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Abstract Many real-world inference problems unfold over time: employers learn about
ability across tasks, consumers evaluate products through repeated use, and policymak-
ers revise beliefs as new data arrive. Yet despite its ubiquity, research on dynamic up-
dating has largely focused on a single implication of Bayesian reasoning: order indepen-
dence. This paper experimentally tests a broader set of restrictions implied by Bayes’
rule, emphasizing both order independence and the previously unexamined property of
prior sufficiency: the principle that the most recent posterior should serve as a sufficient
statistic for past information. In a multi-period updating experiment with a rich set of pa-
rameters, participants repeatedly revise beliefs after receiving signals of varying strength
and structure. Three main results emerge. First, only roughly a third display order de-
pendence, overreacting to conflicting signals. Second, violations of prior sufficiency are
widespread: beliefs formed sequentially tend to grow more extreme, and models assum-
ing prior sufficiency, such as Grether (1980), fit poorly beyond the first update. Finally,
the data indicate that participants process signals in aggregate, explaining prior suffi-

ciency violations.
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1 Introduction

Many real-world inference problems unfold gradually, as information accumulates over
time. Investors update beliefs about asset quality with each earnings report, consumers
learn about products through repeated use, teachers infer students’ ability from succes-
sive evaluation, and policymakers revise their views of the economy as new statistics ar-
rive. Bayesian updating provides the normative benchmark for how beliefs should adjust
in light of new evidence and underpins much of decision theory under uncertainty.

A vast experimental literature documents systematic deviations from Bayesian updat-
ing, typically using one-shot settings where individuals receive a prior, observe a single
signal, and then report a posterior belief. The smaller literature on dynamic updating has
focused primarily on how posterior beliefs depend on the order in which signals arrive.
This paper experimentally studies a broader set of properties of sequential updating,
across varying sets of parameters. I consider not only the traditional focus of the litera-
ture — whether updating is order independent — but also whether updating adheres to
prior sufficiency — the principle that, when information arrives sequentially, the previous
posterior serves as a sufficient statistic for updating from the next signal.

Overall, participants in my experiment broadly conform to the core features of Bayesian
updating. They adjust their beliefs in the correct direction when new information arrives,
and their posteriors are, on average, close to the statistical benchmark. However, I iden-
tify three key findings regarding deviations from Bayesian reasoning. First, although
order dependence is substantial in magnitude, it appears for only one-quarter to one-
third of participants and follows a distinct pattern — an overreaction to the most recent
signal when it conflicts with the prior. Second, unlike order independence, prior suffi-
ciency fails across the population: posteriors are systematically and substantially more
extreme when formed through sequential updating than when based on a sufficient statis-
tic summarizing the same information. Consistent with this empirical finding, variants
of the canonical Grether (1980) model — which assumes prior sufficiency — fail to cap-
ture behavior. Third, I find evidence that subjects consider sequences in the aggregate,
explaining failures of prior sufficiency.

In the experiment, participants are tasked with guessing an underlying state. They
receive four conditionally independent and identically distributed (i.i.d.) signals sequen-
tially and report their posterior belief after each one. The design mirrors real-world set-
tings in which information arrives incrementally. Across treatments, I vary the precision
of the signals, and the prior distribution over states.

The inference tasks that a subject faces are designed to create within person tests of



two key properties implied by Bayesian updating in dynamic environments. The first is
order independence: when signals are conditionally i.i.d., their order of arrival should
not affect posterior beliefs. The second is prior sufficiency: at any point in time, the
posterior from a subset of signals fully summarizes the information relevant for future
updating, so the specific composition or order of those signals should no longer matter.

Violations of these properties have far-reaching implications. When order indepen-
dence fails, the sequencing of information itself can shape beliefs — lawyers may sway
jurors through the order in which evidence is presented, and news outlets may influence
readers simply by rearranging stories. A failure of prior sufficiency, in contrast, means
that identical information can be interpreted differently depending on prior exposure —
an incumbent and a challenger making the same statement may be judged unequally, or
an employer may evaluate a long-time employee and a new hire with identical credentials
differently. To my knowledge, there are no papers with similar within person variation
in sequence order for more than two signals, and only two papers that consider prior
sufficiency in any way (Mobius et al., 2022; Raymond & Wittrock, 2024).

To contrast the particular implications of each violation more sharply, consider a man-
ager who must learn about a worker’s ability. Anticipating our experimental setup, there
are two ability types: H(igh) and L(ow). The manager has an initial prior about the prob-
ability the worker is H and updates this belief by observing the worker’s performance on
tasks. Each task results in a binary signal, h or I, where an H worker is more likely to
send h and an L worker is more likely to send I.

Suppose the manager has two new hires today, called Worker N(ew)l and Worker
N(ew)2. The manager’s prior about each worker comes from a report from his respective
previous employer. The reports are identical, so that the manager has the same prior for
both. In their first two tasks, both N1 and N2 send one h signal and one / signal, but
in opposite orders — N1 sends an h first and N2 sends an [ first. Order independence
requires that the manager hold the same posterior about both workers at the end of the
second task, since the initial prior and aggregate information received are the same.

Now, let us compare Worker N1 to a worker who has been employed for a year, called
Worker O(Id). The manager’s prior about Worker O is formed endogenously through
observing O’s performance, where the prior for O is the posterior after the most recent
task. So, N1 and O differ from each other in terms of the process by which the prior was
generated — endogenously for Worker O and exogenously for Worker N1. Suppose that
on N1’ first day, the manager’s belief about Worker O is numerically identical to the prior
about N'1. Additionally, Worker O’s subsequent signal is an h, matching N 1’s first signal.

Prior sufficiency requires the manager to update identically for both workers, since the



posterior should depend only on the prior value and the signal, and not on the way the
prior was formed. This example clarifies how order independence and prior sufficiency
are not coincident properties. The manager could update the same way about Worker N1
and N2, but not about Worker N1 and O, or vice versa.

The experimental design constructs counterfactuals to test both of these properties
within subject. The basis of the design is a standard ball-and-urn setup with two states
and binary symmetric signals. Subjects complete two different inference tasks: a sequen-
tial task and a one-shot task. In the sequential task, subjects face a dynamic problem
where they observe four signals incrementally, reporting a posterior after each. In the
one-shot task, subjects face a static problem, where they receive an exogenous prior, and
report a posterior for both possible signal realizations via strategy method. I collect one-
shot updates for priors at five percentage point intervals and for both signals. Treatments
vary between subjects the precision g of the signal, and the initial prior in the sequential
task. The two baseline treatments use a precision of 0.6 or 0.8, with a uniform initial
prior.

The sequential task provides the variation needed to test order independence. This
test is fairly straightforward to construct. I gave each subject multiple sequences where
three signals are of one type and the fourth signal conflicts. Across sequences, I vary
within subject when the conflicting information appears: at time 1, 2, and 3 for subse-
quences of length 3, and at time 2, 3, and 4 for full sequences. This design corresponds to
the comparison of Workers N1 and N2 from our example, who have the same prior and
same aggregate information but differently ordered signals.

Testing prior sufficiency is more challenging. After observing the first signal, each
subject solves an endogenously determined problem — their posterior becomes their
prior for the next update, and this prior reflects their subjective processing of informa-
tion. The experimenter controls the objective information subjects receive, but only indi-
rectly controls the problem the subject solves. Contrast this with the test of order inde-
pendence, where the experimenter always retains full control over the necessary variation
(namely, signal order).

The experimental design overcomes this challenge by using the sequential and one-
shot tasks in tandem. For each update in a sequence, I match to the one-shot task where
the same subject updates from the same prior value with the same signal. The only differ-
ence is that in the sequential task, the prior is formed endogenously through the subject’s
own updating, while in the one-shot task, the prior is given exogenously. To analogize
to our manager example, the update about Worker O corresponds to an update in the

sequential task. The update about Worker N1 corresponds to the one-shot counterfac-



tual for this sequential update. The strength of this test is that it does not hinge on any
assumption about the functional form of the updating rule. If updating adheres to prior
sufficiency, then we will observe no difference between the two tasks, regardless of any
other detail about the procedure being used. Because I collect updates for a grid of pri-
ors, I obtain a counterfactual mapping from prior, signal pairs to posteriors for almost all
sequential reports.

I begin by documenting two patterns about the prevalence of order dependence and
prior sufficiency. Order dependence occurs in a minority of the population, while prior
sufficiency is violated uniformly. For order dependent subjects, reports diverge specifi-
cally between sequences where the conflicting signal is most recent and sequences where
the conflicting information has already occurred. This behavior is correlated within per-
sON across sequences.

Using a mixture model to divide the population, I find it splits precisely on overreac-
tion to conflicting information. Analyzing order effects for these two groups separately,
we confirm that the majority exhibit no order effect in almost all cases. For the minor-
ity, beliefs are between 25.3 and 56.9 percentage points lower when the sequence ends
in a conflicting signal. This is driven by the qualitative mistake of reporting a posterior
in favor of one state when the overall evidence favors the other. In other words, sub-
jects respond to the conflicting signal in the right direction, but the magnitude is too
large. There is essentially no gap between the sequences where the conflicting signal has
already occurred.

I then examine prior sufficiency separately by type. There are two reasons for this.
The first is that the majority grasp at least one feature of Bayesian reasoning (order in-
dependence), stacking the cards against us in terms of identifying additional violations.
The second is that order dependence might in fact follow from prior sufficiency, an expla-
nation that the literature has not evaluated. To see how, let us return to the comparison
of the two new workers, N1 and N2, from our manager example. After task 1, the be-
lief about N1 and N2 should be different: different information has been received. If
the manager adheres to prior sufficiency but updates in a way that depends on the prior
value, then the posteriors may remain different after task 2, even though the aggregate
information is now the same.

I find that both types fail the test for prior sufficiency. Order independent subjects
react more to a non-conflicting signal in the sequence and less to a conflicting signal in
the sequence, relative to the one-shot counterfactual. The result is that reports are more
extreme in the sequential task for all sequences. Depending on the treatment and time

period, the gap in reports is as large as 15 percentage points, which is on the order of



additional signal.

The minority group’s behavior cannot be explained by prior sufficiency. Estimates are
noisier, given the sample is smaller, but we observe two key behaviors after the 4th signal.
For the sequence with conflicting information at time 4, reports are 12 percentage points
lower in the sequential task than in the one-shot task. This establishes that overreaction
to a conflicting signal is specific to the sequence. Concomitantly, for the sequence with
conflicting information at time 3, reports in the sequential task are between 5 and 13
percentage points higher. This shows that the pattern of correction immediately after a
conflicting signal is also sequence specific.

A natural question is whether prior sufficiency fails because of the presentation of the
problem — namely, that individuals cannot recognize that a prior technically represents
the same information regardless of its source — or because of variation in the process by
which beliefs are generated — an individual may treat an endogenous belief that they
have formed differently from an exogenous one provided to them.

I address this with additional treatments that test prior sufficiency with respect to
a sequence, rather than a single signal. This test compares the uniform treatment with
precision g to a paired treatment with the same precision and a non-uniform prior equal
to q. The core idea is that the non-uniform treatment presents sequential problems, rather
than one-shot problems, that are informationally equivalent to the uniform sequences.

In the uniform treatment, the Bayesian posterior after observing the first signal equals
q — therefore, the non-uniform prior is informationally equivalent to one signal. This
property allows me to take any uniform sequence and construct an equivalent non-uniform
version by removing the first signal and shifting the signals for times 2 through 4 up to
times 1 through 3. The only objective difference between the pair of sequences is whether
the first piece of information enters through the prior or through an observed signal.

This design generates two different tests of prior sufficiency. The first is an ‘exact’ test.
Subjects in the uniform treatment who report g after the first signal have an endogenous
prior at time 2 that is exactly equal to the exogenously set prior for a non-uniform subject.
Under prior sufficiency, we should observe the same distribution of reports between these
uniform subjects and the non-uniform subjects at each subsequent period. For the weaker
signal precision of 0.6, 60% of reports in the uniform treatment after the 1st signal equal
the Bayesian posterior, making this exact test viable.

For the stronger precision of 0.8, only 30% of initial reports equal 0.8, precluding the
exact test on any reasonable sample size. However, we can conduct a second distribution-
based test that exploits a result from Chan (2025): under a broad class of Grether (1980)
type updating rules where the prior is power distorted and the signal distorted according



to any function, the posterior distribution for the non-uniform treatment should remain
above the distribution for the uniform treatment.

On both tests, prior sufficiency continues to fail. For g = 0.6, when we restrict to re-
ports from sequences where the first posterior is Bayesian, beliefs are more extreme than
in the corresponding non-uniform sequence. This is the same qualitative pattern as in the
one-shot comparison. For g = 0.8, we observe a reversal in the ordering of distributions:
reports in the non-uniform treatment initially exceed reports in the uniform treatment
for the equivalent sequence, but by the fourth signal, reports in the uniform exceed re-
ports in the non-uniform. We observe this reversal for the weaker signal as well, where
80% of time 1 reports are less than or equal to 0.6.

With these non-parametric results in hand, we turn to the matter of estimating updat-
ing rules parametrically. I consider the benchmark econometric model of Grether (1980),
which implies that sequential updating follows an AR1 process. This AR1 structure is
precisely the assumption of prior sufficiency — that beliefs depend only on the prior (the
lagged posterior) and current signal. The results suggest that such a model will do a
poor job of organizing the data. I estimate a variety of Grether parameterizations, us-
ing a simulated maximum likelihood approach to handle the endogeneity of the lagged
posterior and to recover a distribution of parameters for assessing model fit. Consis-
tent with the empirical findings, the structural estimation fails to closely match behavior
in the sequence. In particular, the Grether model underestimates the frequency of the
modal report, and mismatches the distribution, typically by overestimating the variance
of reports.

In the final section, I exploit additional design features to provide suggestive evidence
of what drives failures of prior sufficiency. First, I make use of variation in the timing of
equivalent sets of signals. Due to the structure of the problem, the Bayesian posterior
depends only on the initial prior and the net count of signals. For example, a sequence
with two 1 signals and one 0 signal is informationally equivalent to a single 1 signal.
The sequences are designed so subjects encounter the same reduced set of information
within the first two periods and within the second two periods. What changes across
these two cases is that the prior may be different (endogenously) and more signals have
accumulated without changing the objective posterior. We can control for the former
through the one-shot reports. Any residual indicates that signal accumulation matters
independently. Even when accounting for one-shot reports, beliefs are 4 to 10 percentage
points higher in the second half of the sequence, when more signals have accumulated.
That reports increase with signal accumulation suggests people may use a frequency-

based procedure, forming different predictions as the set of signals changes.



