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Abstract

We introduce a flexible and scalable method for solving discrete-time dynamic
incentive problems with heterogeneous agents and persistent types. Our framework
entails a generic and numerically tractable model reformulation that can be solved with
standard dynamic programming techniques. We propose to embed the recast problem
into a parallelized value function iteration algorithm, where high-dimensional and
nonlinear functions are efficiently approximated using Gaussian process regression in
combination with Bayesian active learning. This combination enables us to address
the previously intractable question to what extent risk heterogeneity causes adverse
selection in insurance markets, where the theoretical and empirical literature are at
odds. We posit and solve a dynamic adverse selection model with heterogeneous
agents and persistent types. Unlike the classical view, we find that the presence of
multiple agents with different risks has only a minimal effect on the payoff to the
principal, thereby explaining some discrepancies between theory and empirics.
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1 Introduction
Dynamic incentive problems are of key importance in model-based economics. They
occur whenever two parties form a contract with asymmetric information and encompass
applications such as manager remuneration, optimal taxation, and insurance contracts.2
One major cause that drives this asymmetry is heterogeneity, as preferences and risks
are generally only known to one contract party. The seminal work by Akerlof [1970],
for instance, predicts that heterogeneity in risk will adversely impact insurance markets.
The author argues that since insurance companies cannot screen for risks, higher risk
types increase insurance premia, thereby driving individuals with lower risk out of the
market. This finding is often used as a primary argument for governments to intervene in
insurance markets. In contrast, the empirical literature has failed to confirm model-implied
adverse selection due to risk in prominent settings such as health insurance markets (see,
e.g., Cardon and Hendel [2001] or Spinnewĳn [2017] and references therein).

One possible explanation for the discrepancy between theory and observation is that
combining key economic ingredients such as the persistence of hidden information, het-
erogeneity across market participants, and dynamics in a single model render it intractable
for conventional solution methods and therefore, these have been avoided from the out-
set.3 In consequence, the existing literature has relied on simplifying assumptions that
could create a significant wedge between models and their objectives. To take but one
example, insurance contracts are typically dynamic and not static, that is, the insurer
receives a steady flow of information about the insured’s risk type. Furthermore, the
type itself, such as an individual’s health condition, is often persistent,4 and heterogeneity
across market participants should also be taken into account (see, e.g., Spinnewĳn [2017]).
Therefore, to determine how, and to what extent, risk heterogeneity causes adverse selec-
tion, one needs to study dynamic problems with multiple risk types, persistent hidden
information, and subsequently compare the payoffs in the former setting with those of
a single risk type; a model setting for which neither analytical nor numerical solution
methods are generally available today.

In this article, we make progress on these issues by proposing a generic and scalable
computational framework based on machine learning that will enable researchers to solve
a wide variety of dynamic incentive problems that were previously considered to be out
of reach. We then use this framework to study a discrete-time dynamic adverse selection
model with persistent shocks and heterogeneous agents; a problem that, to the best of
our knowledge, has not been studied before despite its immanent relevance. We find

2See, e.g., Golosov et al. [2016] and references therein for a thorough review.
3Sandroni and Squintani [2007] for example study a static adverse selection model with heterogeneous

agents in the context of insurance, whereas Cicala et al. [2022] consider adverse selection as a policy
instrument in a climate-change question, thereby assuming that the contract is exogenous. Other work limits
the heterogeneity of the agents by restricting the number of hidden states to two [Mathevet et al., 2022] or
solely considers one dimension of heterogeneity by differentiating with respect to ability [Stantcheva, 2017].

4Previous research suggests that private information in the economic environments we are interested in
is highly persistent [see, e.g., Meghir and Pistaferri, 2004, Storesletten et al., 2004].
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that considering multiple agents with a hidden risk profile in a model only has a small
effect on the overall value of the contract, implying that, at least in the model we posit,
heterogeneity in risks fails to explain adverse selection, thereby confirming the findings
of the empirical literature [Cardon and Hendel, 2001] in a theoretical setting.

Two major bottlenecks create substantial difficulties in solving dynamic adverse selec-
tion problems with persistent hidden information and heterogeneous agents if existing
methods are applied. The first has to deal with the fact that models with repeated agency
require full history dependence [see, e.g., Lambert, 1983, Rogerson, 1985]. This, in turn,
leads to time-inconsistent dynamic programs. A way of formally dealing with this issue is
to introduce promised utilities as artificial state variables [Fernandes and Phelan, 2000]. This,
however, leads to a severe complication in practical applications: the feasible set becomes
endogenous to the problem, that is, it has to be computed as well. Abreu et al. [1986, 1990]
provide a constructive proof for the existence of the set of continuation payoffs. However,
it is, in general, unclear how to numerically represent this possibly multi-dimensional and
non-convex set explicitly. The second bottleneck has to deal with solving these models in
“reasonable” time as, for every individual type of agent added to the model, the dimen-
sionality of the (irregularly shaped, that is, non-hypercubic) feasible set increases. Thus,
if standard Cartesian grid-based value function iteration algorithms are applied in the
solution process, the computational effort and storage requirements grow exponentially
and render even models of only moderate complexity computationally intractable; an ef-
fect that is termed the curse of dimensionality [Bellman, 1961].5 Due to these complications,
the existing literature, therefore, is typically limited to two-dimensional models [see, e.g.,
Broer et al., 2017, Doepke and Townsend, 2006, Abraham and Pavoni, 2008], where the
curse of dimensionality is avoided from the outset.

In this article, we try to remedy these shortfalls. Specifically, our contribution is four-
fold. First, we introduce a reformulation of dynamic incentive problems that is numerically
easier to handle than the standard recursive formulation commonly used in the literature
(see, e.g., Fernandes and Phelan [2000], Golosov et al. [2016]). Concretely, we propose to
combine ideas from penalization methods that emerged in the constrained optimization
literature [Luenberger and Ye, 2008, Ch. 13] to relax the recursive formulation of the
models, thereby bypassing the difficult numerical task of performing set-valued dynamic
programming [Abreu et al., 1986, 1990] to characterize the feasible set. Our relaxation is
computationally tractable, as it can now be solved with standard value function iteration.
To show the validity of our approach, we provide a formal proof that it provides a solution

5There are two key computational challenges when a model is solved by iterating on a Bellman equation.
First, in each iteration step, value and policy functions need to be approximated. For this purpose, the
function values have to be determined at many points in the high-dimensional state space. Second, at each
point, one has to solve a high-dimensional maximization problem. These two important features of the
considered problems create difficulties in achieving a fast time-to-solution process. To see now the intuition
for the curse of dimensionality, consider the task of approximating a univariate value function by visiting
10 locations along the input state. Generalizing to 𝑑 states, this procedure requires visiting 𝒪(10𝑑) locations
in the 𝑑-dimensional state space and evaluating the function at all these locations. Even in a situation
where a single function evaluation is relatively inexpensive to compute, naively attempting to approximate
a high-dimensional function in this way can quickly become infeasible.
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to the original problem.
Second, and to the best of our knowledge, we are the first in quantitative economics

to solve recursively formulated dynamic incentive problems by applying a dynamic pro-
gramming algorithm that uses Gaussian process regression (GPR) [see, e.g., Rasmussen
and Williams, 2005] in conjunction with Bayesian active learning (BAL) [see, e.g., Deisen-
roth et al., 2009]—methods from the supervised and reinforcement machine learning lit-
erature6—to efficiently approximate high-dimensional value and policy functions within
the value function iteration. BAL is shown to be a crucial ingredient for the overall effi-
ciency of our algorithm, as it helps to alleviate the curse of dimensionality by focusing the
Gaussian process (GP) approximation on the equilibrium path, which is a portion of the
state space that is typically much smaller than the entire feasible set (see, e.g., Sannikov
[2022], and references therein for a general discussion). Thus, given a fixed computational
budget, BAL steers the solution process so that the quality of the approximated function
is highest where it matters the most, along simulated paths within the feasible set. In
addition, to reduce the time-to-solution potentially by orders of magnitude, we propose
and implement a parallelization scheme for dynamic incentive problems that allows the
efficient use of contemporary high-performance computing hardware. This combination
allows us to solve challenging problems with many state variables in a relatively short
amount of time and to tackle problems that have, thus far, been insurmountable.

Third, we apply our computational framework to the dynamic adverse selection model
by Fernandes and Phelan [2000] as a verification test for our method as, for their two-
dimensional baseline setting, the approximate numerical solutions are known and the
results can be compared. Furthermore, since the models we study no longer have analytical
solutions, but have to be determined iteratively, the final ingredients for our framework are
measures to assess the credibility and correctness of our computational results. To do so,
we follow the best practices in a sub-field of computational sciences called validate, verify,
and uncertainty quantification (VVUQ; see, e.g., Oberkampf and Roy [2010], and references
therein), and propose to use two particular error criteria jointly.

Fourth, to study the central question of this article, that is, how heterogeneity in risk
across agents affects adverse selection in insurance markets, we posit and solve a styl-
ized dynamic adverse selection model with heterogeneous agents that builds on Fer-
nandes and Phelan [2000].7 We find that considering multiple risk types in a dy-
namic adverse selection model only minimally impacts the overall value of the con-
tract. Thus, the reduction in profitability for the principal is low. Consequently, she
still would offer a contract to the agents, even if there is more than one risk type present.

6Appendix A provides a short glossary of terms that we use in this paper and that are common in the
machine learning literature. In addition, we try to relate the machine learning terminology to the terms
commonly used in economics.

7Note that the method proposed in this paper has a far broader scope: it could as well be applied, for
example, to moral hazard problems or dynamic games, where one of the major difficulties also lies in finding
the equilibrium sets [see, e.g., Wang, 1995, Judd et al., 2003]. For discrete actions and lotteries over payoffs,
the correspondences are convex valued. However, for other assumptions, they are not, which demands a
more general approach such as that proposed in this paper.
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This finding implies that risk heterogeneity cannot explain adverse selection, at least
within the model setup under consideration, in conformity with the empirical litera-
ture. Finally, code examples that illustrate our methodology are provided at https:
//github.com/GaussianProcessesForDynamicEcon/DynamicIncentiveProblems.

The remainder of this article is organized as follows. In Sec. 2, we review the related
literature. Next, we outline in Sec. 3 the dynamic adverse selection model with hetero-
geneous agents and history-dependent shocks we intend to study. Section 4 introduces
our generic solution framework and discusses its computational advantages relative to
other existing methods. To study how heterogeneity in risk across agents affects adverse
selection in insurance markets, we discuss in Sec. 5 the solutions to a heterogeneous agent
model with multiple types. Finally, section 6 concludes.

2 Related Literature
Previous research extensively studied various approaches to make dynamic incentive
models formally tractable.8 However, the numerical treatment of the said models has
often been tailored to specific instances, and consequently, many problem formulations
remain intractable. Being numerically substantially restricted is an unfortunate situation
since additional state variables are frequently required to address the questions of inter-
est. Kocherlakota [2005], when solving an optimal taxation model, states that “It would be
desirable to use an infinite horizon example as in Albanesi and Sleet [2006]. However, to answer
the questions of interest, the example would have to include aggregate shocks, persistent hidden
state variables, and probably should allow for endogenous physical state variables. At a conceptual
level, it is known how to attack problems of this kind, thanks to the work of Fernandes and Phelan
[2000] and Doepke and Townsend [2006]. Practically, it is still impossible to implement their
procedures in an example that includes the elements of interest.” With the work presented in
this paper, we intend to complement the formal approaches by providing a generic and
scalable computational framework that also renders them computationally operational.

