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Abstract

We study information design in strategic settings when agents can publicly refuse
to view their private signals. Ignoring the constraints that agents must be willing to
view their signals may lead to substantial divergence between the designer’s intent and
actual outcomes, even in the case where the designer seeks to maximize the agents’
payoffs. We introduce the appropriate equilibrium concept — ignorance-permissive
Bayes correlated equilibrium — and characterize implementable distributions over
states and actions. The designer’s optimal response to strategic ignorance generates
qualitative properties that standard information design cannot: the designer may pro-
vide redundant or even counterproductive information, asymmetric information struc-
tures may be strictly optimal in symmetric environments, providing information con-
ditional on players’ viewing choices rather than all at once may hurt the designer, and
communication between players may help her. Optimality sometimes requires that
players ignore their signals with positive probability.
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1 Introduction
We argue that in modelling information design, it is important to incorporate the incentives

of agents to accept information as well as the designer’s incentive to provide it. In the stan-

dard setting of information design (e.g., Bergemann and Morris (2019), Taneva (2019)), a

designer commits to disclosing information about an uncertain payoff relevant state to a

group of interacting agents. Through the release of information, the designer incentivizes

the agents to take actions that will benefit her. An implicit assumption is that players will

agree to get informed according to the information structure chosen by the designer, which

comprises joint distributions of agents’ private messages conditional on each possible re-

alization of the state. Crucially, that setting does not permit players to refuse to observe

the signals and to credibly demonstrate this choice to the other players. In many strategic

environments, however, an agent may benefit from publicly remaining uninformed. There-

fore, if we augment the standard information design framework with a pre-play stage where

players publicly choose whether or not to observe the signal sent by the designer, then in

many settings it is unreasonable to assume that players can be induced to play under the

designer-chosen information structure. In such cases, the intended information structure

provided by the designer gets transformed through the strategic choices of the agents into a

very different informational environment. In this paper, we study when and how a designer

modifies her choice of information structure in response.

Most of the literature on information design following Kamenica and Gentzkow (2011)

focuses on the case of a single agent, where information always has weakly positive value.

In that case the issue of robustness to strategic ignorance does not arise. The gain from

ignoring information comes when other players change their behavior in response: that

indirect, strategic benefit may outweigh the agent’s reduced ability to tailor his own action

to the state and to the other players’ actions. Suppose, for example, that the designer

is a government agency that wants to find a supplier of internet connectivity through a

procurement auction. The agency does not have the technical expertise to determine its

own connectivity needs, but it can provide a report on its operations, work protocols, etc.,

which will let the bidders identify its needs and the corresponding best solution. There are

two bidders: a large company, with many clients, and a small company, which would serve

only this agency. We model their interaction in the payoff matrices in Figure 1, one for each
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equally likely state of the world, ω ∈ {e, f}, corresponding to whether the agency needs

solution E or solution F . The row player is the small company, which has three possible

actions. Action E represents a choice to invest, ahead of the auction, in technology that

will let it provide solution E at a low cost and hence a low bid; action F is the equivalent

choice for solution F ; action M corresponds to no investment and a high bid to reflect

the high costs of delivery without the preliminary investment. The column player is the

large company, which serves many other clients and will not find it profitable to invest in a

bespoke solution. Its choices are to bid high (H) or low (L) in the auction.

H L

E 3, 0 1, 1

M 2, 2 0, 0

F 0, 0 −2, 1

ω = e

,

H L

E 0, 0 −2, 1

M 2, 2 0, 0

F 3, 0 1, 1

ω = f

Figure 1: Procurement auction example

The agency wants both companies to submit low bids, and it would like to have the

right bespoke solution if the small company wins the auction. Specifically, it gets a payoff

of 1 if (E,L) is played in state e or (F,L) is played in state f , and 0 otherwise. The agency

can achieve its goals through information design by providing a detailed report that both

companies inspect: when the realized state is common knowledge, then the small company

has a dominant strategy to match the state. The large company’s best response is the low

bid L, so the agency gets payoff 1. If, however, the small company can credibly signal to

the big company that it has not read the report, for example by preparing and submitting its

bid before or immediately after the report is made available, then it would choose not to get

informed about the agency’s needs. Under the prior distribution over states, no investment

(M ) strictly dominates (against any state-contingent strategy of the large company) blindly

investing in either solution, as shown in Figure 2. The large company’s best response is

high bid H in both states, so by ignoring the report the small company increases its payoff

from 1 to 2. The agency, though, gets payoff 0.

There are many other economic settings where committing to ignorance is valuable, as

we discuss below, and we will show that incorporating the designer’s incentive to provide

information broadens the range of such settings. The requirement that agents must be
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HH HL LH LL

E 1.5 0.5 0.5 −0.5

M 2 1 1 0

F 1.5 0.5 0.5 −0.5

Pr (ω = e) = 1
2

Figure 2: Small company’s expected payoffs at the prior

incentivized to view their signals, then, imposes new constraints on the designer’s choice

of information structure. Those constraints are conceptually analogous to the participation

constraints in mechanism design. Our goal in this paper is to understand the impact of

those “Look constraints” on the set of implementable outcomes. Formally, we augment the

baseline environment (that is, where agents must view their signals) with a simultaneous-

move pre-play stage where the players publicly choose whether to “Look” at their private

signals or “Ignore” them. We find that in two applications prominent in the literature on

information design in games, currency attacks and a binary investment game, if the designer

provides the information structure that would be optimal in the baseline environment, then

there is no equilibrium where all players choose to Look at their signals. As a consequence,

the outcome is not what the designer intended. Instead, for each application we derive the

designer’s optimal information structure among those robust to strategic ignorance.

As is standard in the literature on information design (e.g., Bergemann and Morris

(2016), Taneva (2019)), we assume that the designer costlessly commits to an information

structure without observing the state and that the agents cannot communicate with each

other, and we restrict attention to the best equilibrium for the designer.1 Our other key

assumption is that each agent’s choice of whether to Look at or Ignore his signal is both

observed by the other agents and irrevocable. That is, agents publicly commit to their

choices of whether or not to become informed. Otherwise, that choice would not influence

other players’ subsequent actions, and the choice to Look would be weakly dominant, just

as in the single-agent case. By giving agents this commitment power, our paper can be

1That is, we assume, first, that after a player deviates at the Look-Ignore stage, the worst continuation
BNE of the resulting belief system for the deviator is played. Second, we assume that on path agents play the
designer’s preferred BNE among those that satisfy the Look-Ignore constraints. We note, as a subtlety, that
there may be other BNEs at the second stage, given the on-path Look-Ignore choices, that give the designer
a higher payoff but that would not make the specified Look-Ignore choices optimal at the first stage.
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viewed as an attempt to level the playing field in terms of the commitment assumption that

is liberally granted in the information design literature, but only to the designer/sender.

In this sense, we are introducing robustness to strategic ignorance as a consideration for

the designer when choosing the informational environment under which the agents will

strategically interact.

While there are different ways to model robustness to strategic ignorance, we believe

the formulation of our model to be the most immediate departure from the standard setting

that allows us to explore this issue in the context of information design. In particular, other

formulations, which allow the designer to also choose the extensive form of the game, to

reveal information incrementally in multiple rounds, or to commit to different information

structures contingent on the Look-Ignore choices of the agents, are also very natural to

consider. All of these would allow the designer more freedom and would expand the set of

implementable outcomes. Therefore, our model should serve as one possible benchmark

of how a designer can respond to strategic ignorance, and we believe these other variations

of the environment to be interesting avenues for future research.

1.1 Preview of Results

A given joint distribution over actions and states is implementable if it is the outcome

of a perfect Bayesian equilibrium with a “no-signaling-what-you-don’t-know” refinement

(PBE*, Fudenberg and Tirole (1991)) of the two-stage game for some information struc-

ture. That is, given the information structure, 1) for each combination of Look-Ignore

choices in the first stage, agents play a Bayes Nash equilibrium (BNE) of the correspond-

ing incomplete information game in the second stage; and 2) the Look-Ignore choices in

the first stage constitute an equilibrium given the continuation play specified in 1).

In Theorem 1, we characterize the implementable outcome distributions over actions

and states under strategic ignorance in general finite environments. To this end, we define

the concept of ignorance-permissive Bayes correlated equilibrium (IPBCE), which cap-

tures the appropriate restrictions on the correlation structure for the environment of interest.

Theorem 1 demonstrates that the set of IPBCE outcome distributions is equivalent to the

set of PBE* outcome distributions across all information structures.2 For our environment
2Notice that strategic ignorance can also restrict the set of implementable correlated equilibria (CE) in

games of complete information, as we show in the companion working paper Taneva and Wiseman (2023).
We provide a two-player example in which the worst Nash equilibrium gives a better payoff than the worst
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with strategic ignorance, this is a counterpart of the celebrated equivalence result of Berge-

mann and Morris (2016), which established that the set of Bayes correlated equilibrium

(BCE) outcome distributions is equivalent to the union across all information structures of

the set of BNE outcome distributions. IPBCE outcomes are exactly those BCE outcomes

that the designer can still achieve under the additional constraints of strategic ignorance.

Because an agent sees the message drawn from the information structure only when (and

if) he chooses to Look, IPBCE allows the action recommendations of players who are rec-

ommended to Look at their signals to be correlated across players and with the state, but it

does not allow for any form of correlation of the players’ Look-Ignore recommendations

or of the action recommendations of agents who are recommended to Ignore.

A corollary of the theorem (Corollary 1) states that it is without loss of generality to

restrict the designer to direct contingent information structures, where messages correspond

to (pure) action recommendations for each possible choice of the other players in the pre-

play Look-Ignore stage. What changes relative to the baseline environment is that the direct

information structures with single action recommendations are no longer enough. Here a

player’s message specifies a vector of actions, one for each combination of Look-Ignore

choices by the other players.

Our first set of results (Theorems 2-3) outlines the properties of optimal robust design.

Theorem 2 shows that in some cases the designer’s optimal outcome is implementable

only in an equilibrium where some players Ignore their signals with positive probability.3

Importantly, that outcome distribution cannot be replicated by choosing an information

structure that sends an uninformative message with the probability with which players are

supposed to Ignore, because common knowledge of that ignorance cannot be established

in that way. Indeed, a player who chooses to Ignore the information structure cannot be

informed that another player has received an informative signal, while they could observe

their Ignore choice from a mixed strategy at the Look-Ignore stage.

When the designer’s optimal information structure from the baseline environment fails

CE. Interestingly, that situation can never arise in any two-player binary-action complete information game,
a result we also prove in the paper.

3We thank Elliot Lipnowski for pushing us to investigate this question. This result is related to corre-
sponding mechanism design results of rejecting a mechanism in equilibrium (e.g., Celik and Peters (2011),
Balzer and Schneider (2019), and Correia-da Silva (2020)). There are differences on many dimensions, but
the main conceptual departure from these papers is that in our model the refusal to get informed does not con-
vey information about the private types of agents, as there are no such types. Instead, agents endogenously
influence their outside option by deciding whether or not to accept information.
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to be robust to strategic ignorance – because some player’s “on-path” payoff when everyone

Looks at their signals is lower than his “post-deviation” payoff in the worst continuation

BNE after he deviates unilaterally to Ignore – the designer has two methods of adjusting the

information structure in order to satisfy the Look constraints. The first method is to raise the

on-path payoff of the player(s) whose Look constraint is violated. The second method is to

lower the post-deviation payoff. Those changes interact with each other. If raising the on-

path payoff involves changing the information that players get, then that change also affects

the set of BNEs after a deviation to Ignore: the players who Looked still have that different

information. Analogously, giving players different information in order to lower the payoff

from the worst post-deviation BNE changes the on-path information structure as well. As

a consequence, giving the players the option to Ignore messages does not necessarily make

them better off. Even if the designer’s goal is to maximize players’ payoffs, all players

may get lower payoffs when strategic ignorance is possible than under the baseline where

messages are automatically observed, which is our Theorem 3.4

Our second set of findings (Propositions 1-5) showcases the reversal of well-known

results from standard information design relative to the case when agents can exercise

strategic ignorance. A consequence of the adjustments the designer needs to make in the

presence of strategic ignorance is that she may end up providing what would be considered

redundant (Proposition 1) or counterproductive (Proposition 2) information from the per-

spective of standard design. Proposition 1 additionally demonstrates that, as noted above,

direct information structures in which a player’s message specifies a single action recom-

mendation (rather than a recommendation for each combination of others’ Look-Ignore

choices) are no longer sufficient for the implementation of all possible outcomes when

strategic ignorance is introduced. Also surprisingly, we find that the designer may need

to use an asymmetric information structure even in a completely symmetric environment

(Proposition 3). An additional substantive difference between the standard information de-

sign environment and the environment with strategic ignorance of this paper is that while

the set of implementable outcomes is always decreasing in the amount of exogenous infor-

mation that players have in the former (Bergemann and Morris (2016)), that monotonicity

4A related implication is that a collusive agreement (corresponding to a designer who seeks to maximize
players’ payoffs) on what types of information to obtain and observe may not be sustainable. Bergemann,
Brooks, and Morris (2017), for example, study the information structures over bidders’ values that would
minimize the distribution of winning bids in a first price auction.
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may fail in the presence of strategic ignorance. We demonstrate this point, as well as the

non-convexity of the implementable outcome set in the presence of strategic ignorance, in

the context of the investment game in Section 4.2.

