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Abstract

Digital health technologies, such as Continuous Glucose Monitors (CGMs), are trans-
forming the availability of patient-level data, potentially influencing healthcare markets
more broadly. This paper examines how CGMs influence the insulin market, shedding
light on the impact of digital health technologies on pharmaceutical demand, pricing, and
innovation incentives. I develop and estimate a tractable model of supply and demand for
insulin, embedding: (i) patient-specific learning about treatment performance through the
digital device, (ii) physician-level learning about new insulin products based on patient
experiences, and (iii) price bargaining by pharmaceutical companies and the regulator,
both internalizing demand-side learning. Using comprehensive medical claims data from
France, where expanded CGM coverage boosted technology adoption, I find that CGMs’
patient-specific information steered insulin demand toward newer products, with limited
information spillover to non-users. Manufacturers of drugs that benefited from higher per-
ceived quality, thanks to the observability of these attributes, could negotiate higher drug
prices. My findings indicate that the introduction of these new observable attributes into
pharmaceutical demand can shift the relative profitability of drug innovation strategies,
thereby shaping future pharmaceutical innovation.
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1 Introduction

From the smartphone step counter to smartwatches, digital devices that generate high-frequency

health data are now widely available, transforming the landscape of individual-level information

for decision-making.1 This data is compelling for the pharmaceutical industry because prescrip-

tion drugs are experience goods. Patients exhibit diverse needs, leading to idiosyncratic match

values with drugs, and physicians learn about a drug’s performance as they prescribe it. There-

fore, by generating timely information, digital technologies can also affect the demand for other

healthcare products.

This paper investigates the impact of Continuous Glucose Monitors (CGMs) on insulin

choice in diabetes treatment. By delivering continuous glucose readings, CGMs enhance the

information available to evaluate insulin treatments, highlighting the limitations of traditional

measures that may conceal critical variations in glucose control (Figure A1). Key questions

arise: How do CGMs’ insights influence the insulin choices for technology users? To what extent

do these insights guide physicians’ prescriptions for other patients? What are the implications

for pharmaceutical price negotiations between manufacturers and regulators? Finally, how do

CGMs impact incentives for pharmaceutical innovation?

To address these questions, I leverage comprehensive medical claims data from the French

health insurance system, which provides a unique setup to assess the impacts of CGMs. This

dataset is particularly valuable due to France’s universal, centralized insurance system, which

provides comprehensive records of prescription reimbursements for the entire population. Ad-

ditionally, a policy change that expanded CGM coverage boosted adoption among insulin-

dependent diabetic patients. This policy shift, along with the technological characteristics of

the device, allows for inferring technology adoption and attrition from claims data.2 I use the

claims data to estimate a tractable demand and supply model for insulin to show that patient-

specific information from CGMs steers insulin demand towards newer, less familiar drugs, fos-

tering physicians’ learning about these products’ real-life performance. By influencing how

physicians perceive drugs’ clinical match values, CGMs enable the manufacturers of drugs that

perform well on the new observable attributes to set higher prices, ultimately impacting the
1Examples of such technologies include Continuous Glucose Monitors (CGMs) measuring sugar levels, wear-

able blood pressure trackers, connected insertable cardiac monitors, and sleep trackers (Handel and Kolstad
(2017)).

2The adoption date for patients paying for CGMs out-of-pocket before the coverage decision can be inferred
through claims for alternative glucose measurement technologies. The current technology relies on disposable
sensors that must be replaced every 14 days.
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profitability of the pharmaceutical innovation strategy.

This paper sheds light on how digital health technologies shape pharmaceutical markets,

disentangling two mechanisms. First, high-frequency data can speed up physicians’ learning

about the performance of treatments. Second, CGMs provide detailed patient-specific insights,

broadening the attributes observable for evaluating the effectiveness of drugs. This distinction

matters: faster learning upon market entry dampens the barriers to new drug adoption with-

out changing the perceived differentiation of drugs after the initial uncertainty resolves. In

contrast, new attributes for evaluating drug performance change the information available to

physicians when choosing treatments beyond market entry. By reshaping physicians’ prefer-

ences for treatments, the attributes observed thanks to these new technologies may not only

impact competition between existing products but also affect the incentives for future phar-

maceutical innovations. I develop an empirical framework of supply and demand for insulin,

accounting for: (i) patient-specific match value components revealed by CGMs, (ii) physician-

level learning about new drugs, and (iii) price responses from bargaining with the regulator.

Using claims data from 2015 to 2021 — a period marked by new insulin entries and increased

CGM adoption — I identify (i) the impact of CGM-generated patient-specific information by

comparing insulin choices of similar patients with and without CGMs and (ii) the impact of

CGMs on physicians’ learning speed through variations in prescription patterns as they gain

experience with drugs from patients with and without CGMs.

In a descriptive analysis, I provide four empirical facts highlighting the interaction between

CGMs and insulin demand. First, CGM adoption is widespread among diabetic patients using

long-acting insulin — enough to significantly affect insulin demand. Approximately 34% of

existing patients adopted CGM. Second, poor diabetes control ex-ante does not predict CGM

adoption. Hospitalizations and ER visits before CGM coverage account for only 1.5% of the

explained variation in technology adoption. Convenience is the main driver of CGM adoption as

glucose control without CGM is burdensome. Third, CGM adoption impacts insulin treatment

choice. CGM users are 5 to 7.7 percentage points more likely to switch treatment shortly

after adoption compared to non-users, a correlation that disappears in the medium or long

run. Patients switched from older insulin products to newer alternatives, allowing physicians

to gain more experience with these drugs. Fourth, physicians are learning about the real-life

performance of new drugs across patients. As they see more patients using new drugs in real-life

conditions, they are more likely to switch more patients to that treatment.
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The insulin market changed, regardless of CGMs, due to new product entries before and

after the CGM insurance coverage decision. A structural model is necessary to disentangle the

effect of new product entries separately from CGM adoption and pinpoint the impact of patient-

specific information from physician-level learning. Motivated by the empirical facts, I develop

a tractable framework in which, on the demand side, physicians facing heterogeneous patients

choose the most cost-effective insulin. For patients without CGMs, incomplete information

about clinical match values — especially for new products — affects choices. Physician learning

occurs through direct patient experience (Coscelli and Shum (2004)) but remains incomplete

without patient-specific CGM data. The device generates unique insights about the patient’s

glucose profile, which can be informative about (i) the patient, independent of the medication;

(ii) the drug, independent of the patient; or (iii) the patient-drug combination. However, only

the latter two channels affect pharmaceutical demand, implying that some complementarity

between CGM insights and the drug’s mechanism of action is crucial in influencing demand. In

my empirical model, insights from CGMs affect insulin demand from users and alter physicians’

dynamic learning about new products’ performance. On the supply side, the regulator and

insulin manufacturers bargain over price, internalizing demand-side learning and perceived

product differentiation. CGMs potentially influence equilibrium insulin prices by impacting

new drug learning and perceived product differentiation.

I estimate the demand model using Simulated Maximum Likelihood to account for unob-

served patient experience. To address selection into CGM, I use a flexible specification for

the patient-product match values, controlling for product-specific unobserved heterogeneity

common across similar patients. The remaining within-group patient-product heterogeneity is

assumed to be independent of the drivers of CGM adoption. The estimates suggest pessimistic

beliefs about the performance of new products upon entry, similar to the findings of Coscelli and

Shum (2004) for the anti-ulcer drugs market in Italy. CGM influences insulin choice through

an idiosyncratic match value component observed for users thanks to the device. It does not

increase or decrease the precision of the experience signal about new drugs that a physician

receives during a medical appointment, suggesting limited information spillovers to non-users.

The supply model is estimated using GMM. As equilibrium prices remain relatively low despite

quasi-inelastic insulin demand, most bargaining weight can be attributed to the regulator who

maximizes consumer surplus.3

3In countries like the US, where the government did not intervene in drug pricing until recently, insulin prices
for the same products as those offered in France are significantly higher.

3



Finally, I use the demand and supply framework estimates to compute two counterfactuals

illustrating how digital devices affect pharmaceutical markets. First, I assess the short-term

impact of CGMs on market outcomes by simulating the equilibrium prices and market shares

in the absence of CGMs, holding the set of existing products constant. Second, I explore

the potential long-term implications of CGMs on pharmaceutical innovation by simulating the

entry of alternative drugs under different technological environments — both with and without

CGMs.

The first counterfactual analysis shows that most short-term consumer welfare gains from

CGMs go to device users, with the benefits to non-users being ten times smaller. By revealing

previously unobserved attributes and steering demand towards newer drugs, CGMs provide

opportunities for physicians to learn 2.7% faster on average about the performance of these

drugs in real-life as users share their experiences with the new product with their physician.

However, learning about new drugs that are less attractive on the attributes observables thanks

to CGMs is slightly slower, -0.7%, driven by a fixed total number of learning opportunities

and the limited effect of CGMs on the precision of experience signals that are extrapolated

to non-users. The information generated by CGMs contributed heterogeneously to new drug

adoption, ranging from a one percentage point decrease for the entering bioequivalent drug to a

four percentage point increase (+16%) in 2021. The drug benefiting most from CGM adoption

triggers low overnight glucose levels — a feature more complicated to detect without the device.

Turning to negotiated insulin prices, the attributes observed thanks to the technology affect the

perceived relative quality of products, which matters for the regulator who maximizes consumer

welfare. As a result, the manufacturers of drugs that perform better on these new attributes

bargain slightly higher prices, up to +4.4% in 2021. For most products, demand and supply

forces reinforce each other, and the overall impact on product-level profits ranges from a 13%

decrease to a 23% increase.

The second counterfactual highlights the complementarity between innovations in the med-

ical device and pharmaceutical markets. A comparison of profits from alternative insulin

products in environments with and without CGMs indicates that the most profitable phar-

maceutical innovation strategy can shift depending on the technological environment in which

insulin choices are made. Specifically, when considering the entry of a potential new drug with

relatively strong performance on attributes unobservable without CGM technology, its prof-

its would be 10% lower than those of the actual market entrant in an environment without
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CGMs. However, in an environment where CGMs are widely used, the profitability of this

potential entrant significantly increases, becoming 64% higher than that of the actual market

entrant. This increase in profitability comes with a 15% rise in consumer welfare compared

to the welfare generated by the current market entrant. This result implies that devices like

CGMs, which introduce new observable attributes for evaluating drug performance, may shape

future pharmaceutical innovations.

Related literature The primary contribution of this paper is to develop an empirical

framework to understand how digital technologies can overcome demand-side information fric-

tions. In this regard, it contributes to several strands of literature. Primarily, it builds on

research analyzing demand-side learning in pharmaceutical markets. The existing literature

emphasizes that information frictions regarding drugs’ clinical match values arise upon market

entry and initial diagnosis (Coscelli and Shum (2004), Crawford and Shum (2005), Currie and

MacLeod (2020)). These frictions decrease as physicians gain direct and indirect experience

with the drug — such experience can come from drug manufacturers’ detailing, scientific infor-

mation, clinical trials, etc. (Coscelli and Shum (2004), Zhu (2023), Dickstein (2021), Grennan

et al. (2024), Dubois and Tunçel (2021), Alsan et al. (2024)). Building on structural modeling of

demand-side learning from experience (Roberts and Urban (1988), Erdem and Keane (1996)),

my work is closely related to Crawford and Shum (2005) who focus on treatment experimen-

tation and learning upon initial patient diagnosis. In this paper, I study learning about new

products upon market entry, focusing on patients already diagnosed with the disease at the

time of entry. Physicians learn dynamically about the drugs’ clinical match values across their

patient population, drawing on experiences of heterogeneous qualities depending on patients’

monitoring technology.4

When consumers learn dynamically about demand, firms have incentives to adopt forward-

looking pricing strategies (Shapiro (1983), Bergemann and Välimäki (2006)). In this context,

modeling pricing decisions is inherently complex, leading most empirical literature to focus on

demand-side mechanisms while keeping prices fixed in counterfactual scenarios. Exceptions in

the pharmaceutical context are Ching (2010a) and Ching (2010b). My paper contributes to

this literature by building a tractable framework in which physicians’ learning is internalized

by the pharmaceutical manufacturers and the regulator when engaging in Nash-bargaining over
4Beyond learning, this work adds to the literature on inertia sources in demand (Dubé et al. (2010)). In

a chronic condition treatment, I document switching costs contribution separately from learning by leveraging
the specificities of my institutional setting.
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the price of treatments.

This project also contributes to the literature on the impact of information frictions on

market outcomes. On the demand side, previous works document how consumer choice under

imperfect information affects product offerings (Brown and Jeon (2024)) and how information

provision to consumers can shift the market equilibrium (Jin and Leslie (2003), Handel and

Kolstad (2015), Barahona et al. (2023)). On the supply side, incomplete information about

the demand curve affects firms’ behavior beyond insurance markets (Hitsch (2006), Handel

and Misra (2015), Doraszelski et al. (2018)). I focus on the impact of patient-level data to

overcome information frictions. In the auto insurance market, consumer-level data generated

by monitoring technologies can mitigate information asymmetries (Jin and Vasserman (2021)).

Instead, I focus on demand-side information frictions and data-driven insights from a monitoring

technology that informs consumers about their effective preferences for alternative products.

I add to the literature on assessing the value of innovative pharmaceutical drugs and medical

devices, drawing on the method developed in the empirical industrial organization literature

(Trajtenberg (1989), Petrin (2002)). Igami et al. (2024) measure the welfare gains from product

and process innovations. In this paper, I link the last two literatures by studying how new

information technologies producing insights available for decision-making can enhance the value

of pharmaceutical innovation for consumers by guiding physicians’ choices.

This work also explores complementarities across related markets and how innovations in one

market may shape outcomes in another. While earlier work documents the impact of upstream

innovation in vertically related markets (Eizenberg (2014)), Bresnahan and Trajtenberg (1995)

highlight that complementary technologies may be necessary to fully exploit the potential of new

technologies. My paper emphasizes the complementarity between medical device innovation and

the diffusion of new pharmaceuticals in a context where the adoption of the complementary

technology is the consumer’s choice. I show how innovations in the medical device market alter

pharmaceutical product shares and could shape the product offering.5

Finally, this paper contributes to the literature on information technology adoption in

healthcare. Earlier empirical works focus on the impact of electronic medical records on health-

care costs and hospital productivity (Agha (2014), Dranove et al. (2014), Lee et al. (2013),

McCullough et al. (2016)) and, more recently, telemedicine (Zeltzer et al. (2024), Dahlstrand
5Previous work by Dranove et al. (2022) highlight that demand shocks can incentivize firms to undertake

R&D activities. However, in the context of Medicare Part D, the effect favors follow-up rather than breakthrough
innovations.
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(2024)) or artificial intelligence (Agarwal et al. (2023)). Handel and Kolstad (2017) highlight

the potential for wearable devices to overcome the lack of data on critical outcomes. Yet, to

the best of my knowledge, the literature studying how new information technologies impact

healthcare markets is scarce. I extend this literature by documenting the channels through

which wearable devices generating high-frequency health data affect treatment choices.

The paper proceeds as follows. Section 2 provides background information on diabetes

treatment in France and describes the data. Section 3 documents CGM adoption and its

impact on insulin choice. Section 4 develops and estimates a demand model for insulin, with

some patients using digital devices. Section 5 models the pricing decision and estimates the

model’s primitives. Section 6 presents the counterfactual scenarios, and Section 7 concludes.

2 Context and Data

2.1 Diabetes treatment in France

Diabetes is a major chronic condition affecting 1 in 10 adults worldwide.6 The diseases is

characterized by high blood sugar levels which can arise as the pancreas stops producing insulin

(Type 1 Diabetes) or as the insulin produced loose its efficacy (Type 2 Diabetes). Both high

and low glucose levels can lead to severe complications, including blindness, amputation, stroke,

heart attack and kidney failure. The primary goal of diabetes management for the patient (he)

and the physician (she) is to stabilize blood glucose within a targeted range.

As of 2021, approximately 22% of diabetic adults in France were dependent on insulin. This

project focuses on the choice of long-acting insulin, referred to throughout the paper as insulin

choice. Long-acting insulin is often combined with short-acting products. While short-acting

insulin is injected around meal times to manage food intake, long-acting insulin is designed

to stabilize the glucose level over 24 hours. Since these two types of insulin serve different

functions, they can be studied independently. Long-acting insulins are primarily differentiated

by their theoretical duration of action and must be injected daily.7 However, the effective du-

ration of each product varies across patients, depending on demographics, time since diagnosis

and individual metabolism. Hence, the clinical benefit of a product is heterogeneous across
6Retrieved from Diabetes Atlas https://diabetesatlas.org on October 8th, 2024. The prevalence of

diabetes among adults is 5.3% in the French population, compared to 10.7% in the U.S.
7In May 2024, the European Medicines Agency (EMA) approved the first once-weekly long-acting insulin.
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patients.8 Part of daily diabetes management requires patients to monitor their glucose levels;

the objective is to adjust short-acting insulin doses, avoid adverse events, and prevent compli-

cations. Before 2017, glucose monitoring relied on disposable strips, representing a significant

burden as one must prick his finger for each glucose measure.9 To evaluate diabetes control,

physicians relied on the three-month average glucose level (A1c), glucose measurements from

strips and patient-reported adverse events. In particular, the laboratory-measured average was

the gold standard for assessing good vs poor diabetes management.

Between 2015 and 2021, significant changes occurred in the insulin product space and the

glucose monitoring technologies, impacting the information available to physicians to evaluate

treatment efficacy. On the insulin side, before 2016, the set of products available was limited,

with Lantus, a 24-hour insulin, accounting for more than 60% of prescriptions. Between 2016

and 2018, four new products entered the market (Figure 1). These new insulins include a

bioequivalent drug for the 24-hour insulin and three products with an extended duration. These

latter target patients for whom the effective duration of the 24-hour product is less than a

day and the 42-hour product specifically targets patients with a low glucose level overnight.