The seminal work by Abreu et al. [1986, 1990] (henceforth APS) introduced a con-
structive procedure for computing feasible sets. In particular, the authors showed that
there exists a monotone set-valued operator whose fixed point is the feasible set, similar
to the Bellman operator in dynamic programming. In practical applications, one has to
repeatedly approximate non-convex equilibrium correspondences with some numerical
technique before the model at hand can be solved recursively. Judd et al. [2003] and Yel-
tekin et al. [2017], for example, provide a numerical scheme for determining the feasible
sets of discrete state supergames by using polygons. Their approach, however, relies on
the convexification of the payoff set and suffers from the curse of dimensionality. Sleet

8For an incomplete list of research in discrete-time settings, see, e.g., Spear and Srivastava [1987], Fer-
nandes and Phelan [2000], Cole and Kocherlakota [2001], Werning [2002], Doepke and Townsend [2006],
Abraham and Pavoni [2008], Mele [2014], Pavoni et al. [2017], Kapička [2013], Pavan et al. [2014], and for
models in continuous time, see, e.g., DeMarzo and Sannikov [2006], Sannikov [2008], Williams [2009, 2011],
He et al. [2017].
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and Yeltekin [2016] provide an extension to this method for the case of continuous state
variables, but their extension has the same issues. Abreu and Sannikov [2014] provide
methods for computing feasible sets in discrete state, two-player games that are restricted
to convex sets and also suffer from the curse of dimensionality. Abreu et al. [2020] extend
the former work by exploiting the difference between bounding and slack incentive con-
straints to speed up the convergence of the algorithm. Unfortunately, their approach relies
on polytopes and thus will only function in higher dimensions for specific cases. In con-
trast, the approach we propose has several desirable features that lift the aforementioned
issues. First, our reformulation of dynamic incentive problems completely bypasses the
need to pre-determine the feasible set by introducing slack variables invoked in the re-
gions of the computational domain where the problem otherwise would be infeasible,
turning the task of solving it into one of dealing with an ordinary dynamic programming
problem [Stokey et al., 1989a]. Second, our computational framework alleviates the curse
of dimensionality and, therefore, can deal with problems involving many types as well
as other additional state variables if needed. Third, it can handle problems with both
convex and non-convex feasible sets. Moreover, the approximate feasible set can still be
determined if needed via information that is implicitly available. For instance, the slack
variables are approximated over the entire computational domain with GPR. If the latter
are non-zero, we know that a location in the state space can be deemed infeasible.

Several authors have proposed alternatives to Fernandes and Phelan [2000] for formally
dealing with dynamic incentive problems. Marcet and Marimon [2019], for example, look
at a planner’s problem with forward-looking constraints. In particular, they introduce
Lagrange multipliers as state variables, which then leads to a recursive saddle point prob-
lem. As a result, they can avoid the procedure of finding a feasible set. Pavoni et al. [2017]
recently extended the approach by Marcet and Marimon [2019] towards more general
constraints. Their state space is the positive orthant. Mele [2014] extends the Lagrange
multiplier approach to also include hidden actions. However, for all the recursive formula-
tions by Marcet and Marimon [2019], Pavoni et al. [2017], and Mele [2014], the state space is
non-compact. Thus, it is impossible to apply standard numerical dynamic programming
techniques [see, e.g., Judd, 1998] because the latter require a compact domain [Stokey
et al., 1989a]. Kapička [2013] and Pavan et al. [2014] take a different route by looking at
a continuum of types. They use a first-order approach to consider a relaxed problem,
that is, a simplified version of the optimization problem, where one has to track utility
promise and marginal utility alongside the physical state variables. They both impose
strong assumptions on the distribution of the hidden information to ensure that their
approach is potentially valid and also requires ex-post verification of any results. As in
the case of finitely many types, one does not know what promises are feasible a priori, and
thus it is necessary to first determine the feasible set. To make the first-order approach
numerical tractable, Kapička [2013] uses additional assumptions to reduce the model to a
two-dimensional version, whereas Pavan et al. [2014] consider the problem from a purely
analytical perspective. However, the first-order approach is unsuitable for dealing with
multi-dimensional heterogeneity due to its stringent assumptions on the distribution.
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Concretely, applying this method permits considering, for instance, continuous shocks to
income, but not additionally including different risk types because of the said restrictions.
In contrast, in a setting with discrete states, enriching a model with more heterogeneity is
straightforward as one simply can add more types, which in turn increases the dimension-
ality of the problem. Furthermore, Battaglini and Lamba [2019] showed that the first-order
approach is generically invalid, meaning that for most assumptions on preferences and
distributions, the first-order approach fails. Independently of these issues, models with
one single continuous type still have an irregularly-shaped state space of at least three
dimensions and, therefore, can benefit from our complementary computational approach
if reformulated accordingly.

Once a dynamic incentive problem is reformulated as proposed in this article, one
has to compute global solutions9 to the recursively formulated dynamic adverse selection
model. For this purpose, we introduce a parallelized discrete-time dynamic program-
ming algorithm that uses GPR to approximate the value and policy functions, and that
distributes the workload by using distributed memory parallelism [see, e.g., Skjellum
et al., 1999]. Moreover, to focus the observations where needed most, we augment the set
of data over which GPs are fitted by applying BAL [see, e.g., Krause and Guestrin, 2007].
This measure substantially increases the efficiency of approximating functions using GPR
with high precision with as few observations as possible. GPR is a form of supervised ma-
chine learning that has successfully been utilized in various applications in data science,
engineering, and other fields to perform approximation and classification tasks. Early
work consists of Engel et al. [2003], who apply GPs in the context of reinforcement learn-
ing to study a two-dimensional maze in order. Deisenroth et al. [2009] use GPs and BAL to
approximate value and policy functions in finite-horizon control problems in low dimen-
sions to study pendulum swing. Berkenkamp et al. [2016] use GPs in the context of safe
controller optimization for quadrotors. Busoniu et al. [2010] provide a textbook treatment
of reinforcement learning with kernel-based function approximators. In economics, Schei-
degger and Bilionis [2019] applied GPs to solve dynamic stochastic growth models and
to perform uncertainty quantification, whereas Kotlikoff et al. [2021] embed parts of the
methodology presented in this article into a time iteration algorithm [Judd, 1998] to study
overlapping generation models in the context of climate change. We complement and
extend this prior work in economics by proposing to combine GPs with BAL to mitigate
the curse of dimensionality efficiently and to solve dynamic adverse selection models with
a substantial degree of heterogeneity. A defining feature of GPs is that they learn, that is,
approximate a function in a non-parametric fashion based on the observations available at
so-called design points, and do so without any geometric restriction. Thus, GPs stand in
stark contrast to ordinary, grid-based approximation schemes for high-dimensional state

9Below, we follow Brumm and Scheidegger [2017] and use the term “global solution” for a solution
that is computed using equilibrium conditions at many points in the state space of a dynamic model—in
contrast to a “local solution”, which rests on a local approximation around a steady state of the model as,
for example, perturbation methods do. For a method that computes such a global solution, we use the term
“global solution method”. This use of the word “global” is not to be confused with its use in the phrase
“global optimization method”.
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spaces such as Smolyak’s method [see, e.g., Krueger and Kubler, 2004b, Judd et al., 2014,
Fernández-Villaverde et al., 2015], adaptive sparse grids (see, e.g., Brumm and Scheidegger
[2017], Brumm et al. [2022], and references therein), high-dimensional model represen-
tation [see, e.g., Eftekhari and Scheidegger, 2022], or projection methods [see, e.g., Judd,
1992]. These grid-based approximators are restricted to hyper-rectangular state spaces
and thus are not a natural modeling choice in the context of solving dynamic adverse
selection models.

Empirical research (see, e.g., Cardon and Hendel [2001]) so far has failed to confirm ad-
verse selection due to risk in the insurance industry as theoretically predicted by Akerlof
[1970]. Thus, researchers have looked for various other sources of heterogeneity such as
differences in preferences [Cohen and Einav, 2007] or demand frictions [Spinnewĳn, 2017]
that could drive adverse selection. There is growing evidence that multiple dimensions of
heterogeneity are relevant to studying the insurance market (see Finkelstein and McGarry
[2006], Cohen and Einav [2007], and Fang et al. [2008]). In contrast, models that are typi-
cally used in empirical research avoid considering endogenous contracts from the outset,
and those studies that do have no hidden information in a dynamic context. Azevedo and
Gottlieb [2017] for instance point to this limitation by stating that “However, they restrict
consumers to be heterogeneous along a single dimension, despite evidence on the importance of mul-
tiple dimensions of private information”. Our proposed method can be viewed as a potential
tool to bridge this gap. Since our framework is capable of dealing with model settings
richer than previously considered in the literature, it can help researchers to remove the
“straight jacket” imposed by the the present computational restrictions.

3 Dynamic Incentive Problems with Heterogeneous Agents
This section posits an adverse selection model with heterogeneous agents and persistent
types. To do so, we first introduce in Sec. 3.1 an infinitely repeated, dynamic adverse
selection problem in its most general form. This benchmark model is relatively easy to
explain. In addition, it can be scaled up in a straightforward and meaningful way to a
setting with heterogeneous agents. Second, we generalize this benchmark in Sec. 3.2 to
a stylized heterogeneous agents model, which is sufficiently rich to study the extent to
which hidden information causes adverse selection in a dynamic context.

3.1 A Baseline Dynamic Incentive Model
Throughout this paper we consider infinite-horizon, discrete-time economies, where 𝑡
represents the current period.10 It consists of a risk-averse agent with unobserved, persis-
tent taste shocks and a risk-neutral planner who provides optimal, incentive-compatible
insurance against taste shocks. The agent reports his type to the principal who then trans-

10We follow the concise notation by Golosov et al. [2016] in describing the general setting of Fernandes
and Phelan [2000].
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fers consumption to the agent dependent on the report. Since the principal can only see
the reports, the observed shock process is fully history-dependent.

More formally, we assume that the principal and the agent have the same discount
factor 𝛽 ∈ (0, 1). Furthermore, the agent receives an idiosyncratic taste shock 𝜃𝑡 ∈ Θ ⊂ R
in period 𝑡, and𝑈 : 𝐶×Θ → Rwith 𝐶 ⊂ R is his utility function. The set Θ of taste shocks
is discrete and finite with cardinality |Θ |. For the ease of exposition, we assume that Θ
has |Θ | = 𝑚 elements. To ensure the compactness of the resulting dynamic programming
problem’s state space, we also assume that the set of feasible consumption is a closed and
bounded interval 𝐶 = [𝑐, 𝑐] for some 𝑐, 𝑐 ∈ R.

The idiosyncratic shocks are stochastic, and the history of shocks is denoted by: 𝜃𝑡 =
(𝜃1, . . . , 𝜃𝑡) ∈

∏𝑡
𝑖=1 Θ = Θ𝑡 . 𝜋𝑡(𝜃𝑡) denotes the probability of realization of the history 𝜃𝑡 .

The agent learns his type at the beginning of period 𝑡 and therefore has the information 𝜃𝑡

to condition her decisions on. The idiosyncratic shock 𝜃𝑡 depends only on the prior
realization 𝜃𝑡−1 and therefore evolves following a first-order Markov process:

𝜋𝑡
(
𝜃𝑡 |𝜃𝑡−1

)
= 𝜋 (𝜃𝑡 |𝜃𝑡−1) ,∀𝜃𝑡−1 ∈ Θ𝑡−1, 𝜃𝑡 ∈ Θ. (1)

Consequently,𝜋𝑡(𝜃𝑡 | 𝜃𝑠) for 𝑡 > 𝑠 denotes the probability that we observe 𝜃𝑡 given history
𝜃𝑠 . We set 𝜋𝑡(𝜃𝑡 | 𝜃𝑠) = 0 if 𝜃𝑠 is not identical to the first 𝑠 components of 𝜃𝑡 . Finally, we
sort Θ in ascending order and enumerate it, that is, Θ = {𝜃(1), . . . , 𝜃(𝑚)} with 𝜃(𝑖) < 𝜃(𝑖+1).

