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Abstract

We provide a geometric characterization of the set of interim equilibrium payoffs in the general

class of costly signaling games. Our characterization offers a unified, belief-based framework to

study both cheap talk and costly signaling, with or without transparent motives. The key ingredient

is the analysis of Bayes-plausible belief distributions and signal-contingent interim values that are

incentive-compatible for the sender. Geometrically, this leads to a constrained convexification of

the graphs of the interim value correspondences. We apply and illustrate the results in a class of

intimidation games. We also derive the sender’s best equilibrium payoff under transparent motives.

Finally, we compare the equilibrium outcomes to those arising when the sender can commit to a

signaling strategy.

Keywords: belief-based approach, cheap talk, information transmission, incomplete information,

intimidation games, signaling.

1 Introduction

Information asymmetries are a well-documented and significant source of market failures. A key eco-

nomic concept for addressing such situations is signaling, wherein an informed party undertakes a costly

action to credibly convey information to an uninformed decision maker. While job market signaling is

a well-known example, signaling can also serve as a means of deterrence in various strategic settings.

A notable application is litigation and settlement negotiations, where plaintiffs often possess private

information about the strength of their case and may attempt to intimidate the defendant by investing

heavily in legal preparation or issuing aggressive demands—potentially leading the defendant to forgo

confrontation. Similar forms of strategic intimidation arise in trade policy, where tariff threats can

discourage retaliation; in procurement, where costly certification may persuade a buyer not to conduct

verification; and in speculative trade, where a trader signals the quality of their information about future

price movements through the size of their position, potentially deterring a counterparty from taking
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the opposite side. Key theoretical questions in these environments concern the situations under which

different types of senders can credibly exert such pressure and the conditions under which receivers are

willing to back down. We refer to these settings as intimidation games—a specific class of signaling

games.

More broadly, signaling games are foundational across classical economic domains. In job market

signaling, candidates communicate their qualifications to potential employers; in reputation analysis,

individuals build and manage their reputations in social and professional contexts; in financial markets,

firms signal their financial health to attract investors. Signaling theory also underpins advertising

strategies, where firms convey product quality through costly promotional efforts. Beyond economics,

signaling games have applications in biology, notably exemplified by the handicap principle, where

individuals signal their fitness through costly traits.

In this paper, we provide a geometric characterization of the set of all (perfect Bayesian) interim

equilibrium payoffs for the general class of signaling games, including all those discussed in the applica-

tions above. We consider a finite set of sender types, but otherwise make no assumptions on preferences:

utility functions may violate single-peakedness or single-crossing; Sets of types, signals, and actions need

not be one-dimensional. Within this framework, the sender may use cheap talk messages in addition to

costly signals. We adopt a tractable belief-based approach, inspired by techniques from the literatures

on repeated games with incomplete information, cheap talk, and Bayesian persuasion. This approach

allows us to characterize equilibrium outcomes without explicitly specifying the strategies of the sender

and receiver or the associated belief system.

Unlike in models of cheap talk and Bayesian persuasion, information is conveyed through signals

that have payoff consequences, so the sender’s interim payoff (i.e., the expected payoff conditional on

her type) depends not only on the belief induced to the receiver, but also on the specific signal used.

Considering the collection of correspondences of interim values indexed by the sender’s signal, a splitting

of the prior belief (i.e., a Bayes-plausible distribution of posterior beliefs) must associate each posterior

belief with an interim value under some signal. Taking into account the sender’s equilibrium condi-

tions, our method is based on incentive-compatible splittings of the prior type distribution, resulting in

a constrained convexification of the graphs of the interim value correspondences. Notably, our charac-

terization extends the existing equilibrium description for sender-receiver cheap talk games, regardless

of any assumptions about the sender’s preference, such as state-independent payoffs.

Our characterization implies that the set of interim equilibrium payoffs does not depend on the

set of cheap talk messages, provided it is at least as large as the set of the sender’s types: we show

that regardless of the sizes of the action, signal and message sets, any interim equilibrium payoff of the

sender can be obtained using a strategy that employs no more pairs of signals and messages than there

are sender types. We deduce the existence of a perfect Bayesian equilibrium in signaling games with

such sets of cheap talk messages.

We use our main equilibrium characterization to study intimidation games, a class of signaling games

in which the sender first decides whether to engage in the interaction, then, if opting in, signals her

strength to the receiver. The receiver can then choose to challenge the sender or to forgo the interaction.

A strong sender is eager to be challenged, whereas a weak sender is better off when the receiver forgoes.
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As an application, consider litigation and settlement negotiations: a plaintiff may have either a strong

or a weak case and can decide whether to engage in costly actions—such as preparing extensive evidence

or hiring a prominent legal team—that serve as signals to the defendant. After observing the plaintiff’s

actions, the defendant chooses whether to forgo litigation by settling or to challenge the case in court.

Other examples include tariffs on imports negotiation or speculative trade.1 Our geometric approach

allows us to find all possible equilibrium outcomes in this environment. We show that two types of

equilibria can arise: non-revealing (i.e., pooling) equilibria where both strong and weak plaintiffs behave

similarly and settlement occurs, and partially revealing (i.e., semi-separating) equilibria where stronger

plaintiffs separate themselves from weaker ones. We characterize which equilibria arise depending on

the prior probability that the case is strong. A key element in the analysis is the signaling pressure

ratio, which captures how attractive it is for a strong plaintiff to get a challenge compared to how

costly it is for a weak plaintiff to face one. The signal that maximizes this pressure ratio—the maximal

signaling pressure point—plays a central role, as it defines the most effective way for a strong plaintiff

to partially separate herself from weaker ones.

We also consider signaling games with transparent motives (Lipnowski and Ravid, 2020), where

the sender’s utility does not depend on her type. We characterize the maximal equilibrium payoff of

the sender via the quasi-concave envelope of the sender’s best value function, and provide sufficient

conditions under which cheap talk messages can be dispensed with.

Finally, we consider the model where the sender has full commitment power. We characterize the

set of all feasible interim values for this scenario, and study the impact of commitment in our main

application to intimidation games.

Related literature The literature on signaling games, initiated by Spence (1973) in economics and

by Zahavi (1975) and Grafen (1990) in biology, has led to significant research in applied work across

various fields and in the analysis of equilibrium refinements in games. For a literature review, see, e.g.,

Kreps and Sobel (1994) and Sobel (2020). The combinaison of cheap talk (costless) and costly signals

have been studied by Austen-Smith and Banks (2002), Wu (2022), Reny (2024), and Lizzeri, Lou, and

Perego (2024).

Our belief-based approach to signaling games shares significant connections with the approach em-

ployed in the literature on repeated games with incomplete information, cheap talk games, and Bayesian

persuasion. Roughly, the idea revolves around viewing the informed player’s strategy as a means to

split the prior belief of the uninformed player into a convex combination of posteriors beliefs. These

splittings enable the informed player to generate new (ex-ante and interim) payoffs and write these

payoffs as convex combinations of sender’s (ex-ante and interim) values at posterior beliefs. For a com-

prehensive review and comparison of how this technique is applied across these areas, refer to Forges

(2020).

In the context of zero-sum repeated games where only one player possesses private information,

Aumann and Maschler (1966, 1995) and Ponssard and Zamir (1973) showed that the equilibrium payoff

1A previous version of the paper (Koessler, Laclau, and Tomala, 2024) also includes applications of our geometric
characterization to more classical signaling games such as cheap-talk with lying cost and job market signaling.
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for the informed player is given by the concave closure (or concavification) of the minmax value of the

one-shot game with no information and common belief, evaluated at the prior. The minmax theorem

for those zero-sum games implies that the informed player’s commitment to her strategy is irrelevant.

The approach can be applied to one-shot non-zero-sum scenarios when the informed player is able

to commit to an information disclosure strategy. For instance, in the Bayesian persuasion setting

introduced by Kamenica and Gentzkow (2011), the sender commits to her messaging strategy before

learning the state. The maximum ex-ante expected payoff she can obtain is given by the concave

closure cavw(p0) at the prior p0 of the highest ex-ante expected payoff w(p) for the sender, when the

uninformed receiver selects an optimal action based on belief p. Doval and Smolin (2024) characterize

the set of interim payoffs of the sender, for all possible messaging strategies, and its Pareto frontier,

without imposing incentives conditions for the sender. See Section 6 for a more detailed comparison

between our approach and commitment in Bayesian persuasion.

Hart (1985) expands upon Aumann and Maschler’s analysis to encompass non-zero-sum repeated

games and provides a geometric characterization of all Nash equilibrium payoffs in undiscounted games.

Since no commitment is assumed, the characterization needs to account for the informed player’s

incentive compatibility conditions, and it keeps track of the interim payoff for each type. These ideas

have been adapted and extended by Forges (1984, 1990) and Aumann and Hart (2003) for characterizing

equilibrium payoffs in cheap talk games where both players send messages over multiple periods before

taking action with payoff consequences. Similar techniques have been employed by Chakraborty and

Harbaugh (2010) and Lipnowski and Ravid (2020) to characterize equilibrium payoffs in cheap talk

games with transparent motives. A belief-based approach characterization of the sender’s ex-ante

preferred mediated cheap talk equilibrium under general utility functions can be found in Salamanca

(2021). Relatedly Corrao and Dai (2023) consider games with transparent motives and study the value

of mediation for the sender by comparing the sender preferred mediated equilibrium with the Bayesian

persuasion and cheap talk benchmarks.