Prescription drugs are experience goods, meaning that physicians learn about the new insulins’

performance outside the controlled environment of clinical trials across a heterogeneous patient

population. On the glucose monitoring side, Continuous Glucose Monitors provide glucose

readings every 5 to 15 min through a sensor, generating continuous data (Figure A3). The

technology contrasts with the unique snapshot provided by the disposable strip tests. In France,

CGMs became widely used by patients following the Health Technology Agency (HTA) coverage

decision in mid-2017. The decrease in daily glucose monitoring burden thanks to CGMs drives

a broad and fast device adoption. The coverage decision targeted around 68% of diabetic

patients taking long-acting insulin, and the cost of monitoring glucose in France increased by

67% between 2014 and 2023 (Figure A4).10 Indeed, CGMs rely on a disposable sensor that

must be replaced every two weeks, making this form of monitoring substantially more expensive

than traditional test strips.

CGMs expand the attributes observables for evaluating insulin treatment by providing de-
8Adjusting the insulin dosage has limited effects on its duration, as it impacts glucose levels throughout the

entire period of action. For instance, increasing the dosage of a drug that lasts for 20 hours will not extend its
duration beyond 20 hours but may cause low glucose levels throughout the day. Therefore, choosing the right
product for the right patient represents a substantial decision margin.

9Regular glucose monitoring involves placing a drop of blood on a disposable test strip, read by a glucose
meter.

10Guerci et al. (2023) note that despite this restriction, some patients excluded from the coverage were
prescribed the technology, leading to coverage extension in June 2023.
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tailed measurements of daily glucose profile, including overnight levels. They complement tradi-

tional metrics, as the laboratory-measured average glucose does not capture the (i) within-day

variation or (ii) day-to-day fluctuations in glucose levels and can obscure important hetero-

geneity in glucose control (Figure A1).11 By providing insights into the glucose profile, CGMs

generate some information that (i) was previously unavailable and (ii) matters when evaluating

the performance of insulin therapy. In a market where new products are entering, the impact

of digital devices on insulin choice can be twofold: (i) identifying poor patient-product clini-

cal matches and (ii) gathering information about the real-life performance of new drugs. The

following patient quote from a medical case study illustrates the first effect.

“Last year I found it very helpful to switch to using a [CGM]. [...] I would frequently

find that, on the [24-hour] regime, I would experience night-time lows. [...] My

consultant and I agreed on a trial of splitting the dose of [24-hour] between morning

and evening, but this did not suit me. [...] Following this, my consultant switched

me onto [36-hour], which worked much better [...].” Shields and Sankaranarayanan

(2016)

Moreover, Seaquist et al. (2017) highlights the value of CGM information in the context of

new insulins’ prescriptions.12 In the remainder of the paper, I will refer to products by their

duration of action, ‘24-hour Biosimilar’ for Abasaglar, Type 2 for Xultophy and ‘Human’ and

‘Mix’ for 12-hour products.

2.2 Data

I rely on rich claims data from the French health insurance system. Owing to the centralized

universal healthcare system, the data includes all care reimbursements to a given patient and

all care prescribed by a physician.
11In recent years, concerns about over-treatment have emerged, driven by physicians overestimating the

benefit of low average glucose levels at the expense of the risk of low glucose underlying the variance of glucose
profile. https://www.reuters.com/investigates/special-report/usa-diabetes-overtreatment/
https://www.medicalnewstoday.com/articles/326063#Millions-of-people-receive-too-much-therapy

12“Data from CGM profiling and glycaemic variability studies are providing new and important insights on
clinical outcomes with basal insulins in patients with diabetes. These data should enhance confidence in the
use of the newer basal insulins in clinical practice by providing physiological context to real-world observations
from heterogeneous patient populations.” Seaquist et al. (2017)

9

https://www.reuters.com/investigates/special-report/usa-diabetes-overtreatment/
https://www.medicalnewstoday.com/articles/326063#Millions-of-people-receive-too-much-therapy


Figure 1: New products entry timeline, 2016-2019
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Note: The horizontal axis corresponds to the entry date for new products. The vertical axis corresponds to
the theoretical duration of each insulin. Each dot corresponds to one product, except for the 12-hour products.
The dashed line corresponds to the reimbursement of the monitoring device.

2.2.1 Insulin prescriptions

The data on insulin prescriptions comes from pharmaceutical claims from 2015 to 2021. For

each reimbursement flow, I observe the patient and prescriber IDs, the medical speciality of the

prescriber, the date of the prescription, the date of the claim (i.e. the date of the pharmacy

visit) and the drug characteristics at the package level. The data is exhaustive of the French

population. Hence, it covers all insulin reimbursements to a given patient and all prescriptions

written by a physician.13 The prescription date allows one to account for distinct visits to a

particular physician separately from refills.

2.2.2 CGM adoption and attrition

Observing patients adopting and dropping out of continuous glucose monitoring is a crucial

analysis component. CGMs are registered medical devices whose coverage was enacted in

France in June 2017. CGM use is inferred from pharmaceutical claims data. Like insulin

reimbursements, I observe the patient and prescriber IDs, the prescription date, the pharmacy

visit date, and the device characteristics. I assume the patient starts wearing the sensor on

the day it is claimed at the pharmacy and stops using CGM at the expiration of the last

sensor reimbursed to the patient.14 Mismeasurement in CGM adoption can arise for patients

purchasing the technology out-of-pocket (i) before June 2017 or (ii) because they are not eligible
13Purchasing insulin requires a medical prescription. I observe all prescriptions filled by the patient. In

practice, the prescription is written by the physician and purchased by the patient, leaving scope for non-
adherence. I assume that patients always comply with their physician’s prescription; hence, I observe all
prescriptions written by a physician. Patients under insulin therapy must inject insulin every day, limiting the
scope for non-adherence.

14The current CGM technologies rely on disposable sensors lasting up to 14 days. I use the duration of each
sensor to infer potential attrition from continuous glucose monitoring.
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for coverage from the health insurance system.15 In Appendix B.2, I describe how I recover

the effective adoption date for eligible patients who might have adopted before June 2017. The

eligibility criteria for CGM coverage include diabetic patients receiving both short- and long-

acting insulin daily (basal-bolus therapy). This project focuses on long-acting insulin choice,

and patients may rely exclusively on long-acting insulin. Approximately 68% of the population

of interest is eligible for CGM coverage. Appendix B.2 provides more details about the risk of

mismeasurement for non-eligible patients.

2.2.3 Patient-level demographics and medical conditions

Patient demographics are crucial to my analysis, as diabetes affects a diverse range of individ-

uals, partly due to the two distinct sources of the disease (Section 2.1). The data includes the

patient’s age, gender, and residential area at the municipality level. Low-income individuals are

identified as they benefit from free supplement insurance from the government. The medical

information includes the type of diabetes and chronic conditions reported in annual patient

registries. These files are built from all drugs and care reimbursements to a patient over a year.

They report information about anxiety, cancer, cardiovascular disease, dialysis, depression, hy-

percholesterolemia, hypertension, obesity, etc. Claims data register biological tests’ occurrence,

but the results are not reported.

2.2.4 Inpatient care/Emergency Room visits

One concern regarding CGM adoption is that patients who adopt the technology have worse

diabetes management before the technology is available. To rule out this concern, inpatient

care and Emergency Room (ER) visits are used to assess diabetes management before CGM

adoption. The data includes all ER visits, regardless of whether they result in an inpatient

stay. However, I cannot specifically identify ER visits related to diabetes unless they lead to

an inpatient stay, as diagnosis codes are only recorded in those cases.

2.3 Sample selection

In this study, I focus on diabetes specialists’ prescriptions from 2015 to 2021 for patients

who were already taking long-acting insulin before 2016 and were between 18 and 75. This

patient-physician sample and time horizon are convenient for several reasons. (i) The period
15The first device covered by the health insurance system was approved in the EU in August 2014.
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covers the entry of new drugs from 2016 and CGMs coverage from 2017. (ii) Diabetes patients

who had used insulin before 2016 were familiar with insulin injection and glucose monitoring

before CGMs introduction.16 (iii) I focus on adults below 75 years old to ensure the patient

injects insulin himself. (iv) Diabetes specialists account for only 25% of prescriptions, but

General Practitioners (GPs) renew their prescriptions. Hence, they considerably impact insulin

prescribing and are likely to make an active choice during a medical appointment.17 Appendix

B.1 provides more details about the data construction and sample selection.

Table A1 provides some summary statistics about the incumbent patients followed by di-

abetes specialists. The final sample focuses on around 330k patients, including 28% of Type

I diabetes and 39% of Type II patients using short and long-acting insulin therapy. 68% of

the sample was eligible for CGM reimbursement. Patients are, on average, 57, and less than

half are women. Around 13% benefited from the low-income complementary insurance during

2015-2022. They live in less favoured areas than the average French individual. Type II pa-

tients are more likely to take treatments for other chronic conditions such as hypertension and

hypercholesterolemia.

Table A2 provides summary statistics for physicians involved in the diabetes treatment for

my patient sample. It suggests significant heterogeneity across physicians involved in insulin

prescription. Most appointments happen with GPs, who represent 90% of entities and 72%

of visits. Yet, the median number of patients per practice is limited. I focus on diabetes

specialists and hospital services who see more patients and write more prescriptions at a given

practice. While they represent 25% of prescriptions, they account for 74% of treatment switches.

Irrespective of their speciality, 58% of physicians faced patients wearing a CGM between 2017

and 2021.

3 Descriptive evidence

This section presents motivating evidence that the adoption of CGM by diabetic patients

interacts with insulin demand. Patients treated with long-acting insulin widely adopted CGM

as a monitoring system following the coverage decision. After adopting the device, patients
16The results will not capture CGMs benefits to learn about insulin injection therapy and diagnosis matching

upon insulin therapy initiation (Crawford and Shum (2005)). I exclude diabetes patients relying on a pump to
inject insulin as they do not rely on long-acting insulin daily.

17I further restrict diabetes specialists to the ones prescribing insulin before 2016. By focusing on specialists,
I also limit the extent of heterogeneity across physicians, in particular, to control for learning from indirect
experience such as detailing by pharmaceutical companies (see Appendix C.2), scientific articles, etc.
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are more likely to switch towards new insulin products. The features of the switching behavior

are inconsistent with lower switching costs with the digital device. Evidence of physician-level

learning about new drugs leaves scope for spillovers. These facts motivate the features of the

structural model.

3.1 Wide CGM adoption among insulin-treated patients

Following the June 2017 coverage decision, diabetic patients taking insulin widely adopted

CGM to replace disposable strips. As shown in Figure 2, around 65% of eligible insulin pa-

tients ever used the technology, with adoption being staggered. The wide adoption of CGMs

decreased the consumption of disposable strips to measure glucose levels while the average cost

associated with glucose monitoring increased by 43% (Figure 2b). While convenience appears

as the primary driver of adoption, I further explain the adoption patterns with respect to pa-

tient and physician characteristics. Table 1 presents logistic regression results, where the AIC

and pseudo-R2 criteria indicate diabetes type, age and gender are the main patient-level factors

influencing CGM adoption. Physician fixed effects account for 31% of the remaining explained

variation, whereas environmental factors, other medical conditions and prior diabetes manage-

ment contribute marginally. In particular, ER visits and diabetes-related hospitalizations in

2015-2016 proxy diabetes control before CGM. A potential concern is that patients opting for

continuous glucose monitoring may have been in worse condition before the technology cov-

erage. However, the minimal contribution of hospitalizations pre-2017 in explaining adoption

(1.5%) mitigates this concern in the case of CGM uptake.

I also consider whether patients adopted CGM as a result of a worsening of their condition,

leading to selection concerns. I study the correlation between CGM adoption and the occurrence

of diabetes-related ER visits before the adoption date. For patients adopting CGM, I consider

the number of ER visits occurring in a bandwidth of 365 days before the first CGM prescription.

The potential adoption date does not exist for patients not adopting the technology. Instead, I

consider the maximum number of diabetes-related ER visits the patient faces in 365 days from

June 2017 to January 2020.18 If a worsening of diabetes management drives the technology

adoption, ER visits should be positively correlated with CGM adoption. Table 2 presents the

results, suggesting a negative correlation between the two variables. This evidence indicates

that diabetes-related severe adverse events are unlikely to drive technology adoption.
18The correlation is estimated for different bandwidths. ER visits after January 2020 are not included due to
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Figure 2: Adoption among eligible patients
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(b) Strips glucose monitoring, volume and cost

Note: Figure 2a presents the stock of patients who ever adopted CGM and dropped out from continuous
glucose monitoring over time among eligible patients. Adoption corresponds to the first CGM prescription
date. Dropout corresponds to the expiration of the last sensor claimed at the pharmacy. Figure 2b represents
the average number of strips per patient among eligibles (left axis) and the average value of glucose testing
(right axis) over time. The solid line corresponds to the costs of glucose strips; the dashed line includes the cost
of strips and CGMs. Patients do not stop consuming glucose strips completetly after adopting a CGM as they
may need to confirm symptoms of adverse events.

Table 1: Drivers of adoption

Variable Df AIC Pseudo R2

Model 1898 246,802.1995 0.1346
Removing

- Demographics 1,887 256,050.62 0.1016
- Specialist FE 35 254,621.24 0.0935
- Chronic conditions 1,886 252,170.08 0.1154
- Glucose strips 2015-2016 1,896 247,784.54 0.1311
- Environment 1,894 247,464.48 0.1322
- ER visits 2015-2016 1,892 247,357.04 0.1326

Note: The model is estimated using a logistic regression on the sample of patients eligible for the technology.
Demographics include age, gender and diabetes type. Environmental factors include the deprivation index, low-
income complementary insurance and city size. Chronic conditions include 12 diseases (including hypertension,
hypercholesterolemia, and obesity; see list in Table A1). Glucose strips include the average number of strips in
2015-2016. Hospitalizations account for visits before CGM was available.

the beginning of the Covid-19 crisis.
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Table 2: CGM adoption and prior ER visits

(1) (2) (3) (4)
coef. s.e. coef. s.e. coef. s.e. coef. s.e.

ER visits (#) -0.1241 (0.0035) -0.1001 (0.0033) -0.1814 (0.0043) -0.1166 (0.0021)

Patients characteristics X X X
CGMi 0.6206 0.6206 0.6206 0.6206
ERi 0.1127 0.1127 0.0929 0.4661
Bandwidth (days) 365 365 180 365

Note: The model is estimated using a logistic regression on the sample of patients eligible for the technology.
Standard errors are clustered at the physician level. Patient characteristics include demographics (age, gender,
diabetes type), environmental factors (city size, deprivation index of the living area, low-income individual),
chronic conditions (see list in Table A1) and glucose strips consumption in 2015-2016. Columns (1) to (3) focus
on diabetes-related ER visits leading to inpatient stays. Colum (4) focuses on the number of ER visits leading
to an inpatient stay, irrespective of the diagnosis.

3.2 CGM adoption and potential patient-insulin mismatch

Given the wide adoption of the device among insulin patients, this section aims to document

how the adoption of CGM affects insulin choices. I consider the decision by diabetes specialists

to switch insulin treatment, prescribing a product in a given appointment v different from the

one used by the patient before the visit. I compare the decision to switch product for patients

using CGM to the choice made (i) for similar patients and (ii) for the same patient before he

adopts. Considering the decision by the patient i-physician k pair in appointment v,

Switchikv = (β0 + β1Firstiv)CGMiv + γ1Di + γ2Xkv + λk + δq(v) + εikv (1)

Switchikv equals one when the treatment prescribed to patient i by physicians k in appointment

v differs from the product patient i was using prior to the appointment, zero otherwise. CGMiv

is a dummy variable equal to one when the patient comes to the appointment wearing a CGM,

and Firstiv equals one only for the first appointment by patient i to a specialist after adopting

a CGM. Di includes patient demographics and chronic conditions. Xkv proxies the physician’s

information set during appointment v, counting the number of visits with patients already

using new products. λk refers to a physician fixed effect and δq(v) to a quarter fixed effect. The

coefficients of interest are β0 and β1. Switchikv, the outcome of interest, may be occasional;19

hence, I consider heterogeneous effects between the first appointment while wearing the device

and subsequent appointments. The model is estimated by OLS. Table 3 presents the results.
19Switchikv only equals one on the appointment in which the patient switched insulin. If the change is

permanent, the outcome variable only equals one once. Patients can switch back and forth between treatments.
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Panel A relies on eligible non-users as a control group. Panel B is restricted to users before

they adopt in which case I include patient fixed effects instead of the physician fixed effects.

The parameters suggest a positive correlation between wearing a CGM and changing insulin

product in the short run. Considering the coefficients beyond the first appointment, the positive

correlation disappears. It suggests that patients adopting the technology are more likely to

switch treatment only during the first appointment wearing a CGM. The physician seems to

react to the insights generated by CGM by switching their treatment for some patients while

deciding to stick to the former treatment for others. This evidence is consistent with a patient-

insulin mismatch, which the technology revealed to the physician.20

Both switching costs and information frictions can contribute to inertia in insulin choice such

that either of these mechanisms could rationalize the behaviour documented in the previous

paragraph. Dubé et al. (2010) highlights that the different sources of state dependence in

demand lead to differences in pricing incentives. I provide evidence that the switching patterns

following the adoption of CGM are inconsistent with a reduction in switching costs in the

following paragraph. The structural model will thus focus on representing how CGM can reduce

information friction through physicians learning from the insights produced by the device.

First, lower switching costs would increase the probability of switching insulin at any ap-

pointment. Table 3 provides evidence inconsistent with this feature as the positive correlation

vanishes beyond the first appointment. Second, switching costs are particularly salient when

considering switches from a branded drug to its biosimilar, as the latter must provide evidence

of bio-equivalence before entering the market.21 Figure 3 describes the products involved in

treatment switches while wearing the technology, plotting the product used at the time of

the appointment (horizontal axis) against the product prescribed (vertical axis) conditional on

switching insulin in that appointment. Switches from the 24-hour product towards its biosimilar

remain infrequent, making lower switching costs for CGM users unlikely. Patients switch away

from the 24-hour branded drug to new products with a longer duration of action. In particu-

lar, some patients switch to the 36-hour product in the first appointment following adoption,

while the product has been available since 2016, before the CGM coverage decision (Figure

3a). In Appendix C.3, I rely on the relative choice between the 24-hour branded drug and its

biosimilar to estimate switching costs and rule out lower costs for CGM users.22 Altogether,
20The probability of switching back to a former treatment remains low, even for patients wearing a CGM.
21Information frictions can still arise from physicians’ uncertainty about the bio-equivalence (Maini et al.