Understanding prior sufficiency is important because it has distinct theoretical, econo-
metric, and practical implications relative to order independence. From a theoretical per-
spective, consider someone who violates prior sufficiency but is order independent. Then,
within any context, they follow a consistent rule with a known structure: a mapping from
a prior belief and signal to a posterior. In this case, our goal might be to develop models
that explain why a given prior, signal pair produces a particular posterior value. If indi-
viduals fail prior sufficiency, we require alternative theories about which variables enter
this mapping altogether.

For empirical research, the coincidence of these biases impacts how we should gen-
eralize findings across different experimental settings. The majority of belief updating
experiments use one-shot problems. If updating is not prior sufficient, one would have
to determine whether any static experiment could mimic the additional state variables
at play in sequential updating. If not, then findings from one-shot problems may be
inapplicable for guiding work on sequential contexts.

As discussed earlier, there are also econometric implications. If individuals update
in a prior sufficient way, beliefs follow an AR(1) process. The benchmark empirical ap-
proach in the updating literature, Grether (1980), implicitly assumes this structure when
extended beyond one period. These models can accommodate various forms of miscali-
bration that generate order or time dependence, but they are misspecified if prior suffi-
ciency fails. In such cases, we would need to include a different state variable that encodes
features of the history beyond the current belief.

Finally, there are practical implications for policy design. Consider a policymaker
designing an information intervention, such as a public health campaign about vaccine
efficacy. The optimal way to deliver information depends on which properties the popu-
lation satisfies. If the population exhibits order dependence, changing the introduction
of information will matter for final beliefs, potentially favoring interventions that deliver
all information simultaneously. If the population is order independent but not prior suf-
ficient, sequential delivery might be preferable — beliefs formed endogenously may be
better calibrated or more robust than those formed from equivalent summary statistics.
These biases will also affect how well a policymaker can extrapolate from past experience.
For example, suppose the government is deciding whether a successful flu vaccination
campaign that delivered information over months would be equally effective for COVID
vaccination, where information has to be delivered immediately. If the population is not

prior sufficient, it may be unclear which aspects of the flu strategy to apply.



Related literature This paper contributes to several strands of research on deviations
from Bayesian updating. First, it contributes to the literature on biases specific to se-
quential updating. This body of work has predominantly focused on characterizing order
dependence, with mixed evidence on the direction in which sequencing matters — some
studies find recency bias and others find confirmation bias (see Benjamin (2019) and ref-
erences therein). More recent papers consider the role of format in sequential updating,
e.g. how people respond to retractions versus new information (Gongalves et al., 2025),
or how non-linearities affect updates (Agranov & Reshidi, 2024).

I will comment on three papers that are closest to this one. Kieren et al. (2025) study
reaction to disconfirming information in sequential problems. Consistent with my re-
sults, they show that people overreact when a signal contradicts a prior streak, and then
“cancel” with the subsequent signal, returning roughly to their initial belief. The within
person design of this paper helps to identify several additional phenomena with respect
to order effects: first, that they are heterogenous, and second that they are not driven by
adherence to prior sufficiency.

Agranov and Reshidi (2024) focus on a different question from this paper: how people
integrate two signals of different precisions. As in my treatments, they compare updat-
ing from a uniform prior to updating from an equivalent non-uniform prior with one
additional signal. By extending the sequence from two signals to create more than one
endogenous update, I obtain a different test from theirs: namely, whether people exhibit
prior sufficient behavior at some point in a sequence.

Chan (2025) axiomatically characterizes the Grether (1980) updating rule and exper-
imentally tests some of its implications, including order independence. They do not con-
sider prior sufficiency. This paper has a different focus, both in terms of the properties
studied — I consider prior sufficiency, while they do not — and variation in environ-
ments.

As far as I am aware, there are only two papers to study prior sufficiency empirically
in any way. The first is Mobius et al. (2022). They test a variety of propositions on a
panel of belief updates that they collect, one of which is prior sufficiency — their test is
completely econometric, and checks whether higher order lags of beliefs are predictive
of the current belief. In this paper, I not only have designed variation to identify prior
sufficiency, but I address weaknesses of econometric approaches that use the lag directly.
The second is Raymond and Wittrock (2024), who test whether individuals remember
signals or beliefs when updating sequentially. This experiment shuts down memory by
design.

Second, this paper speaks to biases predominantly studied in the context of one-shot



updating tasks. The results suggest that base rate neglect, one of the most commonly
studied biases related to the prior (Kahneman and Tversky (1973); Esponda et al. (2024)),
may not be as relevant in sequential problems. Namely, the gap between the uniform
and non-uniform treatments persists over time, suggesting that subjects do not ignore
the prior even as signals accumulate.

Finally, this paper contributes to the literature on description versus experience in
decision-making. One interpretation of the one-shot versus sequential comparison is that
one-shot problems describe the inference task while sequential problems require learn-
ing through experience. Classic work in this area (e.g., Hertwig et al. (2004)) has docu-
mented systematic differences between decisions from description versus experience in
risky choice settings. In contrast to work in risky choice, this experiment has no feedback,
so a wedge between treatments cannot arise from learning the correct decision through
experience.

The structure of the paper is as follows. Section 2 discusses the experimental design,
Sections 3 and 4 present aggregate results on order independence and prior sufficiency
with respect to a single signal, Section 5 examines heterogeneity in these two properties,
Section 6 performs an alternative test of prior sufficiency with respect to a sequence,
Section 7 evaluates the performance of the literature’s standard empirical model, and
Section 8 considers mechanisms behind observed failures of prior sufficiency. Section 9

concludes.

2 Design

Participants complete two inference tasks: a sequential inference task and a one-shot
inference task. The basic inference problem is the same in both tasks, and is described to
participants with a ball and urn setup.

The environment is as follows. There are two decks of cards, labeled Deck A and Deck
B. Each deck contains 10 cards, where a card is one of two types — blue or orange. Deck
A has majority blue cards and Deck B has majority orange cards.

A deck is drawn according to prior distribution p(Deck A), denoted p. This is repre-
sented as a wheel, divided between the decks in proportion to their probabilities. The
participant spins the wheel, and the deck where it stops is selected.

The objective is to predict the probability that each deck was drawn, given t signals.
The participant receives signals by drawing cards at random with replacement from the
selected deck. Signals are conditionallyi.i.d. with precision q. That is, p(draw blue card|DeckA) =

p(draw orange card |Deck B) = q. Let ny denote the number of orange cards observed, and



n; denote the number of blue cards observed. The Bayesian posterior probability of Deck

A, given ny and n; is:

g" (1 —g)" -p(Deck A)

p(Deck A|ng, ny) = q"(1—q)"™ - p(Deck A)+q" (1 —q)™ - p(Deck B)

Treatments vary the signal precision, which is common to both tasks, and the prior in
the sequential task. The priors in the one-shot task are the same for all treatments. There

are 4 parameterizations, randomized between subject:

Treatment Prior p Precision
q
1 0.5 0.6
2 0.5 0.8
3 0.6 0.6
4 0.8 0.8

Treatments 1 and 2 have a uniform prior with g € {.6,.8}. Treatments 3 and 4 have a
non-uniform prior equal to the signal precision, where g =p € {.6,.8}.
We explain the sequential inference task and then the modifications made for the one-

shot inference task.

2.1 Sequential inference tasks

The participant completes 6 sequential inference tasks, where the first task is unincen-
tivized practice and the subsequent 5 tasks are incentivized.! A task consists of four

identical rounds, with the following steps:

1. Information: The participant draws one card at random with replacement from the
selected deck and observes its color. This is done via an animation that shows the
card leave and return to the deck.

2. Prediction: After observing that round’s card, the participant reports their posterior
belief that each deck was selected. The interface displays the exogenous information
they have received: the wheel representing the prior, the history of observed cards
in the task, and the decks. Previous reports in the current task or in completed tasks

are not displayed.

'Experimental instructions are available in the Online Appendix.
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Predictions can be any integer between 0 and 100 and must add to 100. The interface
tracks the remaining percentage points to allocate as the participant updates their pre-
dictions. They must enter a prediction for both states — that is, the field for one state

does not automatically populate based on the prediction for the other state.

2.1.1 Sequences

A participant is randomly assigned to one of two sets of sequences, where each set has
its own task order. I determine 12 sequences in advance (6 for each set) based on the
possible sequence compositions. Using 0 to denote an orange card and 1 to denote a blue
card, these are:

9,000 o0,1,1,1 0,01, o,1,1,1 1,1,1,1

The 12 slots are allocated proportional to each composition’s expected frequency un-
der p and gq. Then, they are divided between sets to preserve this distribution as closely

as possible. For the uniform prior, since signals are symmetrically informative:
p(Deck A|ny blue cards, ny orange cards) = 1 — p(Deck A |n, blue cards, n; orange cards)

I therefore invert reports after majority 0 sequences to obtain their equivalent majority 1
reports.

Tables 2A and 2C list the sequences for each uniform prior treatment in terms of their
majority 1 normalization.”? The main design feature is that sequences present equivalent
information in different orders. At t = 3 and t = 4, each participant sees three sequences
that permute the position of the conflicting signal (the 0): at t = 3, these are {0,1,1},
{1,0,1}, and {1,1,0}; at t = 4, these are {1,0,1,1},{1,1,0,1}, and {1,1,1,0}.3

Tables 2B and 2D list the sequences for the non-uniform prior treatments. The con-
struction of these sequences exploits the relationship between the uniform and non-
uniform problems. Specifically, a non-uniform prior p = g is equal to the Bayesian poste-
rior after observing one signal of precision g under a uniform prior.*

Accordingly, for each sequence in the uniform treatment with precision g, we create
an informationally equivalent non-uniform sequence by removing the leading 1 signal
and shifting the remaining three signals to the start. Tables 2A and 2B illustrate this for

q = .6: the shaded cells in each row of Table 2B are the shift of the corresponding row in

2Appendix table A25 lists all sequences used in the experiment.
31t was not possible to include the ordered sequence 0,1, 1,1, given the number of available slots.

4 . . _ p(blue|Deck A)p(Deck A) _ q-1/2 _
To see this: p(Deck A |blue) = p(ble] Deck A) p(Deck A) + p(blue| Deck B) p(Deck B) — g.1/2+(1—q)1/2 _ 1
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Table 2A. Tables 2C and 2D show the same process for g =.8. This approach yields two
representations of the same objective information at each ¢: a uniform prior with ¢ signals,

or a non-uniform prior (corresponding to one signal) with ¢ — 1 additional signals.’

2.2 One-shot inference tasks

After the sequential section of the study, the participant completes 11 one-shot inference
tasks, where the first task is unincentivized practice. There are two differences between

the one-shot and sequential section.

1. Task structure: The participant makes a prediction based on one signal only. Predic-
tions are made via strategy method: prior to observing the drawn card, the partici-
pant reports a posterior conditional on the event that the drawn card is blue, and a
posterior conditional on the event that the drawn card is orange. As noted earlier, g

is fixed for all sequential and one-shot tasks.

2. Prior variation: Unlike in the sequential section, the exogenous prior changes each
task. The participant completes one incentivized task with each of the following
priors, excluding p in the sequential section:

pel{.5,.55,.6,.653% .7,75,8,.85,.9,.95]
We exclude the sequential p, since we already observe a one-shot update from that

prior in round 1 of each sequence.

A participant’s previous reports in the sequential section of the study, or in completed
one-shot tasks are not displayed. As in the sequential section, participants are randomly

assigned to one of two task orders.

2.3 Additional Details

Overall sequencing of study There are several short exercises after both inference sec-
tions: two risk aversion elicitations, free response questions about the decision-making
process, and demographic questions.

At the start of the study, participants are told the study has two parts, both of which
consist of prediction tasks. However, they do not receive a description or instructions for

the one-shot section until they complete the sequential section. In the instructions for the

STable 2D omits two sequences: {0,0,0,0} and {0,0,1,0}. These provide no direct comparison to the cor-
responding uniform treatment, but were necessary to include to match the expected frequency of signals.
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sequential section, participants must pass an attention check and a comprehension quiz

within two attempts. Appendix figure A1 summarizes the timeline of the study.

Payment Predictions are incentivized, with payment calculated using the binarized
scoring rule (Hossain & Okui, 2013). This payment rule is robust to risk aversion. Fol-
lowing Danz et al. (2022), participants are informed that this procedure guarantees they
maximize their payment by reporting predictions truthfully. A detailed mathematical
explanation of the rule is available via button in the instructions. For the one-shot task,
the participant is paid for the guess that corresponds to the card that is actually drawn.
That is, if a blue (orange) card is drawn, they are paid for their guess about the state
conditional on a blue (orange) card.

Participants are paid for their decisions in half of the rounds of the sequential tasks,
half of the one-shot tasks, and one of the two investment tasks. In each of the three cases,
the paid tasks are chosen randomly. Participants receive a fixed participation payment of

4.5 USD, and any bonus payment from their choices that exceeds this amount.

2.4 Sample

Participants are recruited on the online platform Prolific. Each of the four treatments has
60 participants, split evenly across the two task orders. I pre-registered exclusion criteria

based on mistakes for each section of the study. These are:

1. Updating in the wrong direction.
2. Not updating.

3. Reporting a posterior of ¢ when it is not Bayesian to do so, which corresponds to

complete base rate neglect.

4. When reporting beliefs by strategy method, entering the same beliefs for both sig-

nals.

Our main sample will be participants who make a mistake in less than half of their total

decisions across the two sections. The final sample sizes are listed in Table 1.

3 Order independence in the aggregate

We begin with our test for order independence, which relies on variation in sequence
order in the sequential inference task. We observe the following sets of signals in more

than one order:

13



t | Sequence composition | Orders Within subject
{0,1}

2 (0,1} (.0l No
{0,1,1)

3 {0,1,1} {1,0,1} Yes
{1,1,0}
{1,0,1,1)

4 {0,1,1,1} {1,1,0,1} Yes
{1,1,1,0}

The important feature of these sequences is the within subject variation at t = 3 and
t = 4. In both treatments, each subject observes the conflicting signal at all possible
positions in sequences of length 3. In sequences of length 4, they observe the conflicting
signal at t € {2, 3,4}. I will refer to the sequences {0,1,1}, {1,0,1}, and {1, 1, 0} as the time 3
equivalent sequences, and the sequences {1,0,1,1}, {1,1,0,1}, and {1, 1,1, 0} as the time 4
equivalent sequences.

Under order independence, individual i’s time ¢ posterior p;; is equal across all se-

quences with the same number of 0 and 1 signals. Concretely:

Att=3: pi3[{0, 1,1} = pi3[{1,0,1} = p;3[{1,1,0}

Att=4: pi4|{1,0,1,1} = pi4|{1,1,0,1} = pi4|{1,1,1,0}

We compare {0,1} and {1,0} between subjects, as a given individual does not see both
orders.® The qualitative patterns are the same for both precisions, and the effects are not
statistically distinguishable, so I will discuss the results in terms of the g = 0.6 treatment.
The analogous figures and tables for g = 0.8 are in the Appendix.