The next two results are based on modifications of our main environment. The first

modification allows for a specific form of multi-stage communication by the designer. In

contrast, in our main analysis, we assume that the designer sends signals only once. That

is, a player sees all of his recommendations before choosing an action, rather than just

his recommendation for the realized Look-Ignore decisions. An implication, as discussed

above, is that any information that the designer gives him to help punish a potential de-

viation to Ignore by another player is also available on path. That extra information may

limit what behavior the designer can induce on path. For example, Player 2 may need in-

formation about the state in order to punish Player 1 effectively, but knowing the state may

make him unwilling to play the designer’s preferred action on path. We find, however, that

providing a recommendation on how to punish a player only after that player has deviated

by Ignoring the original signal may give the designer a worse outcome than providing all

contingent recommendations simultaneously (Proposition 4). The reason is that providing

signals separately, through multi-stage communication, means that players must be incen-

tivized to view each separate signal. Instead of facing a single constraint that players must

be willing to view the bundle of recommendations when they expect others to follow the

equilibrium strategy, now the designer faces a new constraint after each potential deviation.

In contrast, in the standard information design setting, providing information only when it

is needed cannot give the designer a worse outcome (e.g., Makris and Renou (2023)).

Another salient qualitative reversal from the standard information design setting is that

allowing the players to communicate with each other after receiving their private signals

may improve outcomes for the designer (Proposition 5). Suppose that Player 2 is willing

to punish Player 1 effectively only when Player 2 does not know the state,5 but that Player

2 must be informed on-path in order to play the designer’s state-contingent desired action.

In that case, the designer cannot always achieve her desired outcome, because she cannot

both deter a deviation to Ignore by Player 1 and give Player 2 the necessary information on

path. She can, however, solve that problem if the players can communicate, by giving the

5For example, because the punishment action is dominated by a different action in each state, but is
undominated at the prior.
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information intended for Player 2 to Player 1. If Player 1 chooses Look, then he can pass

on Player 2’s information to Player 2 (assuming that he has the incentive to do so, and that

Player 2 has the incentive to receive it). If Player 1 deviates to Ignore, then Player 2 remains

uninformed and willing to punish, and so that deviation is deterred. In contrast, in the

standard environment, a designer can be only hurt when players engage in communication

with each other, because any information she wants them to have she can impart directly.

Finally, it is important to emphasize that the issue of robustness to strategic ignorance

is distinct from the question of equilibrium selection – that is, of whether agents will play

the designer’s preferred equilibrium when there are multiple equilibria. Specifically, our

definition of strategic ignorance does not concern the existence of other equilibria where

the agents have chosen to Look, but disregard their signals and randomize independently of

the observed signal realizations.6 Indeed, we maintain the assumption that the designer’s

preferred equilibrium is played (advantageous selection) throughout, and so we consider

an outcome robust if it can be achieved in any equilibrium of the dynamic game (the Look-

Ignore stage followed by the action choice stage). Instead, our model of strategic ignorance

pertains to the agents’ ability to publicly and irreversibly choose whether to be informed

according to the given information structure. The distinction between equilibrium selection

and robustness to strategic ignorance is especially clear when there is a unique BNE at the

action stage after any of the possible outcomes of the Look-Ignore stage, yet given those

continuation payoffs, Ignore is strictly dominant at the Look-Ignore stage. It follows that

in the unique PBE* of the dynamic game all players remain uninformed.

1.2 Applications and Relation to Literature

A setting that broadly matches our model is the U.S. Forest Service auctions for timber

harvest contracts, studied by Athey and Levin (2001). The composition (in terms of timber

species) of the tract being auctioned determines its value to bidders. The Forest Service can

provide bidders with its own estimates, and it can also allow bidders to “cruise” designated

portions of the tract and gather private information.7 By choosing which portions of the

tract to make available to different bidders, the Forest Service can control the precision

and correlation of those private signals. Bidders have the option to abstain from cruising

6Myerson (1991, p.257), refers to these equilibria as babbling equilibria of the communication game.
7Large forest product companies retain in-house cruisers, so the marginal cost of cruising a tract for a

given auction is zero. (See Athey and Levin (2001), p.381.)
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the tract before the auction. Another matching setting is online meetings using Teams or

similar software. Both public messages and private messages to subsets of attenders are

feasible, and as long as invitees can observe who joined the meeting, then a decision not to

join corresponds to how we model strategic ignorance.

Other real-life situations that reflect some of the features of our analysis include phar-

maceutical executives and regulators refusing to be informed of the detailed results of on-

going clinical trials in order to create plausible deniability when unsafe and inefficacious

drugs enter the market (e.g., the licensing case of Ketek, an antibiotic drug manufactured

by Sanofi-Aventis and linked to liver failure). As another example, members of networking

and social media platforms can choose to unfollow certain other members or unsubscribe

from particular services to send a publicly observable signal which will change the percep-

tions and actions of their followers.

Previous research has identified many settings where incentives for strategic ignorance

of a payoff-relevant state arise. In the context of relationship-specific investments which

may create a hold-up problem, a public commitment by the party with the bargaining power

to not obtain the private information available to the vulnerable party may incentivize the

latter to make an optimal investment in the relationship (Tirole (1986), Rogerson (1992),

Gul (2001)). Committing to ignorance can prevent a situation of asymmetric information

and the resulting adverse selection problems of Akerlof (1970) or preserve incentives for

efficient risk-sharing as in Hirshleifer (1971), Rothschild and Stiglitz (1976), and Schlee

(2001). Strategic ignorance about demand can be utilized by a less risk-averse firm to create

risk and thus induce a more risk-averse opponent in a Cournot duopoly game to scale back

its production, resulting in a higher price, as in Palfrey (1982), or by a Stackelberg leader

to maintain his first-mover advantage as in Gal-Or (1987). Similarly, a public commitment

to information avoidance can be used to convincingly strengthen one’s bargaining posi-

tion (Schelling (1956)).8 Other papers have pointed out benefits of strategic ignorance in

the context of procurement costs (Kessler (1998)), private-values in second-price auctions

(McAdams (2012)), buyer valuations in bilateral trade (Roesler and Szentes (2017)), and

sellers’ marginal production costs in consumer search (Atayev (2022)). In the context of

strategic communication, Deimen and Szalay (2019) show that an expert optimally chooses

8Golman, Hagmann, and Loewenstein (2017) provide a detailed overview of the different motives behind
the avoidance of free and payoff-relevant information along with many examples from the theoretical and
experimental literature.

10



to remain partially ignorant about his own preferred choice in order to credibly influence a

decision-maker with his advice.

In this paper, the designer offers information both about a common payoff-relevant

state and about the information received by other players, as well as a component of pure

correlation. Refusing information results in both remaining uninformed about the state and

being unable to coordinate one’s actions with those of other players.9

Many of the papers mentioned above consider strategic ignorance as a choice between

becoming perfectly informed about the state or remaining fully uninformed. We find that

endogenizing the information provided by the designer may broaden the class of settings

where player’s strategic incentives to ignore information are a relevant concern. In the

investment game in Section 4.2, players faced with a choice between learning the state

perfectly or learning nothing would want to learn the state. We will see, however, that if

the designer provides the information structure that would maximize her objective in the

baseline case where players must observe their messages, then strategic ignorance becomes

important: the players will choose to Ignore.

The most closely related work is Arcuri (2021), which we became aware of shortly

before posting the first draft of our paper. Motivated by a similar question, Arcuri (2021)

considers a weaker form of robustness to strategic ignorance: an information structure S

satisfies the “hear-no-evil” condition if for each player i, there is some BNE at the action

stage under S that player i prefers to the worst BNE for him under the information structure

that results if he unilaterally Ignores his message. Then an outcome σ mapping states to

action distributions is a “hear-no-evil Bayes correlated equilibrium” if it corresponds to a

BNE of some information structure S that satisfies the hear-no-evil condition. That defini-

tion allows for the possibility that a player i prefers his worst BNE after deviating to Ignore

over his outcome under σ. In contrast, we require a stronger form of robustness of the

outcome distribution to strategic ignorance: the actually played BNE outcome distribution

σ needs to give each player a higher payoff than what he could obtain by deviating.

Because of the pre-play Look-Ignore stage, our paper is related to the literature on se-

9Schelling (1960), van Damme (1989), and Ben-Porath and Dekel (1992), in contrast, study settings
where committing to remain uninformed of the previous action choices of an opponent can be beneficial
for reversing the opponent’s first-mover advantage. Whitmeyer (2022) investigates how the receiver in a
signaling game may learn more from the sender by publicly committing, ahead of the sender’s choice, to
observe only a garbled version of the sender’s action. Similarly, companies may limit their ability to monitor
the specific test results of employees in order to incentivize the take-up of training and licensing courses.
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quential information design and information design in multi-stage games (Doval and Ely

(2020), de Oliveira and Lamba (2019), and Makris and Renou (2023)), and more broadly to

the literature on generalizations of correlated equilibrium to multi-stage games (e.g., com-

munication equilibrium10 (Forges (1986), Myerson (1986)) and extensive form correlated

equilibrium (von Stengel and Forges (2008))). The main conceptual difference with these

papers is that in our model there is a single information structure provided to the players at

the beginning of the interaction. Specifically, players cannot receive messages that are tai-

lored to the Look-Ignore choice profiles. An additional difference relative to Doval and Ely

(2020) is that the extensive form in our environment is fixed, with players taking actions

simultaneously in both stages.

2 Model & Characterization Result
There is a set I ofN > 1 expected-utility maximizing agents who will play a simultaneous-

move stage game. Each player i has a finite set of actions Ai; A ≡ A1 × . . . × AN is the

set of action profiles. There is a finite set of states of the world Ω, with generic element

ω. Agents’ payoffs are given by u : A × Ω → RN , where agent i’s payoff function

ui : A × Ω → R depends on the action profile and the (ex ante unknown) state. The

designer has a utility function uD : A × Ω → R, so that her payoff also depends on the

agents’ actions and the state. The agents and the designer share a common full-support

prior µ over Ω. Let G = ((A, u), µ) be the basic game.

An information structure (T, P ) consists of 1) a finite set of possible signal realizations

Ti for each agent i, with T ≡ T1 × . . . × TN ; and 2) conditional signal distributions

P : Ω→4 (T ), one for each state.

Given a basic game G, the designer publicly commits to an information structure

(T, P ). Play then proceeds as follows: the state ω ∈ Ω is realized according to µ. Then the

vector of signals t ∈ T is drawn according to P (·|ω), and the designer sends each agent i

his private signal ti.

At the Look-Ignore stage, each agent makes a choice si ∈ Si ≡ {`, g}: whether to Look

(`) at his signal and learn the realization of ti, or to Ignore (g) it and remain uninformed.

10Communication equilibria involve eliciting the information that agents have before sending action rec-
ommendations, while in BCE agents do not have any information that needs to be elicited.
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The Look-Ignore choices are public11 and simultaneous. Given a profile s ∈ S ≡ {`, g}N

of realized choices from the Look-Ignore stage, let L(s) := {i : si = `} denote the set of

players who chose Look, and let G(s) := I \ L(s). Given an information structure (T, P ),

denote by (TL, PL) the informational environment where it is common certainty that all

i ∈ L have been informed according to (T, P ) while all i ∈ G := I \ L do not observe

any signal realization. That is, (TL, PL) is the information structure induced by (T, P ), and

the (publicly observed) choices of Look by the agents in L and of Ignore by the agents

in G. Upon choosing Look and observing ti and s, agent i updates his beliefs about the

state and the signals observed by other agents by applying Bayes’ rule to his own signal

realization ti,
(
TL(s), PL(s)

)
and the prior µ. An agent who chooses to Ignore his signal

uses
(
TL(s), PL(s)

)
and µ to form beliefs about t−i and does not update his beliefs about the

state.

Given (T, P ) and s, define the action stage by the Bayesian game G
(
TL(s), PL(s)

)
. At

this stage, each agent i chooses an action ai ∈ Ai, and payoffs are realized. For a given

information structure (T, P ), we will refer to the basic game augmented by the Look-

Ignore and the action stage as the dynamic game, denoted by G∗ (T, P ). An outcome

v ∈ ∆(A× Ω) is a joint distribution over action profiles and states. A strategy for player i

in dynamic game G∗ is a tuple (γi, (β̃
s
i )s) with γi ∈ ∆{`, g}, β̃si : Ti → ∆Ai if i ∈ L(s),

and β̃si ∈ ∆Ai if i ∈ G(s). Let γ := (γi)i∈I and β̃s := (β̃si )i∈I .

