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Abstract

As platforms collect more user data, they can tailor algorithms to better match
users. At the same time, on matching platforms, users pay to be matched by the
platform, while the platform makes money as long as it does not match them.
This paper analyzes the matching rule of a profit-maximizing monopoly platform
when the incentives between users and the platform are misaligned. Contrary to
the intuition that more data about users might improve matching efficiency and
speed, I show that more data allows the platform to design a matching rule that
increases search time and distorts matching and sorting outcomes in the market.
I demonstrate that frequently studied matching rules, such as random matching
and positive assortative matching, can be suboptimal for the platform. Instead,
the platform strategically lowers match quality to increase search time and thus
profits, leading to unnecessary delays and potentially inefficient matches. Finally, I
provide two explanations for why platforms adopt business models with misaligned
incentives: targeted advertising and the presence of overconfident users.
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1. INTRODUCTION

The emergence of digital matchmakers has revolutionized the way people meet and inter-
act. By reducing search frictions, these platforms have the potential to more efficiently
match users. With the help of algorithms based on detailed user data, they promise to
facilitate the search for suitable partners in many areas of life. In fact, online dating
has become the most common way to meet potential partners in recent years, and for
more than a decade, job searches have been conducted predominantly through such on-
line platforms (Rosenfeld et al., 2019; Kircher, 2022). This paper investigates the impact
of a platform with detailed user data on the resulting speed and assortativity of match-
ing in the society. It highlights a novel source of mismatching: profit-driven, purposeful
mismatching of platforms.

To do so, I study the matching rule of a profit-maximizing platform on which users
search for a suitable match. To capture the two most prominent business models, I assume
that the platform commits to either an amount of advertising or a payment per period
in which the user is active.1 In either case, spending their time searching is costly for
users. To attract and keep users’ attention, the platform offers users a recommended
match in each period. First, I show that the most prominent search protocols used to
study centralized or decentralized matching markets — the positive assortative matching
rule (PAM) and a random matching rule — are strictly suboptimal. Instead, the platform
uses its knowledge about users to strategically lower the quality of recommended matches.
This induces agents to search longer and thereby increases the payments the platform can
collect. Besides prolonging search, the resulting matching outcomes can be drastically
different from the socially optimal outcome — positive assortative matching — and induce
a substantial welfare loss.

Why do platforms then rely on business models that induce misaligned incentives? I
provide two plausible explanations. First, when, as in many online markets, users are
reluctant to make monetary payments but are willing to consume ads,2 offering an ad-
based model can be more profitable. Second, when users have arguably well-documented
misperceptions such as as being overconfident regarding their desirability,3 they underes-
timate their expected search duration and hence payments to the platforms for existing
pay-per-month schemes.

After discussing the related literature in Section 2, Section 3 presents the model. A

1See Appendix C for evidence on the business model of dating and job search apps.
2Advertising-based models play a key role in online markets, including both fully ad-supported and

“freemium” business models. Freemium refers to business models, where users can use a basic service
for free in exchange for consuming ads, but need to pay a fee to use the premium service (without
ads). Freemium has become the most popular pricing strategy for many apps (see ACM (2019) or
https://www.statista.com/chart/1733/app-monetization-strategies/).

3Overconfidence has been widely documented in the experimental literature, see for example Burks
et al. (2013) and Dubra (2015). Especially overconfidence with respect to one’s own attractiveness is
common (Greitemeyer, 2020). Psychologists argue that such overconfidence determines how individuals
look and compete for potential partners (Murphy et al., 2015). In labor markets, Spinnewijn (2015) and
Mueller et al. (2021) find that the unemployed overestimate how quickly they will find a job. Moreover,
beliefs are not revised (sufficiently) downward after remaining unemployed. Both findings suggest that
job seekers are persistently overconfident about their desirability to firms.
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monopoly platform organizes a two-sided matching market in which users search for a
partner on the opposite side. The platform commits to a matching rule that determines
the probability that two users — each characterized by a vertical type — will meet.
Additionally, the platform commits to a per-period cost that it collects from active users,
which are either an amount of advertising or a search fee per period. After active users
have paid the per-period cost, they receive a recommendation from the platform. Upon
meeting, users simultaneously decide whether to accept or reject the proposed match.
After rejecting, a user can continue to search. The analysis focuses on steady states; in
these the inflow of new agents must equal the outflow under the platform’s matching rule.

Section 4 starts by characterizing the users’ search behavior. Then, fixing search
costs, the platform’s problem is to choose matching probabilities conditional on each
users’ type subject to participation constraints regarding the users’ decision to join the
platform, incentive constraints on the users acceptance decisions, feasibility constraints
on the matching mechanism as well as steady-state constraints. This original problem is
highly non-linear. Instead of analyzing the original problem, I make use of an auxiliary
problem. This auxiliary problem is a linear programming problem in which the platform
chooses masses of recommended matches and matched pairs accepting each other using
the facts that: (i) the objective function is linear in steady-state masses, and (ii) the
constraints are linear in the mass of recommended and matched pairs by using appro-
priate transformations. The profit-maximizing solution to this auxiliary problem is then
transformed back to the solution of the original problem. Given the profit-maximizing
matching rule, the platform chooses its advertising level or search fee. In the most gen-
eral setting for any given finite set of users’ types, I prove that an optimal solution to the
platform’s profit-maximization problem exists using the auxiliary problem. Based on the
reformulation, I show that the widely analyzed matching rules are suboptimal. Random
matching is suboptimal, when at least two types on each side of the market participate.
Moreover, whenever both market sides are fully symmetric I show that the positive as-
sortative matching rule — where each user meets a user of their own type — can be
suboptimal.

Considering the special case with two types on each side of the market and symmetric
inflows, Section 4.2 illustrates the main insight of the model — the platform’s incentive
to recommend and foster mismatches. To induce users to search, the platform frequently
recommends mismatches to users, i.e., a high type meets a low relatively more often than
a high type. The socially efficient matching outcome in which users sort positively is only
implemented by the platform if significantly more low than high types enter the market.
Otherwise, the platform induces a weakly, or even non-assortative, matching outcome.

The platform’s matching thus creates two intertwined inefficiencies: it distorts match-
ing outcomes by inducing mismatches that deviate from the socially optimal outcome,
and it increases users’ search time, leading to higher search costs than necessary. Both in-
efficiencies have implications for real-world markets such as dating and labor markets. In
particular, in labor markets, the amount of mismatch has a significant impact on produc-
tivity and long-term unemployment (Şahin et al., 2014; McGowan and Andrews, 2015).
Moreover, prolonged search duration, i.e., time spent unemployed or in a mismatched
job, has high economic and social costs (e.g., unemployment insurance). In marriage
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markets, sorting has been found to have important implications for income inequality
and household decisions (Lee, 2016). In addition, the quality of the relationship or mar-
riage is a determinant of overall well-being and health (Robles et al., 2014; Sharabi and
Dorrance-Hall, 2024). In the special case with two types, I find that the socially efficient
matching outcome can induce the longest search time of agents, while the search time of
agents decreases when the platform implements a weakly assortative or non-assortative
outcome.

Finally, Section 5 turns to the question of why platforms rely on business models in
which the incentives between the platform and the users are misaligned. For example, a
simple potential business model for platforms would be to collect an upfront participation
fee from each type and provide them with the socially optimal match. In principle, this
business model extracts the entire surplus from users. Under the realistic assumption
that users are reluctant to pay upfront but are willing to consume ads, however, I show
that an ad-based model can outperform the former business model if targeted advertising
is sufficiently efficient. Alternatively, if users are overconfident about their desirability,
this belief leads users to underestimate their search time. Therefore, under the pay-as-
you-search business model they spend a higher amount ex post than anticipated ex ante.
This, in turn, favors the prevailing business model.

Section 6 discusses robustness of my findings. Section 7 concludes and highlights that
the tension arising from the misalignment of incentives becomes more important as the
platform collects more data and develops more predictive algorithms.

2. RELATED LITERATURE

This article contributes to two central strands of literature, which I detail below. In
contrast to the literature, I consider the profit-maximizing incentives of a matchmaker
when agents are vertically differentiated and characterize the matching rule and resulting
matching outcome.

Matching and Search Theory The vast literature on search-and-matching models,
see for instance Burdett and Coles (1999), Eeckhout (1999), Bloch and Ryder (2000), and
Smith (2006), provides insights into the functioning of decentralized markets in which
agents meet at “random”.4 These matching models with heterogeneous agents build the
foundation to investigate sorting and mismatch in markets such as labor and marriage
markets when search frictions are present. In line with these models, agents in my model
have vertical preferences that result in a unique stable matching. I follow Lauermann and
Nöldeke (2014) and suppose that types are finite. The model at hand crucially departs
from the literature on decentralized matching, which assumes that agents meet according
to a random matching technology, by explicitly accounting for the design of the matching
rule. With increasing access to user data about preferences and machine-learning tools,

4The aforementioned literature assumes that agents have non-transferable utility. Search-and-
matching models with transferable utility have been analyzed, for example, by Becker (1973, 1974) and
Shimer and Smith (2000). For an overview of the literature on search-and-matching models see Chade
et al. (2017).
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matching platforms can design their own recommendation and matching algorithms to
maximize profits. While many platforms do not disclose the specifics of their matching
algorithms, it is evident that their algorithms are far more sophisticated than random
matching.5

The question of how to design the matching rule is related to the literature on cen-
tralized matching as pioneered by Gale and Shapley (1962), Roth (1982), and Roth and
Sotomayor (1992), which studies match quality and implementation of efficient match-
ing rules in two-sided markets.6 The principal considers properties such as stability,
strategy-proofness and Pareto efficiency of the matching rule. In contrast, I characterize
the profit-maximizing solution for different given business models.

Search problems are widely studied not only on an individual level but researchers also
rely on these to better understand job search and its implications on the functioning of the
economy. Early articles include Pissarides (1985), Mortensen and Pissarides (1994), and
Mortensen and Pissarides (1999), which focus on wage bargaining and unemployment
dynamics and on-the-job search when agents are ex-ante homogeneous. Dolado et al.
(2009) introduces heterogeneous types of workers and firms into job search models, which
are also crucial in my model. A recent treatment on how job search has changed in the
digital era is provided by Kircher (2022).

Finally, my paper is related to papers investigating biased beliefs of agents in matching
and search markets. Closely related in a dating market, Antler and Bachi (2022) show
that agents’ coarse reasoning leads to overoptimism about their prospects in the market
and induces them to search inefficiently long. In labor markets, Spinnewijn (2015) and
Mueller et al. (2021) document that job seekers often hold overoptimistic beliefs and
thereby underestimate their time to find a job. I contribute to this literature by showing
how current platform business models exploit overconfident types.

Platform Markets Central to the literature that studies platform and (online) two-
sided markets is the presence of network effects and how these shape the incentives and
price setting of a platform that enables the interaction between two groups (Caillaud and
Jullien, 2003; Rochet and Tirole, 2003, 2006). As a result, in most models agents are
assumed to care only about the number of matches instead of match quality.

With the emergence of digital matchmakers, the literature extended to analyzing (cus-
tomized) matching on platforms with a focus on the interaction between pricing and
matching efficiency (Damiano and Li, 2007; Damiano and Hao, 2008), price discrimina-
tion (Gomes and Pavan, 2016, 2024), and auctions (Johnson, 2013; Fershtman and Pavan,
2022), all abstracting from search frictions and dynamics. In my model, the platform de-
signs the matching rule in its online market place, but in contrast to the aforementioned
articles, the platform has an incentive to not implement the efficient and full surplus

5Dating platforms such as Tinder or bumble provide a general description of their algorithm, see
for example https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-
The-Method-Behind-Our-Matching, whereas the dating platform “Hinge” claims to use the Gale-
Shapley algorithm designed to find stable matchings.

6The literature on matching in two-sided markets can be divided into centralized and decentralized
matching (see Echenique et al. (2023) for a recent overview).
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Figure 1: Within-Period Timing

extracting matching rule.
Within the analysis of digital matchmakers, Halaburda et al. (2018) and Antler et al.

(2024a,b) also focus on applications to dating platforms. Most closely related is Antler et
al. (2024b) who study a matchmaker’s incentives in a model with horizontally differenti-
ated types, which determine the fit of agents. The platform charges a single “upfront” fee
in the second period after agents have joined and received their first match for free. The
author draw a similar conclusion: the platform has an incentive to invest into a technology
that increases the speed of search but not into a technology that improves the quality
of matches. The main difference lies in modeling the matching technology. The authors
restrict attention to a truncated random matching technology under which agents meet at
random above a threshold and do not meet if their fit is below the threshold; in contrast,
I solve for the optimal matching rule.

Within the platform literature models on platforms intermediating consumer search
Hagiu and Jullien (2011, 2014), Eliaz and Spiegler (2011b, 2016), and Nocke and Rey
(2024) are closely related. Hagiu and Jullien (2011) provide a rationale for intermediaries
to divert search of their consumers away from preferred stores. Although the insight is
closely related to the mismatching incentive in my model, the (one-sided) market in Hagiu
and Jullien (2011) does not include the strategic component on the other side as stores
would never reject a consumer willing to buy. Hence, there is no analogue to my finding
that the platform prolongs search of lower types by recommending them to higher types
knowing that they will reject those lower types. Additionally, there is no equivalent to
overconfident users in their model. Finally, my model of a two-sided matching market
offers insights into the allocative inefficiency and the length of search for labor and dating
markets intermediated by matching platforms.

3. MODEL

A monopolist platform organizes a matching market in which a continuum of agents from
two sides, k = A,B, search for a partner from the opposite side. The market operates in
discrete time with an infinite horizon. I focus on steady state analysis. In slight abuse of
notation, I therefore suppress time indices whenever it does not lead to confusion.
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Agents Agents of each side are characterized by a type θki ∈ Θk, with Θk = {θk1 , θk2 , ..., θkN}
finite. At the beginning of the period, agent θki decides whether to participate in the mar-
ket or exit and get outside option ωk

i . An agent, who participates in the market, becomes
inactive with an exogenous probability δ, and exits the search process as well. The plat-
form charges an active agent of type θki search cost ski . Then, each active agent receives a
single recommendation from the platform. After receiving a recommendation, two agents
who meet, observe each other’s type and simultaneously decide whether to accept or re-
ject the other agent. The following payoffs realize based on their actions in the current
period: (i) mutual acceptance yields a match utility of u(θki , θ

−k
j ) = θki θ

−k
j , and (ii) (one-

sided) rejection yields a utility of zero in the current period. Upon rejection, an agent
can continue to search in the next period. The timing within each period is summarized
in Figure 1.

Agents are assumed to use time- and history-independent strategies. A pair of func-
tions σk : Θ

k×Θ−k → [0, 1] and σ−k : Θ
k×Θ−k → [0, 1] describe the acceptance strategies,

where 0 ≤ σk(θ
k
i , θ

−k
j ) ≤ 1 is the probability that an agent of type θki on side k accepts

a match with type θ−k
j on the other side. The function ηki : (θki , ω

k
i ) → {0, 1} describes

the participation strategy of an agent of type θki with outside option ωk
i .

7 In other words,
without loss of generality, I focus on strategies in which identical agents who are active
on the same side of the market and have the same type use the same acceptance and
participation strategy. Then,

α(θki , θ
−k
j ) = σk(θ

k
i , θ

−k
j ) · σ−k(θ

k
i , θ

−k
j )

denotes the probability of a mutual acceptance by type θki and θ−k
j .

Matching Amatching mechanismM := {ϕk(·)}k=A,B consists of a (potentially stochas-

tic) feasible matching rules ϕk(·). Let Θ̂k be the set of participating types from side
k = A,B. For any θki ∈ Θk \ Θ̂k, ϕk(θki ) = ∅. For θki ∈ Θ̂k, ϕk(θki ) ∈ ∆(Θ̂−k ∪ ωk

i ),
which is a probability measure over Θ̂−k ∪ ωk

i . Intuitively, this describes the probability
of meeting the various types of the opposing side as well as the outside option. Denote
the steady state mass of agents of type θki on side k by f(θki ). Matching rule M induces
a distribution of matches pairs M

f(θk1)
...

f(θkN)

 ,

f(θ−k
1 )
...

f(θ−k
N )


 7→

Φ(θk1 , θ
−k
1 ) · · · Φ(θk1 , θ

−k
N )

...
...

Φ(θkN , θ
−k
1 ) · · · Φ(θkN , θ

−k
N )

 ≡ M.

An entry of matrix M is the mass of agents that are recommended to each other under
matching rule M and is given by

Φ(θki , θ
−k
j ) = f(θki )ϕ(θ

−k
j |θki ) = f(θ−k

j )ϕ(θki |θ−k
j ),

where the masses are symmetric, i.e. the mass of agents of type θki on side k being matched
to agents of type θ−k

j on side −k is equal to the mass of agents of type θ−k
j on side −k

7It is without loss of generality to consider only pure-strategy participation decisions of agents.
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being matched to type θki on side k: Φ(θki , θ
−k
j ) = Φ(θ−k

j , θki ). Under matching rule M,

the mass of agents of type θki that are unmatched, i.e. do not receive a recommendation
in a given period, is

Φ(θki , ω
k
i ) = f(θki )−

∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ).

To capture the idea that the platform can only generate revenue by keeping users’ at-
tention and, hence, wants to match as many agents as possible, I impose the following
assumption.

Assumption 1. Let k̂ be the short side of the market. For each agent on side k̂,
ϕ(ω(·)|θki ) = 0.

Under Assumption 1, feasibility of the matching rule can be expressed in terms of the
masses of matched pairs.∑

θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=k̂Φ(θ

k
i , ω

k
i ) = f(θki ),∀i = 1, ..., N, k = A,B. (1)

Timing and Population Dynamics At the beginning of a period t, agents who did not
find a match in the last period arrive and a (time-invariant) inflow of new agents of type
θki given by the mass {βk

i }
k=A,B
i enters the platform. Agents decide whether to participate

on the platforms. Those who decide to participate become inactive with probability δ,
while active agents are matched according to matching rule M resulting in matrix Mt.
Based on their recommended match, agents make their acceptance decision resulting in
mutual acceptance probabilities {αt(θ

k
i , θ

−k
j )}ij. At the end of the period, agents exit in

pairs that mutually accepted each other. The total outflow of agents is then given by
pairs that exit together in a match, agents that become inactive with probability δ and
agents that decided not to participate.