Figure 3 shows a CDF of posterior reports after {0,1} and {1,0}. Order matters sub-
stantially even after only two signals, consistent with other papers that examine short
sequences (Agranov and Reshidi (2024); Chan (2025)). The mean posterior after {1,0}
is 8.2 pp lower than the mean report after {0,1} (p = 0.002), and the distributions are
significantly different (Kolmogorov-Smirnov p = 0.029).”

Moving to t = 3, we can begin to exploit our within subject variation. Figure 4 shows
an individual level plot of reports for each of the time 3 equivalent sequences. Each

‘column’ of the plot corresponds to a participant, and the three markers correspond to

%The sequence {0,1,1,1} is missing, and {0,1} and {1,0} are not observed within subject, due to the
constraint of matching a signal’s expected frequency. I opted to include {1,0,1,1} over {0,1,1, 1} to observe
consecutive positions for the conflicting information.

“For all analysis in the paper, corresponding regression tables are included in the Appendix.
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the participant’s reports in each of the sequences. Participants are sorted in increasing
order of their report after {1,1,0}. The figure shows a striking pattern: while most people
report a similar posterior after {0,1,1} and {1,0,1}, a minority of the population makes
a substantially lower report after {1,1,0}. The gap between {1,1,0} and the other two
sequences is 9 pp (p = 0.000). In contrast, the difference between {1,0,1} and {0,1,1} is
only 0.2 pp.

At t = 4, we observe the exact same pattern. Figure A2 replicates Figure 4 with the
three equivalent time 4 sequences, sorting on the report after {1,1,1,0}. Again, a minority
of the population has an extreme response to the 0 signal. Reports after {1,1,1,0} are
about 10 pp lower than reports after {1,0,1,1} and {1,1,0,1} (p = 0.011 and p = 0.001,
respectively), whereas the difference between {1,1,0,1} and {1,0,1,1} is only 1 pp. The
latter result is notable given that just one period prior, there was a large discrepancy in
beliefs between these two sequences — adding an additional 1 signal aligns reports again.
Kieren et al. (2025) find a similar pattern of overresponse to conflicting information,
immediately followed by ‘correction’, using between subject variation.

Overresponse to the conflicting signal is an individual-specific trait. Figure A3 shows
a scatter of the within person order effect across time. The y-axis is the posterior after
{1,1,1,0} minus the averaged posterior after {1,0,1,1} and {1,1,0,1}. The x-axis is the
posterior after {1,1,0} minus the averaged posterior after {0,1,1} and {1,0,1}. There is a
strong positive correlation — that is, those who exhibit order dependence at t = 3 are also
likely to at t = 4 (correlation coefficient = 0.715 (p = 0.000)).

The individual level scatters additionally show that order dependence arises from a
particular mistake. At t = 3 and t = 4, the signals favor state 1. When the sequence ends
in a 0 signal, however, order dependent individuals frequently report a posterior for state
1 that lies below the initial prior of 0.5. In other words, they favor the state disfavored by
the evidence. This means that violations of order dependence are closely tied to a second
violation of Bayesian reasoning: holding a posterior on the wrong side of the prior.

Despite these deviations, participants in the g = 0.6 treatment are remarkably well
calibrated on average. After the t = 3 equivalent sequences, the Bayesian posterior is 0.6;
the average observed report is 0.58. After the t = 4 equivalent sequences, the Bayesian
posterior is 0.69; the average report is 0.687. Even those who exhibit order dependence
are within a few percentage points of the Bayesian posterior when the sequence does
not end in 0. Together these results indicate that order dependence substantially but
temporarily distorts beliefs for a minority of the population, and that this error may not

necessarily reflect low quality updating more generally.
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4 Prior sufficiency in the aggregate

In this section, we test for violations of prior sufficiency, continuing to aggregate the
sample. To help explain the empirical strategy, let us return the manager example from
the introduction. The top panel of Figure 2 shows the manager’s inference problem in
the case of the existing worker, Worker O (left), and the case of a newly arrived worker
(right).

For the first period, the manager only observes s; from Worker O, updating his exoge-
nous prior p© to p?. At t = 2, the first new worker N1 is hired. The manager’s prior about
N1 is exactly equal to p?, and N1 and O generate the same signal s,. Prior sufficiency
implies that the posterior about N1, pN!, should equal the posterior about O, pS.

We can now repeat this logic for any period. Suppose at t = 3, a completely new worker
N2 is hired, and the prior about N2 is equal to the current belief about O. Again, both
workers send the same signal s3. Prior sufficiency implies we should observe equivalent
posteriors. The one-shot task allows us to construct this counterfactual exactly.

For each participant, we match each sequential decision p?teq to their one-shot task
with prior equal to pf’etq_l and signal equal to s;. We collect updates from a grid of priors
that include all multiples of .05 between 0.5 and 1, as well as 2/3, and collect updates for
both signals via strategy method. In practice, this means we match the vast majority of
reports exactly. But, when no perfect prior match exists, we match to the closest prior on
the grid.

Prior sufficiency implies:

seq

Pit

fso it i}=p0e [ {s = s p = piiy) (1)

This test does not hinge on any assumption about the functional form of an individ-
ual’s updating rule. An individual can use any procedure, including one that violates
order independence, as long as this procedure results in the same posterior belief within
the two tasks.

For the analysis, I will use the term “sequential posterior” to refer to pfteq. I will use
the term “one-shot posterior” to refer to p/"¢. So, for example, the one-shot posterior for
{1,0,1} refers to the update in the one-shot task that is informationally equivalent to the
sequential problem at {1,0, 1}.

Given the results with respect to order independence, we will look separately at se-
quences ending in a 1 signal and sequences ending in a 0 signal. Figures A4 and 5 are

individual level scatters of reports for the time 3 sequences {0,1,1} and {1,0,1}, and the
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time 4 sequences {1,0,1,1} and {1,1,0,1}, respectively. Each ‘column’ is a subject and
each marker corresponds to the person’s average report in the sequential task and one-
shot task after the sequences. The pairs of markers are ordered by the sequential average.

At t = 3, the average report in the sequential task is 3.8 pp higher (p = 0.000) than the
average report in the one-shot task. This increases to 6.9 pp (p = 0.000) for {1,0,1,1} and
{1,1,0,1}. In contrast, there is no difference between tasks for {1,1,0} and {1,1,1,0}. The
sequential task is 1.7 pp higher and 3.4 pp higher, respectively, but neither of these are
significant. We will see in the next section that this is because of heterogeneity.

The g = 0.8 treatment exhibits the same qualitative patterns as the g = 0.6 treatment,
with larger magnitudes. For the sequences ending in 1, the sequential reports are 4.1 pp
higher in t = 3 (p = 0.009), and 13.6 pp higher in t =4 (p = 0.000). The sequential reports
are also significantly more extreme than the one-shot reports for the sequences ending in
zero: 7.5 pp higher (p = 0.077) and 16.4 pp higher (p = 0.002) for {1,1,0} and {1,1,1,0},
respectively.

If we restrict the sample to sequential reports whose priors have an exact match in a
one-shot task, the main results continue to hold. This removes 22 out of 705 decisions in
the g = 0.6 treatment (3%) and 96 out of 720 in the g = 0.8 treatment (13%). The most
common reason for exclusion is that the prior equals 1 (36% of excluded cases). Such
cases occur more often under the higher precision. The only result that is sensitive to
this restriction is in the g = 0.8 treatment: the gap between the sequential and one-shot
tasks for {1,1,0} and {1,1,1,0} becomes less significant (for {1,1,0}, it becomes p = 0.106;
for {1,1,1,0}, it becomes p = 0.078). This is unsurprising given that the observations that
are being dropped are largely at the boundary. If we exclude priors at the boundary only,
both remain signifinicant at the 10% level.

Together, these results indicate that prior sufficiency fails in a majority of the popula-
tion, rather than a subset. Unlike order dependence, violations occur in sequences that
end in a non-conflicting signal. Moreover, the magnitude of violations is fairly similar
to the average order effect. In g = 0.6, the order effect is 9-10pp, while the average gap
between the sequential and oneshot tasks is 6.9pp; in g = 0.8, the order effect is 14-15pp,

which is on par with the t = 4 difference between the sequential and oneshot tasks.

5 Heterogeneity in violations

We will now examine the relationship between violations of prior sufficiency and viola-
tions of order dependence. Given clear heterogeneity in the population on the latter, I

estimate a mixture model to partition individuals in a more principled way.
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The model is non-parametric to remain agnostic about the rule that generates beliefs: I
simply use a regression of the observed posterior on a vector of constants for each unique

sequence at each time t.
Zﬁjl[sequence = jl+ei;
j

Note that this effectively reduces to using k-means, where the data for a given individual
is just the vector of their posterior reports for each sequence. Below, I present results
for two clusters. Including a third makes one cluster very small and adds no qualitative

explanatory power.

5.1 Heterogeneity in order independence

The mixture model divides the population on the behavior of overreacting to a 0 signal.
Figure 7 reproduces the individual level scatter of reports after the equivalent t = 4 se-
quences, now color coding by type. The model cleanly splits on the value of the report
after {1,1,1,0}.

Those in the minority cluster (14 of 47 subjects (30%)) exhibit strong order depen-
dence: their average report after {1,1,1,0} is 38.1 pp lower than the average report in
{1,0,1,1} and {1,1,0,1}. Those in the majority cluster (33 of 47 subjects (70%)) show no
order dependence. The individual level scatter for t = 3 (see Figure A5) shows the same
pattern — while not as clean as the t = 4 figure, those classified into the minority cluster
are much more likely to show a gap between {1,1, 0} and the other two sequences.

Figure A6 is the equivalent t = 4 scatter for the g = 0.8 treatment. The mixture model
again partitions the population on overreaction to a 0 signal, in similar proportions. 37
of 48 subjects (77%) are in the majority cluster and the remaining 11 (23%) are in the

minority cluster.

5.2 Heterogeneity in prior sufficiency

We will now test prior sufficiency separately for each type. There are two reasons to do
this. First, we want to identify whether failures of prior sufficiency persist among oth-
erwise “good” updaters. The majority type at least adheres to one principle of Bayesian
reasoning — order independence — so if they deviate from prior sufficiency, it indicates
that this type of mistake is widespread.

Second is that the experimental design allows us to ask whether, among those who

exhibit order dependence, prior sufficiency is the source. This is a result that would
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follow directly from a standard Grether (1980) type model, but it has not been considered
in the literature. To understand how prior sufficiency could generate order dependence,
let us consider our manager example again. Suppose there are two new workers, N1
and N2, and the manager has the same prior about both. N1’s first signal is H and N2’s
first signal is L. After this signal, the manager should have a different belief about each
worker because the signals are different. Now suppose that N1’s second signal is L and
N2’s second signal is H. If the manager adheres to prior sufficiency but updates in a
way that depends on the prior value (which, for example, Agranov and Reshidi (2024)
suggests), then the posteriors may remain different after the second signal, even though
the aggregate information received about each worker is the same.

We will begin with the g = 0.6 treatment and majority type. Figures 8-10 plot the time
series of mean reports in the sequential task and one-shot task for the sequences {1,0,1, 1},
{1,1,0,1},and {1,1,1, 0}, respectively. A gap emerges even after just two signals: the mean
sequential report for {1,1} is 3.1 pp higher (p = 0.020).

By the third signal, we observe gaps in all possible sequences. In all cases, the sequen-
tial report is more extreme than the one-shot report. This ranges from 2.7 pp (p = 0.034)
for {0,1,1} to 8.7 pp (p = 0.000) for {1,1,0}.

The gap persists from t = 3 to t = 4 in each of the time 4 equivalent sequences. In the
caseof {1,0,1,1} and {1,1,0, 1}, the final sequential report is 4.2 pp (p = 0.058) higher and
10 pp (p = 0.000) higher, respectively. For {1,1,1, 0}, the final sequential report is 13.1 pp
(p = 0.000) higher.

The discrepancy between the tasks holds across the entire distribution. Figures A7-A8
and 11-12 plot CDFs for the two tasks for each of the t = 3 and t = 4 equivalent sequences
(pooling the sequences ending in a 1 signal). In each case, the distribution of sequential
reports first order stochastic dominates the distribution of one-shot reports. CDFs of
the within person difference in reports confirm that this gap arises from the majority of
subjects making a higher sequential report (see Figures A9 and A10 for thet=3and t =4
equivalent sequences, respectively).

For the minority type, our smaller sample size limits statistical power. However, two
key patterns at t = 4 demonstrate that these subjects’ sequential behavior is inconsistent
with prior sufficiency. Figure 13 shows CDFs of the sequential and one-shot reports after
{1,1,0,1}. The distribution of sequential reports first order stochastic dominates, with
sequential reports exceeding one-shot reports by 13.4 pp on average (p = 0.001). This
indicates that the immediate correction following a downward update occurs specifically
within the sequential context. When the identical information arrives in a one-shot for-

mat, beliefs increase far less.
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A complementary pattern emerges for {1,1,1,0}. Figure 14 compares the sequential
and one-shot CDFs for this sequence. Here we observe the reverse ordering: the distri-
bution of one-shot reports first order stochastic dominates, with a mean that is 19.4 pp
higher (p = 0.000). The minority cluster’s other characteristic behavior — overresponding
to conflicting signals — thus also manifests only in sequential settings. The correspond-
ing one-shot problem does not induce nearly as large a downward update.

The g = 0.8 treatment replicates these qualitative patterns for both the majority and
minority types. For the majority type, sequential reports are more extreme across all
sequences. And for the minority type, sequential reports substantially exceed one-shot
reports for {1,1,0, 1}, while the reverse holds for {1,1,1,0}.

To summarize, several patterns hold consistently across signal precisions. The mix-
ture model partitions the population precisely on adherence to order independence. Both
types violate prior sufficiency, though in distinct ways. The majority type — those satisfy-
ing order independence — report systematically higher posteriors in the sequential task,
regardless of information ordering. The minority, in contrast, show inverse behavior rel-
ative to the sequence: their report is higher in the sequence when they are compensating
for a downward update and lower in the sequence when they are observing a conflict-
ing signal. Finally, these effects do not improve, and sometimes become worse, as the

sequence gets longer.

6 Prior sufficiency with respect to a sequence

The one-shot task only permits a test of whether subjects adhere to prior sufficiency pe-
riod by period. We now exploit variation in the initial prior to test prior sufficiency with
respect to a sequence, rather than a single signal. In this case, our counterfactual problem
is also a sequential problem, making it more similar in format to the sequential task in

the uniform treatment.

6.1 Empirical strategy

This test will compare reports in the uniform treatment with precision g to reports in the
non-uniform treatment with precision g.

