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Abstract

We use French matched employer-employee data to estimate a structural model of wage
dynamics. Adding further frictions to the sequential auction model, we find that job-
to-job mobility is predominantly inefficient. That is moves are not purely in response
to a financial surplus. Allowing for between job-to-job moves that should have occurred
(higher surplus with an external firm) but did not, and moves that did occur but should
not have (lower surplus in destination firm), we estimate that the proportion of employ-
ees whose last state change is inefficient is about 35%. We also find that there is strong
worker-firm sorting, but this does not show up in wages. We investigate in detail the role
of the dynamics of match-specific wage shocks and examine the decomposition of the
variance of wages and of the match surplus. We find that the match output, reflecting
firm effects and worker-firm complementarities, is small while the match-specific effect
dominates.
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1 Introduction

Structural search models provide an elegant framework for the analysis of job-to-job transi-
tions and wage dynamics. For example, the sequential auction model of Postel-Vinay and
Robin (2002), which we use to cast our analysis, is a well developed model for individual
wage dynamics and employment mobility that allows for both worker and firm heterogeneity,
transitions in and out of employment, and transitions between employers. In this equilibrium
search model, wages and mobility are determined by Bertrand competition between compet-
ing employers. If the incumbent firm wins the auction the wage may rise. If the “poaching”
firm wins, the worker moves, generally also with a wage rise. However, despite many exten-
sions,1 the model implies restrictions on the path dependence of wages that lead to empirical
predictions that are at odds with some observed patterns of wage dynamics and job-to-job
mobility. In particular, the model does not allow for substantial wage cuts when employees
move between jobs. However, as Jolivet, Postel-Vinay, and Robin (2006) and Tjaden and
Wellschmied (2014) note, job-to-job transitions of employees are often observed with signif-
icant wage cuts. There is also considerable empirical evidence that mobility costs can deter
workers from accepting jobs with better pay (see Cruz, Milet, Olarreaga, and Solleder, 2024,
for a recent reference), although mid-career change can lead to higher employment at older
age (OECD, 2024). We also find such wage cuts in our analysis of French administrative
data, and the path of transitions with firm tenure suggest that some workers remain with an
employer even though it appears that better offers are available elsewhere.

By comparison, statistical models of panel data earnings dynamics impose few prior re-
strictions on the dynamics. Most models are flexible dynamic factor models with a worker
fixed effect and linear permanent and transitory components (see Moffitt and Gottschalk,
2002, for example). Some specifications assume non linear dynamics. Meghir and Pistaferri
(2004) is an early example featuring ARCH innovation errors. Recent specifications allow
for more general nonlinear persistence, pointing to asymmetric shocks where the sign and
size of earnings shocks are associated with different persistence (see Arellano, Blundell, and
Bonhomme, 2017). These models effectively allow a reset in path dependency of the dynamic
earnings process when unusual shocks occur. However, they are not able to assess the struc-
tural determinants of firm-to-firm transitions and wage dynamics.2 In particular, they are

1More flexible rents (Dey and Flinn, 2005, Cahuc, Postel-Vinay, and Robin, 2006); richer wage dynamics
(piece rate wage bargaining in Bagger, Fontaine, Postel-Vinay, and Robin, 2014; productivity shocks in Lise,
Meghir, and Robin, 2016); sorting (Lise, Meghir, and Robin, 2016, Lise and Robin, 2017, Bagger and Lentz,
2019, Lamadon, Lise, Meghir, and Robin, 2024); large firms (Bilal, Engbom, Mongey, and Violante, 2022);
match-specific heterogeneity (Taber and Vejlin, 2020); multi-dimensional heterogeneity (Lise and Postel-
Vinay, 2020, Lindenlaub and Postel-Vinay, 2023); amenities and mobility costs (Lamadon, Lise, Meghir, and
Robin, 2024).

2Typically nonlinear panel data models do not distinguish firm-to-firm moves (quits or displacements),
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silent on the extent to which job-to-job moves are efficient. That is whether moves occur in
response to financial surplus.

The usual way of explaining that many job-to-job moves are not responding purely to
financial surplus is to incorporate extra adjustment costs into the transition model (see e.g.
Lamadon, Lise, Meghir, and Robin, 2024, Sorkin, 2018, and Lentz, Piyapromdee, and Robin,
2023). These transaction costs involve a reset in the path dependency of earnings which
is empirically useful.3 The problem with amenities or mobility costs, as with measurement
errors, is that they are not directly observables (at least not in totality). A large number
of papers thus use indirect inference or simulated moment estimation to estimate structural
models with many latent variables. But indirect inference has the particular disadvantage of
having to choose a tractable auxiliary model. This usually involves some arbitrariness and it
is generally difficult, if not impossible, to show that the mapping from structural to auxiliary
parameters is injective.

Hagedorn, Law, and Manovskii (2017) were the first to study and prove identification of
a search-matching model with no search on the job from auxiliary parameters. Recently,
Lamadon, Lise, Meghir, and Robin (2024) use the finite mixture model of Bonhomme,
Lamadon, and Manresa (2019) to construct the auxiliary model, and they show identification
of a sophisticated sequential auction model with discrete types and a parametric distribution
of mobility costs/amenities by the reduced form. The finite mixture is however a rather
coarse approximation, with a small number of worker and firm types, of what must be the
true heterogeneity distributions.

Our first contribution in this paper is to propose a tractable equilibrium framework for
individual wage dynamics and employment mobility that can explain these key dynamic
features of the data while providing sufficient structure to explore the mechanisms underly-
ing firm and worker behavior. Specifically, we shall assume an inefficient sequential auction
mechanism where the auction can be won by the second bidder with some positive proba-
bility (to be estimated). Whether a worker moves to a dominated poacher — we call this a
displacement — or stays with a dominated incumbent may reflect the presence of amenities
or mobility costs that we do not model directly. This innovation will allow us to use max-
imum likelihood for estimation and to model worker and firm heterogeneity as continuous

even though there is evidence that persistent shocks load heavily on firm-to-firm moves (see Altonji, Smith Jr.,
and Vidangos, 2013). They also typically do not examine entrants or exits in any systematic way. Important
exceptions are Altonji, Smith Jr., and Vidangos (2013) and Taber and Vejlin (2020) that allow for a compre-
hensive set of moves; the latter using a Roy model to show the importance of non-pecuniary aspects of jobs,
finding that one-third of all choices between jobs would have resulted in a different outcome if the worker
only cared about wages.

3See Di Addario, Kline, Saggio, and Søvsten (2023) for recent evidence that mobility wages are less
dependent on past firm type than predicted by the sequential auction model.
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distributions.
A second feature we add to the search-matching framework is one that has been un-

derstudied. The widespread availability of matched employer-employee data in the last 25
years, has rendered possible the estimation of both worker and employer effects on wages.4

The contribution of worker heterogeneity to the total wage variance is usually found to be
large (from 50% up to 75%). The firm contribution is found to be small, as is that of the
covariance between worker and firm effects. Match-specific shocks to productivity, when es-
timated (rarely), are comparable in magnitude to the firm effects.5 However, this regression
framework tells us nothing about firm-to-firm dynamics. Recently, Bonhomme, Lamadon,
and Manresa (2019) and Abowd, McKinney, and Schmutte (2019) have proposed a dynamic
model of both wages and job mobility with discrete worker and firm heterogeneity. They
confirm the previous results and also find evidence of a partial disconnection between job
preferences and wages.6 Overall, a new understanding emerges that sorting is mainly driven
either by exogenous market segmentation, or by additional frictions such as mobility costs
and amenities that shift job preferences away from pure financial rationality.

In this paper, we also assume that workers sample firm types conditional on their own
type (market segmentation). Moreover, anticipating that the match surplus determining job
preference may not be the product of worker and firm type complementarities, we add to
it an idiosyncratic random match effect. We discuss why we believe that we can separately
identify market segmentation, Beckerian complementarities, an idiosyncratic match effect
and an inefficient sequential auction mechanism.

That is a lot to put into one model. We have therefore decided to give up on something
that we consider to be less essential, namely forward-looking behavior. The model in this
paper is a static approximation to the true forward-looking model. In the absence of invest-
ment decisions, this should not be a major limitation. We will lose the prediction of the
Postel-Vinay-Robin model that workers are willing to accept a lower wage in a good match

4See Abowd, Kramarz, and Margolis (1999), Abowd, Creecy, and Kramarz (2002), Andrews, Gill, Schank,
and Upward (2008), Gruetter and Lalive (2009), Iranzo, Schivardi, and Tosetti (2008), Abowd, Stephens,
Vilhuber, Andersson, McKinney, Roemer, and Woodcock (2009), Card, Heining, and Kline (2013), Woodcock
(2015), de Melo (2018), Song, Price, Guvenen, Bloom, and von Wachter (2018), Kline, Saggio, and Solvsten
(2020), Babet, Godechot, and Palladino (2022), Azkarate-Askasua and Zerecero (2023). The fixed effects are
estimated using OLS. Second-order bias corrections were developed by Andrews, Gill, Schank, and Upward
(2008), Kline, Saggio, and Solvsten (2020) and Azkarate-Askasua and Zerecero (2023).

5See Sørensen and Vejlin (2011), Sørensen and Vejlin (2013), Abowd, McKinney, and Schmutte (2019),
Taber and Vejlin (2020) and Jinkins and Morin (2018). Sørensen and Vejlin (2011) and Jinkins and Morin
(2018) measure the presence of worker and firm effects in an equation for worker wage growth, hence implying
match effects in level wages.

6See also Sorkin (2018) and Lentz, Piyapromdee, and Robin (2023). The latter build on Bonhomme et
al. by adding structure to the employment transition probabilities. They separate the chance of receiving an
offer from a specific firm type from the choice of accepting it.
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today in exchange of better future prospects. But this effect has not been found sufficient to
explains the amount of wage cuts experienced by workers when they move between firms.

Under these assumptions, and further parametric restrictions, we show that a worker’s
log wage is the sum of a reservation log wage and a worker surplus. The reservation log wage
is the sum of an experience effect — we allow workers to be born, age and retire — and
worker innate ability (worker heterogeneity). The match surplus is the sum of a function
of worker ability and firm technology (firm heterogeneity) and a match-specific component.
The worker surplus is a fraction of the match surplus that evolves stochastically over time as
a result of match draws.

As we have already mentioned, we will model unobserved worker and firm heterogeneity as
two continuous latent variables, which is consistent with theoretical search-matching models.
We will also use Maximum Likelihood, as in Bonhomme, Lamadon, and Manresa (2019) and
Lentz, Piyapromdee, and Robin (2023). Bonhomme et al. develop a two-stage estimation
procedure. In the first stage, they classify firms using k-means clustering based on firm-level
wage distributions. In the second stage, they maximize the observed worker log-likelihood
given firm clusters using the EM algorithm. Lentz et al. iteratively classify firms based on
the expected log-likelihood after convergence of the worker EM stage. In this paper, we do
something similar. In a way that is reminiscent of the Krusell-Smith model, we first posit
that the latent firm type is a linear index of some firm-level variables (say the average and
the standard deviation of the wages paid by the firm). Assuming that the latent firm type is
observed up to a small number of factor loadings is a considerable reduction of dimensionality.
Then, conditional on the firm index, we maximize the expected likelihood using numerical
approximations of the integrals. The parameters of the firm index are estimated in an outer
loop. The very tight risk structure of the model never requires integrating out more than two
latent variables, the worker type and the current worker surplus for the first wage observation.

In order to average the log-likelihood over these latent variables, we need first to calculate
the equilibrium joint distribution of the worker’s age and ability, the match surplus and the
worker surplus. This four-dimensional distribution solves a system of differential equations
that is tedious to solve, but once this is done, the likelihood is rather straightforward to
calculate and to maximize. Finally, there is one last econometric innovation. We observe wage
cuts within employment spells and wage increases may or not reflect employer competition.
We therefore develop a noise filtering algorithm on the raw data to remove wage cuts and to
keep only wage increases greater than some arbitrary threshold (5%). This noise reduction
procedure only cuts 2% of the total wage variance. We view this as a small cost compared
to incorporated measurement error in the likelihood.

Applying this framework to the French matched employer-employee data we find that a
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large fraction of job-to-job moves (35%) are inefficient. That is those cannot be explained
by financial surplus. In addition, we uncover a strong role for worker-firm sorting but one
that does not show up in wages and does not result from correlated worker and firm effects.
Finally, idiosyncratic firm effects contribute little to wages and job preferences compared
to match-specific effects. Decomposing the variance of wages and of the match surplus, we
find that the match production function reflecting worker-firm complementarities is small. In
contrast we find that the match-specific effect plays an important role. We provide a detailed
investigation of the role of the dynamics of match-specific wage shocks.

The rest of the paper is organized as follows. In Section 2 we present the model of
individual wage dynamics. In Section 3 we discuss the steady-state economy. Section 4
presents the data and Section 5 the estimation procedure. Section 6 discusses the results.
Section 7 concludes.

2 An inefficient sequential auction model

2.1 Human capital and match output

We consider a population of infinitely-lived firms and short-lived workers. Time is continuous.
A worker has human capital R = exp (γ(t) + x), where γ(t) is a deterministic function of
age/potential experience t (with γ(0) = 0) and x is unobserved ability. Human capital is
understood as a worker’s productivity in non-wage employment, or simply non-employment
(where we include self-employed as well as unemployed in this definition throughout), and is
therefore the minimum wage he or she will accept from any employer.

Firms are characterized by a technological index y. The output of a firm-worker match is
Rez, with z = f(x, y) + v, where f(x, y) is the contribution to match output of worker and
firm characteristics, and v is a match-specific component. The match output is the maximum
wage that the firm is willing to pay the worker. We call z the match surplus and only matches
with z ≥ 0 are viable (preferred to non-employment).