Our solution concept for a dynamic game G∗ is perfect Bayesian equilibrium with a

“no-signaling-what-you-don’t-know” refinement. In particular, continuation play in the

action stage G
(
TL(s), PL(s)

)
after subset of agents L(s) choose Look must constitute a

BNE of that game (Definition 1). In the Look-Ignore stage, each agent optimally chooses

in order to maximize his expected continuation payoffs (Definition 2). Given a realized

profile s of choices from the Look-Ignore stage, the information structure
(
TL(s), PL(s)

)
is

common knowledge. Agent i who has chosen Look and observed ti updates his beliefs

about ω and t by using Bayes’ rule. (The agent also observes s, but “no signaling what

do you don’t know” implies that the Look-Ignore choices are uninformative about ω and

t.) Similarly, an agent who has chosen Ignore observes only s, so he does not update his

beliefs about ω and t.
11Our results, with the exception of Theorem 2, generalize to the case where only the agents who choose to

Look observe the Look-Ignore choices of all agents, while the agents who choose to Ignore, do not observe
those choices.
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Definition 1. Given (T, P ) and s ∈ S, β̃s is a BNE of G(TL(s), PL(s)) if:

for each i ∈ L(s), ti ∈ Ti, and ai ∈ Ai with β̃si (ai|ti) > 0, we have

∑
a−i,tL(s)\i,ω

µ(ω)PL(s)(ti, tL(s)\i|ω)

 ∏
j∈L(s)\i

β̃sj (aj|tj)
∏
k∈G(s)

β̃sk(ak)

ui(ai, a−i, ω)

≥
∑

a−i,tL(s)\i,ω

µ(ω)PL(s)(ti, tL(s)\i|ω)

 ∏
j∈L(s)\i

β̃sj (aj|tj)
∏
k∈G(s)

β̃sk(ak)

ui(a
′
i, a−i, ω), (1)

for all a′i ∈ Ai;
and for each i ∈ G(s) and ai ∈ Ai with β̃si (ai) > 0, we have

∑
a−i,tL(s),ω

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|tj)
∏

k∈G(s)\i

β̃sk(ak)

ui(ai, a−i, ω)

≥
∑

a−i,tL(s),ω

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|tj)
∏

k∈G(s)\i

β̃sk(ak)

ui(a
′
i, a−i, ω), (2)

for all a′i ∈ Ai.
Then v(β̃s) ∈ ∆(A× Ω) defined as

v(β̃s)(a, ω) :=
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|tj)
∏
i∈G(s)

β̃si (ai)

 (3)

for all a ∈ A and ω ∈ Ω is a BNE outcome (distribution)12 of G(TL(s), PL(s)).

Definition 2. A strategy profile
(
γ,
(
β̃s
)
s

)
is a perfect Bayesian equilibrium satisfying the

no-signaling-what-you-don’t-know refinement (PBE*) of G∗ (T, P ) if for each s ∈ S, β̃s is

a BNE of G(TL(s), PL(s)), and for each i ∈ I and si ∈ {`, g} with γi(si) > 0,

∑
s−i,a,ω

∏
j 6=i

γj(sj)v(β̃si,s−i)(a, ω)ui(a, ω) ≥
∑
s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s
′
i,s−i)(a, ω)ui(a, ω), (4)

12Throughout the paper, we use the terms “outcome” and “outcome distribution” interchangeably.
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for all s′i ∈ {`, g}.
Then v ∈ ∆(A× Ω) defined as

v(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

for all a ∈ A and ω ∈ Ω is a PBE* outcome of G∗ (T, P ).

Definition 3. Let PBE∗ (G∗ (T, P )) denote the set of PBE* outcomes of G∗ (T, P ).

The designer chooses an information structure (T, P ) to maximize her expected pay-

off across the set of all PBE* outcomes ∪(T,P )PBE
∗ (G∗ (T, P )). Hence, the designer’s

problem can be formalized as:

max
(T,P )

∑
a,ω

uD(a, ω)v(a, ω) s.t. v ∈ PBE∗ (G∗ (T, P )) .

2.1 Characterization

The designer maximizes over a very large space, the set of all information structures (T, P ).

In the standard information design environment, the set of BNEs across all possible infor-

mation structures equals the set of BCEs. The latter set is much easier to work with (as

in Bergemann and Morris (2016) and Taneva (2019)), because it circumvents the need to

specify the information structures explicitly. In our environment with strategic ignorance,

the analogous result – that the set of PBE* across all possible information structures equals

the set of BCEs of the two-stage game in our setting – is too strong. For any choice of

information structure, the designer’s messages can provide correlation of strategies (with

the state or with the strategies of other players) only at the action stage and not at the

Look-Ignore stage, and only for those players who choose Look. We call a BCE that

incorporates those constraints on the correlation structure an ignorance-permissive Bayes

correlated equilibrium (IPBCE). Hence, an IPBCE is an element

(γ, βg, π) ∈ ×i
(
∆{`, g} ×

(
×s−i

∆Ai
))
×∆(A × Ω),
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where γ denotes the distribution of Look-Ignore recommendations, βg denotes the distri-

butions of post-Ignore recommendations, Ai ≡ A
|S−i|
i denotes the set of agent i’s (pure)

mappings from possible Look-Ignore choice profiles of the opponents S−i to own pure ac-

tions Ai, and π denotes the joint distribution of post-Look recommendations and the state,

which is consistent with the prior over Ω. We will denote a generic element of Ai by mi,

for message, and denote the action recommended after combination s−i of other agents’

Look-Ignore choices by mi (s−i) ∈ Ai. Let A ≡ A1 × . . .×AN .

Given (γ, βg, π), the timing of IPBCE is as follows:

1. Look-Ignore recommendations s ∈ S are drawn from γ, post-Ignore recommenda-

tions from βg, and (m,ω) from π.

2. The realization si is privately recommended to each agent i.

3. Each agent i chooses s̃i, which is publicly observed.

4. The realized draws from step 1 corresponding to the choices in Step 3 are privately

recommended: mi ∈ Ai to each i such that s̃i = `, and ai(s̃−i) ∈ Ai to each i such

that s̃i = g.

5. Each agent i makes an action choice ãi.

An IPBCE is a triple (γ, βg, π) such that for all s̃ ∈ S, the action recommendations sent

in Step 4 are obedient, and the Look-Ignore recommendations s ∈ S sent in Step 2 are

obedient. We next provide a formal definition.

For each s ∈ S, let π(mL(s), ω) :=
∑

mG(s)
π(mL(s),mG(s), ω), where mL := (mi)i∈L

and mG := (mi)i∈G . Similarly, let aG := (ai)i∈G .

Definition 4. (γ, βg, π) is an ignorance-permissive Bayes correlated equilibrium (IPBCE)

of G∗ if

1. (Consistency with the prior) π(A × {ω}) = µ(ω) for all ω ∈ Ω;

2. (Obedience for agent i who chooses Look) for every s ∈ S, i ∈ L(s), mi ∈ Ai,
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and a′i ∈ Ai

∑
mL(s)\i,aG(s),ω

π(mi,mL(s)\i, ω)
∏
k∈G(s)

βgk(ak|s−k)ui(mi(s−i), (mj(s−j))j∈L(s)\i, aG(s), ω)

≥
∑

mL(s)\i,aG(s),ω

π(mi,mL(s)\i, ω)
∏
k∈G(s)

βgk(ak|s−k)ui(a′i, (mj(s−j))j∈L(s)\i, aG(s), ω)

(5)

3. (Obedience for agent i who chooses Ignore) for every s ∈ S, i ∈ G(s), and ai, a′i ∈
Ai such that βgi (ai|s−i) > 0

∑
mL(s),aG(s)\i,ω

π(mL(s), ω)
∏

k∈G(s)\i

βgk(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω)

≥
∑

mL(s),aG(s)\i,ω

π(mL(s), ω)
∏

k∈G(s)\i

βgk(ak|s−k)ui(a′i, (mj(s−j))j∈L(s), aG(s)\i, ω) (6)

4. (Obedience for agent i at the Look-Ignore stage) for every i ∈ I, si such that

γi(si) > 0, and s′i ∈ Si

∑
s−i,mL(s),aG(s),ω

∏
j 6=i

γj(sj)π(mL(s), ω)
∏
k∈G(s)

βgk(ak|s−k)ui((mj(s−j))j∈L(s), aG(s), ω)

≥
∑

s′−i,mL(s′),aG(s′),ω

∏
j 6=i

γj(s
′
j)π(mL(s′), ω)

∏
k∈G(s′)

βgk(ak|s′−k)ui((mj(s
′
−j))j∈L(s′), aG(s′), ω)

(7)

where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
.

A few features of this equilibrium concept are worth emphasising. First, notice that the

concept requires obedience of the action recommendations even if an agent chooses to dis-

obey their Look-Ignore recommendation ((5) and (6) above). This reflects the requirement

that after any Look-Ignore choice behavior be sequentially rational. This in turn implies

that the harshest punishment that can be inflicted upon an agent who is recommended to

Look but chooses to Ignore (or vice versa) is the payoff from the worst BNE for that agent

in the subsequent Bayesian game. Second, notice that the distribution π includes a whole
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vector of action recommendations for each agent, one for each possible outcome of the

other agents’ Look-Ignore choices, and only one of those elements of the recommenda-

tion vector is relevant for the outcome of the Look-Ignore stage that has actually realized.

Finally, because π captures the recommendations that agents who choose to Look will re-

ceive, it gives (upon conditioning on the state) the canonical information structure that the

designer can choose in order to implement the IPBCE outcome in a PBE*. We further

elaborate on this below.

Definition 5. Given an IPBCE (γ, βg, π), let v(γ, βg, π) ∈ ∆(A× Ω) defined as

v(γ, βg, π)(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

π
(
mL(s), ω

) ∏
k∈G(s)

βgk(ak|s−k)

for all a ∈ A and ω ∈ Ω, denote the resulting IPBCE outcome distribution. Let IPBCE (G∗)

denote the set of IPBCE outcome distributions for a game G∗.

That definition highlights a difference between BCEs and IPBCEs. A BCE is an out-

come distribution, while an IPBCE induces an outcome distribution but also contains addi-

tional information (about possibly off-path behavior, for example). Two different IPBCEs

may induce the same outcome.

With these definitions in hand, we now state our characterization result.

Theorem 1. ∪(T,P )PBE
∗ (G∗ (T, P )) = IPBCE (G∗).

The equivalence of the two sets implies that the designer can maximize the expected

value of her payoff function over the set of IPBCE distributions. Once she finds the optimal

IPBCE, she can implement its outcome by providing the information structure obtained

through π; there then exists a PBE* where agents make the same Look-Ignore and action

choices as in the IPBCE.

Indeed, an implication of that equivalence result is that without loss of generality we

can restrict the designer to selecting a direct contingent information structure.13 In a direct

contingent information structure, each signal realization for agent i corresponds to a list of

13Proposition 1 in Section 4.1 demonstrates that, in contrast to the standard information design environ-
ment, single action recommendations are not sufficient to obtain all implementable outcomes.
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recommended actions, one for each combination of Look-Ignore choices by the otherN−1

agents. That is, in a direct contingent information structure Ti = Ai for each agent i. Say

that an outcome v ∈ ∆(A× Ω) is implementable with direct contingent recommendations

if there exists a conditional message distribution P : Ω → ∆ (A ) such that v is a PBE*

outcome of G∗ (A , P ).

Corollary 1. An outcome v is a PBE* outcome if and only if it is implementable with direct

contingent recommendations.

In the rest of the paper, we exploit Theorem 1 and its corollary to characterize the solu-

tion to the designer’s problem: we derive the optimal information structure (A , P ) directly

from the optimal IPBCE. This is conceptually equivalent to the designer optimizing over

direct contingent information structures and choosing (A , P ∗), and then nature optimizing

on the designer’s behalf over the set of PBE* of G∗ (A , P ∗). Hence, the advantageous

equilibrium selection over outcomes under the PBE* solution concept allows for direct

optimization over outcomes under the IPBCE solution concept.

2.2 Properties of the IPBCE Set

Non-Convexity. Unlike the BCE set, the IPBCE set is not necessarily convex. The reason

is the designer’s inability to correlate the actions of players who Ignore their signals with the

actions of other players. That inability means that obedience constraints cannot be pooled

across two IPBCEs, while this is possible across two BCEs. The non-convexity of the IP-

BCE set extends to the set of IPBCE outcome distributions as well. That non-convexity

drives our finding that the designer’s optimal information structure in a symmetric environ-

ment may be asymmetric.