Unlike the cheap talk literature, in addition to costless messages, the sender can use payoff-relevant

signals (also seen as actions observable by the receiver) from an exogenously given set. These signals

are payoff-relevant either for the sender, for the receiver, or for both. Technically, this implies that the

sender can split the prior belief and the corresponding interim payoffs on multiple graphs of interim

value correspondences, one for each signal. In cases where all signals of the sender are payoff-irrelevant,

the characterization reduces to the one mentioned above for sender-receiver cheap talk games.2 Our

characterization can also be related to disclosure games with hard information, as in Forges and Koessler

(2008), by considering signals that are payoff-irrelevant for the receiver and, either payoff-irrelevant or

very costly for the sender depending on her type.

Lastly, our result is related to the recent contribution of Boleslavsky and Shadmehr (2023), who

extend Bayesian persuasion by including payoff-relevant signals. They characterize the maximal ex-ante

expected payoff the sender can achieve in signaling games in which the sender ex-ante commits to her

signaling strategy. Like our work, their approach revolves around the graphs of value correspondences

2The action stage that follows cheap talk in Aumann and Hart (2003) is slightly more general, as it allows both the
sender and the receiver to take an action.
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for each signal. However, in line with the cheap talk literature, we do not assume commitment, keep

track of interim payoffs and maintain incentive-compatible conditions for the sender.

Organization of the paper Section 2 presents the model. Section 3 contains the main results:

the geometric characterization of equilibrium payoffs and its corollaries. In Section 4, we apply the

characterization to a class of intimidation games that feature signaling pressure. Section 5 focuses on

the special case of transparent motives, for which we derive additional results. In Section 6, we compare

the equilibrium payoffs obtained in our setting with those that arise when the sender can commit ex

ante to a signaling strategy, as in the literature on Bayesian persuasion. All proofs not included in the

main text are provided in the Appendix.

2 Model

Setup. There are two players, a sender and a receiver. The sender is privately informed of her type

t drawn from a nonempty finite set T , according to a prior probability distribution p0. The sender

has a set of costly signals S and a set of costless (cheap talk) messages M , the set of actions of the

receiver is denoted by A.3 We assume that A, S, and M are nonempty compact metric spaces. Except

if stated otherwise, we assume that M has at least |T | elements. Given action a ∈ A, signal s ∈ S, and

type t ∈ T , the utility of the sender is u(a, s, t), and the utility of the receiver is uR(a, s, t), the utility

functions u, uR are continuous on A×S ×T . Utility functions are extended to the set of mixed actions

∆(A) in the usual way by taking expectation.4

Signaling game. The timeline is the following:

1. The sender’s type t is drawn from T according to p0.

2. The sender observes the type t, chooses a signal s ∈ S and a cheap talk message m ∈M .

3. The receiver observes the signal s and the cheap talk message m, then chooses an action a ∈ A.

A strategy for the sender is σ : T → ∆(S×M), and a strategy for the receiver is a Borel measurable

τ : S ×M → ∆(A). The interim payoff for the sender induced by the strategy profile (σ, τ) is given by

v = (vt)t∈T with

vt =

∫

S×M

u(τ(s,m), s, t)dσ(s,m | t), for every t ∈ T .5 (1)

A belief system is given by a Borel measurable map µ : S ×M → ∆(T ), where µ(t | s,m) denotes

the belief assigned by the receiver to type t when observing (s,m).

3We can allow the set of actions of the receiver to depend on the signal, i.e., let A(s) denote the set of actions of the
receiver given s.

4For a metric compact X, ∆(X) denotes the set of Borel probability measures over X.
5We focus on the interim payoffs of the sender for simplicity, the expected payoff of the receiver can be easily included

in the analysis.
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Perfect Bayesian equilibrium. For every p ∈ ∆(T ) and s ∈ S, let Y (s, p) be the set of mixed

actions that are optimal for the receiver given signal s and belief p. That is:

Y (s, p) := arg max
y∈∆(A)

uR(y, s, p),

where uR(y, s, p) =
∑

t p(t)uR(y, s, t) =
∑

t p(t)
∫

A
uR(a, s, t)dy(a) with some abuse of notation.

A strategy profile (σ, τ), with interim payoff v = (vt)t∈T , is a perfect Bayesian equilibrium (PBE) of

the signaling game if there exists a belief system µ such that the following three conditions are satisfied.

First, for each type, the sender cannot increase her interim expected payoff by deviating to any pair of

signal and message. Second, for every pair of signal and message, the receiver chooses optimal actions

given the signal and her belief about the sender’s type. Finally, the receiver’s belief is computed using

Bayes’ rule whenever possible. Formally:

(i) Sequential rationality for the sender: for every t ∈ T and (s,m) ∈ S ×M ,

vt ≥ u(τ(s,m), s, t);

(ii) Sequential rationality for the receiver: for every (s,m) ∈ S ×M ,

τ(s,m) ∈ Y (s, µ(s,m));

(iii) Belief consistency: for every t ∈ T and every Borel set B ⊆ S ×M ,

p0(t)σ(B | t) =
∑

t̃∈T

p0(t̃)

∫

B

µ(t | s,m)dσ(s,m | t̃).

Such a triple (σ, τ, µ) is called a PBE assessment. We say that an interim payoff for the sender

v ∈ R
T is a interim PBE payoff if it is induced by some PBE strategy profile.

3 Geometric characterization of equilibrium payoffs

For every s ∈ S and p ∈ ∆(T ), let E(s, p) be the set of all feasible interim payoffs of the sender when

the receiver chooses an optimal (mixed) action given s and p:

E(s, p) :=
{
v ∈ R

T : ∃ y ∈ Y (s, p) s.t. v = (u(y, s, t))t
}
.

We call this the set of interim values for the sender at p given s.

Observe that E(s, p) depends on the signal s through two distinct channels: through Y (s, p), when

the receiver’s optimal action varies with s for a given posterior p, and through the direct impact of s

on the utility of the sender for a given action of the receiver. We say that the signal s is cheap talk if

it does not affect the utilities of the sender and of the receiver; in this case, E(s, p) is independent of s,

as in Forges (1984, 1990, 1994) and Aumann and Hart (2003).
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We define then the modified set of interim values for the sender at p given s as:

E+(s, p) :=
{
v ∈ R

T : ∃ y ∈ Y (s, p) s.t. ∀t, vt ≥ u(y, s, t) and vt = u(y, s, t) if p(t) > 0
}
.

To obtain the modified interim value correspondence, consider for any p in ∆(T ), the interim values

given the signal s and, at the boundary of the simplex, adjust these values by granting higher values to

the sender’s types with vanishing probabilities. Notice that E(s, p) ⊆ E+(s, p), and E(s, p) = E+(s, p) if

p has full support.6

The graph of the modified interim value correspondence of the sender given s is denoted by:

Gs := gr E+(s, ·) :=
{
(v, p) ∈ R

T ×∆(T ) : v ∈ E+(s, p)
}
.

We denote by G =
⋃

s∈S Gs the union of the graphs of the interim value correspondences for all s, that

is,

G =
{
(v, p) ∈ R

T ×∆(T ) : ∃s ∈ S, y ∈ Y (s, p),

s.t. ∀t, vt ≥ u(y, s, t) and vt = u(y, s, t) if p(t) > 0}.

We let cof (G) be the “flat” convex hull of G, defined as the set of interim payoffs obtained by convex-

ifying G with respect to p, when the interim payoff v is kept constant. Formally:

cof (G) :=
{(

v,

|T |
∑

k=1

λkpk

)

∈ R
T ×∆(T ) : (λk)

|T |
k=1 ∈ ∆({1, . . . , |T |}), ∀k, (v, pk) ∈ G

}

,

see Figure 1 for an illustration.

v

p

G2

G1

Figure 1: The flat convex hull of G = G1 ∪G2 is the dashed-orange area, the grey area is the INTIR set.

Since p lies in the (|T | − 1)−dimensional simplex, only convex combination of cardinality at most

|T | are considered, thanks to Carathéodory’s theorem. A family (λk, pk)
|T |
k=1 such that p0 =

∑|T |
k=1 λkpk

and (v, pk) belongs to G for all k, will be called an incentive compatible splitting of p0.

6In Pȩski (2014), the correspondance E+(s, ·) is called the enhancement of E(s, ·).
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Next, we introduce an individual rationality condition. Let INTIRs be the set of all interim payoffs

v ∈ R
T such that there exists p ∈ ∆(T ) and y ∈ Y (s, p) with vt ≥ u(y, s, t) for every t ∈ T . Finally, let

INTIR :=
⋂

s∈S

INTIRs,

be the set of all interim individually rational payoffs v ∈ R
T . These are the payoffs such that for every

s ∈ S, there exists p ∈ ∆(T ) and y ∈ Y (s, p) such that vt ≥ u(y, s, t) for every t ∈ T . The interim payoffs

in INTIR are called interim individually rational.7 The set INTIR is illustrated by the grey area in

Figure 1. Observe that INTIRs is directly obtained from Gs: this is the set of interim payoffs which are

coordinate-wise above the projection of Gs on the set of payoff space, i.e., INTIRs = projRT (Gs) +R
T
+.

Our main result is that the set of interim PBE payoffs is fully pinned down by the interim individual

rationality condition INTIR, together with the flat convex hull of modified interim values cof (G). This

is stated in the following theorem.