First, I will explain what counterfactual we are aiming to test, using our manager
example one more time. Figure 2 reproduces our baseline sequential problem on the left,
and the new sequential counterfactual on the right. Suppose that at t = 2, a new worker

N is hired. The prior about N, py, is equal to the current belief about O, plo. Between
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t =2 and t = t’, the manager receives the same sequence of signals about the two workers.
If the manager adheres to prior sufficiency, it should be the case that the t = t’ posterior
about each worker is the same. This is because there exists some time at which the prior
value was the same (in our example ¢ = 2), and then all of the intervening signals are the
same.

We will use the non-uniform prior treatments to generate this counterfactual between
person. Namely, for each sequence in the uniform treatment, the non-uniform treatment
has an informationally equivalent problem with prior of 4. I construct these problems
by dropping the first signal from the corresponding uniform sequence and shifting the
remaining three signals from times 2—4 up to times 1-3. For example, {1,0,1,1} in the
uniform treatment becomes {0,1,1} in the non-uniform treatment, where the prior of ¢
substitutes for the dropped first signal. These problems are equivalent because a prior of
q is just the Bayesian posterior after 1 signal. All that varies is whether the first piece of
information comes in the form of a signal (uniform treatment), or whether it is implied
in the prior (non-uniform treatment).

Given this process, we have the follow paired problems for each precision:

(a)g=0.6 (b)g=0.8
Uniform seq. Non-uniform seq. Uniform seq. Non-uniform seq.
{1,0,1,1} {0,1,1} {1,0,1,1} {0,1,1}
{1,1,0,1} {1,0,1) {1,1,0,1} {1,0,1)
{1,1,1,0} {1,1,0) {1,1,1,0} {1,1,0)
{0,1,1,0} {1,1,0} {0,1,1,0} {1,1,0}
{1,1,0,0} {1,0,0} {1,1,1,1} {1,1,1}

I will use the convention of referring to time periods and sequences from the perspec-
tive of a subject in the uniform treatment. For example, a report after {1,0, 1,1} will refer
to the uniform subject’s report after observing all of {1,0,1, 1}, and will refer to the non-
uniform subject’s report after observing the informationally equivalent sequence {0, 1,1}.
Likewise, t = 4 would refer to the uniform subject’s report at time 4, and the non-uniform
subject’s report at time 3.

We can perform two different tests comparing the uniform and non-uniform distri-
bution of reports at each t for a given sequence. The first is an exact test. If a subject in

the uniform treatment reports the Bayesian posterior after the 1st signal, his endogenous
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prior at t = 2 is exactly equal to the non-uniform subject’s exogenous prior. This tracks
Figure 2 exactly, save that the comparison is between subject rather than within subject.
60% of initial reports in the g = 0.6 treatment are the Bayesian posterior, making this test
viable for that treatment.

The second is a test based on the ordering of the distribution of reports from each
treatment, which we can apply for both precisions. It is based off the following observa-
tion. In the g = 0.8 uniform treatment, the mean report after 1 signal is about 70%, which
is 10 pp lower than the initial prior in the corresponding non-uniform treatment. Only
30% of reports are equal to 0.8 exactly, and 97% of reports are less than or equal to 0.8.

Thus, for any individuals U and N randomly chosen from the uniform and non-
uniform treatments, respectively, N’s prior py (exogenously set to 0.8) will be weakly

higher than U'’s prior py. In the two state setting, we can rewrite this as:

pn(w=1) S pulw=1)
pn(@=0) ~ py(w=0)

(2)

Given that reports have this property, we can test for prior sufficiency under a restricted
class of updating rules, using the following result from (Chan, 2025): If py and py are
two prior distributions that satisfy (2), then if the updating rule has the form

[P(wj)]lg Gj(st)
Z[P(a)k)]ﬁ Gi(st)
K

the corresponding posteriors py,, p;, satisfy

p'(wjls;) = where Gi(-) > 0 for all k (3)

Note that (3) is a generalized form of Grether (1980), where the signals can be dis-
torted according to any positive function Gi(-). In our two state setting, this result is
equivalent to saying: if N’s prior is more extreme than U’s and updating follows (3),
then N’s posterior is also more extreme than U’s. We have already established that for
any pairing of individuals from the two treatments, N’s prior is more extreme. So, if
people use a rule with the form of (3), the distribution of non-uniform reports should
always remain above the distribution of uniform reports. This should hold even if each
i has their own ; and own Gy ;(-) function. Due to randomization, these unobserved in-
dividual level parameters are, in expectation, balanced across the two treatments. If the

posterior distributions do not have the same ordering as the prior distributions, updating
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is inconsistent with being prior sufficient under a rule with the form of (3).

6.2 Results

As with the one-shot task, we find deviations from prior sufficiency. We will first show
results for the exact test of prior sufficiency, comparing reports in the g = 0.6 treatment
from sequences where the first report is the Bayesian posterior to reports in the non-

uniform for the corresponding sequence.

Exact test Figures 15-17 and A11 plot the time series of the average sequential report in
the two g = 0.6 treatments. For reference, these figures also include the average one-shot
report in the uniform treatment, restricting to those sequences where the first report is
the Bayesian posterior.

The main patterns distinguishing the sequential and one-shot tasks also emerge in
the comparison of the uniform and non-uniform. Namely, as time passes, discrepancies
emerge in new sequences, and once a discrepancy on a given path exists, it almost never
improves as long as the sequence remains informative.

By t = 4, there are gaps for all three of the equivalent sequences {1,0,1,1}, {1,1,0,1},
and {1,1,1,0}. The difference between the non-uniform and uniform treatment is 0.055
(p = 0.003), 0.043 (p = 0.059), 0.093 (p = 0.028), respectively. CDFs show that in these
sequences, the distribution of uniform reports first order stochastic dominates the distri-
bution of non-uniform reports, as in the one-shot comparison (see Figures A12, A13, and
Al4).

When the sequence becomes uninformative, existing discrepancies resolve and new
ones do not appear. For g = 0.6, we have two uninformative sequences: {0,1,1,0} and
{1,1,0,0}. In the case of {0,1,1,0} (in Figure A15), the belief in the non-uniform is ini-
tially more extreme, and in the case of {1,1,0,0} (in Figure A16), the uniform report is
significantly higher in both periods 2 and 3. However, by the end of each sequence, there

is no gap.

Distribution based test for g=0.8 We now apply our distribution based test to the
q = 0.8 treatments. In most cases, in t = 2 and t = 3, the distribution of reports in the
non-uniform treatment remains to the right of the distribution of reports in the uniform
treatment. This is in line with the fact that the non-uniform subjects start almost exclu-
sively higher than any uniform subject.

By t = 4, however, the distribution for the uniform lies to right of the distribution for
the non-uniform for both {1,0,1,1} and {1,1,0, 1}. Figure 18 shows the CDF for each treat-
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ment, pooling these sequences. Reports in the uniform are 0.049 pp higher (p = 0.019),
and the distributions are significantly different.® Figure 19 shows the corresponding
CDFs for the sequence {1,1, 1,0}, where the markers for the uniform treatment are color-
coded by type. The mean difference between the two treatments is small, but the dis-
tributions are significantly different. We can immediately see that this arises from the
divergence in behavior between the majority and minority clusters. The majority is above

the uniform report, while the minority is below it.

Distribution based test for 4=0.6 In the g = 0.6 treatment, 80% of time 1 posterior
reports are no larger than the Bayesian posterior. While not as clean as the g = 0.8 case,
we apply the distribution based test here as well.

The qualitative results from the exact test carry over for {1,0,1,1} and {1,1,0,1}, al-
though the magnitude of the gap between the uniform and non-uniform is smaller. Fig-
ure 20 shows the distributions in each treatment for the two sequences pooled: the mean
difference is 0.039 (p = 0.019), and the distributions are significantly different from each
other (K-S p =0).

The gap between the uniform and non-uniform treatments for sequences ending in 0,
however, is now insignificant. The figures from the q = 0.8 treatments immediately make
clear why this is. When we restrict the sample, we incidentally exclude observations from
minority type subjects who report a very low belief after a conflicting signal. Figures A19
and A20 reproduce the CDFs for {1,1,0} and {1,1,1,0}, color-coding by type. We can
see that the reports lying above the non-uniform CDF almost exclusively belong to the
minority type. The distributions are not significantly different in the case of {1,1,1,0},
but they are at the 10% level in the case of {1, 1, 0}.

In summary, participants fail the sequence based test of prior sufficiency, and do so
in the same direction as in the sequential vs. oneshot comparison: reports in the uni-
form treatment are higher than reports in the informationally equivalent non-uniform
sequence. If we use the entire sample, without conditioning on type or time 1 posterior,
the final report is between 4 and 5 pp higher in the uniform treatment for sequences
ending in a 1 signal. If we restrict to reports from sequences where the time 1 report is
the Bayesian posterior, the average report in the uniform treatment is between 4 and 9
pp higher. So, even when we make the format of the counterfactual problem much closer
to the format of the sequential problem, we still observe that beliefs in the sequential

problem are more extreme.

8Figures A17 and A18 are the CDFs for {1,0,1,1} and {1, 1,0, 1} separately. In both cases, the qualitative
direction is the same. However, the mean difference for {1,0, 1,1} is not significant, only the distributions
are significantly different.
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7 Estimation of updating rules

The benchmark empirical model used in the updating literature, Grether (1980), implies
that dynamic updating follows an AR1 structure — namely, the posterior is written as a
function of the prior and the most the recent information. This functional form is only
correctly specified if prior sufficiency holds.

Our results suggest that such a model will fail to organize the data well. In this sec-
tion, we will estimate the Grether model under a variety of parameterizations, and see
that, consistent with our non-parametric findings, it does a poor job. The models match
the mode of the distribution, but underestimate the frequency of the modal value. Im-
provements on matching the mode tend to come at the cost of matching the rest of the
distribution less accurately. The first error is particularly important because for the ma-
jority type, the modal value is often very close to Bayesian — meaning that this parametric

tamily of models overpredicts the frequency of mistakes.

7.1 Extending Grether to sequential inference

Let us start with the static version of Grether. The model assumes that an individual
follows Bayes’ rule, with some power distortion on the prior and signal. Assuming two
states, with prior p, the posterior p’ is given by:

p(sw =1 p(w)®

Y wefo Psla’)f p(w’)?

p(wls) =

We then divide the posterior for state 1 by the posterior for state 0 and take the log. This

gives us an expression in log odds:

7 A -
plw=1lsi)) _ p(slw =1) plw=1)
1"g(p(w = 0|si>) = 1"g(p<—s|w = o>)+51°g(p—<w = 0))

To economize on notation, I will use A to refer to the log-likelihood ratio, and 7 to refer
to the log odds of the states.

Now, let us extend the model to multiple periods. For simplicity, we will assume a
uniform prior, so that the prior term drops out. The model is an AR1 time series process:

the prior on the right hand side is the first lag of the outcome. We can observe the key
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implication of this structure by recursively substituting in for the prior:

t=1: T = ﬁ/\l
=271 = By + 01y :ﬁ/\2+6( BA, ):ﬁ/\2+5/3/\1
~——
LS
t=3: T3 = /3/\3 +5T(2 = /3/\3 + 6(/3/\2 +6/5/\1 ) = /)7/\3 +6ﬁ/\2+52/3/\1
D —
LS
-1 .
t=t:m, :ﬁ/\t,+z(5f—1—1m]- (4)
j=1

What equation (4) shows is that under the model, the posterior belief is simply a polyno-
mial of the weights § and ¢ and the signals.

Both the sequential vs. oneshot comparison and the uniform vs. non-uniform com-
parison test for prior sufficiency under a more general model than (4) — where the
oneshot test is always completely non-parametric. The fact that we find violations of
prior sufficiency in both cases indicates that any Grether style linear model is misspeci-
fied. This would be the case even with individual heterogeneity in the weights g and 6 —
the oneshot test is already at the individual level, and the non-uniform test is robust to
heterogeneity.

We can assess the performance of Grether, as it turns into a linear econometric model
simply by assuming an additive error term €;;. As an econometric model, Grether is a dy-
namic panel, which creates an endogeneity challenge. I will address this in the estimation
using a structural approach. However, I first will explain the problem more precisely.

Suppose the true model has a linear structure but with individual level heterogeneity.
In other words, we believe that each individual’s report is generated by a rule 7;; = ;A1 +
0;Tt; 11 + €j1, where {B;, 0;} are individual weights and €;; is classical measurement error.
In this case, if we estimate OLS pooling all observations, the error term has the following

structure

ef’t‘mkd OLS _ (Bi—B)Ait +(8; =) 1 11 where B and 6 are the estimated parameters.

This error term will be correlated with the lagged posterior, as they both contain an in-

dividual’s weights (this is clear for the lagged outcome after recursive substitution, as in

(4))-
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If the weights f;,9; are correlated, then both pPooled OLS and §pooled OLS are not con-
sistent estimates of the means E[f;] and E[9;]. Existing papers take the strategy of in-
strumenting 7t; ;_; with the Bayesian prior. This, however, does not recover the means of
the weights either.” The econometric literature on random coefficient panel data mod-
els has recognized for some time that in these contexts no valid instrument exists (Hsiao
& Pesaran, 2004). The only paper that proposes a non-parametric strategy for estimat-
ing moments of the distribution of random coefficients is (Lee, 2025), which recovers an
identified set.

7.2 Econometric strategy

I will take a structural approach to estimating Grether, using simulated maximum like-
lihood. The reason for a structural approach is to simulate data under the model to as-
sess its performance.!? To illustrate the procedure, let us consider the simplest possible
parameterization: each individual i is characterized by a parameter vector 6; = {B;,0;},
where f8; is a weight on the signal and o; is a weight on the prior.

I assume that the parameters are distributed multivariate normal, and that the addi-

tive error term €;; is normally distributed with mean 0.

Kg; 0/31‘ 0B;6;
’ 2 (5)
Hoi) \9Bisi 9,

€ ~iia N(0,02)

(ﬁi]~MVN
S

i

Using ¢ to denote the normal pdf, the log likelihood of an observation is:
Liy =1In(¢ [1js — O;x;]) where x;; = [A;1, 7;,4-1(0;)]'.

We do not observe 6;, however, so we cannot calculate the likelihood of a given observa-

tion directly. We need to integrate 6; out so that the likelihood is only written in terms of

See Appendix C.1 for details on endogeneity and IV estimation.
10Bland and Rosokha (2025) also adopt a structural approach to estimating moments of the distribution
of weights, but use a Bayesian framework.
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observed variables:
L= 1n(f¢ [1; — O;x; ] AF(0;)

This integral does not have an analytic solution, so we simulate it via numerical integra-
tion. We draw a grid of 6 values, with each draw denoted s. We calculate the likelihood of
a given observation (7t;;, x;;) at each draw 6, and then average. This gives us a simulated

log-likelihood for each it:

- 1
Li" =1In [g Z}P [7eie = Gsxit]]

The estimation routine solves for the parameter vector that maximizes the simulated log-
likelihood } ;) , [lf;m That is, the output is an estimate of the moments of the distribution
of coefficients, as well as the variance of the error term.