Non-Monotonicity. In the standard information design environment, the set of imple-

mentable outcomes – the BCE set – is decreasing in the amount of exogenous information

about the state that the players start out with (Bergemann and Morris (2016)). The intu-

ition is simple: the designer has the option to provide additional information if it would be

useful, but too much information may interfere with obedience. Under strategic ignorance,

however, this monotonicity no longer holds. Giving the players exogenous information re-

moves the Look constraint on information that the designer might have wanted to provide

anyway.
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Our analysis of the investment game of Section 4.2 clearly demonstrates both of these

properties of the IPBCE set, and we will further elaborate on them there.

3 Properties of Robust Information Design

3.1 The Necessity of Ignorance

The characterization above would be much simpler if we focused only on equilibria where

all agents choose to Look at their private messages with probability one, that is γi(`) = 1

for all i ∈ I. Surprisingly, though, that restriction turns out not to be innocuous.14

Theorem 2. The designer’s optimal PBE* outcome v may be implementable only if γi(g) >

0 for some i ∈ I.

The intuition behind this result can be conveyed by considering a two-agent example

with the following features (the proof is in Appendix B). The binding constraint for the

designer is to incentivize Player 1 to Look at his signal. The structure of the basic game

is such that there is no BNE that gives Player 1 a low enough payoff to deter his deviation

to Ignore unless it is common knowledge that Player 2 also is completely uninformed. On

path, however, the designer must give Player 2 information so that he can play her state-

dependent desired action. The optimal solution is a compromise. Sometimes Player 2

Looks at his signal and plays the designer’s desired action, while Player 1 is incentivized

to Look by the possibility that Player 2 may Ignore his signal and then be willing to punish

Player 1 harshly for deviating. Hence, the designer does strictly better by relying on an

equilibrium where one agent (Player 2) randomizes between Look and Ignore instead of a

pure Look equilibrium. The essential point is that common knowledge of Player 2 being

uninformed cannot be replicated through an information structure which leaves Player 2

uninformed with the right probability. Upon choosing to Ignore this information structure,

Player 1 will have no way of knowing whether Player 2 has received the uninformative

signal or not, and hence cannot be effectively punished.

14Relatedly, we can without loss of generality disregard equilibria in which any agent plays Ignore with
certainty, as this is simply equivalent to the designer choosing a completely uninformative message for that
agent and the agent choosing to Look with certainty.
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3.2 The Harm of Ignorance

There are many examples from game theory where, in equilibrium, flexibility harms a

player. Our next result establishes that this negative effect can arise from the ability of

agents to Ignore their messages. Indeed, all agents can end up worse-off when they have

the option to exercise strategic ignorance relative to a baseline when messages are automat-

ically observed. This applies even in the case when the preferences of the designer and the

agents are completely aligned, so that the designer aims to maximize their total expected

payoff.

Theorem 3. The payoffs to all players from any designer-optimal IPBCE may be strictly

lower than their payoffs from any designer-optimal BCE, even when the designer’s objec-

tive is to maximize the sum of players’ payoffs.

This result is proven in Appendix C by constructing a game with two identical play-

ers, where an information structure that reveals the state perfectly gives rise to a unique

BNE that maximizes the players’ expected payoffs. However, if players have the ability

to exercise strategic ignorance, then it is a conditionally dominant strategy to Ignore that

information structure. The game has the flavor of a prisoners’ dilemma at the Look-Ignore

stage, where Look corresponds to Cooperate, and Ignore corresponds to Defect. Roughly,

an informed Player 2’s best response to an uninformed Player 1’s optimal action is much

better for Player 1 than the best response to an informed Player 1’s optimal action would

be. That benefit from ignorance outweighs Player 1’s loss from not being able to tailor his

own action to the state. Against an uninformed opponent, a player also benefits from being

uninformed. Thus, Ignore is strictly dominant and, in turn, the players get lower payoffs

than they would if messages were automatically observed.

In the proof of the above result, the ability to strategically ignore information is harmful

to the players due to their own choices given a fixed information structure that maximizes

their ex-ante expected utility. It is also possible that the potential for strategic ignorance

harms the players indirectly, by leading the designer to adjust the information structure in

a way that benefits her but is detrimental to the players. That is, the result that strategic

ignorance may be harmful does not rely on the presence or absence of a designer with a

particular objective.
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4 Non-Robust Properties of Standard Information Design
In this section we demonstrate the reversal of standard information design results in the

presence of strategic ignorance. While our results are shown in the context of self-contained

examples, this is sufficient to demonstrate that conclusions drawn from the standard setting

of information design are not robust to the presence of strategic ignorance. Propositions 1

and 2 demonstrate that in order to achieve robustness to strategic ignorance, the designer

may need to provide information that is unnecessary or even counterproductive for the

purpose of her objective maximization, from the point of view of standard information

design. The third result, Proposition 3, shows that asymmetric information structures may

be uniquely optimal in completely symmetric environments, which is never the case in the

standard information design setting.

Next, we consider two modifications of our environment. In the first one, the designer

can give only simple (non-contingent) action recommendations, but she can do that in mul-

tiple rounds, once before the Look-Ignore choices have been made and then conditional on

the specific Look-Ignore profile that has realised. Proposition 4 says that the designer may

be worse off in this modified setting relative to giving contingent action recommendations

upfront. The second modification allows for strategic communication between the play-

ers, which we have modelled as all-or-nothing disclosure that can be observably ignored.

As stated in Proposition 5, strategic communication between the players can actually be

strictly beneficial for the designer. None of these effects can arise in the standard informa-

tion design environment, when agents cannot choose to strategically ignore the information

chosen by the designer.

4.1 Redundant and Counterproductive Information Provision

A key tension for the designer in the environment with strategic ignorance is whether or

not, if an agent i deviates and Ignores his message, the other agent(s) are still willing to

follow their original recommendations. If so, then agent i cannot gain from the deviation.

If not – because their recommendations no longer provide information about player i’s

action, although they are still informative about the state – then unless there is another

BNE worse for player i than the original target outcome, the designer must adjust the

information structure. The designer has a variety of ways to make that adjustment. And as
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we demonstrate next, the optimal response may be to provide more information about the

state to the players. In some instances, this extra information is not used on path and would

be considered redundant from the perspective of standard information design (Proposition

1), while in other instances the extra information is used on path and would be considered

counterproductive in the absence of strategic ignorance (Proposition 2).

Proposition 1. All optimal information structures under strategic ignorance may require

information about the state that a player does not use on path. Therefore, direct simple

action recommendations are not sufficient for optimal design under strategic ignorance.

Proof. Consider the following state-contingent payoff matrices in Figure 3. The state space

is Ω = {e, f} and each of the states is equally likely. The designer gets a payoff of 1 if

(E, Y ) is played in state e or (F, Y ) in state f , and 0 otherwise.

X Y

E 0, 0 1, 1

F 2, 2 1, 1

ω = e

,

X Y

E 1, 0 0, 0

F 1, 1 1, 1

ω = f

Figure 3: State-contingent payoffs

At the prior, the players’ expected payoffs are given in Figure 4.

X Y

E 1
2
, 0 1

2
, 1
2

F 3
2
, 3
2

1, 1

Pr (ω = e) = 1
2

.

Figure 4: Expected payoffs at the prior

Baseline. If players are forced to see the messages, then the designer’s optimal direct

information structure (A, P̃ ) is

P̃ (E, Y |ω = e) = P̃ (F, Y |ω = f) = 1.

The designer’s payoff is 1, and the players’ payoffs are (1, 1). Player 1’s message reveals

the state. Against Y , Player 1 is indifferent between his two actions in state e, and action
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F is the unique best response in state f . Player 2’s message reveals nothing, and his

recommended action Y is a strict best response at the prior to Player 1’s state-dependent

strategy.

With strategic ignorance.
The baseline information structure with single action recommendations does not imple-

ment the desired outcome if players can choose publicly whether to Look at their signals,

because Player 1 would deviate to Ignore. Given that Player 2 does not have any infor-

mation about the state, he cannot play a state-contingent strategy. As shown in Figure 4,

F is strictly dominant for Player 1 at the prior, and Player 2’s best response is to play X .

Therefore, by deviating to Ignore, Player 1 gets a payoff of 3
2
, which is higher than the

payoff of 1 that he gets if he chooses to Look.

Nevertheless, the designer’s optimal outcome is robust to strategic ignorance, because

she can provide an information structure with direct contingent recommendations. Such

an information structure also specifies which action to play off-path, if the other player

deviates to Ignore. More precisely, the outcome can be implemented by providing the

following direct contingent information structure (A , P ∗):

P ∗ (EE, Y Y |ω = e) = P ∗ (FF, Y X|ω = f) = 1,

where the first term in each player’s message is the action recommendation to follow after

the other player Looks, and the second is the action recommendation for after the other

player Ignores. Now both players’ messages reveal the state. Note that (A , P ∗) is the

original baseline direct information structure augmented with post-Ignore punishment rec-

ommendations. The details are as follows.

If Player 1 plays E after choosing to Ignore, while Player 2 plays Y after choosing to

Ignore, then both players choosing Look is an equilibrium at the Look-Ignore stage. In

particular, Player 1’s recommended actions at the action stage are the same whether or not

Player 2 decides to Ignore, so it is immediate that Look is a best response for Player 2.

After Player 1 deviates to Ignore, then the specified continuation ((E, Y ) in state e and

(E,X) in state f ) gives him a payoff of 1, which also makes him indifferent between Look

and Ignore. Thus, both Look constraints hold with equality.

After s = (g, `), that is, after Player 1 deviates to Ignore, Player 2’s recommended
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action Y in state e is a strict best response to E, and his recommended action X in state

f is a weak best response to E. At the prior, both E and F are best responses for Player

1 to Player 2’s recommended state-dependent actions. Thus, obedience is satisfied. After

s = (`, g), that is, after Player 2 deviates to Ignore, the recommendations are the same

as under (A, P̃ ), so obedience is satisfied. The same holds for the recommendations after

s = (`, `).

Thus, the information structure (A , P ∗) implements the designer’s optimal outcome.

In fact, any information structure that implements the optimal outcome must fully reveal

the state to Player 2, even though he does not use that knowledge on path. The reason is

that after a deviation to Ignore by Player 1, Player 2 needs that information in order follow

the strategy of (X in state e, Y in state f ). An uninformed Player 1’s strict best response

to any other state-contingent strategy is F , and Player 2’s best response to F is X unless

he assigns probability 1 to state f . Thus, unless Player 2’s message fully reveals the state,

Player 1 can get a payoff of 3
2

from deviating to Ignore, and the designer’s desired outcome

will not be achieved.

Interpretation. In this example, there is no tension between giving the players the infor-

mation that they need on path, and giving them the information that they need to punish a

deviation. Fully revealing the state works for both situations, even though Player 2 does not

need any information on path. However, if the designer does not reveal the state to Player 2,

Player 1’s Look constraint cannot be satisfied as he cannot be effectively punished for devi-

ating to Ignore: (F,X) played in both states is the unique BNE when neither player knows

the state. Therefore, sending a simple action recommendation of how to play on-path is not

sufficient for giving Player 2 the necessary information about the state because he plays the

same action with probability one on path in both states. This example demonstrates that

sustaining the desired outcome in the presence of strategic ignorance may necessitate the

provision of multiple action recommendation at the same time, as single action recommen-

dations are no longer sufficient.

Next, we show that the designer may need to optimally provide an information structure

that is more informative about the state for all players than would be optimal in the absence

of strategic ignorance, and this information is used on path by the players. In the base-

line environment without strategic ignorance, this would be considered counterproductive
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information provision – it results in a lower payoff for the designer.

Proposition 2. All optimal information structures under strategic ignorance may give

strictly more information about the state to all i ∈ I than the optimal information structure

in the absence of strategic ignorance, and all i ∈ I may use that additional information on

path to the designer’s detriment.

Proof. This result is demonstrated in the following model of currency attacks. There are

N ≥ 2 symmetric players deciding whether or not to attack a currency ((attac)k or n(ot)).

The currency may be either weak or strong with equal probability. If the currency is weak,

then one player is enough for a successful attack, and so attacking is strictly dominant. If

the currency is strong, then the attack succeeds if and only if at least two players attack.

We capture that setting with the following payoff function, where player i’s payoff depends

on the state ω ∈ {W (eak), S(trong)}, his own action, and the number K of other players

who play k:

ui (k,K;W ) =

 2 if K < N − 1

x if K = N − 1
, ui (k,K;S) =

 −1 if K = 0

1 if K > 0
,

and

ui (n,K;ω) = 0 for all K,ω.

We assume x ≥ 1, so that the payoff when all players attack is at least as high when the

currency is weak as when it is strong.

The designer wants to prevent a successful attack: she gets a payoff of 1 if (n, . . . , n)

is played in state W , or if at least N − 1 players play n in state S, and she gets 0 otherwise.

