreasing the contribution of a link is maximal
when π(i) < π(j) for each i and j such that di > dj. Moreover, the contribution of
a link depends only on the relative positions of i and j in the permutation, and not
on the entire permutation. Call a permutation π of agents nonincreasing if among
any two connected agents the one with a strictly higher degree appears earlier in the
permutation π, i.e., for all agents i and j such that gij = 1 and di > dj, we have
π(i) < π(j). Clearly, the contribution of each link is maximal in every nonincreasing
permutation. Hence, we obtain a characterization of an optimal influence mechanism.

Proposition 1. An influence mechanism t = (t1, . . . , tn) is optimal if and only if it is
induced by a nonincreasing permutation, i.e., there exists a nonincreasing permutation
π of agents such that t is given by (2).

The intuition is straightforward. Well-connected individuals are more resilient to
social influence from others. Hence, it is better for the principal to persuade them
directly by offering lower transfers, and instead exploit their social influence on their
less connected and hence more easily influenced friends, who are asked to pay higher
transfers. This means placing high-degree agents earlier in a permutation. Note, how-
ever, that a transfer itself is not monotone increasing in an agent’s degree. For example,
among the two agents who have the same degree, the one who has more friends with a
lower degree than herself is offered to pay a lower transfer, and so gets to keep a higher
share of the surplus. In other words, to pay a lower transfer it is neither necessary nor
sufficient to be popular - instead one needs be more popular than her friends.

Proposition 1 provides a simple expression for the principal’s revenue.
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Corollary 1. For a network G, the revenue in an optimal influence mechanism is given
by

R(G) =
∑
i<j

gij max{f(di), f(dj)}. (4)

Note that while the equilibrium surplus generated by a link between i and j is
f(di) + f(dj), the principal extracts max{f(di), f(dj)}. Thus only an agent with a
smaller degree matters when evaluating a value of a link for the principal.

It is useful to contrast the results here with the revenue-maximizing influence
mechanisms without the unique implementation requirement. If we assume that the
agents will play an equilibrium that the principal wants, then the transfers must make
x = (1, . . . , 1) an equilibrium. So, each agent i must be willing to act when all her
friends do, i.e., for each i we must have dif(di)− ti ≥ 0. Hence, it suffices to let

ti = dif(di) (5)

for each i. Note that these transfers are generally higher than those in (2), allowing
the principal to extract the entire equilibrium surplus of each i. However, a strategy
profile where noone acts remains an equilibrium. A gap between this higher revenue
and (4) is the principal’s cost of coordinating individuals using transfers.8

4 Revenue comparison across networks

Equipped with the characterization of optimal influence mechanisms, we now develop
an intuition about how a network structure affects the revenue. Note, however, that
the revenue also depends on the shape of the social influence function. Thus in order
to focus solely on the role of a network structure, we ask what makes one network more
attractive than another, regardless of the social influence function. While the results
here are of interest in themselves, they also hint at the structure of optimal networks.

Expression (4) for the revenue in an optimal mechanism suggests that networks
where links tend to have a small-degree agent as at least one of the endpoints deliver
higher revenue. Indeed, compare the networks in panels (b) and (c) of Figure 1. In the

8It is easy to see that the gap is, at most, 1
2

∑
i dif(di).
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star network we have replaced the link between 2 and 4 by the link between 1 and 4.
This lowers the degree of agent 2 and raises the degree of agent 1. However the new
link between 1 and 4 increases the principal’s revenue by the same amount as the link
between 2 and 4, because the lower degree among the two of its endpoints remains the
same. On the other hand the link between 1 and 2 now contributes more because the
lower degree among the two of its endpoints has decreased: the degree of agent 2 is
lower than before. This holds for all non-increasing influence functions. Therefore the
star network is indeed always better for the principal than the line network.

We say that a network G dominates a network G′ if and only if the revenue in an
optimal influence mechanism in G is weakly higher than in G′ for each nonincreasing
social influence function, i.e., R(G) ≥ R(G′) for each nonincreasing f . A network
is undominated if there does not exist another network which dominates it. This
introduces a partial order on networks, which we now relate to a network structure.

Given a network G and a positive integer k, let lG(k) be a number of links in
G such that the lowest degree among the two endpoints of a link is k, i.e., lG(k) =

|{Link between i and j|min{di, dj} = k}|. A function lG captures the distribution of
links by the lowest degree of endpoints. In Figure 1 the line network has lG(1) = 2,
lG(2) = 1, and lG(k) = 0 for each k 6= 1, 2, and the star network has lG(1) = 3 and
lG(k) = 0 for each k 6= 1. Hence the distribution in the star network is shifted towards
lower values. Such changes in the distribution always increase the revenue.

Proposition 2. A network G dominates a network G′ if and only if

h∑
k=1

lG(k) ≥
h∑
k=1

lG′(k)

for each h = 1, 2, . . .

The above condition resembles the definition of the first order stochastic dominance.
Loosely speaking, G dominates G′ if and only if lG′ first order stochastically dominates
lG. The proof also parallels the standard argument that the first order stochastic
dominance is equivalent to a decision maker preferring one distribution to another
regardless of what her utility function is.
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Figure 2: A network G is more dissortative than a network G′.

Intuitively, the principal faces a following trade-off when comparing networks. On
the one hand, she benefits from having many links adjacent to small-degree agents. On
the other hand, having more such links implies raising the degrees of these agents. In
a network where this trade-off is efficiently resolved, small-degree agents tend not to
connect between themselves. For example, consider adding a link either between two
small-degree agents, or between a small-degree and a high-degree agent. In both cases
the link has the same value. However, in the former case we have raised the degree of
the second small-degree agent, and so degraded the value of the other links adjacent
to her. While in the latter case, raising the degree of high-degree agent is less likely
to affect the values of other links. This intuition is especially clear when comparing
networks with the same degree sequence, where we can relate the dominance order to
the network disassortativity.