The principal, chooses consumption allocations 𝑐𝑡 : Θ𝑡 → 𝐶. Below, we use the
shorthand notation 𝑐 to denote

{
𝑐𝑡

(
𝜃𝑡

)}
𝑡≥1,𝜃𝑡∈Θ𝑡 . The agent’s period zero utility can now

be written as

𝑈0(𝑐) ≡ E0

[ ∞∑
𝑡=1

𝛽𝑡−1𝑈 (𝑐𝑡 , 𝜃𝑡)
]
=

∞∑
𝑡=1

∑
𝜃′∈Θ𝑡

𝛽𝑡−1𝜋𝑡
(
𝜃𝑡

)
𝑈

(
𝑐𝑡

(
𝜃𝑡

)
, 𝜃𝑡

)
, (2)

where E0 is the ex-ante, “period-0” expectation before the initial shock 𝜃1 was realized.
Note that the principal does not observe the taste shock 𝜃𝑡 . Thus, he relies on reports

from the agent. The agent’s reporting strategy in time period 𝑡 is given by �̃�𝑡 : Θ𝑡 → Θ,
and the principal chooses an allocation rule dependent on these reports 𝑐𝑡 : Θ𝑡 → 𝐶.
Following the literature, we define �̃� =

{
�̃�𝑡

(
𝜃𝑡

)}
𝑡≥1,𝜃𝑡∈Θ𝑡 and 𝑐 =

{
𝑐𝑡

(
�̂�𝑡

)}
𝑡≥1,�̂�𝑡∈Θ𝑡

. Taken
together, they induce a measure over the consumption path, which is denoted as 𝑐 ◦ �̃�. We
call �̃� incentive-compatible if

E𝑐◦�̃�

[ ∞∑
𝑡=1

𝛽𝑡−1𝑈 (𝑐𝑡 , 𝜃𝑡)
]
− E𝑐◦�̃�′

[ ∞∑
𝑡=1

𝛽𝑡−1𝑈 (𝑐𝑡 , 𝜃𝑡)
]
≥ 0, for all strategies �̃�′, (3)

where E𝑐◦�̃� is the expectation with respect to the measure 𝑐 ◦ �̃�. In particular, if a reporting
strategy is incentive-compatible there is no deviation that improves the agent’s payoff.

A critical insight necessary for analyzing the contracting environments we are inter-
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ested in is the revelation principle (see, e.g., Golosov et al. [2016, Th. 1], and references
therein). It states that for any incentive-compatible allocation, there is an incentive-
compatible allocation with the same consumption path where the agent only reports
truthfully. Thus, without loss of generality, we only consider a truth-telling agent and
consequently replace Eq. (3) by

∞∑
𝑡=1

∑
𝜃𝑡∈Θ𝑡

𝛽𝑡−1𝜋𝑡
(
𝜃𝑡

) [
𝑈

(
𝑐𝑡

(
𝜃𝑡

)
, 𝜃𝑡

)
−𝑈

(
𝑐𝑡

(
𝜎′𝑡

(
𝜃𝑡

) )
, 𝜃𝑡

) ]
≥ 0 ∀𝜎′. (4)

This constraint ensures that truth-telling is incentive-compatible and therefore preferred
over lying. The agent has a reservation utility that yields a utility amount 𝑈 . As a direct
consequence, the principal has to offer more than the reservation utility, that is,

𝑈0(𝑐) ≥ 𝑈. (5)

We assume that the principal’s preferences are given by the utility function 𝑣 : R×Θ →
R. Thus, she solves the following optimization problem:

𝑉(𝑈) ≡ sup
𝑐

∞∑
𝑡=1

∑
𝜃𝑡∈Θ𝑡

𝛽𝑡−1𝜋𝑡
(
𝜃𝑡

)
𝑣
(
𝑐𝑡

(
𝜃𝑡

)
, 𝜃𝑡

)
subject to Eqs. (4), (5).

(6)

However, even after all these simplifications, the dynamic adverse selection problem
under consideration is still intractable in its present form because it is a time-inconsistent
dynamic programming problem. Its solution depends on time 𝑡 and thus has no recursive
formulation “as is”. To obtain a time consistent problem, we follow the literature and
introduce promise utility vectors (�̂�(𝜃(1)), . . . , �̂�(𝜃(𝑚))) ∈ R𝑚 as auxiliary state variables.
At each point in time, they represent the utility levels that each type of agent will receive
in the form of direct transfers and promises for future payments. This is sufficient [see,
e.g., Golosov et al., 2016, Sec. 2.5] to obtain a recursive formulation.

In the next step, we introduce the auxiliary variable 𝑤(�̂� |𝜃) to be the utility promise
if �̂� is reported, but 𝜃 actually happened. Written in a recursive form, we then obtain a
new constraint called the promise-keeping constraint. It ensures that the utility promises
�̂�
(
𝜃(1)

)
, . . . , �̂�

(
𝜃(𝑚)

)
that were made in the previous period are fulfilled by a combination

of payments in the current period and future promises, that is,

�̂�
(
𝜃(𝑗)

)
=

∑
𝜃∈Θ

𝜋
(
𝜃 |𝜃(𝑗)

)
[𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃)], ∀𝑗 ∈ {1, . . . , 𝑚}. (7)

The incentive compatibility constraint turns into

𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃) ≥ 𝑈(𝑐(�̂�), 𝜃) + 𝛽𝑤(�̂� |𝜃), ∀𝜃, �̂� ∈ Θ, (8)
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which ensures that one-shot deviations from the truth-telling path are excluded. This
condition is sufficient to ensure that the agent reports truthfully throughout.

Next, we need to establish that there is a state space 𝒱 such that for any �̂� ∈ 𝒱, there
is a 𝑤(𝜃 |·) ∈ �̃� that satisfies the promise-keeping (cf. Eq. (7)) and incentive constraints
(cf. Eq. (8)). Following Abreu et al. [1986, 1990], we define a set-valued mapping as

𝒜�̃� =

{
�̂�(·) ∈ R𝑚 |

�̂�
(
𝜃(𝑗)

)
=

∑
𝜃∈Θ

𝜋
(
𝜃 |𝜃(𝑗)

)
[𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃)], 𝑗 = 1, . . . , 𝑚

𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃) ≥ 𝑈(𝑐(�̂�), 𝜃) + 𝛽𝑤(�̂� |𝜃), ∀𝜃, �̂� ∈ Θ

𝑐(𝜃) ∈ 𝐶, 𝑤(𝜃 |·) ∈ �̃� , ∀𝜃 ∈ Θ
}
.

(9)

From Abreu et al. [1986, 1990] and Golosov et al. [2016, Prop. 8], it is known that there exists
a set-valued fixpoint 𝒱, that is, 𝒱 = 𝒜𝒱. This set is the domain of our recursive dynamic
programming problem’s value function, and can be of irregular, that is, non-hypercubic
geometry, and high-dimensional.11

In sum, the recursive formulation for the value function 𝐾(·, ·) of the dynamic incentive
problem now reads as follows:

𝐾 (�̂�(·), 𝜃−) = max
{𝑐(𝜃),𝑤(𝜃 |·)}𝜃∈Θ

∑
𝜃∈Θ

𝜋 (𝜃 |𝜃−) [𝑣(𝑐(𝜃), 𝜃−) + 𝛽𝐾(𝑤(𝜃 |·), 𝜃)]

�̂�
(
𝜃(𝑗)

)
=

∑
𝜃∈Θ

𝜋
(
𝜃 |𝜃(𝑗)

)
[𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃)], 𝑗 = 1, . . . , 𝑚

𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃) ≥ 𝑈(𝑐(�̂�), 𝜃) + 𝛽𝑤(�̂� |𝜃), ∀𝜃, �̂� ∈ Θ

𝑐(𝜃) ∈ 𝐶, 𝑤(𝜃 |·) ∈ 𝒱 , ∀𝜃 ∈ Θ,

(10)

where 𝜃− denotes the current discrete shock. Moreover, the state space is given by 𝒱×Θ,
and 𝑣 denotes the principal’s utility. Note that this problem no longer depends on the
time 𝑡. However, as can be seen in Eq. (10), we still have the unknown set 𝒱 as part of
the constraints. More precisely, the issue is that the auxiliary problem stated in Eq. (10)
contains promise utilities that are absent in the original formulation given in Eq. (6).
Therefore, we describe in the following how to obtain the solution to the original problem
from the solution to the auxiliary problem. Given a seed type 𝜃0 for the Markov chain, we
pick a state in 𝒱 that maximizes the value function, that is,

𝑣𝑚𝑎𝑥 ∈ arg max
�̂�∈𝒱

𝐾(�̂� , 𝜃0). (11)

11For notational simplicity, we describe here a problem where the feasible set does not change depending
on the taste shock. However, our methodology is not limited to this setting: if there are constraints that
depend on the current shock 𝜃–as in the model Fernandes and Phelan [2000] that we consider in our
numerical experiments below–so will the feasible set. In such situations, we will denote a feasible set that
depends on the shock as 𝒱(𝜃).
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Then, given the sequence of shock realizations 𝜃0, 𝜃1, 𝜃2, . . ., the principal’s optimal policy
is recursively defined by setting initially

�̂�0 = 𝑣𝑚𝑎𝑥 ,

𝑐1 = 𝑐(𝜃1),
�̂�1 = 𝑤(𝜃1 |·),

(12)

where 𝑐(𝜃1) and 𝑤(𝜃1 |·) are the optimal solutions to Eq. (10) given a state (�̂�0, 𝜃0). Thus,
at time 𝑡 = 1, we solve problem (10) with the state (�̂�1, 𝜃1), and again define

𝑐2 = 𝑐(𝜃2),
�̂�2 = 𝑤(𝜃2 |·).

(13)

Proceeding in an iterative fashion yields a sequence of consumption transfers 𝑐1, 𝑐2, . . .,
which then are an optimal solution to Eq. (6).

3.2 A Stylized Adverse Selection Model with Heterogeneous Agents
To study the question to what degree heterogeneity in risk drives adverse selection in
insurance markets, we now posit a stylized model with heterogeneous agents and multiple
persistent types per agent, thereby building on the environment outlined in Sec. 3.1.
Since the benchmark model discussed above can be scaled up in a straightforward and
meaningful way, only minimal notational and conceptional extensions are required. For
the explicit parameterization of the model presented here, we refer the reader to Sec. 5.1.

We consider again a discrete-time economy with 𝑛 agents of 𝑚𝑖 different shocks per
agent 𝑖. The agents are further differentiated by their preferences and risk profile. That is,
let𝑈𝑖 and Π(𝑖) denote the utilities and individual Markov transition matrices, respectively.
The agents are fully aware of their type. In addition, we assume that the principal cannot
identify the agent type and thus has to rely on incentive mechanisms to elicit the correct
type. Therefore, the principal has to offer a contract for each type of agent to incentivize
them to report their types truthfully. Consequently,

∑
𝑖 𝑚𝑖 different contracts are offered,

and the agents self-select the contract corresponding to their risk type and current shock.
Due to the one-shot deviation principle (cf. Sec. 3.1), it is not possible to trivially

reduce the complexity of the problem by simply considering each agent separately: The
principal has to simultaneously keep track of all agent types to ensure truthful reporting
(cf. Eq. (8)), since the truthful report always has to dominate the false report. Thus, the
resulting dynamic adverse selection problem is

∑
𝑖 𝑚𝑖–dimensional, with a feasible set

𝒱 ⊂ R
∑
𝑖 𝑚𝑖 that grows exponentially with the number of agents and respective types, and

that can again can be of irregular geometry.
Let Π(i) = 𝜋(𝜃(𝑖)

𝑘
|𝜃(𝑖)
𝑙
)𝑘=1,...,𝑚𝑖 ,𝑙=1,...,𝑚𝑖

denote the𝑚𝑖×𝑚𝑖 transition matrix of an individual
agent 𝑖 (cf. Eq. (1)), that is, each agent follows a first-order Markov process. It is now
straightforward to generalize this setting to 𝑛 agents by assembling the transition matrices

12

Electronic copy available at: https://ssrn.com/abstract=3282487



Π(i) from the individual agents into one single matrix as follows:

Π =


Π(1) 0 · · · 0

0 Π(2)
...

. . .

0 Π(n)


. (14)

With this setup, we assume to model 𝑛 distinct agents, with no transition from one to the
other. It would be simple for our method to consider the more general case where an agent
can transition to other risk types. However, such an extension would, for our purposes,
just unnecessarily complicate the problem as it would render a comparison across agents
more difficult.