Baseline. At the prior, k is dominant, so the designer must provide the players some infor-

mation in order to get a positive payoff. The best that she can do is to publicly recommend

n for sure in state S, and to publicly recommend n in state W as often as possible subject

to the players’ attaching a high enough probability to ω = S after recommendation n for

n to be obedient. Formally, the designer’s optimal information structure with single action

recommendations, (A, P̃ ), is

P̃ ((k, . . . , k) |ω = W ) = P̃ ((n, . . . , n) |ω = W ) =
1

2
, P̃ ((n, . . . , n) |ω = S) = 1.
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The obedience constraint binds for a player who gets recommendation n: the updated

probability of state S is 0.5/(0.5 + 0.25) = 2/3, so both k and n yield expected payoff 0

given that the other players will choose n.

The designer’s payoff is 3
4
, and the players’ payoff is 1

4
x.

With strategic ignorance. If the players can publicly Ignore their signals, then under that

baseline information structure (A, P̃ ) there is no equilibrium in which all players Look at

their recommendations and follow them.

First consider the case that x > 1, and suppose that Player i deviates to Ignore. When

Player i is uninformed, then k is dominant at the action stage: as shown in Figure 5, it gives

a strictly positive payoff against any strategy profile mapping states to actions for the other

N − 1 players, while n gives 0. We can summarize a strategy profile for the other players

as (KW , KS) denoting the number who play k in each state.

KW = N − 1, KW < N − 1, KW = N − 1, KW < N − 1,
KS > 0 KS = 0 KS = 0 KS > 0

k x+1
2

1
2

x−1
2

3
2

n 0 0 0 0

Pr (ω = W ) = Pr (ω = S) = 1
2

Figure 5: k is dominant for an uninformed player

In either state, the unique best response for any other player when Player i chooses k

is k. The outcome is thus (k, . . . , k) regardless of the designer’s recommendations, and

Player i’s resulting payoff is 1
2
· x + 1

2
· 1 > 1

4
x. It follows that deviating to Ignore is

profitable.

In fact, when x > 1 the designer cannot achieve any outcome other than (k, . . . , k)

regardless of the realized state, by the same reasoning. That action profile gives the players

their maximum possible payoff in either state, and under any information structure they

can achieve it in a BNE by deviating to Ignore. Requiring robustness to strategic ignorance

completely undoes the designer’s ability to use information design to her advantage.15

15This example illustrates the distinction between equilibrium selection and strategic ignorance. “Always
play (k, . . . , k)” is a BNE under the baseline information structure (A, P̃ ), but under advantageous selection
we assume that instead the agents play the designer’s preferred BNE. In contrast, if a player deviates to
Ignore, then the unique BNE under the resulting information structure is “always play (k, . . . , k),” and so
every equilibrium outcome at the Look-Ignore stage involves at least one player choosing Ignore. We are still
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If x = 1, then the situation changes. From Figure 5, we see that now an uninformed

Player i’s expected payoff from playing k against a strategy of (k in state W , n in state S)

by each other player (that is, KW = N − 1, KS = 0) is 0; both k and n are best responses.

The information structure (A, P̃ ) still does not work: a player’s message gives him only

partial information about the state, and so he cannot play strategy (k in state W , n in state

S). Player i’s unique best response to anything other than the strategy profile of (k in state

W , n in state S) for all opponents is k, and the rest of the argument is the same as in the

x > 1 case.

In contrast to the x > 1 case, though, now the designer can achieve a positive payoff.

In particular, if a player’s message perfectly reveals the state, then (k in state W , n in state

S) becomes a feasible strategy. Hence, consider the direct contingent information structure

(A , P ∗), which recommends action k to every player after every profile of others’ Look-

Ignore choices with probability 1 in state W , and to recommend action n to every player

after every profile of others’ Look-Ignore choices with probability 1 in state S.

Under (A , P ∗), it is an equilibrium for all players to Look at and follow their recom-

mendations, yielding payoff x/2 = 1
2
. If Player i deviates to Ignore, then there is a BNE

where he plays n and all other players follow their recommendation by playing (k in state

W , n in state S). That BNE gives Player 1 a payoff of 0 < 1
2
, so the deviation to Ignore is

not profitable. The designer’s payoff is 1
2
.

In contrast, any information structure that does not fully reveal the state to all players

gives the designer a payoff of 0. The outcome must be (k, ..., k) because any player whose

opponents are not fully informed can achieve that outcome by choosing to Ignore. Once

the state is perfectly revealed to all players, they use that information on path by always

playing the unique equilibrium (k, ..., k) in state W .

An interesting feature of the optimal information structure (A , P ∗) is that, as just ar-

gued, the constraint that players must be willing to view their signals is slack. In the game

with x = 1, the worst post-deviation BNE payoff is constant with respect to the information

until a discontinuous downward jump when players become fully informed about the state.

Consequently, the constraint is either strictly violated or strictly satisfied.

selecting the designer’s preferred equilibrium of the dynamic game, but there is only one outcome to select
from.
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4.2 Strict Optimality of Asymmetric Information Structures

In the standard information design environment without strategic ignorance, if the basic

game and the designer’s objective are player- and state-symmetric, then there is always

a player- and state-symmetric optimal information structure. That result is implied by

the convexity of the BCE set: if there is an optimal asymmetric BCE outcome distribu-

tion, then the mirror image of that distribution is also an optimal BCE distribution, and

so is the equally weighted convex combination of these two outcome distributions. That

convex combination corresponds to a player- and state-symmetric direct information struc-

ture. However, when players can exercise strategic ignorance, asymmetric information

structures can be strictly optimal even in completely symmetric environments due to the

non-convexity of the IPBCE set. The proof of this result is presented in a version of the

parameterized basic game from Taneva (2019), which also showcases the non-convexity of

the IPBCE set.

Proposition 3. Asymmetric information structures can be strictly optimal in completely

symmetric environments when players can exercise strategic ignorance.

Proof. There are two symmetric firms seeking to coordinate on one of two possible projects.

Which project has the potential to succeed depends on a binary unknown state of the world

and we assume each state is equally likely. The profitability of a successful project in-

creases with the total investment, so choosing the right project yields a higher payoff if the

other firm invests in it as well. We capture that setting in the payoff matrices in Figure 6.

E F

E 2, 2 1, 0

F 0, 1 0, 0

ω = e

,

E F

E 0, 0 0, 1

F 1, 0 2, 2

ω = f

Figure 6: Investment game

The designer wants the project to fail. In particular, she gets a payoff of 1 if (F, F ) is

played in state e or (E,E) is played in state f , and 0 otherwise.

Baseline. In the baseline information design environment, where agents automatically ob-

serve their private signals from the designer, we can rely on the analysis in Taneva (2019).
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Without loss of generality, we maximize over the set of symmetric16 BCE outcome distri-

butions represented in Figure 7, where q captures the probability that each player receives

E F
E r q − r
F q − r 1− 2q + r

E F
E 1− 2q + r q − r
F q − r r

ω = e ω = f

Figure 7: Parameterized symmetric BCE outcome distributions

the action recommendation that corresponds to the state (i.e., the total probability of being

recommended action E in state e or action F in state f for each player) and r captures the

probability that both players together receive the action recommendation that corresponds

to the state (i.e., the probability of (E,E) in state e or (F, F ) in state f ). Naturally, r counts

toward q, and so we must have q ≥ r.

The set of BCE outcome distributions is then the triangle in solid purple in Figure 8.

The red line represents the obedience constraint17, while the 45-degree line and the blue line

represent the constraints on the parameters that ensure the outcome is a proper probability

distribution (namely, q ≥ r and 1−2q+ r ≥ 0). The level lines for the designer’s expected

payoff are given by the solid black parallel lines, with increasing levels as they shift to the

left and up.

The optimum BCE outcome distribution is at the leftmost point of the BCE set r̃ = q̃ =
1
3
. This point corresponds to the optimal direct information structure of the designer (A, P̃ )

given by:

P̃ (E,E|ω = e) = P̃ (F, F |ω = f) = r̃ =
1

3
,

P̃ (F, F |ω = e) = P̃ (E,E|ω = f) = 1− 2q̃ + r̃ =
2

3
.

The designer’s payoff is 2
3
, and each firm’s payoff is 2 · 1

3
= 2

3
.

16This is due to the convexity of the BCE set, as argued previously, and due to the linearity of the designer’s
expected payoff in the probabilities. Additionally, note that Figure 4 represents distributions over action
profiles conditional on each state; the unconditional outcome distributions are obtained by multiplying these
with the prior.

17There are two obedience constraints – one for action E and one for action F – but they reduce to the
same inequality due to the symmetry.
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1
2

1
2

Figure 8: BCE set and designer’s expected payoff

Under (A, P̃ ), the designer sends a public signal. She exploits the firms’ desire to co-

ordinate their investment by recommending the “correct” project with probability 1
3
< 0.5.

Each firm is just willing to obey the recommendation given that the other firm will. Switch-

ing to the other project means matching the state with higher probability but mismatching

the other firm: obedience yields 2 with probability 1
3
, and switching yields 1 with probabil-

ity 2
3
.18

With strategic ignorance. If the firms can publicly Ignore their signals, then that baseline

information structure (A, P̃ ) will not lead to the designer’s desired outcome. There is no

equilibrium in which both firms Look at their signals and then follow their recommenda-

tions. To see why not, suppose that Firm 1 chooses to Ignore his signal while Firm 2 looks

at his. The worst BNE for Firm 1 under the resulting information structure involves Firm 1

randomizing uniformly between E and F . Firm 2’s best response is to choose the opposite

of the project that the designer recommended: now that Firm 1 cannot coordinate by fol-

lowing the designer’s recommendation, Firm 2 just wants to pick the project that is more

likely to succeed. Under (A, P̃ ), the project that the designer recommends is more likely

to be the wrong one, so Firm 2 will pick the other project.
18We note the role of advantageous equilibrium selection here. Under the baseline optimal information

structure (A, P̃ ), there is also a BNE where the firms do the opposite of their recommendations, and that
BNE gives them higher payoffs. In fact, the designer’s preferred BNE gives them payoffs below those of the
worst BNE (randomizing uniformly between projects) in the basic game without a designer.
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In that BNE, Firm 1 gets an expected payoff of 1
2

(
2
3
· 2 + 1

3
· 1
)

= 5
6
, which is strictly

greater than the payoff 2
3

from playing the designer’s preferred BNE under (A, P̃ ). Thus,

Firm 1 gained by choosing to Ignore his signal. By deviating to Ignore, Firm 1 forgoes

the chance to coordinate perfectly with Firm 2. But because Firm 2 will now choose the

correct project more frequently, Firm 1 has increased the probability of choosing correctly

conditional on matching the other firm. The complementarity in payoffs means that at

(A, P̃ ) that tradeoff is beneficial.

The green line in Figure 8 represents the Look obedience constraint for any direct sym-

metric information structure. Above this constraint the deviation to Ignore is no longer

beneficial. The hatched triangle thus depicts the set of direct symmetric information struc-

tures that will be ignored.19

In order to satisfy the constraint that firms be willing to Look at their signals20, the

designer’s optimal adjustment involves reducing the probability that Firm 2 will choose the

correct project if Firm 1 deviates to Ignore. One component is to lower the frequency of

recommending the wrong project from 2
3
. The second component is to introduce asymmetry

between the states: the designer is less likely to recommend the wrong action in state f

than in state e. That change creates a post-Ignore BNE worse than the one where Firm

1 randomizes uniformly and Firm 2 chooses the project matching the more likely state.

Instead, Firm 1 puts higher probability on F , and in order to try and coordinate with him

Firm 2 is willing to choose F even after the designer recommends F on path (meaning that

state e is more likely). Overall, the reduction in the probability of coordinating with Firm

2 conditional on matching the state leaves Firm 1 worse off after deviating to Ignore. That

effect, combined with the fact the designer recommends the correct action more frequently

on path, makes Firm 1 willing to Look.

Specifically, we calculate that the optimal IPBCE (γ, βg, π) corresponds to the direct

contingent information structure in Figure 9, where α ≡ 1√
3
≈ 0.577. Both firms Look

with probability 1 (that is, γi(`) = 1 for all i), and a firm that deviates to Ignore randomizes

with probability βgi (F |s−i = `) =
√

3 − 1 ≈ 0.732 on project F at the action stage. The

19The derivations are in Appendix D.
20Numerical estimation showed that the optimal IPBCE does not require mixing between Look and Ignore.
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designer’s payoff equals the probability that she recommends the wrong action,

E(uD) =
1

2

(
1− α

2
+ α

)
+

1

2
(1− α) ≈ 0.606,

and the firms’ payoff is 2 times the probability of a correct recommendation:

E(u) =
1

2
2

(
1− α

2

)
+

1

2
2(α) ≈ 0.789.

Deviating to Ignore would yield the same payoff, so the Look constraint is satisfied with

equality.