A degree sequence of a network is a list of degrees of all the nodes in nonincreasing
order. Given an integer k, let Hk(G) be a number of links among agents with degrees
strictly greater than k, i.e., Hk(G) = |{Link between i and j|min{di, dj} > k}|; and
Lk(G) be a number of links between agents with degrees weakly lower than k, i.e.,
Lk(G) = |{Link between i and j|max{di, dj} ≤ k}|. We say a network G is more
disassortative than a network G′ if Lk(G) ≤ Lk(G

′) and Hk(G) ≤ Hk(G
′) for each

k = 1, 2, . . . . Roughly, a network is more disassortative if it has fewer links among
similar-degree agents. For example, in Figure 2 a network G is more disassortative
than a network G′. Indeed, high-degree agents 1 and 2, as well as small-degree agents
3 and 4 are connected in G′, whereas 1 is connected to 4 and 2 is connected to 3 in
G. One can easily show that G dominates G′. The following corollary of Proposition 2
generalizes this observation.
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Corollary 2. Suppose G and G′ have the same degree sequence. Then G dominates
G′ if and only if G is more disassortative than G′.

Observe that criss-crossing the two links as in panel (a) of Figure 2 does not change
the degrees, but unambiguously benefits the principal. Indeed now less susceptible to
social influence high-degree agents 1 and 2 are connected to more susceptible small-
degree agents 3 and 4. This allows the principal to more efficiently exploit the influence
of high-degree agents by raising the transfers of their small-degree friends.

We close this section with an example of an undominated network with a given
number of links, which also provides an intuition about the shape of optimal networks.
Consider a greedy algorithm that aims to construct a network with the highest revenue
given a number of links E. The algorithm initiates with an empty network and at each
step connects the highest degree agent to the smallest degree agent, terminating when
it runs out of links. Hence, at each step the algorithm maximizes the value of a newly
created link. Formally, at step t, let Et be the number of unused links, let Gt be the
current network with the number of links equal to E −Et, let (dti)

n
i=1 be the degrees of

agents in Gt, let ît ∈ arg maxi d
t
i and is such that there exists j satisfying gt

îtj
= 0, and

let ǐt ∈ arg mini d
t
i. Initialize at E0 = E and G0 being an empty network, i.e., g0

ij = 0

for all i and j. At step t ≥ 1:

1. If Et−1 > 0, connect ît−1 with ǐt−1 with whom there is no link in Gt−1, i.e.,
gt−1

ît ǐt
= 0. That is let gt

ît ǐt
= 1 and Et = Et−1 − 1.

2. Terminate if Et−1 = 0 and let Gt = Gt−1.

Corollary 3. If E ≥ n− 1, then the algorithm generates an undominated network.

Note that an undominated network must be connected because an additional link to an
isolated agent always increases the revenue. Thus the condition E ≥ n−1. A generated
network is not a unique undominated network with a given number of links. Rather the
algorithm demonstrates the role of disassortativity in the emergence of undominated
networks: they have a special structure where small-degree agents are never connected.

We call a network complete core-periphery if its nodes can be partitioned into two
subsets, S (stars) and P (periphery), such that nodes in S are connected to all the
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Figure 3: A complete core-periphery with 2 stars and 6 periphery nodes.

nodes, and nodes in P are connected only to the nodes in9 S. A star network and
a complete network are the special cases, and so is the network with two stars and
six periphery nodes in Figure 3. There are n − 1 complete core-periphery networks
with n nodes (up to a permutation of nodes). A network generated by the algorithm
is a (possibly incomplete) core-periphery.10 Note, however, that the greedy algorithm
might fail to generate a network with the highest revenue given a number of links. The
reason is that the algorithm does not account for the fact that the values of the existing
links are affected by the addition of new links. In the following section we show that
under appropriate assumptions on the social influence function an optimal network is
a complete core-periphery.

5 Optimal networks

In this section we fully characterize optimal networks. To pin down the precise structure
of such networks, we begin by introducing two additional assumptions about a social
influence function. First, we assume that mf(m) is nondecreasing.

Assumption B For each m ≥ 1, we have mf(m) ≤ (m+ 1)f(m+ 1).

Note that the assumption is satisfied whenever f falls slower than the reciprocal function
x 7→ 1/x. Hence, in the case of the average comparison model from Example 1 where
f(m) = 1/m, the above condition holds with equality.

9These graphs are also known in the literature as complete split graphs or inter-linked stars.
10The network may have a single periphery agent who is connected only to a subset of stars.
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The influence of each existing friend is diluted with an addition of a new friend.
However, it is natural to think that a marginal dilution is smaller for someone who
has more connections. Our second assumption formalizes the idea, requiring f to be
strongly convex in the following sense.

Assumption SC For each m ≥ 1, we have

f(m)− f(m+ 1) ≥
[
f(m+ 1)− f(m+ 2)

]n+ 2

n
.

Strong convexity means that the absolute values of forward differences of f are de-
creasing at multiple n/(n+ 2) or lower, where n is a total number of agents. Note that
in a large network our strong convexity condition converges to a standard notion of
convexity of f . A social influence function in Example 1 satisfies both assumptions.

Proposition 3. Suppose that assumptions B and SC hold. Then an optimal network
is a complete core-periphery.