I estimate the two parameter baseline model given in (5), as well as a three parameter
baseline model motivated by the results so far. This model has a weight for conflicting
signals, a weight for non-conflicting signals, and a prior weight. I use two different defini-
tions of conflicting signals, and estimate a number of variants of each model, permitting
time specific changes in the mean or variance of the individual parameters.!!

The estimation follows the Grether model literally, using the recursive substitution

representation in (5). So, for a given observation, the residual will in fact be written as:

-1
T — | Ay + Zét/_l_]/)’/\j + 7 where 7 is the initial exogenous prior log odds.
j=1

That is, I never subtract the observed lagged posterior. Beliefs only appear as the out-
come. Additionally, I will assume that €;; is classical measurement error — this means
that lagged error terms will not appear in the likelihood. If they did, we would have to
integrate them out as well, as they are unobserved.

I estimate each model on all participants and on the majority type only. For a given
model, we simulate 1000 individuals per actual participant in the sample, using the func-
tional form in 4, evaluated at an observed sequence, as well as a {8;, 9;} and €;; drawn from

the solution distributions.

"The full list of models can be found in Appendix C.2.
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7.3 Results

Given that the simulated data is highly continuous and the observed data is not, I bin ob-

servations by 5 percentage point bins. I will use two different measures of fit to organize

obs.

the discussion. Denote the fraction of observed data in bin j by 67’%. and the fraction of

) binj
simulated data in bin j by 6211’:] The first measure, which I will refer to as the mode gap,
is: (655’2 i 62’127]) for the modal bin in the observed data. This is just the amount that the

model over or underpredicts the weight on the mode. The second measure, which I will
refer to as the non-mode gap is: the sum of abs(()gf’j'j - 9211’:;]) over all non-modal bins,
divided by 2. This measures the mass in the simulated distribution that would have to be
reallocated to match the observed distribution outside of the modal bin. The division by
2 is simply a normalization, as the raw sum double counts mass.

Let us start just by considering a single signal. Figure 21a shows the observed and
simulated distributions in the full sample for the baseline model with 1 signal weight.
The gray bars show the frequency of observed data in each bin, and the scatter shows the
fraction of simulated data in the bin. On the simplest sequence, the model has very poor
fit: it underestimates the mode by about 30 pp and overestimates the mass in bins around
the mode, with the non-mode gap equal to 24 percentage points.

A broader look across all sequences confirms that underestimation of the mode and
misestimation of the distribution is widespread. Column 1 of Table 3 lists the mode gap
for each sequence and Column 1 of Table 4 lists the non-mode gap for each sequence. In
11 of 12 sequences, the mode is underestimated by at least 10 pp. The non-mode gap is
between 16.5 and 36.5 pp, with half of the sequences having a gap above 25 pp.

The longer informative sequences tend to have a smaller mode gap, but not necessarily
a smaller non-mode gap. In other words, improvement on one dimension of fit does not
translate to improvement on the other. Figures 21a-b compare {1} to {1,1,0,1} under the
baseline model with 1 weight to illustrate. The sequence {1,1,0,1} has a much smaller
mode gap of 4.3 pp, but for both sequences, the non-mode gap is =25 pp.

Varying the parameterization of the model does not lead to substantial improvement.
Given that we know there is extreme overresponse to a conflicting signal in the full popu-
lation, one might expect that enriching the baseline model with a second signal weight for
‘conflicting’ signals would help. It does improve fit, but only marginally. The left panel
of Table 5 shows the difference between the 2 weight and 1 weight model for our two fit

measures.'> The 2 weight model improves the non-mode gap for the short sequences of

12A signal is coded as conflicting if it requires an update in the opposite direction of the previous update.
The Online Appendix includes alternative definitions of a conflicting signal.
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length 1 and 2 and the sequences of length 4. It also mostly improves the mode gap, and
for the sequences where it does not, it adds no more than 2.9 pp. Despite this, the same
qualitative patterns persist under the 2 weight model: longer informative sequences still
have smaller mode gaps but not substantially smaller non-mode gaps. This persistence is
evident in Figures 21c-d, which compare s = {1} and s = {1,1,0, 1} for the 2 weight model.

A natural hypothesis for the poor fit would be that we are pooling two very differ-
ent kinds of updaters when using the full sample. However, when we estimate the model
only on the majority type, we observe similar results. In the simplest sequence of 1 signal,
the modal bin is underestimated by 40 pp. Considering all of the data, longer informa-
tive sequences have a smaller mode gap, without clear improvement on non-mode fit.
Figures 22a-b reproduce the comparison of {1} and {1,1,0,1} under the 1 weight baseline
model, estimated only on the majority type.

Furthermore, adding a second signal weight in the majority type sample produces
much more mixed results than in the full sample. The right panel of Table 5 shows
that this additional flexibility substantially worsens the non-mode gap for sequences of
length 4 and the mode gap for certain sequences, suggesting limited benefits from more
parameters. Models with time varying parameters, included in the Online Appendix, do
not systematically resolve these fit issues.

The following exercise makes stark the limitation of the Grether model. If we estimate
the baseline Grether specification for the full sample on the first signal and first update
only, the predicted report falls in the [0.6,0.65) bin, correctly identifying the mode. Now
suppose we assumed each simulated individual reports exactly this predicted value. This
degenerate distribution would actually match the observed distribution better than the
model estimated on all the data. The one period Grether simulation would misallocate 40
pp — precisely the amount of observed mass that is not on the mode. The full simulation,
by contrast, is off by 30 pp on the mode and then overpredicts the rest of the bins by
about 40 pp in total. The model can correctly identify where beliefs concentrate from
one period alone, but adding more data worsens rather than improves its predictions.

Together, these exercises demonstrate that the parametric family of Grether models
struggles to fit the data under the restrictions imposed by an AR1 process. The model
consistently underpredicts the concentration of probability mass at the mode while si-
multaneously failing to capture the shape of the distribution around the mode. These
failures persist across different parameterizations, different sample restrictions, and dif-

ferent sequences.
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8 Sources of prior sufficiency violations

8.1 Aggregating signals

In this final section, we will consider some explanations for failures of prior sufficiency,
specifically among the majority type. One candidate explanation is that individuals ag-
gregate all signals received thus far with the initial prior, rather than updating from their
current prior using only the most recent signal.

The main exercise makes use of variation in the timing of equivalent sets of signals.
Recall that due to the structure of the problem, the Bayesian posterior depends only on
the initial prior and the net count of 1 signals. For example, a sequence with two 1 signals
and one 0 signal induces the same Bayesian posterior as a single 1 signal.

After cancellation, the sequences induce four unique Bayesian posteriors, where I re-
fer to the reduced set of signals after cancellation as the “reduced” sequence. We observe

the first three reduced sequences at an earlier period and at a later period.

Full sequence | Reduced sequence | Observed at
{0,1} initial prior t=2andt=4
{1,0}

{1,0,0,1)

{1,1,0,0}

{0,1,1) 1) t=landt=3
{1,0,1})

{1,1,0)

(1,0,1,1) 1,1 t=2and t=4
{1,0,1,1}

{1,0,1,1)

(1,1,1) {1,1,1) t=3

Suppose that the report after a given reduced sequence depends on time, e.g., that
the average report after {1,1} is not equal to the average report after {1,1,0,1}. In this
case, there are only two possible explanations: the prior is different (endogenously), and
more signals have accumulated without changing the objective posterior. We can control
for the former through the matched one-shot task. Any residual indicates that signal
accumulation matters on its own.

First, we will establish that the reports do depend on time and do so in a consistent
direction. Figure A21 plots CDFs of the initial report and the report after the t = 3 equiv-
alent sequences for the majority type in the g = 0.6 uniform treatment. Here, we already

see a small gap of 2.4 pp (p = 0.010). Figure 23 plots CDFs of the report after {1,1}
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and the t = 4 equivalent sequences. The gap increases to 7.2 pp (p = 0), and the time 4
distribution is now essentially fully shifted to the right of the t = 2 distribution.

For the reduced sequence {1, 1}, we have a one-shot update at both points in time. So,
we can compare the difference between the sequential and oneshot report at each period.
If prior sufficiency explains the gap between the earlier and later period, the difference-
in-difference estimate should be zero.

Figure 24 performs this comparison. The gap between the sequential and oneshot
tasks is higher at time 4, with a residual of between 4 and 10 pp depending on the se-
quence. Indeed, Figure A22 replicates Figure 23 with one-shot reports for the sequences
with two 1 signals — unlike for the sequential reports, the average one-shot report does
not depend on time.

Together, these results indicate that the increase in reports over time cannot be ac-
counted for with prior sufficiency. The mere fact that more signals have accumulated
must matter in and of itself. The uninformative sequences (i.e., those with the same num-
ber of Os and 1s) suggest a mechanism: that participants consider signals in the aggregate
using a heuristic that considers the total count of signals.

Figure A23 shows CDFs of the reported belief after uninformative sequences at t = 2
and t = 4. In both cases, the overwhelming majority of participants report 0.5, which is
the Bayesian posterior. So, when signals are exactly balanced, at least in sequences of this
length, people cancel signals fully. However, when the sequence is informative, the total
count of signals, rather than just the net count of 1 signals, seems to matter. This suggests
that participants may employ a frequency-based heuristic, treating a higher count of total

signals as providing additional information when those signals favor one state.

8.2 Updating in the non-uniform treatments

The results in the previous subsection suggest that individuals aggregate signals in some
form. This generates a puzzle: if individuals aggregate signals in a sequence, then we
might expect reports in the uniform and non-uniform treatments to converge over time
as the accumulated signals come to dominate the initial prior. Instead, we observe the
opposite. The gap between treatments grows larger as the sequence progresses. While I
cannot fully reconcile these two facts, examining updating behavior in the non-uniform
treatment provides suggestive evidence about what drives this divergence.

A possibility is that in the non-uniform treatment, individuals update in a manner
much closer to the one-shot benchmark. However, for the sequences shared across the

uniform and non-uniform treatments, we again find that reports in the sequential task
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tend to be higher. Figures 25 and A24 plot CDFs of reports in the sequential and one-
shot tasks for the pooled sequences {1,0,1,1}and {1,1,0, 1} in the non-uniform g = 0.6 and
q = 0.8 treatments, respectively. Reports in the sequential task are 5 pp higher for both
precisions, and the sequential distribution first-order stochastically dominates. Figures
A25 and A26 show the CDFs for {1,1,1,0}. There is no gap for g = 0.6, but sequential
reports in the g = 0.8 treatment are 14 pp higher.!?

We can also test whether signal accumulation matters independently of the prior by
comparing the gap between sequential and one-shot reports across time for a given re-
duced sequence. For g = 0.6, we observe the reduced sequence {1} and {1,1,1}att =3 and
t = 5.1% For {1,1,1}, the sequential report exceeds the oneshot report by 3.5 pp at t = 3
(p =0.000) and by 9 pp at t =5 (p = 0.000), yielding a difference-in-differences estimate
of 5.7 pp (p = 0.000). For {1}, the DID estimate is close to zero and insignificant.

Together, these results indicate that in both the uniform and non-uniform treatments,
individuals do not update in a purely incremental fashion. This would mean that the
exogenous parameters of the non-uniform treatment must lead to different updating be-
havior — we have one piece of evidence that this is the case.

In the non-uniform treatment, most subsequences contain signals that are either evenly
split or favor the state that is ex-ante more likely. However, some subsequences contain a
majority of 0 signals, contradicting the initial exogenous prior. For example, participant
see {0,1} and {1, 0}, corresponding to a uniform prior with {1,0,1} and {1, 1, 0}, while they
see {0, 0}, corresponding to a uniform prior with {1,0,0}. We can invert reports here to
make the sequences comparable: the posterior for state 1 given {0,1,1} (not directly ob-
served) is equivalent to the posterior about state 0 given {1, 0, 0} (directly observed). After
inversion, order independence says the reports for these three sequences should be the
same.

This equivalence does not hold in practice for informative sequences, generating ap-
parent “order” effects that are different from the uniform treatments. Figure 26 shows
CDFs of reports after {1,0,0} (post-inversion) and {1,0,1} for the g = 0.6 treatment, in-
cluding all participants.!> The distribution of reports for {1,0,0} is shifted right (K-S
p = 0.05), indicating more extreme beliefs when the sequence is presented as two 0 sig-
nals. This contrasts sharply with the uniform treatment, where the distributions are es-
sentially identical (see Figure A27).

This pattern is even more pronounced for longer sequences. When comparing se-

I3Pigures A29-A32 show the equivalent CDFs for time 3. Reports are weakly more extreme in the se-
quential task in all cases.

14Note here that I am keeping the convention of counting time from the perspective of a uniform prior.

15Tables 6 and 7 list all equivalent sequences where we observe cases with majority Os and majority 1s.
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quences with three 0s and two 1s to sequences with three 1s and two 0Os, reports are 18
pp higher for sequences with majority Os (see Figure 27). Importantly, among sequences
with composition {0,0, 1,1, 1}, there is no order effect — the gap emerges purely based on
the number of 0 signals in the sequence.

The g = 0.8 treatment shows related patterns. Reports after {0,0,0,1,1} are 20 pp
higher than after {0,0,1, 1,1}, where again there is no order effect for sequences with two
0 signals. Reports after {0,0,1} are 6 pp lower than after {1,0,1}, opposite to g = 0.6 (see
Figure A28). While we can only speculate on the reason for the particular set of patterns
across the two precisions, in both cases, the signal composition seems to matter in ways
it does not in the uniform treatment.

The takeaway is twofold. First, sequential presentation seems to matter regardless of
whether the initial prior is uniform or non-uniform: for sequences common to both treat-
ments, beliefs in the sequential task are more extreme than in the one-shot task. Second,
whether the initial signal arrives explicitly or is embedded in the prior has lasting effects
on how subsequent information is processed. This suggests that violations of prior suffi-
ciency are driven not only by the possibility of signal aggregation, but also by the initial
conditions of the inference problem. Characterizing the relationship between a problem’s

exogenous parameters and aggregation strategies is a question for future research.

9 Conclusion

This paper experimentally characterizes how individuals update beliefs when informa-
tion arrives sequentially, focusing on two core implications of Bayesian reasoning in dy-
namic environments: order independence and prior sufficiency. The experimental litera-
ture has largely relied on oneshot inference problems, and, when considering sequences,
has focused primarily on order independence. This paper introduces a design that em-
beds within-person counterfactuals for both properties by combining a sequential updat-
ing task with a matched one-shot benchmark.