Platform The platform commits to a matching mechanism M := {ϕk(·)}k. To capture
the two most prominent business models, I suppose that the platform either commits to
an extent of advertising or a given payment per period. Formally, this choice induces the
type-dependent search cost ski while generating revenue per search of type θki of ν(ski ). In
case of payments, ν(ski ) is the identity function. In case of advertisements, ν(ski ) is an
increasing and strictly concave function of the search costs, which for example captures
the intuition that the agents’ disutility of advertising is convex in the number of ads shown
while the platform’s profit is constant per ad. Let ski ∈ [0, u], where u is the maximum
match utility that the highest type can achieve on the platform. The platform discounts
future profits according to ρ and thus maximizes

Π =
∑

k=A,B

∑
θki ∈Θk

(1− δ)ηki
1− ρ

ν(ski )f(θ
k
i ).
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Equilibrium Concept The model focuses on a steady state analysis in which the
market is balanced: that is, the inflow of agents is equal to the outflow of agents under
matching rule M. Formally:

Definition 1. (Steady State) For given matching rule M, a steady state is a tuple
(f(θki ), α(θ

k
i , θ

−k
j ), ηki )

k
ij that satisfies

βk
i = f(θki )

(1− ηki ) + ηki

δ + (1− δ)
∑

θ−k
j ∈Θ−k

α(θki , θ
−k
j )ϕ(θ−k

j |θki )


 , (2)

for all θki ∈ Θk, k = A,B. The left-hand side describes the inflow of agents of type θki ,
where the right-hand side is the outflow. The outflow is the mass of type θki agents times
the probability that agents do not participate or the probability of becoming inactive and
exiting in a match if agents participate.

A steady state is an equilibrium if the following is satisfied.

Definition 2. (Equilibrium) The platform commits to matching ruleM and type-dependent
search costs. Then, a steady state is an equilibrium whenever the profile of stationary
strategies (σ, η) of agents satisfies:

1. Agents correctly anticipate other agents’ strategies.

2. Agents accept a match if and only if the match yields a higher payoff than the
expected utility from continuing to search.

3. Agents participate if and only if the expected utility from participating yields a
higher payoff than their outside option.

The first part of the definition corresponds to the usual Nash assumption of correctly
anticipating other players’ strategies. The second part captures that agents maximize
expected utility with respect to their acceptance strategy implicitly ruling out the case
that a valuable pair is rejected because everyone is certain that their partner rejects.8 The
third part captures that agents maximize expected utility when deciding to participate
on the platform.

3.1 DISCUSSION OF ASSUMPTIONS

Search Costs Agents incur additive search cost ski in each period, which are designed by
the platform. They either represent the nuisance costs from advertising as, for example,
in Anderson and Coate (2005), which are positively related to the advertising intensity,
or the search fee that the platform charges periodically. Search frictions are modeled by
introducing the exogenous exit probability δ. Following a literal interpretation, δ is the

8This allows the current match partner to tremble with small probability. Alternatively, acceptance
decisions could be made sequential in which case agents would have to accept a valuable match.
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probability with which agents become inactive, i.e. the probability that an agent finds a
job or a partner offline through other means. More generally, δ can be thought as modeling
the force that leads agents to discount the future, which makes delayed matching more
costly.

Business Model The platform is assumed to be a monopolist in the matching market.
Following evidence from the dating market, the most popular dating platforms have a
common owner. For simplicity, I assume that the dominant owner only offers one platform
in my model.9 More generally, we often observe platforms with large market power in
two-sided markets, where joining a new platform is worthwhile only if others join. My
monopoly setup is a simple setting capturing such market power.

The model examines two prevalent business models: an advertisement-based approach
and periodic search fees. Many platforms adopt the former— (targeted) advertising —
by monetizing user attention through selling advertising slots to firms. In return for
users’ attention, the platform provides its matching service for free. In this setup, keeping
user attention is crucial for the platform’s revenue.10 This is why I assume that the
platforms earns no revenue when not capturing the user’s attention through offering a
potential match. Alternatively, platforms implement search fees, which they collect from
active users. Examples include “pay-per-click” or “pay-per-contact” fees, though monthly
subscription plans are also common. These fees are typically low, distinguishing them
significantly from participation fees, which are far less common but used by some selective
matching platforms.11

An advertising-based stream of revenues continues to be a prominent part of platform
business models, especially with transaction costs. Platforms have transaction costs when
setting up a payment system, while many users are reluctant to give their credit card data
to platforms. Overall, privacy concerns, risk aversion and uncertainty when using new
products (platforms) can play a role why users (initially) prefer to use the matching service
for “free” while watching advertisement over signing up to a subscription plan or paying
a participation fee. As a consequence, many platforms rely on these so-called “freemium”
business models, which have become even more popular since the emergence of mobile
applications (apps). Here, “freemium” describes business models where a basic service
is available to users for free (with advertisement), whereas an upgraded service can be
accessed through purchases.12 Other platforms, however, rely only on advertising or fees.
I return to the question of why platforms refrain from collecting a fixed fee for a certain

9The dating market is highly concentrated with the Match Group Inc. owning many of the most
popular dating platforms: Tinder, Hinge, PlentyofFish, Match, OkCupid etc. (see https://www.bamsec.
com/filing/89110323000114?cik=891103), while other dating platforms are highly differentiated and
for example, cater to specific religious groups. Recent experimental evidence from Dertwinkel-Kalt et
al. (2024) suggest that even the most closest competitors, Tinder and bumble, are viewed to be almost
independent instead of substitutes by consumers.

10Recent papers that study different aspects of attention on platforms are for example Prat and Valletti
(2022), Chen (2022), and Srinivasan (2023).

11For an overview of the most common platforms and their fee structure see Appendix C.
12For empirical evidence see for example, Kummer and Schulte (2019) for studying privacy concerns

in the mobile app market and Deng et al. (2023) for studying freemium pricing of mobile applications.
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promised match in Section 5.

No Agent is Unmatched The key assumption of the matching rule, Assumption 1,
states that if possible each agent receives a recommended match in any period.13 As many
online platforms take on a dual role as attention intermediaries and need to attract con-
sumers’ attention to sell to advertisers, providing a constant stream of potential matches
aims at grabbing and keeping consumers’ attention.14

To grab users’ attention, the platform makes a recommendation any time the agent
enters and is active on the platform. The recommendation of a potential match can be
viewed as being part of a menu that the platform offers. Following the idea of Eliaz
and Spiegler (2011a), the platform offers a menu that consists of an attention-grabbing
component and its true value of the service. In reality, the attention grabbing component
is supported by push notifications or emails, while the value from the platform’s service
is determined by the expected utility from getting a match. The modeling choice is
further supported by a recent lawsuit against the MatchGroup Inc., owner of a majority
of the most popular dating platforms.15 In the complaint, the plaintiff accuses Match
to monopolize users’ attention and claim that “Push Notifications prey on users’ fear of
missing out on any potential matches with a strategic notification system designed to
capture and retain attention at all times of the day”.

4. ANALYSIS

To analyze the equilibrium, I need to characterize the agents’ behavior and the platform’s
optimization problem. The agents’ search process is characterized by a set of participation
and incentive constraints that determine whether an agent is willing to incur the search
costs as well as accepts or rejects a recommended match.

Agents’ Search Process. Consider the strategy of agent θki being active in the match-
ing market. Upon meeting an agent θ−k

j , the agents decides whether to accept or reject
the recommended match. Mutual acceptance results in a match and both agents leave
the market as a pair. If at least one of the agents rejects the match, agent θki continues
to search.

Due to the stationarity of the environment, the continuation value of agent θki , V
C(θki ),

13In the literature on search-and-matching models time is often continuous, such that matching oppor-
tunities arrive at a constant rate. Similarly, Antler et al. (2024a,b) make the assumption that matches
arrive at a constant rate even in the presence of a matchmaking platform.

14In a recent experiment, Aridor (Forthcoming) provides evidence that users allocate their attention
across product categories and offline when facing restriction in their time spent on a specific platform.
The results suggest that competition for attention spans across multiple markets.

15Oksayan v. MatchGroup Inc., N.D. Cal., No. 3:24-cv-00888, 2/14/24.
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is defined by the following recursive equation

V C(θki ) =δωk
i + (1− δ)

[
−ski +

∑
j

α(θki , θ
−k
j )ϕ(θ−k

j |θki )θki θ−k
j

+ (1−
∑
j

α(θki , θ
−k
j )ϕ(θ−k

j |θki ))V C(θki )

]
.

The first term represents the case in which agent θki will become inactive with probability
δ and gets its outside option ωk

i . If the agent remains active with probability 1 − δ, it
incurs the search cost ski . The expected utility from leaving in a match is given by the
utility from a match with type θ−k

j , which is equal to the product of both types, and the

probability of meeting and mutually accepting type θ−k
j . With the counterprobability, the

match was not mutually accepted and agent θki continues to search.
Solving for the continuation value yields

V C(θki ) =
δωk

i + (1− δ)
(
−ski +

∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )θki θ−k
j

)
δ + (1− δ)

(∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )
) . (3)

The continuation value then characterizes the payoff of an agent who rejects a match and
returns to the search process, whereas the match payoff θki θ

−k
j characterizes the payoff of

an agent who accepts a match with type θkj (and is accepted by them). By Definition 2,

if the match value θki θ
−k
j is smaller (larger) than the continuation value V C(θki ), agent-θ

k
i

will reject (accept) a recommended match with agent-θ−k
j .

The optimal strategy of an agent who uses an time-and history-independent strategy
is then a cutoff strategy:

σk(θ
k
i , θ

−k
j ) =

{
0 if θki θ

−k
j < V C(θki )

1 if θki θ
−k
j > V C(θki )

, for k = A,B. (4)

If the match value with a type θ̂−k
j is larger than the continuation value, agent θki will

accept a recommended match with agent θ̂−k
j and all agents of types higher than θ̂−k

j . The
optimality of the cutoff strategy follows directly from the supermodularity of the match
payoff.

An agent participates if the contiunation value is larger than the agent’s outside option.
Due to the stationarity and history-independence of strategies, if an agent decides to
participate in the matching market, they will not exit during the search process and
search until they exit in a match or become inactive with probability δ.

Remark. The strategy of an agent of type θki is increasing in its second argument
σk(θ

k
i , θ

−k
N ) ≥ σk(θ

k
i , θ

−k
N−1) ≥ · · · ≥ σk(θ

k
i , θ

−k
1 ), but may be neither in- nor decreasing

in its first argument.

For random matching or positive assortative matching σk(θ
k
i , θ

−k
j ) is decreasing in

its first argument: σk(θ
k
N , θ

−k
j ) ≤ · · · ≤ σk(θ

k
1 , θ

−k
j ). A random matching rule yields
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the same meeting probabilities for all types. Due to the supermodularity of the payoff
function, higher types will reject (weakly) higher types than lower types do. With positive
assortative matching, the matching probabilities conditional on being a higher type first-
order stochastically dominates the matching probabilities conditional on being a lower
type. Hence, higher types will reject strictly higher types than lower types do. In contrast,
a negative assortative matching rule, which recommends (almost exclusively) higher types
to lower types, and vice versa, can cause lower types to reject lower types while higher
types are willing to accept them. Indeed, I will explicitly provide an example of such an
equilibrium in Section 4.2.

Given the agent’s strategy in Equation 4, the acceptance probabilities satisfy

α(θki , θ
−k
j ) =

{
0 if θiθj < V C(θki ) or θiθj < V C(θ−k

j )

1 if θiθj > V C(θki ) and θiθj > V C(θ−k
j )

. (5)

Equation 5 establishes the relationship between acceptance probabilities and matching
outcomes. Mutual acceptance requires that whenever two types of agents meet, both
must find it optimal to stop searching.

4.1 N TYPES

Consider the case with N types of agents such that Θk = {θk1 , ..., θkN} where θkN > ... > θk1 .
The following section provides general results on the existence of an equilibrium, optimal
solution and their properties. Let ski be exogenous. The first result states that any feasible
matching rule, which must satisfy Equation 1, induces an equilibrium among agents, in
which agents maximize their expected utility and correctly anticipate the strategy of other
agents.16

Proposition 1. For any exogenously given matching rule that is feasible, there exists an
equilibrium.

The statement implies that for a given matching rule, there exists a steady state in
which the profile of strategies of the agents is consistent with utility maximization (i.e.,
Equation 4). Furthermore, as agents use cutoff strategies, the matching rule implements
acceptance probabilities consistent with Equation 5. Lastly, Proposition 1 shows that the
matching rule is feasible in the equilibrium that is implemented by the matching rule.

I prove Proposition 1 by induction. First, I show that if the type space only consists of
one type on each side, Θk = {θk1}, an equilibrium exists. Intuitively, if search costs are too
high on at least one side of the market, there only exists an equilibrium in which agents
do not participate. If search cost, however, are sufficiently low there exists a participation
equilibrium in which agents on both sides mutually accept each other consistent with
expected utility maximization. The steady state mass follows from Equation 2 given
the probability that both types meet each other and leave. Second, if there exists an
equilibrium for the case Θk = {θk1 , ..., θkN}, then I show that it must also hold for the case
Θk = {θk1 , ..., θkN+1}, which concludes the proof.

16Note that I can always construct an equilibrium in which no agent participates; however, I am looking
for an equilibrium in which participation is maximized given that the platform finds it optimal to do so.
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Next, to determine the profit-maximizing matching rule M, it is useful to define
the matching outcome. Intuitively, the matching outcome is defined as the matrix that
describes the distribution of pairs under matching rule M that exit in a match. Recall
that matrix M describes the masses of recommended pairs under matching rule M and
let A denote the matrix of agents’ mutual acceptance probabilities

A ≡

α(θk1 , θ
−k
1 ) · · · α(θk1 , θ

−k
N )

...
...

α(θkN , θ
−k
1 ) · · · α(θkN , θ

−k
N )

 .

Formally, the matching outcome is defined as the componentwise multiplication (Hadamard
product) of matrix A and M :

Definition 3. The matching outcome is defined by the matrix

A⊙M =

α(θ
k
1 , θ

−k
1 )Φ(θk1 , θ

−k
1 ) · · · α(θk1 , θ

−k
N )Φ(θk1 , θ

−k
N )

...
α(θkN , θ

k
1)Φ(θ

k
N , θ

−k
1 ) · · · α(θkN , θ

−k
N )Φ(θkN , θ

−k
N )

 ≡ O(·).

The matching outcome is said to be (i) assortative ifO(·) has positive entries only along the
main diagonal, (ii) weakly assortative if O(·) has positive entries along the main diagonal
and to the right if and only if the entries below are also positive, and (iii) non-assortative
otherwise.

Denote by m(θki , θ
−k
j ) = α(θki , θ

−k
j )Φ(θki , θ

−k
j ) an entry of matrix O(M). Each entry

is the mass of pairs that are recommended to each other times their mutual acceptance
probabilities. Therefore, m(θki , θ

−k
j ) is the mass of matched pairs that exit the market

together. For a given matching rule, an equilibrium induces at most one matching outcome
since the mutual acceptance probabilities and steady state masses are pinned down in
equilibrium.

To find the profit-maximizing matching rule and the associated matching outcome,
I proceed in two steps. First, I fix a matrix of acceptance probabilities and determine
the optimal feasible matching rule that implements the mutual acceptance probabilities.
Second, supposing the optimal matching rule from step one is used to implement any
chosen matrix of acceptance probabilities, I choose the matrix that yields the highest
platform profits.

In the following, I make use of the fact that the platform’s profit-maximization problem
can be transformed into a linear program. For given search cost ski , recall that the
platform’s objective is to maximize

max
M

∑
k=A,B

∑
θki ∈Θk

(1− δ)ski
1− ρ

f(θki ),

i.e., the platform maximizes the steady state mass of active agents with weight ski . Note
that the platform does not earn revenue from agents that are inactive or do not participate
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in the market in the first place. In the following, I set up the platform’s problem given
maximal participation of agents. The maximization problem underlies a set of constraints.
First, the matching rule must implement a steady state. By expanding the steady state
condition in Equation 2, the condition is

βk
i = f(θki )δ + (1− δ)

∑
θ−k
j ∈Θ−k

α(θki , θ
−k
j )Φ(θ−k

j |θki )︸ ︷︷ ︸
=m(θki ,θ

−k
j )

. (Steady State)

In the steady state, the inflow of agents of θki is equal to the mass of agents that become
inactive in a period with probability δ and the mass of active agents that exit in matched
pairs. In a steady state, the mass of agents of type θki can be restated in the following
way

f(θki ) =
βk
i − (1− δ)

∑
j m(θki , θ

−k
j )

δ
, (Steady-State Mass)

and therefore, depends positively on the inflow, βk
i , and negatively on the mass of matched

pairs that include type θki . Second, the matching rule determines whether agents partici-
pate in the market and whether agents search according to the platform’s recommenda-
tions. For participating agents, it must hold that the agent prefers participating in the
market to accepting the outside option

ωk
i ≤

δωk
i + (1− δ)

(
−ski +

∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )θki θ−k
j

)
δ + (1− δ)

(∑
j α(θ

k
i , θ

−k
j )ϕ(θ−k

j |θki )
) = V C(θki ).

To induce agents to search, the platform can be understood as selecting a critical lowest
type that is accepted with positive probability or just rejected by an agent of type θki .
Following from the cutoff strategy, agent θki rejects all types below the critical lowest type.
The incentive constraint for agent θki to follow the recommendation of the platform to
(weakly) reject an agent θ−k

j reads17

θki θ
−k
j ≤ V C(θki ).