(2022)).
22To that end, I compare the choice probabilities for existing patients who face both information frictions and

16



this evidence suggests that CGMs provide insights to physicians about the performance of the

current treatment, leading to product switches for some patients.

Table 3: Pr(Switching) estimates

(1) (2) (3)
coef. s.e. coef. s.e. coef. s.e.

A. Control Group: Eligibles
CGMiv -0.0446 (0.0008) -0.0154 (0.0008) -0.0295 (0.0009)
CGMiv × Firstiv 0.1217 (0.0012) 0.0659 (0.0012) 0.0667 (0.0012)
CGM Useri 0.0274 (0.0008)
Physician FE X X X
Quarter FE X X X
Patient demographics X X
Patient × Physician X X
Physician information set X X

B. Control Group: Users
CGMiv -0.0651 (0.0014) -0.0356 (0.0014) -0.0355 (0.0014)
CGMiv × Firstiv 0.0751 (0.0014) 0.0478 (0.0014) 0.0478 (0.0014)
Patient FE X X X
Quarter FE X X X
Patient × Physician X X
Physician information set X

Note: The sample is restricted to patients eligible for CGM coverage. Panel A and B include quarter fixed-effect.
Panel A contains physician fixed-effects and Panel B patient fixed-effects. ‘Patient × Physician’ controls for the
time since the last interaction between the two.

3.3 Physician-level learning

The previous section documents treatment switches with the digital device towards newer

treatments. Physicians, being less familiar with these products, encounter more learning op-

portunities thanks to these switches, allowing them to better understand the performance of

new drugs. Information externalities arise if physicians apply insights from CGM users to non-

users. I study the correlation between a physician’s prescription behavior of new products and

her prior product experience to document learning across patients for a given physician.

For each physician k, new product j and quarter q, I compute the product-level prescription

share among the patients not already using product j at the time of the appointment. This

way, if product j is prescribed to them in quarter q, they were switched to that product by the

physician. The number of appointments up to the previous period where the patient already

switching costs, to the first-intention treatment choice made for ‘new’ insulin patients, who are only subject to
information frictions.
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Figure 3: Switching matrices with the sensor
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(a) Switches at CGMiv × Firstiv

24h Bios.

36h

42h

T2

24h

20h

Mix/NPH

24h Bios. 36h 42h T2 24h 20h Mix/NPH
Switch from

S
w

itc
h 

to

0.00
0.05
0.10
0.15

(b) Switches when CGMiv = 1

Note: Figure 3a focuses on the switches occurring at the first appointment after the patient starts to use a
CGM, and Figure 3b on the switches at any point with a CGM. The horizontal axis corresponds to the product
used before the prescription. The vertical axis corresponds to the product prescribed by the physician during
that appointment.

used the new product j at the beginning of the visit approximates physicians’ information

about a given new product j. Indeed, the patient could share information about the drug’s

performance in his daily life. Figure 4 presents a binned scatter plot of a product’s information

set at the physician level (horizontal axis) and its prescription share to ‘new’ patients (vertical

axis). It suggests a positive correlation between the physician’s information set about patients’

experience with product j and her propensity to prescribe the product to patients who are not

already using the product as they come. This evidence suggests physicians extrapolate infor-

mation from patients’ experiences across individuals, leaving scope for information spillovers

between patients adopting a CGM and those not adopting. In Appendix C.4, I document

whether the composition of the information set (between patients providing feedback with or

without the technology) impacts the strength of the correlation.
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Figure 4: Physician prescription share and the information set size
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Note: The horizontal axis corresponds to the amount of feedback
from real-life experience with the new product j received by the
physician up to the previous period. The vertical axis corresponds
to product j prescription share for patients not using the product
before the appointment. For each variable, I consider the residuals
from a linear model controlling for physician fixed effects, product-
specific quarter fixed effects, and the average demographics of the
patient visiting physician k in a given period. The figure focuses
on prescriptions by diabetes specialists and excludes the new Type
2 product directed towards a subset of patients. The information
set proxy (horizontal axis) is computed at the hospital level for
specialists working in the hospital. Figure A12 focuses on individual
physicians working outside the hospital.

4 Insulin demand modelling

Based on the evidence presented in the previous paragraphs, sections 4 and 5 develop and esti-

mate a model of demand and supply for insulins. This model considers how information from

digital devices influences prescription drug choices and consumer surplus. Specifically, I build a

model explaining the behavior of physicians, insulin manufacturers, and the regulator. Physi-

cians prescribe insulin to their diabetic patients, aggregating up to the demand for each insulin

product. Insulin manufacturers and the regulator negotiate the prices of insulin products. The

timing of the game is as follows. At the beginning of each year, the insulin manufacturers

and the regulator agree on the price of each product for the upcoming year. Throughout the

year, each physician (she) faces a sequence of medical appointments with diabetic patients for

whom she makes a treatment decision. The entry of new drugs and the adoption of CGM are

assumed to be exogenous. Physicians face uncertainty about the idiosyncratic match value of

a given insulin product for a particular patient, and they learn about clinical match values
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from patients’ experience signals generated with or without a CGM. The payoffs for insulin

manufacturers are profits from prescription drug sales, while the regulator considers consumer

surplus. Physicians are assumed to be altruistic and myopic when choosing the insulin product

for each patient, leading to a static decision problem at each appointment. Yet, physicians

accumulate experience signals over time and can use the information they receive about the

real-life performance of products from one patient to inform their decisions for other patients,

generating spillovers. This structure allows for the decomposition, in a first step, of static pre-

scription decisions within each year, which aggregate up to the annual demand for each insulin

product. In a second step, the aggregate annual demand for each product is used as input to

study the negotiation of annual insulin prices. This section focuses on the static prescription

decisions within each year. Section 5 presents the price negotiation stage.

4.1 Setting

Consider a patient (he), indexed by i, who has been diagnosed with diabetes before the start

of the period. He is familiar with insulin injections and glucose monitoring. The patient is

followed by a physician k (she), the expert who decides on treatment. At a given physician

practice, the flow of medical appointments leading to an insulin prescription is indexed by

v ∈ {0, ..., Vk}. Physicians differ in the number of patients they see, Vk, and the characteristics

of their patient population. The physician prescribes insulin j ∈ Jv to patient i during a

medical appointment. The set of available insulin, Jv, evolves as new products enter the

market. Patients differ in their true clinical match value with product j, Θij ∈ R, and glucose

monitoring technology. The physician faces uncertainty regarding Θij which stems from the

gap between the average treatment effect from clinical trials and the drug’s performance in

real-life use among heterogeneous patients. The decision to adopt a CGM and the timing of

adoption is exogenous from the insulin choice perspective. I denote aiv ∈ {0, 1} the adoption of

the digital device, where aiv = 1 if the patient uses a CGM, 0 otherwise. The physician observes

aiv and the data generated by the device when aiv = 1. Considering the flow of appointments

to physician k. At each visit v,

1. Patient arrival: A patient i is coming for an insulin prescription using a digital or a

traditional glucose monitoring device, aiv. The patient’s identity, choice of monitoring

technology, and the set of insulins available are taken as given.
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2. Belief updating: The physician observes the last product used by i until v, ji,v−1, and

its effect on patient i’s glucose levels. She updates her beliefs about the clinical benefit

of ji,v−1 for any patient. Physicians learn across patients from experience signals. This

experience signal enters the information set of physician k at time v, Ikv.23

3. Treatment choice: Given Ikv, the physician, k, chooses the treatment j ∈ Jv that

maximises ones expected payoff.

When selecting the treatment for patient i, the physician faces uncertainty regarding Θij. I

assume that the true clinical match value, Θij, depends on the preference for the drug’s effect

on the average glucose level, µij, and the preference for the drug’s effect on the glucose profile,

νij, such that Θij = µij+νij.24 The physician forms beliefs about the true value of Θij, updated

based on experience signals from her patient population.

In the absence of CGM, the physician learns about the drug’s effect on the average glucose

level, µij, from blood test results and about the drug’s effect on the glucose profile, νij, from

adverse events reported by the patient.25 However, because the glucose profile is not perfectly

measured without CGM, learning about the patient-product clinical match value, Θij, cannot

be complete. Physicians’ belief about Θij remains biased as they learn without the information

produced by CGM. I denote θij ≡ Θij−∆νij where ∆νij captures the bias corresponding to the

preference for the profile that is unobserved without a CGM. θij is the sum of the preference

for the drug’s effect on the average glucose level, µij, and the preference for the effect on the

glucose profile from adverse events, νij − ∆νij. θij is referred to as the partial information

clinical match value.

The benefits from CGM data are twofold:

1. Comprehensive measurement of glucose profile: The digital device provides de-

tailed information about the glucose profile for patient i. As the drug’s effect on the

profile is completely observed for the patients wearing the sensor, learning about νij is

assumed to be complete and immediate once a patient uses the device. These insights

are patient-specific and uninformative for non-users.

2. Experience signal about θij: The CGM data generated when the patient was using
23The physician receives an experience signal only during a medical appointment linked to an insulin pre-

scription. The empirical specification will impose some restrictions on the extent of learning across patients.
24Each argument is combining the value of the attribute and the utility weight for that attribute.
25The beliefs about µij may be inconsistent upon the product’s entry but physicians update their beliefs from

unbiased signals generated by lab results.
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product j produce a signal about the partial information clinical match value, θij. The

properties of this experience signal can differ from the signal had the patient not used a

CGM.

4.2 Demand

Physicians are incentivized to prescribe the most cost-effective treatment for a given patient.

The indirect utility of the physician k-patient i pair when choosing product j is

Uikjv = Θij − αpjv (2)

pjv is the price of product j in appointment v. α measures the price sensitivity of the patient-

physician pair. Θij is the true clinical match value between patient i and drug j. Given the

physician information set, Ikv, the monitoring device, aiv, the choice of treatment is made

according to

max
j∈Jv

E(Uikjv|Ikv; aiv) = max
j∈Jv

{
E(Θij|Ikv; aiv)− αpjv

}
(3)

where Jv = J Old ∪J New
v . J New

v corresponds to the set of insulins entering after 2015 available

at the time of appointment v. Given the chronic feature of the disease, there is no outside op-

tion and the physician must prescribe one of the available treatment options. Two disruptions

happen simultaneously: new prescription drugs and insights from a new monitoring technol-

ogy. Given the information set, Ikv, monitoring choice, aiv, and product j, the physician’s

expectation of the true value for Θij is:

E(Θij|Ikv; aiv, j) =



Θij if aiv = 1 and j ∈ J Old

θij if aiv = 0 and j ∈ J Old

E(µij|Ikv; aiv = 1) + νij if aiv = 1 and j ∈ J New
v

E(µij + νij|Ikv; aiv = 0) if aiv = 0 and j ∈ J New
v

(4)

In what follows, I provide the intuition for E(Θij|Ikv; aiv, j) without (aiv = 0) and with

(aiv = 1) a CGM, for old (j ∈ J Old) and new (j ∈ J New
v ) insulins.

4.2.1 Absent the digital device, aiv = 0

Old treatments (J Old)
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The physician had lots of experience prescribing j ∈ J Old. She knows the drug’s effect on the

average glucose level, µij, for each drug and each existing diabetes patient. She has only partial

information about the drug’s effect on the glucose profile, νij, as the exact patient profile i

remains unobserved. Without the technology, for product j ∈ J Old,

E(Θij|Ikv; aiv = 0) = µij + E(νij|Ikv, aiv = 0) ≡ θij (5)

θij is independent of k and v because all physicians have already learned about this value for

old drugs.

New treatments (J New
v )

For new treatments upon entry, unlike Equation (5), the physician has imperfect information

about the drug’s effect on the mean glucose level, µij. Thus, θij, the partial information clinical

match value, is imperfectly known. Upon product entry, at t = 0, the physician forms a

prior belief about θij, distributed according to the cumulative distribution function F (θij). I

allow physicians to have non-rational expectations about new drugs initially such that it is

possible that E(θij|Ik0; aiv) 6= θij. The physician updates her belief based on patient experience

signals using the new product j when coming at time v. They learn across patients, using

the signal produced by patient i to update the prior belief for any patient i′. These signals,

evii′kj, are assumed to be unbiased with respect to θi′j but noisy.26 They are drawn from a

known distribution with CDF, G(evii′kj|θi′j, σii′v) where σii′v correspond to the noise of the signal

provided by patient i in appointment v. The signal enters the information set of physician k

at v′ ≥ v, Ikv′ . Without the digital device, for j ∈ J New
v ,

E(Θij|Ikv; aiv = 0) = E(µij + νij|Ikv; aiv = 0) = E(θij|Ikv; aiv = 0) (6)

where E(θij|Ikv; aiv = 0) is the mean of physician k’s belief about θij at time v given that

aiv = 0. This average varies (i) over time as a physician gathers more experience and (ii) across

physicians as they see different patient populations. Section 4.3.3 details the learning process.
26The physicians are assumed to be able to extrapolate the information provided by patient i for patient i′.
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4.2.2 With the digital device, aiv = 1

The digital device generates information about (i) the glucose profile for patient i, leading to

complete learning about νij for all drugs, and (ii) the partial information match value, θij, for

the product used by the patient coming at v.

Old treatments (J Old)

Given the patient’s monitoring device, aiv = 1, for drug j ∈ J Old,

E(Θij|Ikv; aiv = 1) = E(µij + νij|Ikv, aiv = 1)

= E(µij|Ikv, aiv = 1) + νij

= Θij = θij + ∆νij

(7)

where ∆νij corresponds to the bias due to the difference between the drug’s true effect on the

profile and the effect learned without the CGM. Since there is no uncertainty about µij for

old drugs, E(µij|Ikv, aiv = 1) = µij. The insights about νij from CGM are patient-specific and

uninformative for non-users who keep facing Equation (5).

Thanks to the digital device, learning about the performance of old treatments for patient

i is complete. Since there is no outside option, pharmaceutical demand is affected by the

monitoring technology only if ∆νij differs across alternatives.

Claim 1. In a mature market (Jv = J Old), when a digital device generates new insights about

the patient-product clinical match value, if there exist at least two j, j′ ∈ J , such that ∆νij 6=

∆νij′ then E(Θij|Ikv, aiv = 1)−E(Θij′ |Ikv, aiv = 1) 6= E(Θij|Ikv, aiv = 0)−E(Θij′ |Ikv, aiv = 0).

Despite the lack of product entry, the digital device can affect insulin demand from device

users. This impact is driven by new patient-specific insights for which some treatments are

more suited. The magnitude of this effect at the market level strongly relies on device adop-

tion. When data insights do not emphasize differences across products, demand for existing

pharmaceutical alternatives remains unaffected.

New treatments (J New
v )

Similarly, for new treatments j ∈ J New
v , as the CGM allows inferring the effect of treatments
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on the glucose profile,

E(Θij|Ikv, aiv = 1) = E(µij|Ikv, aiv = 1) + νij

= E(θij|Ikv, aiv = 1) + ∆νij

where E(θij|Ikv, aiv = 1) can differ from E(θij|Ikv, aiv = 0) for the product the patient was using

when coming at time v. Indeed, observing the performance of a new drug j for a patient i using

the digital device, aiv = 1, might provide information about θij in a different fashion than had

the patient come without the technology aiv = 0. Whether this experience signal is more, less

or equally informative about θij than signals received without a CGM is an empirical question.

I do not assume the digital device generates complete learning about θij. Yet, if the insights

from CGM provide precise information about the performance of drug j, the belief of physician

k after seeing CGM information, E(θij|Ikv, aiv = 1), should be close to its true value and precise.

Summary Figure 5 summarizes the two effects of CGM on the physician’s expectation

about the true clinical match value, Θij. First, Figure 5a presents the impact of comprehensive

measurement of glucose profile, abstracting away from the dynamic learning about new drugs.

Considering the expected match values for a given patient, the horizontal axis corresponds to

different products and the vertical axis to the expected clinical match, E(Θij), with (triangle)

and without (square) the device. This figure highlights how insights produced by the CGM

about the glucose profile can affect the physician’s expectation about the match value by

correcting the initial bias in physicians’ belief about Θij. Without the device (square), the

physician is indifferent between prescribing products 3 and 4 for patient i, conditional on the

price, as their perceived match value is the same. With information about the glucose profile

(triangles), product 4 dominates product 3, and the difference between products 1 and 2 shrinks.

In this example, the technology increases the perceived differentiation between products 2, 3

and 4 while it decreases between products 1 and 2. If patient i was prescribed product 3 prior

to CGM, the insights generated by the device induce a treatment switch from product 3 to

product 4 (up to the effect of treatment price). Second, Figure 5b focuses on the learning

dynamics about θij for new drugs. It represents the impact of experience signals generated by

patients using new drug j and a CGM at the time of the appointment v. CGMs affect the noise

of the experience signal. Considering the physician’s expectation about the partial information

match value, θij, the horizontal axis corresponds to the number of experience signals received.
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The vertical axis corresponds to the difference between the expected partial match value and

its true value.27 This example assumes normally distributed priors and signals. If experience

signals produced by CGMs are more precise (dark brown) than traditional feedbacks (navy

line), for a given number of experience signals received (horizontal axis), the difference between

the physician’s expectation, E(θij|Ikv, aiv), and the true value for θij is smaller. Hence, the

physician can learn faster about θij thanks to CGMs.28

Figure 5: Impact of CGM on the perceived match value
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Note: Figure 5a plots the physician’s expectation about Θij (vertical axis) for different products (horizontal
axis), with (N) and without (�) insights from CGM. This example abstracts away from the dynamic learning
about θij for new drugs. Figure 5b plots the evolution of a physician’s belief about θij (vertical axis) as she
receives more experience signals (horizontal axis) from patients who return to her practice while using new
product j. One feedback corresponds to one visit where the patient shares his experience with product j. I
assume physicians form normally distributed priors about θij at t = 0 and update their beliefs from normally
distributed signals received from patients using product j. Signals are unbiased with respect to the true value,
θij but noisy, denoting the variance of the signal from patient i′ for patient i, σ2

i′iv′ . Here, a physician receives
either precise (σi′iv′ = 1) or noisy (σi′iv′ = 3) signals compared to baseline (σi′iv′ = 2). For exhibition purposes,
in this simple example, the noise is the same for signals received from i′ 6= i.