π(·|e) EF FE FF
EF 1−α

2
≈ 0.2115 0 0

FE 0 α ≈ 0.577 0
FF 0 0 1−α

2
≈ 0.2115

π(·|f) EF FE FF
EF 1− α ≈ 0.423 0 0
FE 0 1− α ≈ 0.423 0
FF 0 0 2α− 1 ≈ 0.154

ω = e ω = f

Figure 9: Optimal direct contingent information structure

Non-Convexity. We note that the state-wise mirror image of that optimal IPBCE denoted

by (γ, β̄g, π̄), is also an optimal IPBCE. An equally weighted convex combination of those

two, however, is not. Indeed, while the BCE set is always convex, the IPBCE set may

not be, and in this example it is not. In particular, after Firm 1 deviates to Ignore, then

the strategy 1
2
βg + 1

2
β̄g calls for him to randomize uniformly between E and F . But then

Firm 2’s best response is to pick the project that is more likely to succeed rather than

to follow the designer’s recommendation, so the obedience constraint fails. Hence, this

convex combination of the two optimal IPBCEs is not an IPBCE itself. This non-convexity

extends to the outcome sets: the equally weighted convex combination of the two IPBCE

outcome distributions is not an IPBCE outcome distribution.

Non-Monotonicity with Respect to Exogenous Information. In the standard information

design environment, the set of implementable outcomes decreases in the amount of exoge-

nous information about the state that the players start out with (Bergemann and Morris

(2016)). Our analysis of the investment game, however, demonstrates that this monotonic-
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ity may fail under strategic ignorance. In particular, consider the designer’s optimal base-

line outcome distribution (A, P̃ ). When the players have no exogenous information, this

distribution is not implementable under strategic ignorance. However, if they start out with

exactly the exogenous information structure implied by (A, P̃ ), then the designer could

simply reveal nothing further and there will be a BNE that implements that distribution.

Hence, by increasing the exogenous information of the players in this way, an outcome that

was previously not implementable in the presence of strategic ignorance becomes imple-

mentable. If we further increase the exogenous information of the agents to fully reveal

the state, then (A, P̃ ) becomes again not implementable. Thus, the set of implementable

outcome distributions under strategic ignorance is non-monotone in the players’ exogenous

information.

Comparison with Currency Attack. In the investment game of this section, the designer

optimally modifies the baseline information structure by raising the players’ on-path pay-

offs and lowering the post-deviation payoffs so that the Look-constraint is just satisfied.

In contrast, recall that in the currency attack game of Section 4.1 with x = 1, the Look-

constraint is slack at the designer’s optimal information structure, because the worst post-

deviation BNE payoff has a downward jump when players become fully informed about

the state. Another qualitative difference is that in the investment game, the designer adjusts

by giving the players less precise information about the state, and in the currency attack

game she gives them more precise information. A qualitative similarity of the investment

and the currency attack games is that the players are better off under strategic ignorance.21

However, recall from Section 3.2 that this need not be the case in general.

4.3 Recommendations Contingent on Look-Ignore Choices

We know that in general the designer is hurt by the fact that players see their recommenda-

tions for all possible combinations of Look-Ignore choices at once, because the information

about the state contained in off-path recommendations may interfere with the obedience

constraint for the on-path recommendation. This effect suggests that the designer would

benefit from the ability to instead provide only on-path recommendations initially, and then

send additional recommendations only if some player deviates at the Look-Ignore stage.

21The designer is always (weakly) worse off under strategic ignorance due to the added incentive con-
straints.
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However, in the first example from Section 4.1 we can show that the designer does strictly

better by giving both recommendations (one for when the other player chooses Look and

one for when he chooses Ignore) at once. More specifically, providing the designer with

the option to give Player 2 more information after Player 1 chooses Ignore does not help.

Proposition 4. Giving recommendations in multiple rounds rather than all at once may be

strictly worse for the designer when players can exercise strategic ignorance.

Proof. Consider the example from Section 4.1 given by the state-contingent payoff matri-

ces in Figure 3. In that example, at the baseline without strategic ignorance, the designer’s

optimal direct information structure (A, P̃ ) is

P̃ (E, Y |ω = e) = P̃ (F, Y |ω = f) = 1.

Recall from the proof of Proposition 1 that designer’s optimal outcome is robust to strategic

ignorance, if she can provide the direct contingent recommendations all at once. Specifi-

cally, the outcome can be implemented by providing the following direct contingent infor-

mation structure (A , P ∗):

P ∗ (EE, Y Y |ω = e) = P ∗ (FF, Y X|ω = f) = 1.

Now both players’ messages reveal the state.

Giving punishment recommendations only after a deviation to Ignore. Here, we have

in mind the following modification of our main setup: the designer first gives on-path

recommendations only. If both players choose Look, then the designer sends no further

messages. If Player i deviates to Ignore, then the designer sends a second message to

Player j, with a recommendation for what to play now. Player j then chooses whether or

not to look at that second message.

In this setting, the designer cannot implement the desired outcome distribution by first

providing the on path recommendations given by the information structure (A, P̃ ) and pro-

viding the second message only after the other player has chosen to Ignore. Suppose that

Player 1 deviates to Ignore. Now Player 2 can decide whether to Look at the subsequent

recommendation (Y in state e and X in state f ) or Ignore it. If Player 2 chooses to Look

at the second recommendation, then the expected payoffs in the continuation BNE where
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(E, Y ) is played in state e and (E,X) is played in state f , are
(
1, 1

2

)
. If Player 2 chooses to

Ignore the second recommendation, then both players’ beliefs equal the prior, and in that

case action F is strictly dominant for Player 1, to which Player 2’s unique best response is

X . Thus, the outcome will be (F,X) with expected payoffs
(
3
2
, 3
2

)
. Therefore, conditional

on Player 1 choosing to Ignore the initial message, it is a unique best response for Player

2 to Ignore the second message given the continuation BNEs. Consequently, Player 1 will

optimally Ignore his first message and get a payoff of 3
2
, instead of choosing to Look at it

and get a payoff of 1. Hence, (F,X) is played in both states, which results in a payoff of

0 for the designer. We conclude that the designer cannot do as well here as she did in the

previous section with direct contingent recommendation, where she got a payoff of 1.

Interpretation. If the designer gives both the on-path and the punishment recommenda-

tions at once, then Player 2’s Look constraint is satisfied. He expects that Player 1 will

choose Look, and so Player 2 is indifferent between Look and Ignore. If there were any

positive probability that Player 1 might choose Ignore, then Player 2 would strictly prefer

Ignore. But because that probability is zero, the designer effectively gets the “punishment

Look constraint” of Player 2 for free.

On the other hand, giving just on-path recommendations to start does not reveal the

state to Player 2, but he needs to know it in order to punish Player 1: (F,X) played in both

states is the unique BNE when neither player knows the state. Once Player 1 has deviated

to Ignore, we can no longer satisfy Player 2’s second Look constraint to get him to learn

the state and punish Player 1. Hence, in this example, giving punishment information to

a player who has initially chosen to Look only after his opponent has deviated to Ignore

means having to satisfy a second Look constraint, and that effect makes the designer worse

off.

4.4 Communication between Players

We next introduce the possibility of players strategically communicating with each other.

In the standard information design environment without strategic ignorance, the possibility

of players communicating their private signals with each other can never be strictly ben-

eficial for the designer: once the designer has provided the optimal information structure,

any change resulting from communication between the players must weakly lower the de-

signer’s expected payoff. However, in the presence of strategic ignorance, the designer
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can leverage the players’ incentives for strategic information sharing to her own benefit, in

order to relax some of the Look-constraints.

Proposition 5. Strategic communication between players can be strictly beneficial for the

designer when players can exercise strategic ignorance.

Proof. The example that proves this result builds upon the complete information game in

Figure 10. X is strictly dominant for Player 1 and F is a strict best response to that, so the

unique equilibrium of the game is (X,F ), giving the vector of payoffs (2, 2).

E F

X 4, 1 2, 2

Y 3, 2 0, 0

,

Figure 10: Complete information game

Next we add two states of nature, which give rise to the payoff matrices in Figure 11.

The idea is that for Player 1 to want to play anything other than Y he needs to know the

state. If he plays X1 in state 2, or vice versa, then he gets a bad payoff. At the prior, Y is

strictly dominant for Player 1 against any state-contingent strategy of Player 2.

E1 E2 G F1 F2

X1 4, 1 4,−100 1, 1
2

2, 2 2,−100

X2 −100, 1 −100,−100 −100, 1
2
−100, 2 −100,−100

Y 3, 2 3,−100 0, 1
2

0, 0 0,−100

ω = 1

,

E1 E2 G F1 F2

X1 −100,−100 −100, 1 −100, 1
2
−100,−100 −100, 2

X2 4,−100 4, 1 1, 1
2

2,−100 2, 2

Y 3,−100 3, 2 0, 1
2

0,−100 0, 0

ω = 2

Figure 11: State-contingent payoffs

Similarly, for Player 2 to want to play E or F he needs to know the state. If he plays

E1 or F1 in state 2, or vice versa, then he gets a bad payoff. At the prior, the “safe” action
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G is strictly dominant for Player 2 against any state-contingent strategy of Player 1. Notice

that G is bad for Player 1, as it gives him lower payoffs than any other action of Player 2.

At the prior, when both players are uninformed, their expected payoffs are given in

Figure 12. The designer gets a payoff of 1 if (Xω, Fω) is played in state ω, and 0 otherwise.

E1 E2 G F1 F2

X1 −48,−49.5 −48,−49.5 −49.5, 1
2
−49,−49 −49,−49

X2 −48,−49.5 −48,−49.5 −49.5, 1
2
−49,−49 −49,−49

Y 3,−49 3,−49 0, 1
2

0,−50 0,−50

Pr (ω = 1) = 1
2

.

Figure 12: Expected payoffs at the prior

Baseline. If players are forced to see the messages, then the designer’s optimal information

structure sends messages that reveal the state perfectly and the players play the correspond-

ing equilibrium. Formally, the optimal direct information structure (A, P̃ ) is

P̃ (X1, F1|ω = 1) = P̃ (X2, F2|ω = 2) = 1.

The designer gets a payoff of 1. The players get (2, 2).

With strategic ignorance. The baseline information structure does not work if players

can choose publicly whether to Look at their signals, because Player 1 would deviate to

Ignore. At the prior, Y is dominant for Player 1. Given that Player 2 knows the state, his

best response is Eω, so Player 1 gets a payoff 3, which is higher than the payoff of 2 he gets

if he chooses to Look.

Allowing communication. With communication between players, the designer can restore

the outcome from the optimal baseline information structure (A, P̃ ). She achieves that by

revealing the state to Player 1 only, and having Player 1 subsequently reveal the state to

Player 2.22 The designer achieves her maximal payoff of 1, and the players’ payoffs are

(2, 2).

22We assume communication between the players is in the form of verifiable all-or-nothing disclosure,
where the receiver can refuse to be informed.
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Those strategies are an equilibrium. If Player 1 deviates to Ignore, then both players

are uninformed. At the prior, Y is strictly dominant for Player 1, and G is strictly dominant

for Player 2. The outcome is (Y,G), giving Player 1 a payoff of 0 < 2. If Player 1 chooses

to Look but deviates and does not reveal the state to Player 2, then the outcome is (Xω, G),

giving Player 1 a payoff of 1 < 2. Finally, if Player 2 deviates and refuses to Look at what

Player 1 tells him, then the outcome is again (Xω, G), giving Player 2 a payoff of 1
2
< 2.

Therefore, there are no profitable deviations for either player.

Interpretation. In this example, given the designer’s optimal baseline information struc-

ture, both players choosing Look is not an equilibrium at the Look-Ignore stage because

Player 1 would prefer to deviate to Ignore. However, Player 1 prefers the outcome from

the continuation equilibrium after both players have chosen Look to the outcome from the

continuation equilibrium after both players have chosen Ignore. Therefore, Player 1 can be

incentivized to choose Look by sending the perfectly informative signal to him only, after

which he would want to pass it on to Player 2. As long as Player 2 prefers the outcome

after both players have chosen Look to the outcome after he chooses Ignore while Player 1

has chosen Look, he would agree to observe the information that Player 1 wants to pass on

to him. Essentially, by sending information to Player 1 only, the designer is able to rule out

Player 1’s deviation to the outcome where Player 1 chooses Ignore while Player 2 chooses

Look.