Across treatments varying prior strength and signal precision, three main findings
emerge. First, order dependence is present only for a minority of subjects, who exhibit
systematic overreaction to the most recent contradictory signal. Second, prior sufficiency
is violated uniformly: posteriors formed endogenously through sequential updating are
consistently more extreme than posteriors formed from an informationally equivalent,
exogenously given prior. Third, the mechanisms underlying this failure appear linked
to aggregate processing of signals. Methodologically, the paper shows that the standard

econometric approach of estimating a Grether style AR1 model cannot reconcile observed

34



patterns, even when estimated flexibly.

The results point to two central directions for further work. The first is about whether
the endogeneity of beliefs per se matters. That is, does the source of a belief, not just its
numerical value, affect later updating — for example, because of confidence. If yes, then
sequential and one-shot tasks correspond to fundamentally different learning problems.

A second avenue concerns whether there exists any static inference problem that, it-
erated over time, reproduces observed behavior in a sequence. This paper shows that
the canonical one-shot task does not serve that role. If no such static analogue exists,

sequential reasoning must be modeled as a genuinely dynamic cognitive process.
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Figures

Figure 2: Counterfactuals for prior sufficiency
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Order independence in the aggregate

Cumulative probability

Figure 3: CDF: Posterior after sequences with composition {0,1}
p=0.5,9=0.6
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Posterior

Figure 4: Posterior after sequences with composition {0,1,1}, at subject level
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Subjects sorted in ascending order of report after {1,1,0}.
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Prior sufficiency in the aggregate

Posterior

Figure 5: Average posterior after {1,0,1,1} & {1,1,0, 1}, at subject level
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Subjects sorted in ascending order of sequential report after {1,0,1,1} & {1,1,0,1}.

39



Posterior

Figure 6: Posterior after {1,1,1, 0}, at subject level
p=0.5,9=0.6
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Heterogeneity in violations: order independence

Figure 7: Posterior after sequences with composition {0,1,1,1}, at subject level
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Heterogeneity in violations: prior sufficiency

Figure 8: Avg. report by task and time
Sequence: {1,0,1,1}
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Figure 9: Avg. report by task and time
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Figure 10: Avg. report by task and time
Sequence: {1,1,1,0}
p = 0.5, = 0.6; Maj. type

.8 N .06***
(@)
13
(o]
S -
o)
2
e 7
9 03**
< o) '
|
|
.6
| | |
t=2 t=3 t=4

O Seq. task: uniform  ® One. task: uniform

44



Cumulative probability

Figure 11: CDF: Posterior in sequential task vs. oneshot task

Sequence {1,0,1,1} & {1,1,0,1}
p =0.5, ¢ = 0.6; Maj. type
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Cumulative probability

Figure 12: CDF: Posterior in sequential task vs. oneshot task
Sequence {1,1,1,0}
p=0.5, g =0.6; Maj. type
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Figure 13: CDF: Posterior in sequential task vs. oneshot task
Sequence {1,1,0,1}
p=0.5, g =0.6; Min. type
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Cumulative probability

Figure 14: CDF: Posterior in sequential task vs. oneshot task
Sequence {1,1,1,0}
p=0.5, g =0.6; Min. type
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Prior sufficiency with respect to a sequence

Avg. posterior

Figure 15: Avg. report by task and time
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Avg. posterior

Figure 16: Avg. report by task and time
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Avg. posterior

Figure 17: Avg. report by task and time

Sequence: {1,1,1,0}

O Seq. task: uniform

B One. task: uniform
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Cumulative probability

Figure 18: CDF: Posterior in sequential task, by prior
Sequence {1,0,1,1} & {1,1,0,1}
q=0.8
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Cumulative probability

Figure 19: CDF: Posterior in sequential task, by prior

Sequence {1,1,1,0}

Posterior
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Cumulative probability

Figure 20: CDF: Posterior in sequential task, by prior
Sequence {1,0,1,1} & {1,1,0,1}
q=0.6
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Estimation of updating rules
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Fraction
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Figure 22: Observed data versus data simulated under Grether model
Treatment: p = 0.5,9 = 0.6
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Sources of prior sufficiency violations: aggregating signals

Cumulative probability

o {1,1}
o {0,1,1,1}

Figure 23: CDF: Posterior in sequential task
Sequences that reduce to two 1 signals

p =0.5, g =0.6; Maj. type
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Figure 24: Avg. posterior by time
Sequences with two 1 signals
p=0.5,g=0.6; Maj. type

Avg. posterior
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Sources of prior sufficiency violations: updating in the non-uniform

treatments

Figure 25: CDF: Posterior in sequential vs. one-shot task
Sequences {1,0,1,1} & {1,1,0,1}
p=0.6,9g=0.6

O Sequential task
O Oneshot task
+ Bayes

Cumulative probability

Mean seq. task — mean one. task = 0.056 (p = 0.000)
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Cumulative probability

Figure 26: CDF: Posterior in sequential vs. one-shot task
Sequences of length 3 with one vs. two 1 signals
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Cumulative probability

Figure 27: CDF: Posterior in sequential vs. one-shot task
Sequences of length 5 with two vs. three 1 signals
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Tables

Table 1: Treatments

Prior p Precision  Total # Partici- # Participants in
q pants Main Sample
1 5 .6 60 47
2 5 .8 60 48
3 .6 .6 60 39
4 8 .8 60 46
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Table 2: Sequences

(A)p=.5,9=.6 (B)p=.6,9=.6
t=1|t=2|t=3|t=4 t=1|t=2|t=3|t=4
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 0
1 0 0 1 0 0 1 1

C)p=549=.8 (D)p=.8,49=.8
t=1 t=2 =3 t=4 t=1 t=2 =3 t=4
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 0
1 0 0 1 0 0 1 1

63



Table 3: Match on modal bins for baseline models
Treatment: p = 0.5, =0.6

Both types Both types Maj. type Maj. type
Sequence baseline 1 wgt Dbaseline 2 wgt baseline 1 wgt  baseline 2 wgt

(1} 0.322 0.321 0.383 0.392
{1,0} 0.314 0.299 -0.194 0.090
(1,1) 0.134 0.138 -0.117 0.202
{0,1,1) 0.311 0.285 0.223 0.287
{1,0,1} 0.100 0.131 0.143 0.077
{1,1,0} 0.199 0.157 0.112 0.087
{1,1,1) 0.204 0.212 0.261 0.258
{1,0,1,1) 0.129 0.045 0.052 0.122
{1,1,0,1) 0.042 0.054 0.081 0.025
{1,1,1,0) 0.117 0.085 0.098 0.053
{0,1,1,0} 0.475 0.379 0.229 0.489
{1,1,0,0} 0.528 0.487 0.569 0.444

Notes: Each column corresponds to a sample and model. Each row shows the
difference between the fraction of observed data in the observed modal bin and

the fraction of simulated data in the observed modal bin.
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Table 4: Match on non-modal bins for baseline models
Treatment: p = 0.5, = 0.6

Both types Both types Maj. type Maj. type
Sequence baseline 1 wgt Dbaseline 2 wgt baseline 1 wgt  baseline 2 wgt

(1) 0.242 0.208 0.207 0.210
(1,0} 0.264 0.221 0.097 0.233
{1,1) 0.226 0.234 0.285 0.244
{0,1,1) 0.259 0.293 0.325 0.290
{1,0,1) 0.165 0.232 0.317 0.244
{1,1,0} 0.238 0.242 0.197 0.279
{1,1,1) 0.215 0.218 0.203 0.192
{1,0,1,1) 0.225 0.224 0.236 0.289
{1,1,0,1} 0.253 0.223 0.141 0.258
{1,1,1,0) 0.301 0.225 0.139 0.244
{0,1,1,0} 0.365 0.273 0.314 0.478
{1,1,0,0) 0.353 0.311 0.315 0.250

Notes: Each column corresponds to a sample and model. Each row shows the
absolute difference between the fraction of observed data and simulated data

in each non-modal bin, summed over bins.
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Table 5: Match on mode and non-modal bins for baseline
model with 1 vs 2 signal weights
Treatment: p = 0.5, = 0.6

Both types Maj. type

2-1 2-1 2-1 2-1
Sequence mode nonmode  mode nonmode
{1} -0.000 -0.067 0.009 0.006
{1,0} -0.016 -0.087 0.284 0.272
{1,1} 0.004 0.015 0.319 -0.083
{0,1,1} -0.025 0.069 0.064 -0.070
{1,0,1} 0.030 0.135 -0.066 -0.147
{1,1,0} -0.042 0.007 -0.025 0.164
{1,1,1} 0.008 0.007 -0.003 -0.023
{1,0,1,11  -0.084  -0.002 0.071 0.107
{1,1,0,1} 0.012 -0.061 -0.056 0.234
{1,1,1,0} -0.032 -0.151 -0.045 0.210
{0,1,1,0} -0.096 -0.183 0.259 0.327
{1,1,0,0} -0.041 -0.084 -0.125 -0.129

Notes: Each column shows the difference between the 2-
weight and 1-weight models. Gray cells are cases where

the 2-weight model performs better.
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Table 6: Sequences in non-uniform g = 0.6 treatment that are equivalent after inversion

Comp.

Sequences

20s,11

0,0,1}

10,21s

1,0,1}, {1,1,0}

30s,21s

31s,20s

{

{

{1,0,0,1,0}, {1,1,0,0,0}

{1,0,0,1,1}, {1,0,1,1,0}, {1,1,0,1,0}, {1,1,1,0,0}

Table 7: Sequences in non-uniform g = 0.8 treatment that are equivalent after inversion

Comp. Sequences

20s,11 {0,0,1}

10,21s {1,0,1},{1,1,0}

30s,11 {1,0,0,0}

10,31s {1,0,1,1},{1,1,0,1}, {1,1,1,0}

30s,21s {1,0,0,1,0}

31s,20s {1,0,1,1,0},{1,1,1,0,0}

40s,11 {1,0,0,0,0}

10,41s {1,0,1,1,1},{1,1,0,1,1},{1,1,1,0,1}, {1,1,1,1,0}
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Appendix

A Figures
B Tables

C Estimation of Grether models
C.1 Endogeneity of pooled OLS and instrumental variables . . . . .. ... ...

C.2 Models estimated with simulated maximum likelihood . . . . . . . ... ..
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A Figures

Figure A1l: Timeline of Study

Sequential Tasks

‘ Task 1 ‘_»‘ Task 2

. ‘ Task 3

_»‘ Task 4 ‘_»‘ Task 5

. ‘ Task 6

Practice Incentivized Incentivized Incentivized Incentivized Incentivized
Round 1 Round 2 Round 3 Round 4
Draw deck Draw card Draw card Draw card Draw card

Sequence of task . — —_ — —
with replacement with replacement with replacement with replacement with replacement

Report posterior Report posterior Report posterior Report posterior
Oneshot Tasks

Practice Incentivized Incentivized Incentivized Incentivized Incentivized

Task 1 . Task 2 . Task 3 . Task 4 . Task 5 . Task 6

Incentivized Incentivized Incentivized Incentivized Incentivized

Task 7 . Task 8 . Task 9 . Task 10 . Task 11

Round 1

Draw card
Draw deck )
Sequence of task . —_ with replacement
with replacement

Report posterior

for both possible cards

Short Additional Elicitations
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Order independence in the aggregate

Figure A2: Posterior after sequences with composition {0,1,1,1}, at subject level

p=0.5,9=0.6
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Mean {1,0,1,1} & {1,1,0,1} - mean {1,1,1,0} = -0.102 (p = 0.002). K-S test p = 0.024.
Subjects sorted in ascending order of report after {1,1,1,0}.
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Report after {1,1,1,0} - avg. report after {1,0,1,1} &{1,1,0,1}

Figure A3: Within subject order effectat t =4 vs. t =3
p=0.5,49=0.6

—— Line of best fit
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| Correlation coefficient: 0.715 (p = 0.000) |
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Prior sufficiency in the aggregate

Posterior

Figure A4: Average posterior after {0,1,1} & {1,0, 1}, at subject level

p=0.5,49=0.6
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Mean seq. task - mean one. task = 0.038 (p = 0.000)

Subjects sorted in ascending order of sequential report after {0,1,1} & {1,0,1}.
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Heterogeneity in violations: order independence

Figure A5: Posterior after sequences with composition {0,1,1}, at subject level

p=0.5,49=0.6
Min. type Maj. type
Mean difference = -0.253 (p = 0.000) Mean difference =-0.019 (p = 0.191)
{1,0,1}-{0,1,1}=-0.018 (p = 0.678) {1,0,1}-{0,1,1} = 0.005 (p = 0.744)
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Posterior

Figure A6: Posterior after sequences with composition {0,1,1,1}, at subject level

p=0.5,9=0.8
Min. type Maj. type
Mean difference = -0.569 (p = 0.000) Mean difference = -0.021 (p = 0.457)
{1,1,0,1}-{1,0,1,1} = 0.023 (p = 0.564) {1,1,0,1} - {1,0,1,1} = 0.002 (p = 0.913)
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Heterogeneity in violations: prior sufficiency

Figure A7: CDF: Posterior in sequential task vs. oneshot task
Sequence {0,1,1} & {1,0,1}
p =0.5, g =0.6; Maj. type
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Cumulative probability

Figure A8: CDF: Posterior in sequential task vs. oneshot task

Sequence {1,1,0}
p =0.5, ¢ = 0.6; Maj. type
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Figure A9: CDF: Posterior in sequential task - posterior in oneshot task, within subject
p =0.5, ¢ = 0.6; Maj. type
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Figure A10: CDF: Posterior in sequential task - posterior in oneshot task, within subject
p =0.5, ¢ = 0.6; Maj. type
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Prior sufficiency with respect to a sequence

Avg. posterior

Figure A11: Avg. report by task and time

Sequence: {0,1,1,0}

O Seq. task: uniform

B One. task: uniform @ Seq. task: non-unf.
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Figure A12: CDF: Posterior in sequential task, by prior
Sequence {1,0,1,1}
g = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st signal
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Figure A13: CDF: Posterior in sequential task, by prior
Sequence {1,1,0,1}
g = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st signal
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Figure A14: CDF: Posterior in sequential task, by prior
Sequence {1,1,1,0}
g = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st signal
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Figure A15: Avg. report by task and time
Sequence: {0,1,1,0}
q = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st signal
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Figure A16: Avg. report by task and time
Sequence: {1,1,0,0}
q = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st signal
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Cumulative probability

Figure A17: CDF: Posterior in sequential task, by prior
Sequence {1,0,1,1}
q=0.8
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Cumulative probability

Figure A18: CDF: Posterior in sequential task, by prior

Sequence {1,1,0,1}
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Cumulative probability

Figure A19: CDF: Posterior in sequential task, by prior

Sequence {1,1,0}

Posterior

87

- L J
1 ® Uniform, maj. L4
O Uniform, min. i
O Non-uniform 8
8|+ Bayes ;
Mean unf. — mean non-unf. = 0.011 (p = 0.682)
K-S:0.067
T
4 .8