Theorem 1. The interim payoff v ∈ R
T is an interim PBE payoff of the sender in the signaling game

if and only if v ∈ INTIR and (v, p0) ∈ cof (G).

This theorem shows that geometric methods are useful to find all the equilibrium outcomes of the

signaling game via two operations: taking the convex hull with respect to the beliefs while keeping the

sender’s payoff constant (flat convexification) and deleting all payoffs outside a comprehensive set (IN-

TIR condition). This geometric characterization is used and illustrated in Section 4, where we provide

all equilibrium payoffs, for all possible priors, in a class of signaling games called intimidation games.

This method also allows direct constructions of perfect Bayesian equilibria in a belief-based way: from

a convex combination of posteriors, we back out a signaling strategy. The flat convexification condition

guarantees the incentive conditions for the sender, the sequential rationality for the receiver on equi-

librium path follows from the construction of the interim value correspondence. The interim individual

rationality condition ensures sequential rationality off-equilibrium path. This is a key difference with

cheap talk models where PBE outcomes and Nash outcomes are the same, the receiver just has to

ignore off-equilibrium cheap talk messages, treating them as on-path messages. When signals are payoff

relevant, this is no longer possible and the receiver has to “punish” off-path signals.

The “if” part of the proof is constructive, it uses the cardinality of the set of types to construct a

sender equilibrium strategy with finite support. The equilibrium strategy of the receiver is dictated on

path by the interim value correspondence and given by the INTIR condition off path. For the “only

if” direction, the necessity of the INTIR condition is easy to see. For the flat convexification part, we

use a technical lemma which says that the prior belief belongs to the convex hull of the posteriors.

This is well known for distributions of posteriors with finite support. With arbitrary sets of signals and

messages, it is easy to see that the prior belongs to the closure of the convex hull. Yet, we show that

it always belongs to the convex hull, no matter the strategy of the sender.

7This individual rationality condition requires the receiver to choose mixed actions which are optimal for some belief.
A weaker condition requires that for every s ∈ S, there exists y ∈ ∆(A) such that vt ≥ u(y, s, t) for every t ∈ T . This is
the relevant condition for the study of Nash equilibria instead of PBE of the signaling game.
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Theorem 1 has several theoretical consequences. First, the next corollary shows that to characterize

all interim PBE payoffs of the signaling game with enough cheap talk messages, it suffices to focus on

the sender’s strategies with finite support, of cardinality at most |T |, regardless of the sizes of the sets

of actions, signals and messages.8 This result also implies that the set of interim PBE payoffs does

not depend on the message space M , provided that M contains at least |T | elements. Related results

appear in Heumann (2020) and Reny (2024).

Corollary 1. The interim payoff v ∈ R
T is an interim PBE payoff of the sender in the signaling game

if and only if v is an interim payoff of a PBE in which at most |T | pairs of signal and message are used

with positive probability.

What about the existence of PBE? If the game is finite (i.e., both sets of signals S and of actions A

are finite), then there exists at least one sequential equilibrium (Kreps and Wilson, 1982, Proposition

1), and any sequential equilibrium is a PBE. Under the compactness and continuity assumptions of our

model, Manelli (1996) shows that the signaling game has a PBE as long as the message space is large

enough, precisely for M = ∆(A).9 Corollary 1 shows that for any such PBE, the same interim payoff

can be obtained through a PBE of the signaling game with any message set of cardinality at least |T |.

Hence, due to our maintained assumption that M contains at least |T | elements, Corollary 2 in Manelli

(1996) and Corollary 1 imply the existence of a PBE in our signaling game. Summarizing:

Corollary 2. The signaling game has at least one PBE and the set of interim payoffs:

{
v ∈ R

T : v ∈ INTIR and (v, p0) ∈ cof (G)
}
,

is non-empty.

A cheap talk game is a signaling game where signals are payoff-irrelevant, i.e., u(a, s, t) = u(a, s′, t)

and uR(a, s, t) = uR(a, s
′, t) for all signals s and s′. Theorem 1 characterizes interim PBE payoffs for a

cheap talk game as a particular case. In such a game, we have G = Gs for every s, and the condition

v ∈ INTIR is irrelevant as it is straightforwardly implied by (v, p0) ∈ cof (G). Therefore, we have the

following corollary of Theorem 1.

Corollary 3. Assume that signals are payoff-irrelevant. The interim payoff v ∈ R
T is an interim PBE

payoff of the sender in the cheap talk game iff (v, p0) ∈ cof (G).

Corollary 3 is well known in the cheap talk literature.10 Notice that in a cheap talk game, every

interim value v ∈ E(s, p0) is a “babbling” interim PBE payoff. However, in a signaling game with

payoff-relevant messages, interim values may fail to be interim individually rational and thus a non-

revealing PBE may not exist. That is, in a signaling game, the set E(s, p0) ∩ INTIR may be empty for

every s (see Section 4 for some examples). We deduce the following.

8Taking into account the receiver’s ex ante expected payoff would require |T | + 1 pairs of signal and message instead
of |T |.

9A PBE may not exist for continuous sets of signals if the message space is too small, see the examples in Manelli
(1996).

10The characterization of Corollary 3 is known for Nash equilibria of cheap talk games where PBE and Nash equilibrium
payoffs coincide, see Forges (1984, 1990) and Aumann and Hart (2003).
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Corollary 4. The interim payoff v is a non-revealing interim PBE payoff if and only if there exists a

signal s such that v ∈ E(s, p0) ∩ INTIR.

4 Intimidation and Signaling Pressure

Setting and assumptions. We consider a class of signaling games in which the sender can either

drop out immediately or opt in and signal her strength to the receiver, who then decides whether to

challenge the sender. A strong sender welcomes a challenge, while a weak sender prefers the receiver to

back down. We call these games intimidation games, as a weak sender aims to scare off the receiver.

To be concrete, consider a litigation scenario where the plaintiff’s case may be weak or strong. The

plaintiff can signal strength through investments in legal representation and evidence preparation. If

the case proceeds to court, the outcome is highly beneficial for a strong plaintiff but disastrous for a

weak one, who would instead prefer to settle.

Here is the formal description. There are two types high and low, denoted {tH , tL}, with prior

probabilities p0(tH) = p0 and p0(tL) = 1 − p0. The set of signals is S = {sO} ∪ SI , where by choosing

signal sO, the sender drops out and concludes the game. Otherwise, the sender can opt in by choosing

a signal s ∈ SI , where SI is a nonempty compact set. If the sender opts in, the receiver can either forgo

(action a = f) or challenge (action a = c).

The utility functions have the following features. If the sender opts in, then the receiver strictly

prefers to forgo in front of a high type, and to challenge a low type. That is, for every signal s ∈ SI ,

uR(f, s, tH) > uR(c, s, tH) and uR(f, s, tL) < uR(c, s, tL).

Hence, for every s ∈ SI , the set of optimal mixed actions as a function of the receiver’s belief p =

p(tH) ∈ [0, 1] is given by:

Y (s, p) =







{c} if p < p̄(s),

∆({c, f}) if p = p̄(s),

{f} if p > p̄(s),

where for each s ∈ SI , p̄(s) ∈ (0, 1) is such that the receiver is indifferent:

p̄(s)uR(f, s, tH) + (1− p̄(s))uR(f, s, tL) = p̄(s)uR(c, s, tH) + (1− p̄(s))uR(c, s, tL).

We normalize the sender’s utility to zero when she drops out:

u(a, sO, t) = 0, for every a ∈ A and t ∈ T.

We make the following assumptions on the sender’s utility function in case she opts in. For every

s, s′ ∈ SI :

u(c, s, tH) := γH(s) > 0 and u(c, s, tL) := γL(s) < 0, (2)

u(f, s, tH) = u(f, s′, tH) := ϕH > 0 and u(f, s, tL) = u(f, s′, tL) := ϕL > 0. (3)
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Condition (2) assumes that the high type sender prefers being challenged over droping our, whereas

the low type sender prefers to drop out. Condition (3) says that the sender always prefers the receiver

to forgo over dropping out herself. The sender’s utility does not depend on the signal when the receiver

forgoes, while it may when the receiver challenges. These assumptions imply that the low type sender

always prefers the receiver to forgo over being challenged: ϕL > 0 > γL(s). However, the high type

sender may prefer being challenged depending on whether γH(s) > ϕH or γH(s) < ϕH .

Signaling ratios and benchmark values. For every signal s ∈ SI , define the signaling pressure

ratio by:

R(s) =
γH(s)− ϕH

ϕL − γL(s)
.

Given our assumptions, the cost to the low type from being challenged, ϕL − γL(s), is always positive,

while the gain to the high type from being challenged, γH(s)−ϕH , can be positive or negative. Hence,

the signaling pressure ratio at s is positive if and only if the high type prefers being challenged over

being forgone. In the former case, i.e., if γH(s) > ϕH , the high type gains from being challenged, so

this ratio compares how much the high type gains from being challenged to the cost incurred by the

low type when being challenged. If γH(s) > ϕH , a higher value of R(s) means that the gain to the

high type from being challenged is large relative to the cost to the low type from being challenged. If

γH(s) < ϕH , a higher value of R(s) means that the cost to the high type from being challenged is low

relative to the cost to the low type from being challenged.