With these notational extensions at hand, the recursive model formulation of a multi-
agent problem follows from the single-agent setup:

𝐾
(
�̂� (·) , 𝜃(𝑖)

−

)
= max{

𝑐
(
𝜃(𝑙)
(𝑘)

)
,𝑤

(
𝜃(𝑙)
(𝑘) |·

)} 𝑚𝑖∑
𝑗=1

𝜋
(
𝜃(𝑖)
(𝑗) |𝜃

(𝑖)
−

) [
𝑣
(
𝑐
(
𝜃(𝑖)
(𝑗)

)
, 𝜃(𝑖)

−

)
+ 𝛽𝐾

(
𝑤

(
𝜃(𝑖)
(𝑗) |·

)
, 𝜃(𝑖)

(𝑗)

)]
�̂�
(
𝜃(𝑙)
(𝑘)

)
=

𝑚𝑙∑
𝑗=1

𝜋
(
𝜃(𝑙)
(𝑗) |𝜃

(𝑙)
(𝑘)

) [
𝑈𝑖

(
𝑐
(
𝜃(𝑙)
(𝑗)

)
, 𝜃(𝑙)

(𝑗)

)
+ 𝛽𝑤

(
𝜃(𝑙)
(𝑗) |𝜃

(𝑙)
(𝑗)

)]
, ∀𝑙 , 𝑘

𝑈𝑖

(
𝑐
(
𝜃(𝑙)
(𝑘)

)
, 𝜃(𝑙)

(𝑘)

)
+ 𝛽𝑤

(
𝜃(𝑙)
(𝑘) |𝜃

(𝑙)
(𝑘)

)
≥ 𝑈𝑖

(
𝑐
(
𝜃
(𝑞)
(𝑝)

)
, 𝜃(𝑙)

(𝑘)

)
+ 𝛽𝑤

(
𝜃
(𝑞)
(𝑝) |𝜃

(𝑙)
(𝑘)

)
, ∀𝑙 , 𝑘, 𝑝, 𝑞

𝑐
(
𝜃(𝑙)
(𝑘)

)
∈ 𝐶, 𝑤

(
𝜃(𝑙)
(𝑘) |·

)
∈ 𝒱 , ∀𝑙 , 𝑘

(15)

In analogy to the single-agent model (cf. Eq. (10)), any solution to problem (15) will
have the property that agents will truthfully report their type and shock at any time. In
particular, every agent will choose the contract corresponding to his type.

Solving a model with increasingly many agents and persistent shocks becomes a chal-
lenging endeavor due to the curse of dimensionality. Thus, an efficient solution technique
that complements the research question by rendering it numerically tractable becomes
crucial. Thus, in the following, we present a novel solution framework that can handle
these types of models.

4 Dynamic programming using Gaussian Processes
This section introduces a generic computational framework to solve dynamic incentive
problems with multiple agents, persistent shocks, and potential non-linearities in the
value and policy functions. Solving such models computationally is a formidable task
since we have to deal with a variety of complex issues at the same time: First, we have

13

Electronic copy available at: https://ssrn.com/abstract=3282487



to deal with the feasible sets of utility promises. In most of the interesting cases, such
sets have a non-trivial, that is, a non–hypercubic geometry [see, e.g., Fernandes and
Phelan, 2000, Broer et al., 2017]. Second, we have to solve a dynamic incentive problem
recursively, for example, with value function iteration [see, e.g., Judd, 1998, Ljungqvist
and Sargent, 2000]. Thus, we need to repeatedly approximate and evaluate potentially
high-dimensional functions at arbitrary coordinates on the entire computational domain.
To meet all these challenging modeling demands, we propose to combine ideas from
penalization methods that emerged in the constrained optimization literature [Luenberger
and Ye, 2008, Ch. 13] to relax the recursive formulation of the models, thereby bypassing
the difficult numerical task of performing set-valued dynamic programming techniques
to characterize the irregularly shaped equilibrium value correspondence (cf. Sec. 2, and
references therein). This relaxed problem can then be solved with standard value function
iteration techniques that apply to compact sets. The methodological novelty we propose
in the context of the presented models is to use GPR in combination with BAL in each
iteration step to efficiently approximate the value function and, if needed, the policy
functions on the potentially high-dimensional state space.

We now outline our proposed global solution method in six distinct steps. We first
characterize in Sec. 4.1 the formal structure of the models our method will be able to
tackle and also point out which computational challenges arise. Next, we provide in
Sec. 4.2 a brief introduction to GPs, and how they can be used to approximate and in-
terpolate multi-dimensional functions. Subsequently, Sec. 4.3 introduces BAL, a method
from reinforcement machine learning that can strategically determine the locations in the
state space where functions have to be evaluated (e.g., by solving Bellman equations) to
maximize the quality of the GP function approximation with as few points as possible.
Sec. 4.4 introduces a numerically tractable reformulation of the dynamic adverse selection
models described in Sec. 3 such that they can be solved solely with value function iter-
ation, thereby bypassing the need to explicitly determine the endogenous state space of
promise utilities via applying the APS algorithm [Abreu et al., 1986, 1990]. Sec. 4.5 com-
bines all ingredients in a comprehensive value function iteration framework for solving
dynamic incentive problems. Finally, we solve in Sec. 4.6 the original model by Fernandes
and Phelan [2000] as a basic verification test for our method, given that the solutions for
their two-dimensional baseline setting are known. Moreover, Appendix B provides sup-
plementary materials discussing some computational bottlenecks of GPs, and how they
can be lifted. Appendix C presents a brief overview of the parallelization scheme of our
value function iteration algorithm, which can accelerate the time-to-solution by orders of
magnitude if the appropriate hardware is available.

4.1 Abstract Problem Formulation & Value Function Iteration
Recall that throughout this paper the abstract class of models we consider are discrete-time,
infinite-horizon stochastic optimal decision-making problems. We briefly characterize
them here by the subsequent general description: let 𝑥𝑡 ∈ ℬ ⊂ R𝑑 denote the state of the
economy at time 𝑡 ∈ N+ of dimensionality 𝑑 ∈ N. Controls (actions) are represented by a
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policy function 𝜐 : ℬ → 𝜁, where 𝜁 ⊂ R𝑑𝑐 is the space of possible controls. The discrete-time
transition function of the economy from one period to the next is given by some distribution
𝜋, which depends on the current state and policies, that is, 𝑥𝑡+1 ∼ 𝜋 (·|𝑥𝑡 , 𝜐(𝑥𝑡)). The
transition function 𝜋 that stochastically maps a state-action pair to a successor state is
assumed to be given, whereas the policy function 𝜐needs to be determined from optimality
conditions. The standard way to do so is to use dynamic programming (see, e.g., Bellman
[1961], Stokey et al. [1989b]), where the task is to find an infinite sequence of controls
{𝜒𝑡}∞𝑡=0 to maximize the value function 𝑉(𝑥0) := E

[∑∞
𝑡=0 𝛽

𝑡𝑟(𝑥𝑡 , 𝜒𝑡)
]

for an initial state
𝑥0 ∈ ℬ, 𝑟(·, ·) is the so-called return function, and 𝜒𝑡 ∈ Γ(𝑥𝑡) ⊂ ℬ, with Γ(𝑥𝑡) being the set of
feasible choices given 𝑥𝑡 . The discount factor 𝛽 ∈ (0, 1) weights future returns. Dynamic
programming seeks a time-invariant policy function 𝜐 mapping the state 𝑥𝑡 into the action
𝜒𝑡 , such that for all 𝑡, 𝜒𝑡 = 𝜐(𝑥𝑡) ∈ Γ(𝑥𝑡), and {𝜒𝑡}∞𝑡=0 solves the original problem. The
principle of optimality states that we can find such a solution by solving the Bellman equation,
that is,

𝑉(𝑥) = max
𝜒

{𝑟(𝑥, 𝜒) + 𝛽E [𝑉(�̃�)]}, (16)

where the successor state is distributed as �̃� ∼ 𝜋 (·|𝑥, 𝜒). The solution is a fixed point of the
Bellman operator 𝑇, defined by (𝑇𝑉)(𝑥) = max𝜒{𝑟(𝑥, 𝜒) + 𝛽E [𝑉(�̃�)]}. Under appropriate
conditions (see, e.g., Stokey et al. [1989b]) the Bellman operator is a contraction mapping.
In this case, iteratively applying the operator 𝑇 provides a sequence of value functions
that converges to a unique fixed point. This procedure is called value function iteration (for
a textbook treatment, see, e.g., Bertsekas [2000], Judd [1998], Rust [1996], or Ljungqvist
and Sargent [2000]) and is motivated by this theoretical justification and numerically
implements the iterative application of the Bellman operator to successive approximations
of the value function. The corresponding dynamic programming recursion thus starts
from any bounded and continuous guess for the value function, and the solution is
approached in the limit as 𝑗 → ∞ by iterations on

𝑉 𝑗+1(𝑥) = 𝑇(𝑉 𝑗)(𝑥) := max
𝜒 𝑗+1

{𝑟(𝑥, 𝜐) + 𝛽E
[
𝑉 𝑗(�̃�)

]
}. (17)

In practice, we say that value function iteration has converged if numerical convergence
in some norm, for example,

∥𝑉𝜏(·) −𝑉𝜏−1(·)∥∞ ≤ 𝜖𝑉𝐹𝐼 , 𝜖𝑉𝐹𝐼 ∈ R+, (18)

and at some iteration step 𝜏 is reached. The (approximate) equilibrium value function is
denoted as 𝑉∗ = 𝑉𝜏 and the corresponding optimal policy functions, as 𝜒∗ = arg max𝑉∗.

No matter how rich the exact model specifications of a dynamic incentive problem
are, the key roadblocks remain the same when one attempts to solve them numerically:
to efficiently approximate and interpolate in every iteration step high-dimensional value
and policy functions on potentially irregularly shaped geometries (cf. Sec. 4.5 for more
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details). We, therefore, describe next in Secs. 4.2 and 4.3 how we tackle these challenges
by combining GPs with BAL.

4.2 Function Approximation and Interpolation with Gaussian Processes
In the following, we briefly introduce GPR, a nonparametric regression method from
supervised machine learning that has universal approximation properties (see, e.g., Mic-
chelli et al. [2006]) and that we will use to approximate and interpolate multivariate policy
and value functions (for more details, see, e.g., Rasmussen and Williams [2005], Murphy
[2012]).

Given a so-called training data set 𝒟 = {X, y} consisting of 𝑁 input states 𝑥𝑖 ∈ ℬ ⊂ R𝑑
and corresponding observations 𝑦𝑖 ∈ R,12 where 𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜀, 𝜀 ∼ 𝒩

(
0, 𝜎2

𝜖

)
,13 we want

to infer a model of the yet unknown function 𝑓 that generated the data such that we then
can make predictions at a point 𝑥∗ that we have not seen in the training set, that is, we
obtain an interpolation value 𝑓 (𝑥∗). The matrix X = [𝑥1, . . . , 𝑥N] contains the so-called
training inputs, whereas y = [𝑦1, . . . , 𝑦𝑛]⊤ consists of corresponding observations, that is,
training targets that can – as in our case – be generated via computer code,14 or stem from
empirical data.

To enable predictions based on information contained in 𝒟, we must make assump-
tions about the characteristics of the underlying functions. A GP defines a distribution
over functions such that if we pick any two or more points in a function (i.e., different in-
put–output pairs), observations of the outputs at these points follow a joint (multivariate)
Gaussian distribution. More formally, a GP is defined as a collection of random variables,
any finite number of which have a joint (multivariate) Gaussian distribution. We start by
defining a probability measure on the function space, where 𝑓 lives corresponding to our
beliefs. Before seeing any data, we model our state of knowledge about 𝑓 by assigning a
GP prior to it, that is:

𝑓 (𝑥) ∼ 𝒢𝒫 (𝜇(𝑥), 𝑘 (𝑥, 𝑥′)) . (19)

A GP is a distribution over functions and is defined by a mean and a covariance function.

12For notational simplicity, we restrict ourselves to the univariate case. However, all expressions derived
in the following carry over to the situation where GPs have to deal with multivariate output [Bilionis et al.,
2013].