Coded messages. We can build on that reasoning to argue that when players can com-

municate, the designer may do better than using direct contingent action recommendations

by sending coded messages that are only informative when combined. For example, each

player gets a binary signal whose marginal distribution is uniform and independent of the

state. The signals are perfectly correlated in state 1 and perfectly negatively correlated

in state 0. Thus, seeing one signal gives no information, but knowing whether or not they

match perfectly identifies the state. In that way, Player 1 can pass on a signal without know-

ing the meaning that Player 2 will assign to it. That message structure would be useful in

a setting where Player 2 is willing to punish Player 1 effectively only when Player 2 does

not know one component of a multidimensional state, but in order to play the designer’s

desired actions on path Player 2 must know that component and Player 1 must not.
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5 Discussion and Conclusion
We have shown that the ability of agents to publicly refuse information has important con-

sequences for information design in strategic settings. Requiring robustness to strategic

ignorance significantly alters optimal information structures and the ensuing outcomes in

leading economic applications. Moreover, it generates new qualitative predictions and un-

does standard results from the information design literature. Our findings are also relevant

in settings where agents seek to coordinate on what pre-play information to gather: the

agreement that maximizes expected payoffs ex ante may not be sustainable.

In future work, we believe that it will be productive to expand our analysis from static

(that is, one shot, simultaneous move) games to extensive form games. More specifically,

it would be interesting to consider different possible extensive forms of the Look-Ignore

stage, either as a choice made by the designer or, alternatively, by the agents. Another

relevant extension would be to allow the agents to choose arbitrary garblings of their sig-

nals instead of the two extremes of either perfectly observing their signal or remaining

completely uninformed. A particularly interesting related topic is the optimal design of

monitoring structures in repeated games where players can publicly ignore their signals of

each others’ actions.

Appendix

A Proof of Theorem 1.
Proof. First we prove that IPBCE (G∗) ⊆ ∪(T,P )PBE

∗ (G∗ (T, P )). Take any v(γ, βg, π) ∈
IPBCE (G∗). Consider the information structure (A , P ) with P (m|ω) := π(m,ω)/µ(ω)

for all m ∈ A , ω ∈ Ω.

Given profile s ∈ S of Look-Ignore choices, let AL(s) ≡ ×i∈L(s)Ai and PL(s)(mL(s)|ω) :=

π(mL(s), ω)/µ(ω). In G(AL(s), PL(s)) consider the following strategy for all player i ∈
L(s):

β̃si (ai|mi) =

 1, if ai = mi(s−i)

0, if ai 6= mi(s−i),

for all mi ∈ Ai, and for all player i ∈ G(s), consider β̃si (ai) = βgi (ai|s−i).
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Given any s ∈ S, the interim payoff to agent i ∈ L(s) observing message mi ∈ Ai and

choosing action ai ∈ Ai when his opponents play according to β̃s−i is given by

∑
a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)ui(ai, a−i, ω)

=
∑

mL(s)\i,aG(s),ω

π(mi,mL(s)\i, ω)
∏
k∈G(s)

βgk(ak|s−k)ui(ai, (mj(s−j))j∈L(s)\i, aG(s), ω). (8)

Hence, by (5) we obtain

∑
a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)ui(mi(si), a−i, ω)

≥
∑

a−i,mL(s)\i,ω

µ(ω)PL(s)(mi,mL(s)\i|ω)
∏

j∈L(s)\i

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)ui(a
′
i, a−i, ω). (9)

for all i ∈ L(s), mi ∈ Ai, and a′i ∈ Ai. This establishes the BNE interim incentive

compatibility constraint (1) for all i ∈ L(s),mi ∈ Ai, and ai ∈ Ai such that β̃si (ai|mi) > 0.

Given any s ∈ S, the interim payoff to agent i ∈ G(s) choosing action ai ∈ Ai when

his opponents play according to β̃s−i is given by

∑
a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏
j∈L(s)

β̃sj (aj|mj)
∏

k∈G(s)\i

β̃sk(ak)ui(ai, a−i, ω)

=
∑

mL(s),aG(s)\i,ω

π(mL(s), ω)
∏

k∈G(s)\i

βgk(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω). (10)

Hence, by (6) we obtain

∑
a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏
j∈L(s)

β̃sj (aj|mj)
∏

k∈G(s)\i

β̃sk(ak)ui(ai, a−i, ω)

≥
∑

a−i,mL(s),ω

µ(ω)PL(s)(mL(s)|ω)
∏
j∈L(s)

β̃sj (aj|mj)
∏

k∈G(s)\i

β̃sk(ak)ui(a
′
i, a−i, ω) (11)

for all i ∈ G(s), ai such that βgi (ai|s−i) > 0, and a′i ∈ Ai. This establishes the BNE interim

incentive compatibility constraint (2) for all i ∈ G(s) and ai ∈ Ai with β̃si (ai) > 0.

By Definition 1 we conclude that for all s ∈ S, β̃s = (β̃si )i is a BNE of G(TL(s), PL(s)).
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Then v(β̃s) defined as

v(β̃s)(a, ω) :=
∑
mL(s)

µ(ω)PL(s)(mL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)


=
∑
mL(s)

π(mL(s), ω)

 ∏
j∈L(s)

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)

 (12)

for all a ∈ A and ω ∈ Ω is a BNE outcome of G(TL(s), PL(s)).

Notice that for each i ∈ I and si, s′i ∈ Si such that γi(si) > 0, (7) can be equivalently

written as

∑
s−i,a,ω

∏
j 6=i

γj(sj)

∑
mL(s)

π(mL(s), ω)

 ∏
j∈L(s)

β̃sj (aj|mj)
∏
k∈G(s)

β̃sk(ak)

ui(ai, a−i, ω)

=
∑
s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s)(a, ω)ui(ai, a−i, ω)

≥
∑
s−i,a,ω

∏
j 6=i

γj(sj)v(β̃s
′
)(a, ω)ui(ai, a−i, ω)

=
∑
s′−i,a,ω

∏
j 6=i

γj(sj)

∑
mL(s′)

π(mL(s′), ω)

 ∏
j∈L(s′)

β̃s
′

j (aj|mj)
∏

k∈G(s′)

β̃s
′

k (ak)

ui(ai, a−i, ω),

(13)

where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
, which establishes (4).

Hence,
(
γ, (β̃s)s

)
is a PBE* of G∗ (A , P ). Then v̂ ∈ ∆(A× Ω) defined as

v̂(a, ω) :=
∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

for all a ∈ A and ω ∈ Ω is a PBE* outcome of G∗ (A , P ), that is v̂ ∈ PBE∗ (G∗ (A , P )).
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Notice that for all a ∈ A and ω ∈ Ω

v̂(a, ω) =
∑
s∈S

∏
i∈I

γi(si)v(β̃s)(a, ω)

=
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

π
(
mL(s), ω

) ∏
k∈G(s)

βgk(ak|s−k) = v(γ, βg, π)(a, ω).

(14)

Thus, v(γ, βg, π) ∈ PBE∗ (G∗ (A , P )).

Next, we prove that IPBCE (G∗) ⊇ ∪(T,P )PBE
∗ (G∗ (T, P )). Take any v̄ ∈ ∪(T,P )PBE

∗ (G∗ (T, P )).

Hence, there exists an information structure (T, P ) and a PBE* strategy profile
(
γ, (β̃s)s

)
of G∗ (T, P ) such that

v̄(a, ω) =
∑
s∈S

∏
i∈I

γi(si)
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|tj)
∏
k∈G(s)

β̃sk(ak)


for all a ∈ A and ω ∈ Ω.

For all i ∈ I define βgi : S−i → ∆Ai in the following way: for each s ∈ S such that

si = g, βgi (ai|s−i) = β̃si (ai) for all ai ∈ Ai. Let βg = ×iβgi . Define π ∈ ∆(A × Ω) such

that for all s ∈ S

π(mL(s), ω) =
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
i∈L(s)

β̃si (ai|ti) (15)

for all aL(s) ∈ ×i∈L(s)Ai and mL(s) such that (mj(s−j))j∈L(s) = aL(s). Notice, this ensures

that π(A × {ω}) = µ(ω) for all ω ∈ Ω.

Multiplying both sides of (1) by β̃si (ai|ti) and summing across ti we obtain for all s ∈ S,
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i ∈ L(s), and ai, a′i ∈ Ai

∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
j∈L(s)

β̃sj (aj|tj)

 ∏
k∈G(s)

β̃sk(ak)ui(ai, a−i, ω)

=
∑

mL(s)\i,aG(s),ω

π(mL(s), ω)
∏
k∈G(s)

βgk(ak|s−k)ui(mi(s−i), (mj(s−j))j∈L(s)\i, aG(s), ω)

≥
∑

mL(s)\i,aG(s),ω

π(mL(s), ω)
∏
k∈G(s)

βgk(mk(s−k))ui(a
′
i, (mj(s−j))j∈L(s)\i, aG(s), ω)

=
∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
j∈L(s)

β̃sj (aj|tj)

 ∏
k∈G(s)

β̃sk(ak)ui(a
′
i, a−i, ω) (16)

which establishes (5).

For all s ∈ S, i ∈ G(s) and ai ∈ Ai with β̃si (ai) > 0, (2) can be equivalently written as

∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
j∈L(s)

β̃sj (aj|tj)

 ∏
k∈G(s)\i

β̃sk(ak)ui(ai, a−i, ω)

=
∑

mL(s),aG(s)\i,ω

π(mL(s), ω)
∏

k∈G(s)\i

βgk(ak|s−k)ui(ai, (mj(s−j))j∈L(s), aG(s)\i, ω)

≥
∑

mL(s),aG(s)\i,ω

π(mL(s), ω)
∏

k∈G(s)\i

βgk(ak|s−k)ui(a′i, (mj(s−j))j∈L(s), aG(s)\i, ω)

=
∑
a−i,ω

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
j∈L(s)

β̃sj (aj|tj)

 ∏
k∈G(s)\i

β̃sk(ak)ui(a
′
i, a−i, ω), (17)

for all ai, a′i ∈ Ai such that βgi (ai|s−i) > 0, which establishes (6).

44



For all i ∈ I and si ∈ {`, g} with γi(si) > 0, (4) can be written as

∑
s−i,a,ω

∏
j 6=i

γj(sj)

∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)
∏
j∈L(s)

β̃sj (aj|tj)

 ∏
k∈G(s)

β̃sk(ak)ui(ai, a−i, ω)

=
∑

s−i,mL(s),aG(s),ω

∏
j 6=i

γj(sj)π(mL(s), ω)
∏
k∈G(s)

βgk(ak|s−k)ui((mj(s−j))j∈L(s), aG(s), ω)

≥
∑

s′−i,mL(s′),aG(s′),ω

∏
j 6=i

γj(s
′
j)π(mL(s′), ω)

∏
k∈G(s′)

βgk(ak|s′−k)ui((mj(s
′
−j))j∈L(s′), aG(s′), ω)

=
∑
s′−i,a,ω

∏
j 6=i

γj(sj)

∑
tL(s′)

µ(ω)PL(s′)(tL(s′)|ω)
∏

j∈L(s′)

β̃s
′

j (aj|tj)

 ∏
k∈G(s′)

β̃s
′

k (ak)ui(ai, a−i, ω)

(18)

for all s′i ∈ {`, g}, where s ≡ (si, s−i) and s′ ≡
(
s′i, s

′
−i
)
, which establishes (7).

Hence, (γ, βg, π) is a IPBCE ofG∗. Then, v(γ, βg, π) ∈ ∆(A×Ω) is a IPBCE outcome

of G∗, that is v ∈ IPBCE(G∗). Notice that

v(γ, βg, v)(a, ω)

=
∑
s∈S

∏
i∈I

γi(si)

 ∑
mL(s):(mj(s−j))j∈L(s)=aL(s)

π
(
mL(s), ω

) ∏
k∈G(s)

βgk(ak|s−k)

=
∑
s∈S

∏
i∈I

γi(si)
∑
tL(s)

µ(ω)PL(s)(tL(s)|ω)

 ∏
j∈L(s)

β̃sj (aj|tj)
∏
k∈G(s)

β̃sk(ak)


= v̄(a, ω) (19)

for all a ∈ A and ω ∈ Ω. Thus, v̄ ∈ IPBCE(G∗).

B Proof of Theorem 2
Proof. Consider the following game, where Ω = {e, f} and each state is equally likely.

There are two players with action setsA1 = {E,M,F,M ′} andA2 = {L,Re, Rf , Pe, Pf , Q}.
The players’ state contingent payoffs are given in Figure 13.
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L Re Rf Pe Pf Q

E 3, 0 1, 1 1, 1 3, 0 3,−1 1,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

F 0, 0 −2, 1 −2, 1 −2, 0 −2,−1 −2,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 3 −1, 1 0, 2

ω = e

,

L Re Rf Pe Pf Q

E 0, 0 −2, 1 −2, 1 −2,−1 −2,−1 −2,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

F 3, 0 1, 1 1, 1 3,−1 3,−1 1,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 1 −1, 3 0, 2

ω = f

Figure 13: State-contingent payoffs

The designer gets a payoff of 1 if (E,Re) is played in state e, or if (F,Rf ) is played

in state f , and payoff 0 otherwise. The actions Re and Rf are duplicates from the players’

point of view. Their role in the example is to make it so that Player 2 needs to know the

state in order to play the designer’s desired action.