By using the steady state condition, the participation and obedience constraints can
be reformulated. Note that the denominator of the continuation value is equal to the
probability that an agent exists, which is equal to βk

i/f(θki ) by Equation 2. Inserting into
the continuation value and rearranging yields

βk
i ω

k
i ≤ δf(θki )ω

k
i − (1− δ)f(θki )s

k
i + (1− δ)

∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )︸ ︷︷ ︸
=m(θki ,θ

−k
j )

θki θ
−k
j , (PC)

βk
i θ

k
i θ

−k
j ≤ δf(θki )ω

k
i − (1− δ)f(θki )s

k
i + (1− δ)

∑
j

α(θki , θ
−k
j )Φ(θ−k

j |θki )︸ ︷︷ ︸
=m(θki ,θ

−k
j )

θki θ
−k
j . (IC)

17In mechanism design, this is often referred to as an obedience constraints because there is not private
information throughout the model.
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Lastly, the platform’s matching rule must satisfy the feasibility constraints. Without loss
of generality, let side B be of smaller or same size as side A. Then on side A, the sum over
the mass of each recommended pair that includes type θAi must be equal to the steady
state mass of θAi . On side B, the sum over the mass of each recommended pair that
includes type θBi and the mass of agents of type θBi that are unmatched must be equal to
the steady state mass of type θBi∑

θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=BΦ(θ

k
i , ω

k
i ) = f(θki ), k = A,B. (Feasibility)

As stated, for given matrix A the above constraints and the objective function are all
linear functions of the steady state masses, matched pairs, and recommended pairs. The
steady-state mass in turn is also a linear functions of the mass of matched pairs. To
complete the reformulation as linear program, one needs to be careful to ensure that
incentive constraints hold with equality if the agent mixes in its acceptance probability,
as well as use the appropriate direction of the inequality otherwise. Appendix A.1 formally
does so, leading to:

Lemma 1. The platform’s problem can be restated as a linear programming problem in
the mass of matched and recommended pairs: {m(θki , θ

−k
j )}, {Φ(θki , θ−k

j )}ij.

Given a solution of the linear program — the auxiliary problem — the optimal match-
ing rule to the original problem results from

ϕ(θ−k
j |θki ) =

Φ(θki , θ
−k
j )

f(θki )
.

Let A be the set of matrices A of mutual acceptance probabilities that can be im-
plemented, where A can be implemented if there exists a matching mechanism M such

that
(
(f(θki ))θki ∈Θk , A, η

)
is an equilibrium. By Proposition 1, A is non-empty. For every

A′ ∈ A, construct a matrix A′′ such that

α′(θki , θ
−k
j ) = α′′(θki , θ

−k
j ) if α′(θki , θ

−k
j ) ∈ {0, 1},

α′(θki , θ
−k
j ) = αij otherwise,

where αij is a variable in [0, 1]. Denote the resulting set of matrices as A∗ and note that A∗

is finite. Observe that any αij ∈ [0, 1] induces the same constraints in the linear program
in Appendix A.1. The linear program, in turn, is solved over the mass of matched and
recommended pairs and not acceptance probabilities. Solving this for all (finite) possible
combinations of constraints yields a set of candidate solutions. Using a profit maximizing
solution, it is easy to select the optimal acceptance probabilities αij ∈ [0, 1] when the
agent is indifferent by dividing the matched pairs through the recommended ones

αij =
m(θki , θ

−k
j )

Φ(θki , θ
−k
j )

.
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As A∗ is finite, only a finite number of linear problems must be solved. Each linear
program returns a set of candidate solutions and a value of the objective function. Fixing
A ∈ A∗, the linear program returns a value Π(A), i.e., the profit level, and let G =⋃

A∈A∗ Π(A) be the set of profit levels for all linear programs with A ∈ A∗.

Lemma 2. The set G is non-empty and finite with Π(A) < ∞ for all A ∈ A∗ and
−∞ < Π(A) for at least one A ∈ A∗.

Key to the proof is to show that the linear program for any given matrix A ∈ A is (i)
not unbounded and (ii) not infeasible, i.e. the feasible region is non-empty. Given that
both (i) and (ii) are satisfied, an optimal solution to the linear program exists and the
linear program attains a finite optimal value (Dantzig, 1963).18

Theorem 1. For given ski ∈ [0, u] for all θki ∈ Θk, k = A,B, there exists an optimal
solution with Π∗ ≡ maxG. Let the platform choose ski ∈ [0, u] for all θki ∈ Θk, k = A,B.
There exists an optimal solution Π∗,s ≡ maxG(s)

By Lemma 2, there exists a maximum profit level of set G for given ski ∈ [0, u] for all
θki ∈ Θk, k = A,B. The maximum operator is well-defined as G is finite and each Π(A) ∈
G is smaller than ∞. Then, the platform selects the matching rule M∗ that implements
the equilibrium that yields the highest profit level. If the platform chooses s, the vector
that contains ski ∈ [0, u] for all θki ∈ Θk, k = A,B, I show that the correspondence from
s to the set of profit levels is upper hemicontinuous in s.

To identify properties of the optimal solution, first consider two prominently studied
matching rules. As discussed in Section 2, in decentralized matching-and-search markets
agents are often assumed to meet according to a random matching technology. A natural
question to consider is whether a platform that has access to extensive user data would
commit to a random meeting technology as well. The answer, however, is that random
matching is generically suboptimal for the platform.19

Proposition 2. Random matching is generically suboptimal for N > 1.

Under random matching, the conditional probability of meeting a type θki on side k is
the same for all types θ−k

j ∈ Θ−k on side −k and corresponds to the proportion of type θki
in the population. As shown in Appendix A.2, the probability of meeting a type θki is a
function of the inflow, βk

i , and the probability δ. In contrast, the optimal solution of the
linear program is a function of ski and internalizes changes in the search cost. Therefore,
random matching is generically suboptimal, although it may coincide with the optimal
solution for knife-edge ski , θ

k
i , δ, and βk

i . This result highlights that a platform, which has
increasing access to user data, does not commit to a random matching technology.

18Existence follows from the fact that the constraint set is a convex polyhedron. Because the objective
is linear and the constraint set is convex, any local extremum will be the global extremum. As the
objective is linear, the extremum will be obtained at one of the extreme points of the constraint set, i.e.,
at the vertices of the polyhedron.

19Consider the following definition for generically suboptimal. The probability of the case in which
random matching is optimal occurs with probability zero when the model parameters are randomly
drawn from continuous intervals as defined in the proof.
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Second, consider the positive assortative matching rule (PAM) under the assumption
that both sides are symmetric with respect to the inflow of new agents: βA

i = βB
i , their

type space Θk = Θ and outside options. In this particular case, PAM is of special
interest in the literature as it maximizes match productivity when the match utility is
supermodular. Furthermore, the resulting matching outcome, i.e., the positive assortative
matching outcome, is equivalent to the set of stable matchings (Roth and Sotomayor,
1992). That is, matches are individually rational, i.e., yield a utility greater than their
outside option, and are pairwise stable, i.e., there exists no blocking pair of agent that
would prefer to be matched to each other instead of the equilibrium matching. The next
proposition shows under which circumstances PAM is not profit-maximizing.

Proposition 3. If both market sides are fully symmetric, the positive assortative matching
rule (PAM) is

(i) profit-maximizing for all values of the exogenous parameters if and only if the plat-
form can charge search costs si ≥ min{θi(θi − θ1), θ

2
i − ωi}, ∀θi ∈ Θ \ {θ1} and

s1 ≥ θ21 − ω1,

(ii) suboptimal when the platform commits to advertisement if ν(si)
si

< 1 at si = θ2i − ωi

for at least one θi ∈ Θ.

When the platform commits to a (time-constant) deterministic matching rule such
as PAM, agents will accept the recommended match in the first period. Therefore, all
agents search for exactly one period, which results in a steady state population equal to
the inflow for each type.

First, if the platform uses an advertisement-based business model, PAM is suboptimal
if advertising is inefficient. If the return to showing advertising to the platform is greater
than the cost to the agents, agents “pay with attention”. To keep agents engaged and
induce them to watch ads, however, the platform prolongs the search time of agents. Under
PAM, agents search for one period only, hence, to be profit-maximizing the platform would
need to charge the highest possible search cost to each agent. Under the condition in the
proposition, however, the return to advertising to the platform is smaller than the cost
to the agents implying that advertisement is inefficient at such high search costs. Due to
the concavity of the return to advertising, the platform benefits from lowering the search
costs and in turn by inducing the agents to search.

Second, PAM is indeed profit-maximizing when the platform charges type-dependent
fees that extract the full surplus from agents, i.e., a fee equal to the match value from an
assortative match minus the outside option. In this case, the “search fee” is effectively
a participation fee as the fee is only paid once upfront for the first search. Consider,
however, the case in which the platform cannot commit to high participation fees as there
is an upper bound on the fee that the platform can charge s.

Let s be such that si violates the condition in Proposition 3 for at least one type
θi ∈ Θ and for exposition, let this type be not the lowest type. Then, the platform earns
1 · s < min{θi(θi − θ1), θ

2
i − ωi} from an agent of type θi. Then, PAM is not profit-

maximizing, as the platform has an incentive to deviate to a matching rule under which
type θi and the lowest type θ1 meet with mass ε and additionally decrease the fee for the

18



lowest type s1. As s is such that whenever type θi would meet type θ1 under PAM, θi
would strictly reject θ1, then θi (weakly) rejects θ1 under the new matching rule. This
implies that type θi searches longer than one period such that the platform earns more
from type θi. If the platform does not decrease the search fee for the lowest type, the
lowest type would not participate on the platform as it was just indifferent under PAM.
Instead the platform decreases the search fee for the lowest type such that the lowest
type is indifferent between participating or not under the new matching rule. Hence, the
platform earns the same as before from the lowest types. Overall, this deviation increased
the platforms profits.

For example, fees for in-app purchases in Apple’s App store are capped at 999.99$, i.e.,
s = 999.99$. The estimated life time utility from a match and hence, potential willingness
to pay for a partner could be well above 999.99$. Traditional matchmakers charge over
ten times the amount.20

When does positive sorting occur, i.e. when is the matching outcome at least (weakly)
positive assortative? To answer this question, consider the case with binary types as an
illustration.

4.2 BINARY TYPES

Suppose there are only two types Θ = {θh, θl} in the market with θh > θl, which have
an outside option of zero.21 In the previous section, I showed that random matching is
suboptimal for the platform, while PAM can also be suboptimal. Both matching rules
implement matching outcomes that are (weakly) positively assortative. In order to answer
when the matching outcome is positively assortative under a matching rule chosen by the
platform, the analysis will characterize all possible matching outcomes. For simplicity,
the main text is presented for the case where δ goes to zero, while the formal proofs hold
for δ ≥ 0.

The section leads with the case where both types of agents face the same search cost
designed by the platform si = s. A possible interpretation is that the two types of agents
use a basic service of a (freemium) platform. In this case, the platform is assumed to
decide on an amount of advertising to be shown to each agent using the basic service.
Alternatively, in the case of payments, agents use one of the (discrete) tiers of the platform,
where agents using the same tier pay the same amount, as for example on dating platforms.
For job platforms, companies often pay the same price per click when they advertise in
the same submarket. Finally, I discuss the implications of price discrimination.

The first result is Lemma 4, which characterizes the optimal matching rule that imple-
ments the mutual acceptance probabilities that are consistent with Equation 5. Lemma
4 and its proof can be found in Appendix B. To identify the optimal matching rule for

20See https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?

unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=

articleShare
21The following analysis qualitatively unaffected as long as the outside options are ωl < θ2l and ωh <

θhθl. The platform’s profit, however, is quantitatively affected as the platform can extract less rent from
each agent.

19

https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare


the platform, suppose for now that s is exogenous and the platform maximizes the mass
of active users.

Given the platform’s matching rule, high type agents can either (i) accept only other
high types, (ii) accept low types with positive probability, or (iii) accept low types with
probability one. This results in five possible constellations of mutual acceptance proba-
bilities and thus matching outcomes. In case (i), low types will always accept high types,
resulting in a positive assortative matching outcome — only agents of the same type ac-
cept each other. Depending on the matching rule in cases (ii) and (iii), low types may
accept low types, resulting in a weak assortative matching outcome — high and low types
mutually accept the same types of agents. Alternatively, low types may reject low types,
resulting in a non-assortative matching outcome — high types accept low types, but low
types do not.

The lemma shows that for each of the five possible matching outcomes, there exists
an optimal matching rule that implements the outcome for a range of parameters. The
implementation of the matching outcomes depends crucially on feasibility. Given the
total mass of agents that join, the ratio of new high to low type agents, 0 < βh/βl < ∞,
determines which outcome can be implemented, as the ratio affects the steady state
population of both types. The positive assortative matching outcome can be implemented
over the whole range, whereas the weakly assortative and non-assortative outcomes cannot
be implemented for all βh/βl. Then, given the existence of an optimal matching rule, which
matching outcome maximizes the mass of active users on the platform?

First, consider the maximum rent that the platform can extract from agents through
search. A high type agent is willing to search the longest for a match with another high
type. In this case, the maximum rent the platform can extract from a high type agent is
proportional to θh(θh − θl), which is the value of its own type times the match premium.
The match premium is the gain from being in a final match with a high type instead
of leaving with a low type. If the platform were to extract more rent, high types would
start accepting low types as well, and thus not search at all. Conversely, if high types
always reject low types and only search for high types, the maximum rent the platform
can extract from low types is proportional to θ2l , since low types have an outside option
of zero. The matching outcome is positive assortative.

Due to feasibility constraints, the platform is constrained by the ratio of high to low
types when choosing the matching rule. The platform can extract the rent from both
types — as described above — at

0 <

(
βh

βl

)∗

=
θ2l − s

θh(θh − θl)− s
< 1. (6)

At this “optimal” ratio, high types are just indifferent between accepting and rejecting
low types, while low types are just indifferent between participating or not, which results
in

θhθl =
−s+ ϕ(θh|θh)θ2h

ϕ(θh|θh)
⇔ ϕ(θh|θh) =

s

θh(θh − θl)
,

0 =
−s+ ϕ(θl|θl)θ2l

ϕ(θl|θl)
⇔ ϕ(θl|θl) =

s

θ2l
.
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Due to feasibility constraints, the incentive and participation constraints cannot generally
bind at the same time while implementing a positive assortative matching outcome. As
the ratio increases, relatively more high type agents enter compared to low type agents.
In this case, high types inevitably meet high types more often, so the platforms makes the
participation constraint binding for low types. The platform must increase the probability
of a high type meeting a high type such that high types are left with a rent greater than
θhθl. As the ratio decreases, relatively few high type agents enter compared to low type
agents. The platform makes the incentive constraint binding for high types, leaving a
positive rent for low types by increasing the probability of a low type meeting a low type.
In both cases, the platform potentially forgoes a significant amount of rent when moving
away from the “optimal” ratio.

Second, consider the second-best matching outcome for the platform when it cannot
implement the positive assortative matching outcome at the ratio in Equation 6. Suppose
the ratio of high to low types is greater than in Equation 6. Then, the platform can
commit to a matching rule in which high types randomize over accepting and rejecting
low types, while low types remain indifferent between participating and their outside
option. The platform can extract less rent from high type agents because the expected
match utility for a high type agent is now a linear combination of the match utility with a
high type and a low type. The platform, however, can extract more rent from low types as
their expected match utility increases. The randomization probability of high types and
the matching rule are substitutes for the platform, so the platform prefers randomization
to a slack incentive constraint.

Third, as the ratio continues to increase, more high types enter the market. Since
low types meet and mutually accept relatively many high types, the platform finds it
profitable to implement a matching rule under which low types start rejecting low types.
The rent extracted from low types is then proportional to θl(θh − θl), the value of their
own type times the match premium. The next proposition summarizes the results.

Proposition 4. For given s ≤ s, the platform implements a
(a) positive assortative matching outcome if

βh

βl

≤ θ2l − s

θh(θh − θl)− s
,

(b) weakly assortative matching outcome if

θ2l − s

θh(θh − θl)− s
≤ βh

βl

≤ max

{
θh(θh − θl)

θh(θh − θl)− s
,

(
βh

βl

)′}
,

(c) non-assortative matching outcome if

max

{
θh(θh − θl)

θh(θh − θl)− s
,

(
βh

βl

)′}
≤ βh

βl

≤ θ2h − θ2l − s

θh(θh − θl)− s
,

(d) positive assortative matching outcome if

θ2h − θ2l − s

θh(θh − θl)− s
≤ βh

βl

.
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Figure 2: Recommended Mismatches

For a given inflow of high and low types, βh

βl
, Proposition 4 presents the matching out-

comes that the platform prefers to implement. The assortativity of the matching outcomes
is non-monotonic in the ratio of high to low types. For example, the platform implements
the positive assortative matching outcome in markets in which one type dominates. In
contrast, the platform implements mismatch in relatively balanced markets. Similarly,
the optimal matching rule can recommend more or less assortative matches depending
on the ratio of high to low types. Overall, the positive assortative, and socially optimal,
outcome is implemented over a smaller range of βh/βl if search cost, s, increases and the
type difference, θh − θl, decreases.

Turning to the optimal matching rule, a first general insight is the following:

Corollary 1. The platform strategically lowers the quality of recommended matches.

In other words, the platform recommends mismatches to agents if feasible. Therefore,
if the platform can identify the agent’s types perfectly high types meet high types less
often than low types do for a large range of parameters.

Figure 2 shows the conditional probabilities of a high (and low) type meeting a high
type when the platform implements positive assortative matching. For a wide range of
parameters, the platform recommends mismatches, i.e. low types meet a high type more
often than high types do. The result is subject to feasibility, so if the market is highly
skewed towards one type, the matching must necessarily be more assortative.

Note that in all equilibria the conditional probability of a high type to meet a high
type fulfills

s︸︷︷︸
search cost

· ϕ(θh|θh)︸ ︷︷ ︸
cond. meeting prob.

≥ θh(θh − θl)︸ ︷︷ ︸
match premium

,

where the inequality is binding in all equilibria for βh

βl
≤ θ2h−θ2l −s

θh(θh−θl)−s
. The conditional

probability of a low type meeting a high type changes throughout the equilibria. The
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conditional probabilities for a high type do not generically coincide with random matching,
but are designed to prolong the search time for the highest type.

Corollary 2. For a given matching outcome, the optimal matching rule, M∗, becomes
more assortative if search cost, s, increase and the type difference, θh − θl, decreases.

Intuitively, if the search cost increases, i.e., the platform charges a higher search fee
or increases the advertising load, the matching rule must become more assortative as the
platform extracts more rent per period, so that the search time must decrease. If the
type difference increases, i.e. the types become less similar, the matching rule becomes
less assortative as high types become more willing to search for a high type instead of
accepting a now less valuable match with a low type.

Next, consider the welfare implications, measured as (i) the amount of mismatch and
(ii) the inefficient length of search for agents. Let the welfare loss from match productivity
be given by

W =
∑
i∈h,l

∑
j∈h,l

α(θi, θj)Φ(θi, θj)(θiθj − θ2i ).

The cost from search is s per agent per period, such that the resulting costs per agent
during the expected usage time are given by the stopping time

T (θi) = s · 1∑
j=h,l α(θi, θj)ϕ(θj|θi)

.