13This assumption is similar to that made in linear regression, in that we assume an observation consists
of an independent “signal” term 𝑓 (𝑥) and “noise” term 𝜖 . In GPR, however, we assume that the signal
term is also a random variable that follows a particular distribution. This distribution is subjective in the
sense that the distribution reflects our uncertainty regarding the function. The uncertainty regarding 𝑓 can
be reduced by observing the output of the function at different input points. The noise term 𝜖 reflects the
inherent randomness in the observations, which is always present no matter how many observations we
make.

14In our concrete cases below, the training data will consist of solving a constrained optimization problem
as stated for instance in Eq. (10) at 𝑁 strategically chosen points 𝑥𝑖 from within a set ℬ (see Secs. 4.3, 4.6,
and 5 for more details), and where corresponding observations 𝑦𝑖 are given by the value and policy function
at that particular location in the state space, respectively.
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The mean function 𝜇(𝑥) reflects the expected function value at input 𝑥:

𝜇(𝑥) = E[ 𝑓 (𝑥)], (20)

that is, the average of all functions in the distribution evaluated at input 𝑥. The prior
mean function is required to model any general trends of the response surface and can
have any functional form. However, it is often set to 𝜇(𝑥) = 0 to avoid expensive posterior
computations and only do inference via the covariance function. For simplicity, we set it
to 0 throughout the remainder of this subsection. The covariance function 𝑘 (𝑥, 𝑥′) models
the dependence between the function values at different input points 𝑥 and 𝑥′:

𝑘 (𝑥, 𝑥′) = E [( 𝑓 (𝑥) − 𝜇(𝑥)) ( 𝑓 (𝑥′) − 𝜇 (𝑥′))] . (21)

The function 𝑘 is commonly called the covariance kernel of the GP [Rasmussen and Williams,
2005]. The choice of an appropriate kernel is the most crucial part of GPR and needs to be
based on assumptions such as smoothness and likely patterns to be expected in the data.
A sensible assumption is usually that the correlation between two points decays with the
distance between the points. This means that closer points are expected to behave more
similarly than points that are further away from each other. One very popular choice of
a kernel fulfilling this assumption is the radial basis function kernel (also known as the
square exponential (SE) kernel), which is defined as

𝑘SE(𝑥, 𝑥′;ϕ) = 𝑠2 exp
−

1
2

𝑑∑
𝑗=1

(
𝑥 𝑗 − 𝑥′𝑗

)2

ℓ2
𝑗

 , (22)

with hyperparameters ϕ = {𝑠, ℓ1, . . . , ℓ𝑑}, with 𝑠 > 0 being the variability of the latent
function 𝑓 , and ℓ 𝑗 > 0 the characteristic lengthscale of the 𝑗-th input dimension.15 The
exact choice of the kernel within an application boils down to how the modeler encodes
prior knowledge about the function(s) to be approximated, such as differentiability and
periodicity. In our applications below, we typically work with SE or piecewise polynomial
kernels (for more details on kernels, see, e.g., Murphy [2022, Ch. 18.2], and https:
//www.cs.toronto.edu/~duvenaud/cookbook).

Suppose we have collected observations𝒟 = {X, y}, for example, by solving𝑁 Bellman
equations at various locations of a set ℬ, and we want to make predictions for new inputs,
collected in the matrix X∗, by drawing the corresponding f∗ from the posterior distribution
𝑝 ( 𝑓 | 𝒟). By definition of the GP, the previous observations y and function values f∗
follow a joint multivariate normal distribution, which can be written as[

y
f∗

]
∼ 𝒩

(
0,

[
𝑘 (X,X) + 𝜎2

𝜖I 𝑘 (X,X∗)
𝑘 (X∗,X) 𝑘 (X∗,X∗)

] )
, (23)

15Note that the hyperparameters of the covariance function are typically estimated by maximizing the
likelihood [Rasmussen and Williams, 2005].
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where 𝑘 (X,X) is the covariance matrix between all observed points so far, 𝑘 (X∗,X∗) is
the covariance matrix between the newly introduced set of points for which we want to
make a prediction, 𝑘 (X∗,X) is the covariance matrix between the new input points and
the already observed points, and 𝑘 (X,X∗) is the covariance matrix between the observed
points and the new input points. Moreover, I is an identity matrix, and 𝜎2

𝜖 is the assumed
noise level of observations, that is, the variance of 𝜖. Using standard results (see, e.g., Ras-
mussen and Williams [2005], Rasmussen and Nickisch [2010]), the conditional distribution
𝑝 (f∗ | X, y,X∗) is then a multivariate normal distribution with a posterior, which by itself
is a GP with mean function

�̃�(𝑥) = 𝑘 (𝑥,X)
[
𝑘 (X,X) + 𝜎2

𝜖I
]−1 y, (24)

and a covariance kernel that reads:

𝑘 (𝑥, 𝑥′) = 𝑘 (𝑥, 𝑥′) − 𝑘 (𝑥,X)
[
𝑘 (X,X) + 𝜎2

𝜖1
]−1

𝑘 (X, 𝑥′) . (25)

The previous two equations imply that calculating the posterior mean and covariance of
a GP involves first calculating the four different covariance matrices contained in Eq. (23)
and then combining them according to Eqs. (24) and (25). Done naively, this step scales as
𝒪(𝑁3) with the number of observations𝑁 in the training set 𝒟 [Rasmussen and Williams,
2005].16 In order to predict f∗, we can simply use the mean function, our best estimate for
the desired value, which is given by Eq. (24), and evaluate it at the location of interest:
�̃�(𝑥∗). Furthermore, Eq. (25) provides the predictive variance �̃�2(𝑥∗) := 𝑘(𝑥∗, 𝑥∗). The latter
can be used to derive point-wise predictive error bars and thus provide information about
the model confidence, that is, about the quality of the function approximator at a point
𝑥∗. Fig. 1 shows an example posterior mean function after the data from an analytical test
function has been observed, as well as the 95% confidence interval.

Note the predictive mean �̃�(𝑥) given by Eq. (24) can also be written as

�̃�(𝑥) =
𝑁∑
𝑖=1

𝑎𝑖𝑘(𝑥𝑖 , 𝑥), (26)

where each 𝑥𝑖 is a previously observed input value in X, and the weights are collected in the
vector a = (𝑎1, . . . , 𝑎𝑁 ) =

(
𝑘(X,X) + 𝜎2

𝜖I
)−1 y. Intuitively, we can think of the GP posterior

mean as an approximation of 𝑓 using 𝑁 symmetric radial basis functions (RBFs) centered
at each observed input. Thus, by choosing a covariance function 𝑘(𝑥, 𝑥′) that vanishes
when 𝑥 and 𝑥′ are separated by a lot, for example, the SE covariance function (cf. Eq. (22)),
we see that an observed input-output will only affect the approximation locally. This
observation also establishes a connection between GPR and reproducing-kernel Hilbert
spaces, which are discussed in Rasmussen and Williams [2005]. Moreover, the radial basis
function has universal approximation and regularization capabilities. Theoretically, the

16For contemporary methods to alleviate this performance bottleneck, see Appendix B.
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Figure 1: The left panel shows a training data set 𝒟 = {X, y} (red dots) that was generated
by evaluating the analytical function 𝑦 = 𝑥𝑠𝑖𝑛(𝑥) (red dashed line) at the points X =

{0.1, 0.5, 4.3, 4.5, 4.9} to which we fitted a GP. Furthermore, the predictive mean as well
as the 95 percent confidence intervals, corresponding to the point-wise predictive mean
(blue line) plus and minus two standard deviations (blue shaded area) for each input value
of predictive variance, are also shown. The figure in the center shows the same, but with
one observation strategically inserted into the training set around 𝑥 = 2.2 via BAL. The
panel on the right enhances the training set by another data point around 𝑥 = 2.9 that was
added via BAL.

RBF can approximate any continuous function arbitrarily well (see, e.g., Poggio and Girosi
[1990], Park and Sandberg [1991], Wu et al. [2012]). For more details on why, in the age
of deep learning, GPs can (and should) be used in the presented context of models, see
Appendix D, and references therein.

4.3 Exploring the State Space by Bayesian Active Learning
In order to approximate functions efficiently with GPs in general, and specifically, to
perform the Bellman recursion to solve dynamic models, we need to find a set of states X
that covers the relevant state space ℬ in such a way that a GP can approximate value and
policy functions sufficiently well with a minimal amount of training data 𝒟. The task at
hand, thus, is to answer the question of what data one should gather to learn about the
function(s) of interest as quickly as possible, especially in our case where training data
is expensive to acquire, as we need to solve many constrained optimization problems in
each step of the value function iteration.

The simplest way to generate training data is to place the observation points so as to
train the Gaussian processes randomly from some compact set [𝑎, 𝑏] ⊂ R𝑑, 𝑎, 𝑏 ∈ R𝑑, for
example, via a Halton sequence [Halton, 1964, Niederreiter, 1992]. This strategy can be
highly inefficient, particularly in situations where functions that have to be approximated
show distinct local features, such as steep gradients in some regions in the state space,
since the observations that are used to generate a good approximation of functions may
not necessarily be created where they improve on the approximation quality most. To
still obtain a good approximation of functions in the presence of strong nonlinearities by
naively sampling from the domain of interest, one would have to increase the observations
substantially. Since the training of standard GPs scales cubically with the number of
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observations 𝑁 , that is, 𝒪(𝑁3), the runtime consequently would increase drastically with
increasing sample size (cf. Appendix B for more details). To improve matters substantially,
we propose to use BAL (see, e.g., MacKay [1992], Chaloner and Verdinelli [1995], Krause
et al. [2008], Deisenroth et al. [2009], Makarova et al. [2022]). The latter is a technique from
the reinforcement learning literature to automatically place observations in regions of the
computational domain ℬ where they improve on the quality of the approximator most
according to a chosen metric.17

BAL tackles this so-called exploration-exploitation dilemma, that is to say, the use of as
few observations as possible to best represent the a priori unknown functions by inducing
observations to the training set such that only the relevant part of the state space will be
explored. Hence, BAL can be seen as a strategy for optimal data selection to make learning
more efficient. In our case, the training data is selected according to a function that we
call the score function, which is given by

𝑈(�̃�) = 𝜎𝑚�̃�(�̃�) +
𝜎𝑣
2 log (�̃�(�̃�)) , (27)

where 𝜎𝑚 and 𝜎𝑣 are positive weighting factors, and where �̃� and �̃� are the predictive
mean and variance of a GP, trained at input locations X, and evaluated at a point �̃� that
is not contained in the training set, respectively. The first term of Eq. (27), given by the
predictive mean (cf. Eq. (24)), expresses how much total reward is expected from �̃�. The
second term of Eq. (27) is given by the predictive variance (cf. Eq. (25)) and measures
how uncertain the GP approximation is expected to be, given X, in terms of Shannon
entropy [Chaloner and Verdinelli, 1995]. Moreover, the parameters 𝜎𝑚 and 𝜎𝑣 control
exploitation and exploration respectively, and have to be set manually.18 Thus, for a given
observation �̃�, one can evaluate Eq. (27) and assign a score on how important it would be
to include this particular observation in the training set.

To construct a concrete training set that leverages BAL, we follow the literature and
proceed as follows: First, we start from a small set X of initial input locations that are
generated via a Halton sequence from a set ℬ and train a GP on the resulting training
targets y. Second, we generate 𝑠 candidate points �̃�𝑖 ∈ ℬ at which we evaluate Eq. (27)
given the fitted GP at every �̃�𝑖 . Third, we rank all the observations �̃�𝑖 given their score
(cf. Eq. (27)) and add 𝜉 ∈ N points with the highest score to our set of training inputs ∈ X.
Thus, the set X dynamically grows as long as the size of the training set is below some
pre-defined size, but only in the regions of the state space where the observations matter,
that is to say, in a data-efficient fashion.

We now demonstrate the ability of the joint workings of GPs and BAL to efficiently
approximate and interpolate functions on three analytical examples 𝑓 : [𝑎, 𝑏] → R, [𝑎, 𝑏] ⊂

17In loose terms, BAL could be considered to be the grid-free equivalent of an adaptive sparse grid
algorithm [Brumm and Scheidegger, 2017]. In the latter global solution method, the adaptivity of the grid
now ensures that grid points are placed close to the nonlinearities while the grid remains coarse where
policy functions are smoother.