We call a signal s∗ ∈ argmaxs∈SI
R(s), a maximal signaling pressure point, that is, a signal that

maximizes the signaling pressure ratio. For simplicity, we assume that s∗ is unique, this assumption has

very little impact on the analysis of the game. Depending on the application, the maximal signaling

pressure point can be interpreted as follows. In litigation, s∗ could represent filing a detailed com-

plaint with strong supporting evidence and hiring a high-cost legal team, which significantly increases

the expected trial success for a strong case. In trade policy, s∗ could involve announcing tariffs on

politically salient imports, where escalation benefits a hardliner sender and at the same time does not

impose excessive exposure on a pragmatist. In speculative trade, the maximal signaling pressure point

corresponds to a large speculative position if the sender (trader) is risk-neutral, or to a medium-sized

position under risk aversion so that it is not too devastating for a poorly informed trader if challenged.

In procurement, it might involve obtaining a mid-to-high tier certification and publishing some selected

audit information.

Interim value correspondences. The set of interim values for the sender at p, given s ∈ SI , is

given by:

E(s, p) =







{(γH(s), γL(s))} if p < p̄(s),

co {(γH(s), γL(s)), (ϕH , ϕL)} if p = p̄(s),

{(ϕH , ϕL)} if p > p̄(s),

and for s = sO by:

E(sO, p) = {(0, 0)}.
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The equation of the graph of the interim value correspondence given s ∈ SI , projected on the sender’s

interim payoffs at p = p̄(s), is:

vL =
ϕL − γL(s)

ϕH − γH(s)
(vH − ϕH) + ϕL.

The slope is ϕL−γL(s)
ϕH−γH (s) = − 1

R(s) , so it increases (the projected graph rotates anti-clockwise) with the

ratio R(s), as illustrated in Figures 2 and 3.

The projected graph intersects the horizontal axis at ω(s) := ϕLR(s) + ϕH , which we call the

calibrated signaling value of signal s ∈ SI . Notice that the maximal signaling pressure point also

maximizes the calibrated signaling value: ω(s∗) = maxs∈SI
ω(s).

Interim individual rationality. The interim individually rational payoffs are given by:

INTIRsO =
{

(vH , vL) : vH ≥ 0, vL ≥ 0
}

.

For s ∈ SI , if R(s) ≤ 0, then:

INTIRs =
{

(vH , vL) : vH ≥ γH(s), vL ≥ γL(s)
}

.

For s ∈ SI , if R(s) > 0, then:

INTIRs =
{

(vH , vL) : vH ≥ ϕH , vL ≥ γL(s), vL ≥ −
1

R(s)
(vH − ϕH) + ϕL

}

.

Hence, if R(s∗) = maxs∈SI
R(s) > 0, we have INTIRsO ∩ INTIRs∗ ⊆ INTIRsO ∩ INTIRs for every

s ∈ SI , so we get

INTIR =
⋂

s∈S

INTIRs = INTIRsO ∩ INTIRs∗

=
{

(vH , vL) : vH ≥ ϕH , vL ≥ 0, vL ≥ −
1

R(s∗)
(vH − ϕH) + ϕL

}

.

Otherwise, if R(s∗) ≤ 0, then R(s) ≤ 0 for every s ∈ SI , so we get:

INTIR =
{

(vH , vL) : vH ≥ max
s∈SI

γH(s), vL ≥ 0
}

.

Figure 2 illustrates the projections of the graphs of E+(s, ·) on the sender’s interim payoffs for three

possible opt-in signals: s1 (brown), s2 (red), and s3 (blue), where R(s3) > R(s2) > 0 > R(s1). The

projection of the graph for s = sO is shown in green. In this figure, the maximal signaling pressure

point is s∗ = s3, which corresponds to the projected graph that intersects the horizontal axis at the

highest calibrated signaling value, maxs ω(s) = ω(s∗) > ϕH , marked by a circle. The northeast region

of all these curves represents interim payoffs satisfying the INTIR condition and is shaded in gray.

Figure 3 illustrates the projections of the graphs of E+(s, ·) and the INTIR condition for three
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possible opt-in signals when R(s1) < R(s2) < R(s3) < 0. Again, the maximal signaling pressure point

is s∗ = s3, but in this case the highest calibrated signaling value satisfies ω(s∗) < ϕH , indicated by the

circle on the far right of the horizontal axis.

ϕH

ϕL

E+(sO, p)

E+(s1, p)

E+(s2, p)

E+(s∗, p)

p
=
p̄(s

2 )

p
=
p̄(
s 1
)

p
=
p̄(s ∗

)

NRE (p0 ≥ mins∈SI
p̄(s))

PRE (p0 < p̄(s∗)) vH

vL

Figure 2: Projections of the graphs of E+(s, ·) on the space of the sender’s interim payoffs in a version
of the intimidation game with R(s∗) > 0. The figure shows curves for s = sO (green), s = s1 (brown),
s = s2 (red), and s = s3 = s∗ (blue). The shaded gray area represents interim payoffs satisfying the
INTIR condition.
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ϕH

ϕL

E+(sO, p)

E+(s1, p)

E+(s2, p)

E+(s∗, p)

p
=
p̄(
s 2
)

p
=
p̄(
s 1
)

p
=
p̄(
s
∗ )

vH

vL

Figure 3: Projections of the graphs of E+(s, ·) on the space of the sender’s interim payoffs in a version
of the intimidation game with R(s∗) < 0. The figure shows curves for s = sO (green), s = s1 (brown),
s = s2 (red), and s = s3 = s∗ (blue). The shaded gray area represents interim payoffs satisfying the
INTIR condition.
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Interim equilibrium payoffs: flat convexification. Now, our characterization theorem can be

applied, using the graphs of modified interim value correspondences and the interim individually rational

payoffs described above. With that, we obtain directly the set of all equilibrium outcomes of the

intimidation game, for all possible priors p0.

Consider for example the configuration depicted in Figure 2. The non-revealing payoffs v ∈ E(s, p0)

correspond to the points of the graph where the posterior is equal to the prior, so all the points on the

projected graphs with p = p0. Taking into account the individually rational conditions (the INTIR gray

area), the unique non-revealing equilibrium payoff, represented by NRE in the figure, is v = (ϕH , ϕL) for

p0 > mins∈SI
p̄(s): it corresponds to a pooling strategy on some signal s such that p0 ≥ p̄(s). There is

no non-revealing payoff in E(s, p0) which is also in INTIR for p0 < mins∈SI
p̄(s). The partially revealing

payoffs are those belonging to both E+(s, p) and E+(s′, p′) for some signals s and s′ and posteriors p and

p′ with p < p0 < p′. Those correspond to the points of intersections of the projected graphs. Taking

into account the individually rational conditions, the unique partially revealing equilibrium payoff,

represented by PRE in the figure, is v = (ω(s∗), 0) for p0 < p̄(s∗). This equilibrium payoff corresponds

to a partially revealing strategy using signals s = sO and s = s∗ and the incentive-compatible splitting

on posterior p = 0 (with signal s = sO) and p = p̄(s∗) (with signal s = s∗). For the specific prior

p = p̄(s∗) there is also a continuum of non-revealing equilibrium payoffs in the convex hull of (ϕH , ϕL)

and (ω(s∗), 0). Summing up, there are multiple equilibrium payoffs for mins∈SI
p̄(s) ≤ p0 ≤ p̄(s∗), the

unique equilibrium payoff is the partially revealing equilibrium payoff (ω(s∗), 0) for p0 < mins∈SI
p̄(s),

and the unique equilibrium payoff is the non-revealing equilibrium payoff (ϕH , ϕL) for p0 > p̄(s∗).

Consider now Figure 3 where R(s∗) < 0. As before, v = (ϕH , ϕL) is a non-revealing equilibrium

payoff for every p0 ≥ mins∈SI
p̄(s), v = (ω(s∗), 0) is a partially revealing equilibrium payoff for p0 <

p̄(s∗), and every payoff in the convex hull of (ϕH , ϕL) and (ω(s∗), 0) is a non-revealing equilibrium

payoff for p0 = p̄(s∗). But now, other non-revealing and partially revealing equilibria exist for some

priors. There is a partially revealing equilibrium payoff v = (ω(s2), 0) for every p0 < p̄(s2) (represented

by the point of intersection of the red and green curves): it corresponds to a partially revealing strategy

using signals s = sO and s = s2 and the incentive-compatible splitting on posterior p = 0 (with signal

s = sO) and p = p̄(s2) (with signal s = s2). Finally, for p0 = p̄(s2), every point in the convex hull of

(ϕH , ϕL) and (ω(s2), 0) is a non-revealing equilibrium payoff.

More generally, our theorem directly implies the following proposition.

Proposition 1. In the intimidation game, the set of all interim equilibrium payoffs of the sender is

characterized as follows:

(i) If R(s∗) > 0, then:

(a) If p0 > mins∈SI
p̄(s), there is a non-revealing equilibrium with payoff (ϕH , ϕL);

(b) If p0 < p̄(s∗), there is a partially revealing equilibrium, with posterior beliefs 0 and p̄(s∗), and

payoff (ω(s∗), 0);

(c) If p0 = p̄(s∗), there is a continuum of non-revealing equilibria, with payoffs in co {(ϕH , ϕL), (ω(s
∗), 0)}.
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(ii) If R(s∗) ≤ 0, then:

(a) If p0 > mins∈SI
p̄(s), there is a non-revealing equilibrium with payoff (ϕH , ϕL);

(b) If p0 < p̄(s̃) and w(s̃) ≥ maxs∈SI
γH(s) for some s̃ ∈ SI , there is a partially revealing equilibrium,

with posterior beliefs 0 and p̄(s̃), and payoff (w(s̃), 0);

(c) If p0 = p̄(s̃) and w(s̃) ≥ maxs∈SI
γH(s) for some s̃ ∈ SI , there is a continuum of non-revealing

equilibria, with payoffs in co {(ϕH , ϕL), (w(s̃), 0)}.