For example, consider the stopping time in the positive assortative matching outcome

θh-type:
1

ϕ(θh|θh)
=

θh(θh − θl)

s
,

θl-type:
s

ϕ(θl|θl)
=

βh(θh(θh − θl) + (βl − βh)s

βls
,

where low types search longest if βh

βl
=
(

βh

βl

)∗
with s

ϕ(θl|θl)
=

θ2l
s
.

Proposition 5. The welfare loss from match productivity is always larger under the non-
assortative outcome than the weakly assortative matching outcome. In contrast, the wel-
fare loss from search costs is highest under the positive assortative matching outcome if
βh

βl
=
(

βh

βl

)∗
.

In unbalanced markets, the platform implements the positive assortative matching
outcome, where final matches occur only within each group of types, i.e., types sort
positively. The positive assortative matching outcome maximizes the overall match pro-
ductivity. Therefore, the platform realizes the “efficient” matching outcome. In contrast,
in more balanced markets, the platform prefers to induce mismatches.

The proof furthermore shows that the welfare loss from mismatch in the non-assortative
case decreases with increasing βh/βl. In the weakly assortative matching outcome, the wel-
fare loss is greater if search costs increase (decrease) as long as βl > βh (βl < βh).
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Furthermore, the welfare loss is greater with increasing type difference. Differentiating
between types, high types search the longest in the positive assortative matching outcome
for low βh/βl, whereas low types search the longest in the weakly assortartive matching
outcome.

4.3 ADVERTISING AND SEARCH FEE

Suppose the platform sells its users attention to advertisers. The platform decides over the
advertising intensity that is related to the nuisance cost that users experience. Let ν(s)
be the revenue per unit of nuisance cost to users. For the analysis, I make the following
assumption

Assumption 2. Advertisement revenue ν(s) is an increasing, concave function of the

nuisance cost s with ν(0) = 0. The semi-elasticity of advertisement ν(s)
ν′(s)

is an increasing,

(strictly) convex function of the nuisance cost.

The assumption excludes functions that are convex, i.e. under which the platform
could prefer an advertising intensity that induces users to stay for one period only and
therefore, substantially decreases the mass of active users. As advertisers might be willing
to pay less for advertisement when a platform is smaller, i.e. their ads reach a smaller
audience, ν(·) might positively depend on the mass of active users on the platform. As a
consequence, if with increasing nuisance demand decreases, the marginal rate of ν(·) might
decrease. Convexity implies that the semi-elasticity is sufficiently sensitive to changes in
s for larger s.

The profit under advertisement is

Π =
ν(s)

1− ρ

(∑
k

∑
i

f(θki )(s)

)
,

where the mass of agents of type θki is given by Lemma 4. The platform maximizes the
advertising intensity through s and chooses s = sA,∗ such that

ν(s)

ν ′(s)
= −

∑
k

∑
i f(θ

k
i )

∂
∑

k

∑
i f(θ

k
i )

∂s

. (7)

Under the above condition the marginal cost of advertising, given by the semi-elasticity
of demand on the right-hand side, and the marginal benefit of advertising, given by the
semi-elasticity of advertisement, are equal.

The semi-price elasticity of advertisement changes depending on the distribution of
high versus low types that join the platform. The optimal solution is either characterized
by an interior solution sA (given existence) that solves Equation 7 or a corner solution.
To ensure that the profit-maximization problem is concave and has an interior solution,
the function ν(s) must fulfill the following additional assumption.

Proposition 6. The platform sets sA,∗ ∈ (0, s) if an interior solution of the optimal
advertisement level exists. Otherwise, the platform selects sA,∗ = s. For the optimal sA,∗,
the platform implements the matching outcomes in Proposition 4. If an interior solution
exist, the advertising level is highest in the positive assortative matching outcome.
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Next, consider the case in which the platform sets a linear search fee, i.e. ν(s) = s is
the identify function.

Proposition 7. Let s ∈ (0, s). The platform sets s =
βlθ

2
l −βhθh(θh−θl)

βl−βh
to implement the

positive assortative matching outcome if

0 ≤ βh

βl

≤ θ2l
θh(θh − θl)

.

Otherwise, the platform either sets the smallest possible fee s = ε > 0, or the highest
possible fee s = s to implement matching outcome (b) to (d) in Proposition 4.

The proposition characterizes the optimal solution for the platform if s only consists
of the search fee that the agents pay on the platform. The choice of the search fee has
the following implications for the matching outcomes.

In equilibrium (a), the platform chooses s to solve

βh

βl

=
θ2l − s

θh(θh − θl)− s
,

In equilibrium (b), the platform prefers to set the search fee as low as possible, while in
(c) it prefers to set the search fee as high as possible. As a result, agents search for the
longest time in (b), but for the shortest time in (c). In equilibrium (d), the platform is
indifferent between all s ∈ (0, s], but prefers to set a low search fee to increase the range
of the equilibrium. Finally, in (e), the platform lowers the search fee again.

Overall, the platform prefers to choose relatively low search fees and increase search
time, rather than charge a high search fee and induce less search.

Proposition 8. Let the platform choose sh ∈ [0, θh(θh−θl)] and sl ∈ [0, θ2l ]. The platform
can always implement the positive assortative matching outcome by choosing

(sh, sl) :
βh

βl

=
sh
sl

(θ2l − sl)

(θh(θh − θl)− sh)
.

5. EXPLANATIONS

The optimal contract is a set of personalized participation fees if ν(ski ) = ski . The platform
maximizes match productivity as in Appendix A.2. Considering the simplified model
from Section 4.2, the platform commits to the positive assortative matching rule and
personalized fees (sh = θ2h, sl = θ2l ) (see Proposition 3). The platform’s profit is

ΠPD =
2(1− δ)

(1− ρ)
(βhθ

2
h + βlθ

2
l ).
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5.1 ADVERTISEMENT

Advertisement plays a key role in the digital economy. More specifically, in the light of
the application to dating and job search platforms, a substantial share of these platforms
rely on advertisement as a source of revenue, see Appendix C for an overview of dating
and job search apps that show advertisement.

In the following example, I highlight that a (partly) advertising-based business model
can outperform profits generated by personalized prices that extract the total consumer
surplus from agents. Consider the following example.

Example 1. Let βh = 3
11
, βl = 8

11
, θh = 1, θl = 1

2
and ν(s) = e−

1
10s . The optimal

intensity of advertising corresponds to s = 1
10

A short calculation yields

ΠA =
2

1− ρ

10

e

(
βhθh(θh − θl) + βlθ

2
l

)
=

2

1− ρ
1.18 (8)

ΠPD =
2

1− ρ

(
βhθ

2
h + βlθ

2
l

)
=

2

1− ρ
0.45

Given Proposition 4, the profit from advertisement can be bounded by

2(1− δ)ν(sA)

1− ρ

2βlθ
2
l + (βh − βl)s

A

sA
≤ ΠA ≤ 2(1− δ)ν(sA)

1− ρ

βhθh(θh − θl) + βlθ
2
l

sA
,

where advertising is more profitable in balanced markets (of high to low types). If the
market is extremely unbalanced, advertising profits are low especially if many high types
are in the market. Suppose the platform can implement the upper bound on the profit.
If the revenue per disutility of advertisement exceeds the inefficiency in profits, then
advertising can outperform the optimal contract

ν(s)

s
≥ βhθ

2
h + βlθ

2
l

βhθh(θh − θl) + βlθ2l
,

where ν(s)
s

≃ 10
7
for the numbers in the example.

Proposition 9. An advertisement-based business model can generate higher revenue than
with personalized prices if advertisement revenue is sufficiently efficient compared to its
nuisance.

5.2 OVERCONFIDENCE

Up to this point, the model has assumed that agents behave rationally and have a correct
expectation about their own type. In the following, I will introduce a fraction of over-
confident agents, i.e., agents who perceive themselves to be of a higher type than they
actually are. In the simplest example, an overconfident low type perceives itself as a high
type.
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Overconfidence is a widely documented bias in the psychology and behavioral eco-
nomics literature (Burks et al., 2013; Dubra, 2015). Especially in dating markets over-
confidence is thought to be prevalent for example, when it comes to a person’s own
attractiveness. Bruch and Newman (2018, 2019) analyze the structure of online dating
markets in US cities and provide suggestive evidence for the fact that the majority of users
contacts a partner who is more desirable than they are instead of contacting a partner
who is as desirable than they are. In an experiment Egebark et al. (2021), document
that both women and men prefer attractive over unattractive profiles regardless of their
own attractiveness. More generally, Greitemeyer (2020) documents that more unattrac-
tive people are unaware of their (un-)attractiveness from a psychological perspective. In
labor markets, Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed
overestimate how quickly they will find a job and are persistently overconfident about
their desirability to firms. Lastly, Dargnies et al. (2019) document in an experiment that
agents who are overconfident are less likely to accept earlier offers in a matching market.

Following this evidence, consider the following simple extension to the model in Section
4.2. There exists a symmetric share of λ overconfident users on each side of the market.
An overconfident users is of type θl, but persistently believes to be of type θh. Following
Definition 2, I assume that an overconfident user correctly predicts agents’ strategies
given their perceived type, but mispredicts agents’ actual acceptance behavior based on
their true type. Furthermore, an overconfident user maximizes expected utility given
their perceived type. As before, an overconfident users incurs search cost s and becomes
inactive with probability δ.22

For simplicity, assume that the platform can perfectly identify overconfident users and
classifies them as θ̂h. In this case, the platform chooses the matching rule M, which
consists of ϕ(·|θi) for θi ∈ {θl, θh, θ̂h}. Consider the positive assortative matching outcome
from Proposition 4, in which high types only accept high types, but low types accept all
types. The incentive of participation constraint of high and low types are

θhθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ2h)

δ + (1− δ)ϕ(θh|θh)
, (IC-θh)

0 ≤ (1− δ)(−s+ ϕ(θl|θl)θ2l )
δ + (1− δ)ϕ(θl|θl)

. (PC-θl)

An overconfident agent is characterized by a perceived incentive constraint, which deter-
mines their acceptance behavior, and their actual incentive constraint, which determines
their search time. The perceived incentive constraint is

θ̂hθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ̂hθh)

δ + (1− δ)ϕ(θh|θh)
, (PIC-θ̂h)

which coincides with the incentive constraint of high types, whereas their actual partici-

22Note that δ can have an additional interpretation in the presence of overconfident users. If overcon-
fident users do not find a match, δ can be interpreted with the probability that an overconfident agents
looses due to growing dissatisfaction with the platform.
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pation constraint is violated

−s

δ
< 0. (PC-θ̂h)

As overconfident users mispredict the true acceptance behavior of agents towards them,
overconfident users end up rejecting low types and accepting high types. This leads them
to search until they exogenously exit with probability δ as high types reject overconfident
users in equilibrium.

Remark. Overconfident users search too intensively.

Following the incentive and participation constraints, the platform maximizes its profit
subject to the feasibility and steady state constraints.

Proposition 10. (Overconfidence) The platform makes larger profits with per-period pay-
ments than with personalized participation fees if λ ≥ λ∗ for

λ∗ ≡ βhδθh (θ
2
l (θl − δθh) + δθ3h)

βl (θ2l + δ(θ2h − θ2l )) (θ
2
l − δθ2h)

,

and charges a search fee of s = θ2l .

Anecdotes from Dating Apps, such as Tinder, provide evidence for the fact that less
than 10% of users account for a disproportional amount of revenue.23 On Tinder, an
average user spends around 30$ in in-app purchases and subscriptions, whereas “heavy”
users would spend 10 times the amount.

Consider the following example to illustrate that in markets with many low types,
already a small percentage of overconfident users can be sufficient to achieve higher profits.

Example 2. Let βh = 1
4
, βl =

3
4
, θh = 1, θl =

1
2
. Then,

λ ≥ 4.7% if δ =
1

20
,

λ ≥ 13.7% if δ =
1

10
.

For low values of δ, a relatively small percentage of overconfident users is necessary to
substantially increase the platforms profit. Note that δ is directly related to the stopping
time of overconfident users, i.e. in the first (second) case overconfident users search for 20
(10) period before they exit. More generally, consider the following comparative statics.

Corollary 3. λ∗ increases in δ, βh

βl
and θh − θl.

23See https://uxdesign.cc/how-tinder-drives-over-1-6-billion-in-revenue-8006e718e761

and the referenced podcast therein, https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?
si=UBlpCunARLW8jPfNNYK4dw.
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Intuitively, the necessary share of overconfident users decreases if δ becomes small as
overconfident users search for more periods. If the ratio βh

βl
increases, i.e. there are more

high types than low types in the market, the platform needs to rely more on overconfi-
dent users. The reason is that given that the platform implements the positive assortative
matching outcomes, the inefficiency between per-period payments and personalized up-
front prices increases with more high types as the platform extracts too little surplus from
high types. Similarly, if the type differences increase, a large amount of the platform’s
profit is driven by high types.

6. DISCUSSION

Exogenous Search Cost Consider the following version of the model. Agents incur
additive search cost ski in each period, which are the sum of exogenous search cost s̃ki and
endogenous search costs ŝki . The endogenous search costs are designed by the platform
as before. Agents can differ in their exogenous search costs. For example, on dating
platforms accepting or rejecting a recommendation requires attention for inspecting the
corresponding profile. In labor markets, job seekers need to upload a CV and cover
letter on the platform when applying for a job. In both examples, agents might face cost
of attention when making their acceptance decisions. In the literature on search-and-
matching markets, many articles assume that search frictions arise as time costs due to
discounting. Exceptions are Chade (2001) and Atakan (2006) who study explicit search
costs.

As detailed above, my model can also accommodate explicit additive search costs.
Whereas agents incur s̃ki + ŝki , the platform now optimizes over ŝki . This change does not
affect the existence of an optimal solution, but it does affect the optimal matching rule,
since positive search costs, s̃ki > 0, decrease the continuation value (c.p.).

Exogenous search costs can be a source of additional mismatch. For example, the
result that the positive assortative matching outcome can always be implemented with
price discrimination in search fees and binary types in Proposition 8 is no longer true
with exogenous search costs. Instead, small search costs for one or both types imply that
the platform cannot implement the positive assortative matching outcome for all ratios of
high to low types. Therefore, the platform can prefer to implement a matching outcome
in which non-assortative pairs accept each other as in Section 4.2.

Application to Other Platform Objectives The proof and tools in Section 4.1 can
be analogously applied to other objectives of the platform, as long as the objective remains
linear. For example, if the platform is concerned about its reputation the objective could
be the weighted average of the demand and welfare from match productivity, i.e. the
sum over the mass of matched pairs with match productivity of u(θki , θ

k
j ). For the weight

µ ∈ [0, 1], the objective takes the following form

1− δ

1− ρ

µ
∑

k=A,B

∑
θ−k
j ∈Θ−k

ν(ski )f(θ
k
i ) + (1− µ)

∑
k=A,B

∑
θ−k
j ∈Θ−k

m(θki , θ
−k
j )θki θ

−k
j

 ,
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where the first term maximizes demand given function ν(ski ) and the second term max-
imizes the welfare from match productivity. The extreme case µ = 1 has been analyzed
throughout the main part of the paper, while µ = 0 is equivalent to maximizing the
socially optimal matching as in Appendix A.2.

Hybrid Business Model The main model considers a platform that either commits
to either an amount of advertising or search fees. The model, however, can incorporate
hybrid business models such as the freemium business model. In the freemium business
model, a portion of users use the platform for free but see advertisements, while the
other portion of users pay search fees and do not see advertisements. To implement this
business model, the platform segments the market into types and selects a subset of types
for each service. The platform shows advertisements to those user types where ν(ski )/s

k
i

is greater than one at the optimal advertising level, i.e., the return of advertising per unit
of disutility is greater than one. Otherwise, the platform will charge these users a search
fee.

Labor Markets The model in Section 3 assumes that utility is non-transferable. In
labor markets, however, workers and firms often negotiate about the wages. Therefore,
in the literature utility is often modeled to be transferable. The results of the model
are qualitatively unaffected when assuming that the utility from a match is u(θki , θ

−k
j ) =

2θki θ
−k
j for the pair and utility is transferable if agents bargain over the surplus via the

Nash bargaining solution.

7. CONCLUSION

On matching platforms, the misalignment of incentives between users and the platform
becomes more problematic as platforms collect more data and develop more predictive
algorithms. This paper presents a model in which a platform has perfect information
about its users’ types and matches them to its advantage. In contrast, random matching
corresponds to the case where the platform has no information about its users’ types.
The platform benefits from more information about its users’ types: Random matching
is strictly suboptimal.

Both sorting and search time have implications for real-world markets. The platform’s
algorithm can support the socially optimal matching. But even absent exogenous search
costs and search frictions, the algorithm can also foster non-assortative matching outcomes
in fully symmetric markets resulting in mismatch. Additionally, it increases users’ search
time by recommending unsuitable matches. While mismatch has a negative impact on
productivity and long-term unemployment in labor markets (Şahin et al., 2014; McGowan
and Andrews, 2015), assortative mating in marriage markets is a driver of household
inequality (Pestel, 2017; Eika et al., 2019; Almar et al., 2023). Therefore, if policies
aim to reduce mismatch — as in labor markets — policymakers should be concerned
about matching platforms that employ the business models described above. Rather than
relying on platforms to reduce search frictions, the platform’s algorithm is a potential
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source of additional mismatch. In contrast, dating apps can make a positive contribution
to reducing household inequality.