18The results reported in Secs. 4.6 and 5 are not highly sensitive to the values prescribed. In practical
applications, choosing 𝜎𝑚 = 1 and 𝜎𝑣 = 10 yielded satisfactory results.
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R𝑑 , 𝑎, 𝑏 ∈ R𝑑, which are adopted from a representative suite of test problems by Genz
[1984].19 We generate various GP approximations to those functions, and measure their
accuracy as follows: We randomly generate 𝑁𝑡𝑒𝑠𝑡 = 1, 000 test points 𝑥𝑖 from a uniform
distribution on [𝑎, 𝑏] ⊂ R𝑑, 𝑎, 𝑏 ∈ R𝑑, and compute the mean approximation error, which
is given by

1
𝑁

𝑁∑
𝑖=1

| 𝑓 (𝑥𝑖) − �̃�(𝑥𝑖)|, (28)

where �̃�(𝑥𝑖) is the predictive mean of the GP (cf. Eq. (24)) approximating the test function
𝑓 .

As a first example, we consider 𝑦 = 𝑓 (𝑥) = 𝑥𝑠𝑖𝑛(𝑥), where 𝑥 ∈ [0, 5]. The initial training
set 𝒟 = {X, y} consists of only five samples, to which we fit a GP (cf. the left panel of
Fig. 1). Next, we generate 𝑁𝑐𝑎𝑛𝑑 = 1, 000 candidate points, and score them according to
Eq. (27). The top-ranked sample is added to the training set, and the GP approximation
is re-computed (cf. the middle panel of Fig. 1). This process is repeated one more
time (cf. the right panel of Fig. 1). By adding only two extra sample points, the mean
approximation error drops from 51% down to 1%. From those three panels it becomes
clear that using GPs in combination with BAL can very rapidly increase the quality of the
function approximation by monitoring where one is uncertain about the predictive mean
and improving on it by adding observations at locations of the computational domain
where they are needed most.

As a second example, we approximate 𝑓 (𝑥) = | sin((𝜋2 ) ∗ 𝑥)|, where 𝑥 ∈ [−1, 1]. We
compare two situations: In the first, we approximate 𝑓 with GPs by using training data that
was generated by BAL, and monitor the error as a function of the number of samples in the
training set. We start BAL with a single, randomly chosen data point, and subsequently
enhance the training set until it consists of ten points. Next, we approximate the same 𝑓

with the same number of training points, which are generated by randomly sampling from
the domain of interest. The left panel of Fig. 2 depicts the situation where the training set
consists of 5 sample points, out of which four were strategically chosen via BAL. The central
panel of Fig. 2 shows the same, but for the case where the GP approximation was based on a
randomly generated training set. The right panel of Fig. 2 shows the convergence behavior
of the GPs (as a function of samples in the training set) for approximating 𝑓 naively
(denoted as “uniform”) or via BAL (denoted as “BAL”). Strikingly, BAL outperforms the
naive setting by almost one order of magnitude in accuracy for a fixed number of samples
due to its ability to add samples to the training set where needed most according to
Eq. (27). We expect such an effect to be even more pronounced in a multi-dimensional
setting.

In the third example, we consider a two-dimensional test from the “Gaussian peak

19The corresponding Python codes illustrating BAL can be found under the follow-
ing URL: https://github.com/GaussianProcessesForDynamicEcon/DynamicIncentiveProblems/tree/
main/analytical_examples.
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Figure 2: The left panel shows a training set (red dots) that was generated by evaluating the
analytical function 𝑓 (𝑥) = | sin((𝜋2 ) ∗ 𝑥)| (red dashed line) at five points, four of which were
strategically chosen via BAL. Furthermore, the predictive mean, as well as the 95 percent
confidence intervals corresponding to the point-wise predictive mean (blue line) plus
and minus two standard deviations (blue shaded area) for each input value of predictive
variance, are also shown. The figure in the middle depicts the same, but for a GP fitted to
a randomly generated training set. The right panel compares the interpolation error (see
Eq. (28)) of GPs approximating 𝑓 naively (denoted as “uniform”), or via BAL (denoted as
“BAL”).

family” of functions, that is,

𝑓 (𝑥) = exp

(
−

𝑑∑
𝑖=1

𝑎2
𝑖 (𝑥𝑖 − 𝑢𝑖)

2

)
, (29)

and choose 𝑑 = 2, 𝑥 ∈ [0, 1]2. Furthermore, we set 𝑎𝑖 = (5, 5) and 𝑢𝑖 = (0.8, 0.8). The top
left panel of Fig. 3 depicts the resulting function. We have chosen this test case as it loosely
resembles the shape of the value functions we wish to approximate below in our dynamic
incentive models (cf. Fig. 6). Thus, the performance results found here should carry
over. To approximate the function (29), we proceed as in the economic applications (cf.
Sec. 4.6). We start by generating an initial training set consisting of 100 points randomly
drawn from the two-dimensional domain. Next, we enhance the training set via BAL by an
additional 40 points and compute the corresponding approximation errors as a function
of the sample size. We compare this setup to the case where the training set is naively
enhanced by adding samples randomly from the domain of interest. The top right panel
of Fig. 3 displays the extra points added to the training set via BAL. We depict them in two
individual batches of the first and second 20 points. This figure illustrates that BAL adds
new samples to the training set where they are needed most to improve the performance
of the approximator, that is, in the top right corner and at the boundary of the domain.
In addition, we display the extra 40 uniform samples we generated, indicating that their
random placement is not optimal for increasing the performance of the GP. The lower left
panel of Fig. 3 compares the mean approximation error for the GPs, generated from the
BAL-enhanced as well as the naively enhanced training set. Strikingly, BAL outperforms

22

Electronic copy available at: https://ssrn.com/abstract=3282487



0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

y

BAL, points 1-20
BAL, points 21-40
uniform

100 110 120 130 140

# Points

10 -4

10 -3

M
ea

n
 a

p
p

ro
xi

m
at

io
n

 e
rr

o
r

BAL
uniform

10 2 10 3

# Points

10 -4

10 -3

10 -2

M
ea

n
 a

p
p

ro
xi

m
at

io
n

 e
rr

o
r

Adaptive Sparse Grid
BAL
uniform

Figure 3: The top left panel depicts the test function (29). The top right panel displays
how BAL successively enhances the training set by 40 points. The first 20 points added to
this set are depicted as (blue) dots, whereas the subsequently added 20 points are labeled
as (red) crosses. This situation is contrasted by adding uniform 40 samples to the original
training set (labeled as yellow points). The lower left figure depicts the interpolation
error (see Eq. (28)) of GPs approximating 𝑓 naively (denoted as “uniform”), or via BAL
(denoted as “BAL”). The lower left panel shows the same and compares the performance
to an adaptive sparse grid of increasing size.

the naive approach by about one order of magnitude. Finally, the right panel of Fig. 3
compares the mean approximation error for the GPs to adaptive sparse grids, a “curse of
dimensionality breaking” state-of-the-art method to efficiently approximate multi-variate
functions (see, e.g., Brumm and Scheidegger [2017]). The data points reported for the
adaptive sparse grid were obtained by computing the approximation error at grid levels 3
to 7 and a refinement threshold 𝜖 = 10−6. The figure shows that the joint working GPs and
BAL can save substantial resources and outperform advanced methods such as adaptive
sparse grids.
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4.4 A Numerically Tractable Reformulation of the Recursive Problem
Solving dynamic adverse selection models in their recursive form poses significant chal-
lenges to the solution method: one needs to solve a (potentially high-dimensional) dy-
namic programming problem on an a priori unknown and irregularly shaped set. If the
problem is simple enough, it can be possible to find an analytical solution [Mailath et al.,
2002]. However, in general, one needs to use a numerical approach. The literature thus far
usually applies a two-step procedure: First, one needs to determine the feasible set ex ante
via a variant of the APS algorithm [Abreu et al., 1986, 1990]. Secondly, one has to solve a
dynamic program on the domain determined in step 1. Several versions of this approach
have been proposed thus far. However, none of them are generally applicable, are often
restricted to a sub-class of models such as those with convex feasible sets, and are not scal-
able beyond two to three dimensions as they all suffer from the curse of dimensionality
(cf. Sec. 2).

To lift the abovementioned issues, we propose a generic, numerically tractable penalty
reformulation of the Bellman equation of dynamic adverse selection problems that pro-
vides three advantages over the previous literature. First, it bypasses the need to pre-
determine the feasible set. Second, it is generally applicable to dynamic adverse selection
problems and is not restricted to a particular subset of that class of models, such as those
with convex feasible sets. Third, computing solutions to the reformulated problem re-
duces to solving an ordinary dynamic programming problem such as the one stated in
Sec. 4.1. Thus, decades of theory and practice in solving these well-studied standard
problems carry over. While other numerical methods could be applied, below we will
specifically use GPs (cf. Sec. 4.2) in combination with BAL (cf. Sec. 4.3) as a highly efficient
way of performing value function iteration in the presented types of models, thereby
opening the door to tackle dynamic incentive models of unprecedented complexity (cf.
Sec. 4.5 below).

The basic idea behind our reformulation is the following: While the feasible set 𝒱
for the models under consideration is ex-ante unknown, we are usually able to give an
estimate of a box ℬ containing it, that is,𝒱 ⊂ ℬ. Thus, we start the value function iteration
algorithm by uniformly drawing a moderate number of sample points X from the compact
domain ℬ at which we would like to evaluate the Bellman equation in order to obtain a
training set 𝒟 to approximate the value and policy functions with GPs. However, if we
were to solve the original Bellman equations at these randomly drawn states, some of the
individual optimization problems might be infeasible, as depicted in the left panel of Fig. 4.
To this end, we propose to relax the original recursive model by introducing slack variables
on the promise-keeping constraints. Furthermore, we also add a penalty to the objective
function that is large and negative whenever the slacks are non-zero. This measure serves
two purposes: First, it renders all optimization problems numerically feasible; that is, it is
possible to evaluate the relaxed Bellman operator on the entire domain ℬ and thus to fit
GPs over all training data. Secondly, the relaxed problem provides a binary classifier of
the training data, that is, 𝒟 = 𝒟𝒱 + 𝒟ℬ⧹𝒱 . There are two situations where the relaxed
Bellman equation can be deemed infeasible: The first is when the penalty function in
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ℬ 𝒱 ℬ 𝒱

Figure 4: The left panel depicts a small set of sample points X that are uniformly drawn
from the (hypercubic) set ℬ that contains the true feasible set 𝒱 (schematically depicted
as a triangle). The red dots represent the points where the original Bellman operator (cf.
Eqs. (10) or (15)) would be deemed infeasible to solve, whereas the green points label
locations in the state space where the solution to the original problem can be classified as
feasible. The right panel shows the same situation as the left panel, but with the difference
that the blue labeled points were systematically added with BAL to the original training set
in the neighborhood of the points that were previously deemed feasible, thereby focusing
the computational resources where they are needed the most.

the objective is non-zero. The second case is indirect: An infeasible state, that is, a state
outside of 𝒱, can have a zero penalty. The reason for this is that the promise-keeping and
incentive constraints might be feasible, but only by providing infeasible future promises,
that is, promises where the penalty is non-zero. However, these future promises will have
a lower utility due to the penalty term. Thus, 𝒟𝒱 provides a first, rough approximation of
the feasible set 𝒱.20 Next, to improve both the approximate value and policy functions on
the true feasible set, we apply BAL to X𝒱 (the training points determined by 𝒟𝒱), thereby
systematically increasing the number of samples in the region of interest21 until global
error estimates (see, e.g., Eq. (33) below) become sufficiently small. Thus, a high-quality
approximation of value and policy functions on an approximate feasible set is reached (cf.
the right panel of Fig. 4).22

After having laid down the basic intuition for our proposed reformulation, we next
outline its mathematical details in the context of the baseline model introduced in Sec. 3.1.
Subsequently, we will briefly elaborate on how the approach generalizes to the heteroge-

20In practical applications, the cardinality of the initial draw of X needs to be sufficiently large such that
𝒟𝒱 is non-empty.