We assume that x, y and v are continuous variables. Both x and y are fixed characteristics.
If a worker returns to the same firm after an interruption, she sees the same y. But v is a
random effect. If a worker returns to the same firm after an interruption, she draws a new v.

2.2 Wages out of non-employment

Non-employed workers receive job offers at Poisson rate λ0. A worker (t, x) draws an em-
ployment offer (y, v). The match is formed if surplus z is nonnegative. In which case, the
worker accepts the offer and receives a wage inside the bargaining set [R,Rez]. Specifically,
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we assume that non-employed workers exit to employment with a wage W (or log wage w)
such that

w := lnW = γ(t) + x+ βz. (1)

The job contract specifies a wage indexed on experience. It remains fixed until some alter-
native offer forces the incumbent employer to renegotiate. From now on, unless specified
otherwise, all wages are in logs and denoted using lower-case letters.

2.3 Wages on the job

Wage renegotiation and job mobility are triggered by concurrent job offers (“poaching”). In
the data, it is impossible to observe productivity shocks or workers’ learning on the job.
But we do see employees changing employers. It is likely that workers are infrequently in
situations where they have the possibility to change employer. Sometimes they do, sometimes
they don’t. It is this imperfect competition among employers for workers that gives market
power to firms that can pay their workers less than the marginal productivity of their jobs.
We distinguish three different types of poaching environments.

Normal negotiation. The normal poaching game is a static version of the wage renegotia-
tion processes in Dey and Flinn (2005) and Cahuc, Postel-Vinay, and Robin (2006). Bertrand
competition forces the two firms to bid their reservation values equal to the match log value
γ(t)+x+ z. The first bidder wins and the worker gets an extra share of the surplus by Nash
bargaining with the second bid as threat point.

Specifically, with probability λ1, an employee draws an alternative offer z′ yielding the
following outcome:

• (stay) if z′ ≤ z, the worker keeps job z and the worker’s wage increases to

w′ = max {w, γ(t) + x+ βz + (1− β)z′} ;

• (move) if z′ > z, the worker moves to z′ with a new wage

w′ = γ(t) + x+ βz′ + (1− β)z.

Note that

γ(t) + x+ βz + (1− β)z′ = β [γ(t) + x+ z] + (1− β) [γ(t) + x+ z′]
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where γ(t)+x+z is the match output or productivity. Therefore, the hiring wage is a simple
linear combination of the pre- and post-transition match productivities.

We now consider two additional frictions that increase the chance of narrowing the wage-
productivity gap.

Worker moves anyway. Many job-to-job transitions of employees are observed with wage
cuts. We therefore introduce the possibility that the auction is played, firms bid their reser-
vation values (i.e. match productivity), but the worker quits anyway, accepting whatever the
poacher has offered irrespective of the incumbent employer’s bid. Perhaps the worker wanted
to quit because she was fed up with her job, or perhaps the new job comes with amenities
that make up for some wage loss. We assume that competing employers do not factor in the
risk that the worker may not accept the best financial offer.

Specifically, with probability λ2 a worker employed with match surplus z draws an alter-
native job offer with surplus z′ resulting in the following outcome:

• she leaves employment if z′ < 0;

• if z′ ≥ 0, she takes the new job with a wage

w′ = γ(t) + x+min{βz′ + (1− β)z, z′}.

If 0 ≤ z′ ≤ z, the worker moves to the poaching firm although she should not (displace-
ment) and Bertrand competition gives the whole surplus to the worker. If z′ > z, this
is like normal poaching.

The worker becomes non-employed with probability λ2 times the probability of drawing a
non viable job with surplus z′ < 0. This endogenous layoff risk depends on the worker’s
ability as more able workers are less likely to draw a negative surplus. We also assume an
additional and exogenous layoff shock with probability δ.

A displacement occurs with probability λ2 times the probability of drawing 0 ≤ z′ < z.
This type of forced mobility is standard in the empirical search literature as, again, many
moves are observed with lower wages. In the case of wage posting, the wage paid to the
worker is fixed, independent of the hiring mode. In a sequential auction framework, how
wages are determined in the case of a displacement is a question that has not received any
attention. We assume that the hiring wage is equal to job productivity if displacement. Thus,
there will not be any further wage increase on the job beyond the experience effect γ(t).

Worker stays anyway. This is the mirror case of the preceding one. Now, the worker
eventually decides to stay whatever the poacher bids. If z′ ≤ z, the incumbent wins and
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this is like in the normal poaching game. If z′ > z, the worker should move, but does not.
Perhaps the worker incurs a mobility cost that the auctioning employers are unaware of. As
a consolation prize, she receives a wage increase up to the maximum wage the incumbent
employer is willing to pay. This is a simple way of incorporating mobility costs into the wage
competition model.

Specifically, with probability λ3 a worker employed with match surplus z draws an alter-
native job offer with surplus z′ resulting in the following wage:

w′ = max {γ(t) + x+min {βz + (1− β)z′, z} , w} .

If z′ > z, the worker stays and receives the maximal wage (“best advancement”) that the
incumbent employer can pay.

To conclude, a displacement is a move that should not happen, a best advancement is a
move that should happen but does not. We can think of Poisson rates λ2 and λ3 as a way of
adding imperfections to the main auction theory, which allow for a decoupling between wages
and job preferences without relying on measurement error, mobility costs or non financial
job utility (amenities).

3 The steady state economy

We assume that the economy is stationary. By this we mean that all worker distributions
remain fixed over time. This is useful for estimation purposes as it allows to use maximum
likelihood to estimate the model with unobserved heterogeneity.

3.1 Market segmentation

We assume that the sampling distribution of firm types y has CDF Q(y|x) and PDF q(y|x).
By conditioning the firm sampling distribution on the worker type, we allow for segmented
search. Next, match types v are drawn independently of firm types from a distribution with
CDF Hi(v) and PDF hi(v), where i = 0 refers to non-employment and i = 1, 2, 3 refers to
the various poaching modes.

Let Gi(x, z) = 1−Gi(x, z) denote the probability that a worker x employed at a job with
surplus z, draws a strictly more competitive alternative job offer. In particular, G0(x, 0)

is equal to the probability for a non-employee of drawing an acceptable job, i.e. such that
match surplus z is positive. We have

Gi(x, z) =

∫
H i(z − f(x, y)) q(y|x) dy,
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where H i(v) = 1−Hi(v). Hence, Gi(x, z) is a non-increasing function of the current match
surplus z.

Then we denote

gi(x, z) = −∂Gi(x, z)

∂z
=

∫
hi(z − f(x, y)) q(y|x) dy.

This is the instantaneous probability density, given x, of drawing a job (y, v) such that
f(x, y) + v = z.

3.2 The wage and employment mobility process

Under these assumptions, a worker’s state is entirely described by the following collection
of variables: experience t, ability x, employment status s ∈ {0, 1} (employed or not), and if
employed (s = 1), the employer type y, the match surplus z, and the worker surplus ζ ∈ [0, z]

mapping the wage one-to-one given t, x, z:

w = γ(t) + x+ βz + (1− β)ζ. (2)

The worker’s state at any point in time (t, x, s, y, z, w) is a Markovian process. To see that,
let (t, x, s′, y′, z′, w′) be a transition from (t − 1, x, s, y, z, w). If s′ = 1, we observe the wage
w′ = γ(t) + x+ βz′ + (1− β)ζ ′, again being observationally equivalent to the worker surplus
ζ ′.

Normal firm-to-firm transition. The worker makes a firm-to-firm transition to a new
firm y′ (s′ = s = 1 and y′ ̸= y), and her new wage is greater than the incumbent match’s
productivity: w′ > γ(t) + x+ z. Thus,

z′ =
1

β
[w′ − γ(t)− x− (1− β)z] > z and ζ ′ = z.

This occurs with probability density

[λ1q1(y
′|x)h1(z

′ − f(x, y′)) + λ2q2(y
′|x)h2(z

′ − f(x, y′))] dz′.

Whether the worker quits anyway does not matter as the alternative job is more productive
(z′ > z).
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Displacement. The worker makes a firm-to-firm transition to a new firm y′, and her wage
is lower than the current productivity: w′ < γ(t) + x+ z. Thus,

z′ = w′ − γ(t)− x < z and ζ ′ = z′.

This occurs with probability density [λ2q2(y
′|x)h2(z

′ − f(x, y′))] dz′.

Within-job wage increase. The worker stays with the same employer (s = s′ = 1 and
y = y′) and her wage increases to w′ ∈ (w, γ(t) + x+ z]. Then,

z′ = z and ζ ′ =
1

1− β
[w′ − γ(t)− x− βz] ∈ (ζ, z).

This occurs with continuous probability density [λ1g1(x, ζ
′) + λ3g3(x, ζ

′)] dζ ′ (given x, y, z).
Whether the worker stays anyway does not matter as the alternative job is less productive.

Best advancement. The worker stays with the same employer (s = s′ = 1 and y = y′)
and her wage increases to the maximal wage w′ = γ(t) + x+ z. Thus,

z′ = ζ ′ = z.

This occurs with probability mass (given x, y, z) λ3G3(x, z).

Layoff. The worker becomes not employed (s = 1 and s′ = 0) with probability δ +

λ2G2(x, z).

Re-employment. The worker leaves non-employment (s = 0 and s′ = 1) to a firm y′ and
her new wage is greater than her reservation wage: w′ ≥ γ(t) + x. Hence,

z′ =
1

β
[w′ − γ(t)− x] ≥ 0 and ζ ′ = 0.

This occurs with probability density is λ0q0(y
′|x)h0(z

′ − f(x, y′)) dz′.

Staying not employed. The probability of remaining not employed one additional period
(s = s′ = 0) is 1− λ0G0(x, 0).

Figure 1 gives an example of the type of wage trajectories that our model produces. The
first spell (in blue) out of non-employment branches out into two possible second spells (in
red), one with a wage increase and one with a wage cut.
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Figure 1: A worker trajectory with two employment spells following a non employment
interruption (wage starts at minimum and ends at maximum; employer changes at t = 45,
possibly upward (z2 > z1) or downward (z2 < z1))

The literature on wage dynamics has moved towards models characterized by increas-
ingly richer and more flexible dynamics. These dynamics are usually interpreted as reflecting
a sequence and accumulation of productivity shocks. However, the mechanisms by which
productivity shocks are transmitted to wages is unclear. Thus, as Mincer equations incor-
porate more statistically sophisticated stochastic processes, their internal workings become
increasingly opaque.

We can imagine ways of incorporating productivity shocks into our framework. For ex-
ample, we could index wage contracts on productivity (as in the piece-rate models of Barlevy,
2008, Bagger, Fontaine, Postel-Vinay, and Robin, 2014). This implies a degree of employer
commitment that may be difficult to justify. Or we could assume a total lack of commitment,
and workers would need a credible alternative offer to benefit from productivity gains (see
Lise, Meghir, and Robin, 2016). But adding productivity dynamics, for example on match-
specific productivity v, would complicate the model by an order of magnitude and pose a
further challenge for identification.

On the other hand, dynamic wage models usually neglect the firm heterogeneity dimen-
sion. The comparison with to two-sided unobserved heterogeneity now turns in our favor.
Our model exhibits wage dynamics that are much more sophisticated than most two-way
fixed-effects wage models (e.g. Abowd, Kramarz, and Margolis, 1999, Card, Heining, and
Kline, 2013).
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3.3 Steady-state distributions

The following distributions can be calculated assuming stationarity:

• the distribution of worker types, ℓ(t, x),

• the distribution of non-employees (including self-employed and unemployed) by worker
type, u(t, x),

• the distribution of match productivity components, m(t, x, z),

• the distribution of wage components, n(t, x, y, z, ζ).

These distributions can be calculated by solving simple first-order differential equations. For
example, Let ℓ0(x) denote the distribution of new-born workers and let ξ be the retirement
rate. The distribution of individuals by age and type is ℓ(t, x) such that

∂ℓ(t, x)

∂t
= −ξ ℓ(t, x).

Hence,
ℓ(t, x) = ℓ0(x)e

−ξt. (3)

The law of motion of u(t, x) is

∂u(t, x)

∂t
= [δ + λ2G2(x, 0)] [ℓ(t, x)− u(t, x)]−

[
ξ + λ0G0(x, 0)

]
u(t, x)

= [δ + λ2G2(x, 0)] ℓ(t, x)− d0(x)u(t, x),

with
d0(x) = ξ + δ + λ0G0(x, 0) + λ2G2(x, 0).

Jobs terminate either with straight probability δ because of layoff, or because of a displace-
ment shock with a negative surplus draw. Workers leave non-employment either because they
retire or find a job. The solution to this first-order ODE with initial condition u(0, x) = ℓ0(x)

(i.e. assuming all workers start their career as a non-employee) is the cumulative sum of in-
flows from out of employment in time interval [0, t] who have not yet exited non-employment
by t. Specifically,

u(t, x) = ℓ0(x)e
−d0(x)t + [δ + λ2G2(x, 0)]

∫ t

0

ℓ(t′, x) e−d0(x)(t−t′) dt′.
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We can similarly calculate M(t, x, z) =
∫ z

0
m(t, x, z′) dz′ from the ODE (with 0 as initial

condition):

∂M(t, x, z)

∂t
= λ0

[
G0(x, 0)−G0(x, z)

]
u(t, x)

+ λ2

[
G2(x, 0)−G2(x, z)

]
[ℓ(t, x)− u(t, x)−M(t, x, z)]

−
[
ξ + δ + λ2G2(x, 0) + λ1G1(x, z) + λ2G2(x, z)

]
M(t, x, z).