Empirical evidence on online matching and search platforms is mixed. For example,
in dating markets Hitsch et al. (2010) show that matches are approximately efficient and
stable. The authors, however, rely on data before the advent of large dating apps. In
contrast, more recent evidence, such as Sharabi and Dorrance-Hall (2024), finds that
people who meet online are less satisfied in their marriages. In labor markets, Kroft and
Pope (2014) shows that Craigslist has no effect on the unemployment rate. Similarly,
Gürtzgen et al. (2021) provide evidence that online searches do not affect employment
stability or wage outcomes, but instead increase the proportion of unsuitable candidates
in job applications.
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A. APPENDIX

A.1 LINEAR PROGRAMMING FORMULATION

The linear programming formulation of the platform’s problem 1 is given in the following.
For α(θki , θ

−k
j ) ∈ {0, 1}, the platform’s optimization problem can be represented by the

following (mixed integer) linear program:

max
∑

k=A,B

∑
θki ∈Θk

(1− δ)ski
1− ρ

f(θki ), (9)

subject to participation constraints

βk
i ω

k
i ≤ f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j , ∀θki ∈ Θk, k = A,B, (10)

incentive constraints

βk
i θ

k
i θ

−k
j + α(θki , θ

−k
j )(−βk

i θ
k
i θ

−k
j ) ≤f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j

≤
(
βk
i

δ
θki θ

−k
j − βk

i θ
k
i θ

−k
j

)
(1− α(θki , θ

−k
j )) + βk

i θ
k
i θ

−k
j ,

(11)

∀θki ∈ Θk, k = A,B,

feasibility and steady state constraints∑
θ−k
j ∈Θ−k

Φ(θki , θ
−k
j ) + 1k=BΦ(θ

k
i , ω

k
i ) = f(θki ),∀θki ∈ Θk, k = A,B, (12)

f(θki ) =
βk
i − (1− δ)

∑
j m(θki , θ

−k
j )

δ
,∀θki ∈ Θk, k = A,B, (13)

and constraints on the matched and recommended pairs ∀(θki , θ−k
j ) ∈ Θk×Θ−k. First, the

mass of recommended and matched pairs must be non-negative and the mass of matched
pairs cannot be greater than the mass of recommended pairs

Φ(θki , θ
−k
j ) ≥ 0,m(θki , θ

−k
j ) ≥ 0, (14)

m(θki , θ
−k
j ) ≤ Φ(θki , θ

−k
j ). (15)

Second, the mass of matched pairs must be smaller than the largest possible mass of the
agents, i.e. the mass that arises when agents only exit upon becoming inactive βk

i/δ, times
the acceptance probability and larger than the mass of recommended pairs minus the
largest possible mass times the probability of a rejection

m(θki , θ
−k
j ) ≤

min{βk
i , β

−k
j }

δ
α(θki , θ

−k
j ), (16)

m(θki , θ
−k
j ) ≥ Φ(θki , θ

−k
j )−

min{βk
i , β

−k
j }

δ
(1− α(θki , θ

−k
j )). (17)
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This ensures that the mass of matched pairs must be smaller than the mass of recom-
mended pairs and for α(θki , θ

−k
j ) = 0 the mass of matched pairs cannot be greater than

zero. To accommodate for mixed acceptance probabilities of agents, consider an agent
of type θkm that is indifferent between accepting and rejecting a type θ−k

s . Hence, θkm
could randomize over the acceptance probability towards type θ−k

s : σk(θ
k
m, θ

−k
s ) ∈ (0, 1).

Conceptually, this imposes indifference or equality on some constraints rather than in-
equalities in the original formulation above. For any pair (θkm, θ

−k
s ) ∈ Θk ×Θ−k for which

α(θkm, θ
−k
s ) ∈ (0, 1), the adjusted incentive constraints are

βk
mθ

k
mθ

−k
s = f(θkm)(δω

k
m − (1− δ)skm) + (1− δ)

∑
j

m(θkm, θ
−k
j )θkmθ

−k
j , for θkm, (18)

β−k
s θkmθ

−k
s ≥ f(θ−k

s )(δω−k
s − (1− δ)s−k

s ) + (1− δ)
∑
j

m(θkm, θ
−k
j )θkmθ

−k
j , for θks , (19)

where θkm is indifferent between accepting and rejecting θ−k
s and θ−k

s (weakly) accepts θkm.
The constraints on the mass of recommended and matched pairs are

m(θkm, θ
−k
s ) ≤ min{βk

m, β
−k
s }

δ
, for (θkm, θ

−k
s ), (20)

m(θkm, θ
−k
j ) ≤ Φ(θkm, θ

−k
s ), for (θkm, θ

−k
s ). (21)

The linear program can be summarized in the subsequent lemma.

Lemma 3 (Linear Program). Fix any mutual acceptance matrix A. The platform’s
maximization problem yields the same profit as linear programming problem with ob-
jective function in Equation 9 subject to constraints Equation 10 through 14 for any
α(θki , θ

−k
j ) ∈ {0, 1}, and for any pair (θkm, θ

−k
s ) ∈ Θk × Θ−k for which α(θks , θ

−k
m ) ∈ (0, 1),

replace Equation 11 for θkm by Equation 18 and replace Equation 11 for θks by Equation
19 and replace Equations 16 to 17 for (θkm, θ

−k
s ) by Equations 20 to 21.

Note on Standard Form of a Linear Program To abbreviate future arguments, I
relate the linear program to the standard form of a linear program. The matrix notation
is

maxxcT ,

s.t.Hx ≤ b, x ≥ 0.

where x ∈ Rn is the variable vector — the mass of recommended and matched pairs —
consisting of n variables and c ∈ Rn. The m inequalities are given by matrix H ∈ Rm×n.
Equalities, such as the feasibility constraints, can be expressed as two opposite inequalities.
Vector b ∈ Rm captures the right-hand side of the inequalities. P ≡ {x ∈ Rn|Hx ≤ b} is
the feasible region given by the inequality constraints.

A.2 BENCHMARKS

This section analyzes two polar cases, in which the intermediary has full information
about agent’s types and is able to extract the full rent from the matching output or the
intermediary has no information about agent’s types and must match agents at random.

38



Socially-Optimal Matching The first benchmark constitutes the case in which the in-
termediary (or a social planner) provides the socially-optimal matching under the premise
that agent’s types can be identified perfectly. The intermediary or social planner maxi-
mizes the sum of total matching outputs. The matching output function is supermodular,
i.e. types of both sides are complements. The socially-optimal matching is the solution
to the linear program

max
M

∑
k=A,B

∑
θ−k
j ∈Θ−k

∑
θki ∈Θk

θki θ
−k
j m(θki , θ

−k
j )

subject to feasibility ∑
θ−k
j ∈Θ−k

m(θki , θ
−k
j ) ≤ βk

i ,∀θki ∈ Θk,

∑
θki ∈Θk

m(θki , θ
−k
j ) ≤ β−k

j ,∀θ−k
j ∈ Θ−k,

m(θki , θ
−k
j ) ≥ 0,∀(θki , θ−k

j ) ∈ Θk ×Θ−k.

The linear program follows the optimal assignment problem by Koopmans and Beckmann
(1957) and Shapley and Shubik (1971). Both agents that form the match (θki , θ

−k
j ) receive

the output θki · θ−k
j .

Remark. If markets are fully symmetric, the socially optimal matching ism(θki , θ
−k
j ) = βk

i

if θki = θ−k
j . The outcome is said to exhibit positive assortative matching.

If market sides are fully symmetric, βA
i = βB

i , the solution to the linear program is
attained with m(θki , θ

−k
j ) ∈ {0, βk

i }, that is a pair is either matched with probability one
or not matched. Although the linear program permits partial or fractional matching of
agents, Dantzig (1963) showed that the maximum value of the objective is attained with
probabilities in {0, 1}.

For symmetric populations of agents, optimality requires that no individual remains
unmatched, such that the feasibility constraints must hold with equality. Otherwise, the
social planner can increase welfare by assigning an unmatched agent to another unmatched
agent as the value of their match is greater than zero. The objective is maximized if
m(θki , θ

−k
j ) = βk

i when θki = θ−k
j by applying the rearrangement inequality (Hardy et al.,

1952).

Random Matching The second benchmark is a random matching market. For exam-
ple, if an intermediary has no information (data) about agents’ types, and thus cannot
condition on any observables, the intermediary’s matching rule incorporates random meet-
ings between agents. A random matching market may also reflect offline meetings between
agents that are not intermediated by any platform.

A random matching market is a tuple (Θ̂k, f(θki ))k=A,B with parameters (ski , δ).The
analysis builds on the model of Lauermann and Nöldeke (2014).24

24In contrast to Lauermann and Nöldeke (2014), agents may face explicit search cost ski in addition to
δ. Furthermore, the speed of meetings and mass of meetings per unit of time is normalized to one.
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Given that meetings are random, the fraction of meetings that involve type θki on side
k and type θ−k

j on side −k is

f(θki )f(θ
−k
j )

f
k · f−k

where the total mass of agents on side k is f
k
=
∑

θki ∈Θk f(θki ). The probability to meet

type θ−k
j on side −k conditional on being an agent of type θki on side k is

ϕ(θ−k
j ) =

f(θ−k
j )

f
k · f−k

,

where the probability that type θki on side k exits the search process in a match with type
θ−k
j is

µ(θki , θ
−k
j ) =

(1− δ)α(θki , θ
−k
j )ϕ(θ−k

j )

δ + (1− δ)
∑

θ−k
j

α(θki , θ
−k
j )ϕ(θ−k

j )
,

where µ(θki , ω
k
i ) = 1−

∑
θ−k
j

µ(θki , θ
−k
j ) is the probability that type θki remains unmatched.

Let (f(θki ), α(θ
k
i , θ

−k
j )ij)k=A,B be a steady state. Then M with entries given by

m(θki , θ
−k
j ) =

α(θi, θj)f(θi)g(θj)

f · g
. (22)

is the unique matching outcome induced by the steady state under random matching.
Vice versa, if M is a steady state matching outcome then f(θki ), α(θ

k
i , θ

−k
j ) is given by

f(θki ) =
βk
i

δ
µ(θki , ω

k
i ), (23)

α(θi, θj) = m(θki , θ
−k
j )

f
k · f−k

f(θki )f(θ
−k
j )

, (24)

where α(θki , θ
−k
j ) ≤ 1 for all (θki , θ

−k
j ) ∈ Θ̂k × Θ̂−k and m(θki , ω

k
i ) is the probability of

ending up with one’s outside option. Matching M is an equilibrium matching if and
only if

m(θki , θ
−k
j ) =

{
0 if θki θ

−k
j < V C(θki ) or θ

k
i , θ

−k
j < V C(θ−k

j )
f(θki )f(θ

−k
j )

f
k·f−k if θki θ

−k
j > V C(θki ) and θki θ

−k
j > V C(θ−k

j )

holds for all (θki , θ
−k
j ) ∈ Θ̂k × Θ̂−k.
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B. APPENDIX: PROOFS

B.1 N TYPES

Proof of Proposition 1 First, recall the definition of an equilibrium. For given type-
dependent costs ski and matching mechanism M, an equilibrium is a steady state in which
agents’ acceptance probabilities maximize their expected utility and agents correctly an-
ticipate each others strategies (by Definition 2).

Second, note that an equilibrium is defined for any matching mechanism M, which
consists of a feasible matching rule. Therefore, the feasible matching rule must satisfy the
feasibility condition of Equation 1 in equilibrium.

Then, for any exogenously given matching rule that is feasible, an equilibrium exists
if and only if the following conditions are met: (i) the steady state condition in Equation
2 must be met, (ii) agents’ acceptance probabilities must maximize their expected utility
and be consistent with Equation 5, and (iii) the matching rule must be feasible for all
participating types θki ∈ Θ̂k following Equation 1 and for all non-participating types
θki ∈ Θk \ Θ̂k with ϕ(θki ) = ∅.

The “if”- part follows directly from the definition of an equilibrium and feasible match-
ing rule above. For the “only-if”, note that for a given matching rule that is feasible, a
steady state in which agents maximize their expected utility and the matching rule is
feasible in implies the existence of an equilibrium.

Let βk
i be the inflow of new agents of type θki on side k. Without loss of generality

assume that
∑

i β
A
i ≥

∑
i β

B
i , i.e. market side B is equal or smaller than market side A.

The proof proceeds as follows: for any exogenously given matching rule that is feasible, I
construct an equilibrium according to condition (i) to (iii).

Base case: For any exogenously given matching rule that is feasible, there exists an
equilibrium if Θk = {θk1} for k = A,B. Let ski > θk1θ

−k
1 − ωk

i for k = A ∨ B, then for
any exogenously given matching rule that is feasible, there exists only one equilibrium, in
which no agent participates on the platform. The feasible matching rule is ϕ(·) = ∅ for
any non-participating type. This is indeed an equilibrium as (i) it is a steady state as no
agent enters the platform and hence, no agent leaves the platform. (ii) Agents maximize
their expected utility as for ski > θk1θ

−k
1 −ωk

i , the search cost exceeds the maximum match
utility that an agent can obtain on the platform against its outside option, therefore
violating the participation constraint of agents. If agents do not participate on one side
of the market, there are no match opportunities for the other side of the market, such
that no agent is willing to participate on the platform. (iii) The matching rule is feasible
as no agent participates.

Let ski be sufficiently small such that agents on both market sides participate. The
matching rule is a tuple

(ϕ(θB1 |θA1 ), ϕ(θA1 |θB1 ), ϕ(ωA
1 |θA1 ), ϕ(ωB

1 |θB1 )).

Let ϕ(θA1 |θB1 ) ∈ [0, 1] be exogenously given. First, ϕ(ωB
1 |θB1 ) = 1−ϕ(θA1 |θB1 ), which follows

from the fact that the matching probabilities conditional on a type θki must add up to one.
Second, from feasibility, (iii), and the fact that the mass of matched pairs is symmetric,
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it must hold that

ϕ(θB1 |θA1 )f(θA1 ) = ϕ(θA1 |θB1 )f(θB1 ), (25)

such that ϕ(θB1 |θA1 ) is pinned down uniquely by the agents’ acceptance behavior and
resulting steady state mass. Note that whenever θA1 meets θB1 , it follows from (ii) expected
utility maximization that both agents mutually accept each other as their continuation
value is smaller than θA1 θ

B
1 (due to ski > 0 and/or δ > 0).

Consider the continuation value of type θB1 for exogenously given ϕ(θA1 |θB1 ):

V C(θB1 ) =
δωB

1 + (1− δ)(−sB1 + ϕ(θA1 |θB1 )θA1 θB1 )
δ + (1− δ)ϕ(θA1 |θB1 )

,

which takes values within the compact interval [ωB
1 − (1−δ)sB1

δ
, δωB

1 +(1− δ)(−sB1 + θA1 θ
B
1 )].

Note that type θB1 participates if V C(θB1 ) ≥ ωB
1 . Otherwise, θB1 does not participate and

the only equilibrium is the non-participation equilibrium from above. Given participation,
the steady state mass of type θB1 is

f(θB1 ) =
βB
1

δ + (1− δ)ϕ(θA1 |θB1 )
,

which follows from Equation 2 and analogously,

f(θA1 ) =
βA
1

δ + (1− δ)ϕ(θB1 |θA1 )
,

given participation of type θB1 (otherwise, the only equilibrium is again the non-participation
equilibrium). The steady state mass trivially satisfy (i) as they directly follow from rear-
ranging Equation 2. Lastly, ϕ(θB1 |θA1 ) then follows from Equation 25, and ϕ(ωB

1 |θB1 ) from
the fact ϕ(ωB

1 |θB1 ) = 1− ϕ(θB1 |θA1 ), which satisfies (iii).

Induction hypothesis: Let Θk = {θk1 , ..., θkN}, k = A,B. For any exogenously given
matching rule that is feasible, there exists an equilibrium.

Induction step: Let Θk = {θk1 , ..., θkN , θkN+1}, k = A,B and let ski be sufficiently
small to induce participation for all types, otherwise an equilibrium exists for the case
with Θk = {θk1 , ..., θkN}, k = A,B by the induction hypothesis.

The matching rule for type θki is a (discrete) probability distribution ϕ(·|θki ) ∈ ∆(Θ−k∪
ωk
i ), which is defined by N + 2 probabilities (one for each type and one for the outside

option). For N+1 types, the matching rule is in total given by (N+1)(N+2) conditional
probabilities. Let the following conditional probabilities be exogenously given

ϕ(θAN+1|θBN+1), ..., ϕ(θ
A
1 |θBN+1),

ϕ(θAN |θBN), ..., ϕ(θA1 |θBN),
...

ϕ(θA1 |θB1 ).
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As in the base case, the remaining probabilities follow from the feasibility conditions∑
θ−k
j ∈Θ−k

ϕ(θ−k
j |θki ) + ϕ(ωk

i |θki ) = 1, for k = A,B, (26)

f(θki )ϕ(θ
−k
j |θki ) = f(θ−k

j )ϕ(θki |θ−k
j ),∀θ−k

j ∈ Θ−k, θki ∈ Θk. (27)

First, given the exogenous conditional probabilities, I argue that the agents’ acceptance
probabilities and mutual acceptance probabilities, {α(θki , θ−k

j }ij follow from expected util-
ity maximization by considering the following procedure. Start by considering the accep-
tance probabilities of the highest type θBN−1 on side B. Given participation, its continuation
value takes values within a compact interval [ωB

N+1, δω
B
N+1 + (1− δ)(−sBN+1 + θBN+1θ

A
N+1)].

Given the exogenous conditional probabilities, the continuation value then determines the
acceptance probabilities, (σB(θ

A
i , θ

B
N+1))i, according to Equation 4. As all types θAi accept

a match with the highest type on side B, these are equivalent to the mutual acceptance
probabilities, (α(θAi , θ

B
N+1))i.

Second, given the exogenous conditional probabilities and type θBN+1’s mutual accep-
tance probabilities, the steady state mass follows from Equation 1

f(θBN+1) =
βB
N+1

δ + (1− δ)
∑

i α(θ
A
i , θ

B
N+1)ϕ(θ

A
i |θBN+1)

.

Next, determine the acceptance probabilities (σA(θ
A
i , θ

B
N))i of a type θAi on side A

towards type θBN on side B. Suppose for now that type θAi rejects type θBN . Under this
assumption and given (α(θAi , θ

B
N+1))i, I can construct the continuation value of a type θAi

and check whether

θAi θ
B
N ≤

δωk
i + (1− δ)(−sAi + α(θAi , θ

B
N+1)ϕ(θ

B
N+1|θAi )θAi θBN+1

δ + (1− δ)(α(θAi , θ
B
N+1)ϕ(θ

B
N+1|θAi )

,

holds. Note that whenever α(θAi , θ
B
N+1) = 0, it is easy to see that type θAi cannot reject

type θBN when maximizing utility.
Continue to type θBN on sideB. Given the acceptance probabilities on sideA, (α(θAi , θ

B
N))i

can be determined and the resulting steady state mass. Follow by determining the accep-
tance probabilities (σA(θ

A
i , θ

B
N−1))i of a type θAi on side A towards type θBN−1 on side B

and so on.
Lastly, by construction the matching rule is feasible as the remaining probabilities

follow from Equation 27 given the mutual acceptance probabilities and the steady state
masses.