An optimal influence mechanism for a complete core-periphery induces a dominance
cascade that starts with the stars, each relying on the stars ahead, and finishes with the
periphery agents relying on all the stars. The principal asks lower transfers from the
stars, and exploits the stars’ influence on periphery agents by raising their transfers.
Note that complete core-periphery networks are the most unequal in terms of their
degree distributions among all similarly dense networks.11 However, the principal does
not necessarily strive to achieve the maximal inequality like in a star network: more
links means more opportunities for the social influence which may be exploited by the
principal. To explain the role of our assumptions, we next examine an effect of a new
link on the principal’s revenue.

First, consider the case when we do not need to uniquely implement x = (1, . . . , 1)

and are content with it simply being an equilibrium. Acquiring a new active friend

11We can make this statement precise using a notion of majorization. For any network, let d =
(d1, . . . , dn) denote a sequences of degrees of its nodes arranged in a non-increasing order. Then d

majorizes d′ if for each k = 1, 2 . . . , n we have
∑k

i=1 di ≥
∑k

i=1 d
′
i, with equality if k = n. Then a

sequence of degrees of nodes in a galaxy majorizes a sequence of degrees of nodes in every network
with the same number of edges.
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has two countervailing effects on an agent’s incentives to act. On the one hand an
agent experiences the dilution of the social influence from her existing active friends.
Specifically, because f is nonincreasing each active friend now exerts weakly lower social
influence on an agent. On the other hand, the agent obtains one more active friend who
influences her to take the action. Specifically, according to (5), adding a link between
i and j changes the revenue by

(di + 1)f(di + 1)− dif(di)︸ ︷︷ ︸
Change in ti

+ (dj + 1)f(dj + 1)− djf(dj)︸ ︷︷ ︸
Change in tj

≥ 0.

Assumption B guarantees that the change in both transfers is nonnegative. Thus a new
link always increases the revenue and a complete network is optimal.

In the unique implementation case the principal extracts a value of a link only from
a smaller degree agent, and so a new link can increase as well as decrease the revenue.
To see why, consider adding a link between 2 and 3 in the star network from Example
1. The transfers of 1 and 4 are unchanged, but now 2 must pay a lower transfer
t2 = α+ 1/2 and 3 can pay a higher transfer t3 = 2α+ 1. Generally, connecting i and j
such that di < dj has a cost and a benefit. By Assumption B a transfer from a smaller
degree agent rises, hence the benefit

(d+
i + 1)f(di + 1)− d+

i f(di) ≥ 0,

where d+
i is the number of i’s friends with a higher degree than i.12 A transfer from a

higher degree agent falls, hence the cost

d+
j [f(dj)− f(dj + 1)] ≥ 0.

While it is clear that convexity of f makes the cost decreasing in a degree, suggesting
that having well-connected hubs is optimal, a more subtle observation is that a stronger
SC assumption is required to guarantee that the hubs are interlinked.

12For clarity we assume that neither i nor j have friends with the same initial degrees as themselves,
and hence whose relative position in a nonincreasing permutation would change after an addition of a
new link. This is without loss of generality because swapping the positions of the same-degree agents
keeps a permutation nonincreasing.
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Now we sketch the proof of Proposition 3. Suppose that in an optimal network
agent i is a friend of a smaller degree agent x. If di < dj, then convexity of f implies
that j would have a lower cost of a link to x and thus must also be x’s friend. In
other words the “smaller-degree neighborhoods” of agents are nested. This observation
along with some symmetry arguments implies that there in an independent set13 of
periphery agents, and every non-periphery agent is a hub connected to every periphery
agent. Finally, we show that hubs must form a clique. Assumption B guarantees that
a benefit of a link between two hubs outweighs its cost when hubs are in minority. The
role of assumption SC is to make benefit increasing in di whenever d+

i ≥ n/2. Then
when a majority of agents are hubs, a benefit of a link between them is higher than a
benefit of a link between a hub and a periphery. Thus it is optimal to connect all hubs.

To further illustrate Proposition 3 we briefly return to Example 1. It is clear that
if f(di) = α for some α > 0, then a complete network is optimal. Indeed, there is no
dilution and each link has the same positive value for the principal regardless of the
agents’ degrees. Hence an optimal network simply maximizes the number of links. In
contrast when f(di) = 1/di, the dilution is maximal, and a star network is optimal.
We completely characterize optimal networks for the intermediate cases below.

Corollary 4. Suppose f(di) = α + 1/di, where α ≥ 0. We have:
(i) if α < 1

n−1
, then a unique optimal network is a star,

(ii) if α > 1
n−1

, then a unique optimal network is a complete network,
(iii) if α = 1

n−1
, then a network is optimal if and only if it is a complete core-periphery.

How does the shape of the social influence function affect a number of stars in an
optimal core-periphery? Fix two functions f and h, such that B and SC assumptions
hold. Without loss of generality let f(1) = h(1) = 1.14 We say that a function f is
flatter than a function h if

h(k)− h(k + 1) ≥ f(k)− f(k + 1),

13A set of nodes N is called independent if there is no link between any two nodes in N ; a set of
nodes N is called a clique if every two nodes in N are connected.

14This is without loss since we can always scale the functions in order for this condition to hold.

20



for all k = 1, 2, . . . , n− 1. Given a function f , let s∗(f) denote the smallest number of
stars in a corresponding optimal core-periphery.

Proposition 4. Suppose assumptions B and SC hold. If f is flatter than h, then
s∗(f) ≥ s∗(h).

Intuitively, if f is flatter than h, then it admits a weaker dilution effect, and hence
a lower cost and a higher benefit of each new link. Therefore an optimal network under
f has more links, while remaining a core-periphery. So, it must have more stars.

Thus far we have focused on what makes networks more attractive for the principal.
To better understand how the network structure determines the revenue, we close this
section with a glimpse of an opposite question - what are the networks that deliver the
lowest revenue? Strategic complementarity implies that an empty network is trivially
such a network, and hence we shall fix the number of links. A network G with E links
is resilient if its optimal influence mechanism has the lowest revenue across all networks
with the same number of links as G. Note that if f(di) = α > 0, then every network is
resilient. In the following result we characterize resilient networks.