The inflow is made of workers who were not in the stock M(t, x, z) and enter; that is, the
non-employee and the displaced workers with match surplus greater than z, who draw a new
match surplus in [0, z]. The outflow comprises retirees (ξ), laid-off (δ+λ2G2(x, 0)) and workers
who are poached or displaced in jobs with a surplus greater than z (λ1G1(x, z)+λ2G2(x, z)).

We refer to Appendix B for the complete state variable distribution.

3.4 Identification

Proving identification from individual worker trajectories is complicated because the different
wage components (ability x, match surplus z and worker surplus ζ) are not independent of
each other and over time. However, we propose in Appendix A a heuristic argument that
highlights what in the model is well identified and what is likely to rely on parametric
restrictions. We now summarize this discussion.

We neglect the experience effect γ(t). Let us simply assume that we can filter it out.
Then, suppose that for each worker there exists a sequence of consecutive employment spells
such that: 1) wages increase in all spells (i.e., for all spells, the last wage is strictly greater
than the first wage), 2) the first spell follows a period of non-employment, 3) the last wage
of the sequence is a best advancement wage.7 We first show that, under these conditions,
the sequence of minimum and maximum wages in each spell forms a system of equations
that point identifies β, worker ability x and the sequence of match surpluses z and worker
surpluses ζ after a non-employment spell.

Key for identification is that the first wage in each spell is only a function of worker
ability x and of the match surpluses z and z′ before and after an employment transition.
A transition from non-employment further reduces the number of latent variables because
the match surplus in non-employment is by definition zero. It also helps that the model
allows the last wage in a spell to be equal to match productivity x + z. Suppose that firm
competition is strong enough that wages increase to match productivity in each spell with

7In practice, we would infer that the last wage of an employment is equal to the match output from the
relatively long duration of the last step.
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a high probability, then the bargaining power coefficient β is identified from firm-to-firm
transition wages.

Second, assuming that the worker state variables are known (i.e. worker ability x, firm
technology y, match surplus z), the transition rates δ, λ1, λ2, λ3 are identified by transition
probabilities (rate time the probability of moving) if f(x, y) is bounded when y varies and
if the supports of match components v are also bounded (with certain conditions on those
bounds). Hence, match surpluses z are bounded from below and from above, and there
exist matches that cannot be improved or that can only be improved. These rates are thus
identified as maximum or minimum transition frequencies given the current state.

Third, identifying f(x, y) from v in z = f(x, y) + v, knowing x, y, is a standard non-
parametric censored regression problem, which is identified assuming for example that the
distributions Hi have zero median.

The conclusion of this discussion is that we can understand how the data will impose
important restrictions on the parameters. However, it seems difficult to estimate the model
nonparametrically. In practice, we will impose parametric restrictions and use Maximum
Likelihood for estimation.

4 Data

4.1 Firm characteristics

We use the DADS-POSTES dataset, covering the years 2015-2019, which is available via the
secure CASD data center and contains all the annual salary declarations for all employees
of all legal companies.8 All firms are identified by a unique identifier, allowing to follow the
evolution of their workforce over time. We keep all private, non-agricultural firms. A record
line is any employee in any year. We only keep full-time employees aged 25-55. For each firm,
we calculate its size as the number of records divided by 5. For each remaining employee, we
calculate a daily wage as the recorded annual earnings divided by the number of days worked
in the firm in the year.

We classify all worker*year observations into 4 skill groups: managers and engineers
(corresponding to the 2-digit PCS categories 37 and 38,9 technicians, supervisors, and other
skilled trade and administrative workers (PCS 46, 47 and 48), unskilled care, trade and
administrative workers (PCS 54, 55 and 56), and non-farming production workers (PCS 62
to 68).

8DADS stands for Déclarations Annuelles de Données Sociales.
9PCS (Professions and catégories socio-professionnelles) is a usual nomenclature of occupations.
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Then, for each firm and by skill group, we calculate the mean, median, p25 and p75 of
the distribution of all recorded daily wage over the period 2015-2019. We summarize these
firm-level wage distributions further by the first two principal components. As expected, the
first factor measures the wage location and the second factor measures the wage dispersion.
We also use as a third measure the log of the average firm size over the period. It is provided
in the data as a headcount of the number of employees at the end of each calendar year. We
explain in section 5.1 how exactly these three measures are used.

4.2 Worker trajectories

DADS-POSTES is not a worker panel as it lacks worker identifiers. However, we can merge
it — by firm ID and keeping the three firm characteristics calculated in the previous step
(size, wage location and dispersion) — with the DADS-PANEL, which records wage and
employment trajectories for all individuals born in October.

We divide the 5 years 2015-2019 into 10 semesters in order to get shorter time periods.
This is more consistent with our continuous-time model and limits the somewhat arbitrary
assignment rules one has to make for workers who move or change status several times in a
given discrete period.

If a worker has multiple overlapping employment records in a given semester, we select
the one with the highest number of paid working days. If the total number of paid days
is less than 30, or if there is no employment record, we classify the worker as unemployed.
We then keep prime-age workers (25-45 y.o. in 2015) that are always salaried full-time and
always working in a private firm with at least 3 employees during the observation period. We
further remove workers whose recorded occupation is farmer, CEO, craftsman or merchant at
some point in the observation period. We finally assign each worker to the skill group (same
definition as before) in which he or she is observed to be employed for the greatest number
of periods. The wage definition is also the total net earnings received in the year divided by
the total number of paid days. We remove individuals with extreme wages, extreme wage
changes or extreme firm types at some point of their career trajectory. Additional details on
these sample selection and cleaning steps are provided in Appendix E.

For each skill group, our estimation sample is a random draw of 50,000 men employed at
least once over the five-year sample period. The following variables are recorded: worker ID,
year, age, employed-unemployed, skill group, wage.10

10Note that a similar sample of women results in very high non-employment rates. It is not uncommon for
more than 25% of female employees to be observed not employed in one given year (according to the above
definition). We therefore decided to focus on men.
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4.3 Noise reduction

Here, statistical noise takes the form of wage fluctuations which cannot be explained by the
model: wages do not decrease within an employment spell, and they increase infrequently due
to poaching as persistent discrete jumps. Unfortunately, we do see wages decrease, and we
do not know exactly when wages increase because of promotions. One possibility would be
to add a measurement error in the wage equations. However, because of unobserved hetero-
geneity and unobserved initial states, adding measurement error would seriously complicate
the calculation of the likelihood. So instead of modeling noise, we preferred to filter it out
ex ante in a transparent manner. It is common practice in statistics to apply noise filtering
algorithms to the data, as it is in macro-econometrics (e.g. Hodrick-Prescott filter) and in
micro-econometrics (e.g. transitory-permanent deconvolution).

We first estimate the experience effect γ(t) by regressing log wages on age and age squared.
This is not optimal, but filtering out ex ante all covariate effects considerably simplifies the
estimation procedure. Then, employment spell by employment spell, we smooth individual
wage trajectories using the following clustering procedure, which resembles single-linkage
clustering. Only adjacent linkages are considered, and wages are updated iteratively with
a stopping rule. The procedure is described as follows. Let the log wages within a job be
denoted by wk, k = 1, ..., n. We need to cluster the n periods into adjacent clusters within
which the wage remains constant, and jumps upward between clusters. Initialize the cluster
index as ck = k. Let dwk = wk − wk−1, k > 1. We iterate the following algorithm:

1. Compute the smallest non-zero wage difference dw = min { dwi : ∀i, dwi ̸= 0}. Proceed
to Step 2 if dw < .05 (wage drop or small wage increase). Note that this 5% threshold
is arbitrary. Otherwise, stop.

2. Let k∗ be the smallest index such that | dw| = min {| dw|i : ∀i, dwi ̸= 0} (smallest non-
zero absolute wage difference). Update the cluster index as follows. For all k such that
ck = ck∗ , update ck to ck∗−1. That is, combine the two different clusters that contain
indices k∗ and k∗ − 1, respectively.

3. Update the wage of the combined cluster as the average wage (sum of wages in both
clusters divided by the corresponding number of observations). Go to #1.

This procedure combines clusters until all wage steps are positive and exceed the threshold,
or all wage steps are zero. The procedure is mean preserving. A numerical example of the
algorithm is given in Table 1.

Now, after running the noise reduction algorithm, suppose that we observe two consecutive
employment spells with a wage cut at the transition. This can only happen in case of a
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Table 1: The clustering and wage filtering algorithm on an example with a wage threshold
equal to 3

initial 1 2 3 4
k w dw c w dw c w dw c w dw c w dw c
1 5 1 5 1 3.9 1 4.5 1 4.5 1
2 2.8 -2.2 2 2.8 -2.2 2 3.9 0 1 4.5 0 1 4.5 0 1
3 5.8 3 3 5.8 3 3 5.8 1.9 3 4.5 0 1 4.5 0 1
4 9.8 4 4 10.3 4.5 4 10.3 4.5 4 10.3 5.8 4 11.2 6.7 4
5 10.8 1 5 10.3 0 4 10.3 0 4 10.3 0 4 11.2 0 4
6 13 2.2 6 13 2.7 6 13 2.7 6 13.0 2.7 6 11.2 0 4

displacement. But then, the wage should remain constant after a displacement. Therefore, we
operate another round of regularization. Suppose that a spell suspected to be a displacement
nevertheless shows n increasing steps. We start by replacing the first two steps by the mean.
If the wage transition remains negative, we continue with the aggregation of the first three
steps, and so on until we have exhausted all the steps.

The raw log wages have a variance of 0.217 (4.943mi observations). After keeping only
men, the variance is 0.217 (3.370mi obs). After winsorizing wages, firm types and wage
variations, the variance is down to 0.164 (3.004mi obs). Then, keeping only prime-aged
workers aged 25-45, the variance is 0.147 (2.051mi obs). Finally, using a 5% threshold, the
regularized log wage has a variance of 0.144 and the noise variance is therefore 0.147−0.144 =

0.003 (or 1.90% of the total variance). The correlation between the raw and regularized log
wage is

√
1− 0.0190 = 0.990. The noise reduction is a lot smaller than the residual variance

in two-way fixed effects models’ estimations (Abowd, Kramarz, and Margolis, 1999, and
followers). Appendix E details the effects on the distribution of wages of these various data
selections.

5 Estimation method

5.1 Estimation method

Our estimation procedure is similar in many ways to that of Bonhomme, Lamadon, and
Manresa (2019) (BLM). They proposed a two-stage estimation procedure. First, they use
k-means to classify firms from firm-level data on wages and size. This relies on the property
that, in equilibrium, firms of the same type should display similar wage distributions (across
their employees). Second, they take the classification of firms as given and maximize the
likelihood of worker wage and employment trajectories. Under the finite mixture assump-
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tion, this can be easily done using the Expectation-Maximization (EM) algorithm. Lentz,
Piyapromdee, and Robin (2023) (LPR) propose a slightly different approach. Instead of us-
ing some firm-level statistics to pre-classify firms, they use the likelihood of worker data to
classify the firms into a finite number of types. They proceed iteratively, alternating the firm
classification and the EM stage.

Our model assumes continuous worker and firm heterogeneities. We cannot apply the pre-
vious approaches directly, but we can draw some inspiration from them. We postulate that,
in equilibrium, the firm type y is well approximated by a linear combination of observed firm
characteristics. Specifically, y =

∑3
ℓ=1 αℓyℓ, where y1, y2, y3 are the three firm characteristics

described in Subsection 4.1 (wage location, wage dispersion and size). As BLM, we postulate
that certain firm characteristics are good predictors of the observed firm type. But, as LPR,
we estimate the meta-parameters αℓ by Maximum Likelihood together with the other struc-
tural parameters. For identification, we normalize α1 = 1 (the wage location parameter).
We found in simulations (see Appendix D) that the equilibrium link between wage location
and the type y is not linear. Adding wage dispersion, the link between the predicted type
and the true type is not exactly on the 45% line. Adding firm size, the prediction is almost
perfect.11

5.2 Parametric specification for the structural model

The match surplus f(x, y) is defined as

f(x, y) = c

[
y − 1

2b
(y − ax)2

]
, y ≥ 0,

for some a, b, c > 0. This specification implies that log match production, x + f(x, y), has
an additive worker effect x, an additive firm effect cy and a cost c

2b
(y − ax)2. Gautier and

Teulings (2015) develop an equilibrium search model (with on the job search) assuming a
similar specification of match productivity (see also Boerma, Tsyvinski, Wang, and Zhang,
2023).

One can easily verify that f(x, y) is supermodular:

∂2f(x, y)

∂x∂y
=

ac

b
≥ 0.

Moreover complementarity decreases with b. At the lowest limit (a = 0 or b = +∞) f(x, y)

does not depend on x and f(x, y) is like a firm effect.
11Our estimation method is also linked to the Krusell-Smith model (Krusell and Smith (1998)).
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The optimal firm type for a worker x is

y∗(x) = argmax
y

f(x, y) = ax+ b.

The optimal surplus is f(x, y∗(x)) = c
(
ax+ b

2

)
. Hence, a worker of type x produces exp [γ(t) + x]

by himself and a maximum of exp
[
γ(t) + (1 + ac)x+ bc

2

]
when matched optimally.12 It fol-

lows that

f(x, y) = c

[
y − 1

2b
(y − ax)2

]
= c

(
ax+

b

2

)
− c

2b
(y − ax− b)2

= cy − c

2b
y2 +

ca

b
xy − ca2

2b
x2

(optimal surplus minus distance to optimal match).
The parameters to estimate are

• transitions rates ξ (retirement rate), δ (exogenous layoff rate) and job offer arrival rates
λ0, λ1, λ2, λ3;

• the experience effect γ(t) modeled as a stepwise constant function of age;

• the distribution of worker heterogeneity ℓ0(x)/L0 = N (µ, s2) (normal);

• the parameters of the sampling distribution of firm types q(y|x) = N (κ+ρ(x−µ), ω2),
common to all job offers;

• the surplus function parameters a, b, c;

• the bargaining power coefficient β;

• the distribution of job-specific effects hi(v) = N (0, σ2
i ), i = 0, 1, 2, 3. To help identifi-

cation, we force σ3 = σ1.