21In our applications, we perform BAL by generating candidate points along a simulation path of 2,000
steps that is started from the maximizer. For more details, see Secs. 4.5 and 4.6.

22Note that in practice, after every few steps of the value function iteration we add new points to the train-
ing set via BAL, while preserving the points from the previous iteration steps. However, the training targets,
of course, are have to be recomputed, and the training points are relabelled until numerical convergence is
reached. For more practical details, see Sec. 4.5.
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neous agent model introduced in Sec. 3.2.
In the first step, we need to determine a hypercube (cf. Fig. 4), that is, a compact set

ℬ which is the product of closed intervals and which contains 𝒱.23 Recall from Sec. 3.1
that we assume that the consumption transfers 𝑐 are bounded from above by 𝑐, and that
the agent’s utility is to be bounded from below by 𝑈(𝑐, 𝜃). With these bounds, we can
determine the following hypercube from which we can draw samples X, that is,

𝒱(𝜃) ⊂ ℬ =
∏̃
𝜃∈Θ

[𝑈(𝑐, �̃�)/(1 − 𝛽), 𝑈(𝑐, �̃�)/(1 − 𝛽)] ∀𝜃. (30)

Next, we need to replace the original recursive formulation with a penalized one that
renders the Bellman equation feasible on the entire domain ℬ, and not solely on 𝒱 [Lu-
enberger and Ye, 2008, Ch. 13]. To do so, we need to replace the set 𝒱 with the hypercube
ℬ in Eq. (10). Furthermore, we need to add additional variables and a penalty function to
Eq. (10) to relax the promise-keeping that otherwise would be infeasible outside of 𝒱 (cf.
Fig. 4). Thus, we rewrite the Bellman equation as follows:

𝐾 (�̂�(·), 𝜃−) = max
𝑐(𝜃),𝑤(𝜃 |·),𝜉𝑗

∑
𝜃∈Θ

𝜋 (𝜃 |𝜃−) [𝑣(𝑐(𝜃), 𝜃−) + 𝛽𝐾(𝑤(𝜃 |·), 𝜃)] −𝑀
𝑚∑
𝑗=1

𝜉2
𝑗

�̂�
(
𝜃(𝑗)

)
+ 𝜉𝑗 =

∑
𝜃∈Θ

𝜋
(
𝜃 |𝜃(𝑗)

)
[𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃)], ∀𝑗 ∈ {1, . . . , 𝑚}

𝑈(𝑐(𝜃), 𝜃) + 𝛽𝑤(𝜃 |𝜃) ≥ 𝑈(𝑐(�̂�), 𝜃) + 𝛽𝑤(�̂� |𝜃), ∀𝜃, �̂� ∈ Θ

𝑐(𝜃) ∈ 𝐶, 𝑤(𝜃 |·) ∈ ℬ =
∏
𝜃∈Θ

[𝑈(𝑐, 𝜃)/(1 − 𝛽), 𝑈(𝑐, 𝜃)/(1 − 𝛽)], ∀𝜃 ∈ Θ,

(31)

where 𝑀 is a non-negative constant,24 and 𝜉𝑗 ∈ R are slack variables. Notice that the
reformulation of the model given by Eq. (31) renders the Bellman equation (numerically)
feasible on the entire domain ℬ by relaxing the promise-keeping constraints via the
variables 𝜉𝑗 , and by adding a penalty function −𝑀∑𝑚

𝑗=1 𝜉
2
𝑗

to the objective.
There are two ways to use the solution to the relaxed problem (31) to determine whether

a point in the state space is infeasible (cf. the right panel of Fig. 4). The first way is by
looking at the slack variables: if they are non-zero, the point can be deemed infeasible.
The second way is to look at the level of the value function 𝐾(·, ·) of the relaxed problem.
The original problem (10) has a natural minimum that reads as follows:

𝐾𝑚𝑖𝑛 =
∑
𝜃∈Θ

𝜋 (𝜃 |𝜃−) 𝑣(𝑐, 𝜃−)/(1 − 𝛽). (32)

23Note that our numerical approach can, in principle, also deal with unbounded sets. For such a situation,
we merely require a good guess for the set to start from. However, in this situation, we lose the convergence
guarantees from the theory of dynamic programming over compact sets.

24In our numerical applications, we set 𝑀 = 10.
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Thus, if the objective function of the relaxed model is lower than the said value at a
particular location in the state space, a training point can be classified as infeasible once
the value function iteration has converged.25

To show that the reformulated problem can be used without concern, we prove now
that the relaxed problem provides a solution to the original problem:

Lemma 1 Let (𝜃𝑖)∞𝑖=0 be a sequence of shocks and 𝑣(0) ∉ 𝒱. Furthermore, let 𝑣(𝑖) be the optimal
utility promises for expression (31) for a given shock sequence. Then, there exists a 𝑗 ∈ N such
that the slack vector of the optimal policy at 𝑣(𝑗) has the property ∥𝜉∥ > 0. In particular, given an
initial state 𝜃0 and shock realization (𝜃𝑖)∞𝑖=1, we can generate an optimal policy (𝜉𝑡)∞𝑡=0 by using the
solution to (31), with an initial promise 𝑣𝑚𝑎𝑥 ∈ arg max𝑣 𝐾(𝑣, 𝜃0). In this situation, we obtain
∥𝜉∥ = 0 at all steps. It follows that 𝑣𝑚𝑎𝑥 is an optimal solution to problem (10).

Proof: Assume that there exists a 𝑤(0) ∉ 𝒱 such that there is an optimal simulation
trajectory 𝑤(𝑖) such that ∥𝜉∥ = 0 at all points along the simulation. Take 𝑆 to be a set
containing 𝑤(𝑖) and 𝒱. Then, by definition, 𝑤(𝑖) ∈ 𝒜𝑛𝑆 for all 𝑛, where 𝒜 is the operator
defined in (9). Therefore, we have 𝑤(0) ∈ 𝒱 according to Golosov et al. [2016, Prop. 8],
which is a contradiction.

From Lemma 1, it follows that once we have solved problem (31), it is easy to check
whether a solution to the original problem (10) was found by simulating an optimal
trajectory that is launched at the global maximum of the value function 𝐾(·, ·) of 𝒱.

The recursive problem stated in Eq. (31) is an ordinary dynamic programming problem
over a compact set. Thus, the classical theory [Stokey et al., 1989a, Ch. 9] applies, we have
a contraction (cf. Sec. 4.1), and consequently, any general-purpose dynamic programming
method for multi-dimensional problems (see, e.g., Cai and Judd [2014], Maliar and Maliar
[2014], Brumm et al. [2021], and references therein) could in principle be applied to solve
the said model via value function iteration. In addition, our reformulation bypasses the
need for pre-computing the feasible set via an APS-type of algorithm [Abreu et al., 1986,
1990]. We will elaborate on this point in greater detail in Sec. 4.5 below, thereby outlining
why our reformulation provides a substantial improvement over the previous literature
from a computational point of view.

Since the models under consideration in general do not have analytical solutions,
but have to be determined numerically, we need measures to assess the credibility and
correctness of our computational results. To do so, we follow the best practices of a
sub-field from computational sciences called validate, verify, and uncertainty quantification
(VVUQ; see, e.g., Oberkampf and Roy [2010], and references therein), and propose to
use two particular criteria jointly. The first and necessary metric to assess the quality
of the solution to the reformulated problem (31) is the contraction of the value function

25Note that while we do not have to approximate the feasible set within our reformulated model explicitly,
we can still obtain it implicitly. When solving the model recursively, we approximate the value function and
policies, including the slack variables, with GPs. Thus, looking either at the approximate slack variables
or the value function itself will equip us with a smooth classifier that, on the entire set ℬ, will tell us
approximately whether a location in the state space is feasible or not.
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iteration in some norm that is computed over the entire set ℬ. The latter is used to stop the
value function iteration once numerical convergence between iteration steps is reached
(cf. Secs. 4.1 and 4.5). If this error is sufficiently small, we can be optimistic that the global
solution to the model is sufficiently accurate and that we are not missing parts of the state
space that are part of the optimal solution and not resolved well enough. However, recall
that we are not overly interested in the convergence of the relaxed problem on the entire
set ℬ, but rather aim to have a high-quality solution for the policies; a potentially much
smaller subset. Fernandes and Phelan [2000, p. 236] pointed out this issue: “The area above
�̂�∗(𝑤) is, in an important sense, irrelevant. Examination of the Bellman equation [...] reveals that
no efficient 𝑡 = 0 contract would ever map to this area.” Thus, we propose a second metric that
assesses the quality of the computed optimal solution more precisely where it matters
most, that is, in the part of the state space that is being used by an optimal policy, and
that BAL (cf. Sec. 4.3, and the right panel of Fig. 4) should accurately trace out during
our computations (cf. Sec. 4.6 below). Thus, inspired by the error measures used in Haan
et al. [2011] and Azinovic et al. [2022], we propose to look at the value function error along
the simulated path of the optimal solution. Concretely, starting from the initial shock
type with the corresponding value function maximizer, we simulate the optimal policy,
thereby obtaining a sequence of states �̂�(1)

𝜃(1) , . . . , �̂�
(𝑠)
𝜃(𝑠) with shock realizations 𝜃(1), . . . , 𝜃(𝑠).

We then use these points to compare two value functions 𝐾𝜏−1 and 𝐾𝜏 at two consecutive
time steps, and where the convergence is reached at the iteration step 𝜏 (cf. Alg. 1),

1
𝑠

√√√√√ 𝑠∑
𝑓=1

©«
𝐾𝜏(�̂�( 𝑓 )

𝜃( 𝑓 ) , 𝜃
( 𝑓 )) − 𝐾𝜏−1(�̂�( 𝑓 )

𝜃( 𝑓 ) , 𝜃
( 𝑓 ))

1 + |𝐾𝜏(�̂�( 𝑓 )
𝜃( 𝑓 ) , 𝜃

( 𝑓 ))|
ª®¬

2

, (33)

where the denominator is used to ensure the error is unit free and can be seen as percent-
ages. This is necessary since we have large changes in the value function across ℬ due to
the penalty.

Recall that three steps have to be taken to reformulate an adverse selection model, that
is, i) finding a ℬ that contains 𝒱, ii) adding slacks to the promise-keeping constraints, and
iii) adding a penalty to the objective function, generalize to any other setting. Thus, it is
straightforward to rewrite the heterogeneous agent model given by expression (15) into a
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recursive problem that no longer depends explicitly on the feasible set 𝒱:

𝐾
(
�̂� (·) , 𝜃(𝑖)

−

)
= max
𝑐
(
𝜃(𝑙)
(𝑘)

)
,𝑤

(
𝜃(𝑙)
(𝑘) |·

)
,𝜉(𝑙)(𝑘)

𝑚𝑖∑
𝑗=1

𝜋
(
𝜃(𝑖)
(𝑗) |𝜃

(𝑖)
−

) [
𝑣
(
𝑐
(
𝜃(𝑖)
(𝑗)

)
, 𝜃(𝑖)

−

)
+ 𝛽𝐾

(
𝑤

(
𝜃(𝑖)
(𝑗) |·

)
, 𝜃(𝑖)

(𝑗)

)]
−𝑀

∑
𝑙 ,𝑘

(
𝜉(𝑙)(𝑘)

)2

�̂�
(
𝜃(𝑙)
(𝑘)

)
+ 𝜉(𝑙)(𝑘) =

𝑚𝑙∑
𝑗=1

𝜋
(
𝜃(𝑙)
(𝑗) |𝜃

(𝑙)
(𝑘)

) [
𝑈𝑖

(
𝑐
(
𝜃(𝑙)
(𝑗)

)
, 𝜃(𝑙)

(𝑗)

)
+ 𝛽𝑤

(
𝜃(𝑙)
(𝑗) |𝜃

(𝑙)
(𝑗)

)]
, ∀𝑙 , 𝑘

𝑈𝑖

(
𝑐
(
𝜃(𝑙)
(𝑘)

)
, 𝜃(𝑙)

(𝑘)

)
+ 𝛽𝑤

(
𝜃(𝑙)
(𝑘) |𝜃

(𝑙)
(𝑘)

)
≥ 𝑈𝑖

(
𝑐
(
𝜃
(𝑞)
(𝑝)

)
, 𝜃(𝑙)

(𝑘)

)
+ 𝛽𝑤

(
𝜃
(𝑞)
(𝑝) |𝜃

(𝑙)
(𝑘)

)
, ∀𝑙 , 𝑘, 𝑝, 𝑞

𝑐
(
𝜃(𝑙)
(𝑘)

)
∈ 𝐶, ∀𝑙 , 𝑘,

(34)

where the extended computational domain ℬ to draw samples from is given extending
Eq. (30) to the multi-agent setting by taking the Cartesian product over all agents and all
types.