Cumulative probability

Figure A20: CDF: Posterior in sequential task, by prior
Sequence {1,1,1,0}
q=0.6
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Sources of prior sufficiency violations: aggregating signals

Figure A21: CDF: Posterior in sequential task
Sequences that reduce to one 1 signal
p = 0.5, g = 0.6; Maj. type
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Cumulative probability

Figure A22: CDEF: Posterior in one-shot task
Sequences that reduce to two 1 signals

p =0.5, g =0.6; Maj. type
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Cumulative probability

Figure A23: CDF: Posterior in sequential task
Uninformative sequences
p =0.5, g =0.6; Maj. type
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Sources of prior sufficiency violations: updating in the non-uniform

treatments

Figure A24: CDF: Posterior in sequential vs. one-shot task
Sequences {1,0,1,1} & {1,1,0,1}
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Cumulative probability

Figure A25: CDEF: Posterior in sequential vs. one-shot task
Sequences {1,1,1,0}
p=0.6,9g=0.6

Posterior
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Cumulative probability

Figure A26: CDEF: Posterior in sequential vs. one-shot task
Sequences {1,1,1,0}
p=0.8,9=0.8
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Cumulative probability

Figure A27: CDEF: Posterior in sequential vs. one-shot task
Sequences of length 3 with one vs. two 1 signals

Posterior
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Cumulative probability

Figure A28: CDEF: Posterior in sequential vs. one-shot task
Sequences of length 3 with one vs. two 1 signals
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Cumulative probability

Figure A29: CDF: Posterior in sequential vs. one-shot task
Sequences {0,1,1} & {1,0,1}
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Cumulative probability

Figure A30: CDEF: Posterior in sequential vs. one-shot task
Sequences {0,1,1} & {1,0,1}
p=0.8,9=0.8
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Cumulative probability

Figure A31: CDF: Posterior in sequential vs. one-shot task
Sequences {1,1,0}
p=0.6,9g=0.6
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Cumulative probability

Figure A32: CDF: Posterior in sequential vs. one-shot task
Sequences {1,1,0}
p=0.8,9=0.8

Posterior
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Table A1l: Mean posterior by sequence:

p=.59=.6
s={0,1}
Sequence Mean posterior {1,0} {0,1,1,0}
(1,0} 0.459
{0,1,1,0) 0.465 0.006
{1,1,0,0} 0.446 -0.012 -0.018
s={1}
Sequence Mean posterior {1} {0,1,1} {1,0,1}
(1) 0.606
{0,1,1} 0.628 0.022%*
{1,0,1) 0.626 0.020 -0.002
{1,1,0} 0.538 -0.068*** -0.090%** -0.088***
s=(1,1}
Sequence Mean posterior {1,1} {1,0,1,1} {1,1,0,1}
(1,1} 0.677
{1,0,1,1) 0.716 0.039%*+
{1,1,0,1} 0.727 0.050*** 0.010
{1,1,1,0} 0.620 -0.057 -0.096*** -0.107%**
s=(1,1,1}

Sequence Mean posterior

(1,1,1) 0.767

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.
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Table A2: Mean posterior by sequence:

p=.549=.8
s={0,1}
Sequence Mean posterior {1,0}
{1,0} 0.435
{0,1,1,0} 0.463 0.028
s={1}
Sequence Mean posterior {1} {0,1,1} {1,0,1}
{1} 0.683
{0,1,1} 0.729 0.045%%
{1,0,1} 0.696 0.013 -0.032%
{1,1,0) 0.581 -0.103%%* -0.148%* -0.116%*
s={1,1}
Sequence Mean posterior {1,1} {1,0,1,1} {1,1,0,1}
{1,1} 0.767
{1,0,1,1) 0.871 0.104%+*
{1,1,0,1} 0.878 0.111*** 0.007
{1,1,1,0} 0.728 -0.038 -0.143%* -0.150%%*
s=(1,1,1)

Sequence Mean posterior

{1,1,1} 0.901

s={1,1,1,1}

Sequence Mean posterior

{1,1,1,1} 0.952

103

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.



Table A3: Mean posterior by sequence:
p =.5, 4 =.6; Maj. type

s={0,1}

Sequence Mean posterior {1,0} {0,1,1,0}
(1,0} 0.492

{0,1,1,0) 0.506 0.014

{1,1,0,0} 0.502 0.010 -0.005
s={1}

Sequence Mean posterior {1} {0,1,1} {1,0,1}
(1) 0.589

{0,1,1) 0.620 0.031%+*

{1,0,1} 0.624 0.036*** 0.005

{1,1,0} 0.603 0.014 -0.017 -0.021
s=(1,1}

Sequence Mean posterior {1,1} {1,0,1,1} {1,1,0,1}
(1,1} 0.667

{1,0,1,1} 0.720 0.053**

{1,1,0,1} 0.746 0.079*** 0.027

{1,1,1,0} 0.750 0.083*** 0.030 0.004
s=(1,1,1}

Sequence Mean posterior

(1,1,1) 0.784

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.
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Table A4: Mean posterior by sequence:
p =.5,q=.8; Maj. type

s={0,1}

Sequence Mean posterior 1,0
q p

{1,0} 0.483

{0,1,1,0} 0.518 0.035

s={1}

Sequence Mean posterior 1 0,1,1 1,0,1
q p

{1} 0.660

{0,1,1} 0.712 0.052***

{1,0,1} 0.677 0.017 -0.036*

{1,1,0} 0.664 0.004 -0.048* -0.012

s={1,1}

Sequence Mean posterior 1,1 1,0,1,1 1,1,0,1
q p

{1,1} 0.762

{1,0,1,1} 0.890 0.128***

{1,1,0,1} 0.893 0.131*** 0.002

{1,1,1,0} 0.871 0.109%** -0.019 -0.022

s={1,1,1}

Sequence Mean posterior

{1,1,1} 0.927

s={1,1,1,1}

Sequence Mean posterior

(1,1,1,1) 0.973

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.

105



Table A5: Mean posterior by sequence:
p =.5,g=.6; Min. type

s={0,1}

Sequence Mean posterior {1,0} {0,1,1,0}
(1,0} 0.381

{0,1,1,0) 0.367 -0.014

{1,1,0,0} 0.316 -0.065 -0.051
s={1}

Sequence Mean posterior {1} {0,1,1} {1,0,1}
{1} 0.647

{0,1,1) 0.648 0.001

{1,0,1) 0.630 -0.017 -0.018

{1,1,0} 0.386 -0.261%** -0.262%** -0.244%**
s=(1,1}

Sequence Mean posterior {1,1} {1,0,1,1} {1,1,0,1}
(1,1} 0.701

{1,0,1,1} 0.708 0.007

{1,1,0,1} 0.680 -0.021 -0.028

{1,1,1,0} 0.313 -0.388%*** -0.395%** -0.367%**
s=(1,1,1}

Sequence Mean posterior

(1,1,1) 0.726

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.
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Table A6: Mean posterior by sequence:
p =.5,4=.8; Min. type

s={0,1}

Sequence Mean posterior {1,0}

{1,0} 0.272

{0,1,1,0} 0.279 0.007

s={1}

Sequence Mean posterior {1} {0,1,1} {1,0,1}
{1} 0.762

{0,1,1} 0.783 0.020

{1,0,1} 0.762 -0.001 -0.021

{1,1,0} 0.299 -0.463%** -0.484** -0.463%**
s={1,1}

Sequence Mean posterior {1,1} {1,0,1,1} {1,1,0,1}
{1,1} 0.783

{1,0,1,1} 0.806 0.023

{1,1,0,1} 0.829 0.046 0.023

{1,1,1,0} 0.249 -0.534%** -0.557*** -0.580%**
s=(1,1,1)

Sequence Mean posterior

{1,1,1} 0.813

s={1,1,1,1}

Sequence Mean posterior

{1,1,1,1} 0.882

Notes: The first column lists the average posterior report for the sequence in the row. The re-
maining columns list the difference between the average report for the sequence in the row and
the average report for the sequence in the column, with stars indicating significance: *** p<0.01,
** p<0.05, * p<0.10. Each panel contains all sequences that reduce to the specified number of 0
signals and 1 signals. Standard errors are clustered at the individual level.

107



Table A7: Mean posterior report
q=0.6

Seq. task One. task Seq. Non-unf —

Signal composition Non-unf. Non-unf. QOne. Non-unf.

{1,1} 0.659 0.000 0.659
{0,1,1} 0.568 0.554 0.013
{0,0,1,1} 0.466 0.490 -0.023*
{0,1,1,1} 0.658 0.619 0.039*
N Participants 39 39 39

N Observations 468 351 351

Notes: Columns 1 and 2 list the mean posterior report for the treat-
ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A8: Mean posterior report
q=0.8

Seq. task One. task Seq. Non-unf —

Signal composition Non-unf. Non-unf. QOne. Non-unf.

{1,1} 0.809 0.000 0.809
{0,1,1} 0.670 0.617 0.053*
{0,0,1,1} 0.472 0.390 0.083"
{0,1,1,1} 0.784 0.703 0.080™
N Participants 46 46 46
N Observations 437 299 299

Notes: Columns 1 and 2 list the mean posterior report for the treat-
ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A9: Mean posterior report

q=0.6

Sequence Seq. task One. task Seq. Non-unf —

Non-unf. Non-unf. One. Non-unf.
{1,1) 0.659 0.000 0.659**
{0,1,1} & {1,0,1} 0.608 0.562 0.045"*
{1,0,1,1} & {1,1,0,1}  0.683 0.627 0.056"*
{1,1,0} 0.527 0.546 -0.019
{1,1,1} 0.731 0.696 0.035**
{1,1,1,0} 0.609 0.603 0.006
{0,0,0,1,1} 0.710 0.603 0.107**
{0,0,1,1,1} 0.531 0.569 -0.038™
N Participants 39 39 39
N Observations 565 448 448

Notes: Columns 1 and 2 list the mean posterior report for the treat-

ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A10: Mean posterior report

q=0.8

Sequence Seq. task One. task Seq. Non-unf —

Non-unf. Non-unf. One. Non-unf.
{1,1} 0.809 0.000 0.809"*
{0,1,1} & {1,0,1) 0.691 0.679 0.012
{1,0,1,1} & {1,1,0,1}  0.826 0.776 0.050™"
{1,1,0) 0.626 0.492 0.135"
{1,1,1) 0.868 0.823 0.046*
{0,1,1,1) 0.755 0.708 0.046
{1,1,1,0} 0.699 0.558 0.141**
{1,1,1,1} 0.922 0.849 0.073"*
{0,0,0,0,1} 0.911 0.834 0.077*
{0,0,0,1,1} 0.784 0.663 0.121*
{0,0,1,1,1} 0.585 0.580 0.004
{0,1,1,1,1} 0.892 0.842 0.049**
N Participants 46 46 46
N Observations 759 621 621

Notes: Columns 1 and 2 list the mean posterior report for the treat-

ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A11: Mean posterior report
2 states, g = 0.8, restrict to obs. from 2 state uniform
with exact match to oneshot

Seq. task One. task Seq. Non-unf —

Sequence Non-unf. Non-unf. One. Non-unf.
{1,1} 0.809 0.000 0.809™*
{0,1,1} & {1,0,1} 0.691 0.679 0.012
{1,0,1,1} & {1,1,0,1}  0.826 0.776 0.050™
{1,1,0} 0.626 0.492 0.135™
{1,1,1} 0.868 0.823 0.046™
{0,1,1,1} 0.755 0.708 0.046
{1,1,1,0} 0.699 0.558 0.141*
(1,1,1,1} 0.922 0.849 0.073**
{0,0,0,0,1} 0.911 0.834 0.077*
{0,0,0,1,1} 0.784 0.663 0.121*
{0,0,1,1,1} 0.585 0.580 0.004
{0,1,1,1,1} 0.892 0.842 0.049**
N Participants 46 46 46
N Observations 759 621 621

Notes: Columns 1 and 2 list the mean posterior report for the treat-

ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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g = 0.8, restrict to obs. where prior less than 1

Table A12: Mean posterior report

Sequence Seq. task One. task Seq. task Seq. Unf — Seq. Unf —
Unf. Unf.  Non-unf. One. Unf. Seq. Non-unf.
{1,0} 0.435 0.458 0.521 -0.023 -0.086%"
{1,1} 0.767 0.772 0.809 -0.006 -0.042%
{0,1,1} & {1,0,1} 0.712 0.671 0.691 0.041** 0.021
{1,0,1,1} & {1,1,0,1}  0.875 0.738 0.826 0.136™ 0.049 %
{1,1,0} 0.581 0.506 0.626 0.075" -0.046™"
{1,1,1} 0.903 0.838 0.868 0.065™" 0.035*%
{1,1,1,0} 0.649 0.539 0.699 0.109" -0.050™"
N Participants 48 48 46 48 46
N Observations 606 606 598 606 585

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond to p-
value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq. Non-unf.)
Standard errors are clustered at the individual level.
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Table A13: Mean posterior report
2 states, g = 0.6, restrict to obs. from 2 state uniform
with exact match to oneshot

Seq. task One. task Seq. Non-unf —

Signal composition Non-unf. Non-unf. QOne. Non-unf.

{1,1} 0.659 0.000 0.659
{0,1,1} 0.568 0.554 0.013
{0,0,1,1} 0.466 0.490 -0.023*
{0,1,1,1} 0.658 0.619 0.039™
N Participants 39 39 39

N Observations 468 351 351

Notes: Columns 1 and 2 list the mean posterior report for the treat-
ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A14: Mean posterior report
2 states, g = 0.8, restrict to obs. from 2 state uniform
with exact match to oneshot

Seq. task One. task Seq. Non-unf —

Signal composition Non-unf. Non-unf. QOne. Non-unf.