The sampling distribution of match surpluses is therefore

gi(x, z) =
1

2π

∫
1

σi

1

ω
exp

(
− 1

2σ2
i

[z − f(x, y)]2 − 1

2ω2
[y − κ− ρ(x− µ)]2

)
dy.

12In general, if f is assumed concave with respect to y (f ′′
2 < 0), for any x there exists an optimal match

y∗(x) = argmaxy f(x, y). In addition, if f is supermodular (f ′′
12 > 0), then y∗(x) is increasing.
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We shall further constrain σ1 = σ3. We also pre-estimate ξ as the inverse of the average
experience of workers in the sample (in weeks or months), as the PDF of experience is
exponential ξe−ξt.

5.3 Maximum Likelihood

An individual observation is a sequence (tn, sn, dn, yn, wn, n = 1, ..., N) where tn = t1 − 1 + n

is age or experience, sn = U,E,R is the employment status (non-employee, employed or
retired), dn ∈ {0, 1} is the indicator of job mobility, yn is the employer’s type and wn is the
wage in period n (both missing if not employed). Initially, the worker can be employed or
not. If employed, her first log-wage is of the form

w1 = γ(t1) + x+ βz1 + (1− β)ζ1,

where z1 = f(x, y1)+v1. Note that neither x, nor v1, nor ζ1 are observed. However, under the
stationarity assumption, we can calculate the joint distribution of all the wage components:
n(t1, x, y1, z1, ζ1). The calculation of the steady-state distributions is tedious, but it pays
in the end as it allows to use maximum likelihood to estimate the model. We will have to
integrate out two out of the three unobserved variables x, v1, ζ1. In practice, we substitute
out z1 given w1 and integrate the likelihood over x and ζ1. Appendix C details the likelihood.

6 Results

6.1 Parameter estimates

Parameter estimates are displayed in Table 2. We note that δ is estimated to be negligible.
This is because displacements with a negative surplus draw are sufficient to predict all layoffs.
Wages change according to the various Poisson processes of alternative job draws. We esti-
mate λ3 (best advancements) much larger than λ1 (normal auctions) and λ2 (displacements),
and slightly less than λ0 (offers to non-employee workers).

The firm heterogeneity index depends positively on wage dispersion for managers, but
negatively for administrative and production workers. Size has a negative effect, except for
production workers.

We also note that c, which sets the level of f(x, y) in surplus z, seems small. The worker
surplus sharing rule β is also estimated rather small, near .15. Such a low bargaining power
is not surprising.13 We can hardly compare our estimates of bargaining power with those

13Cahuc, Postel-Vinay, and Robin (2006) already found, using same French data, very small estimates,
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Table 2: Parameter estimates

Managers Supervisors Admin Production
Estimate Std Estimate Std Estimate Std Estimate Std

rates

δ .004 .001 .006 .001 .020 .001 .003 .001
λ0 .364 .005 .303 .007 .272 .006 .420 .004
λ1 .010 .002 .054 .005 .111 .013 .029 .003
λ2 .058 .001 .021 .001 .030 .001 .061 .001
λ3 .284 .008 .260 .014 .190 .017 .357 .012

directed search κ .587 .010 .521 .014 .160 .017 .633 .011
q(y|x) ρ 2.137 .014 3.587 .025 4.194 .034 3.789 .021

ω .786 .003 .769 .003 .875 .005 1.138 .003
firm type y α2 .613 .011 .000 .011 -.160 .012 -.320 .009

α3 -.008 .001 -.041 .002 -.030 .003 .010 .002
match production a .486 .098 1.003 5.516 .618 .237 1.009 .142

f(x, y) b 3.577 1.229 30.742 371.98 1.693 1.155 2.844 .941
c .047 .003 .007 .004 .015 .006 .028 .003

bargaining coeff. β .168 .001 .145 .002 .162 .002 .160 .001
worker heterogeneity µ 3.923 .002 3.673 .002 3.426 .003 3.468 .002

ℓ0(x) s .267 .001 .208 .001 .215 .001 .222 .001
σ0 1.487 .015 1.245 .020 1.275 .022 1.344 .013

match shocks σ1 .216 .002 .179 .003 .195 .004 .212 .002
hi(v) σ2 .478 .003 .446 .007 .394 .006 .538 .004

σ3 .216 .002 .179 .003 .195 .004 .212 .002
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in the rest of the literature because the wage ladder mechanism is precisely a rent-sharing
mechanism. Workers can in principle acquire a lot of the match surplus through Bertrand
competition only (when β = 0).

Finally, we find that σ0 is a lot bigger that σ1 = σ3 and σ2. This points at a large reseting
effect of non-employment.

6.2 Model fit

Table 3 displays sample statistics along with their predictions by model simulation. Mobility,
whether in employment or in wages, is a rare event. Wage mobility is more frequent within
than between employment spells. The model does a good job at fitting the state and mobility
data, although it tends to predict too big wage changes across consecutive employment spells.
This is because λ1 adds to λ2 to generate moves with a wage increase.

Figure 2 shows how the model fits employer type and wage distributions for the whole
population (the four skill groups pulled together). Fits of distributions for skill groups consid-
ered separately share similar features.14 The distribution of employer types (across workers)
is well fitted. The overall wage distribution displays a longer right tail in the simulation. The
distribution of wage changes within an employment spell is well fitted. The distribution of
wage changes across two consecutive employment spells shows an undesirable peakedness (a
spike and longer tails) in the simulation.

We then illustrate the respective roles of the four different wage-setting cases. Figure
3 shows the simulated distributions of wage increases for normal wage increases (λ1 + λ3,
z′ < z), best advancements (λ3, z′ > z), normal hiring (λ1 + λ2, z′ > z) and displacements
(λ2, z′ < z).15 Best advancements increase the skewness because they come after a series of
wage increases. Wage increments should decrease with the number of steps. Forced moves
(displacements) generate a very dispersed distribution of wage changes over both negative
and positive values. This is likely a consequence of the normal distribution. In order to
generate the right frequency of displacements for average current match surplus values, a
large dispersion of zero-mean match-specific components (σ2) is needed.

We next examine the different frequencies of these four cases.

generally between 0 and .30, depending on the firm’s sector and the employee’s skill, and Bagger, Fontaine,
Postel-Vinay, and Robin (2014) found .30 on Danish data.

14See Figures F.2 to F.5 in Appendix F.
15See Figures F.6 to F.9 for distributions by skill group.
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(a) All employer types (b) All wages

(c) Within-firm wage growth (d) Between-firm wage growth

Figure 2: Fit of wage distributions, whole sample
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(a) Normal wage increases (b) Best advancements

(c) Normal hiring (d) Displacements

Figure 3: Distributions of simulated wage changes, whole sample
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Table 4: Proportions and tenure by last event type

Manager, engineers Overseer, technician Admin staff Production worker
N Tenure N Tenure N Tenure N Tenure

(%) (mean) (sd) (%) (mean) (sd) (%) (mean) (sd) (%) (mean) (sd)
Last event unknown 4.06 15.19 5.74 4.07
Non employed 15.13 5.34 4.67 9.90 6.27 5.40 20.64 7.05 5.94 14.27 4.70 4.02
Employed 80.81 10.73 7.66 74.91 12.94 8.23 73.62 11.26 7.90 81.66 10.50 7.63

Among employees
Re-employment 16.02 4.92 4.28 10.74 5.18 4.56 20.07 5.32 4.56 15.55 4.46 4.04
Normal promotion 35.95 13.87 7.21 51.33 15.74 7.48 48.30 14.90 7.33 38.42 13.51 7.25
Best advancement 18.84 15.00 7.21 17.45 16.78 7.19 9.91 15.33 7.14 16.58 14.46 7.25
Normal hiring 10.13 8.30 6.76 8.04 10.64 7.74 9.52 8.59 7.05 11.31 8.41 6.92
Displacement 19.05 8.83 7.15 12.44 11.49 8.16 12.20 9.62 7.56 18.13 8.73 7.09

6.3 Inefficient mobility

The exogenous layoff rate δ is essentially zero. This is because the main source of job
destruction happens to be the displacements with a negative surplus draw z′ < 0. For the
same reason, many surplus draws when unemployed will be negative. The reemployment
rates are thus much lower than indicated by parameter λ0.

The two additional sources of friction that we have introduced to the sequential auction
mechanism (λ2: the worker quits anyway, λ3: the worker stays anyway) turn out to be
predominant, and λ1 is almost negligible. This is particularly true for interrupted poaching
(λ3): a large proportion of meetings with more competitive vacancies (z′ > z) will not lead
to a move, but instead to the wage being increased to its maximum value. This is because
most job spells will start with a few early wage increases, and the final wage remains fixed for
a long time until the next firm-to-firm move. Second, λ2 is high because many firm-to-firm
moves suffer from a wage cut. Finally, λ1 is estimated to fit either the excess frequency of
early wage increases within a job or the excess frequency of firm-to-firm moves with a wage
increase (for higher skilled workers).

The general conclusion is that mobility is largely inefficient.
To evaluate the share of inefficient moves, we show in Table 4 the simulated proportions

and tenures by last event type. We simulate trajectories using the estimated model for 30
periods (a period is equal to half a year). Then we take the last simulation periods and we
classify workers by the last state change that happened to them: if unemployed, the last
change was a layoff; if employed, the last change can be returning from non employment, or
moving up the internal wage ladder (via external contacts of types λ1 or λ3 associated with
a surplus draw z′ < z), or moving to the top of the internal ladder (λ3 contact with draw
z′ > z), or moving up the external ladder (contacts of λ1 or λ2 type with a surplus draw
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Table 5: Type and wage sorting

Managers Supervisors Admin Production
corr(x,w) .7780 .7623 .7812 .7388
corr(y, w) .4795 .5383 .5697 .4646
corr(x, y) .5901 .7022 .7194 .5992

No market segmentation (ρ = 0)
corr(x,w) .7621 .7517 .7569 .7051
corr(y, w) .0255 .0017 .0080 .0379
corr(x, y) -.0018 .0007 -.0018 .0060

Notes: The variables x, y, w used to calculate these correlations are all from
a simulated economy (see Appendix D).

z′ > z), or moving down the external ladder (λ2 contact with z′ < z).
A sizable proportion of workers are not employed. This is because non-employment in-

cludes unemployment, inactivity, self-employment, public employment and part-time work.
Non-employment duration is estimated to be around 5-7 months with no clear ranking be-
tween the four different skill categories. As for employees, about 13% of them have returned
from non-employment 4-5 months ago. A large proportion (35-50%) were most recently pro-
moted internally. Having already been promoted makes another promotion less likely; this
also implies that the current surplus z is relatively high. This selection effect explains the
higher tenure. The proportion of workers paid their match productivity is around 10-19%
(slightly less for admin workers), which is substantial. Their average tenure is higher. Fi-
nally, a transition to a job with a higher surplus is rather rare (about 8-11% of the time),
while external mobility down the surplus ladder is much more common (about 12-19%). The
average duration since the last job change is about 7-8 months.

Overall, between job-to-job mobilities that should have occurred (z′ > z) but did not,
and those that did occur but should not have (z′ < z), we estimate that the proportion of
employees whose last state change is inefficient to be in the range 22-38%.

6.4 Type sorting and wage sorting

Workers draw offers according to different Poisson processes with different rates λi, but from
the same distribution of firm types q(y|x) = N (κ+ρ(x−µ), ω2). The parameter ρ is estimated
very large, which indicates a strong directed search feature. Figure 4 shows the scatterplot
of (x, y) observations. The association between workers’ and firms’ types is very strong, with
correlations in the 60-70% range. Correlations between log wages and worker and firm types
are also strong, stronger with worker types than with firm types though (see Table 5).
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(a) Managers, engineers (b) Overseers, technicians

(c) Admin staff (d) Production workers

Figure 4: Cross-sectional distribution of worker and firm types
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(a) Managers, engineers (b) Overseers, technicians

(c) Admin staff (d) Production workers

Figure 5: Match production function f(x, y). The red line is the regression of y on x in the
data. The dashed line is y = ax+ b and indicates the location of optimal matches
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The match production f(x, y) is proportional to f(x, y) = y− 1
2b
(y − ax)2. The parame-

ters a and b are imprecisely estimated, which means that complementarities between worker
and firm types are not well identified. However, taking their estimated values seriously,
we see in Figure 5 that f(x, y) is increasing in y for all x and all skills. We plot on the
(x, y) 7→ f(x, y) surface the location of the matching lines (i.e. the regression lines through
the scatterplots in Figure 4). Apart from skill group 2 (supervisors), for which parameter b

is very badly identified, realized matches are consistent with some production optimization.
Finally, we ran counterfactual simulations where we shut down all dependency to worker

type in firm type draws. The equilibrium correlation between worker and firm types drops
to 0 (see Table 5).

The conclusion is that there is strong worker-firm sorting, but it does not show up in
wages. In the next section we investigate in details the role of the dynamic of match-specific
wage shocks.