Conclusion: Since both the base case and the general case have been proved as true,
by mathematical induction the statement holds for every natural number N .

Proof of Lemma 2 As defined in the Section 4.1, the set G is the set of profit levels
following from all linear programs with A ∈ A∗. I show that the set G is (i) non-empty
with Π(A) < ∞ for all A ∈ A∗ and −∞ < Π(A) for at least one A ∈ A∗ and (ii) finite.
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To define set G, recall the following definitions from the text. (i) Define a subset
A∗ ⊂ A, where A are the mutual acceptance matrices that can be implemented by
a matching mechanism M. Construct A∗ through the following procedure: For every
A′ ∈ A, construct a matrix A′′ such that

α′(θki , θ
−k
j ) = α′′(θki , θ

−k
j ) if α′(θki , θ

−k
j ) ∈ {0, 1},

α′(θki , θ
−k
j ) = αij otherwise,

where αij is a variable in [0, 1]. (ii) For each A ∈ A∗, the linear program is given by
Lemma 3. The value of the objective is given by Π(A). Then, (iii) G =

⋃
A∈A∗ Π(A).

(a) G is non-empty.

I will show that for any A ∈ A∗, there exists an optimal value Π(A) < ∞ to the linear
program. To do so, fix A ∈ A∗ and consider the linear program as defined in Lemma 3
in Appendix A.1. To prove that an optimal solution exists, I show that: (i) the objective
of the linear program is bounded, i.e., the linear program is not unbounded, and (ii) the
feasible region of the variable vector, P , is non-empty for a range of parameters. From
both it follows that there exists an optimal solution by Dantzig (1963); Bertsimas and
Tsitsiklis (1997).

(i) First, I show that the objective is bounded for all linear programs for fix A ∈ A∗.
For a maximization problem to be bounded there must exists a constant C ∈ R such that
for all feasible x ∈ Rn cTx ≤ C holds. The objective is bounded as∑

k=A,B

∑
θki ∈Θk

(1− δ)ski
(1− ρ)

f(θki ) <
∑

k=A,B

∑
θki ∈Θk

(1− δ)ski
(1− ρ)

βk
i

δ
≡ C. (28)

This implies that Π(A) < ∞ for all A ∈ A∗.
(ii) Second, I show that the feasible region is non-empty. The feasible region is defined

by the set P = {x ∈ Rn : Hx ≤ b}. For any A ∈ A∗, there exists a matching rule under
which the constraints are not inconsistent by Proposition 1 for a range of parameters.
This follows from the fact that A∗ ⊂ A and the definition of A implies that A ∈ A if
and only if there exists an exogenous matching rule for which an equilibrium with mutual
acceptance matrix A exists. Therefore, the feasible region is non-empty for a range of
parameters for each linear program for fix A ∈ A∗.

Then, by strong duality (Dantzig, 1963), it follows that the linear program attains an
optimal solution for any A ∈ A∗. The optimal value to the linear program, Π(A), is finite
and G is non-empty.

(b) G is finite.

As G =
⋃

A∈A∗ Π(A) and A∗ is finite by construction, G is also finite as the profit
level of a given linear program is a singleton. As each linear program for fix A ∈ A∗ is
bounded, the profit level takes on either a (finite) optimal value if an optimal solution
exists or value −∞ if the linear program is infeasible for given parameters.25

25Note that this notation is standard in the linear program literature.
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Proof of Theorem 1 The first part of the theorem immediately follows from Lemma
2: For any ski ∈ R+, there exists an optimal solution. By Lemma 2 the set G is finite and
non-empty for any given ski ∈ R+. Hence fixing search costs, supG(s) is well-defined and
a solution exists.

Next, I prove the second part of the theorem: Let the platform choose ski ∈ R+ for all
θki ∈ Θk, k = A,B, there exists an optimal solution. By Lemma 2, the set G is finite and
non-empty for any values of ski ∈ R+ for all θki ∈ Θk, k = A,B. If ski ≥ maxθ−k

j
{θki · θ−k

j }
for all θki ∈ Θk no agent participates and the equilibrium profit is zero. Therefore, to
make positive profits ski ≤ maxθ−k

j
{θki · θ−k

j } for at least one θki ∈ Θk such that the set of

participating types Θ̂k is non-empty. For simplicity, denote maxθki maxθ−k
j
{θki · θ−k

j } = u

as the maximum utility that any type can attain on the platform. Let ski ∈ [0, u] ≡ S
and denote the vector (ski )

k
i ≡ s. To prove the second part, I argue that supG(s) is upper

semi-continuous in s and compact-valued on a set J . Let J =
⋃

A∈A∗ JA be the union of
sets JA on which the profit level of a linear program for fix A ∈ A∗ is finite. Then, there
exists a maximum by Weierstrass extreme value theorem on the compact set S |Θk|×|Θ−k|.

G(s) is the set of profit levels of all linear programs for given s. Then, define G(s) as
a correspondence from s to profit levels Π(s)

G(s) : J ⇒ C.

which assigns to each point s of J a subset G(s) of C ⊂ R+.
Since C is a collection of finite profit levels for any given s in J , the set is compact

for any given s. Hence, because s is chosen from a compact set, the correspondence is
compact-valued. Therefore, to show that an optimal solution exists, I first show that the
correspondence is upper hemicontinuous in s. To do so, I first prove that the following:
The value of the objective ΠA(s) of each linear program for given matrix A ∈ A∗ is upper
hemicontinuous in s.

Fix A ∈ A∗, and consider the associated linear program (Lemma 3). Following the
notation in Appendix A.1 for fix A ∈ A∗, s changes vector c continuously, as each entry
is linear in ski . Furthermore s changes matrix H continuously as ski linearly enters as a
coefficient in the incentive and participation constraints.

Fix A ∈ A∗, the set of (primal) feasible solutions of the linear program is upper
hemicontinuous in s. Consider one linear program for given A ∈ A∗ following the notation
in Appendix A.1:

ΠA(s) ≡ sup
x∈Rn

{c(s)x|HA(s)x ≤ bA, x ≥ 0},

where HA and bA, i.e. the constraints, are determined by A. The set of primal feasi-
ble solutions of the linear program that defines objective Π is the (polyhedral-valued)
multifunction (or set-valued function)

s → PA(s) ≡ {x|HA(s)x ≤ b, x ≥ 0}.

In Lemma 2, I have shown that the linear program for fix A ∈ A∗ has an optimal
solution, and hence, the value of the linear program, ΠA(s), is finite on a set JA ≡ {s ∈
S |Θk|×|Θ−k|| −∞ < ΠA(s) < ∞}.
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PA(s) is upper hemicontinuous at s if

s = lim
n→∞

sn, xn ∈ PA(sn), and x = lim
n→∞

xn,

implies that x ∈ PA(s).
26 To prove, consider the following: Suppose that {sn}n ∈ JA and

s = limn→∞ sn. Let {xn}n be a sequence such that for all n, xn ∈ PA(s): HA(sn)xn ≤ bA,
and limv→∞ = x. Since

||HA(sn)−HA|| → 0, ||xn − x|| → 0, and ||bA − bA|| = 0,

it follows that Hx ≤ b and x ≥ 0 which yields x ∈ PA(s). This implies that PA(s) is in
fact upper hemicontinuous in r.

PA(s) is lower hemicontinuous at s if

s = lim
n→∞

sn, and x ∈ PA(s)

implies the existence of xn ∈ PA(sn) such that x = limn→∞ xn.
Following Theorem 2 in Wets (1985), continuity of PA(s) in s implies that ΠA(s) is

upper hemicontinuous in s.
It remains to show that the profit over all possible linear programs, Π(s), is upper

hemicontinuous on
⋃

A∈A∗ JA, where |A∗| is the finite number of possible linear programs.
Note that each linear program returns a finite set of feasible solutions and hence, a finite
number of profit levels. Additionally, as the first part of the theorem notes, there exists
at least one linear program that admits an optimal solution and hence, finite profit level
for each s.

Let G(s) =
⋃

A∈A∗ ΠA(s) be the finite union over the profit levels of each linear pro-
gram. Note that for each ΠA(s), which is defined on JA, the value ΠA(s) is finite on
JA and empty on

⋃
A∈A∗ JA \ JA. I show that G(s) is upper hemicontinuous in G on⋃

A∈A∗ JA. If |A∗| = 1, this statement has been proven above. Let |A∗| = 2. By (yet
another definition), ΠA1(s)∪ΠA2(s) is upper hemicontinuous at s0 ∈ JA1 ∪JA2 , if for any
open set V ⊆ C with Π(s0) ⊆ V , there exists an open neighborhood U(s0) ⊆ JA1 ∪ JA2

such that if s ∈ U(s0), then Π(s) ⊆ V .
Now, consider the following argument for |A∗| = 2: Since Π(s0) = ΠA1(s0)∪ΠA2(s0) ⊆

V , it follows that both ΠA1(s0) ⊆ V and ΠA2(s0) ⊆ V . Because either both ΠA1(s0) and
ΠA2(s0) are upper hemicontinuous, or at least one of the two is upper hemicontinuous
(where the other is equal to the empty set) for any s0, it holds that: There exists a
neighborhood UA1 of s0 such that ΠA1(s0) ⊆ V for all s ∈ UA1 (and for A2 respectively).
Let U = UA1 ∩ UA2 . Then, for any s ∈ U , both ΠA1(s) ⊆ V and ΠA2(s) ⊆ V such that
ΠA1(s) ∪ ΠA2(s) ⊆ V . Therefore, Π(s) is upper hemicontinuous. The argument can be
extended to finite |A∗| by proof via induction. Assume that the union of

⋃
A∈A∗ ΠA(s) for

|A∗| = K is upper hemicontinuous, then one needs to show that
⋃

A∈A∗ ΠA(s) is upper
hemicontinuous for |A∗| = K + 1, which follows directly from the above argument.

To summarize, G(s) is a compact-valued, upper hemicontinuous correspondence in s.
Therefore, supG(s) exists and is finite for any s. Lastly, to apply Weierstrass extreme

26This definition follows Wets (1985).
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value theorem (for the existence of a maximum), note that supG(s) ≡ Gmax(s) is upper
semi-continuous in s following from the upper hemicontinuity and compactness of G(s).

Proof of Proposition 2 Define the parameters over the following sets: θki ∈ Θk =
[θ, θ] ⊆ R+, β

k
i ∈ [0, 1], δ ∈ [0, 1], ωk

i ∈ Ω = [θ, θ], and ski ∈ [0, u]. Then generically
suboptimal implies that the probability of the case in which random matching is opti-
mal occurs with probability zero when the parameters are randomly drawn from their
respective compact intervals.

For given A ∈ A∗, an optimal solution is a matching rule for which the objective
function of the linear program in Appendix A.1 attains its maximum value. To verify
optimality I rely on the geometry of linear programs. As defined in Appendix A.1, the
feasible region P ≡ {x ∈ Rn|Hx ≤ b} is a convex polyhedron. From Bertsimas and
Tsitsiklis (1997) the following are equivalent

(i) x is a vertex of P .

(ii) x is an extreme point of P .

(iii) x is a basic feasible solution of P .

This implies, that if the vector that contains the recommended and matched pairs
under random matching xRM ∈ Rn for all given A ∈ A∗ is not at a vertex of P , then it is
also not an optimal solution. Let A= be the matrix of constraints that are satisfied with
equality under x. Then, x is a vertex if and only if rank(A=) = n. In other words, there
must be n linearly independent (in-)equalities that are binding (out of m (in-)equalities).
For k feasibility constraints, which must be binding, optimality requires that n − k ≥ 1
participation and incentive constraints must be binding.

Consider any given A ∈ A∗ which belongs to the profit-maximizing solution. There
are two cases: (i) A ∈ A∗ is part of a non-assortative matching outcome, (ii) A ∈ A∗

is part of a (weakly) assortative matching outcome, i.e., α(θki , θ
−k
j ) is weakly increasing

in its second argument, as well as its first argument. In case (i), random matching can
never implement the profit-maximizing outcome. As random matching always induces
(weakly) positive assortative mutual acceptance probabilities as noted in Section 4. In
case (ii) A ∈ A∗ is (weakly) positive assortative, then random matching must induce n−k
binding participation and/or incentive constraints. Then for, f(θki ) and m(θki , θ

−k
j ) which

under random matching are functions of βk
i , δ and the probability of remaining unmatched

µ(θki , ω
k
i ), the participation and incentive constraints are generically non-binding

βk
i θ

k
i θ

−k
j ≤ f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j ,

βk
i ω

k
i ≤ f(θki )(δω

k
i − (1− δ)ski ) + (1− δ)

∑
j

m(θki , θ
−k
j )θki θ

−k
j .
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Rearranging and using the steady state condition yields

βk
i

(
θki θ

k
j − ωk

i +
(1− δ)

δ
ski

)
≤ (1− δ)

∑
j

m(θki , θ
−k
j )

(
θki θ

−k
j − ωk

i +
(1− δ)

δ
ski

)
,

βk
i

(1− δ)

δ
ski ≤ (1− δ)

∑
j

m(θki , θ
−k
j )

(
θki θ

−k
j − ωk

i +
(1− δ)

δ
ski

)
,

where under random matching m(θki , θ
−k
j ) = 0 if α(θki , θ

−k
j ) = 0 and

m(θki , θ
−k
j ) =

α(θki , θ
−k
j )βk

i µ(θ
k
i , ω

k
i )β

−k
j µ(θ−k

j , ω−k
j )(∑

θki
βk
i µ(θ

k
i , ω

k
i )
)
·
(∑

θ−k
j

β−k
j µ(θ−k

j , ω−k
j )
)

if α(θki , θ
−k
j ) ∈ (0, 1] from Appendix A.2. Then for A ∈ A∗, the probability that the mass

of matched pairs under random matching induces a binding incentive or participation
constraint is zero when β−k

j , ski , ω
k
i , θ

k
i , θ

−k
j and δ are drawn from continuous intervals.

Proof of Proposition 3 Suppose market sides are fully symmetric. Therefore, I drop
the superscript k. The positive assortative matching rule is defined as ϕ(θi|θj) = 1 if and
only if i = j and results in f(θi) = βi.

(i) Search Fee

(a) “if”: PAM is optimal if si = θ2i for all θi ∈ Θ. To see this, note that as shown
in Appendix A, PAM maximizes match productivity over all agents. By setting si = θ2i ,
the platform extract the full surplus from agents. In this case, si is effectively a type-
dependent participation fee.

(b) “only-if”: Suppose for contradiction, PAM were optimal if si < θi(θi−max{θ1, ωi})
for at least one θi ∈ Θ \ {θ1}. Then, the platform earns

2(1− δ)

1− ρ

 ∑
θj∈Θ\{θi}

βjθ
2
j + βisi

 <
2(1− δ)

1− ρ

 ∑
θj∈Θ\{θi}

βjθ
2
j + βiθi(θi −min{θ1, ωi})


Observe that for type θi, the incentive constraint towards the lowest type is slack. If

type θi met type θ1, it would strictly prefer to reject type θ1.

max{θiθ1, ωi} < δωi + (1− δ)(θ2i − si) < θ2i .

Consider a deviation to a matching rule in which types θ1 and θi meet each other
with mass ϵ > 0 while keeping the matching rule for all other types fixed: Φ(θi, θ1) = ϵ.
Additionally, decrease s1 from s1 = θ21 −ω1 to s′1. Then, there exists an ϵ > 0 and s1 that
is feasible and incentive compatible which increases the platform’s profit.
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The feasibility constraints read

βi

δ + (1− δ)ϕ(θi|θi)
=

βiϕ(θi|θi)
δ + (1− δ)ϕ(θi|θi)

+ ϵ,

β1

δ + (1− δ)ϕ(θ1|θ1)
=

β1ϕ(θ1|θ1)
δ + (1− δ)ϕ(θ1|θ1)

+ ϵ,

which results in

ϕD(θi|θi) =
βi − ϵδ

βi + (1− δ)ϵ
, ϕD(θ1|θ1) =

β1 − ϵδ

β1 + (1− δ)ϵ
.

For ϵ > 0, the assortative matching probabilities are strictly smaller than one. And let,
sl =

β1−ϵδ
β1+(1−δ)ϵ

(θ21 − ω1).
Next, to ensure that the acceptance probabilities are unaffected by the change of

the matching rule, I examine the incentive and participation constraints. Given si <
min{θi(θi − θ1), θ

2
i − ωi) and PAM incentive constraint (or participation constraint) of θi

is non-binding. As the deviation matching probabilities are continuous in ϵ, there exists a
small movement in ϵ for which the incentive (or participation) constraint continues to be
slack or is binding. As a result, the agent’s search behavior of type θi does not change for
a small enough change in ϵ > 0. Therefore, type θi continues to reject θ1. Additionally,
the participation constraint of θ1 is binding if s1 = θ21 − ω1 under PAM. As θ1 meets θi
with positive probability, the participation constraint would be violated at s1 = θ21 − ω1.
By lowering s1 as above, the participation constraint continues to be binding.

The platform’s profit is

Π =
2(1− δ)

1− ρ

(
βisi

δ + (1− δ)ϕ(θi|θi)
+

β1s
′
1

δ + (1− δ)ϕ(θ1|θ1)
+
∑

j,j ̸=i,2

βjsj

)
,

and strictly decreasing in ϕ(θi|θi), i = 1, 2. Therefore, a deviation to ϕD(·) is always
profitable and generates a profit of

ΠD =
2(1− δ)

1− ρ

(
(βi + ϵ)si + β1θ

2
1 +

∑
j,i̸=i,2

βjsj

)
,

which is larger than the profit under PAM — a contradiction.
Suppose for contradiction, PAM were optimal if s1 < θ21 − ω1 for θ1 for all values of

exogenous parameters: θki ∈ Θk = [θ, θ] ⊆ R+, β
k
i ∈ [0, 1], δ ∈ [0, 1], and ωk

i ∈ Ω = [θ, θ].
Then, consider the participation and incentive constraint of type θ1 and a type θi. Then
holding search fee and the matching rule for all other types constant, let the platform
deviates to si and s1 < θ21 < ωi and matching rule for θi and θ1 such that θi is indifferent
between accepting and rejecting θ1 and θ1 is indifferent between participating or not

δωi + (1− δ)(−si + ϕ(θi|θi)θ2i )
δ + (1− δ)ϕ(θi|θi)

= max{θiθ1, ωi},

δω1 + (1− δ)(−si + ϕ(θ1|θ1)θ21)
δ + (1− δ)ϕ(θ1|θ1)

= ω1,
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where ϕ(θi|θi) = (1−δ)si+δ(θiθ1−ωi)
(1−δ)θi(θi−θ1)

and ϕ(θ1|θ1) = s1
θ21−ω1

are smaller than one. The steady

state mass is f(θj) =
βj

δ+(1−δ)ϕ(θj |θj) for θj = θi, θ1. Then, feasibility requires that si and

s1 < θ21 − ω1 are such that f(θi)(1− ϕ(θi|θi)) = f(θ1)(1− ϕ(θ1|θ1)) = Φ(θi, θ1).
Then, there exists a ratio of βi

β1
such that the platform’s deviation yields a higher

profit than under PAM for non-generic parameter values — a contradiction. It holds that
s1 < θi − ω1 such that s1 = θi − ωi − ε for ε > 0. For δ → 0

βimin{θi(θi − θ1), θ
2
i − ωi}+ β1(θ

2
1 − ω1)︸ ︷︷ ︸

=ΠD

≥ βi(θ
2
i − ωi) + β1(θ

2
1 − ω1ε)︸ ︷︷ ︸

ΠPAM

,

for βiθiθ1 ≤ βiε if ωi < θiθ1. The inequality is strict if ωi ≥ θiθ1.