Proposition 5. Suppose that f is strictly decreasing and Assumption SC holds. If
there exists an integer s such that E =

(
s
2

)
, then a resilient network consists of a

clique of s agents and n − s isolated agents.15 If there exists an integer s such that(
s
2

)
< E <

(
s+1

2

)
, then a resilient network consists of a connected component of s + 1

agents and n− s− 1 isolated agents.

Panels (a) and (b) in Figure 4 illustrate resilient networks with 6 and 8 links and
6 nodes. Note that when E =

(
s
2

)
our result pins down a unique network, whereas it

provides only a partial characterization when
(
s
2

)
< E <

(
s+1

2

)
. For example, one can

show that a network in panel (c) is not resilient under our assumptions.
A resilient network has as many as possible isolated agents, while concentrating

all the social influence inside a tightly interconnected group. We prove the result by
showing that if we can reallocate all the links from the smallest degree agent to others,
thus isolating this agent, then we decrease the revenue. One way to grasp the intuition
is to consider a greedy algorithm to construct a network with E links, analogous to

15These networks are called the dominant group architecture by Goyal and Joshi (2003).
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Figure 4: Networks G and G′ are resilient, while network G′′ is not.

the algorithm in Section 4. Begin with an empty network. At each step connect two
highest degree agents and terminate when out of links. Thus at each step the algorithm
minimizes the value of a newly created link. Clearly, when E =

(
s
2

)
for some s, the

algorithm generates a clique of s agents as in the proposition above.16

6 Concluding remarks

In this section, we briefly discuss the robustness of our results. So far we assumed that
an influence exerted by an agent varies across her friends – popular individuals are
influenced less than others. One interpretation is that social influence is passive – its
strength depends only on the relevant characteristics of influenced agents, namely their
degrees. It is not difficult to think of an opposite situation where influence is active.
A familiar case is when someone who recently became a vegan is actively persuading
her friends to adopt this new lifestyle. In a reduced form model of this situation a
strength of influence depends on the characteristics of the influencer and the same
individual may be influenced differently by every friend. More generally, agents can be
heterogeneous with respect to both, the influence they have on others, as well as the
susceptibility to the influence from others. We argue that some of our main insights
extend to these alternative environments.

Given a network G and an action profile x−i = (x1, . . . xi−1, xi+1, . . . , xn), we let the

16Note that the algorithm fails to produce a resilient network if
(
s
2

)
< E <

(
s+1

2

)
.
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payoff of individual i from taking the action be given by

Ui(1, x−i, G) =
∑
j

gijwijxj − ti, (6)

and the payoff from abstaining be Ui(0, x−i, G) = 0. Thus an agent i is influenced by
an agent j according to a weight wij > 0. The social influence can be asymmetric and
depend on an underlying network G. Apart from the heterogeneous influences repre-
sented by a matrix (wij)i,j, the model is as in Section 2. Whereas it is straightforward
to confirm that the result analogous to Lemma 1 holds, the general model is no longer
tractable.17 Instead we discuss several interesting special cases.

• Degree-dependent passive influence: wij = f(di) for each i and j and f is nonin-
creasing. This is our benchmark model from Section 2.

• Degree-dependent active influence: wij = f(dj) for each i and j and f is nonin-
creasing. The interpretation is that an agent splits her effort between influencing
each of her friends, and hence someone with more friends will influence each of
them less. Optimal mechanisms in this case are obtained from nondecreasing per-
mutations of agents, i.e., permutations where among the two connected agents
the one with a strictly higher degree appears later in a permutation. Moreover,
they have the same revenue as an optimal mechanism in the benchmark model
(provided the same network and f). Hence, our optimal network result holds.18

• Exogenous active influence: wji = ωi for each i and j. Individuals are hetero-
geneous with respect to their influence on others, but the level of influence is
exogenous. We can interpret it as stemming from public credentials, such as
those of political or religious leaders. Because agents can be ordered with respect

17Specifically, the model does not admit a simple characterization of optimal mechanisms analogous
to Proposition 1. For example, a natural conjecture would be to order agents with respect to the
“influence index” Wi =

∑
j gijwji. One can check that the conjecture fails in a simple example with

3 agents where g12 = g23 = 1, g13 = 0 and w12 = w31 = 1, w21 = w13 = 3. Whereas 1 is the most
influential, it is optimal to put 3 at the first place in the permutation.

18It is easy to see that if f is nondecreasing, then an optimal influence mechanism in a model
with degree-dependent passive (active) influence is obtained from a nondecreasing (noncincreasing)
permutation of agents. Moreover, in both cases an optimal network is complete because there is no
trade-off between introducing new connections and diluting the influence of the existing friends.
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to their level of influence, an optimal mechanism is characterized by permutations
where the influential agents appear earlier. It is clear that in a model where social
influence is independent of degree, complete networks are trivially optimal.
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Appendix

Proof of Lemma 1. Given a permutation π, let t be a corresponding influence mecha-
nism defined by (2). We shall show that t is tight. First, we show that t is INI. If not,
then there must exist an equilibrium where there is a nonempty subset of agents that
do not act. Note that ti is sufficient to induce i to act given that all agents preceding
i in π act, no matter what the other agents do. Thus an agent on the first place in the
permutation, π−1(1), acts no matter what the others do. By induction suppose that
for k = 1, . . . , n− 1 agents π−1(1), . . . , π−1(k) act. Then an agent π−1(k+ 1) also acts.
Hence each agent acts and t is INI.