Consumer welfare under imperfect information In this setting, there exists a dis-

crepancy between the decision utility and the one experienced by the patient. Similar concerns

arise when the expected utility anticipated at the time of the decision-making and the utility

under rational expectations differ (Brown and Jeon (2024)). Uncertainty and incomplete learn-

ing distort the decision utility, hence the demand for insulin, while the underlying experience

utility relies on Θij, the true clinical match value. The experience utility from patient i using
27Signals are assumed to be unbiased with respect to the true θij , irrespective of the technology. Yet, beliefs

are allowed to be inconsistent such that the initial prior mean may differ from its true value.
28The figure highlights that after receiving a very precise signal, the belief is immediately very close to the

true match value. This figure assumes signals are always received from CGM or traditional measurement. In
practice, the updating combines both as physicians are learning across patients.
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product j is

Uikjv = Θij − αpjv = E(Uikjv|Ikv; aiv)−
[
E(θij|Ikv, aiv)− θij + ∆νij(aiv − 1)

]

For old products, E(θij|Ikv; aiv) = θij. Following Dubois et al. (2018) and denoting j∗ =

arg maxj E(Uikjv|Ikv; aiv), the expected experienced utility for patient i from the choice made

on his behalf by physician k at v is:

Wikv = Eε[Uikj∗v]

= Eε
[

max
j
{E(Uikjv|Ikv; aiv)}

]
− Eε

[
E(θij|Ikv; aiv)− θij + ∆νij(aiv − 1)

] (8)

where the second term accounts for the difference between the realized and expected clinical

match value.

4.2.3 Discussion

This framework relies on several assumptions regarding physician and patient behavior. First,

the patient-product clinical match value is unaffected by the technology. It assumes that the

information generated by CGMs does not affect the effect of insulin j on the average or profile

of glucose level for patient i.29

Second, focusing on patients diagnosed before new products’ entry, it is assumed physicians

know the partial information clinical match value, θij, for these patients among old alternatives.

This feature circumvents the initial condition problem that arises in a dynamic setting.

Third, physicians are altruistic and myopic. They are altruistic as they choose the treat-

ment to maximize a weighted sum of the expected patient-level clinical benefit and treatment

prices. As physicians’ altruism and price sensitivity cannot be separately identified, a low α

can be driven by a low sensitivity to price and a high level of altruism. Physicians are also

assumed to be myopic, which excludes exploration by physicians who could prescribe a less

valuable treatment to learn about the clinical match value of new drugs. The low probability

of returning to a former treatment, even for patients using the digital device, mitigates this

concern. Physicians do not exploit patients with digital devices to collect valuable information

about treatments at the expense of a dominated choice for the patient himself. Physicians may
29Under this assumption, the average and profile of the glucose levels for patient i can still be affected by the

technology thanks to the better fine-tuning of short-acting insulin around mealtime.
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be reluctant to prescribe treatments for which the outcome is more uncertain. I approximate

this feature in the econometrics model by allowing for pessimistic initial priors, capturing the

reluctance to switch patients to new treatments.

4.3 Empirical model and identification

This section presents the empirical counterpart of the theoretical framework developed in the

previous section. Following the last section, the indirect utility driving the choice of insulin j

by physician k for patient i coming at v is specified as follows.

E(Uikjv|Ikv; aiv) = E(µij + νij|Ikv; aiv)− αpjv

= E(θij|Ikv; aiv) + ∆νijaiv − αpjv + δf(agejv) + εikjv

(9)

where pjv is the daily price of insulin j at time v, agejv, the time since product j is available,

enters quadratically,30 E(θij|Ikv; aiv)+∆νijaiv is the expected patient-drug clinical match value

and εikjv an idiosyncratic shock, unobserved to the econometrician, iid and following a Type

I EV distribution. The next paragraphs discuss the restriction imposed on the clinical match

value heterogeneity and the potential threats to identification arising from endogenous digital

device adoption. Then, I present the parametric assumptions of new products’ updating of prior

beliefs. Finally, I discuss the identification of the price coefficient and conclude this section with

an overview of the estimation procedure.

4.3.1 Heterogeneity in patient-drug clinical match value

The patient-insulin clinical match value varies from one patient to another based on physiologic

and metabolic factors. To accommodate this feature while keeping the model tractable, I assume

patients can be classified, ex-ante, into N distinct groups, n ∈ {1, ..., N}. Physicians know the

group each existing patient belongs to.31 The classification is performed in two-steps. First,

patients are classified into three categories depending on their diabetes type and insulin therapy.

Second, I use a k-means algorithm in each group to classify patients into two to three sub-groups.

The variables used to generate the clusters include patients’ demographics, environment, chronic
30For new products, it approximates physician learning from alternative sources such as word of mouth,

scientific conferences/articles or detailing. Learning from indirect experiences is assumed to be constant across
physicians at a given time.

31For newly diagnosed patients, the physician may not be able to identify i’s type straight away, leading to ex-
perimentation and exploration. The structural estimation of the model abstracts away from these considerations
by focusing on existing diabetes patients.
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conditions, diabetes management, and health status before CGM is available.

Within a cluster, n, the partial-information clinical match value, θnj, is proxied by a group-

specific product fixed effect. This flexible parametrization allows preferences for certain prod-

ucts to vary across groups based on factors observed by the physician when deciding on treat-

ment but unobserved in the data. θnj is assumed to be equal for bioequivalent products, as

the drug’s approval requires evidence of equivalence. For new drugs, physicians have imperfect

information about θnj upon product entry. Physicians’ initial belief about the performance

of drug j can be inconsistent such that E(θnj|Ik0; aiv) = θ0
ikj 6= θnj. Each physician’s belief

about θnj evolves as she gathers more direct patient experience such that E(θnj|Ikv; aiv) varies

over time. The term also differs across physicians as they see different patients with different

experiences, summarized in Ikv. The learning process also applies to the 24-hour biosimilar as

physicians’ uncertainty about the equivalence may drive the slow uptake in prescription shares

(Maini et al. (2022)). Paragraph 4.3.3 below details the specification for beliefs and signals.

The change in the preference for the effect of drug j on the glucose profile for patient i,

∆νij is proxied by patients’ sensitivity to insulin duration of action, dj. To accommodate for

patient-level heterogeneity and non-linearities, ∆νij = β1(xi)dj + β2(xi)d2
j where xi includes

observable demographics and chronic conditions. The digital device reveals the patient’s true

sensitivity to insulins’ length of action, which may deviate from the group average captured by

θnj.

Identification Partial information clinical match values, θnj are identified from within-

group choice probabilities for patients without the technology. There is no outside option.

Hence, I normalize θnj for the 24-hour product to zero for each group of patients. The sensitivity

to insulin duration parameters, β1(xi) and β2(xi), are identified from the choice probabilities for

patients using the technology and their deviation compared to non-users within a group. The

causal impact of the digital device on insulin choice can be estimated if εikjv is uncorrelated

with CGM adoption, aiv. Paragraph 4.3.2 discusses this assumption.

4.3.2 Endogenous CGM adoption

I take the adoption of the digital device as given, and the identification of the causal effect of

the digital device on insulin demand relies on the taste shock, εikjv, being uncorrelated with

CGM adoption, aiv. One potential threat to the identification lies in patient-level unobserved

characteristics that may vary over time. First, as mentioned in Section 4.2, only unobserved
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components leading to differences in product-level clinical match value matter. Any individual

and time-specific component that does not vary across drug choice alternatives cancels out

in the logit specification. Second, the cluster-level product fixed effect captures product-level

unobserved heterogeneity across patients’ groups. As a result, the remaining threats lie in

within-group product-specific unobservables that correlate with adoption which I will not be

able to account for.

4.3.3 New products’ learning dynamics

In the case of product entry, physicians are learning about the partial information clinical match

value of drug j for patient i, θij, throughout prescriptions. These parameters are constant within

a group of patients such that physicians learn about θnj if patient i belongs to group n. I assume

that patients in the same cluster, followed by the same physician, are subject to the same priors

and that there is no learning across clusters.32 As a result, belief and signals can be written

as a function of the patient providing the information i, his cluster n, the physician’s identity

k and the glucose monitoring technology used by i at v, aiv. The distributions of beliefs and

signals, e, are assumed as follows.

θnj ∼ N (θ0
j , V

0
j )

evikj ∼ N (θnj, (σ0 + σ1aiv)2)
(10)

Each physician has normally distributed prior belief about θnj with initial mean θ0
j and pre-

cision V 0
j upon introduction. The initial prior is assumed to be constant across physicians.33

Experience signals received from patients, evikj, are normally distributed. They are unbiased

but noisy, and the signal’s noise depends on the technology used. Physicians cannot be misled

about the θnj by CGM insights. The device provides at least an uninformative signal about this

value. Whether signals from CGM are more, less or equally informative about θnj than signals

from traditional tools depends on the sign of σ1. Consider a patient i in group n previously

prescribed j ∈ J New
v visiting physician k at v. Given the normally distributed beliefs and

signals, k’s posterior belief about j, E(θij|Ikv; aiv) ≡ θvnkj, after receiving i’s experience, evikj,
32This is similar to assuming σii′v =∞ if i and i′ do not belong to the same cluster n.
33Initial prior belief could be influenced by the sources of indirect learning such as clinical trials, medical

conferences, detailing, etc. The model is estimated on a subset of diabetes specialists working outside the
hospital. Hence, they are assumed to receive similar information about new products upon entry. In Figure A11,
I provide evidence that most diabetes specialists interact with the three pharmaceutical companies. Interactions
happen on average once per year.

30



and given the prior belief, θv−1
nkj , is given by:

E(θij|Ikv; aiv) ≡ θtnkj =


θv−1
nkj

σ2
0

σ2
0+V v−1

nkj

+ evikj
V v−1

nkj

σ2
0+V v−1

nkj

if aiv = 0

θv−1
nkj

(σ0+σ1)2

(σ0+σ1)2+V v−1
nkj

+ evikj
V v−1

nkj

(σ0+σ1)2+V v−1
nkj

if aiv = 1
(11)

Figure 5b presents the effect of the signal’s precision on the belief over the number of signals.

Identification Aside from the real-life partial information clinical match value for product

j and cluster n, θnj, the parameters driving the evolution of the prior beliefs include the initial

prior mean and variance, θ0
j and V 0

j , and parameters driving the signal’s noise, σ0 and σ1.

Figure 6 presents the intuition for identifying the remaining parameters. In particular, the

prior mean is identified by the extent of prescription without experience and the variance by

the extent of updating.

Figure 6: Identification of beliefs
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Note: This figure plots the evolution of physicians belief about θnj

(vertical axis), as she receives more experience signals (horizon-
tal axis) from patients who return to her practice while using new
product j. One feedback corresponds to one visit where the pa-
tient shares his experience with product j. Physicians are assumed
to form normally distributed priors about the partial information
clinical match value, θnj at t = 0 and update their beliefs from
normally distributed signals. Here, θnj = 0 and the figure plots al-
ternative updating of beliefs over time for higher/lower prior mean
(in blue) and higher/lower prior variance (in brown).

Discussion The learning framework relies on several assumptions and presents several

restrictions. First, learning from experience across physicians is limited. It is approximated by

the product’s time on the market. Beliefs are physician-specific. The only source of information
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sharing between two physicians comes from patients who may visit several physicians.34 Second,

there is no learning across patient types or time discounting for old signals. I assume physicians

do not forget about the past information received from patients. Last, direct experience is

the only source of physician-specific learning. Physicians are assumed to be homogeneous

regarding indirect sources of information such as detailing and equally likely to prescribe new

drugs after conditioning on experience. By focusing on diabetes specialists working outside

the hospital, there is limited heterogeneity in physician’s propensity to be detailed or not

by insulin manufacturers. In Appendix A11, I provide suggestive evidence that each insulin

manufacturer has detailed most diabetes specialists since at least 2014. Section 3.1 suggests

that physicians are heterogeneous regarding their propensity to face CGM patients (Table 1).

This heterogeneity may threaten the parameters identification if physicians more likely to face

CGM patients are more likely to prescribe new drugs to patients with the device. In Figure

A13, I plot the physician-level propensity to see CGM patients against their propensity to

switch CGM patients at the first appointment after patient adoption. The figure suggests no

correlation between the two dimensions.

4.3.4 Price and choice set exogeneity

I assume that the price of each drug and the timing of the new drug’s entry are exogenous.

The endogeneity of insulin price is unlikely to arise in this context as the drug price is set at

the national level, and the empirical specification includes product fixed effects. The patient

and visit specific taste shock, εikjv, is assumed to be uncorrelated with the price of each insulin

pjv. Second, the timing of the new drug’s entry is also assumed to be independent of the

individual-level taste shock.

4.3.5 Estimation

Given what precedes,

E(Uikjv|Ikv; aiv) = E(θij|Ikv; aiv) + (β1(xi)dj + β2(xi)d2
j)aiv − αpjv + δf(agejv) + εikjv

= uikjv(pjv, dj, aiv|Ikv) + εikjv

(12)

34In Figure A10, I provide descriptive evidence about the limited practice size for diabetes specialists working
outside the hospital context. It limits concerns about spillovers across physicians working at the same practice.
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The likelihood of observing choice j by physician k for patient i, Likjv, using aiv, in appointment

v is given by

Likjv = Pr(E(Uikjv|Ikv; aiv) > E(Uikj′v|Ikv; aiv) ∀j′ 6= j)

= exp(uikjv(pjv, dj, aiv|Ikv))∑
∀j′ exp(uikj′v(pj′v, dj′ , aiv|Ikv))

(13)

While physicians observe the realization of the signal, evikj, the econometrician does not, such

that the likelihood for a given sequence of choices by physician k has to integrate over the

distribution of unobserved signals. Given yvikj = 1 for the chosen alternative and 0 otherwise,

physician’s k individual likelihood is given by

Lk =
∫ ∞
−∞

[
V k∏
v=0

∏
∀j

(
exp(uikjv(pjv, dj, aiv|Ikv))∑
∀j′ exp(uikj′v(pj′v, dj′ , aiv|Ikv))

)yv
ikj

|~ek
]
dF (~ek) (14)

where ~ek = {e1
ikj, ..., e

Vk
ikj}, is the vector of signals observed by physician k. Without spillovers

within a physician, across patient types, n, the likelihood function can be written at the cluster

and physician level. I simulate M = 200 Halton draws from a normal distribution to ap-

proximate the integral.35 Given the number of physicians, K, the demand model parameters

are estimated by Simulated Maximum Likelihood by taking the simulated log-likelihood of the

sample.

logL = 1
K
∑
∀k

log 1
M

∑
∀m

[
V k∏
v=0

∏
∀j

(
exp(uikjv(pjv, dj, aiv|Ikv))∑
∀j′ exp(uikj′v(pj′v, dj′ , aiv|Ikv))

)yikjv

|~emk

]
(15)

4.4 Results

4.4.1 Estimates

Table 4 presents the dynamic elements of the preferences, including estimates of the initial

prior distribution parameters, the precision of experience signals, the price sensitivity and the

contribution of learning from indirect experience. Prior means are expressed relative to the 24-

hour clinical match value, normalized to zero for each group of patients. The price sensitivity

of demand is negative but small and non-significant. Table 5 presents the corresponding mean

own and cross-price elasticities of demand for each product, suggesting that demand is highly

inelastic. It aligns with the literature studying pharmaceutical demand, close to the estimates
35The draws are generated once and used across iterations.
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for insulins from Einav et al. (2018) for elderly in the US, −0.02.

The initial prior means about the partial information clinical match value, θ̂0
j , are nega-

tive compared to the reference product, normalized to zero, but also their true value, θ̂nj, as

displayed in Table 6. Physicians are reluctant to switch existing patients to new products

initially.

The estimated parameters highlight heterogeneity across new products’ priors. Beliefs about

the 24-hour biosimilar’s performance appear particularly pessimistic and uncertain. The 36-

hour product faces a higher prior mean and a lower level of uncertainty, in line with the features

of this entering product. Experience signals are quite imprecise as their magnitude is between

1.6 to 3.8 times the magnitude of the initial level of uncertainty. The digital technology does

not increase nor decrease the precision of the experience signal physicians use to learn about

the partial information match value of new products, θnj.

Table 6 presents the partial information clinical matches values, θnj, for three patient groups.

In most cases, new products (excluding the 24-hour biosimilar) outperform the 24-hour treat-

ment, even under partial learning, once uncertainty is resolved. On the other hand, Figure 8

plots the partial information match value, θ̂nj, together with the average clinical match value

in a given cluster, n, Θ̂nj.36 Within each cluster, differences in θ̂nj across products capture

the perceived product differentiation without the device and Θ̂nj the perceived differentiation

with the device. The figure highlights that, for specific patient groups, some products benefit

from the information provided by CGM as the match value with the device is higher than its

counterpart without the technology, and some alternatives are weakly worse off.
36Θ̂nj =

∑
∀i∈n Θ̂ij =

∑
∀i∈n θ̂nj + β̂1(xi)dj + β̂2(xi)d2

j
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Table 4: Dynamic parameters

Mean, θ0
j S.D., (V 0

j )0.5

Coef. se Coef. se Coef. se
Prior 24-hour biosimilar -6.05 (0.14) 3.34 (0.11)

36-hour -3.43 (0.10) 2.21 (0.05)
42-hour -3.49 (0.12) 2.65 (0.08)
Type 2 -4.25 (0.11) 2.77 (0.09)

Signal S.D. σ0 4.30 (0.11)
σ1 (w. CGM) -0.04 (0.12)

Price -0.11 (0.20)
Age Cst -0.52 (0.02)

square 0.04 (0.00)

Note: Standard errors are computed from the average of the score. The model is estimated on a sample of 150
diabetes specialists working outside of the hospital setting.

Table 5: Own and cross-price elasticities

24h 20h Mix Human 24h Bios. 36h 42h
Own-price elasticity -0.050 -0.066 -0.047 -0.046 -0.052 -0.048 -0.049
Cross-price elasticity 0.011 0.003 0.002 0.001 0.002 0.019 0.020

Note: Average across patients.