Suppose that the state is common knowledge. In state e, E is dominant for Player 1,

and Re is a best response for Player 2. In state f , F is dominant for Player 1, and Rf is

a best response for Player 2. The expected payoff vector for the players is (1, 1), and the

designer gets an expected payoff of 1.

At the prior, expected payoffs are given in Figure 14.

L Re Rf Pe Pf Q

E 1.5, 0 −1
2
, 1 −1

2
, 1 1

2
,−1 1

2
,−1 −1

2
,−1

M 2, 2 0, 0 0, 0 2, 0 2, 0 0, 0

F 1.5, 0 −1
2
, 1 −1

2
, 1 1

2
,−1 1

2
,−1 −1

2
,−1

M ′ 0, 2 −1, 0 −1, 0 −1, 2 −1, 2 0, 2

Figure 14: Expected payoffs at the prior

Suppose it is common knowledge that Player 1 knows the state and that Player 2’s

beliefs equal the prior. In state e, E is dominant for Player 1, and in state f , F is dominant.
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In both cases, either Re or Rf is a best response for Player 2. In both cases, irrespective

of which best response Player 2 plays, the expected payoff vector for the players is (1, 1).

However, the designer only gets a payoff of 1 if Player 2 plays Re in state ω = e and Rf in

state ω = f .

Crucially, in this setting, Player 1 can be punished effectively for choosing Ignore only

if it is common knowledge that Player 2’s belief equals the prior. The reason is the follow-

ing. Suppose first that it is common knowledge that both players’ beliefs equal the prior.

Then M strictly dominates E and F , and M weakly dominates M ′ for Player 1: M ′ is a

weak best response for Player 1 if and only if Player 2 plays Q with probability 1. Q is

a best response to M ′. So (M ′, Q) is an eqm with payoff (0, 2). Next, suppose Player 2

assigns belief p > 1
2

to state ω. Then Q is not a best response to M ′: Q gives payoff 2,

while Pω gives expected payoff 3p+ (1− p) = 2p+ 1 > 2.

Therefore, if it is common knowledge that Player 1’s belief equals the prior, and that

there is ex ante strictly positive probability that Player 2 has some information (i.e., assigns

belief p > 1
2

to one state or the other), then (M ′, Q) is not an equilibrium. Instead, M

is dominant against state-contingent strategies of Player 2 and the unique equilibrium is

(M,L), giving payoff (2, 2).

A mixed Look-Ignore outcome: Suppose the designer’s information structure is given by

(A , P ) with

P (EE,ReL|ω = e) = P (FF,RfL|ω = f) = 1

which perfectly informs both players of the state. The first term in each player’s message

is the action recommendation to follow after the other player has chosen Look (`), while

the second term is the action recommendation to follow after the other player has chosen

Ignore (g).

Given this information structure, the following is an equilibrium of the Look-Ignore

stage: Player 1 plays `, i.e. γ1(`) = 1, and Player 2 randomizes with equal probability

over ` and g, that is γ2(`) = γ2(g) = 1
2
. On path, the payoff for the players is (1, 1),

regardless of Player 2’s Look-Ignore choice, and in expectation the designer gets a payoff

of 1
2
1 + 1

2
1
2

= 3
4
.

Next, we argue that following the action recommendations of the direct information

structure specified above is incentive compatible for some post-Ignore contingent strate-
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gies, i.e. it is an equilibrium of the action stage:

• After (`, `): Player 1’s recommendation specifies his dominant action for the revealed

state (E or F ), and Player 2’s recommendation is a best response. The payoff vector

is (1, 1).

• After (`, g): Player 1’s recommendation specifies his dominant action (E or F ).

Player 2’s post-Ignore strategy is βg2(Re|`) = βg2(Rf |`) = 1
2
, where he randomizes

between Re and Rf , both of which are best responses. The payoff vector is (1, 1).

• After (g, `): Player 1’s post-Ignore strategy is βg1(M |`) = 1; M is a best response to

Player 2’s recommendation L. For Player 2, L is the strict best response to M . The

payoff vector is (2, 2).

• After (g, g): Consider the post-Ignore strategies βg1(M ′|g) = 1 and βg2(Q|g) = 1. At

the prior, M ′ is a best response to Q , and Q is a best response to M ′. The payoff

vector is (0, 2).

At the Look-Ignore stage:

• Given that Player 1 plays `, Player 2 is indifferent between ` and g, as he gets a

payoff of 1 either way. Hence, Player 2 is willing to mix, as required.

• Given that Player 2 chooses ` with probability 1
2
, Player 1’s payoff from ` is 1

2
· 1 +

1
2
· 1 = 1. Deviating to g gives Player 1 a payoff of 1

2
2 + 1

2
0 = 1. Thus, ` is a best

response for Player 1, as required.

Trying to replicate in a pure Look-Look equilibrium: For the designer to get a payoff

p > 1
2
, Player 2 must match the state with probability at least p, so with strictly positive

probability her recommendation must give her some information about the state.

Consequently, if Player 1 deviates to g at the Look-Ignore stage, then the continuation

play after (g, `) must be (M,L), giving a payoff vector (2, 2). Thus, Player 1 must get a

payoff of at least 2 after (`, `) in order to satisfy his look constraint. It follows that the

designer’s preferred action profiles (which give Player 1 a payoff of 1) can be played with

probability no higher than 1
2
: Player 1’s highest possible payoff is 3, and 1x+ 3(1−x) ≥ 2

implies that x ≤ 1
2
. We conclude that the mixed Look-Ignore outcome in the previous

section cannot be duplicated in a pure Look-Look equilibrium.

48



C Proof of Theorem 3
Proof. Consider the following symmetric game, where each state ω ∈ {0, 1} is equally

likely. The players’ state contingent payoffs are given in Figure 15.

X Y E1 F1 E2 F2

X 0, 0 0.1, 0.1 1.1, 0.12 1.12, 0.14 −1.1,−0.2 −1.12,−0.2

Y 0.1, 0.1 0.15, 0.15 1, 0.18 1.1, 0.16 1,−0.2 1.1,−0.2

E1 0.12, 1.1 0.18, 1 1.11, 1.11 1.111, 1.1 1.1, 0 1.1, 0

F1 0.14, 1.12 0.16, 1.1 1.1, 1.111 1.11, 1, 11 1.11, 0 1.11, 0

E2 −0.2,−1.1 −0.2, 1 0, 1.1 0, 1.11 0, 0 0, 0

F2 −0.2,−1.12 −0.2, 1.1 0, 1.1 0, 1.11 0, 0 0, 0

Payoffs in ω = 1

,

X Y E1 F1 E2 F2

X 0, 0 0.1, 0.1 −1.1,−0.2 −1.12,−0.2 1.1, 0.12 1.12, 0.14

Y 0.1, 0.1 0.15, 0.15 1,−0.2 1.1,−0.2 1, 0.18 1.1, 0.16

E1 −0.2,−1.1 −0.2, 1 0, 0 0, 0 0, 1.1 0, 1.11

F1 −0.2,−1.12 −0.2, 1.1 0, 0 0, 0 0, 1.1 0, 1.11

E2 0.12, 1.1 0.18, 1 1.1, 0 1.1, 0 1.11, 1.11 1.111, 1.1

F2 0.14, 1.12 0.16, 1.1 1.11, 0 1.11, 0 1.1, 1.111 1.11, 1.11

Payoffs in ω = 2

.

Figure 15: State-contingent payoffs

At the prior, expected payoffs are given in Figure 16, so that Y is strictly dominant for

each player.

Playing action profile (Eω, Eω) in state ω uniquely maximizes the sum of the players’

expected utilities, yielding a total payoff of 2.22. Achieving that maximum thus requires

both players to be perfectly informed of the state. If players automatically observe their

private signals, and the designer uses an information structure that recommends action Eω
in state ω to each player, then the players are willing to obey their recommendations, as

described below. However, with the possibility of strategic ignorance, we need to consider

the following cases:

• After (`, `): In this case the state is common knowledge. In state ω, action Eω
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X Y E1 F1 E2 F2

X 0, 0 0.1, 0.1 0,−0.04 0,−0.03 0,−0.04 0,−0.03

Y 0.1, 0.1 0.15, 0.15 1,−0.01 1.1,−0.02 1,−0.01 1.1,−0.02

E1 −0.04, 0 −0.01, 1 0.555, 0.555 0.5555, 0.55 0.55, 0.55 0.55, 0.555

F1 −0.03, 0 −0.02, 1.1 0.55, 0.5555 0.555, 0.555 0.555, 0.55 0.555, 0.555

E2 −0.04, 0 −0.01, 1 0.55, 0.55 0.55, 0.555 0.555, 0.555 0.5555, 0.55

F2 −0.03, 0 −0.02, 1.1 0.555, 0.55 0.555, 0.555 0.55, 0.5555 0.555, 0.555

Pr (ω = 1) = 1
2

Figure 16: Expected payoffs at the prior

strictly dominates every action except Fω. The unique best response to any mixing

between Eω and Fω is Eω. Thus, the unique BNE is (Eω, Eω), and the payoffs are

u (`, `) = (1.11, 1.11).

• After (g, `): In this case it is common knowledge that Player 2 knows the state and

that Player 1’s beliefs are given by the prior. As above, in state ω, action Eω strictly

dominates every action except Fω for Player 2. Thus, Player 2 has four undominated

strategies: E1E2,E1F2, F1F2, and F1F2, where the first element denotes the action in

state 1 and the second element denotes the action in state 2. Player 1’s expected pay-

offs against those strategies are given in Figure 17. Player 1’s unique best response

E1E2 E1F2 F1E2 F1F2

X 1.1 1.11 1.11 1.12

Y 1 1.05 1.05 1.1

E1 0.555 0.555 0.5555 0.5555

F1 0.55 0.55 0.555 0.555

E2 0.555 0.5555 0.555 0.5555

F2 0.55 0.555 0.55 0.555

Pr (ω = 1) = 1
2

Figure 17: Player 1’s expected payoffs after (g, `)

against any of those four strategies isX . Player 2’s best response toX is F1F2. Thus,

the unique BNE is (X,F1F2), and the payoffs are u (g, `) = (1.12, 0.14).
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• After (`, g): This case is symmetric to the preceding one.

• After (g, g): In this case it is common knowledge that both players’ beliefs are given

by the prior distribution, and, hence, Y is strictly dominant. Thus, the unique BNE

is (Y, Y ), and the payoffs are u (g, g) = (0.15, 0.15).

Equilibrium at the Look-Ignore Stage: After each combination of Look-Ignore choices,

we have shown that there is a unique BNE. Using these as the continuation payoffs, we can

write the payoff matrix at the Look-Ignore stage as in Figure 18. Ignore is strictly dominant,

` g

` 1.11, 1.11 0.14, 1.12

g 1.12, 0.14 0.15, 0.15

Figure 18: Payoffs at the Look-Ignore stage

so the outcome is that both players choose Ignore and wind up with payoff 0.15. Thus, it is

not possible to achieve total payoffs 2.22 when strategic ignorance is possible.

D Investment Game: Derivations
Consider the parameterized symmetric direct information structures of Figure 7. We would

like to determine which outcome distributions can be implemented with these information

structures in pure Look equilibria, i.e., in equilibria where both players choose Look with

probability one. The payoff to a player from choosing to Look and following the action

recommendation while the other player is also choosing to Look is given by r + q. If a

player chooses Ignore while the other player is choosing to Look, it is dominant strategy

for the player who has chosen to Look to play the action that corresponds to the most likely

state given his signal, while the payoff of the player who has chosen Ignore is independent

of his own mixing probability. Next, we characterize the biggest set of the parameterized

direct symmetric information structures that will be “Looked” at by both players.

Case 1: If q ≥ 1/2, the expected payoff to the agent who chooses Ignore is 1
2

(1 + q). This

is greater than the payoff from following the action recommendations if 1
2

(1 + q) >

r + q ⇔ r < 1
2
− 1

2
q which directly contradicts the red obedience constraint in
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Figure 8 given by r ≥ 1
2
− 1

2
q. Hence, for all direct symmetric information structures

with q ≥ 1/2, strategic ignorance is not an issue, as Look is a best response to

Look. Basically, in this case, the agent who chooses Look continues to play the same

strategy and follow the recommendations, irrespective of whether the other agent

chooses Look or Ignore, so choosing Ignore is never strictly profitable.

Case 2: If q ≤ 1/2, the expected payoff to the agent who chooses Ignore is 1
2

(2− q). This

is greater than the payoff from following the action recommendations if 1
2

(2− q) >
r + q ⇔ r < 1 − 3

2
q. This constraint is represented by the line in green in Figure 8

and the area to left of it. Hence, the direct symmetric information structures that are

affected by the agents’ ability to exercise strategic ignorance are represented by the

hatched triangle below the green constraint.
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