Second, we show that increasing a transfer of any single agent creates an equilibrium
where some of the agents do not act. For agent j, let

Fj = {i|∃j1, . . . , jm s.t. gjj1 = gj1j2 = · · · = gjmi = 1

and π(j) < π(j1) < · · · < π(jm) < π(i)}.

If we increase the transfer of agent π−1(n), then she would strictly prefer not to act.
Moreover she strictly prefers not to act if any of her friends do not act. By induction
suppose that for k = 1, . . . , n− 1, each agent π−1(k+ 1), . . . , π−1(n) strictly prefers not
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to act if all her friends following her in π and at least one of her friends preceding her
in π does not act. If we increase the transfer of agent π−1(k), then there would exist
an equilibrium where agent π−1(k) and all agents in Fπ−1(k) do not act, while everyone
else does. Therefore t is tight.

Given a tight t, we construct a permutation π such that t is given by (2). First, there
must exist an agent a1 such that ta1 = 0, otherwise there would exist an equilibrium
where no one acts. Let π(a1) = 1 and proceed to inductively define π. Suppose that
for k = 1, . . . , n− 1, each of the agents a1, . . . , ak acts if agents with a lower index than
theirs act, and correspondingly π(ai) = i and tai ≤ f(dai)

∑i−1
j=1 gaij for i = 1, . . . , k.

Then there exists an agent ak+1 who weakly prefers to act when a1, . . . , ak act and
others do not. Otherwise there would exist an equilibrium where a1, . . . , ak act and
others do not, contradicting that t is INI. Hence, we must have

tak+1
≤ f(dak+1

)
k∑
i=1

gak+1ai . (7)

Let π(ak+1) = k + 1. If at any step of the induction argument there are several such
agents, then pick the one with the lowest index. Moreover, suppose that for k = 1, . . . , n

and some agent ak we have that (7) holds with a strict inequality. But then t cannot
be tight because by slightly increasing tak , we can increase the revenue while keeping
the mechanism INI. Thus we have established a surjection from a set of permutations
to a set of tight influence mechanisms.

Proof of Proposition 2. First, we will need the following standard result (Abel’s Lemma).
Let a1, ..., an, b1, ..., bn be real numbers. Set Ak =

∑k
j=1 aj. Then

n∑
k=1

akbk =
n−1∑
k=1

Ak(bk − bk+1) + Anbn. (8)

Also note that we can rewrite (4) as

R(G) =
∑
k

lG(k)f(k). (9)
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Now suppose that
∑k

j=1 lG(j) ≥
∑k

j=1 lG′(j) for each k = 1, 2, . . . . We shall show
that G dominates G′, i.e., R(G) ≥ R(G′) for each non-increasing f . Using (9) this is
equivalent to

∑
k [lG(k)− lG′(k)] f(k) ≥ 0 for each non-increasing f . By (8) we get

d̂∑
k=1

[lG(k)− lG′(k)] f(k) =
d̂−1∑
k=1

Ak [f(k)− f(k + 1)] + Ad̂f(d̂),

where Ak =
∑k

i=1 [lG(i)− lG′(i+ 1)], and d̂ is the highest degree among the nodes in
G and G′. The above expression is non-negative for each non-increasing f because, by
assumption, Ak ≥ 0 for each k = 1, 2, . . . .

Suppose that G dominates G′. For the sake of contradiction suppose that there
exists a positive integer k̄ such that

∑k̄
j=1 lG(j) <

∑k̄
j=1 lG′(j). Take f such that

f(k) = f(k + 1) for each k 6= k̄, and f(k̄) > f(k̄ + 1). Then we have

d̂∑
k=1

[lG(k)− lG′(k)] f(k) = Ak̄
[
f(k̄)− f(k̄ + 1)

]
.

However, by assumption Ak̄ < 0, and we obtain the desired contradiction.

Proof of Corollary 2 . Suppose G dominates G′. Fix h = 1, 2, . . . . Note that

h∑
k=1

lG(k) = E −Hh(G), (10)

where E is the total number of links which is the same in both networks. Thus by
dominance we have E−Hh(G) ≥ E−Hh(G

′), implying that Hh(G) ≤ Hh(G
′). Let Dh

be the sum of degrees of agents with a degree weakly lower than h which is also the
same in both networks. Note that

Dh = 2Lh(G) + E − Lh(G)−Hh(G)

= 2Lh(G
′) + E − Lh(G′)−Hh(G

′).

Combining it with the above we get Lh(G) ≤ Lh(G
′). Finally, ifG is more disassortative

than G′, then from (10) it immediately follows that G dominates G′.
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Proof of Corollary 3. For brevity we consider only the case where there exists an integer
s such that E = 1

2
s(s− 1) + s(n− s), that is the algorithm generates a complete core-

periphery with s stars. Note that a complete core-periphery with s stars maximizes
the number of links in a network given that there are n − s agents with degree less
than or equal to s. Moreover, the maximal number of links is increasing in s. Now
for the sake of contradiction suppose that a core-periphery with s stars is dominated
by G, and hence the number of links in G must be greater or equal to E. Then
by Proposition 2 there exists d < n − 1 such that Ld(G) + Md(G) > s(n − s) and
Ls(G) + Ms(G) ≥ s(n − s). Let nd(G) denote the number of nodes in G with degree
higher than d. From the above we get nd(G) < s. Hence, the number of links in G

must be less than E, a contradiction.