Figure 7: Partial information prior mean, θtnj
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Note: This figure presents the evolution of beliefs (vertical axis) as a physician collects more experience signals
(horizontal axis) from patients who return to her practice while using new product j, given the parameters
estimated in the demand model (Table 4). The figure plots the beliefs for Type 2 male patients under a
short+long therapy, assuming signals are received from patients not using a CGM.
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Table 6: Partial information clinical match values, θnj

20 Mix Human 36 42 T2
Type 1 ‘Old male’ Coef -1.72 -2.43 -4.37 0.31 0.40

SE 0.03 0.06 0.12 0.11 0.15
Type 2 short+long ‘Male’ Coef -1.53 -2.53 -4.41 0.39 0.31 -0.10

SE 0.03 0.06 0.13 0.10 0.14 0.15
Type 2 long ‘Male’ Coef -1.12 -1.52 -3.31 0.03 0.47 0.23

SE 0.02 0.06 0.11 0.11 0.17 0.13
Note: Standard errors are computed from the average of the score. Type 1 and 2 correspond to the patient’s
type of diabetes. Type 1 patients must use both short- and long-acting insulins daily. Type 2 patients may rely
on short- and long-acting insulins (‘short+long’) or long-acting insulin only (‘long’).

Figure 8: Perceived match value with/without a CGM
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Note: This figure presents the perceived match value, E(Θij), without the technology (�) and with CGM (N)
in utils (vertical axis) for each product (horizontal axis). The expectation is taken assuming the number of
experience signals received by a given physician for each drug tends to infinity such that the uncertainty around
θij for new drugs is resolved. Hence, the perceived match value without the technology corresponds to θnj

while the perceived match value with the technology is θnj + ∆νnj where ∆νnj is the average across patients
within a cluster. The 24-hour product (not represented) corresponds to the normalized good in each group.
‘Mix’ corresponds to insulin mixes, ‘NPH’ to human insulins and ‘Type 2’ to the mix of long-acting insulin and
another molecule, only intended for Type 2 diabetes patients. Only three clusters out of seven patient groups
are represented. The remaining clusters are presented in Figure A14.

4.4.2 Model fit

Before moving to the supply side and counterfactual analysis, this section provides descriptive

evidence of how the estimates for the demand model fit the data. To that extent, the parameters

are used to simulate the choice probabilities for each product at each prescription. When

comparing the model’s prediction to the data, I fix past choices to update physicians’ priors
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to avoid accumulating prediction errors over time. To demonstrate the ability of the model to

generate the diffusion pattern observed in the data, I also compute the average predicted choice

probabilities in a fully simulated environment in which predicted choice at v affects learning

in future prescriptions. Figure 9 plots the simulated average choice probabilities per product

and quarter over the realized prescription shares (Figure 9a) and against the ‘fully simulated’

average choice probabilities (Figure 9b). The parameters tend to overestimate the prescription

of the 36-hour product compared to the observed choice of physicians in the years right after

the introduction of the product. To a lesser extent, the model also slightly overestimates the

prescription of the 42-hour drug from 2019 to 2021. Figure A15 compares the realized and

predicted choice, and Table A6 presents the frequency of accurate prediction across years and

patients’ groups. The accuracy rates range from 31 to 82%, similar to those in Dickstein (2021)

who estimates a demand model with learning for antidepressants in the US.

Figure 9: Model fit
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Note: Figure 9 compares each product’s actual and predicted choice probabilities over time. For clarity, insulin
mixes and human insulins are not represented.

5 Supply: considering pricing response

This section presents and estimates the primitives of the insulin price-setting model. This

framework accounts for the pricing response from drug manufacturers and the regulator to the

introduction of a digital medical device. As mentioned in the previous section, the entry of

innovations in drugs and devices is taken as given, motivated by the timeline of drug and device
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development.37

5.1 Empirical model

Even when decision-makers are myopic, as assumed here, a demand system subject to con-

sumer learning presents dynamic features. Current sales affect future demand. Modelling

supply in markets with dynamic demand is inherently complex as firms have incentives to ex-

ploit this feature and set their prices in a forward-looking manner (Shapiro (1983), Bergemann

and Välimäki (2006)). Firms’ optimal pricing policy depends on the distribution of perceived

quality of their own and competing products across consumers. To overcome the complexity

induced by forward-looking drug manufacturers and dynamic demand, I rely on the charac-

teristics of the institutional setting. In France, the price for prescription drugs is set through

bargaining between drug manufacturers and the regulator. The price is set upon entry for an

extended period and renegotiated over time. Price increases are difficult to negotiate, prevent-

ing manufacturers from exploiting the market dynamic by setting a low price upon introduction

to raise it in later periods in the spirit of Shapiro (1983).

I assume that the regulation leads to an equilibrium price as the outcome of a multilat-

eral Nash-bargaining between drug manufacturers and the regulator, similar to Tunçel (2024).

The Nash-in-Nash bargaining solution takes as given the negotiation outcome between other

drug manufacturers and the regulator. Unlike other pharmaceuticals, the insulin market is

concentrated with three companies offering the full set of products in France. The bargaining

occurs at the drug portfolio level for each manufacturer and each product j is offered by one

pharmaceutical company. The profit for firm f offering products j ∈ Jft in year t is

πf (pt) =
∑
∀j∈Jft

(pjt − cjt)qjt(pt) (16)

where qjt(pt) = ∑
∀i,k

∑
∀v∈t sikjv(pt) is the total demand for drug j across appointments v

happening in year t, as estimated in section 4. This profit function assumes that manufacturers

have perfect foresight about demand realization in the coming 12 months following the price

negotiation. The manufacturer anticipates physicians’ learning altering initial market shares for

new products upon entry. Individual choice probabilities are derived from Equation (13). From

2017 onwards, drug manufacturers also have rational expectations about the CGM insurance
37Drug development can take more than 10 years. One of the first patents for Abbott Freestyle Libre approved

in the EMA in 2014 dates back to 2006/2007 (Litvinova et al. (2023)).
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coverage decision, the adoption among the pool of participants, aiv, and how the digital device

shifts demand via ∆νij. This last assumption presupposes that the drug manufacturers, when

bargaining over the prices, have superior information to that of physicians about the clinical

benefit of each own and competing new drug in real-life conditions.38 Pharmaceutical companies

know their marginal costs, cjt, when negotiating over prices in year t.
When bargaining with firm f , the regulator is assumed to maximize the ex-ante consumer

surplus generated by the portfolio of drugs offered by firm f in year t, given by

∆fCS(pt) =
∑
∀i,k

∑
∀v∈t

1
λ

ln
( ∑
∀j∈J

exp(uikjv(pjt(v), dj , aiv|Ikv)
)
−
∑
∀i,k

∑
∀v∈t

1
λ

ln
( ∑
∀j′ /∈Jf

exp(uikj′v(pj′t(v), dj′ , aiv|Ikv)
)

(17)

The parameter λ corresponds to the scaling factor for consumer surplus from the regulator’s

perspective. The scaling factor, λ, can differ from α, allowing the price sensitivity of physicians,

estimated from the demand model, not to accurately scale utils into dollars for the regulator.

Under Nash-bargaining, both parties have symmetric information.39 The regulator also forms

rational expectations about the adoption of the digital device and the impact of the device on

consumer surplus when bargaining over insulin prices from 2017 onwards. I follow Grennan

and Town (2020) in assuming that the surplus the regulator considers when setting drug prices

does not account for the difference between the decision and experience utility. Under these

assumptions, access to the digital device affects equilibrium prices. The regulator and the

manufacturer anticipate that physicians are choosing treatment relying on this new information

source when bargaining over prices. Denoting bft the bargaining ability of firms f in year t,

the Nash-in-Nash equilibrium prices maximize the Nash product for the manufacturer’s profit

and the regulator surplus, taking the prices of other products as given:

max
pjt,j∈Jft

[πf (pt)]bft [∆fCS(pt)]1−bft (18)

The portfolio of each pharmaceutical company is treated as an indivisible block, exogenously

given. I do not consider bargaining over a subset of products. The first-order condition with

respect to the price of drug j ∈ Jft in year t is given by

bft
∂πf (pt)/∂pjt

πf (pt)
+ (1− bft)

∂∆fCS(pt)/∂pjt
∆fCS(pt)

= 0 (19)

38Hitsch (2006) and Handel and Misra (2015) study firms pricing decision when they have incomplete infor-
mation about the true demand curve but assume no learning on the demand side. Firms are assumed to have
accurate information about the clinical match value of new products in real-life conditions.

39This implies that the regulator knows the firm’s marginal costs.
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The scaling factor of the consumer surplus, λ, does not affect the equilibrium outcome, while

the price sensitivity of demand matters.40 When a firm offers two products, j and j′, the

first-order conditions yield the following pricing equation:

pjt = cjt −
[
βfthjt + ∂qjt(pt)/∂pjt

qjt(pt)
+
(
βfthj′t + ∂qj′t(pt)/∂pjt

qjt(pt)

) (qj′t(pt)∂qjt(pt)
∂pjt

− qjt(pt)∂qjt(pt)
∂pj′t

)
(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

)]−1

(20)

where hjt = ∂∆fCS(pt)/∂pjt

∆fCS(pt) < 0 and βft = 1−bft

bft
. For single-product firms,

pjt = cjt −
[
βfthjt + ∂qjt(pt)/∂pjt

qjt(pt)

]−1

(21)

The details for the first-order condition computation are provided in Appendix D. The un-

knowns from Equation (20) are the marginal costs, cjt, and the bargaining parameters, bft, as

the remaining elements are observed or can be computed from the estimates of the demand

system. These unknown primitives must be recovered to compute the equilibrium insulin prices

under alternative scenarios. Yet, the first-order conditions generate a system of Jft equations

and Jft + 1 unknown, leading to an identification challenge common in the Nash-bargaining

literature (Grennan (2013), Tunçel (2024)).

5.2 Estimation and results

To overcome this identification challenge and recover the primitives of the supply model, it is

further assumed that

cjt = γmcj + ζjt

1− bft
bft

= βf
(22)

mcj are molecule-level costs of production for a daily dose in 2016, using the estimates from

Gotham et al. (2018), and ζjt is an unobserved cost shock.41 Bargaining weights are assumed

to be firm-specific and constant over time. Combining Equation (20) and the restrictions from
40The regulator does not internalize the impact of pharmaceutical prices on innovation through profits.
41Gotham et al. (2018) estimates the cost of production for a 1,000 insulin units vial relying on Indian customs

data for raw molecules and excipients quantities and prices. Among others, the marginal cost to consider in the
demand model may deviate from these estimates as pens, the most common injection device, are more costly
than vials.
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Equation (22), we get:

ζjt = pjt−γmcj+
[
βfhjt+

∂qjt(pt)/∂pjt
qjt(pt)

+
(
βfhj′t+

∂qj′t(pt)/∂pjt
qjt(pt)

) (qj′t(pt)∂qjt(pt)
∂pjt

− qjt(pt)∂qjt(pt)
∂pj′t

)
(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

)]−1

(23)

The above equation highlights the usual endogeneity concern that arises on the supply side

between the price and the marginal cost shock. I rely on traditional instruments correlated

with price but uncorrelated with the idiosyncratic cost shock, such as the number of competing

products. Including firm fixed effects and marginal costs in the set of exogenous variables, the

bargaining weights and marginal cost parameter can be estimated via GMM using the following

moment conditions:

E[ζjt|Zjt] = 0 (24)

In the main specification, the coefficient for production costs, γ, is set to 1.3 as it is difficult

to estimate precisely both marginal costs and firm-specific bargaining weights. To set γ, the

model is estimated for γ ∈ [1, 2], and the value minimizing the GMM objective function is kept

in the main specification. An alternative specification could assume γ = 1, yet, several reasons

rationalize γ > 1. I rely on the ‘competitive’ estimates from Gotham et al. (2018). It can also

be explained by the cost of the injection device, which is not included in the current estimate,

and distribution costs.42 The results are presented in Table 7. Insulin mixes (including the new

Type II drug) and human insulins are removed from the estimation such that their prices are

held fixed in the counterfactuals.

The bargaining weights capture the ability of the drug manufacturer to set a price above

marginal cost when bargaining with the regulator. The manufacturer-level bargaining weights

are estimated between 5 to 7%. These estimates are significantly lower than those estimated

for different prescription drugs by Dubois et al. (2022) for Canada and Tunçel (2024) in France

for the anti-depressants market. The difference in the price elasticity of demand can drive

this difference. With demand being nearly inelastic to prices, the regulator is the primary

force preventing pharmaceutical companies from setting excessively high prices.43 The average

per-product margin implied by the model lies between 53 and 85%.
42Most patients in France rely on insulin pens to inject their insulin, while the current estimates are computed

for vials. Robustness checks can be performed to account for the cost of the injection device.
43In countries like the US, where the government does not intervene in drug pricing, insulin prices for the

same product as those offered in France are significantly higher.
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Table 7: Bargaining weights estimates

Coef. S.E. bf
Firm 1 15.383 0.914 0.061
Firm 2 19.031 2.722 0.050
Firm 3 13.360 1.811 0.070
γ 1.300
N 30

Note: One-step GMM. Jackknife standard errors. γ is set to 1.3 by comparing the value of the GMM objective
function for γ ∈ [1, 2]. The estimation excludes insulin mixes, human insulin and the Type 2 product, whose
prices are held fixed in counterfactuals.

6 Data-driven insights, physician learning and cross-markets

complementarities in insulin demand

The estimates from the previous sections are used to measure the impact of the insights gener-

ated by digital wearables on pharmaceutical demand through several counterfactual scenarios.

This equilibrium framework is used to understand: (i) The impact of information provision.

(ii) The cost of relying on partial information. (iii) How does CGM information affect the

profitability of pharmaceutical innovations.

6.1 Defining relevant market outcomes

Before turning to the implementation and comparison of counterfactual scenarios, I define the

indicators relevant when trying to understand whether and how the market dynamic shifted

thanks to the device. This section will mainly focus on four ingredients of market outcomes:

(i) market shares, (ii) firms’ profit, (iii) physician-level learning and (iv) consumer welfare.

The first two market outcomes are straightforward to compute from the predicted choice

probabilities and equilibrium prices. Physician-level learning is studied through the end-of-

period belief about θnj, denoted θVk
nkj. Computing consumer welfare under different scenarios is

more intricate as decision-makers face imperfect and incomplete information about the patient-

product clinical benefit. As mentioned in section 4, a discrepancy exists between the decision

and experienced utility. Denoting p the equilibrium prices, d the vector of product durations

and a the vector of CGM usage in the patient population, the expected indirect utility for
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patient i from the choice made on his behalf by physician k at time v is:

Wikv(p,d, a) = Eε[ūikj∗v(p,d, a)]

= ln
(∑
∀j

exp(uikjv(pjt(v), dj, aiv|Ikv))
)
−
∑
∀j
sikjv(p,d, a)

[
θvnkj − θnj + ∆νij(dj)(aiv − 1)

]

(25)

where sikjt(p,d, a) denotes the choice probability, given by Equation (13). The value of learning

is taken into account in the second component of the indirect utility which accounts for the

difference between the expected match value at the time of the decision, θvnkj + ∆νijaiv and

its true value, Θij = θnj + ∆νij. This expression allows comparing consumer welfare under

alternative market outcomes, m from the compensating variation.44 The welfare induced by

the digital device for the patients is beyond what is measured in this project, as I restrict my

attention to the long-acting insulin market.

6.2 Digital device adoption and the insulin market

The model is used to evaluate the impact of CGM on the insulin market, taking patient adoption

patterns as given. To that extent, I simulate a scenario where CGMs are no longer used, setting

ait equal to zero for all patients, and compare the equilibrium prices and market shares with

and without CGM adoption.

Figure 10 illustrates the difference in consumer welfare induced by the introduction of CGMs.

Figure 10a shows the compensating variation (vertical axis), in euros per day, following a

prescription happening in period t (horizontal axis). The average consumer welfare is presented

for patients with a CGM (blue curve) and those not using one (brown curve). Three key insights

emerge. First, the average welfare gains for CGM users are nearly ten times higher than for

non-users, indicating limited information spillovers between the two groups. Second, among

CGM users, welfare gains are larger in the early months of CGM coverage and decrease over

time. It suggests that the technology is most valuable for patients when physicians face greater

uncertainty about treatment quality. Despite the decreasing trend, CGMs should continue

generating positive welfare gains over the long run — as physicians gather sufficient experience
44The compensating variation is computed as

CVikt(pm,dm,am) = 1
α

(
Wikt(pm,dm,am)−Wikt(p0,d0,a0)

)
where Wikt(pm,dm,am) correspond to consumer welfare in scenario m and Wikt(p0,d0,a0) correspond to
consumer welfare without the technology.
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about new drugs — thanks to the information about the glucose profile, ∆νij. Third, for non-

users, the welfare gains take longer to materialize. Physicians must observe the performance of

new drugs from patients with the device for the information to benefit non-users. Over time,

non-users gains should converge to zero as physicians accumulate enough knowledge about

new drugs. Figure 10b displays the distribution of consumer welfare gains across patients

using CGM, distinguishing between individuals with Type I and Type II diabetes and different

demographic characteristics. Patients with Type I diabetes benefit more than those with Type

II, and women tend to benefit more than men within each diabetes type. These findings align

with the medical literature, which suggests that patients with longer diabetes durations and

women are more prone to low glucose levels overnight, a condition for which CGMs provide

relevant insights (Siamashvili et al. (2021)).

Next, I assess the impact on physician learning. Figure 11 compares the difference between

θ̂nj and θ̂Vk
nkj, the partial information clinical match value and the end-of-period physician-level

prior mean. This difference is a proxy for belief accuracy, where a smaller difference indicates

a more accurate belief about product j. It is computed for each physician, k, patient group,

n, and new product j. The figure plots belief accuracy without the device (horizontal axis)

against its value when the technology is available (vertical axis).45 Points above (below) the

45-degree line indicate more (less) accurate belief about product j when the device is available.