{1,1} 0.809 0.000 0.809
{0,1,1} 0.670 0.617 0.053 "
{0,0,1,1} 0.472 0.390 0.083"
{0,1,1,1} 0.784 0.703 0.080™
N Participants 46 46 46
N Observations 437 299 299

Notes: Columns 1 and 2 list the mean posterior report for the treat-
ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A15: Mean posterior report
2 states, g = 0.6, restrict to obs. from 2 state uniform
with exact match to oneshot

Seq. task One. task Seq. Non-unf —

Sequence Non-unf. Non-unf. One. Non-unf.
{1,1} 0.659 0.000 0.659
{0,1,1} & {1,0,1} 0.608 0.562 0.045
{1,0,1,1} & {1,1,0,1}  0.683 0.627 0.056
{1,1,0} 0.527 0.546 -0.019
{1,1,1} 0.731 0.696 0.035™
{1,1,1,0} 0.609 0.603 0.006
{0,0,0,1,1} 0.710 0.603 0.107
{0,0,1,1,1} 0.531 0.569 -0.038*
N Participants 39 39 39
N Observations 565 448 448

Notes: Columns 1 and 2 list the mean posterior report for the treat-
ment in the column and sequence in the row. Column 3 lists the
difference between the indicated treatments, with stars indicating
significance: *** p<0.01, ** p<0.05, * p<0.10. Standard errors are
clustered at the individual level.
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Table A16: Mean posterior report

q=0.6
Maj. type

Sequence Seq. task One. task Seq. Unf —

Unf. Unf. One. Unf.
{0,1} 0.488 0.489 -0.001
{1,0} 0.495 0.516 -0.021
{1,1} 0.667 0.635 0.031*
{0,1,1} 0.620 0.592 0.027*
{1,0,1} 0.624 0.568 0.057
{1,1,0} 0.603 0.516 0.087
{1,1,1} 0.784 0.728 0.056 "
{0,1,1,0} 0.494 0.480 0.014
{1,0,1,1} 0.720 0.678 0.042*
{1,1,0,0) 0.502 0.514 -0.012
{1,1,0,1) 0.746 0.647 0.100**
{1,1,1,0} 0.750 0.619 0.131*
N Participants 33 33 33
N Observations 495 495 495

Notes: Columns 1 and 2 list the mean posterior report
for the treatment in the column and sequence in the row.
Column 3 lists the difference between the indicated treat-
ments, with stars indicating significance: *** p<0.01, **
p<0.05, * p<0.10. Standard errors are clustered at the in-
dividual level.
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Table A17: Mean posterior report

q=0.6
Maj. type
Seq. task One. task Seq. Unf —
Sequence Unf. Unf. One. Unf.
(1,0} 0.504 0.513 -0.010
(1,1) 0.667 0.635 0.031*
{0,1,1} & {1,0,1) 0.622 0.580 0.042*

{1,0,1,1} & {1,1,0,1}  0.733 0.662 0.071**

{1,1,0} 0.603 0.516 0.087
{1,1,1} 0.784 0.728 0.056™
{1,1,1,0} 0.750 0.619 0.131**
N Participants 33 33 33
N Observations 429 429 429

Notes: Columns 1 and 2 list the mean posterior report for the

treatment in the column and sequence in the row. Column
3 lists the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10.
Standard errors are clustered at the individual level.
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Table A18: Mean posterior report

q=0.6

Min. type
Sequence Seq. task One. task Seq. Unf —

Unf. Unf. One. Unf.
{0,1} 0.621 0.505 0.115™
{1,0) 0.383 0.458 -0.074
{1,1} 0.701 0.708 -0.007
{0,1,1} 0.648 0.664 -0.016
{1,0,1} 0.630 0.555 0.075
{1,1,0} 0.386 0.534 -0.148™
{1,1,1} 0.726 0.753 -0.027
{0,1,1,0} 0.633 0.494 0.139"
{1,0,1,1} 0.708 0.713 -0.005
{1,1,0,0} 0.316 0.320 -0.004
{1,1,0,1} 0.680 0.546 0.134™
{1,1,1,0} 0.313 0.507 -0.194™
N Participants 14 14 14
N Observations 210 210 210

Notes: Columns 1 and 2 list the mean posterior report
for the treatment in the column and sequence in the row.
Column 3 lists the difference between the indicated treat-
ments, with stars indicating significance: *** p<0.01, **
p<0.05, * p<0.10. Standard errors are clustered at the in-
dividual level.
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Table A19: Mean posterior report

qg=0.8

Maj. type
Sequence Seq. task One. task Seq. Unf —

Unf. Unf.  One. Unf.
(1,0} 0.529 0.534 -0.005
(1,1} 0.762 0.757 0.005
{0,1,1} & {1,0,1} 0.695 0.656 0.039*
{1,0,1,1} & {1,1,0,1}  0.891 0.760 0.132*
{1,1,0) 0.664 0.527 0.137*
(1,1,1) 0.927 0.829 0.098*
{1,1,1,0} 0.871 0.599 0.272**
N Participants 37 37 37
N Observations 481 481 481

Notes: Columns 1 and 2 list the mean posterior report for the

treatment in the column and sequence in the row. Column
3 lists the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10.
Standard errors are clustered at the individual level.
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Table A20: Mean posterior report
q = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after 1st
signal

Seq. task One. task Seq. task Seq. Unf — Seq. Unf —

Sequence Unf. Unf.  Non-unf. One. Unf. Seq. Non-unf.
{1,0} 0.482 0.503 0.472 -0.021 0.010"
{1,1} 0.683 0.655 0.659 0.028" 0.024"
{0,1,1} & {1,0,1) 0.623 0.598 0.608 0.026 0.015
{1,0,1,1) & {1,1,0,1}  0.732 0.664 0.683 0.068** 0.049**
{1,1,0} 0.577 0.533 0.527 0.044 0.049"
{1,1,1} 0.790 0.750 0.731 0.040™ 0.059™"
{1,1,1,0} 0.702 0.623 0.609 0.079* 0.093™

N Participants 39 39 39 39 39

N Observations 363 363 507 363 363

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond to p-
value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq. Non-unf.)
Standard errors are clustered at the individual level.
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Table A21: Mean posterior report
q = 0.6, restrict to obs. from 2 state uniform with Bayesian posterior after

1st signal

Sequence Seq. task One. task Seq. task Seq. Unf — Seq. Unf —

Unf. Unf.  Non-unf. One. Unf. Seq. Non-unf.
{0,1} 0.529 0.507 0.000 0.022 0.529%%
{1,0} 0.498 0.517 0.472 -0.019 0.026"
{1,1} 0.683 0.655 0.659 0.028" 0.024*
{0,1,1} 0.624 0.612 0.621 0.012 0.003
{1,0,1} 0.622 0.581 0.595 0.041 0.027*
{1,1,0} 0.577 0.533 0.527 0.044 0.049"
(1,1,1) 0.790 0.750 0.731 0.040** 0.059**
{0,1,1,0} 0.521 0.486 0.507 0.035 0.014
{1,0,1,1) 0.739 0.692 0.684 0.047 0.055"*
{1,1,0,0} 0.463 0.497 0.439 -0.034 0.024"
{1,1,0,1} 0.725 0.632 0.682 0.093** 0.043:
{1,1,1,0} 0.702 0.623 0.609 0.079* 0.093*
N Participants 39 39 39 39 39
N Observations 426 426 585 426 392

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments,
with stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond
to p-value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq.
Non-unf.) Standard errors are clustered at the individual level.
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Table A22: Mean posterior report

q=0.8

Sequence Seq. task One. task Seq. task Seq. Unf — Seq. Unf —

Unf. Unf.  Non-unf. One. Unf. Seq. Non-unf.
{1,0} 0.509 0.535 0.521 -0.025 -0.012
{1,1} 0.767 0.772 0.809 -0.006 -0.042%
{0,1,1} & {1,0,1} 0.712 0.671 0.691 0.041™* 0.021
{1,0,1,1} & {1,1,0,1}  0.875 0.738 0.826 0.136™ 0.0497%
{1,1,0} 0.581 0.506 0.626 0.075* -0.046™"
{1,1,1} 0.901 0.836 0.868 0.065™" 0.033:
{1,1,1,0} 0.728 0.564 0.699 0.164** 0.029*
N Participants 48 48 46 48 46
N Observations 624 624 598 624 598

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond to p-
value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq. Non-unf.)
Standard errors are clustered at the individual level.
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Table A23: Mean posterior report

q=0.6

Sequence Seq. task One. task Seq. task Seq. Unf — Seq. Unf —

Unf. Unf.  Non-unf. One. Unf. Seq. Non-unf.
{0,1} 0.453 0.491 0.000 -0.038™ 0.453 %
{1,0} 0.465 0.500 0.472 -0.035 -0.007
{1,1} 0.677 0.657 0.659 0.020 0.018
{0,1,1} 0.628 0.614 0.621 0.014 0.007
{1,0,1} 0.626 0.564 0.595 0.062™ 0.031"
{1,1,0} 0.538 0.521 0.527 0.017 0.011
(1,1,1) 0.767 0.735 0.731 0.031* 0.036"
{0,1,1,0} 0.535 0.484 0.507 0.051" 0.028
{1,0,1,1} 0.716 0.688 0.684 0.028 0.032
{1,1,0,0} 0.446 0.456 0.439 -0.010 0.007
{1,1,0,1) 0.727 0.617 0.682 0.110* 0.045%.
{1,1,1,0} 0.620 0.586 0.609 0.034 0.011
N Participants 47 47 39 47 39
N Observations 705 705 585 705 551

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments,
with stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond
to p-value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq.
Non-unf.) Standard errors are clustered at the individual level.
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Table A24: Mean posterior report

q=0.6
Sequence Sec{:lj. task One. task Seq. task Seq. Unf — Seq. Unf —
nf. Unf.  Non-unf. One. Unf. Seq. Non-unf.

{1,0} 0.508 0.505 0.472 0.003 0.037%
{1,1} 0.677 0.657 0.659 0.020 0.018
{0,1,1} & {1,0,1} 0.627 0.589 0.608 0.038** 0.019
{1,0,1,1) & {1,1,0,1}  0.721 0.653 0.683 0.069 0.039%
{1,1,0} 0.538 0.521 0.527 0.017 0.011
{1,1,1} 0.767 0.735 0.731 0.031™ 0.036™
{1,1,1,0} 0.620 0.586 0.609 0.034 0.011

N Participants 47 47 39 47 39

N Observations 611 611 507 611 507

Notes: Columns 1-3 list the mean posterior report for the treatment in the column and
sequence in the row. Columns 4-6 list the difference between the indicated treatments, with
stars indicating significance: *** p<0.01, ** p<0.05, * p<0.10. Red stars correspond to p-
value for difference-in-difference of (Seq. Unf. - One. Unf.) and (Seq Unf. - Seq. Non-unf.)
Standard errors are clustered at the individual level.
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Table A25: Signal
sequences by
treatment

Order1 Order 2
p=0.54=0.6

{1,1,1,1} {0,0,0,0)
{0,0,1,1} {1,0,0,1}
{0,1,0,0} {1,1,1,0)
{1,1,0,1} {0,0,1,0}
{ }
{ )

0,1,1,0} {1,0,1,1
0,0,0,1} {1,1,0,0

p=0.5,9=
0,0,0}
)

{0, {1,
{0,1,0,0} {1,
{1,1,0,1} {1,
{0,1,1,0} {0,
{0,0,0,1} {
{1,1,1,1} {

o|lororrPrrP|lo

Notes: Each panel
shows the signal se-
quences for each or-
der in the indicated
treatment.
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C Estimation of Grether models

C.1 Endogeneity of pooled OLS and instrumental variables
Suppose that we estimate the following regression, pooling over i and ¢:
T = Bidip +0iT -1 + Uiy

where 7t;, is the log posterior odds, 7t;;_; is the log prior odds, A;; is the log-likelihood
ratio, and u;; is an i.i.d. error term. Define 6; = [9; ;] and X;; = [m;; Aj;]’. Denote the
OLS estimate 0.

s
Il
Mz
1~
2
>
Mz
™1~
>

N T 1IN T N T
7 7
=20 XaXi| | D) XaXi@i+) ) Xiw
i=1 t=1 i=1 t=1 i=1 t=1
A B C

Given the assumption that u;; is uncorrelated with X;;, C is 0 in expectation. Since 7t;;
is correlated with 6;, we cannot pull K out. As a result, A and K do not cancel, and so
OLS does not recover IE(9;) or E(S;).

Now, suppose that we instrument 7t;; with some variable z;;. Denote the first stage
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predicted value 7t;;. Then we have:

Assuming the instrument is correlated with 7;;, then it must be correlated with o; or
Bi, as it cannot be correlated with s;;. Thus, K does not factor out. This means that again

we do not recover [E(0;) or E(f;).

C.2 Models estimated with simulated maximum likelihood

I estimate models with one signal weight, and two signals weights where conflicting and

non-conflicting signals each have their own weight.

C.2.1 Models with one signal weight 5; and prior weight 6;

1. Baseline model
T = BiAir + 0iT0 41 + Uy (6)

2. Mean shift §; for each t > 1
Tip = (Bi + Be) Air + 0T 11 + Ui (7)
3. Time-specific variance for 3; for each t > 1

The time specific variance is defined as follows. For each time, we define a parameter
K; that scales the covariance matrix of the parameter vector 6;. I will drop the f to reduce
notation. Let:

Bi OB, 08,5
o.="'|,  covey=| " "

51' Oﬁiréi (OF Y

1

Let the scaling matrix be diagonal:

Ve 0 Vk B;
C= , yi:CQi: .

0 1 5
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Then
Cov(y;) = C Cov(6;)C
\/? Ol| op g5 ||VE O
i 0 1 0p.5; O, 0 1
Ko VKOp,

\/%Gﬁi'éi Oy,

In other words, this scales the variance by x and scales the covariance in column j and

row k by C;Cy in column j and row k. The model estimated is:
Tip = Bidie +0iT0i 1 + Uj (8)
4. Mean shift §; for each t > 1; time-specific variance for f8; for each t > 1
T = (Bi+ Pe)Air + 0iTti p1 + Uiy (9)

C.2.2 Models with two signal weights §;, and ;. and prior weight 9,

Each model below is estimated with two definitions of a conflicting signal:

1. A conflicting signal is any signal where the correct update is in the opposite di-
rection of the previous correct update (e.g., in {0,1,1,0}, the first 1 and final 0 are

conflicting).

2. A conflicting signal is the first signal in the sequence that conflicts (e.g.,in {0,1, 1,0},
the first 1 is conflicting).

1. Baseline model with g;,, ;., and 9;
Tt = PinAiy + BicAf; +0iT 11 + Uy (10)
2. Mean shift ; for each t > 1

it = (Bin + Br) Al + (Bic + Br)Aj, + 0iTi 1 + Uiy (11)
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3. Mean shifts 8;, and ;. for each t > 1

it = (Bin + Brn) A%y + (Bic + Bre) G + 070 41 + Ujy

4. Time-specific variance for ;, and §;. for each t > 1

The time specific variance is defined in the same way as the 1 weight case. For each

time, we define a parameter «; that scales the covariance matrix of the parameter vector

0;. I will drop the t to reduce notation. Let:

Then:
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The model is estimated as:
Tt = BinAjy + BicAf; + 0Tt 1 + Uy (13)
5. Mean shift §, for each t > 1; time-specific variance for 3;, and f3;. for each t > 1
Tt = (Bin + B)Ajr + (Bic + B)Aj +0iTi 11 + i (14)

6. Mean shifts 8;, and B;. for each t > 1; time-specific variance for f3;, and ;. for each
t>1

i = (Bin + ﬁtn)/\?t +(Bic + ﬁtc)/\ft + 0T p1 + Uy (15)
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