Proof of Proposition 3

We prove the result with help of four lemmas. Fix an optimal network G. Without
loss of generality assume that if gij = 1 and di > dj, then i < j, and hence the identity
permutation, id, is nonincreasing and induces an optimal influence mechanism. Let
Ni denote a set of friends of agent i, i.e., Ni = {j|gij = 1}. For a permutation π and
an agent i, let Nπ,−

i ⊆ Ni denote a subset of i’s friends who follow i in permutation
π, i.e., Nπ,−

i = {j|π(j) > π(i)}. We say that agents in Nπ,−
i are influenced by i. Let

dπ,−i = |Nπ,−
i | and d

π,+
i = |Ni \Nπ,−

i |. We call agent si a sink if Nπ,−
si

= ∅.

Lemma 2. Fix four different agents i, j, x, and y such that max{dx, dy} < min{di, dj}.
If gix = gjy = 1, then either giy = 1, or gjx = 1, or both.

Proof. For the sake of contradiction suppose that giy = gjx = 0. Consider replacing a
link between j and y by a link between i and y. Since the benefits of the two links are
the same, the corresponding change in the revenue is given by the change in the cost
of a link, given by

did,+i f(di) + did,+j f(dj)− did,+i f(di + 1)− did,+j f(dj − 1).

Similarly, the change in the revenue from replacing a link between i and x by a link
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between j and x is

did,+i f(di) + did,+j f(dj)− did,+i f(di − 1)− did,+j f(dj + 1).

Because G is optimal, each replacement must weakly decrease the revenue:

did,+i (f(di)− f(di + 1))− did,+j (f(dj − 1)− f(dj)) ≤ 0,

did,+j (f(dj)− f(dj + 1))− did,+i (f(di − 1)− f(di)) ≤ 0.

Combining the inequalities we get

f(dj)− f(dj + 1)

f(di − 1)− f(di)
≤ did,+i

did,+j

≤ f(dj − 1)− f(dj)

f(di)− f(di + 1)
. (11)

By convexity we have

f(dj)− f(dj + 1) ≤ f(dj − 1)− f(dj),

f(di)− f(di + 1) ≤ f(di − 1)− f(di),

with equality only when the right hand sides are zero. Clearly, if at least one RHS is
not zero, then (11) is inconsistent. Hence, one of the two replacements must strictly
decrease total revenue. On the other hand, if both RHSs are zero, then the cost of
adding a link between i and y and a link between j and x on top of the existing links
is zero, and hence it strictly increases the revenue.

Lemma 3. There exists a nonincreasing permutation π of agents such that

Nπ,−
π−1(1) ⊇ Nπ,−

π−1(2) ⊇ · · · ⊇ Nπ,−
π−1(n). (12)

Proof. We shall construct a permutation π by inductively defining a permutation πk

for 1 ≤ k ≤ n and letting π = πn. A permutation πk will satisfy three properties:
(i) πk is nonincreasing, (ii) Nπk,−

π−1
k (1)

⊇ Nπk,−
π−1
k (2)

⊇ · · · ⊇ Nπk,−
π−1
k (k)

, and (iii) π−1
k (l) = l

for l > k. Begin with an identity permutation id, letting π1 = π2 = id. Indeed,
because agent 1 is the highest degree agent she has zero cost of a link and thus must be
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connected to each node, implying that N id,−
1 ⊇ N id,−

2 . For the induction step suppose
that for 1 ≤ k < n there is a permutation πk satisfying the three properties above. We
construct a permutation πk+1. Suppose that π−1

k (k) = x. First, we show that either
Nπk,−
x ⊇ Nπk,−

k+1 or Nπk,−
x ⊆ Nπk,−

k+1 . For the sake of contradiction suppose there exist
i and j such that i ∈ Nπk,−

x , i /∈ Nπk,−
k+1 and j ∈ Nπk,−

k+1 , j /∈ Nπk,−
x . If i 6= k + 1,

then by Lemma 2 we have either gxj = 1, or g(k+1)i = 1, or both, a contradiction.
So, suppose that i = k + 1. By the induction assumption, Nπk,−

x ⊆ Nπk,−
π−1
k (l)

for each
l < k and hence each node that follows and is connected to x is also connected to
each node before x in πk. Hence, k + 1 must have strictly more friends preceding
it in πk than x, i.e., dπk,+k+1 > dπk,+x . Moreover, it has a weakly lower degree than x

because πk is nonincreasing. Now consider replacing a link between k + 1 and j by a
link between x and j. It follows that the revenue must increase because the benefit
accrued to j is the same but the cost of a link is lower for x than for k + 1. Therefore,
if i = k + 1, then Nπk,−

x ⊇ Nπk,−
k+1 , a contradiction. Thus we have established that

either Nπk,−
x ⊇ Nπk,−

k+1 or Nπk,−
x ⊆ Nπk,−

k+1 . Now if Nπk,−
x ⊇ Nπk,−

k+1 , then let πk+1 = πk.
On the other hand, if Nπk,−

x ⊆ Nπk,−
k+1 , then define πk+1 in the following way. Move x

one position further in the permutation, i.e., let π−1
k+1(k + 1) = x. Then, by the same

argument as above either Nπk,−
π−1
k (k−1)

⊇ Nπk,−
k+1 or Nπk,−

π−1
k (k−1)

⊆ Nπk,−
k+1 . If Nπk,−

π−1
k (k−1)

⊇ Nπk,−
k+1

, then let π−1
k+1(k) = k + 1, and π−1

k+1(l) = π−1
k (l) for l 6= k, k + 1. On the other hand,

suppose that Nπk,−
π−1
k (k−1)

⊆ Nπk,−
k+1 and π−1

k (k − 1) = z. Then, by the same argument as

above, z is not connected to k + 1. Now let π−1
k+1(k) = z, and if Nπk,−

π−1
k (k−2)

⊇ Nπk,−
k+1 ,

then let π−1
k+1(k − 1) = k + 1, and π−1

k+1(l) = π−1
k (l) for l 6= k − 1, k, k + 1. Continue

moving k+ 1 to the top of the permutation in this way until a set of agents influenced
by it is nested in the set of agents influenced by an agent preceding it in πk. Each step
of the above procedure is well defined and, in the end it produces a permutation πk+1

satisfying the properties. Iterating the procedure yields πn, and finally letting π = πn

we obtain the required permutation.