Interestingly, while CGMs accelerated learning about some products (e.g., the 42-hour product),

they did not enhance learning for others (e.g. the 24-hour biosimilar). It is likely due to two

factors: (i) physicians face a limited number of opportunities to gain experience with new drugs

such that products compete over these opportunities, and (ii) the experience signal from CGM

users about θnj are equally precise as the ones received from regular patients. Consequently,

learning about some products may come at the expense of others, and not all new products

benefit equally from CGM insights.

At the market level, Table 8 shows the market shares for 2021, while Figure 12 tracks their

evolution over time. Figure 13 presents manufacturers’ profits. In 2021, the 42-hour product saw

a 16.5% increase in market share due to CGM adoption, while the 36-hour product experienced

only a temporary increase in market share, which nearly vanished by the end of 2021. Similarly,

profits for the 42-hour product rose by 23%, driven primarily by the demand response to CGM

(+18%). These results suggest that CGMs unevenly favored new products’ adoption at the
45In this context, prior beliefs are not consistent with the true partial information match value. The results

from the estimation suggests pessimistic prior beliefs as θ̂0
j < θ̂nj for each new drug j and patient group n.
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expense of older ones, particularly the 24-hour products.

In summary, this counterfactual analysis shows that the introduction of CGMs (i) primarily

benefited CGM users with limited spillovers to non-users, (ii) accelerated physician learning

about certain products, and (iii) was sufficient to affect market shares and insulin manufactur-

ers’ profits.

The limited spillovers to non-users may be influenced by the unequal propensity of physi-

cians to see CGM patients (Table 1).46 To explore this further, I conduct a counterfactual

reallocation of CGM sensors among eligible patients, accounting for patient demographics that

may correlate with adoption (detail in Appendix E). Figure A16 shows that reallocating sen-

sors does not increase spillovers to non-users. It indicates that the variation in CGM adoption

across physicians is not the primary driver of limited spillovers. However, this counterfac-

tual does not address how spillovers could be enhanced by allocating sensors to patients with

different demographic characteristics.

Figure 10: Consumer welfare

(a) Average over time (b) Distribution across patient types

Note: Figure 10a presents the compensating variation (vertical axis), in euro per day, following a prescription
happening in period t (horizontal axis). The average consumer welfare is presented for patients with CGM (blue
curve) and without (brown curve). Dashed lines focus on the consumers eligible for the device. Figure 10b
presents the compensating variation distribution (vertical axis) across different eligible patient types (horizontal
axis) in 2021 for CGM users. Ineligible clusters are not represented here as the effect is negligible.

46In the extreme case where all patients in the same cluster are either adopting or not at a physician practice,
spillovers cannot arise.
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Figure 11: Learning rate about the partial clinical match value, θ̂nj, with and without CGM
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Note: This figure plots the difference between θ̂nj and θ̂Vk

nkj , the partial information clinical match
value and the end-of-period physician-level prior mean in an environment with CGM (vertical axis)
against its value in an environment without CGM (horizontal axis). One observation per physician,
patient type among types eligible for the technology and product. Points above the 45-degree lines
suggest more accurate belief at the end of the period when the technology is available.

Table 8: Market shares with vs without CGM in 2021

Scenario 24-hour 20-hour 24-hour Bios. 36-hour 42-hout
Base (no CGM) 0.203 0.046 0.050 0.281 0.250

Demand-response 0.174 0.038 0.044 0.287 0.292
+ Supply response 0.174 0.038 0.043 0.289 0.291

Note: The first row corresponds to the predicted 2021 market share, absent the technology. The second row
takes into account the demand response to CGM information. The third row allows prices to respond to changes
in demand and correspond to the predicted 2021 market shares, given the observed adoption pattern. Insulin
mixes (including Type II product) and human insulin are not represented.
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Figure 12: Market shares without vs with (dashed) CGM over time
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Note: This figure plots the choice probabilities absent CGM (plain
lines) and their counterpart as CGM became available (dashed
lines) over time. Insulin mixes (including the new Type II product)
and human insulin shares are not represented.

Figure 13: Impact of CGM on drug manufacturer’s profits across 2017-2021
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Note: Change in profits due to the introduction of CGM over the 2017-2021 period for each product. The
profits without CGM are normalized to 100 for each product, and each scenario is compared to this baseline.
For each product, the first bar corresponds to changes in profits due to CGM affecting the demand curve and
the second bar accounts for prices to react to the change in demand.
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6.3 Cost from relying on partial information about the clinical match

value

By generating continuous data, the digital device emphasizes the inefficiencies arising from in-

complete learning in prescription drug choice. Observing the choice for patients under complete

learning helps quantify the costs of relying solely on partial information, in terms of market

shares, foregone profits and consumer welfare. In this section, I extrapolate the results from

device users to non-users to measure the losses from incomplete learning and assess how much

of this gap is bridged by providing broad access to CGM.

I begin by considering the complete information scenario in which every patient uses a CGM

as the “frictionless” solution. In this case, physicians access each patient’s true clinical match

values, Θij. I then compare this market outcome to two scenarios where (i) the technology was

never available and (ii) CGM coverage is available, but some patients do not adopt the device,

reflecting the current situation. Comparing the frictionless case to the first scenario, in which

choices rely exclusively on partial information, emphasizes the losses from incomplete learning in

terms of industry profits and consumer welfare. To abstract away from the uncertainty about

new drugs’ performance upon market entry, I focus on the steady-state choice probabilities

that prevail once this friction is resolved. The steady-state choice probabilities are obtained

by assuming physicians receive a precise signal from patients about the performance of new

drugs (σ0 = 0.001 and σ1 = 0) and restrict my attention to the last year of the data, over 36

months after the last product entered the market.47 The new equilibrium prices are computed

for each drug under each scenario. Table 9 shows each product’s steady-state shares and Figure

14 presents the profits. Comparing the first two rows highlights the products winning (older

drugs) and those losing out (new products) due to incomplete learning. Measuring these losses

in terms of consumer welfare, partial information accounts for -0.36e/per day on average across

prescriptions — 8 times less than the daily cost of Continuous Glucose Monitoring. Providing

broad CGM coverage for patients closes 54.8% of this gap, slightly above the adoption rate,

since patients using CGM experience larger losses from partial information (Figure 15).
47Given the initial prior variance and the signal precision presented in Table 4, the uncertainty level becomes

negligible after a physician receives the first feedback.
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Table 9: Steady state market shares in 2021, complete vs partial information

Information Product
Complete 24h 20h 24-h Bios. 36h 42h
X 0.095 0.020 0.076 0.271 0.383
No 0.122 0.028 0.095 0.264 0.332

Users 0.106 0.024 0.085 0.267 0.363
Note: This table presents market shares for each product once the uncertainty about the value of θnj for new
products is resolved. Each row differs by the set of patients using CGMs daily. Insulin mix (including the Type
2 product), human insulin are not represented as their price are held fixed in counterfactuals.

Figure 14: Changes in profits due to incomplete learning
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Note: Change in profits for 2021 compared to the ‘frictionless’ case where choice is made under complete learning
for each patient. The profits in the ‘frictionless’ case are normalized to 100 for each product, and each scenario
is compared to this baseline. Bars above (below) zero suggest higher (lower) profits than if the choice was made
under complete learning for all patients. For each product, the first bar corresponds to changes in profits in
the absence of CGM, and the second bar corresponds to the changes in profits under the current coverage and
adoption decisions.

49



Figure 15: Losses from partial information

Note: The figure plots the distribution of compensating variations
between the frictionless case and relying exclusively on partial infor-
mation across patients. Distributions are plotted separately for pa-
tients who adopted the technology in the observed coverage scheme
(blue curve) and those who did not (brown curve). The top and bot-
tom 2.5% are not represented here for clarity. The vertical dashed
line corresponds to the median loss for each patient population.

6.4 Cross-market complementarities

The results from the previous section indicate that the introduction of CGM did not benefit all

treatments equally. In 2021, the market share of the 42-hour product was 16.2% higher thanks

to the insights generated by CGM, compared to only 3% for the 36-hour product. This result

suggests that CGM helps better exploit the potential of certain new drugs. Hence, this section

aims to quantify the welfare gains generated by the complementarity between data insights and

the clinical benefit of insulins.

To measure this, I simulate market outcomes without CGM, assuming each new product

had not entered while keeping competitors’ price and entry decisions unchanged. I consider

unilateral deviations in the entry decision for the 36 and 42-hour products, both in environments

with and without CGMs.48 For each product j and patient i, I denote ∆CSe,aij as the change

in consumer welfare in situations where the product enters or not, e ∈ {1, 0}, and whether or
48The price of competing products is fixed to abstract away from the consumer welfare induced by the

competitive pressure of having one more alternative in the market. New equilibrium prices for products still on
the market can be computed from the Nash bargaining first-order conditions.
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not the technology is available, ait ∈ {1, 0}.49 I consider the following decomposition:

∆CS1,1
ij = ∆CS1,0

ij + ∆CS0,1
ij + Γij (26)

where ∆CS1,1
ij captures the welfare gains from the entry of drug j alongside CGM, ∆CS1,0

ij

represents the gains from product j, had CGM not been available, and ∆CS0,1
ij the gains

generated by CGM, had drug j not entered.50 The term Γij measures the difference between

the welfare gains from the two innovations and the unilateral contribution of each innovation,

absent the other. A positive Γij suggests that the welfare gains from product j and CGM

entries together are higher than the sum of the gains from product j and those from CGM

unilateral decision, indicating synergies between the two innovations.

Figure 16 presents the average welfare gains across prescriptions from 2019 to 2021 and

computes the average differential gains, Γj for the 36-hour and 42-hour products. The positive

Γj for the 42-hour product suggests that the availability of CGM amplifies the welfare gains

from this innovation. In contrast, Γj is negative for the 36-hour product, indicating that the

technology does not similarly enhance its gains.
49In each case, the consumer surplus is computed using the welfare without entry (e = 0) and without CGM

(a = 0) as benchmark.
50CGMs still affect insulin demand absent new drugs entry from ∆νij .
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Figure 16: Daily consumer surplus, 2019-2021
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Note: Each bar corresponds to the average consumer surplus in euros per day.
For each product (horizontal axis), the first bar corresponds to the average
consumer surplus from the joint entry of the product and CGM, ∆CS1,1

j , the
second bar corresponds to the average surplus from the product entry, absent
CGM, ∆CS1,0

j , the third bar is the average benefit from CGM absent this
product, ∆CS0,1

j and the last bar is the average of the difference between the
first bar and the sum of the last two, Γj .

6.5 Towards product design

To explore the potential impact of CGMs on the profitability of pharmaceutical innovations, I

simulate the entry of a different product in 2018 — replacing the 42-hour option — and compare

the potential profits from each new drug from the perspective of the insulin manufacturer. This

scenario assumes the manufacturer forecasts the availability of CGMs and technology adoption

in the population during product development. Table 10 outlines the characteristics of the

alternative entering product, called the ‘72-hour’ drug. This product is designed to appear more

or less appealing under incomplete and complete learning.51 The marginal cost of the molecule

(net of the cost shock, ζjt) is assumed to be 15% higher than that of the 42-hour product. I

compute the market clearing prices with and without CGM and compare manufacturers’ profits

and consumer surplus in each scenario.

Figure 17 presents each scenario’s market share and firm profits. The ranking of market

shares and profits across products shifts depending on whether CGM is available. Without
51The ‘72-hour’ product features are designed to resemble the characteristics of the once-weekly insulin ap-

proved by the EMA in April 2024. Clinical trial outcomes are used to set partial-information clinical match
values, θnj . However, the duration is 72 hours instead of 7 days to reduce the extent of out-of-sample extrap-
olation. In particular, the demand model does not capture the convenience of injecting insulin once a week
against once a day. Hence, the 72-hour product is assumed to be injected once a day, similar to other available
products. https://www.ema.europa.eu/en/medicines/human/EPAR/awiqli
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CGM, the 42-hour product captures a larger market share and is more profitable for the

manufacturer than the 72-hour version. However, when CGM is introduced (and adopted

by patients), the market share of the 72-hour version increases by 40%, and it becomes more

profitable for the firm to launch the 72-hour product rather than the 42-hour one.

Figure 18, similar to Figure 16, presents the decomposition of consumer surplus using Equa-

tion (26). The consumer surplus from the 72-hour product combined with CGM is 24% higher

than that of the 42-hour product, driven by the 52% increase in consumer surplus thanks to

the joint entry of the drug and CGM, as measured by Γj.

This last result suggests that the most profitable pharmaceutical innovation can shift based

on the technological environment in which demand occurs. Complementary technologies, like

CGM, can change the relative appeal of different drugs by introducing new observable attributes

for evaluating drug performance, potentially affecting future pharmaceutical innovations.

Table 10: Product features

Supply Priors θnj
mcj Duration θ0j σ0j θ1j θ2j θ3j θ4j θ5j θ6j θ7j

42-hour (Obs) mc42 1.75 -3.49 2.65 0.94 0.5 0.40 0.26 0.31 0.77 0.47
72-hour 1.15×mc42 3 -3.57 2.70 0.5θn,42 0.25 1.1θn,42

Note: The 72-hour product is inspired by the clinical trial outcomes for insulin icodec, approved by the EMA
in April 2024. The marginal cost is assumed to be 15% higher than the 42h version.
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Figure 17: 42-hour vs 72-hour product entry
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Note: Figure 17a compares the average choice probabilities for each product over time following entry. The
dashed lines correspond to product shares in a market that does not provide access to CGM, while the plain lines
consider CGM’s availability for patients. Figure 17b plots the changes in profits compared to the profits from
the entry of the 42-hour product in an environment without CGM. The first bar corresponds to the difference in
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Figure 18: Daily consumer surplus, 2019-2021
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7 Conclusion

This paper studies how digital medical devices affect pharmaceutical demand in the context of

CGM insights for insulin choice. To that end, I develop a tractable model of demand and supply

for insulin embedding: (i) patient-specific learning about treatment performance through the

CGM, (ii) dynamic physician-level learning about new drugs from patient experiences, and (iii)

price setting by pharmaceutical companies and the regulator, both internalizing demand-side

learning. The model is estimated using medical claims data from France that records insulin

prescriptions by diabetes specialists.

The results from the structural estimation highlight how insights from digital health data

reshaped physicians’ preferences when prescribing insulin to diabetic patients. Despite sig-

nificant information frictions about new products, affecting both CGM users and non-users

initially, consumer welfare gains mostly accrued to patients using the device, while the benefits

to non-users were ten times smaller. The technology had a heterogeneous effect across new

products. Physicians learn faster about new drugs that present features relevant to overcom-

ing the flaws of existing drugs revealed by the technology. By inducing CGM users to switch

treatment away from old molecules to these new drugs, the device generated opportunities to

learn about the quality of the drug that would not have occurred without the technology. As

CGM did not improve the quality of experience signals received by physicians about new drugs

and the number of learning opportunities remained fixed, physicians would have learned more

about some products without the device. Assuming CGMs provide complete learning about

the patient-insulin clinical match values, this framework enables measuring the costs, in terms

of foregone profits and consumer welfare, from relying on partial information when deciding

on treatment. It also highlights the cross-market complementarities between medical devices

and pharmaceuticals, exploring the potential long-term effects of CGMs on the insulin mar-

ket. Specifically, the most profitable pharmaceutical innovation strategy can vary depending

on the technological environment in which insulin choices are made, as CGMs introduce new

observable attributes for evaluating drug performance that enter pharmaceutical demand.

This study opens up several important avenues for future research. First, estimating the

patient-product clinical match values does not separately identify the preference for the effects

on the average and glucose profile from their level, as they remain unobserved in claims data.

Further separating these would shed light on whether old attributes are phased out by the new

attributes generated from CGM. Second, the analysis focuses on CGM’s impact on existing
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insulin patients. It does not account for the potential benefits for new insulin users, such as

improved diagnosis matching by physicians at therapy initiation (Crawford and Shum (2005)).

Third, the framework is estimated for France, where the regulator bargains the price of pre-

scription drugs with insulin manufacturers and provides complete coverage for insulin and CGM

expenses through the universal health insurance scheme. This leads to low prices and inelastic

demand. CGM’s impact may vary in environments where prices adjust more freely, and cost

differences influence insulin choices. Finally, this project focuses on cross-market externalities,

and a complete welfare analysis of CGM is beyond its scope. Since CGM increases monitoring

costs relative to traditional devices, broad coverage significantly raises healthcare expenses.

Identifying which patients benefit most from CGM data and how they benefit would be crucial

for designing an optimal coverage strategy (Chandra and Skinner (2012), Conner et al. (2024)).

Their impact on the organization of care also presents important avenues for research that

could inform policy debates, as healthcare systems like the NHS in the UK consider adopting

these technologies to support system reform.52
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A Additional figures and tables

Figure A1: Glucose variability

Note: Different patterns of glycemic variability (GV) in two patients with same hemoglobin A1C (HbA1c).
15-day glucose traces of two patients who had identical HbA1c of 8.0% but different degrees of GV. High GV
in patient 1 was reflected by numerous episodes of both hypo- and hyperglycemia (a), whereas low GV in
subject 2 resulted in no such episodes (b). Patient 1 (a) had visibly higher glucose fluctuations than patient
2 (b) that resulted in seven episodes of moderate hypoglycemia (≤ 50mg/dL) and eight episodes of moderate
hyperglycemia (≥ 350mg/dL). Reproduced from Chehregosha et al. (2019) under the terms of the Creative
Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/
by-nc/4.0/). No changes were made to the original figure.