(ii) Advertisement

Suppose PAM were optimal, which implies that the platform’s profit is equal to

ΠPAM = 2
∑
θi∈Θ

ν(si)β(θi)

for some si ∈ [0, u]. Note that ν(si) is strictly concave and hence, ΠPAM as βi is constant
in si. Under PAM,

ν ′(ski )β
k
i > 0,

such that the platform chooses the highest feasible search costs si = θi − ωi. First,
if ν(si)

si
< 1 for si = θi − ωi for some θi ∈ Θ, the platform can increase its profit by

constructing a deviation to any si < θi(θi − θ1) as above in (b), which fulfills ν(si)
si

≥ 1.≥

B.2 BINARY TYPES

Lemma 4 and its Proof

Lemma 4. The optimal matching rule that implements
(a) (Positive assortative) (α(θh, θh) = 1, α(θh, θl) = 0, α(θl, θl) = 1):[

s
θh(θh−θl)

1− s
θh(θh−θl)

βls
βhθh(θh−θl)+(βl−βh)s

βh(θh(θh−θl)−s)
βhθh(θh−θl)+(βl−βh)s

]
, if

βh

βl

≤ θ2l − s

θh(θh − θl)− s
, (29)

or otherwise, [
βhs

βlθ
2
l +(βh−βl)s

βl(θ
2
l −s)

βlθ
2
l +(βh−βl)s

s
θ2l

1− s
θ2l

]
, if

βh

βl

≥ θ2l − s

θh(θh − θl)− s
, (30)

where at equality both matrices coincide.
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(b) (Non-assortative) (α(θh, θh) = 1, α(θh, θl) = 1, α(θl, θl) = 0):[
βh−βl

βh

βl

βh

1− s
θl(θh−θl)

s
θl(θh−θl)

]
, if 1 ≤ βh

βl

≤ θh(θh − θl)

θh(θh − θl)− s
(31)

(c) (Weakly assortative) (α(θh, θh) = 1, α(θh, θl) ∈ (0, 1), α(θl, θl) = 1)[
s

θh(θh−θl)
1− s

θh(θh−θl)
(βl(θ

2
h−s)−βh(θh(θh−θl)−s))s

θl(θh−θl)(βhθh(θh−θl)+βlθhθl+(βl−βh)s)
1− (βl(θ

2
h−s)−βh(θh(θh−θl)−s))s

θl(θh−θl)(βhθh(θh−θl)+βlθhθl+(βl−βh)s)

]
, (32)

if
(θ2l − s)

θh(θh − θl)− s)
≤ βh

βl

≤ (θ2h − s)

θh(θh − θl)− s)
.

(d) (Non-assortative) (α(θh, θh) = 1, α(θh, θl) ∈ (0, 1), α(θl, θl) = 0):[
s

θh(θh−θl)
1− s

θh(θh−θl)

1− (βh−βl)(θh(θh−θl)−s)
(θh−θl)θlβl

(βh−βl)(θh(θh−θl)−s)
(θh−θl)θlβl

]
, (33)

if
θh(θh − θl)

θh(θh − θl)− s
≤ βh

βl

≤ θ2h − θ2l − s

θh(θh − θl)− s

(e) The optimal matching rule that implements no search and weakly assortative

matching outcome is and ϕ(θh, θh) ∈ [max{0, βhθl(θh−θl)−βls
βhθl(θh−θl)

}, s
θh(θh,θl)

) and

ϕ(θl|θl) = max{0, βl−βh(1−ϕ(θh|θh)
βh

}.

The proof proceeds as follows. Each tuple of mutual acceptance probabilities
(α(θh, θh), α(θh, θl), α(θl, θl)) induces a linear program for the platform. See Appendix A
for a formal definition and derivation. The linear program in the binary case is given by

max
Φ(·)

2(1− δ)s

1− ρ
(f(θh) + f(θl)) ,

subject to feasibility

f(θh) = Φ(θh, θh) + Φ(θh, θl),

f(θl) = Φ(θl, θl) + Φ(θh, θl),

and the steady state conditions

βh = f(θh)δ + (1− δ)(α(θh, θh)Φ(θh, θh) + α(θh, θl)Φ(θh, θl)),

βl = f(θl)δ + (1− δ)(α(θl, θl)Φ(θl, θl) + α(θh, θl)Φ(θh, θl)).

Fixing the mutual acceptance probabilities, the optimization problem is linear in Φ(·).

(a) Positive assortative matching outcome:
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Consider (α(θh, θh) = 1, α(θh, θl) = 0, α(θl, θl) = 1) that induce the following con-
straints. The incentive constraint for a high type to continue searching after meeting a
low type must hold, as well as the participation constraint for a low type.

θhθl ≤
(1− δ)(−s+ ϕ(θh|θh)θ2h)

δ + (1− δ)ϕ(θh|θh)
≡ V C(θh, ϕ), (34)

0 ≤ (1− δ)(−s+ ϕ(θl|θl)θ2l )
δ + (1− δ)ϕ(θl|θl)

≡ V C(θl, ϕ). (35)

By using Equation 2, the constraints are also linear in Φ(·)

βh(δθhθl + (1− δ)s) ≤ (1− δ)Φ(θh|θh)(δθ2h + (1− δ)s),

βl(1− δ)s ≤ (1− δ)Φ(θl|θl)(δθ2l + (1− δ)s).

The feasibility and steady state constraints become

βh − (1− δ)Φ(θh, θh)

δ
= Φ(θh, θh) + Φ(θh, θl),

βl − (1− δ)Φ(θl, θl)

δ
= Φ(θl, θl) + Φ(θh, θl).

By strong duality, the linear program is either unbounded, infeasible, or has an optimal
solution. As the linear program is not unbounded, nor infeasible, the linear program must
have an optimal solution.

In the binary case, the optimal solution can easily be checked. As the platform max-
imizes the steady state mass, it chooses Φ(θh, θh) and Φ(θl, θl) to be as small as possible
without violating the constraints. Here, Φ(θh, θh) and Φ(θl, θl) are minimal when Equation
34 and Equation 35 bind resulting in

Φ(a)(θh, θh) =
βh((1− δ)s+ δθhθl)

(1− δ)((1− δ)s+ δθ2h)
,

Φ(a)(θl, θl) =
βls

(1− δ)s+ δθ2l
.

Both the incentive and participation constraint, however, can only bind at the same time
whenever (

βh

βl

)(a)

=
(1− δ)(θ2l − s)((1− δ)s+ δθ2h)

(θh(θh − θl)− (1− δ)s− δθ2h)((1− δ)s+ δθ2l )
,

due to the feasibility constraints.
The steady state mass can be calculated by inserting Φ(a)(θh, θh) and Φ(a)(θl, θl) into

f(θh) =
βh − (1− δ)Φ(θh, θh)

δ
,

f(θl) =
βl − (1− δ)Φ(θl, θl)

δ
.
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The optimal matching rule is then given by ϕ(θi|θi) = Φ(θi,θi)
f(θi)

for i = h, l.

If βh

βl
> (βh

βl
)(a), only the participation constraint can be binding such that Φ(θl, θl) =

Φ(a)(θl, θl). Inserting Φ(θl, θl) = Φ(a)(θl, θl) into the feasibility constraint of the low types
yields Φ(θh, θl), which in turn determines Φ(θh, θh) by inserting it into the feasibility
constraint of the high type. If βh

βl
< (βh

βl
)(a), only the incentive constraint of the high type

can be binding such that Φ(θh, θh) = Φ(θh, θh)
(a) and the steps above can be repeated

respectively.

(b) Non-assortative outcome:
Consider (α(θh, θh) = 1, α(θh, θl) = 1, α(θl, θl) = 0), which induce the following con-

straints. The linear incentive constraints are

βh((1− δ)s+ δθhθl) ≥ (1− δ)Φ(θh|θh)((1− δ)s+ δθ2h) + (1− δ)Φ(θh, θl)((1− δ)s+ δθhθl),

βl((1− δ)s+ δθ2l ) ≤ (1− δ)Φ(θh|θl)((1− δ)s+ δθhθl).

As high types accept both high and low types and search for only one period, the steady
state mass of high types is equal to their inflow: f(θh) = βh. The platform’s profit from

high types is, therefore, independent of the matching rule for ϕ(θh|θh) ∈
[
0, (1−δ)s+δθhθl

(1−δ)θh(θh−θl)

]
.

To maximize steady state mass of low types, the platform minimizes Φ(θh, θl) such that

Φ(θh, θl)
(b) =

βl((1− δ)s+ δθ2l )

(1− δ)((1− δ)s+ δθhθl)
,

where the incentive constraint of the low type binds. Φ(θh, θh) follows from the feasibility
constraints, where Φ(θh, θh) and Φ(θh, θl) must be such that the incentive constraints of
the high type is fulfilled, which is true if

1 <
βh

βl

≤ ((1− δ)s+ δθ2l ) θh(θh − θl)

(θh(θh − θl)− (1− δ)s− δθ2h) ((1− δ)s+ δθhθl)
.

(c) Mixed-strategy: weakly assortative outcome:
Consider (α(θh, θh) = 1, α(θh, θl) ∈ (0, 1), α(θl, θl) = 1). First, note that for the high

types to accept low types with positive probability, they must be indifferent between
searching and accepting low types:

θhθl = V C(θh, ϕ),

which holds for ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

. For low types to participate, it must hold that

βl(1− δ)s ≤ (1− δ)Φ(θl, θl)(δθ
2
l + (1− δ)s) + (1− δ)α(θh, θl)Φ(θh, θl)(δθhθl + (1− δ)s).

From ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

it follows

Φ(c)(θh, θh) = ϕ(θh|θh)
βh

δ + (1− δ)(ϕ(θh|θh) + α(θh, θl)(1− ϕ(θh|θh)))︸ ︷︷ ︸
=f(θh)
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Then, Φ(c)(θh, θl) follows from feasibility of the high type. Furthermore, Φ(c)(θl, θl) follows
from feasibility of the low type. All can be substituted into the incentive constraint of
the low type. The low type is indifferent between participating and not participating if

αWPAM ≡
{
α(θh, θl) : βls = Φ(c)(θl, θl)(δθ

2
l + (1− δ)s) + α(θh, θl)Φ

(c)(θh, θl)(δθhθl + (1− δ)s)
}
.

For δ → 0, I get

αWPAM =
s (βhθh(θh − θl)− βlθ

2
l − (βh − βl)s)

(θh(θh − θl)− s) (βhθl(θh − θl) + βlθ2l + (βh − βl)s)
(36)

The mutual acceptance probability is then given by the above. For δ → 0, to ensure that
both αWPAM ∈ [0, 1] and ϕ(θl|θl) ∈ [0, 1], the conditions in the lemma must hold.

(d) Mixed-strategy: non-assortative outcome:

Consider (α(θh, θh) = 1, α(θh, θl) ∈ (0, 1), α(θl, θl) = 0). Again, ϕ(θh|θh) = (1−δ)s+δθhθl
(1−δ)θh(θh−θl)

must hold to ensure indifference of high types. Then, Φ(d)(θh, θh) = Φ(c)(θh, θh) and
Φ(d)(θh, θl) = Φ(c)(θh, θl). Inserting into the incentive constraint of the low type, the low
type rejects low types if

βl((1− δ)s+ δθ2l ) ≤ (1− δ)α(θh, θl)Φ
(d)(θh, θl)((1− δ)s+ δθhθl),

which holds with equality, and δ → 0 for

αNAM =
βls

(βh − βl)(θh(θh − θl)− s)
(37)

The mutual acceptance probability is in [0, 1] if the conditions in the lemma are fulfilled.
Note that I do not need to consider the mixed strategy of low types as the solution is
bang-bang. Profit either increase or decrease in α(θl, θl).

(e) Pure-strategy: weakly-assortative outcome:
Consider (α(θh, θh) = 1, α(θh, θl) = 1, α(θl, θl) = 1). Note that agents do not search if

θhθl > V C(θh, ϕ) > 0,

θ2l > V C(θl, ϕ) > 0

A continuum of matching rules exists that yield the same profit. The high type does not
search if ϕ(θh|θh) = [0, (1−δ)s+δθhθl

(1−δ)θh(θh−θl)
]. From the equivalence of masses, it follows

ϕ(θh|θl) =
βh(1− ϕ(θh|θh))

βl

.
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Proof of Proposition 4 To determine the platform’s preferred outcome, consider the
profits from the demand in matching outcome (a) to (e) in Lemma 4 for all values of s.
As the lemma only considers situation in which both types participate, it should hold
that s ≤ θhθl (or even s ≤ θ2l ).

For the first part of the lemma, only the matching outcome in (a) (Equation 29)

and (e) in Lemma 4 exist for βh

βl
<

θ2l −s

θh(θh−θl)−s
. As no agent searches in the match-

ing outcome from (e), the profit is Π(e) = 2(βh + βl). The profit in (a) is Π(a) =

2
(

βhθh(θh−θl)
s

+ βhθh(θh−θl)+(βl−βh)s
s

)
. For both outcomes to exist s ≤ θ2l , such that Π(a) >

Π(e) for all s ≤ θ2l . In general, Π(e) is dominated by any profit which induces some search
for s ≤ θ2l .

For the second part of the lemma, only the matching outcome in (a) (Equation 30)

and (c) exist for ratio just above the previous one: βh

βl
≥ θ2l −s

θh(θh−θl)−s
. By construction, the

participation constraint is binding for the low type in both equilibria. In contrast, the
incentive constraint of the high type is slack in equilibrium (a), whereas it is binding in

(c). The profits are Π(a) = 2(
βlθ

2
l +(βh−βl)s

s
+

βlθ
2
l

s
) and Π(c) = 2(

θh(βhθl(θh−θl)+βlθ
2
l +(βh−βl)s)

θhs+θls
+

(βhθ
2
h−βhθhθl+βlθhθl−βhs+βls)θl

s(θh+θl)
), where the difference is strictly positive

Π(c) − Π(a) =
4(βh(θh(θh − θl)− s)− βl(θ

2
l − s)

s(θh + θl)
,

as βh

βl
≥ θ2l −s

θh(θh−θl)−s
holds. The equilibrium profit in (b) is Π(b) = 2(βh + βlθl(θh−θl)

s
) is

clearly dominated for s < θ2l . Furthermore, Π(b) < Π(c) for θ2l ≥ s ≤ θl(θh− θl) for
βh

βl
≥ 1.

For the third part of the lemma, it remains to compare when the profit in equilibrium
(c) is larger or smaller then the profit from equilibrium (d). Only equilibrium (c) and (d)

can exist for βh

βl
≥ θh(θh−θl)

θh(θh−θl)−s
. The profit in (d) is Π(d) = 2( (βhs−βls)θh(θh−θl)

s2
+ βlθl(θh−θl)

s
).

Then Π(d) ≥ Π(c) if
θ3h−θ2hθl+θhθ

2
l +θ3l −θhs+θls

θ3h−2θ2hθl+θhθ
2
l −θhs+θls

≤ βh

βl
.

For the fourth part of the lemma, note that only one equilibrium exists for βh

βl
≥

θ2h−θ2l −s

θh(θh−θl)−s
in which agents search (see Lemma 4). This yields higher profits than an

equilibrium, in which agents do not search.

Proof of Proposition 5 The proof follows the matching outcomes in Proposition 4
from (a) to (d).

(a) The positive assortative matching outcome maximizes match productivity, but

maximizes search time. At βh

βl
≤ θ2l −s

θh(θh−θl)−s
agents search the longest. For βh

βl
≤ θ2l −s

θh(θh−θl)−s
,

agents search for

θh-type:
1

ϕ(θh|θh)
=

θh(θh − θl)

s
,

θl-type:
s

ϕ(θl|θl)
=

βh(θh(θh − θl) + (βl − βh)s

βls
,
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High types search the longest in the positive assortative matching outcome compared to
the other outcomes.

(b) The weakly assortative matching outcome has a mass of mismatched agents of

βh(θh(θh − θl)− s)− βl(θ
2
l − s)

θ2h − θ2l
,

which increases in s if βh < βl, and decreases in s if βh > βl. Furthermore, the mismatch
increases if the type difference increases, i.e. types becomes less similar. The welfare loss
from mismatch is

WWPAM
P = α(θh, θl)Φ(θh, θl)θl(θh − θl)− α(θh, θl)Φ(θh, θl)θh(θh − θl),

= −(βhθh(θh − θl)− βlθ
2
l − βhs+ βls) (θh − θl)

θh + θl
,

and agents search for

θh-type:
1

ϕ(θh|θh) + αWPAM(θh, θl)ϕ(θl|θh)
=

θh (βhθhθl − βhθ
2
l + βlθ

2
l + βhs− βls)

(θh + θl)βhs
,

θl-type:
1

ϕ(θl|θl) + αWPAM(θh, θl)ϕ(θl|θl)
=

θl (βhθ
2
h − βhθhθl + βlθhθl − βhs+ βls)

(θh + θl)βls
,

Low types search the longest in the weakly positive assortative matching outcome com-
pared to the other outcomes.