Notice that R(s∗) ≤ 0 implies ω(s∗) ≥ maxs∈SI
γH(s). Hence, equilibrium conditions (b) and (c),

identified in case (i) when R(s∗) > 0, also apply when R(s∗) ≤ 0, with s̃ = s∗. The difference is that if

R(s∗) ≤ 0, additional equilibria may exist involving signals s̃ 6= s∗, whenever w(s̃) ≥ maxs∈SI
γH(s).

When R(s∗) > 0, the best equilibrium for the high type sender is the partially revealing one —when

it exists— with payoff (ω(s∗), 0), while the best equilibrium for the low type sender is the non-revealing

one, with payoff (ϕH , ϕL). By contrast, when R(s∗) < 0, both sender types strictly prefer the non-

revealing equilibrium, when it exists, since (ϕH , ϕL) > (ω(s), 0) for every s ∈ SI .

To summarize, our equilibrium characterization shows that generically, there are two types of equi-

libria in the intimidation game. First, there can be a non-revealing equilibrium in which both types

of the sender opt in with the same signal s ∈ SI , provided the prior that the sender is strong is high

enough, specifically, when p0 > p̄(s). In this case, the receiver forgoes, and the interim payoff for the

sender is (ϕH , ϕL). Second, there can be partially revealing equilibria in which the high type opts in

with a signal s̃ ∈ SI , and the low type mixes between dropping out and using the same signal s̃. When

the receiver observes signal s̃, which may come f rom either type, she responds with a mixture of ac-

tions. If the signaling pressure ratio R(s) is positive for at least one signal s, then the partially revealing

equilibrium is unique and must involve the maximal signaling pressure point s∗ = argmaxs∈SI
R(s).

When it exists, the corresponding equilibrium with signal s∗ is the most favorable outcome for the high

type, and it is the unique equilibrium when the prior is low enough, that is, when p0 < mins∈SI
p̄(s). If

instead R(s) is negative for every signal s ∈ SI , then multiple partially revealing equilibria may exist,

each involving a different signal s̃. These equilibria again feature the low type receiving a payoff of 0,

and the high type receiving w(s̃), provided that w(s̃) ≥ maxs∈SI
γH(s) and p0 < p̄(s̃). However, in this

case, whenever the non-revealing equilibrium exists, it is preferred by both types of the sender, as it

gives strictly higher payoffs than any of the partially revealing equilibria.

5 Transparent motives

In this section, we consider a signaling game with transparent motives wherein the sender’s utility is

type independent, and we simply denote it by u : A × S → R. The interim equilibrium payoff of the

sender is then the same regardless of her type and we denote it v ∈ R. With some abuse of notation,

the set G can be written as:

G = {(v, p) ∈ R×∆(T ) : ∃s ∈ S, y ∈ Y (s, p) s.t. v = u(y, s)}.
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Then, our conditions reformulate as follows:

a) (v, p0) ∈ cof (G) if and only if for some K ∈ {1, . . . , |T |}, there exist (λk)
K
k=1 ∈ ∆({1, . . . ,K}),

(pk)
K
k=1 and (sk)

K
k=1, with pk ∈ ∆(T ) and sk ∈ S, such that p0 =

∑

k λkpk, yk ∈ Y (sk, pk) and

v = u(yk, sk) for every k;

b) v ∈ INTIR if and only if v ≥ maxs∈S minp∈∆(T )miny∈Y (s,p) u(y, s).

Hence, from Theorem 1, v is a PBE payoff of the signaling game if and only if:

v ≥ max
s∈S

min
p∈∆(T )

min
y∈Y (s,p)

u(y, s),

and there exists a family (λk, pk, sk, yk)
K
k=1 such that p0 =

∑

k λkpk, and for all k, yk ∈ Y (sk, pk) and

v = u(yk, sk).

5.1 Maximal equilibrium payoff

For every s ∈ S and p ∈ ∆(T ), the best interim value for the sender at p given signal s is denoted by:

w(s, p) := max
y∈Y (s,p)

u(y, s).

For every p ∈ ∆(T ), let w(p) := maxs∈S w(s, p) be the best interim value at p for the sender. For every

function F : ∆(T ) → R, we denote by qcav F the smallest (pointwise) quasi-concave function above F

(the quasi-concave envelope of F ).

Theorem 2. With transparent motives, the maximal PBE payoff of the sender in the signaling game

is qcavw(p0).

This theorem extends the results of Lipnowski and Ravid (2020) to our costly signaling environment.

If we assume that signals are payoff-irrelevant, we get a cheap talk game with transparent motives as in

Lipnowski and Ravid (2020) and the characterization of our Theorem 2 coincides with their Theorem

2. To get an intuition for the result, first remark that the sender can obtain the payoff w(p0) with a

pooling strategy that chooses a signal s which maximizes w(s, p0) over S, for all types. In the cheap talk

setting of Lipnowski and Ravid (2020), this is a babbling equilibrium. Consider now a splitting of the

prior belief (a Bayes plausible distribution of posteriors with finite support) which benefits the sender

in the sense that it is possible to improve the payoff over w(p0) for all posteriors. Then, the minimal

optimal payoff w(p) over the induced posteriors is a PBE payoff. This property is called securability in

Lipnowski and Ravid (2020): their Theorem 1 shows that equilibrium payoffs satisfy an intermediate

value property. We extend this logic to our signaling game. Importantly, the INTIR condition is key

for showing that the set of equilibrium payoffs of the sender in an interval, even with several different

signals. The proof of Theorem 2 can be found in Appendix B.
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5.2 Signaling without cheap talk

A signaling game is called without cheap talk if |M | = 1.

Theorem 3. Under transparent motives, if for each s, w(s, ·) is quasi-concave, then every PBE payoff

v ≥ w(p0) of the signaling game is also a PBE payoff of the signaling game without cheap talk.

The proof of Theorem 3 can be found in Appendix C. The following example shows that when there

is a signal s such that w(s, ·) is not quasi-concave, then cheap talk might improve payoffs.

The sender has two possible signals s1 and s2. The payoffs of the sender are described by Figure

4, where w(s1, ·) is quasi-concave, whereas w(s2, ·) is not. It is easy to see that, for the prior p0, the

maximal PBE payoff for the sender requires the use of cheap talk messages together with the choice

of signal s2. There is a range of priors for which the optimal strategy of the sender uses cheap-talk

messages only, while for some other priors, the optimal strategy requires mixing with signals s1 and s2

(see the orange areas in the figure).

0 1

1

2

p

v

w(s1, ·)

w(s2, ·)

max PBE payoff

max PBE payoff
without cheap talk

p0

cheap talk only signaling only

Figure 4: An example where cheap-talk might improve payoffs.

6 The value of commitment

We consider now a version of the signaling game where the sender has commitment power and chooses

the messaging strategy σ at an ex-ante stage, before observing the type; this strategy is observed by the

receiver. In this scenario, the sender is not able to change signals and messages after learning her type

and therefore the interim incentive compatibility conditions for the sender are not relevant, neither are

the interim individual rationality conditions. Thus, to study the interim payoffs that can be obtained

under commitment, only the best response of the receiver matters.

An interim payoff v = (vt)t is feasible in the signaling game with commitment if and only if there
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exist strategies σ and τ such that for every t ∈ T ,

vt =

∫

S×M

u(τ(s,m), s, t)dσ(s,m | t),

and for every (s,m) ∈ S ×M , τ(s,m) ∈ Y (s, µ(s,m)), and µ(s,m) ∈ ∆(T ) is obtained from p0 and σ

by Bayes’ rule. Define the set of adjusted interim values for the sender at p given s as:

Ê(s, p) :=
{

v̂ ∈ R
T : ∃ y ∈ Y (s, p) s.t. v̂t =

p(t)

p0(t)
u(y, s, t),∀t

}

.

This set is obtained from the set of interim values E(s, p) by normalizing an interim payoff vt with the

likelihood-ratio p(t)
p0(t)

. The graph of the adjusted interim value correspondence of the sender given signal

s is denoted by Ĝs and we denote by Ĝ =
⋃

s∈S Ĝs the union of those graphs. That is,

Ĝ =
{

(v̂, p) ∈ R
T ×∆(T ) : ∃s ∈ S,∃y ∈ Y (s, p) s.t. v̂t =

p(t)

p0(t)
u(y, s, t),∀t

}

.

We let co (Ĝ) be the convex hull of Ĝ. Since p lies in the (|T | − 1)−dimensional simplex and v̂ lies

in R
T , thanks to Caratheodory’s theorem it is enough to consider convex combination of pairs (v̂, p) of

cardinality at most 2|T |.

Theorem 4. Assume that |M | ≥ 2|T |. The interim payoff v ∈ R
T is a feasible interim payoff of the

sender in the signaling game with commitment if and only if (v, p0) ∈ co (Ĝ).