Figure A2: Google trends for Continuous Glucose Monitoring, 2010-2019
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Note: In each figure, the legend corresponds to the keywords. In Figure A2b, ‘Capteur de glucose’ means
‘glucose sensor’ and ‘Glycémie en continue’ corresponds to ‘Continuous glucose monitoring’. Freestyle Libre is
the technology developed by Abbott in 2014. The former technology developed by Abbott - Freestyle Navigator
II (not displayed) - faced a low index for the whole time it was available. Dexcom is also developing CGM.
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Figure A3: Continuous Glucose Monitoring

Note: L’application FreeStyle LibreLink permet, si vous le souhaitez, le partage automatique et à distance
de vos données de glucose avec votre médecin à travers la plateforme d’analyse en ligne sécurisée LibreView.
Ce partage automatique nécessite que vous ayez au préalable créé un compte LibreView, puis que vous vous
connectiez au cabinet de votre médecin.Avec un compte LibreView, vous pouvez : (1) Partager automatiquement
vos données de glucose avec votre médecin. (2) Votre médecin pourra ainsi accéder à vos données de glucose
depuis son compte LibreView, sans que vous ayez besoin de vous rendre à son cabinet. (3) Retrouver des rapports
synthétiques et intuitifs qui mettent en évidence votre profil et vos tendances de variation de vos taux de glucose.
(4) Accéder à tout moment à toutes vos données, stockées en toute sécurité sur LibreView. Illustration from
Abbott’s website, used in accordance with Abbott’s copyright policy for non-commercial purposes. Source:
Abbott website accessed on October 10th, 2024.
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Figure A4: Glucose monitoring volumes and value in France, 2014-2023
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Note: Test volume and value for all patients in France. In Figure A4a, the number of tests performed via
sensors is computed from the number of sensors and frequency of automatic measurement. In Figure A4b, strip
costs do not include the lancing device cost. Source: Open LPP.

Figure A5: Aggregate insulin sales and prices, 2015-2023
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(b) Price per daily consumption

Note: The first vertical line represents the start of CGM coverage. The second line corresponds to the end of
the period considered in the analysis. Figure A5a plots the share for each product over time as a percentage of
all insulin units reimbursed. Figure A5b plots the daily price, assuming 20 units per day. The 36h daily dose
price is adjusted to account for the increased units required when switching from the regular 24h.
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Figure A6: Sales volume and value, by manufacturer, 2015-2023
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Note: The first vertical line represents the start of CGM coverage. The second line corresponds to the end of
the period considered in the analysis.

Figure A7: Insulin pump usage, CDF
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Note: This figure plots the cumulative distribution function of the first and
last pump reimbursement date for patients relying on an insulin pump between
2015 and 2021. These distributions present no discontinuity/change in trends
after the CGM coverage decision.
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Figure A8: Strips reimbursement per patient
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(b) Non-users over time

Note: Figure A8a presents the estimates from an event study model considering the number of strips reimbursed
in the quarters around CGM adoption. CGM adoption is identified from a patient’s first prescription of a CGM.
The regression includes patient fixed-effects and focuses on patients with their first CGM prescription from
January 2018 onwards. Figure A8b plots the linear regression coefficients of strip reimbursement over time for
non-users.

Figure A9: Observed and predicted CGM adoption date for ‘early’ users
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Note: Figure A9 compares the first CGM prescription date ob-
served in the data to the one predicted by the model summarized
in Table A3 for ‘early adopters’. ‘Early adopters’ are patients whose
first CGM reimbursement happens before January 2018 such that
the first CGM prescription may not coincide with their adoption
date. 40k patients are adopting before January 2018, among which
7k face a predicted adoption date different from their observed date.
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Figure A10: Diabetes specialists outside of hospital practices
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(b) Number of practitioners by patient

Note: Figure A10a represents the number of “peers” working at the same practice for diabetes specialists
working outside the hospital. 62% are working in an environment without any other diabetes specialist, 78%
with at most one peer. Figure A10a uses data from the practionners directory in France available at https:
//annuaire.sante.fr/web/site-pro/extractions-publiques. Figure A10b plots the number of diabetes
specialists working outside the hospital by patient.
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Figure A11: Insulin manufacturer detailing to physicians, 2014-2023
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(b) GPs and manufacturers interactions
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(d) First detailing to GPs

Note: Descriptive evidence of pharmaceutical detailing by insulin manufacturers from 2014 to 2023 are provided
in Figure A11. Diabetes specialists are more likely to interact with insulin manufacturers than GPs. Over the
period, 90% of specialists interacted at least once with a pharmaceutical company, and 60% of them can be
linked to the three manufacturers. They interact on average once per year and, in most cases, since the beginning
of my sample period. On the other hand, 70% of GPs never interacted with either one of these companies.
While 25% interacted with Sanofi, the manufacturer with the most diverse prescription drug portfolio, less than
10% interacted with Eli Lilly and/or Novo Nordisk, which have a less diverse portfolio.
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Figure A12: Physician prescription share and the information set size, city specialist
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Note: The horizontal axis corresponds to the amount of feedback
from real-life experience with the new product j received by the
physician up to the previous period. The vertical axis corresponds
to product j prescription share for patients not using the product
before the appointment. For each variable, I consider the residuals
from a linear model controlling for physician fixed effect, product-
specific quarter fixed effect, and the average demographics of the
patient visiting physician k in a given period. The figure focuses
on prescriptions by diabetes specialists working outside the hospital
and excludes the new Type 2 product directed towards a subset of
patients.

Figure A14: Perceived match value with/without a CGM
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Note: This figure presents the perceived match value without the technology (squares) and with CGM (triangles)
in utils (vertical axis) across products (horizontal axis). The perceived match value without the technology
corresponds to θnj while the perceived match value with the technology is θnj +∆νnj where ∆νnj is the average
across patients within a cluster.
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Figure A13: Physician-level heterogeneity
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Note: This figure presents the physician-level propensity to see
patients with CGMs (horizontal axis) against her propensity to
switch patients in the first appointment after they adopted CGMs
(vertical axis). Each propensity corresponds to the parameter of a
logistic regression where the outcome variable is ’CGM adoption’
(horizontal axis) and ’Switching insulin in the first appointment
with CGM’ (vertical axis), and patients’ characteristics are included
as controls. One point corresponds to one physician. The fitted line
corresponds to a flexible non-parametric smoothing of the data with
a 95% confidence interval.

Figure A15: Prescribed vs predicted treatment choice
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Note: This figure compares the product prescribed in the actual data jobs to
ĵ = arg max ˆ̄uikjv. The idiosyncratic shock is excluded from the prediction.
Note that ĵ never corresponds to the 20-hour, insulin mixes nor human insulin
treatments.
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Figure A16: Consumer surplus under observed allocation and after sensor reallocation

Note: The figure presents the compensating variation (vertical
axis), in euros per day, following a prescription happening in pe-
riod t (horizontal axis). The average consumer welfare is presented
for patients with CGM (blue curve) and without (brown curve).
The plain line represents consumer welfare from the observed adop-
tion pattern. Dotted lines present welfare after reallocating sensors
across patients.
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Table A1: Summary statistics, patient level

(1) (2) (3) (4)
All Type I Type II

Long+short Long only
N (’000) 333.4 94.2 133.4 105.8

Age 57 49 60 62
Female 0.434 0.405 0.449 0.440
Type 1 0.283 1.000 0.000 0.000
Low-income 0.126 0.135 0.126 0.117
Residential area

Deprivation index 0.262 0.044 0.336 0.371
Population(’000) 41.0 44.1 41.2 37.7

Chronic conditions
Hypertension 0.692 0.442 0.783 0.799
Hypercholesterolemia 0.619 0.401 0.700 0.712
Analgesics 0.412 0.286 0.474 0.446
Obesity 0.324 0.169 0.412 0.351
Cardiovascular 0.318 0.205 0.382 0.338
Anxiolytics 0.174 0.143 0.193 0.177
Antidepressants 0.168 0.135 0.192 0.167
Respiratory 0.148 0.103 0.178 0.150
Hypnotics 0.108 0.078 0.127 0.110
Cancer 0.097 0.064 0.115 0.104
Neuroleptics 0.043 0.036 0.045 0.046
Dialyse 0.016 0.013 0.022 0.010

Prescriptions 7 8 8 5

CGM Users 0.449 0.728 0.531 0.096
CGM Temporary 0.073 0.050 0.080 0.174
Pump Users 0.067 0.171 0.041 0.008
Insulin switch 0.548 0.579 0.616 0.435
Nb switches 1.446 1.437 1.538 1.294

Note: The sample is restricted to patients between 18 and 75 in 2015 who had already used long-acting
insulin in early 2016, who had gotten a prescription from a diabetes specialist, and who did not rely exclusively
on an insulin pump over the sample period. The Deprivation index is computed based on 2015 measures of
unemployment, blue-collar workers, high school graduates shares and the median income by consumption unit
at the city level from the national statistic institute (INSEE). It is centered around zero, goes from -6.1 to 10.3,
and the variance is 2.72. Negative values stand for more favorable areas. In 2015, the median individual in
France lived in a 9,423 inhabitants city, and the deprivation index is around 0.116. The number of prescriptions
is restricted to prescriptions written by diabetes specialists. The number of insulin switches is computed on the
sample of patients who switched at least once. Appendix B.1 details the sample construction.
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Table A2: Summary statistics, physician level

(1) (2) (3) (4) (5) (6)

All Specialists Hospital GP Care Entering
Center non-GP

N 108,542 845 1,022 99,244 7,062 369
N (Share) 0.008 0.009 0.914 0.065 0.003
Patients (#) 5 122 179 5 3 10
Prescriptions (#) 22 739 428 23 5 17
Prescriptions (Share) 0.089 0.164 0.715 0.028 0.004

Ever CGM (%) 0.581 0.946 0.994 0.577 0.526 0.691
CGM users 2 62 77 2 1 6
CGM prescription (#) 1 152 72.5 1 1 5
CGM (Share) 0.134 0.231 0.592 0.031 0.012

A. Ever prescribed (%)
All products 0.084 0.670 0.886 0.070 0.082 0.263
20-hour 0.485 0.983 0.994 0.482 0.389 0.566
24-hour 0.853 1.000 1.000 0.857 0.762 0.827
24-hour biosimilar 0.324 0.754 0.993 0.310 0.369 0.396
36-hour 0.516 0.954 0.994 0.512 0.449 0.629
42-hour 0.316 0.863 0.944 0.307 0.272 0.577
Type 2 0.290 0.856 0.934 0.283 0.220 0.477

B. Switching behavior
Ever switching 0.301 0.996 1.000 0.283 0.348 0.650
Switches (Share) 0.213 0.529 0.213 0.029 0.016
Switching × 24-hour biosimilar 0.122 0.574 0.952 0.104 0.192 0.233
Switching × 36-hour 0.144 0.910 0.900 0.129 0.141 0.461
Switching × 42-hour 0.068 0.811 0.830 0.051 0.081 0.466
Switching × Type 2 0.052 0.796 0.742 0.037 0.056 0.350

Note: Physician-level summary statistics. Patients, visits and prescriptions are restricted to patients in the
sample of interest (Table A1). Patients, visits, CGM users and CGM visits correspond to the sample median.

Table A3: Predicted vs observed CGM adoption

Observed
No Yes

Predicted No 0.8243 0.2463
Yes 0.1757 0.7537

Note: Table A3 presents the accuracy of CGM adoption prediction for patients adopting the technology from
January 2018. Adoption is predicted from individual demographics and the evolution of strip consumption over
time for patients using the technology. Youden’s index is used as a threshold to classify observations. The risks
of Type I and Type II errors are 17.6% and 24.6%, respectively.
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Table A4: Switching costs, CGM users vs non-users

A. All B. Specialists
coef. s.e. coef. s.e.

α -0.186 (0.039) -0.232 (0.043)
c1: Incumbent -2.010 (0.039) -2.195 (0.045)
c2: Users 0.013 (0.053) -0.091 (0.058)
c3: Using CGM 0.024 (0.112) 0.082 (0.119)

N 621 414
Note: Robust standard errors. The first column includes prescriptions from GPs, diabetes specialists and
diabetes specialists working in the hospital. The second column focuses on specialists. Both specifications
include a quadratic time trend.

Table A5: Information set and non-user switching behavior

A. All non-users B. Eligible C. Non-eligible
coef. s.e. coef. s.e. coef. s.e.

1(Fkt > 0) 0.548 (0.036) 0.243 (0.017) 0.306 (0.025)
Fkt 0.159 (0.016) 0.059 (0.009) 0.096 (0.011)
(Fkt)2 -0.003 (0.000) -0.001 (0.000) -0.002 (0.000)
FCGM
kt -0.081 (0.027) -0.012 (0.015) -0.061 (0.016)

(FCGM
kt )2 0.001 (0.001) -0.001 (0.001) 0.001 (0.001)

Obs. 7,568 7,434 7,497
Y 0.932 0.428 0.517
F 3.709 3.728 3.723
FCGM 2.288 2.292 2.292

Note: The information set is measured in ′0 of visits. Standard errors clustered at the physician level. I restrict
the sample to individual diabetes specialists and focus on the 42-hour product.

Table A6: Accurate prediction, per year and patient group

Cluster 2015 2016 2017 2018 2019 2020 2021
1 0.82 0.73 0.62 0.50 0.52 0.54 0.54
2 0.79 0.69 0.55 0.44 0.47 0.47 0.45
3 0.72 0.64 0.52 0.43 0.49 0.53 0.52
4 0.77 0.68 0.47 0.43 0.39 0.42 0.42
5 0.72 0.65 0.48 0.41 0.40 0.40 0.41
6 0.56 0.51 0.38 0.34 0.33 0.31 0.32
7 0.61 0.56 0.38 0.34 0.33 0.32 0.31

Note: This table compares the product prescribed in the actual data jobs to ĵ = arg max uikjt(pjt, dj , ait|Ikt).
The idiosyncratic shock is excluded from the prediction. The accurate prediction rates range from 31% to 82%.
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Table A7: Patient selection

(1) (2) (3) (4) (5) (6) (7) (8)

All, incl: Final Infrequent New No diabetes Old Pump RestSample Patients specialist Age≥ 75

N (’000) 1,423.0 333.4 54.3 335.0 91.9 408.7 48.3 151.5

Age 63 57 55 52 61 82 44 58
Female 0.483 0.434 0.491 0.474 0.425 0.558 0.560 0.420
Low income 0.103 0.126 0.156 0.162 0.122 0.018 0.105 0.135
Type 1 0.158 0.283 0.123 0.093 0.163 0.080 0.731 0.060
Death 0.003 0.002 0.005 0.001 0.001 0.007 0.000 0.002

Residential area
Deprivation index 0.334 0.262 0.296 0.295 0.627 0.331 0.201 0.475
Population (’000) 38.3 41.0 43.8 42.2 31.8 34.6 32.2 37.5

Chronic conditions
Hypertension 0.701 0.692 0.621 0.521 0.745 0.897 0.405 0.657
Hypercholesterolemia 0.550 0.619 0.453 0.415 0.649 0.616 0.370 0.527
Analgesics 0.429 0.412 0.459 0.335 0.419 0.544 0.272 0.389
Cardiovascular 0.358 0.318 0.440 0.205 0.249 0.577 0.171 0.264
Obesity 0.250 0.324 0.401 0.206 0.217 0.220 0.263 0.216
Anxiolytics 0.193 0.174 0.219 0.154 0.171 0.251 0.127 0.185
Antidepressant 0.178 0.168 0.180 0.139 0.145 0.230 0.161 0.163
Respiratory 0.158 0.148 0.227 0.128 0.126 0.196 0.109 0.150
Hypnotics 0.122 0.108 0.144 0.090 0.108 0.166 0.069 0.115
Cancer 0.137 0.097 0.260 0.089 0.087 0.217 0.056 0.125
Neuroleptics 0.047 0.043 0.060 0.044 0.041 0.055 0.019 0.055
Dialyse 0.013 0.016 0.048 0.005 0.004 0.016 0.006 0.007

Long-term care 0.842 0.927 0.691 0.746 0.930 0.845 0.939 0.828
Short-acting 0.556 0.744 0.610 0.512 0.474 0.491 0.982 0.313
Specialists 0.720 1.000 1.000 1.000 0.022 0.606 0.895 0.058
Prescriptions (Av.) 16 27 7 9 29 16 8 9
Specialist prescriptions (Av.) 3 7 3 3 0 2 4 0

CGM Users 0.226 0.449 0.023 0.214 0.125 0.081 0.930 0.065
CGM Temporary 0.091 0.073 0.364 0.128 0.136 0.138 0.018 0.188
Pump Users 0.051 0.067 0.000 0.000 0.000 0.004 1.000 0.000
Insulin switch 0.381 0.676 0.200 0.307 0.329 0.321 0.445 0.129
Nb switches 1.673 1.848 1.282 1.523 1.516 1.609 1.673 1.332

Note: The Deprivation index is computed based on 2015 measures of unemployment, blue-collar workers, high
school graduates shares and the median income by consumption unit at the city level from the national statistic
institute (INSEE). It is centered around zero, goes from -6.1 to 10.3, and the variance is 2.72. Negative values
stand for more favorable areas. In 2015, the median individual in France lived in a 9,423 inhabitants city, and
the deprivation index is around 0.116. The number of insulin switches is computed on the sample of patients
who switched at least once. ‘Infrequent’ includes patients using insulin spontaneously over the sample period
or who stopped before April 2016. ‘New patients’ have their first insulin prescription after March 2016. ‘No
diabetes specialist’ refers to patients who have not seen a specialist already active in 2016. ‘Old’ patients were 75
or more in 2015. ‘Pump’ includes patients relying exclusively on insulin pumps. ‘Rest’ consists of the remaining
patients prescribed insulin by new physicians or physicians who are not actively changing treatments.
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B Data construction

B.1 Sample selection

I rely on exhaustive micro-level data for France from the Système National des Données de

Santé (SNDS). The data on the French population is exhaustive, thanks to the single-payer

system. The Social Security system covers more than half of prescription drug expenditures and

medical devices once the Health Technology Agency has enacted the coverage. The mandatory

health insurance system fully covers patients with diabetes for their expenditures as part of the

Long-term care disease program.53 I build the sample of patients as follows.

First, I retrieve all the long-acting insulin reimbursement flows from 2015 to 2021. I extract

the patient, prescriber, product IDs, and prescription date for each flow.54 Note that the

prescriber ID corresponds to the hospital ID for physicians working at the hospital. On the

patient side, I focus on patients who were already familiar with insulin injections and glucose

measurement before April 2016. I impose the following restrictions among patients: (i) The first

long-acting insulin prescription was recorded before April 1st, 2016 and the last prescription

was written after January 1st, 2016. (ii) The time between the first and last prescription was

over three years. (iii) The patient received more than one prescription per year between his

first and last prescription. (iv) I restrict my attention to patients not using an insulin pump

or whose first pump reimbursement happened after January 1st, 2016.55 (v) The patient was

an adult, 74 or younger, in 2015. On the physician side, I consider (i) The diabetes specialists

working in or out of the hospital. (ii) The prescribers with a first prescription to any patient

before January 2016. (iii) The practitioners who wrote at least 24 prescriptions and switched

a treatment at least once for any patients in my sample between 2016 and 2021. Table A7

compares the characteristics of patients in the final sample to the initial dataset. Focusing

on the set of incumbent insulin patients, Table A2 provides summary statistics about the

physicians involved in their therapy.