6.5 Match production function and match-specific surplus

Recall the wage equation
w = γ(t) + x+ βz + (1− β)ζ,

where z is the current surplus and ζ differs according to the transition history: (i) ζ = 0 if the
last move is from non-employment; (ii) ζ ∈ (0, z) if the negotiation was normal (within-job
or between-job wage increase); (iii) ζ = z in case of a best advancement or a displacement.
Let us rewrite this equation as follows

w = γ(t) + x+m+ u,

where m = βz and u = (1− β)ζ in the first two cases and m = z and u = 0 in the last case.
In this decomposition, u is the residual surplus contribution, which includes the part that is
history dependent and presumably imperfectly correlated with the current match surplus.

Table 6 shows the variance decomposition of log wages into current match and residual
contributions. The contribution of the worker effect is found to be close to 50%. The
current match surplus explains about 25%, and the residual accounts for 20%. In addition,
the covariance terms are negligible. These decompositions are not very different from the
AKM-type wage variance decompositions.

Then, we turn to the decomposition of the variance of the match and worker surpluses (see
Table 7). We find that the match output f(x, y), including the firm effect, is negligible. Only
the match-specific effect v seems to matter. Therefore, firm effects contribute particularly
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Table 6: Total log-wage variance decomposition, by current surplus and past dependence

Managers Supervisors Admin Production
Mean Variance Mean Variance Mean Variance Mean Variance

lnw 4.258 .1284 3.978 .0792 3.720 .0858 3.790 .1057
x 3.929 .0704 3.676 .0441 3.433 .0459 3.468 .0495

(54.8%) (55.7%) (53.5%) (46.8%)
current match m 0.223 .0336 0.176 .0213 0.179 .0201 0.209 .0325

(26.2%) (26.9%) (23.4%) (30.7%)
residual u 0.107 .0225 0.126 .0181 0.108 .0154 0.112 .0230

(17.5%) (22.9%) (17.9%) (21.8%)
2cov(x,m) .0028 .0001 .0017 .0033
2cov(x, u) .0048 .0014 .0049 .0051
2cov(m,u) -.0055 -.0058 -.0023 -.0077

Notes: The wage variance decomposition uses all wage observations (all four cases). The current
match component is the contribution of the match surplus. The residual component is the residual
history component.

Table 7: Match and worker surplus variance decomposition

Managers Supervisors Admin Production
Mean Variance Mean Variance Mean Variance Mean Variance

Match surplus z
z 0.811 .6363 0.777 .4818 0.825 .5213 0.785 .5219

f(x, y) 0.015 .0037 0.002 .0001 -0.018 .0014 -0.026 .0055
v 0.796 .6393 0.775 .4819 0.842 .5229 0.811 .5272

Worker surplus ζ
ζ 0.232 .0430 0.221 .0275 0.183 .0262 0.233 .0445

f(x, y) 0.017 .0030 0.002 .0001 -0.012 .0011 -0.015 .0043
v 0.215 .0425 0.219 .0274 0.195 .0274 0.248 .0476

Notes: The current surplus decomposition refers to all wage observations (all four cases). The
current match component is the contribution of the match surplus. The residual component is the
residual history component.
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Table 8: AKM wage variance decomposition

All Managers Supervisors Admin Production
Level Share Level Share Level Share Level Share Level Share

True data
Var(lnw) 0.1430 0.1107 0.0563 0.0653 0.0736

Var(worker) 0.1423 0.9948 0.1062 0.9588 0.0774 1.3745 0.0715 1.0943 0.0784 1.0656
Var(firm) 0.0183 0.1276 0.0131 0.1181 0.0279 0.4953 0.0196 0.2997 0.0197 0.2683

2Cov(wkr,firm) -0.0220 -0.1537 -0.0133 -0.1197 -0.0517 -0.9189 -0.0293 -0.4489 -0.0290 -0.3946
Var(residual) 0.0041 0.0287 0.0040 0.0365 0.0023 0.0413 0.0034 0.0522 0.0041 0.0562

Simulated data
Var(lnw) 0.1811 0.1334 0.0787 0.0854 0.1096

Var(worker) 0.1775 0.9802 0.1280 0.9592 0.0896 1.1380 0.0912 1.0676 0.1049 0.9564
Var(firm) 0.0169 0.0932 0.0151 0.1132 0.0178 0.2262 0.0127 0.1492 0.0141 0.1283

2Cov(wkr,firm) -0.0249 -0.1375 -0.0185 -0.1386 -0.0328 -0.4161 -0.0236 -0.2768 -0.0178 -0.1627
Var(residual) 0.0116 0.0641 0.0088 0.0661 0.0041 0.0519 0.0051 0.0600 0.0086 0.0781

little to wage dispersion, but we find strong evidence of random match effects.
Lastly, we proceed to the estimation of an AKM two-way fixed-effects regression on our

data and compare it with a similar estimation on simulated data (see Table 8. Both coincide,
which confirms that the model fits the data well. However, the AKM variance decomposition
delivers a much larger contribution of the worker effect and a sizable sorting effect (2 times
the covariance between the worker and the firm effect) as in the original paper of Abowd,
Kramarz, and Margolis (1999).16 For an obscure reason, the match effect translates for one
part into an augmented worker effect, a moderate firm effect and a negative sorting effect (2
times the covariance between the worker and the firm effect).17

6.6 Hiring wages

Finally, in Table 9 we show the same variance decomposition but for hiring wages, i.e. wages
just after a firm-to-firm transition. The contribution of the current match has increased sub-
stantially, and the residual variance is now almost entirely compensated by the covariance
between the current match component m and the historical residual u. Note that the covari-
ance term is negative because in the case of maximum promotions and displacements, the
current surplus term is higher and the residual is smallest. As in Di Addario, Kline, Saggio,

16Note that Babet, Godechot, and Palladino, 2022 estimate a smaller contribution of the worker effect and
a small, positive sorting component. This is due to to the fact that they use hourly wages and all contracts,
and we use daily wages and full-time contracts (see also Figure A1 in the Appendix B of their paper). By
keeping full-time contracts, we reduce the dependence of wages to hours, which we do not model.

17The divergence between type sorting and wage sorting was already emphasized by Lentz, Piyapromdee,
and Robin (2023).
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Table 9: Log-wage variance decomposition, all hiring wages

Managers Supervisors Admin Production
Mean Variance Mean Variance Mean Variance Mean Variance

lnw 4.219 .1285 3.957 .1035 3.673 .0782 3.792 .1118
x 3.924 .0713 3.686 .0481 3.444 .0425 3.484 .0504

(55.5%) (46.5%) (54.3%) (45.1%)
current match m 0.223 .0477 0.202 .0429 0.151 .0332 0.220 .0489

(37.1%) (41.4%) (42.5%) (43.7%)
residual u 0.072 .0181 0.070 .0188 0.078 .0132 0.088 .0254

(14.1%) (18.2%) (16.9%) (22.7%)
2cov(x,m) .0071 .0052 -.0011 -.0010
2cov(x, u) .0004 .0044 .0032 .0060
2cov(m,u) -.0163 -.0160 -.0128 -.0178

Table 10: Log-wage variance decomposition, hiring wages, normal negotiation (∆z > 0)

Managers Supervisors Admin Production
Mean Variance Mean Variance Mean Variance Mean Variance

lnw 4.205 .1110 3.921 .0960 3.676 .0570 3.811 .1123
x 3.921 .0734 3.689 .0448 3.461 .0377 3.500 .0547

(66.1%) (46.7%) (66.1%) (48.7%)
βz 0.091 .0023 0.061 .0018 0.055 .0009 0.094 .0032

(2.1%) (1.9%) (1.6%) (2.8%)
(1− β)ζ 0.194 .0254 0.172 .0288 0.160 .0139 0.217 .0347

(22.9%) (30.0%) (24.3%) (30.9%)
2cov(x, βz) .0000 .0010 -.0012 .0006

2cov(x, (1− β)ζ) .0026 .0100 .0010 .0084
2cov(βz, (1− β)ζ) .0072 .0094 .0047 .0106

and Søvsten (2023), Lamadon, Lise, Meghir, and Robin (2024), we find that the resetting
friction increases the contribution of the current match.

Finally, in Table 10, we keep only the normal hiring wages (z < z′). Now, the contribution
of the current surplus (m = βz) is negligible. This is because of our very low estimate of
β. Normal job-to-job moves will not generate a big increase in the match surplus. So, the
historical residual u = (1− β)ζ dominates βz.

7 Conclusion

In this paper, we develop a sequential auction model with the additional friction that, with
some probability, the second bidder wins the auction. We find evidence that maybe one-third
of all wage negotiations are of this inefficient type. Moreover, we model the match output
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as the sum of a part reflecting worker-firm complementarities and a random match-specific
component. We find that complementarities are negligible and that the match effect explains
around 20% of the total wage variance. We also find evidence that estimating a two-way
fixed-effects regression instead inflates the share of the variance that is explained by the
worker type and generates a negative sorting covariance. There are many good reasons to
believe that the same job might be good for one worker and bad for another, in ways that
cannot be described in terms of an interaction between fixed worker and firm characteristics.
Our work opens a new avenue for research on how best to describe matching in labor markets.
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APPENDIX

A Identification

Bargaining power parameter β

Consider two consecutive employment spells with a normal firm-to-firm transition. We know
that the wage resulting from the auction is the second price by checking that wages show a
progression in the second spell. Let

w1 = x+ βz1 + (1− β)ζ1

= x+ z1 − (1− β)(z1 − ζ1),

with 0 ≤ ζ1 ≤ z1, be a wage from the first spell. Let

w2 = x+ βz2 + (1− β)ζ2

= x+ z2 + (1− β)(z2 − ζ2),

with z1 ≤ ζ2 ≤ z2, be a wage from the second spell.
The hiring wage (the starting wage of the second spell) is

w2 = x+ βz2 + (1− β)z1

= β(x+ z2) + (1− β)(x+ z1).

It is the outcome of Nash bargaining between the worker and the second firm with the first
firm’s value as threat point. Using the first two wage equations, we can write

w2 = β [w2 + (1− β)(z2 − ζ2)] + (1− β) [w1 + (1− β)(z1 − ζ1)] .

It makes sense to use the last wages observed in each spell for w1 and w2 (say w1, w2)
because the two corresponding worker surpluses ζ1, ζ2 narrow the wedges z1 − ζ1, z2 − ζ2 to
their minimal values. In particular, if ζ1 = z1 and ζ2 = z2, these wedges are nil and we can
solve for β as

β =
w2 − w1

w2 − w1

.
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In the general case,

w2 − w1

w2 − w1

= β
1 + 1−β

β
z1−ζ1
z2−z1

1− (1− β) z2−ζ2−(z1−ζ1)
z2−z1

remains informative on β as long as ζ1 and ζ2 are close enough to z1 and z2.
In practice, by selecting first and second spells with long last steps, we should select

trajectories such that ζ1 and ζ2 are close enough to z1 and z2 to approximate β well. As an
empirical check, we can plot w2−w1

w2−w1
versus spell durations.

Worker ability x

Now let us consider a spell exhibiting an increasing sequence of wages. Suppose also that it
follows a transition from non-employment. So, the first wage of this spell is

w1 = x+ βz1

= β(x+ z1) + (1− β)x

= β
[
w1 + (1− β)(z1 − ζ1)

]
+ (1− β)x,

where w1 is the last wage of this spell and ζ1 is the corresponding worker surplus. If ζ1 = z1

then x is identified. Otherwise, suppose that a second spell follows that is also increasing.
The transition between these two spells must be subject to a normal negotiation yielding the
wage

w2 = β
[
w2 + (1− β)(z2 − ζ2)

]
+ (1− β)

[
w1 + (1− β)(z1 − ζ1)

]
.

If ζ2 = z2 then x is identified. And so on.
Increasing sequences starting from non-employment and ending with a best advancement

exist with a positive probability. Hence, x is identified if we can observe individual trajectories
over a sufficiently long period of time.

In practice, we observe many workers who avoid non-employment throughout the entire
observation period. Moreover, stock sampling make the first wage observed (we still call it
w1) like any other wage, with general form:

w1 = x+ βz1 + (1− β)ζ
1
,

where ζ
1

is the worker surplus indexing the first wage observation. Even if increasing wage
trajectories and best advancements occur with a high probability, it will be impossible to
disentangle worker ability x from initial worker surplus ζ

1
. Thus, for many workers we can
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only compute a posterior distribution of x, for a given parametric specification of the model,
which allows us to calculate the likelihood of any individual sequence of observations.

Sequence of match surpluses

Consider a firm-to-firm transition. The hiring wage is of the form

w2 = x+

βz2 + (1− β)z1 if z2 > z1,

z2 if z2 ≤ z1.

Suppose that x and z1 are known. Then, we can deduce the regime of the job-to-job change:
z2 > z1 if and only if w2 > x + z1. Hence, we can deduce z2 in both regimes. By induction,
we can therefore deduce the match productivity for all subsequent employment spells. This
is the advantage of the sequential auction mechanism, even imperfect as in the current setup.
Employment transitions reset the dependence on past wages (or workers’ surplus shares).

Now, we know x and z1 only if one of the observed past spells is non-employment, or if
w1 = x+ z1.

Transition rates

Suppose that we have identified all β, x for all workers and z for all matches. The instanta-
neous probability of leaving non-employment is λ0G0(x, 0). If some workers accept any job
(i.e. there exists x such that G0(x, 0) = 1), we can identify λ0 as the maximum instantaneous
probability of leaving non-employment.

Similarly, all wage increases to the maximal wage w = x + z occur with probability
λ3G3(x, z). From transitions to a worse state (z′ ≤ z), we identify λ2G2(x, z). From tran-
sitions to a better match (z′ > z), we identify λ1G1(x, z) + λ2G2(x, z). The layoff rate is
δ + λ2G2(x, 0). Hence, we will identify λ3 if there exists (x, z) such that G3(x, z) = 1 and
similarly for the other rates.