Lemma 4. If k ≤ m, then (k + 1)f(m+ 1)− kf(m) is:
(i) nonincreasing in k, given m, and
(ii) nondecreasing in m, given k ≥ n/2.

Proof. Part (i) follows from f being a nonincreasing function. To prove (ii) note that
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by strong convexity, for n/2 ≤ k ≤ m we have

f(m)− f(m+ 1) ≥
[
f(m+ 1)− f(m+ 2)

]
(1 +

1

k
).

Rewriting, we get:

(f(m+ 1)− f(m+ 2))(k + 1) ≤ kf(m)− kf(m+ 1),

(k + 1)f(m+ 1)− kf(m) ≤ (k + 1)f(m+ 2)− kf(m+ 1).

Lemma 5. Fix a nonincreasing π and agents i and j such that di = dj = m, dπ,+i =

dπ,+j = k. If 2k < m, then gij = 1.

Proof. For the sake of contradiction suppose that gij = 0. Consider the change in the
revenue due to adding a link between i and j:

kf(m+ 1) + (k + 1)f(m+ 1)︸ ︷︷ ︸
After adding a link

− 2kf(m)︸ ︷︷ ︸
Before adding a link

.

Rewriting, we find that a new link increases the revenue if:

f(m+ 1)− 2k (f(m)− f(m+ 1)) > 0.

By assumption B we have

f(m+ 1)− 2k (f(m)− f(m+ 1)) ≥ f(m+ 1)− 2k

m
f(m+ 1).

Hence the revenue increases when 2k < m, contradicting the optimality of G.

Now we are ready to prove Proposition 3.

Proof of Proposition 3. Take a nonincreasing permutation π satisfying (12), and let
π−1(k) = sk for k = 1, . . . , n. We show that each non-sink is connected to each sink.
First, we show that each sink is connected to the same set of non-sinks. For the sake
of contradiction, suppose that x and y are two sinks and non-sink sj connects to x
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but not to y. Then by (12) each sk such that k ≤ j connects to x and each sl such
that l ≥ j does not connect to y. Hence, there are strictly fewer agents connected to
y than to x, i.e., dx > dy. Moreover, by (12) it follows that each agent connected to y
also connects to x. Then take all agents connected to x and not to y. Removing the
links from these agents to x must decrease the revenue. But then adding the links from
these agents to y creates the same benefit as adding them to x, but has a lower cost by
convexity. Hence, each agent connected to x must also connect to y, a contradiction.
Second, notice that there cannot exist a nonempty set of non-sinks not connected to
sinks because the last such agent in π must be herself a sink.

It remains to show that all non-sinks are connected. Let sk be the last non-sink
in sequence (s1, s2, . . . , sn). First, we show that sk−1 connects to sk. For the sake of
contradiction suppose not. Then Nπ,−

sk−1
= Nπ,−

sk
and x ∈ Nπ,−

sk−1
if and only if x is a

sink. Suppose, first, that dsk−1
< dsk . Then by an argument similar to the above there

exists sj, j < k − 1, such that sk−1 /∈ Nπ,−
sj

and sk ∈ Nπ,−
sj

. Take all such agents.
By symmetry adding links between these agents and sk−1 reduces the total revenue,
because the costs are lower and the benefit is the same as when adding links between
these nodes and sk. It follows that sk−1 and sk are symmetric. Now by Lemma 5, sk−1

must be connected to sk if dπ,+sk < dπ,−sk , where dπ,−sk is also the number of sinks. Instead
suppose that dπ,+sk−1

= dπ,+sk ≥ dπ,−sk−1
= dπ,−sk . Then

dπ,+sk + dπ,−sk ≤ n− 2,

2dπ,−sk ≤ n− 2,

dπ,−sk ≤ n/2− 1,

where the second inequality follows from dπ,+sk ≥ dπ,−sk . Hence, there are weakly fewer
sinks than n/2 − 1, and therefore the in-degree of each sink must be strictly greater
than n/2 because it is connected to each non-sink. Take any sink x, and consider the
benefit created by a link between sk−1 and x. It is given by d+

x f(dx)−(d+
x −1)f(dx−1).

We compare this benefit to the one created by instead connecting sk−1 to sk, given by
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(d+
sk

+ 1)f(dsk + 1)− d+
sk
f(dsh). We have:

(d+
sk

+ 1)f(dsk + 1)− d+
sk
f(dsh) > (d+

x + 1)f(dsk + 1)− d+
x f(dsh),

> (d+
x + 1)f(dx + 1)− d+

x f(dx),

where the first inequality follows because x connects to each non-sink, and sk is at least
not connected with sk−1, and so we have d+

sk
< d+

x , and the second inequality follows
from Lemma 4 because d+

x > n/2 and dsk ≥ dx. Therefore it is profitable to add a link
between sk−1 and sk instead of a link between sk−1 and x, and thus sk−1 and sk must
be connected. Finally, suppose that non-sink sj and sj+1 are not connected, and all
non-sinks after j + 1 connect to the following non-sinks. The argument above applies
and hence the two non-sinks must be connected.