Most of the descriptive analysis relies on this sample. Note that (i) The first intention

treatment choice for new insulin patients is used to estimate switching costs separately from
53The drug price still enters the care provider’s decision through financial incentive schemes and guidelines.
54I focus on the following Anatomical Therapeutic Chemical (ATC) classes: A10AC, A10AD, A10AE. If two

insulins in these classes are prescribed on the same day, I consider either (i) the new molecules when a new
product is prescribed together with an old product or (ii) the 24-hour product when it is prescribed at the same
time as insulin mixes. The remaining cases are dropped.

55The data also covers insulin pump coverage. Patients using a pump to stabilize their glucose level are
prescribed long-acting insulin in case of a breakdown. They are not using it daily. When a patient starts using
an insulin pump, I remove the long-acting insulin prescriptions written while using the pump.
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learning (Section C.3). (ii) The structural model is estimated on a random sample of 150

diabetes specialists working outside the hospital.

B.2 Risk of mismeasurement in CGM adoption

This section documents the risk of mismeasurement in digital device adoption when relying

on the claims data. It considers sequentially the risk for patients eligible for coverage and

non-eligible for CGM coverage.

For individuals eligible for the technology, purchases of sensors directly from the device

manufacturer are not reimbursed by the health insurance scheme. It is fully covered in the case

of a prescription. These patients have no incentive to buy the technology outside the scope

of my data. The coverage decision comes 2.5 years after the device was available in the EU,

such that the adoption date imputed from the claims data is subject to left censoring. This

concern is mitigated by the low sales volumes in 2015 for the most popular technology (40k

sensors according to the HTA evaluation) and by the timing of adoption in the population

according to claims data. The share of patients with a first sensor reimbursement in the first

three months following the coverage decision remains limited (Figure 2a). In the descriptive

analysis, I remove patients adopting CGM between June and August 2017 to account for the

risk of mismeasurement in their adoption date. Individuals dropping out from using digital

devices is an important issue when studying the impact of wearable technologies (Patel et al.

(2015)). Technological features of the current device allow for overcoming this challenge. CGM

relies on disposable sensors that must be replaced every 14 days. Patients not renewing their

prescriptions are assumed to drop out from continuous monitoring. In practice, such cases are

rare due to the comfort brought by the device to the patient.

Among patients treated with long-acting insulin, patients ineligible for coverage represent

32% of individuals (Table A1). In this case, measurement error in device adoption is possible.

First, Guerci et al. (2023) suggest that patients outside of the eligibility criteria got access to

the technology as no prior authorization was required. Second, the alternative glucose measure-

ment system relies on disposable strips such that the number of strips reimbursed represents

a good proxy for glucose testing intensity. If individuals were to adopt the technology outside

the insurance system, strip reimbursement for these patients would decrease as measurement

systems are substitutes to each other. I study the evolution of strip reimbursements for CGM

users and non-users over time in Figure A8. Figure A8a plots the average daily number of

76



strips reimbursed before and after CGM adoption. Strip consumption decreases by 2.5 strips

on average after adopting the technology.56 The average for non-users stays relatively constant

despite fluctuations across quarters. This suggests that the consumption of non-user glucose

testing strips remains unaffected by the introduction of CGM. These descriptive facts do not

rule out completely the adoption of the technology outside of the insurance scheme but suggest

that it is uncommon.

In the structural analysis, the timing of adoption matters as it determines the information

available to the physician when prescribing insulin. Patients whose first CGM prescription

happens within the seven months following the coverage decision may have purchased the tech-

nology out-of-pocket before. As a result, their actual adoption date might not align with the

first prescription recorded in the claims data. To accurately estimate the adoption date for

these ‘Early users’, I leverage the substitutability between CGM and glucose test strips as strip

consumption decreases once a patient adopts a CGM (Figure A8a). More precisely, I split the

sample of CGM users into two distinct groups: (i) ‘uncensored’ eligible patients whose first

CGM reimbursement occurs from 2018 onwards and (ii) ‘censored’ patients whose first reim-

bursement occurs before January 2018. I estimate the correlation between strip consumption

and CGM adoption in the ‘uncensored’ population. I extrapolate these findings to the ‘cen-

sored’ population to infer their ‘true’ date of adoption. In particular, I estimate the following

model, linking the number of test strips reimbursed to patient i in quarter q and CGM use:

CGMiq = α0stripsiq + γ1(stripsi,t+1)1(stripsi,t+2)stripsi,2015 + βXi + εiq (27)

where stripsiq measures the average number of strips reimbursed per day per quarter, and Xi

includes diabetes type, gender and age. I use the estimates out-of-sample to predict the quarter

of adoption in the ‘censored’ population, relying on Youden’s index to classify observations

based on their predicted probability. Table A3 reports the risks of Type I and Type II errors

in the ‘uncensored’ sample, respectively 17.6% and 24.6%. I consider that a patient in the

‘censored’ sample adopted the technology at t if the model predicts adoption for three quarters

in a row. Figure A9 plots the cumulative distributions of observed and predicted adoption

quarters for early users. The CGM adoption quarter differs for approximately 18% of the

patients.
56Patients keep consuming strips after CGM adoption to perform a regular test in case of an adverse event.
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C Further descriptive evidence

C.1 Substitution towards insulin pump

Patients can use an insulin pump instead of the short-acting and long-acting insulin to stabilise

their glucose levels. These patients rely exclusively on short-acting insulin and only get pre-

scribed long-acting insulin in case of a pump breakdown. The long-acting insulins prescribed

to pump users are excluded from the prescriptions physicians are learning from. Significant

improvements in the pump technology have occurred over the past decade. The pump system

is not in the physician’s choice set in the main specification. This choice is motivated by two

facts. First, the coverage for insulin pumps remains restricted in France. Second, while pa-

tients in my sample are increasingly relying on a pump system, there is no change in the pattern

of pump adoption after the coverage of CGM (Figure A7), and the total number of patients

remains limited (70k). There exists a discrepancy with the share of pump users displayed in

Table A1, primarily because the table excludes patients relying on a pump system for the entire

period and focuses on patients with long-acting insulin prescriptions, hence does not represent

the share of pump users in the overall patient’s population.

C.2 Detailing as an alternative source of learning

In this project, pharmaceutical detailing may matter as it represents an alternative source of

learning about new products for patients and physicians (Grennan et al. (2024)). Direct-to-

consumer advertising is forbidden for prescription drugs in France, and detailing to physicians is

allowed but subject to transparency rules similar to the US Sunshine Act. Two caveats prevent

me from precisely accounting for detailing to physicians. First, unlike the Sunshine Act data, the

French publicly available data does not record the product mentioned during the meeting. The

probability that the interaction mentioned insulins depends on the pharmaceutical companies’

portfolio and the physician’s medical speciality. Detailing to diabetes specialists is more likely

to mention new insulins than interactions with GPs. The latter is even more uncertain as the

company portfolio is diverse. Long-acting insulins account for around 8% of Sanofi’s European

sales in 2023. On the other hand, diabetes treatment represents 88% of Novo Nordisk sales in

2023, so its detailing strategy is likely to trigger diabetes. Second, the claims data cannot be

linked to external sources, including the Transparence Santé registry. In Figure A11, I provide

summary statistics about insulin manufacturer’s detailing behavior towards diabetes specialists
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and GPs separately.

C.3 Switching cost estimation

I consider separately the demand for the 24-hour product from physicians of medical speciality,

m, for patients in group, I ∈ {N,EA, EĀ}, among new patients, N , existing patients adopting,

EA, and not adopting CGM, EĀ. Denoting smIjq the prescription share of Lantus (L) and its

biosimilar (B) indexed by j ∈ {L,B} and at time q, I estimate switching costs relying on the

following model

log(smIBq )− log(smILq ) = ∆δmq + α∆pmq + c11(I ∈ {EĀ, EA}) + (c2 + c3CGMvmq )1(I = EA) + ∆ξq
(28)

log(smIBq ) − log(smILq ) proxies the difference in mean utility between the biosimilar, B, and the

branded version, Lantus, L. ∆δmq is a time trend which accounts for information frictions. ∆pmq
is the difference in prices.57 CGMvmq is the share of prescriptions to patients wearing a CGM.

c1, c2, and c3 arise only in the biosimilar demand for incumbent patients and proxy switching

costs. The model is estimated by OLS, and the results are displayed in Table A4. ĉ1 < 0

suggesting positive switching costs, yet no heterogeneity across glucose measurement systems

as ĉ2 and ĉ3 are not significant. From these estimates, the willingness to pay to stick to the

treatment patients are familiar with lies around ∼ 9.47e per month.

C.4 Physician level-learning: qualitative effect of CGM information

For each physician k and quarter t, I count the number of switches to the 42-hour product for

patients without a CGM. Physicians’ information set, denoted Fkq, is approximated using the

number of appointments up to t− 1 where the patient already used the 42-hour product at the

beginning of the visit. The correlation between Fkq and the number of switches to the 42-hour

product in quarter t, Ykq, is documented using a Poisson model:

E(Ykq|X) = exp
(
α + λ11(Fkq > 0) + f(Fkq) + γXk + δq

)
(29)

57Given the pricing scheme in France, the price coefficient is difficult to identify separately from the time
trend. Here, it is identified by exploiting the introduction of a financial scheme for diabetes specialists working in
the hospital, rewarding the biosimilar prescription over the branded 24-hour product. This variation is assumed
to be uncorrelated with the error term.
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f is a quadratic function of Fkq. 1(Fkq > 0) captures the extensive margin. The model is

estimated from physician-quarter combinations with more than 11 visits. Table A5 presents

the results. Going from 10 experience feedbacks to 20 increases the occurrence of switches to

the 42-hour product by 16.2%. Digital technology feedback seems to dampen the spillovers.

Specifications B and C consider the correlation between the information set and switching

eligible non-users and non-eligible patients separately. Eligible patients are more similar to

CGM users in terms of observable and unobservable characteristics than non-eligible. For

eligible individuals, receiving feedback from CGM against the traditional measurement system

has no significant impact on the magnitude of the spillover effect. For non-eligible individuals,

the spillover effect is significantly weaker if the feedback is received from a patient using a

CGM. If physicians extrapolate based on patients ’ similarities, this effect may be driven by

patient heterogeneity (Alsan et al. (2024)).

D Multi-product bargaining

The regulator and the pharmaceutical company, f , are assumed to bargain over the full set

of insulins offered by the manufacturer, j ∈ Jf . The objective of the firm is to maximize its

profits:

πf (pt) =
∑
∀j∈Jf

(pjt − cjt)qjt(pt) (30)

The objective of the regulator when bargaining with firm f is to maximise consumer surplus:

∆fCS(pt) =
∑
∀i,k

1
λ

ln
( ∑
∀j∈J

exp(uikjt(pjt, dj, ait|Ikt)
)
−
∑
∀i,k

1
λ

ln
( ∑
∀j′ /∈Jf

exp(uikj′t(pj′t, dj′ , ait|Ikt)
)

(31)

Where we allow λ to be different from α. The equilibrium prices maximize the Nash product:

max
pft

[πf (pt)]bft [∆fCS(pt)]1−bft (32)

Let’s consider the case where the firm bargain over two products, indexed by j and j′. The

FOC with respect to the price of product j, pjt, is given by:

bft
∂πf (pt)/∂pjt

πf (pt)
+ (1− bft)

∂∆fCS(pt)/∂pjt
∆fCS(pt)

= 0 (33)
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where
∂πf (pt)
∂pjt

= qjt(pt) + (pjt − cjt)
∂qjt(pt)
∂pjt

+ (pj′t − cj′t)
∂qj′t(pt)
∂pjt

and
∂∆fCS(pt)/∂pjt

∆fCS(pt)
= −αqjt(pt)∆fCS(pt)

=
∑−αsikjv(pt)

∆fCS(pt)

The scaling parameter, λ does not enter the FOC, hence has not impact on the equilibrium.

Denoting hjt = ∂∆fCS(pt)/∂pjt

∆fCS(pt) and βft = 1−bft

bft
, the first order condition with respect to pjt

becomes

∂πf (pt)
∂pjjt

+ βfthjtπf (pt) = 0

qjt(pt) +
(
pjt − cjt

)∂qjt(pt)
∂pjt

+
(
pj′t − cj′t

)∂qj′t(pt)
∂pjt

+ βfthjt

(
(pjt − cjt)qjt(pt) + (pj′t − cj′t)qj′t(pt)

)
= 0

(pjt − cjt)
(
∂qjt(pt)
∂pjt

+ βfthjtqjt(pt)
)

+ (pj′t − cj′t)
(
∂qj′t(pt)
∂pjt

+ βfthjtqj′t(pt)
)

+ qjt(pt) = 0

(34)

By symmetry, the FOC with respect to pj′t yields

(pj′t − cj′t)
(
∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
)

= −
[
(pjt − cjt)

(
∂qjt(pt)
∂pj′t

+ βfthj′tqjt(pt)
)

+ qj′t(pt)
]

(pj′t − cj′t) = −
[
(pjt − cjt)

(
∂qjt(pt)
∂pj′t

+ βfthj′tqjt(pt)
)

+ qj′t(pt)
][
∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
]−1

(35)

Plugging Equation 35 into Equation 34,

(pjt − cjt)
[(

∂qjt(pt)
∂pjt

+ βfthjtqjt(pt)
)
−
(
∂qjt(pt)
∂pj′t

+ βfthj′tqjt(pt)
)(

∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
)−1(∂qj′t(pt)

∂pjt
+ βfthjtqj′t(pt)

)]
=

−qjt(pt) + qj′t(pt)
(
∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
)−1(∂qj′t(pt)

∂pjt
+ βfthjtqj′t(pt)

)
(36)

such that

(pjt − cjt)
[(

∂qjt(pt)
∂pjt

+ βfthjtqjt(pt)
)(

∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
)
−
(
∂qjt(pt)
∂pj′t

+ βfthj′tqjt(pt)
)(

∂qj′t(pt)
∂pjt

+ βfthjtqj′t(pt)
)]

=

−qjt(pt)
(
∂qj′t(pt)
∂pj′t

+ βfthj′tqj′t(pt)
)

+ qj′t(pt)
(
∂qj′t(pt)
∂pjt

+ βfthjtqj′t(pt)
)

(37)
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Given hjt = −αqjt(pt)
∆fCS(p) ,

βfthj′tqjt(pt) = βfthjtqj′t(pt)

βfthj′tqj′t(pt)qjt(pt) = βfthjtqj′t(pt)qj′t(pt)

the first order condition becomes,

(pjt − cjt)
[
∂qjt(pt)
∂pjt

∂qj′t(pt)
∂pj′t

+ βfthjt

(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

)
−

∂qjt(pt)
∂pj′t

∂qj′t(pt)
∂pjt

+ βfthj′t

(
qj′t(pt)

∂qjt(pt)
∂pjt

− qjt(pt)
∂qjt(pt)
∂pj′t

)]
=

−
(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

) (38)

such that

cjt = pjt +
[
βfthjt +

βfthj′t

(
qj′t(pt)∂qjt(pt)

∂pjt
− qjt(pt)∂qjt(pt)

∂pj′t

)
+
(
∂qjt(pt)
∂pjt

∂qj′t(pt)
∂pj′t

− ∂qjt(pt)
∂pj′t

∂qj′t(pt)
∂pjt

)
(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

) ]−1

(39)

cjt = pjt +
[
βfthjt + ∂qjt(pt)/∂pjt

qjt(pt)
+
(
βfthj′t + ∂qj′t(pt)/∂pjt

qjt(pt)

) (qj′t(pt)∂qjt(pt)
∂pjt

− qjt(pt)∂qjt(pt)
∂pj′t

)
(
qjt(pt)

∂qj′t(pt)
∂pj′t

− qj′t(pt)
∂qj′t(pt)
∂pjt

)]−1

(40)

For single-product firms, the first-order condition boils down to

cjt = pjt +
[
βfthjt + ∂qjt(pt)/∂pjt

qjt(pt)

]−1

(41)

Note that, due to the Type I extreme value error term,

∂qjt(pt)
∂pjt

=
∑
∀i,k

∑
∀v∈t
−αsikjv(pt)(1− sikjv(pt)) (42)

and, for j and j′, j′ 6= j
∂qjt(pt)
∂pj′t

=
∑
∀i,k

∑
∀v∈t

αsikjv(pt)sikj′v(pt) (43)

82



The remaining unobservable are marginal costs, cjt, and bargaining weights, bft .

E Counterfactual scenario: sensor reallocation

The counterfactual in Section 6.2 suggests that information spillovers from CGM users to non-

users are limited. The consumer surplus generated by the technology mostly accrued to patients

using the device. As Table 1 suggests that adoption is heterogeneous across physicians, the

lack of spillovers could be driven by little variation in CGM adoption within the set of patients

followed by a given physician. Considering the extreme case where all patients within a cluster

at a particular practice are either adopting or non-adopting, non-users cannot benefit from the

information generated by CGM users. To analyze whether this phenomenon drives the lack of

spillovers, I compute the equilibrium shares and the consumer surplus generated by spillovers

under an alternative allocation of CGM, which removes the variation across physicians. To that

end, first, I predict patient device adoption in my sample of physicians using a model similar to

the one from Table 1. I compute the predicted probability of adoption, net of the physician fixed

effect for each patient, p̂i. Two patients with similar characteristics have the same probability

of adopting the device. I randomly select patients to adopt the technology, fixing the number

of users to the number observed in the data and using the predicted probability of adoption,

p̂i, as weights. Adoption dates are allocated randomly. I compute consumer welfare under this

alternative allocation and present the results (against the allocation observed in the data) in

Figure A16.
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