This requires that f(x, y) be bounded when y varies, and the supports of distributions
Hi must also be bounded. For example, G3(x, z) = 1 if z = f(x, y) + v with

f(x, y) = min
y∼q(y|x)

f(x, y) and v = inf Supp(H3).

Intuitively, we will identify λ3 from the maximal frequency of job spells such that the last
wage lasts unusually longer (over spell characteristics x, z). The rate λ2 should be identified
by the frequency of displacements, or firm-to-firm moves with a fall in wages. The rate λ1

should be identified by how much more frequent firm-to-firm moves with a wage increase are
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than moves with a wage cut, and how much more frequent the first wage raises in a job are
compared to a maximum promotion. The exogenous layoff rate δ is identified by difference
after taking out displacement to non-employment.

Disentangling surplus components

The match surplus in any employment spell out of non-employment is z = max{f(x, y)+v, 0}
where v is drawn independently from x, y. This is a standard censored regression, which is
identified under the assumption that v has a zero median (see Chen, Dahl, and and, 2005,
Lewbel and Linton, 2002, Lewbel, 2014).

If x is a latent variable, this is a much more complicated problem. Camirand Lemyre
and Delaigle (2022) recently considered a similar, but different measurement error problem
with selection. With our notations, and assuming that the measurement error is linear, their
model is observe z = F + v when z > 0 with v ⊥⊥ F | z > 0. They study this problem under
a parametric restriction on P(z > 0 | F ). As far as we are aware, there is no solution to the
fully nonparametric identification problem.

B Steady state distributions

In this section we derive the steady-state distributions.
First, we define the following integrals.

B.1 Useful integrals

1. Define

I0(t, a, b) =

∫ t

0

e−at′e−b(t−t′) dt′ =

 e−at−e−bt

b−a
if a ̸= b,

te−bt if a = b.

Note that I0(t, a, b) = I0(t, b, a).
It follows that

∂aI0(t, a, b) =
−te−at

b− a
+

e−at − e−bt

(b− a)2
=

I0(t, a, b)− I0(t, a, a)

b− a
,

∂bI0(t, a, b) =
te−bt

b− a
− e−at − e−bt

(b− a)2
=

I0(t, b, b)− I0(t, a, b)

b− a
.
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2. Define, for a ̸= b ̸= c,

I1(t, a, b, c) =

∫ t

0

I0 (t
′, a, b) e−c(t−t′) dt′

=

∫ t

0

e−at′ − e−bt′

b− a
e−c(t−t′) dt′

=
1

b− a
[I0(t, a, c)− I0(t, b, c)] .

Hence,

∂aI1(t, a, b, c) =
∂aI0(t, a, c) + I1(t, a, b, c)

b− a
,

and

∂bI1(t, a, b, c) = −∂aI0(t, b, c) + I1(t, a, b, c)

b− a
,

and

∂cI1(t, a, b, c) =
∂bI0(t, a, c)− ∂bI0(t, b, c)

b− a
.

B.2 All workers

Let ℓ0(x) denote the distribution of new-born workers and let ξ be the retirement rate. The
distribution of individuals by age and type is ℓ(t, x) such that

∂ℓ(t, x)

∂t
= −ξ ℓ(t, x).

Hence,
ℓ(t, x) = ℓ0(x)e

−ξt. (4)

Note that, for all d, ∫ t

0

ℓ(t′, x)e−d(t−t′) dt′ = I0 (t, ξ, d) ℓ0(x).

B.3 Non-employed workers

Let u(t, x) denote the equilibrium measure of workers (t, x) who are currently not employed.
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The law of motion of u(t, x) is

∂u(t, x)

∂t
= [δ + λ2G2(x, 0)] [ℓ(t, x)− u(t, x)]−

[
ξ + λ0G0(x, 0)

]
u(t, x)

= [δ + λ2G2(x, 0)] ℓ(t, x)− d0(x)u(t, x),

with
d0(x) = ξ + δ + λ0G0(x, 0) + λ2G2(x, 0).

Jobs terminate either with straight probability δ because of layoff, or because of a dis-
placement shock with a negative surplus draw. Unemployed workers leave non-employment
because they retire or find a job.

The solution to this first-order ODE with initial condition u(0, x) = ℓ0(x) (i.e. assuming
all workers start their career out of employment) is the cumulative sum of non-employment
inflows in time interval [0, t] who have not yet exited non-employment by t. Specifically,

u(t, x) = ℓ0(x)e
−d0(x)t + [δ + λ2G2(x, 0)]

∫ t

0

ℓ(t′, x) e−d0(x)(t−t′) dt′

= ℓ0(x)e
−d0(x)t + [δ + λ2G2(x, 0)] ℓ0(x)I0 (t, ξ, d0(x)) .

That is,
u(t, x) =

[
a(x)e−ξt + b(x)e−d0(x)t

]
ℓ0(x), (5)

with

a(x) =
δ + λ2G2(x, 0)

d0(x)− ξ
, b(x) = 1− a(x) =

λ0G0(x, 0)

d0(x)− ξ
.

Note that, for all d,∫ t

0

u(t′, x)e−d(t−t′) dt′ = [a(x)I0 (t, ξ, d) + b(x)I0 (t, d0(x), d)] ℓ0(x),

and ∫ t

0

[ℓ(t′, x)− u(t′, x)] e−d(t−t′) dt′ = b(x) [I0 (t, ξ, d)− I0 (t, d0(x), d)] ℓ0(x).

B.4 Matches

Let m(t, x, z) denote the equilibrium number of matches (t, x, z). Let M(t, x, z) denote the
number of workers of type (t, x) employed at a job 0 ≤ z′ ≤ z,

M(t, x, z) =

∫ z

0

m(t, x, z′) dz′,
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with M(t, x, z) = 0 for all z < 0 (all matches must yield nonnegative surplus), and M(0, x, z) =

0 (workers start unemployed).
The law of motion for M(t, x, z) is

∂M(t, x, z)

∂t
= λ0

[
G0(x, 0)−G0(x, z)

]
u(t, x)

+ λ2

[
G2(x, 0)−G2(x, z)

]
[ℓ(t, x)− u(t, x)−M(t, x, z)]

−
[
ξ + δ + λ2G2(x, 0) + λ1G1(x, z) + λ2G2(x, z)

]
M(t, x, z).

The inflow is made of workers who were not in the stock M(t, x, z) and enter; that is, the
unemployed and the displaced workers with match surplus greater than z, who draw a new
match surplus in [0, z]. The outflow comprises retirees (ξ), laid-off (δ+λ2G2(x, 0)) and workers
who are poached or displaced in jobs with a surplus greater than z (λ1G1(x, z)+λ2G2(x, z)).

Regrouping terms,

∂M(t, x, z)

∂t
=

(
λ0

[
G0(x, 0)−G0(x, z)

]
− λ2

[
G2(x, 0)−G2(x, z)

])
u(t, x)

+ λ2

[
G2(x, 0)−G2(x, z)

]
ℓ(t, x)− d1(x, z)M(t, x, z),

where
d1(x, z) = ξ + δ + λ1G1(x, z) + λ2.

Hence,

M(t, x, z) = λ2

[
G2(x, 0)−G2(x, z)

] ∫ t

0

ℓ(t′, x)e−d1(x,z)(t−t′) dt′

+
(
λ0

[
G0(x, 0)−G0(x, z)

]
− λ2

[
G2(x, 0)−G2(x, z)

] ) ∫ t

0

u(t′, x)e−d1(x,z)(t−t′) dt′

=
[
A(x, z) I0 (t, ξ, d1(x, z)) +B(x, z) I0 (t, d0(x), d1(x, z))

]
ℓ0(x), (6)

with

A(x, z) = λ0

[
G0(x, 0)−G0(x, z)

]
a(x) + λ2

[
G2(x, 0)−G2(x, z)

]
b(x),

B(x, z) =
(
λ0

[
G0(x, 0)−G0(x, z)

]
− λ2

[
G2(x, 0)−G2(x, z)

] )
b(x).

45



We can then deduce

m(t, x, z) = ∂zM(t, x, z)

=
[
∂zA(x, z) I0 (t, ξ, d1(x, z)) + ∂zB(x, z) I0 (t, d0(x), d1(x, z))

]
ℓ0(x)

+ ∂zd1(t, z)
[
A(x, z) ∂bI0 (t, ξ, d1(x, z)) +B(x, z) ∂bI0 (t, d0(x), d1(x, z))

]
ℓ0(x),

with

∂zd1(t, z) = −λ1g1(x, z),

∂zA(x, z) = λ0g0(x, z)a(x) + λ2g2(x, z)b(x),

∂zB(x, z) = [λ0g0(x, z)− λ2g2(x, z)] b(x).

B.5 Wages

Let n(t, x, y, z, ζ), for z ≥ ζ ≥ 0, denote the measure of workers whose current wage is

w = γ(t) + x+ βz + (1− β)ζ,

and the current job surplus is z = f(x, y) + v for some v. Let also

N(t, x, y, z, ζ) = n(t, x, y, z, 0) +

∫ ζ

0

n(t, x, y, z, ζ ′)dζ ′,

where 0 < ζ < z, and

N(t, x, y, z, z) = N(t, x, y, z, z−) + n(t, x, y, z, z),

where N(t, x, y, z, z−) = limζ↑z N(t, x, y, z, ζ) is the left-limit of N(t, x, y, z, ζ) at ζ = z.

B.5.1 n(t, x, y, z, 0)

The law of motion for n(t, x, y, z, 0) is

∂n(t, x, y, z, 0)

∂t
= e0(x, y, z)u(t, x)− d3(x, 0)n(t, x, y, z, 0),
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for entry and exit rates

e0(x, y, z) = λ0 h0 (z − f(x, y)) q0(y|x),

d3(x, 0) = ξ + δ + (λ1 + λ3)G1(x, 0) + λ2.

Hence,

n(t, x, y, z, 0) = e0(x, y, z)

∫ t

0

u(t′, x)e−d3(x,0)(t−t′) dt′

= e0(x, y, z)
[
a(x)I0 (t, ξ, d3(x, 0)) + b(x)I0 (t, d0(x), d3(x, 0))

]
ℓ0(x).

B.5.2 N(t, x, y, z, ζ)

The law of motion for N(t, x, y, z, ζ), when 0 < ζ < z, is

∂N(t, x, y, z, ζ)

∂t
= e0(x, y, z)u(t, x) + e1(x, y, z)M(t, x, ζ)− d3(x, ζ)N(t, x, y, z, ζ),

with

e1(x, y, z) = λ1 h1 (z − f(x, y)) q1(y|x) + λ2 h2 (z − f(x, y)) q2(y|x),

d3(x, ζ) = ξ + δ + (λ1 + λ3)G1(x, ζ) + λ2.

Hence,

N(t, x, y, z, ζ) =

∫ t

0

[e0(x, y, z)u(t
′, x) + e1(x, y, z)M(t′, x, ζ)] e−d3(x,ζ)(t−t′)dt′,

with ∫ t

0

u(t′, x)e−d3(x,ζ)(t−t′)dt′ = [a(x)I0(t, ξ, d3(x, ζ)) + b(x)I0(t, d0(x), d3(x, ζ))]ℓ0(x),

and∫ t

0

M(t′, x, ζ)e−d3(x,ζ)(t−t′)dt′

= ℓ0(x)

∫ t

0

[
A(x, ζ) I0 (t

′, ξ, d1(x, ζ)) +B(x, ζ) I0 (t
′, d0(x), d1(x, ζ))

]
e−d3(x,ζ)(t−t′)dt′

=
[
A(x, ζ)I1 (t, ξ, d1(x, ζ), d3(x, ζ)) +B(x, ζ)I1 (t, d0(x), d1(x, ζ), d3(x, ζ))

]
ℓ0(x).
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B.5.3 n(t, x, y, z, ζ)

The law of motion for n(t, x, y, z, ζ) is

∂n(t, x, y, z, ζ)

∂t
= e1(x, y, z)m(t, x, ζ)+(λ1+λ3) g1(x, ζ)N(t, x, y, z, ζ)−d3(x, ζ)n(t, x, y, z, ζ).

Instead of solving this equation, we can more easily deduce n(t, x, y, z, ζ) from N(t, x, y, z, ζ)

as
n(t, x, y, z, ζ) =

∂N(t, x, y, z, ζ)

∂ζ
=

(
e0(x, y, z)C0 + e1(x, y, z)C1

)
ℓ0(x),

where

C0 =
∂

∂ζ
[a(x)I0 (t, ξ, d3(x, ζ)) + b(x)I0 (t, d0(x), d3(x, ζ))]

= −(λ1 + λ3)g1(x, ζ)
[
a(x)∂bI0 (t, ξ, d3(x, ζ)) + b(x)∂bI0 (t, d0(x), d3(x, ζ))

]
and

C1 =
∂

∂ζ
[A(x, ζ)I1 (t, ξ, d1(x, ζ), d3(x, ζ)) +B(x, ζ)I1 (t, d0(x), d1(x, ζ), d3(x, ζ))]

= ∂zA(x, ζ)I1 (t, ξ, d1(x, ζ), d3(x, ζ)) + ∂zB(x, ζ)I1 (t, d0(x), d1(x, ζ), d3(x, ζ))

− λ1g1(x, ζ)
[
A(x, ζ)∂bI1 (t, ξ, d1(x, ζ), d3(x, ζ)) +B(x, ζ)∂bI1 (t, d0(x), d1(x, ζ), d3(x, ζ))

]
−(λ1+λ3)g1(x, ζ)

[
A(x, ζ)∂cI1 (t, ξ, d1(x, ζ), d3(x, ζ))+B(x, ζ)∂cI1 (t, d0(x), d1(x, ζ), d3(x, ζ))

]
.