Comparing with the result without commitment, the set of PBE interim payoffs characterized in

Theorem 1 is clearly a subset of the set of feasible interim payoffs with commitment obtained in

Theorem 4. In the characterization of PBE payoffs, interim values need not be normalized by the

likelihood-ratios p(t)
p0(t)

because the incentive-compatibility conditions of the sender guarantee that the

(modified) interim values are the same for all posteriors. Indeed, in both characterizations, the interim

payoff of type t is given by vt =
∑

k λk
pk(t)
p0(t)

vkt , but in the characterization of Theorem 1, the PBE

interim payoffs (vkt )t belong to E+(s, p) and satisfy vkt = vk
′

t for every k, k′ and t. It follows that v = vk

for every k, so v =
∑

k λkv
k is a trivial convex combinaison of the modified interim values, without

the likelihood-ratios normalization. In the setting of Theorem 4, the rationality of the receiver imposes

that (vkt )t is in E(s, p) but there are no incentive-compatibility conditions for the sender so vk is not

necessarily constant in k. Yet, v =
∑

k λkv̂
k is a convex combinaison of the adjusted interim values

v̂k ∈ Ê(s, p).

Theorem 4 is a direct extension of Theorem 1 in Doval and Smolin (2024), where there is no payoff-

relevant signal and the interim value correspondence E is single valued. This is obtained in our model by

taking |S| = 1 and assuming that the receiver has a unique optimal action for each belief. The interim

value correspondence can then be represented by an interim value function (wt)t, called a welfare

function in Doval and Smolin (2024), where wt : ∆(T ) → R and E(s, p) = {(wt(p))t}. Defining ŵt(p) =
p(t)
p0(t)

wt(p), an interim payoff v ∈ R
T is a feasible interim payoff if and only if (v, p0) ∈ co (gr((ŵt)t)) as

in Theorem 1 in Doval and Smolin (2024).
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Theorem 4 is also related to Boleslavsky and Shadmehr (2023) who consider a costly signaling setting

with commitment and focus on the sender’s ex-ante optimal solution. Without cheap talk messages, an

interim payoff v is feasible if and only if (v, p0) belongs to the join of the family of sets {Ĝs : s ∈ S},

a subset of the convex hull which is given by convex combinations (v, p0) =
∑

s λs(v̂s, ps) where each

point (v̂s, ps) belongs to Ĝs. As remarked in Boleslavsky and Shadmehr (2023), cheap talk messages

are necessary to obtain the full convex hull. Relatedly, we can deduce the following from Theorem 4.

Corollary 5. The maximum ex-ante expected utility of the sender is given by the concave closure

cavmaxs∈S w(s, p), where w(s, p) = maxy∈Y (s,p)

∑

t p(t)u(y, s, t) for every s, and cav F (·) denotes the

concave closure of F (·) (the pointwise smallest concave function above F (·)).

When signals are payoff-irrelevant, or when |S| = 1, we obtain the characterization of Kamenica and

Gentzkow (2011). Corollary 5 can be proved directly from their concave closure logic, see Proposition

4 in Boleslavsky and Shadmehr (2023).

Application: intimidation and signaling pressure with commitment. Consider again the

intimidation game and assume now that the sender can commit to an arbitrary messaging strategy σ,

which is observed by the receiver, who then best responds to it. The interim value function is:

w(sO, p) = 0,

and for every s ∈ SI ,

w(s, p) =







γL(s) + p(γH(s)− γL(s)) if p < p̄(s),

ϕL + p(ϕH − ϕL) if p > p̄(s),

max
{
γL(s) + p(γH(s)− γL(s)), ϕL + p(ϕH − ϕL)

}
if p = p̄(s).

For each s ∈ SI , let ψ(s) denote the belief about tH that renders the sender ex-ante indifferent

between the two actions of the receiver, to challenge or to forgo:

ψ(s) :=
ϕL − γL(s)

γH(s)− ϕH + ϕL − γL(s)
.

We see that ψ(s) = 1
1+R(s) , so ψ(s) is minimized at the maximal signaling pressure point s∗.

If for every s ∈ SI , we have p̄(s) = ψ(s), then the receiver and the (uninformed) sender are indifferent

at the same belief. The game is thus strictly competitive: at each belief, the sender and receiver have

opposite preferences over actions. It follows that w(s, p) is continuous in p for every s. In that case, the

concave closure cavmaxs∈S w(s, p) is achieved by the same optimal splitting as in the no-commitment

case: using posterior 0 with signal sO and posterior ψ(s∗) with signal s∗ when p0 < ψ(s∗), and pooling

with any s such that ψ(s) ≥ ψ(s∗) when p0 > ψ(s∗). However, in the general case where p̄(s) 6= ψ(s),

the commitment solution differs from the equilibrium outcomes without commitment, and the sender

can benefit ex-ante from the ability to commit.

20



To illustrate the value of commitment, consider the simple case with a single opt-in signal, SI = {sI},

and let ψ = ψ(sI), p̄ = p̄(sI), γH = γH(sI), and γL = γL(sI). Assume further that ϕH = ϕL = ϕ and

ϕ < γH , so that ψ = ϕ−γL
γH−γL

∈ (0, 1). Denote by EvPBE the sender’s ex-ante expected payoff without

commitment. From the analysis in Section 4, we have:

(i) If p0 ≥ p̄, the unique equilibrium is non-revealing, and both sender types receive payoff ϕ. Hence,

EvPBE = ϕ.

(ii) If p0 < p̄, the unique equilibrium is partially revealing: the high type always opts in (s = sI), while

the low type mixes between opting in (s = sI) and dropping out (s = sO), so that the receiver’s

posterior after s = sI is p̄. The interim payoff vector is (ω(sI), 0), where ω(sI) =
γH−γL
ϕ−γL

ϕ, and

the ex-ante expected payoff is EvPBE = p0ω(sI).

First, consider the case in which p̄ < ψ, i.e., the receiver is relatively cautious—he challenges for

a narrower range of beliefs than the sender would ex-ante prefer. The optimal commitment solution

is illustrated in Figure 5. For p0 < p̄, the sender makes the receiver forgo with probability one when

opting in. Compared to the no-commitment equilibrium, where the receiver challenges an opt-in signal

with strictly positive probability, this commitment solution strictly benefits the ex-ante welfare of the

sender (EvPBE < cavmaxsw(s, p0) for every p0 < p̄); it strictly benefits the low type, but hurts the

high type. The receiver’s welfare is not affected by the sender’s commitment ability, as the induced

splitting of beliefs and actions are the same in both scenarios. For p0 ≥ p̄, the outcome is the same

as under no commitment: both types of the sender pool on the opt-in signal and the receiver forgoes

(EvPBE = cavmaxsw(s, p0) for every p0 ≥ p̄).

Second, consider the case in which p̄ > ψ, i.e., the receiver is relatively aggressive—he challenges for

a broader range of beliefs than the sender would ex-ante prefer. The optimal commitment solution is

illustrated in Figure 6. For p0 < p̄, the solution is as before, except that the sender makes the receiver

challenge with probability one when opting in. Compared to the no-commitment equilibrium, where

the receiver forgoes with strictly positive probability, this commitment solution again strictly increases

the ex-ante welfare of the sender, but now it benefits the high type and hurts the low type. For p0 > p̄,

the solution differs substantially from the no-commitment case. Both types opt in with probability one,

but the sender uses additional cheap talk messages to reveal information, as in Bayesian persuasion:

the high type is revealed with certainty with positive probability (in which case the receiver forgoes),

and the low type is partially pooled with the high type in such a way that the receiver always challenges

the low type and sometimes challenges the high type. Such belief splittings—onto the posteriors p̄ and

1—are not incentive-compatible without commitment, as the low type would mimic the high type to

induce the receiver to forgo. Hence, with a relatively aggressive receiver, the sender strictly benefits

ex-ante from commitment for all priors (EvPBE < cavmaxsw(s, p0) for every p0). Commitment strictly

benefits the high type but hurts the low type.
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p = p(tH)w(sO, p)

w(sI , p)

1

ϕH

γH

ϕL

γL

0 ψp̄

cavw(p)

EvPBE

Figure 5: Intimidation game with commitment and a cautious receiver (ψ > p̄).

p = p(tH)w(sO, p)

w(sI , p)

1

ϕH

γH

ϕL

γL

0 p̄ψ

cavw(p)

EvPBE

Figure 6: Intimidation game with commitment and an aggressive receiver (ψ < p̄).
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A Proof of Theorem 1

(i) From constrained convexification to equilibrium. Let v ∈ INTIR be such that (v, p0) ∈ cof (G), we

construct a PBE assessment (σ, τ, µ) with interim payoff v, where σ has finite support. Since (v, p0) ∈

cof (G), there exists K ∈ {1, . . . , |T |}, (λk)
K
k=1 ∈ ∆({1, . . . ,K}), λk > 0, sk ∈ S and yk ∈ Y (sk, pk) for

every k such that:

p0 =

K∑

k=1

λkpk, (4)

and for every k = 1, . . . K:

vt ≥ u(yk, sk, t) and vt = u(yk, sk, t) if pk(t) > 0. (5)

Consider a profile of messages (mk)k with mk ∈ M and mk 6= mk′ for every k 6= k′, this is possible as

|M | ≥ |T | ≥ K. Since v ∈ INTIR, for every s ∈ S, there exists qs ∈ ∆(T ) and

ȳs ∈ Y (qs, s), (6)

such that:

vt ≥ u(ȳs, s, t), for every t ∈ T . (7)

Define the following strategies σ for the sender and τ for the receiver:

σ(sk,mk | t) =
pk(t)λk
p0(t)

, for every k, (8)

σ(s,m | t) = 0, if (s,m) 6= (sk,mk) for every k, (9)

τ(s,m) =







yk if (s,m) = (sk,mk) for some k,

ȳs otherwise.
(10)

Consider the following belief system:

µ(t | s,m) =







pk if (s,m) = (sk,mk) for some k,

qs otherwise.
(11)

For the sender of type t, the interim payoff induced by (σ, τ) is indeed vt because:

∫

S×M

u(τ(s,m), s, t)dσ(s,m | t) =
K∑

k=1

pk(t)λk
p0(t)

u(yk, sk, t), by (8) and (10),

= vt, by (5) and (4).