Remaining proofs

Proof of Corollary 4. By Proposition 3 an optimal network is a complete core-periphery.
The revenue in such a network with s stars is

s(s− 1)

2
f(n− 1) + (n− s)sf(s). (13)

Substituting the expression for f , we get a quadratic

As2 +Bs+ n,

where A = 1
2(n−1)

− α
2
and B = α(n − 1

2
) − 2n−1

2(n−1)
. If α < 1

n−1
, then the function is

convex and the maximum is achieved either when s = 1 or s = n − 1. Substituting
the values we find that s = 1, in other words a star, is optimal. If α > 1

n−1
, then the

function is concave and is maximized at s∗ = − B
2A

. Some algebra reveals that s∗ is
constant in α and is equal to n − 1

2
. Thus the maximum in integer values is achieved

when s = n or s = n − 1, both cases corresponding to a complete network. Finally,
when α = 1

n−1
, then the revenue is independent of s.
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Proof of Proposition 4. Let f be flatter than h. For s = 2, 3, . . . , n− 1, we have

f(s) = 1−
s−1∑
i=1

[
f(i)− f(i+ 1)

]
.

Let δs = f(s)− h(s) for s = 1, 2, . . . , n− 1. From the above we get

δs =
s−1∑
i=1

([
h(i)− h(i+ 1)

]
−
[
f(i)− f(i+ 1)

])
,

where each term is positive by assumption. Thus δs ≥ 0 and is nondecreasing.
For f , let Gs

f denote the revenue in a complete core-periphery with s stars given by
(13). We show that Gs

f −Gs
h is nondecreasing in s. We have

Gs
f −Gs

h −
(
Gs+1
f −Gs+1

h

)
=
s(s− 1)

2
δn−1 + (n− s)sδs−

· · · − (s+ 1)s

2
δn−1 − (n− s− 1)(s+ 1)δs+1,

= −sδn−1 + (n− s)sδs − (n− s− 1)(s+ 1)δs+1,

≤ −sδn−1 + (n− s)sδs − (n− s− 1)(s+ 1)δs,

= −sδn−1 + (2s− n+ 1)δs,

≤ −sδs + (2s− n+ 1)δs,

= (s− n+ 1)δs,

≤ 0.

The first two inequalities follow from δs being nondecreasing. Finally, fix s∗(h) and
consider moving from h to f . From the above it follows that the revenue in a com-
plete core-periphery with s∗(h) stars increases weakly more than in any complete core-
periphery with fewer stars. Hence, a complete core-periphery with fewer stars cannot
be optimal under f .

Proof of Proposition 5 . Suppose that G is a resilient network with E links. Let i be
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an agent with the smallest positive degree and C be a subset of agents with positive
degrees, excluding i. It suffices to show that

(|C|
2

)
< E. For the sake of contradiction

suppose that E ≤
(|C|

2

)
, and so it is possible to isolate i by sequentially deleting an

existing link between each pair i and j, and replacing it by a link between some pair
in C. Consider a link reallocation procedure. At step t, let Gt be the current network
and (dti)

n
i=1 be the degrees of agents in Gt. At each step t ≥ 1 we conduct one of the

two types of link reallocation:

1. If there exists j, k ∈ C such that gt−1
ij = 1 and gt−1

jk = 0, then let gtij = 0, gtjk = 1,
and gtxy = gt−1

xy for each pair x, y different from i, j or j, k.

2. If there exists j ∈ C such that gt−1
ij = 1, but does not exist k ∈ C such that

gt−1
jk = 0, then take any pair m, l ∈ C such that gt−1

ml = 0 and let gtij = 0, gtml = 1,
and gtxy = gt−1

xy for each pair x, y different from i, j or m, l.

The procedure first exhausts all reallocations of type (1) and then of type (2). Initialize
at G = G0 and terminate if dt−1

i = 0.
Consider type (1) reallocation at step t. A value of a link between j and k in Gt

cannot exceed the value of a link between j and i in G, because type (1) reallocations
do not decrease the degrees of agents in C and thus min{dt−1

j , dt−1
k } ≥ di. Moreover,

the revenue generated by each other link in Gt−1 does not increase in Gt because we
have increased k’s degree. Consider type (2) reallocation at step t. A value of a link
between m and l in Gt cannot exceed the value of a link between j and i in G. Indeed
as mentioned before type (1) reallocations do not decrease the degrees of agents in C,
and type (2) reallocations can decrease a degree only of agents adjacent to i. However,
type (2) reallocation decreases the degree of j and increases the degrees of m and l.
First, we evaluate the increase in the revenue due to the decrease in j’s degree. Note
that agents connected to i in Gt−1 have the highest degree in Gt−1 equal to |C|. Let
St−1 be a set of such agents. Because the degree of j decreases by one, the revenue
generated by each of |St−1| − 1 links between agents in St−1 \ j and j increases by
f(|C|−1)−f(|C|), while the revenue from each other link adjacent to j does not change
because j remains the highest degree agent in Gt. Hence we have a total increase in
the revenue of (|S| − 1) [f(|C| − 1)− f(|C|)]. Second, we evaluate the decrease in the

37



revenue due to the increases in the degrees of m and l. Consider the revenue generated
by each of 2|St−1| links between m and l and each h ∈ St−1. It must decrease by at
least f(|C| − 2) − f(|C| − 1) by convexity, because the highest degree of m and l in
Gt−1 is |C| − 2. Hence the revenue decreases by at least 2|S| [f(|C| − 2)− f(|C| − 1)] .
Thus the net change in the revenue after reallocation (2) at step t is negative because

2|S| [f(|C| − 2)− f(|C| − 1)] > (|S| − 1) [f(|C| − 1)− f(|C|)] ,

by convexity. Therefore it follows that after each reallocation the total value that
links between agents in C contribute to the revenue decreases. When the procedure
terminates at step T the value of each reallocated link is not higher in GT than in G.
Therefore the revenue in GT is not higher than in G. Thus

(|C|
2

)
< E.
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