B.5.4 n(t, x, y, z, z)

The law of motion for n(t, x, y, z, z) is

∂n(t, x, y, z, z)

∂t
= e2(x, y, z) [ℓ(t, x)− u(t, x)−M(t, x, z)]

+ λ3G1(x, z)N(t, x, y, z, z−)− d1(x, z)n(t, x, y, z, z),

with

e2(x, y, z) = λ2 h2 (z − f(x, y)) q2(y|x),

d1(x, z) = ξ + δ + λ1G1(x, z) + λ2.

Note that we can omit the inflows

e1(x, y, z)m(t, x, z) dz + (λ1 + λ3) g1(x, z) dz N(t, x, y, z, z−)
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because they are negligible.
Hence,

n(t, x, y, z, z) = e2(x, y, z)

∫ t

0

[ℓ(t′, x)− u(t′, x)−M(t′, x, z)] e−d1(x,z)(t−t′) dt′

+ λ3G1(x, z)

∫ t

0

N(t′, x, y, z, z−)e−d1(x,z)(t−t′) dt′,

with∫ t

0

[ℓ(t′, x)− u(t′, x)] e−d1(x,z)(t−t′) dt′ = b(x)
[
I0 (t, ξ, d1(x, z))−I0 (t, d0(x), d1(x, z))

]
ℓ0(x),

and∫ t

0

M(t′, x, z)e−d1(x,z)(t−t′) dt′ =
[
A(x, z)I1 (t, ξ, d1(x, z), d1(x, z))

+B(x, z)I1 (t, d0(x), d1(x, z), d1(x, z))
]
ℓ0(x),

and∫ t

0

N(t′, x, y, z, z−)e−d1(x,z)(t−t′) dt′ = ℓ0(x)×[
e0(x, y, z)

∫ t

0

[
a(x)I0(t

′, ξ, d3(x, z)) + b(x)I0(t
′, d0(x), d3(x, z))

]
e−d1(x,z)(t−t′) dt

+e1(x, y, z)

∫ t

0

[
A(x, z)I1 (t

′, ξ, d1(x, z), d3(x, z))+B(x, z)I1 (t
′, d0(x), d1(x, z), d3(x, z))

]
e−d1(x,z)(t−t′) dt

]

where ∫ t

0

I0(t
′, ξ, d3(x, z))e

−d1(x,z)(t−t′) dt = I1 (t, ξ, d3(x, z), d1(x, z)) ,∫ t

0

I0(t
′, d0(x), d3(x, z))e

−d1(x,z)(t−t′) dt = I1 (t, d0(x), d3(x, z), d1(x, z)) ,
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and∫ t

0

I1 (t
′, ξ, d1(x, z), d3(x, z)) e

−d1(x,z)(t−t′) dt

=

∫ t

0

I0(t
′, ξ, d3(x, z))− I0(t

′, d1(x, z), d3(x, z))

d1(x, z)− ξ
e−d1(x,z)(t−t′) dt

=
I1(t, ξ, d3(x, z), d1(x, z))− I1(t, d1(x, z), d3(x, z), d1(x, z))

d1(x, z)− ξ

and∫ t

0

I1 (t
′, d0(x), d1(x, z), d3(x, z)) e

−d1(x,z)(t−t′) dt

=

∫ t

0

I0(t
′, d0(x), d3(x, z))− I0(t

′, d1(x, z), d3(x, z))

d1(x, z)− d0(x)
e−d1(x,z)(t−t′) dt

=
I1(t, d0(x), d3(x, z), d1(x, z))− I1(t, d1(x, z), d3(x, z), d1(x, z))

d1(x, z)− d0(x)
.

C Likelihood

An individual observation is a sequence (tn, sn, dn, yn, wn, n = 1, ..., N) where tn = t1 − 1 + n

is age/experience, sn = U,E,R is the employment status (unemployed, employed or retired),
dn ∈ {0, 1} is the indicator of job mobility, yn is the employer’s type and wn is the wage in
period n (both missing if unemployed). Set by default zn = ζn = 0.

C.1 Contribution of the initial observation

C.1.1 Non-employment

The probability density of the joint event “being of type (t, x) and unemployed” is u(t, x)/L,
where L = L0/ξ is the size of the population for a flow of young workers L0 and a retirement
rate ξ.

The contribution to the likelihood of Non-employment as first observation is,

LU(1) =
u(t1, x)

L
.

Note that worker ability x is unobserved and will have to be integrated out in the end.
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C.1.2 Employment

Consider a worker of type (t, x) employed by a firm of type y at a wage w and with job
history ζ ≥ 0. The current job surplus is z = f(x, y) + v. The observed wage is

w = γ(t) + x+ βz + (1− β)ζ,

and three cases can occur regarding job history: ζ = 0, ζ ∈]0, z[ or ζ = z. But we do not
which of the three regimes is observed.

If ζ = 0, then the wage density is 1
β

1
L
n
(
t, x, y, w−γ(t)−x

β
, 0
)

as the job surplus is necessarily

z = w−γ(t)−x
β

. If ζ ∈]0, z[, we can decide to fix z = ζ + w1−γ(t)−x−ζ
β

, where z > ζ > 0, that is

0 < ζ < w − γ(t)− x.

Finally, if ζ = z, the wage density is 1
L
n(t, x, y, z, z) for z = w − γ(t)− x. Note the absence

of a derivative for the transformation z 7→ w.
The contribution to the likelihood of the initial observation is therefore

LE(1) =
1

β

1

L
n(t1, x, y1, z1, ζ1)× 1{0 ≤ ζ1 < w1 − γ(t1)− x}

+
1

L
n(t1, x, y1, z1, z1)× 1 {ζ1 = w1 − γ(t1)− x} ,

for
z1 = ζ1 +

w1 − γ(t1)− x− ζ1
β

.

The match type ζ1 is unobserved and will have to be integrated out in the end together with
x. Note that the integration with respect to ζ1 has to be done taking into account that ζ1 = 0

and ζ1 = w1 − γ(t1)− x are two mass points given x.

C.2 Contribution of subsequent observations

Consider period n > 1. For notational simplicity, we “prime” observations in period n, like
wn = w′, and we “un-prime” observations in period n− 1, like wn−1 = w. Also, tn−1 = t− 1

and tn = t.

C.2.1 Retirement

The probability of retiring (sn = R) from any labor-active state (s = U,E) is

LsR(n) = ξ.
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The probability of remaining inactive is LRR(n) = 1 as retirement is an absorbing state.

C.2.2 Non-employment given Non-employment

The probability of remaining non-employed for another period (sn = U) is the probability of
not retiring and not finding an acceptable employment:

LUU(n) = 1− ξ − λ0G0(x, 0).

Note that we neglect the possibility of leaving non-employment to re-enter before the end of
the period.

C.2.3 Employment given non-employment

An unemployed worker draws an offer with probability λ0; this offer comes from a firm y′

with probability q0(y
′|x); the wage is

w′ = γ(t) + x+ β [f(x, y′) + v′] ,

with density h0(v
′)/β, where y′ and v′ are subject to the positive-surplus condition z′ =

f(x, y′) + v′ ≥ 0.
Hence, this observation contributes to the likelihood for

LUE(n) = λ0 q0(yn|x)
1

β
h0(zn − f(x, yn))× 1{wn ≥ γ(tn) + x},

with
zn =

wn − γ(tn)− x

β
and ζn = 0.

C.2.4 Non-employment given employment

This observation contributes to the likelihood for

LEU(n) = δ + λ2G2(x, 0).

Either this is straight layoff (δ) or this is a displacement shock and the z that is drawn is
negative.
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C.2.5 Employment in the same firm, constant wage

There is no wage adjustment between the two periods (ie w′ − γ(t) = w − γ(t− 1)) if there
is no retirement, layoff and displacement. In case of poaching, any unrestricted poaching by
a firm z′ > ζ will make the wage increase or induce mobility. If poaching is interrupted, and
z > ζ, i.e. the current wage is less than maximum, then z′ > ζ leads to a wage increase.
However, if ζ = z, the current wage is maximum and no λ3-poaching will do anything.

This observation contributes to the likelihood for

LEE(n) = 1− ξ − δ − [λ1 + λ31{ζn−1 < zn−1}]G1(x, ζn−1)− λ2,

and we set
ζn = ζn−1 and zn = zn−1.

C.2.6 Employment in the same firm, wage increase less than maximum

Let z be the surplus of the job, already inferred from period n− 1. Let w′ be the new wage,
such that ∆ = w′ − γ(t)− (w − γ(t− 1)) > 0. It is of the form

w′ = γ(t) + x+ βz + (1− β)ζ ′,

where ζ ′ = f(x, y′)+v′ is drawn, given x, with probability density g1(x, ζ
′). Poaching does not

induce job-to-job mobility but generates a wage increase to a lower wage than the maximum
wage if z > ζ ′ > ζ.

This observation contributes to the likelihood for

LEE(n) = (λ1 + λ3)
g1(x, ζn)

1− β
× 1 {ζn ∈]ζn−1, zn−1[} ,

with
ζn =

wn − γ(tn)− x− βzn
1− β

and zn = zn−1.

In practice, we decide that the wage is maximum if

zn − ζn
zn

< α

with α small. We have experimented values between 0.01% and 5%, and we use 2.5%.
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C.2.7 Employment in the same firm, maximum wage increase

Let z be the surplus of the job, already inferred from period n− 1 observation. Suppose that
the new wage w′ is the maximum wage

w′ = γ(t) + x+ z.

This occurs with probability mass λ3G1(x, z).

This observation contributes to the likelihood for

LEEmax(n) = λ3G1(x, zn−1),

and we set
ζn = zn = zn−1.

C.2.8 Employment in a different firm, new wage greater than previous maxi-
mum

In case of unrestricted poaching (including displacement) the new wage is of the form

w′ = γ(t) + x+ βz′ + (1− β)z

with z′ = f(x, y′) + v′ > z.
The observation (y′, w′) contributes to the likelihood for

LEE′(n) =
1

β
[λ1q1(yn|x)h1(zn − f(x, yn)) + λ2q2(yn|x)h2(zn − f(x, yn))]

× 1{wn > γ(tn) + x+ zn−1},

and
zn =

1

β
(wn − γ(tn)− x− (1− β)zn−1) , ζn = zn−1.

C.2.9 Employment in a different firm, new wage lower or equal than previous
maximum

This case indicates a displacement. The new wage is of the form

w′ = γ(t) + x+ z′

with ζ ′ = z′ = f(x, y′) + v′ < z.
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The observation (y′, w′) contributes to the likelihood for

LEE′(n) = λ2q2(yn|x)h2(zn − f(x, yn))× 1{wn ≤ γ(tn) + x+ zn−1},

and
zn = ζn = wn − γ(tn)− x.

C.3 Individual likelihood

Now we can write the complete likelihood for any worker in the sample as

L(x, ζ1) = Ls1 × ...× LsN ,

where we emphasize the two initial variables x and ζ1. Ability x is always unobserved and ζ1

is unobserved when s1 = E while ζ1 = 0 if s1 = U . We need to integrate x and ζ1. On which
domain?

To answer this question, let us define a spell as a sequence of consecutive time units such
that the state does not change: a duration of non-employment or a duration of employment
in a given firm. Let k = 1, ..., K index the spell with k = 1 indexing the first employment
spell. If the first observed spell is non-employment, we treat this spell as an additional initial
spell indexed by k = 0. Let sk = U,E,R indicate whether it is a non-employment or an
employment spell. If there is no pre-non-employment spell, s0 is missing. Note also that
retirement can only occur in the last spell. Using dk for the duration of each spell, we can
easily simplify the expression of the likelihood.

Within each employment spell, we know that the net log wage w−γ(t) increases by steps.
Let us index by j = 1, ..., Jk the different steps within an employment spell. Thus wkj will
denote the jth rung in spell k if k is an employment spell (sk = E). Note that wk1 = wk

is the minimal net log wage and wkJk = wk is the maximum one. We can then use similar
notations for zk and ζkj (with ζk1 = ζ

k
and ζkJk = ζk). It will also be useful to calculate the

duration dkj of each subspell j.
If the first spell is a non-employment spell and after each new spell out of employment,

the variable ζ
1

is reset to zero. Only for trajectories which start by an employment spell,
and only for the part until a spell out of employment occurs, do we need to integrate ζ

1

out. Conditional on ζ
1
, observations generate constraints on x which are informative on its

location, as we now explain.
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C.3.1 Bounds for ζ
1

given x

Consider the first spell and let us assume it is an employment spell.

One single rung. Suppose that the detrended wage does not increase during the spell:

w1 = w1 = w1 = x+ βz1 + (1− β)ζ1,

and the only information that we have is that

0 ≤ ζ1 ≤ w1 − x.

The integration with respect to ζ1 has to be done taking into account that ζ1 = 0 and
ζ1 = w1 − x are two mass points given x:

1

β

1

L
n

(
t1, x, y1,

w1 − x

β
, 0

)
+

∫ w1−x

0

1

β

1

L
n(t1, x, y1, z1, ζ1) dζ1

+ n (t1, x, y1, w1 − x,w1 − x) ,

where z1 = ζ1 +
w1−x−ζ1

β
. The middle integral corresponds to the case where z1 > w1 − x or

ζ1 < z1.