Then, sequential rationality for the sender (PBE condition (i)) follows directly from (5), (7), and

(10), sequential rationality for the receiver (PBE condition (ii)) follows directly from (6), (10), and (11).

25



Finally, to verify belief consistency (PBE condition (iii)), it remains to show that the probability of t

conditional on (sk,mk), given by (11), is equal to pk(t) for every k and t. From Bayes’ rule and (8),

this conditional probability is:

σ(sk,mk | t)p0(t)
∑

t̃∈T σ(sk,mk | t̃)p0(t̃)
=

pk(t)λk

p0(t)
p0(t)

∑

t̃∈T
pk(t̃)λk

p0(t̃)
p0(t̃)

=
pk(t)λk

∑

t̃∈T pk(t̃)λk
= pk(t).

This completes the “if” part of the theorem.

(ii) From equilibrium to constrained convexification. Consider a PBE assessment (σ, τ, µ) with

interim payoff v. First, we show that v ∈ INTIR. For every s ∈ S, consider an arbitrary message

m ∈ M and let y = τ(s,m). Since τ is sequentially rational for the receiver, we have y ∈ Y (s, p) for

p = µ(s,m) ∈ ∆(T ). Since σ is sequentially rational for the sender, we have vt ≥ u(y, s, t) for every t.

We conclude that for every signal s, we have v ∈ INTIRs, therefore v ∈ INTIR.

Second, we show that (v, p0) ∈ cof (G). Let λ(·) :=
∑

t∈T p0(t)σ(·|t) ∈ ∆(S × M) denote the

marginal distribution on S×M induced by p0 and σ. To prove that (v, p0) ∈ cof (G), it suffices to show

that there exists X̃ ⊆ S ×M with λ(X̃) = 1 such that (a) v ∈ E+(s, µ(s,m)) for every (s,m) ∈ X̃, and

(b) p0 ∈ co ({µ(s,m) : (s,m) ∈ X̃}).

The PBE condition for the sender:

vt ≥ u(τ(s,m), s, t), ∀(s,m) ∈ S ×M, (12)

implies:
∑

t∈T

(vt − u(τ(s,m), s, t)) µ(t | s,m) ≥ 0,∀(s,m) ∈ S ×M. (13)

We also have:

Eλ

[
∑

t

(vt − u(τ(s,m), s, t)) µ(t | s,m)

]

=

∫

S×M

∑

t

(vt − u(τ(s,m), s, t)) µ(t | s,m)dλ(s,m)

=
∑

t

∫

S×M

(vt − u(τ(s,m), s, t)) µ(t | s,m)dλ(s,m)

=
∑

t

∫

S×M

(vt − u(τ(s,m), s, t)) p0(t)dσ(s,m | t)

=
∑

t

vtp0(t)

∫

S×M

dσ(s,m | t)

︸ ︷︷ ︸

=1

−
∑

t

p0(t)

∫

S×M

u(τ(s,m), s, t)dσ(s,m | t)

︸ ︷︷ ︸

=vt

= 0.

Hence, combined with (13), the previous equality implies that, λ-almost surely:

∑

t

(vt − u(τ(s,m), s, t)) µ(t | s,m) = 0.
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Thus, from (12), there exists a Borel subset X̃ ⊆ S ×M with λ(X̃) = 1 such that:

vt = u(τ(s,m), s, t), for all (s,m) ∈ X̃ and t ∈ T s.t. µ(t | s,m) > 0. (14)

The PBE condition for the receiver implies:

τ(s,m) ∈ Y (s, µ(s,m)), for all (s,m) ∈ X̃. (15)

Putting (12), (14), and (15) together, we get v ∈ E+(s, µ(s,m)) for every (s,m) ∈ X̃ , which proves (a).

Now, from belief consistency with B = X̃ we have:

p0 =

∫

X̃

µ(s,m)dλ(s,m).

Hence, property (b) directly follows from the following lemma.

Lemma 1. Consider p0 ∈ ∆(T ), σ : T → ∆(S×M), and denote by λ(·) :=
∑

t∈T p0(t)σ(·|t) ∈ ∆(S×M)

the marginal distribution on S ×M induced by p0 and σ. Let X̃ be a Borel subset of S ×M such that

λ(X̃) = 1, and let µ : S ×M → ∆(T ) be a Borel measurable function satisfying:

p0(t) =

∫

X̃

µ(t | x)dλ(x). (16)

Then,

p0 ∈ co ({µ(x) : x ∈ X̃}).

Notice that the conclusion that p0 belongs to the convex hull of the beliefs {µ(x) : x ∈ X̃}, is

stronger than requiring that it merely belongs to the closure of the convex hull.

Proof. Let Z ⊆ X̃ be a Borel subset of X̃ such that λ(Z) = 1 and such that the dimension d(Z)

of the convex hull of {µ(x) : x ∈ Z} is minimal among the d(Z ′), for all Borel subsets Z ′ ⊆ X̃ with

λ(Z ′) = 1. We have:

∀t ∈ T, p0(t) =

∫

Z

µ(t|x)dλ(x).

Suppose that p0 /∈ co ({µ(x) : x ∈ Z}). From the separation theorem, there exists ψ ∈ R
T such that:

∀x ∈ Z,
∑

t

p0(t)ψt ≥
∑

t

µ(t|x)ψt,

where the separating vector ψ is not 0 and belongs to the d(Z)-dimensional affine hull of {µ(x) : x ∈ Z}.

Integrating this inequality gives:

∑

t

p0(t)ψt ≥

∫

Z

∑

t

µ(t|x)ψtdλ(x) =
∑

t

∫

Z

µ(t|x)dλ(x)ψt =
∑

t

p0(t)ψt.
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It follows that
∑

t µ(t|x)ψt =
∑

t p0(t)ψt, λ-almost surely, that is:

λ
({
x ∈ Z :

∑

t

µ(t|x)ψt =
∑

t

p0(t)ψt

})

= 1.

Therefore, Z ′ = {x ∈ Z :
∑

t µ(t|x)ψt =
∑

t p0(t)ψt} satisfies λ(Z ′) = 1 and d(Z ′) < d(Z) which is a

contradiction. We conclude that p0 ∈ co ({µ(x) : x ∈ Z}) and therefore p0 ∈ co ({µ(x) : x ∈ X̃}).

This completes the “only if” part of the theorem and ends the proof.

B Proof of Theorem 2

To prove Theorem 2, we first establish the next proposition, which is an analogue of Theorem 1 in

Lipnowski and Ravid (2020) for signaling games with transparent motives.

Recall that a splitting of p0 ∈ ∆(T ) is a finite family (λk, pk)k with λk ≥ 0, pk ∈ ∆(T ),
∑

k λk = 1,
∑

k λkpk = p0. One can find convex combination coefficients (λk)k such that p0 =
∑

k λkpk if and only

if p0 ∈ co {p1, . . . , pK}.

Proposition 2. Let (pk)
K
k=1 be a set of posteriors with pk ∈ ∆(T ) for every k = 1, . . . ,K such that

p0 ∈ co {p1, . . . , pK} and mink w(pk) ≥ w(p0). Then, mink w(pk) is a PBE payoff of the signaling game

with transparent motives.

Proof of Proposition 2. Suppose that p0 ∈ co {p1, . . . , pK}. First, we argue that, for every j = 1, . . . ,K

and every α ∈ [0, 1]:

p0 ∈ co {(1 − α)p0 + αpj, pk, k 6= j}.

To see this, note that:

p0 =
∑

k

λkpk = λjpj + (1− λj)
∑

k 6=j

λk
1− λj

pk := λjpj + (1− λj)p̄j.

Consider now q = (1− α)p0 + αpj and assume 0 < α < 1 (the cases α = 0 or 1 are clear). It is easy to

check that:

p0 =
λj

λj + α(1 − λj)
q +

α(1− λj)

λj + α(1 − λj)
p̄j .

Now, fix (pk)k such that p0 ∈ co {p1, . . . , pK} and w∗ = mink w(pk) ≥ w(p0). Suppose that for some

j, w(pj) > w∗.

Lemma 2. There exists αj ∈ [0, 1], sj ∈ S and yj ∈ Y (sj, (1 − αj)p0 + αjpj) such that

u(sj , (1− αj)p0 + αjpj) = w∗.

Proof of Lemma 2. For q ∈ ∆(T ), denote v(q) = maxs∈S miny∈Y (s,q) u(y, s) and

W (q) =
{
u(y, s) : s ∈ S, y ∈ Y (s, q), u(y, s) ≥ v(q)

}
.
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Claim 1. The correspondence W is Kakutani (i.e., u.h.c. with non-empty, convex, compact values).