(c) The non-assortative matching outcome has a mass of mismatched agents of

βl,

which decreases in βh

βl
. The welfare loss from mismatch is

WNAM
P = α(θh, θl)Φ(θh, θl)θl(θh − θl)− α(θh, θl)Φ(θh, θl)θh(θh − θl),

= −βl(θh − θl)
2,

and agents search for

θh-type:
1

ϕ(θh|θh) + αWPAM(θh, θl)ϕ(θ|θh)
=

βh − βl

βh

θh(θh − θl)

s
,

θl-type:
1

αWPAM(θh, θl)ϕ(θh|θl)
=

θl(θh − θl)

s
.

Then, WWPAM
P ≥ WNAM

P if

βh

βl

≥ θ2h − s

θh(θh − θl)− s
.

If, however, the above inequality holds, the platform cannot implement the positive as-
sortative matching outcome (see Lemma 4).
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(d) The positive assortative matching outcome does not induce any mismatch. Agents
search for

θh-type:
1

ϕ(θh|θh)
=

βlθ
2
l + (βh − βl)s

βhs
,

θl-type:
s

ϕ(θl|θl)
=

θ2l
s
.

Proof of Proposition 6 The optimal level of advertising is determined by Equation
7, where demand is given by any of the four cases in Proposition 4.

(a) Positive assortative matching outcome for βh

βl
≤ θ2l −s

θh(θh−θl)−s
.

For βh

βl
<

θ2l −s

θh(θh−θl)−s
, taking demand associated with the positive assortative matching

outcome, Equation 7 becomes

ν(s)

ν ′(s)
=

s(βh(2θh(θh − θl)− s) + βls)

2βhθh(θh − θl)
= s+

(βl − βh)s
2

2βhθh(θh − θl)
.

The right-hand side is increasing and convex. For βh

βl
=

θ2l −s

θh(θh−θl)−s
, the right-hand side is

equal to s. Demand is decreasing and concave in s as

ν ′(s) = −4
βhθh(θh − θl)

s2
, ν ′′(s) = 8

βhθh(θh − θl)

s3
.

(b) Weakly positive assortative matching outcome for βh

βl
>

θ2l −s

θh(θh−θl)−s
.

Taking demand associated with the weakly positive assortative matching outcome,
Equation 7 becomes

ν(s)

ν ′(s)
=

s(2βhθ
2
hθl − 2βhθhθ

2
l + 2βlθhθ

2
l + βhθhs− βhθls− βlθhs+ βlθls)

2θhθl(βh(θh − θl) + βlθl)
,

with

ν ′(s) = −4
θhθl (βhθh − βhθl + βlθl)

(θh + θl)s2
, ν ′′(s) = 8

θhθl (βhθh − βhθl + βlθl)

(θh + θl)s3
.

(c) Negative assortative matching outcome for βh

βl
> θh(θh−θl)

θh(θh−θl)−s
.

Taking demand associated with the negative positive assortative matching outcome,
Equation 7 becomes

ν(s)

ν ′(s)
= s,

with

ν ′(s) = −2
(θh − θl)(βhθh − βlθh + βlθl)

s2
, ν ′′(s) = 4

(θh − θl)(βhθh − βlθh + βlθl)

s3
.
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(d) Positive assortative matching outcome for βh

βl
>

θ2h−θ2l
θh(θh−θl)−s

. Taking demand associated
with the positive assortative matching outcome, Equation 7 becomes

ν(s)

ν ′(s)
= s+

(βh − βl)s
2

2βlθ2l
,

with

ν ′(s) = −4βlθ
2
l

s
, ν ′′(s) =

8βlθl
s3

.

(e) Existence of an optimal solution
Demand is decreasing, but concave in s. Advertisement profits are concave for each

segment if

ν ′′(s)D(s)︸ ︷︷ ︸
<0

+2ν ′(s)D′(s)︸ ︷︷ ︸
<0

+ ν(s)D′′(s)︸ ︷︷ ︸
>0

< 0,

or if

ν(s)D′′(s) < − (ν ′′(s)D(s) + 2ν ′(s)D′(s)) (38)

The following assumptions guarantees an optimal solution for each case (a)-(d).

Assumption 3. Let s be such that for s = s: f(θl) = βl. Then,

ν(s)

ν ′(s)
> −

∑
k

∑
i f(θ

k
i )

∂
∑

k

∑
i f(θ

k
i )

∂s

∣∣
s=s

,

and

−ν ′′(s)

ν ′(s)
>

−f ′′f + 2f ′

f ′f

Then, if Equation 7 for each cases solves for an s that is in the range of each equi-
librium, an optimal solution exists. Note that due to the Assumption 2, both marginal
benefit and cost of advertisement always intersect at least at the origin. If ν(s)

ν′(s)
is ex-

tremely convex, i.e. ν(s) is extremely concave, then the optimal solution tends close to
zero.

If ν(s) is not sufficiently concave, then the optimal solution might be s > θ2l . In that
case, the optimal solution is a corner solution.
(f) Advertising intensity

The optimal advertising intensity is highest for the case in which the right-hand side
has the steepest increase. Take case (c) as a benchmark. The increase in (a) is steeper.
Case (b) is less steep than (c) if

s2 (βhθh − βhθl − βlθh + βlθl)

2θhθl (βhθh − βhθl + βlθl)
< 0

which holds for βh < βl, and is more steep if βh > βl.
The optimal advertising intensity is thus lowest for (b) if βh < βl and otherwise for

(c).
Under optimal advertisement level sA,∗, the platform prefers to implement
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(a) positive assortative matching for βh

βl
≤ θ2l −sA

θh(θh−θl)−sA
,

(b) weakly assortative matching for
θ2l −sA

θh(θh−θl)−sA
≤ βh

βl
≤ max{ θh(θh−θl)

θh(θh−θl)−sA
, (βh

βl
)′},

(c) non-assortative matching for max{ θh(θh−θl)
θh(θh−θl)−sA

, (βh

βl
)′} ≤ βh

βl
≤ θ2h−θ2l −sA

θh(θh−θl)−sA
,

(d) positive assortative matching for βh

βl
≥ θ2h−θ2l −sA

θh(θh−θl)−sA
.

Proof of Proposition 7 The search fees in each case are (a) s =
βlθ

2
l −βhθh(θh−θl)

βl−βh
and

implements the positive assortative matching outcome if

0 ≤ βh

βl

≤ θ2l
θh(θh − θl)

,

(b) s = ϵ > 0 and implements the weakly positive assortative matching outcome if

θ2l
θh(θh − θl)

≤ βh

βl

≤ 1,

(c) s = min
{

βh(θh(θh−θl)+βlθhθl)θl
βhθl+βlθh

,
βlθ

2
l −βhθh(θh−θl)

βl−βh

}
and implements the weakly positive

assortative matching outcome if

1 ≤ βh

βl

≤ βh

βl

′
(s),

(d) s = ϵ > 0 and implements the non-assortative matching outcome if

βh

βl

′
(s) ≤ βh

βl

≤ θ2h − θ2l
θh(θh − θl)

,

(e) s = ϵ > 0 and implements the positive assortative matching outcome if

θ2h − θ2l
θh(θh − θl)

≤ βh

βl

The optimal solution is the positive assortative matching outcome for βh

βl
≤ θ2l

θh(θh−θl)
.

At s =
βlθ

2
l −βhθh(θh−θl)

βl−βh
, both the incentive constraint for the high type and the participation

constraint for the low type are binding. The platform extracts the maximum rent from
agents. The platform earns θh(θh − θl) from high types and θ2l from low types. For

θ2l
θh(θh−θl)

≤ βh

βl
, the platform can no longer extract the maximum rent.
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From Lemma 4, it follows that for
θ2l −s

θh(θh−θl−s)
≤ βh

βl
≤ θ2h−s

θh(θh−θl)−s
, the platform wants to

implement the weakly positive assortative outcome. To implement the outcome, s must
be in

(θ2l − s)

θh(θh − θl)− s)
≤ βh

βl

≤ (θ2h − s)

θh(θh − θl)− s)
.

To ensure that the mutual acceptance probability and matching probabilities are between
zero and one.Rewriting the condition in terms of s, they become

max{0, βhθh(θh − θl)− βlθ
2
h

βh − βl

} ≤ s ≤ min{βhθh(θh − θl)− βlθ
2
l

βh − βl

,
βh(θh(θh − θl) + βlθhθl)θl

βhθl + βlθh
}

If
θ2l

θh(θh−θl)
< βh

βl
≤ 1, it follows from the proof of Proposition 6, that the profit is decreasing

in s. Therefore, the platform chooses s → 0. If βh

βl
≥ 1, the profit is increasing in s. The

platform chooses sWPAM = min{βhθh(θh−θl)−βlθ
2
l

βh−βl
, βh(θh(θh−θl)+βlθhθl)θl

βhθl+βlθh
}.

For max{ θh(θh−θl)
θh(θh−θl)−sWPAM , (βh

βl
)(sWPAM)′} ≤ βh

βl
≤ θ2h−θ2l

θh(θh−θl)
, the platform implements

the non-assortative matching outcome. The platform is indifferent between any s ∈ (0, s],
but prefers to increase the range of the equilibrium by setting s → 0.

For
θ2h−θ2l

θh(θh−θl)
≤ βh

βl
, the platform implements the positive assortative matching outcome.

The platform prefers to set s = min{θ2l ,
βhθh(θh−θl)−βlθ

2
l

βh−βl
}.

C. APPENDIX: TABLES
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Application App Price Subscriptions One-Time Purchases

Tinder Free
Tinder Gold (1 Week): $13.99− 18.99
Tinder Gold (1 Month): $14.99− 24.99
Tinder Plus (1 Month): $9.99

1 Boost: $3.99− 7.99
3 Super Likes: $9.99
5 Super Likes: $4.99

Bumble Free Bumble Premium (1 Year) $129.99− 169.99
5 Spotlights + Compliments $24.99− 29.99
15 Spotlights + Compliments $44.99− 59.99
30 Spotlights + Compliments $79.99− 99.99

Hinge Free

Hinge+ Subscription (1 Week): $16.99
Hinge Subscription (1 Month): $29.99− 34.99
Membership (1 Month): $19.99
Hinge Subscription (1 Week): $14.99
HingeX Subscription: $24.99

Bundle of three Roses: $9.99
Bundle of twelve Roses: $29.99
Boost: $9.99− 19.99

Match Free

Match (1 Month): $19.99− 42.99
Match (3 Months): $74.99
Match (6 Months): $129.99
Standard (1 Month): $44.99
Basic (1 Months): $44.99
Platinum (1 Week): $29.99

1 Top Spot: $2.99
Top Spot 10-Pack: $19.99
Boost 1-Pack: $5.99

Hily Free

Hily Premium (1 Week): $14.99
Profile boost (1 Week): $5.99− 9.99
Premium+ (1 Week): $24.99
Hily Elixir (1 Week): $19.99

1 Unblur: $4.99
5 Unblur: $12.99

Plenty of Fish Free
Upgrade (1 Month): $19.99
Upgrade (3 Months): $38.99
Premium Membership (1 Month): $29.99

1 Token: $1.99
5 Tokens: $8.99
10 Tokens: $17.99

Badoo Free
Badoo Premium (1 Week): $5.99− 8.99
Super Powers (1 Week): $2.99
Super Powers (1 Months): $11.99

Pack of 100 Credits: $1.99− 3.99

Coffee Meets Bagel Free

Premium (1 Month): $14.99− 34.99
Premium (3 Months): $74.99
Premium (6 Months): $71.99
Platinum (1 Month): $46.99
Platinum (3 Month): $99.99

200 Coffee Beans: $2.99
400 Coffee Beans: $4.99
3000 Coffee Beans: $24.99

Raya Free
Membership (1 Month): $24.99
Membership (6 Month): $113.99
Raya+ Membership: $49.99

30 Extra Likes: $10.99
Skip the Wait: $7.99
5 Skip the Waits: $29.99
1 Direct Request: $4.99
3 Direct Requests: $12.99
12 Direct Requests: $49.99

MeetMe Free
MeetMe (1 Month): $7.99
MeetMe (3 Months): $17.99
MeetMe+ (1 Month): $7.99

Pack of 200 Credits: $1.99
Pack of 500 Credits: $1.99− 4.99
Pack of 1800 Credits: $14.99
Pack of 14500 Credits: $99.99
Pack of 3200 Credits: $24.99

Table 1: A selection of dating apps in the US Apple Store
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Application App Price Subscriptions One-Time Purchases

Tinder Free
Tinder Gold (1 Week): 13, 99 e
Tinder Gold (1 Month): 8, 99− 27, 49 e
Tinder Platinum (1 Month): 32, 99 e

1 Boost: 7, 99− 9, 99 e
3 Super-Likes: 11,99 e
5 Super-Likes: 5, 99− 9, 99 e

Bumble Free
Bumble Premium (1 Week): 14, 99− 19, 99 e
Bumble Boost (1 Week): 5, 99− 6, 99 e
Bumble Premium (1 Month): 34, 99 e

Hinge Free
Hinge+ Sub (1 Week): 14, 99 e
Hinge+ Sub (1 Month): 24, 99 e
HingeX Sub (1 Week): 24, 99 e

Bundle of twelve Roses: 24, 99 e
Bundle of three Roses: 7, 99 e
One Superboost: 14, 99 e
One Boost: 7, 99 e

LOVOO Free Lovoo Premium (1 Month): 11, 99− 24, 99 e

300 Credits: 5, 99 e
500 Credits: 4, 99 e
550 Credits: 7, 99 e
3000 Credits: 19, 99 e
5 Icebreaker: 5, 99 e
Unbegrenzte Likes: 1, 19 e

Badoo Free
Badoo Premium (1 Week): 5, 99− 7, 99 e
Badoo Premium (1 Month): 19, 99 e

100 Badoo Credits: 1, 99− 4, 99 e
550 Badoo Credits: 12, 99 e
Super Powers (1 Woche): 2, 99 e
Super Powers (1 Monat): 8, 99 e
Super Powers (1 Woche): 2, 99 e

Parship Free
Premium lite (6 Month): 209, 99− 229, 99 e
Premium classic (1 Year): 224, 99− 499, 99 e
Premium Comfort: 249, 99 e

Parship Premium: 9,99 e

OkCupid Free
OkCupid Premium (1 Month): 15, 99− 32, 99 e
OKCupid Premium (3 Month): 65, 99 e

1 Boost: 1, 99− 7, 99 e
2 Superlikes: 7, 99 e

Raya Free
Membership (1 Month): 18, 99 e
Membership (6 Month): 83, 99 e
Raya+ Membership (1 Month): 44, 99 e

Skip the Wait 7, 99 e
3 Direct Requests 12, 99 e
1 Direct Request 4, 99 e
30 Extra Likes 10, 99 e
5 Skip the Waits 29, 99 e
1 Travel Plan 9, 99 e

LoveScout24 Free

Lovescout24 (1 Month): 39, 99 e
Mobile Plus (1 Month): 9, 99 e
Mobile Plus (1 Week): 4, 99 e
Lovescout24 (1 Week): 9, 99 e
Lovescout24 (3 Month): 89, 99 e

1 Booster: 1, 99 e
Wer sucht mich?: 1, 99 e
Boost: 1, 99 e
Dateroulette: 2, 99 e
Favouriten-Funk: 1, 99 e

ElitePartner Free

ElitePartner Premium Go: 3, 99− 19, 99 e
Premium plus (1 Year): 399, 99 e
Premium basic (6 Months): 279, 99 e
Premium comfort (2 years) : 599, 99 e

Table 2: A selection of dating apps in the German Apple Store
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App Name Price Contains Ads Prices of In-App Purchases Number of Installations

German Store
happn Free Yes 0.59− 274.99 e 100M+
Badoo Free Yes 0.39− 244.99 e 100M+
Tinder Free Yes 0.29− 324.99 e 100M+
SweetMeet Free Yes 0.59− 219.99 e 50M+
Bumble Free No 0.29− 314.99 e 50M+
BLOOM Free Yes 1.49− 299.00 e 10M+
OkCupid Free Yes 0.71− 194.99 e 10M+
Zoosk Free Yes 0.50− 434.99 e 10M+
Mamba Free Yes 0.50− 294.99 e 10M+
Boo Free Yes 0.46− 218.85 e 10M+

US Store
happn Free Yes $0.49− 224.99 100M+
Badoo Free Yes $0.49− 239.99 100M+
Tinder Free Yes $0.49− 299.99 100M+
SweetMeet Free Yes $0.99− 199.99 50M+
Bumble Free No $0.49− 259.99 50M+
BLOOM Free Yes $1.99− 349.00 10M+
OkCupid Free Yes $0.99− 179.99 10M+
Zoosk Free Yes $0.49− 399.99 10M+
Mamba Free Yes $0.99− 264.99 10M+
Boo Free Yes $1.00− 269.99 10M+

Table 3: Most Popular Dating Apps in the German and US Google Play Store

App Name App Price In-App Purchases Price Adds In-App Purchases No. of Downloads

US Apple Store US Android Store
LinkedIn Free Career (1 Month): $29, 99− 39, 99

Business (1 Month): $69, 99
Free Yes $7.49− 839.88 1B+

Indeed Free None Free Yes none 100M+
Glassdoor Free None Free No none 10M+
ZipRecruiter Free None Free No none 10M+
Monster Free None Free No none 5M+

German Apple Store German Android Store
LinkedIn Free Essentials (1 Month): 9, 99 e

Career (1 Month): 29, 99− 39, 99 e
Business (1 Month): 69, 99 e

Free Yes 7, 00− 839, 88 e 1B+

Indeed Free None Free Yes none 100M+
Glassdoor Free None Free Yes none 10M+
Stepstone Free None Free Yes none 10M+
Monster Free None Free Yes none 5M+

Costs for Recruiters
LinkedIn The standard account is free. Premium accounts cost between 40− 125 e/$ (See above)
Indeed There is an option for free listings. Costly adds are charged per click, with a minimum of 5 e/$ per day
Glassdoor No information
Monster Two Options: Monster+ Standard: Pay per Click and Monster+ Pro: 749e/$299 per month
Stepstone Multiple tiers: “Campus” 199 e,“Select”: 329e, “Pro”: 1399 e, Pro Plus: 1699 e, Pro Ultimate: 2399 e
Zip Recruiter Pricing depends on the number of job ads. Ads are charged per day and per add:“Standard”: $16, “Premium”: $24

Plans are charged per ad and per month: “Standard”: $299, “Premium”: $419, “Pro”: $719

Table 4: Job Platforms
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