More rungs. Now suppose that w1 > w1. Then, for sure, the initial ζ11 = ζ
1
< z1. All

subsequent wages contribute to increase the current value of ζ. For the last and greatest
wage, we have

w1 = x+ βz1 + (1− β)ζ
1
,

w1 = x+ βz1 + (1− β)ζ1.

The last equation tells us that 0 < ζ1 ≤ w1−x (as with one single rung). The two equations
imply that

ζ1 − ζ
1
=

w1 − w1

1− β
.

We finally obtain the following constraint on ζ
1
:

0 ≤ ζ
1
≤ w1 − x− w1 − w1

1− β
. (7)
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The integration of the likelihood with respect to ζ
1

has to be done taking into account that
ζ
1
= 0 and ζ

1
= ζ∗

1
:= w1 − x− w1−w1

1−β
are two mass points for ζ

1
given x:

1

β

1

L
n

(
t1, x, y1,

w1 − x

β
, 0

)
+

∫ ζ∗
1

0

1

β

1

L
n(t1, x, y1, z1, ζ1) dζ1 + n

(
t1, x, y1, ζ

∗
1
, ζ∗

1

)
,

where z1 = ζ
1
+

w1−x−ζ
1

β
.

C.3.2 Bound for x

For individuals who are unemployed in all periods: the upper bound of the integral for is
+∞. For individuals who are employed for at least one period, we will only consider the
restriction ζ∗

1
≥ 0. That is,

x ≤ w1 −
w1 − w1

1− β
.

Note that this constraint applies to all employment spells:

x ≤ wk −
wk − wk

1− β
.

We finally use the minimal bound:

x ≤ min
k

wk −
wk − wk

1− β
.

C.4 Numerical integration

In order to calculate the outer integrals with respect to x, we note that densities u(t, x) and
n(t, x, y, z, ζ) are proportional to ℓ0(x) ∝ e−

(x−µ)2

2s . So we have to calculate integrals of the
form

1

s
√
2π

∫ a

−∞
f(x)e−

(x−µ)2

2s dx =
1√
π

∫ 0

−∞
f(a+

√
2st)e−

√
2(a−µ)t

s
− (a−µ)2

2s2 e−t2 dt ≡ 1√
π

∫ +∞

−∞
g(t)e−t2 dt

for

g(t) =

1
2
f(a+

√
2st)e−

√
2(a−µ)t

s
− (a−µ)2

2s2 if t ≤ 0,

1
2
f(a−

√
2st)e

√
2(a−µ)t

s
− (a−µ)2

2s2 if t > 0.

This integral can then be approximated by Gauss-Laguerre or Gauss-Hermite quadrature.
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D Model simulation

We simulate an economy given parameters as follows.

1. Given α2, α3 predict y = y1 + α2y2 + α3y3 from factors y1, y2, y3 (wage location and
spread and firm size). Fit the distribution of y across firms in the data. Specifically, we
fit a Gamma distribution shifted on y−min(y). For example, using the whole sample,
we estimate a shape parameter of 9.11, a scale parameter of 0.477. Draw M different
values of y from this distribution corresponding to M different firms.

2. Use the model to simulate N individuals for 10 periods. In practice we use M = 5000

and N = 50000 as in France the ratio of firms to workers is about 1:10 (about 3 mil
firms, 30 mil workers). For each individual in each period (including the initial period),
we draw a firm type y from the continuous distributions q(y | x) that we assign to the
firm in the pool with the nearest y. This way we have workers classified into discrete
firms and they move across these firms over time. We also get a distribution of firm
sizes in each period. The overall distribution of matched firms has been verified to be
stable over time, and is similar to the empirical density of firm’s y across firms.

3. We finally check that our method for estimating firm heterogeneity works. Using the
simulated data, we compute for each firm summary statistics of the wage distribution
of their employees (mean, median, p25, p75) and its size, based on the distinct workers
that it employs. There are 4651 firms. We keep firms with at least 3 workers (consistent
with sample selection procedure in actual data.) There are 4015 firms left. As with the
data, we use PCA to obtain predicted factors ŷ1, ŷ2 and ŷ3 is the simulated log size.
We then regress the “true” y = y1+α2y2+α3y3 on ŷ1, ŷ2, ŷ3. The prediction ŷ from this
regression is then plotted against the “true” y. The fit is very good (see Figure D.1).
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Figure D.1: True versus predicted firm type

E Data Appendix

The DADS panel data records, for each calendar year, all job spells of workers born in
October. A unique worker identifier allows to follow workers across years. For each job spell,
we observe the starting date (normalized to 1 if the job spell started the previous year),
the ending date (normalized to 360 if the job spell ended the following year), and the total
earnings received from the job during the year. We start by dividing the 5 years of 2015-2019
into 10 semesters. To do so, we redefine for each semester the starting and ending dates of
each job spell according to similar normalizations (e.g. the ending date is 180 for the first
semester of a given year if the job goes on the next semester). Other variables are kept
unchanged. We then compute the number of paid days in the semester for each job spell
from the renormalized starting and end dates. We finally consider as our wage concept the
daily wage constructed as the net earnings received during the whole calendar year (variable
“sn”) divided by the number of days worked in this year (variable “dp”).18 Since we will focus
on full-time workers (see below), this wage concept effectively corresponds to a wage rate.

For each semester, we then create worker-level data by choosing a unique job spell per
worker according to the following priority rules:

18This is because there is no way to get semester-level information on daily wage (within a job spell workers
may get a pay raise and we do not know when this occurs, neither the magnitude of the raise).
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• the job spell corresponds to a job we do not want to drop (see details below),

• the job spell is the one in which the worker spent the largest number of days during
the semester,

• the annual earnings are largest (in case there are still multiple eligible job spells after
applying the first two rules).

We then recode as non-employed workers those that have worked less than 30 days in their
main job spell defined as above and “rectangularize” the data to have a balanced panel with
no missing worker*semester observations. Workers are also assumed to be non-employed
when they are not observed in the data a given semester.

We apply additional restrictions to this balanced panel. First, we keep prime-age male
workers (25-55 y.o. in 2015) that are, whenever employed during the observation period of
2015-2019, always working full-time and always working in a private firm with at least 3
employees (so that a firm type can be computed from the firm-level wage distribution). We
further remove workers whose recorded occupation is farmer, CEO, craftsman or merchant
at some point in the observation period.

We define the workers’ occupation category as the one in which they have been observed
employed for the largest number of semesters.

We then apply the following additional cleaning and regularization steps for the whole
sample and each skill group separately:

1. Remove individuals having extreme wages at some point of their trajectories: we com-
pute the minimum and maximum observed wage for each worker in the sample and
drop workers for which the maximum wage are in the top 1% of the maximum wage
distribution and workers for which the minimum wage is in the bottom 2% of the min-
imum wage distribution. Distributions are computed over all individuals in the sample
(one observation per individual).

2. Remove individuals having extreme firm types at some point of their trajectories: we
compute for each worker the minimum and maximum firm’s first latent characteristic
(corresponding to the first principal component obtained from the PCA of the firm
wage distribution) observed over the worker’s whole trajectory. We then drop workers
for which the maximum firm characteristic is in the top 0.5% of the maximum firm
characteristic distribution and for which the minimum characteristic is in the bottom
0.5% of the minimum firm characteristic distribution. Distributions are computed over
all individuals in the sample.
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3. Remove individuals having extreme wage changes within a job spell at some point
of their trajectory: we compute differences in log wage across subsequent periods
(semesters) within a given job spell for a given worker. We then compute for each
worker the minimum and the maximum of these changes within job spell and eventu-
ally remove workers for which the minimum change within a job spell is in the bottom
5% of the distribution of these minimum changes and workers for which the maximum
change within a job spell is in the top 5% of the distribution of these maximum changes.
Distributions are again computed over all individuals in the sample.

4. Keep individuals with initial age (i.e. in period 1) between 25 and 45 y.o.

5. Apply the noise reduction procedure described in Section 4.3.

Table E.1 provides for the whole sample and each skill group the sample characteristics,
including an AKM decomposition at each of the steps above.

Within the resulting dataset for each skill group, we consider for estimation a random
draw of 50,000 individuals (if the data has more).
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Table E.1: Descriptive statistics and data cleaning

Log wage variance
No obs Mean P10 P90 Var decomposition

log wage log wage Firm Wkr Cov
Effect Effect FE/WE

Whole sample
Initial sample 4 943 118 3.833 3.354 4.422 0.217 0.153 0.916 -0.084
After keeping men 3 370 303 3.864 3.391 4.456 0.217 0.148 0.924 -0.082
After removing extreme wages 3 278 438 3.859 3.401 4.432 0.176 0.149 0.939 -0.083
After removing extreme firm types 3 252 005 3.857 3.402 4.424 0.172 0.149 0.944 -0.085
After removing extreme wage changes 3 004 284 3.858 3.411 4.414 0.164 0.119 0.962 -0.068
After keeping individuals initial age 25-45 2 050 964 3.851 3.421 4.374 0.147 0.130 0.968 -0.074
After wage regularization 2 050 964 3.851 3.427 4.371 0.144 0.128 0.995 -0.077

Managers and engineers
Initial sample 876 688 4.233 3.793 4.732 0.187 0.012 0.151 -0.016
After keeping men 617 622 4.261 3.822 4.768 0.194 0.012 0.155 -0.026
After removing extreme wages 600 981 4.255 3.833 4.745 0.149 0.009 0.124 -0.020
After removing extreme firm types 595 468 4.253 3.834 4.738 0.146 0.009 0.122 -0.021
After removing extreme wage changes 553 215 4.235 3.832 4.691 0.134 0.006 0.118 -0.015
After keeping individuals initial age 25-45 367 269 4.220 3.843 4.641 0.114 0.007 0.099 -0.006
After wage regularization 367 269 4.220 3.848 4.638 0.112 0.006 0.099 -0.007

Oversees and technicians
Initial sample 598 360 3.955 3.632 4.299 0.087 0.451 1.235 -0.418
After keeping men 426 295 3.979 3.662 4.320 0.083 0.430 1.229 -0.395
After removing extreme wages 414 568 3.979 3.673 4.309 0.067 0.580 1.369 -0.529
After removing extreme firm types 411 080 3.978 3.675 4.306 0.065 0.569 1.356 -0.517
After removing extreme wage changes 379 584 3.979 3.681 4.299 0.062 0.457 1.312 -0.420
After keeping individuals initial age 25-45 245 081 3.967 3.680 4.277 0.059 0.492 1.332 -0.451
After wage regularization 245 081 3.967 3.685 4.274 0.057 0.495 1.375 -0.459

Admin workers
Initial sample 628 577 3.675 3.382 4.037 0.096 0.326 0.968 -0.251
After keeping men 206 324 3.720 3.413 4.104 0.098 0.287 0.947 -0.184
After removing extreme wages 200 595 3.718 3.420 4.088 0.078 0.343 0.995 -0.230
After removing extreme firm types 198 908 3.717 3.421 4.082 0.076 0.369 0.997 -0.244
After removing extreme wage changes 183 406 3.721 3.431 4.079 0.071 0.270 1.061 -0.206
After keeping individuals initial age 25-45 135 443 3.719 3.435 4.070 0.070 0.312 1.080 -0.239
After wage regularization 135 443 3.719 3.441 4.067 0.068 0.300 1.094 -0.224

Production workers
Initial sample 2 503 645 3.773 3.419 4.180 0.123 0.292 0.959 -0.213
After keeping men 1 934 908 3.783 3.442 4.175 0.116 0.295 0.974 -0.220
After removing extreme wages 1 880 749 3.781 3.451 4.158 0.090 0.295 0.952 -0.204
After removing extreme firm types 1 864 990 3.779 3.451 4.154 0.088 0.296 0.951 -0.204
After removing extreme wage changes 1 719 990 3.786 3.464 4.153 0.083 0.246 0.982 -0.175
After keeping individuals initial age 25-45 1 165 910 3.779 3.461 4.140 0.078 0.267 1.017 -0.192
After wage regularization 1 165 910 3.779 3.470 4.135 0.075 0.268 1.066 -0.197

Notes: the initial sample is composed of 25-55 y.o. individuals working always full time in a private firm with
at least 3 employees in all their job spells. Log wages correspond to logarithm of daily wages adjusted by a
quadratic term in age. We perform an AKM decomposition of log wages by running on the period 2015-2019
the following regression for worker i in firm j at time t: lnwijt = αi + βj + γt + ϵijt and report in last three
columns the contributions of firm effects, worker effects, and their covariance to the variance of log wages.
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F Additional figures

(a) All employer types (b) All wages

(c) Within-firm wage growth (d) Between-firm wage growth

Figure F.2: Fit of wage distributions, Managers
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(a) All employer types (b) All wages

(c) Within-firm wage growth (d) Between-firm wage growth

Figure F.3: Fit of wage distributions, Supervisors
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(a) All employer types (b) All wages

(c) Within-firm wage growth (d) Between-firm wage growth

Figure F.4: Fit of wage distributions, Admin
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(a) All employer types (b) All wages

(c) Within-firm wage growth (d) Between-firm wage growth

Figure F.5: Fit of wage distributions, Production
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(a) Normal promotions (b) Max promotions

(c) Normal hiring (d) Displacements

Figure F.6: Simulated wage changes, restricted and unrestricted, Managers

(a) Normal promotions (b) Max promotions

(c) Normal hiring (d) Displacements

Figure F.7: Simulated wage changes, restricted and unrestricted, Supervisors
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(a) Normal promotions (b) Max promotions

(c) Normal hiring (d) Displacements

Figure F.8: Simulated wage changes, restricted and unrestricted, Admin

(a) Normal promotions (b) Max promotions

(c) Normal hiring (d) Displacements

Figure F.9: Simulated wage changes, restricted and unrestricted, Production
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