Proof of Claim 1. W (q) is non-empty because w(q) ∈ W (q). Verification of u.h.c. is routine: Take

qn → q, sn → s, yn ∈ Y (sn, qn), yn → y and for each s′, there exists y′n ∈ Y (s′, qn) such that

u(yn, sn) ≥ u(y′n, s′). Since u(·, ·) is continuous, from the maximum theorem, Y (·, ·) is u.h.c. and

thus y ∈ Y (s, q). For each s′, take a converging subsequence to make sure that y′n → y′ and then

y′ ∈ Y (s′, q). So for each s′, there exists y′ ∈ Y (s′, q) such that u(y, s) ≥ u(y′, s′), i.e., u(y, s) ≥ v(q).

We prove now that W (q) is convex. Observe that W (q) = ∪s∈SWs(q) with:

Ws(q) =
{
u(y, s) : y ∈ Y (s, q), u(y, s) ≥ v(q)

}
.

More precisely, W (q) = ∪s∈S,Ws(q)6=∅Ws(q). For each s, Y (s, q) is a convex set of mixed actions and

y 7→ u(y, s) is linear on this set, thus Ws(q) is a compact interval of R. To prove that the union of those

intervals is convex, it is enough to show that any pair of them has a non-empty intersection. Thus, take

s1, s2 such thatWs1(q) andWs2(q) are non-empty and suppose by contradiction thatWs1(q)∩Ws2(q) =

∅. Then, one of those intervals, say Ws2(q), is “above” the other, that is:

maxWs1(q) < minWs2(q);

or equivalently:

max{u(y, s1) : y ∈ Y (s1, q), u(y, s1) ≥ v(q)
}
< min{u(y, s2) : y ∈ Y (s2, q), u(y, s2) ≥ v(q)

}
.

Consider then the interval:

W ′
s2
(q) = {u(y, s2) : y ∈ Y (s2, q)

}
.

We have Ws2(q) ⊆ W ′
s2
(q) and minW ′

s2
(q) ≤ v(q). Then, either maxWs1(q) < minW ′

s2
(q), thus

maxWs1(q) < v(q) which contradicts that Ws1(q) is non-empty. Or maxWs1(q) ≥ minW ′
s2
(q), but

then Ws1(q) ∩W
′
s2
(q) 6= ∅. This is also a contradiction because Ws1(q) ∩W

′
s2
(q) ⊆ Ws1(q) ∩Ws2(q).

This concludes the proof of Claim 1.

Now, it follows that the correspondence α 7→W ((1− α)p0 + αpj) from [0, 1] to R is also Kakutani.

From Lemma 3 in Lipnowski and Ravid (2020), its image is an interval. This proves Lemma 2 because

w(pj) ∈W (pj), w(p0) ∈W (p0) and w
∗ ∈ [w(p0), w(pj)].

We conclude the proof of Proposition 2. For each j such that w(pj) > w∗, we replace pj by

(1 − αj)p0 + αjpj given by Lemma 2. Together with the family of sj, yj , this defines an equilibrium

with payoff w∗.

Consider now the maximal equilibrium payoff u∗(p0) of the sender at p0. Observe that:

u∗(p0) = max
{

v ∈ R : ∃(pk)k, p0 ∈ co {(pk)k} and ∀k, ∃sk ∈ S, ∃yk ∈ Y (sk, pk), v = u(yk, sk)
}

.

The right-hand-side of this equality is greater or equal than w(p0), by considering the non-revealing
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splitting (∀k, pk = p0) and w(p0) ≥ maxs∈S minp,y∈Y (s,p) u(y, s). Thus the INTIR condition is superflu-

ous in defining u∗(p0). Also, u
∗(p0) ≥ w(p0).

We now derive two consequences of Proposition 2.

Corollary 6. For any family (pk)k such that p0 ∈ co {(pk)k}, we have u∗(p0) ≥ mink w(pk).

Proof of Corollary 6. If mink w(pk) ≤ w(p0), this follows form u∗(p0) ≥ w(p0). If mink w(pk) > w(p0),

from Proposition 2, mink w(pk) is an equilibrium payoff, thus less or equal to u∗(p0).

Corollary 7. Let (p∗k, s
∗
k, y

∗
k)k be an optimal family in the maximisation problem defining u∗(p0). Then

u∗(p0) = mink w(p
∗
k).

Proof of Corollary 7. For each k, u∗(p0) = u(y∗k, s
∗
k) ≤ w(p∗k), thus u

∗(p0) ≤ mink w(p
∗
k). On the other

hand, mink w(p
∗
k) in an equilibrium payoff from Proposition 2, thus it is less or equal to u∗(p0).

The previous corollaries lead to the following proposition.

Proposition 3. The function p0 7→ u∗(p0) is quasi-concave.

Proof of Proposition 3. We prove now that for any family (pk)k such that p0 ∈ co {(pk)k}, u
∗(p0) ≥

mink u
∗(pk). For each k, let (p

∗
kj, s

∗
kj, y

∗
kj)j be an optimal family in the maximisation problem defining

u∗(pk). Since p0 ∈ co {(pk)k} and pk ∈ co {(p∗kj)j}, then p0 ∈ co {(p∗kj)k,j}. Then from Corollary 6,

u∗(p0) ≥ min
k

min
j
w(p∗kj)

and from Corollary 7, minj w(p
∗
kj) = u∗(pk). Thus, u

∗ is quasi-concave.

Proof of Theorem 2. We are now in position to prove the theorem. We know that the maximal

equilibrium payoff u∗(p0) of the sender is a quasi-concave function of p0 which is greater than or equal

to w(p0). We argue that this is the smallest such quasi-concave function: if f is quasi-concave and

f(p0) ≥ w(p0) for all p0, then f(p0) ≥ u∗(p0) for all p0. To see this, let (p∗k, s
∗
k, y

∗
k)k be an optimal

family in the maximisation problem defining u∗(p0). From Corollary 7, u∗(p0) = mink w(p
∗
k). Then,

u∗(p0) = min
k
w(p∗k) ≤ min

k
f(p∗k) ≤ f(p0),

since f is quasi-concave. This concludes the proof.

C Proof of Theorem 3

Proof. Let v ≥ w(p0) be a PBE payoff of the signaling game. We construct a PBE with payoff v

such that k, k′, pk 6= pk′ and sk 6= sk′. In words, all the information transmitted by the equilibrium is

contained in the signal: if two signals are the same, then the posterior beliefs are also the same.
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Since v is a PBE payoff of the signaling game, there exists a finite family (pk, sk, yk)
K
k=1 such that

p0 ∈ co {(pk)
K
k=1} and for all k, yk ∈ Y (sk, pk) and v = u(yk, sk).

Since the statement is clear for v = w(p0), take v > w(p0). For each s ∈ S′ = {sk : k = 1, . . . ,K},

denote Ks = {k : sk = s}. For some convex combination coefficients λk > 0, we have:

p0 =
∑

k

λkpk =
∑

s∈S′

λs
∑

k∈Ks

λk
λs
pk =

∑

s

λsps,

with λs =
∑

k∈Ks
λk and ps =

∑

k∈Ks

λk

λs
pk, so p0 ∈ co {(ps)s∈S′}.

For each signal s, denote:

Ds = {p ∈ ∆(T ) : ∃y ∈ Y (s, p), u(y, s) ≥ v} = {p ∈ ∆(T ) : ws(p) ≥ v}.

Since ws is quasi-concave, Ds is convex, it is thus a non-empty convex and compact set (since ws is

u.s.c). From the equilibrium condition, for all s ∈ S′ and all k ∈ Ks, u(yk, sk) = v, thus pk ∈ Ds. Since

Ds is convex, we also have ps ∈ Ds for each s.

Thus for each s we have:

ws(p0) ≤ w(p0) < v ≤ ws(ps).

Consider then for α ∈ [0, 1],

Fs(α) = {u(y, s) : y ∈ Y (s, (1− α)p0 + αps)}.

Similarly to the proof of Lemma 2, this correspondance is Kakutani, thus its image is an interval. It

follows that there exists αs ∈ [0, 1] and ys ∈ Y (s, (1−α)p0+αps) such that v = u(ys, s). We modify then

the equilibrium by replacing all the (yk, pk) for k ∈ Ks, by (ys, ps). This gives the desired conclusion.

D Proof of Theorem 4

Proof. The proof is a simplified version of the proof of Theorem 1 by removing the equilibrium conditions

of the sender. To see how the adjustment by the likelihood ratio arises, consider a convex combination

of posteriors p0 =
∑

k λkpk and the strategy σ given by σ(sk,mk | t) = pk(t)λk

p0(t)
which induces it. The

interim payoff given type t is:

vt =
∑

k

σ(sk,mk | t)vkt =
∑

k

λk
pk(t)

p0(t)
vkt =

∑

k

λkv̂
k
t , (17)

thus the interim payoff v is a convex combination of adjusted values v̂.
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E Proof of Corollary 5

Proof. Consider (v, p0) ∈ co Ĝ, there is a convex combination of posteriors p0 =
∑

k λkpk, signals sk

and actions yk ∈ Y (sk, pk) such that for each t,

vt =
∑

k

λk
pk(t)

p0(t)
u(yk, sk, t).

Thus,
∑

t

p0(t)vt =
∑

k

λk
∑

t

pk(t)u(yk, sk, t) ≤
∑

k

λkw(sk, pk) ≤ cavmax
s∈S

w(s, p0).

If for each k, sk, we choose yk such that w(sk, pk) =
∑

t pk(t)u(yk, sk, t), then we have equality. There-

fore,

max
{∑

t

p0(t)vt : (v, p0) ∈ co Ĝ
}

= cavmax
s∈S

w(s, p0).
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