4.5 A Solution Algorithm for Dynamic Incentive Problems
We now outline how to solve the reformulated dynamic adverse selection models with
a standard dynamic programming approach by combining value function iteration with
GPs (cf. Sec. 4.2), BAL (cf. Sec. 4.3), and parallel computation (cf. Appendix C).26

The algorithm that we propose for computing the optimal decision rules in dynamic
incentive problems is summarized in Alg. 1, and proceeds as follows: We instantiate the
value function iteration by drawing for every discrete state present in the model (that is,
every type 𝜃) a uniform sample of 𝑀 points X𝜃 = {�̂�(1)𝜃 , . . . , �̂�

(𝑀)
𝜃 } ⊂ ℬ, the hypercube

of promise utilities (cf. Eq. (30)),27 at each of which we provide an initial guess 𝐾 𝑖𝑛𝑖𝑡𝜃 .
Jointly, they represent the initial training set 𝒟 𝑖𝑛𝑖𝑡

𝜃 = {(�̂�(1)𝜃 , 𝐾1,𝑖𝑛𝑖𝑡
𝜃 ), ..., (�̂�(𝑀)

𝜃 , 𝐾𝑀,𝑖𝑛𝑖𝑡
𝜃 )},

to which we fit a GP per type 𝜃. Having the initial setup ready, the value function
iteration algorithm we propose is detailed in Alg. 1: In every iteration step of the value
function iteration, we fit a GP 𝒢𝜃 to the training set 𝒟𝜃. This step is embarrassingly
parallelizable and thus can be substantially accelerated by contemporary hardware, a fact
that we leverage in our implementation. For more details on the parallelization scheme we
employ, see Appendix C. Next, we perform BAL on the points that were deemed feasible
to obtain a list of 𝑠 candidate points per type, out of which the one with the best score is
added to the training set. This step is an essential component in alleviating the curse of

26The value function iteration algorithm proposed in this section is loosely related to the one proposed
by Keane and Wolpin [1994], who use Monte Carlo simulations and linear regression to solve and estimate
discrete choice dynamic programming problems, a setting that substantially differs from the one we are
targeting here.

27We use �̂�(𝑖)𝜃 as a shorthand notation for (�̂�(𝑖) , 𝜃), that is, the location at which the Bellman equation is
evaluated.
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Algorithm 1: Value Function Iteration with GPs and BAL.

Data: For all 𝜃, draw a (small) initial set of 𝑀 points X𝜃 = {�̂�(1)𝜃 , . . . , �̂�
(𝑀)
𝜃 } ⊂ ℬ

such that it contains the feasible set 𝒱. Initial guess for value function 𝐾init
𝜃 .

Approximation accuracy �̄�.
Result: For each 𝜃: GPs over ℬ for the value functions 𝐾∗

𝜃 and the 𝜅 policy
functions 𝜒∗

𝜃 per type.
For each type 𝜃: Generate initial training set
𝒟 𝑖𝑛𝑖𝑡

𝜃 = {(�̂�(1)𝜃 , 𝐾1,𝑖𝑛𝑖𝑡
𝜃 ), ..., (�̂�(𝑚)

𝜃 , 𝐾𝑚,𝑖𝑛𝑖𝑡𝜃 )}.
For each type 𝜃: 𝒢𝜃 over 𝒟 𝑖𝑛𝑖𝑡

𝜃 .
Set iteration step 𝑗 = 1.
while 𝜖 > �̄� do

for 𝜃 ∈ Θ do
Set 𝐺𝜃, 𝑗−1 = 𝐺𝜃.
Use the predictive mean �̃�𝜃, 𝑗−1 of 𝒢𝜃, 𝑗−1 as interpolator of 𝐾𝜃, 𝑗−1.
Use the predictive variance predictive �̃�𝜃, 𝑗−1 of 𝒢𝜃 , 𝑗 − 1 as point-wise
measure for the uncertainty around 𝐾𝜃, 𝑗−1.

Given �̃�𝜃,, 𝑗−1 and �̃�𝜃, 𝑗−1, perform BAL on the approximate feasible points
contained in X𝜃 to obtain a list of 𝑠 candidate points 𝑦(1), . . . , 𝑦(𝑠).

Add the point 𝑦(𝑘) with the largest score (cf. Eq. (27)) to X𝜃.
𝑀 = 𝑀 + 1.
for �̂�(𝑖)𝜃 ∈ X𝜃 do

Solve the optimization problem given by the relevant Bellman equation
(see, e.g., Eqs. (31) and (34)) at the coordinate �̂�(𝑖)𝜃 to obtain 𝐾 𝑗𝜃 (and the
respective policies if needed), and where the interpolation on the
right-side of the Bellman operator is performed by using the
predictive mean from the various GPs from the iteration 𝑗 − 1.

end
Define the training set at iteration 𝑗: 𝒟𝜃, 𝑗 = {(�̂�(1)𝜃 , 𝐾

1, 𝑗
𝜃 ), ..., (�̂�(1)𝜃 , 𝐾

𝑚,𝑗

𝜃 )}.
Fit a GP 𝒢𝜃 over 𝒟𝜃, 𝑗 .
Compute an error measure, e.g.: 𝜖𝜃 = ∥𝐾 𝑗𝜃 − 𝐾 𝑗−1

𝜃 ∥2.
end
Set 𝑗 = 𝑗 + 1.
𝜖 = max(𝜖𝜃1 , ..., 𝜖𝜃𝐷 ).

end
𝜏 = 𝑗 − 1.
𝐾∗ = {𝐾𝜏

𝜃1
, ..., 𝐾𝜏

𝜃𝑚
}, 𝜒∗ = {𝜒𝜃1 ,1, · · · , 𝜒𝜃1 ,𝜅 , · · · , 𝜒𝜃𝑚 ,1, · · · , 𝜒𝜃𝑚 ,𝜅}.

dimensionality, as it focuses the computational resources where needed most. One way
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to perform BAL in the presented context is to simulate the model for 𝑠 steps within every
value function iteration step 𝑗 to generate candidate points–in analogy to the second error
measure outlined in Sec. 4.4. This approach, however, comes at the extra computational
cost that in every iteration step 𝑗, not only value but also policy functions need to be
approximated via GPs. As outlined before, we use Eq. (27) to score the said candidate
points. We then add one or multiple points with the highest score to the set of training
points. Then, we solve the model-implied Bellman equations (see, e.g., Eqs. (31)and (34))
at each of the training points to obtain new training targets {𝐾1

𝜃 , . . . , 𝐾
𝑀
𝜃 }, over which

we fit GPs.28 This process is repeated until numerical convergence at some iteration step
𝜏 is reached (cf. Eq. (18)). Once the value function iteration has been terminated, we
also evaluate our second error measure given by expression (33). If the error along the
simulated path is also low, and all points along the simulation are deemed feasible, we
have a numerical solution of acceptable accuracy for the approximate value functions
𝐾∗ = {𝐾𝜏

𝜃1
, ..., 𝐾𝜏

𝜃𝑚
}, and the corresponding 𝜅 policy functions per state, that is, 𝜒∗ =

{𝜒𝜃1 ,1, · · · , 𝜒𝜃1 ,𝜅 , · · · , 𝜒𝜃𝑚 ,1, · · · , 𝜒𝜃𝑚 ,𝜅}, all given by the predictive mean of an individual
GP. If, however, this second error is still too large, or some of the points simulated are
deemed infeasible, we re-launch the value function iteration until the second error criterion
is also satisfied. For further implementation details, we refer the reader to the code hosted
under the following URL: https://github.com/GaussianProcessesForDynamicEcon/
DynamicIncentiveProblems.

Finally, note that one of the defining features of GPR is that it is a grid-free method for
constructing a function approximator, that is, it allows the modeler to steer the content of
the training set 𝒟 closely and thus to construct interpolators on irregularly shaped geome-
tries. This has two significant practical advantages when addressing dynamic incentive
models numerically. First, suppose an individual optimization problem at some particular
point 𝑥𝑖 does not converge. In that case, one does not need to deal with tuning the opti-
mizer until it converges at this location of the state space. Instead, this training input (and
the corresponding nonsensical training target) can be discarded, that is, it is not added to
the training set. This is in stark contrast to grid-based methods such as Smolyak [see, e.g.,
Krueger and Kubler, 2004a, Judd et al., 2014] or adaptive sparse grids [see, e.g., Brumm
and Scheidegger, 2017, Brumm et al., 2021], where the construction of the interpolator
breaks down if some of the optimization problems required by the algorithm cannot be
solved. Second, computing solutions solely on a domain of relevance allows one to carry
out value function iteration on complex, high-dimensional geometries without suffer-
ing from massive inefficiencies, as the computational resources are concentrated where
needed and not wasted in parts of the state space where the quality of the GP interpolant
is already high. Particularly in high-dimensional settings, this can substantially speed
up the time-to-solution process, as the feasible set might have a negligibly small volume

28In our numerical experiments below (see Secs. 4.6 and 5), at every single training point, the in-
dividual optimization problems are solved either with Ipopt [see, e.g., Waechter and Biegler, 2006]
(http://www.coin-or.org/Ipopt/) or the constrained optimization toolbox by Scipy (https://docs.
scipy.org/doc/scipy/reference/optimize.html. Note that both solvers yield the same results up to
numerical precision, providing an additional sanity check for our numerical solutions.
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compared to the computational domain that standard approximation methods require.

4.6 Verification of the Solution Algorithm
To demonstrate the scalability and versatility of the computational framework introduced
in this paper in the simplest possible fashion, we now solve the dynamic adverse selection
problem as presented in Sec. 3.1. We use the original model calibration by Fernandes
and Phelan [2000] as a basic verification test for our method, as for their two-dimensional
baseline setting, the approximate numerical solutions are known, and the results can be
visualized. We start by briefly summarizing the baseline model and its parameterization.
Second, we report on the performance of our proposed dynamic programming method.
Finally, we briefly discuss the numerical solution to this dynamic incentive problem.

The environment by Fernandes and Phelan [2000] consists of a risk-neutral princi-
pal that minimizes her cost, and a risk-averse agent. We choose the agent’s utility over
consumption 𝑐 to be

𝑈(𝑐) =
√
𝑐, (35)

where 𝑐 is restricted to be on a compact interval. There are two types in the model,
that is, a “low” (state 1; also denoted as 𝐿) and a “high” (state 2; also denoted as 𝐻)
type. The respective endowments are given by ℎ𝐿 and ℎ𝐻 . The agent “learns” his private
type in each period and then reports it to the principal. Subsequently, the principal
transfers consumption to the agent dependent on what the agent reported. Since the
problem depends on the full history of reports, we use the recursive reformulation that
we introduced (cf. Sec. 4.4 and Eq. (31)) to avoid the previously mentioned numerical
difficulties. Furthermore, we follow Fernandes and Phelan [2000] and assume that the
agent cannot claim to be a higher type than he is.

Since this model consists of two persistent types, the resulting state space of promised
utilities is 2-dimensional. The Markov process governing the endowments is chosen such
that the agent has a 90 percent chance of receiving the endowment he received in the
previous period. This yields the following transition probabilities across the different
types:

Π =

[
𝜋(𝐿|𝐿) 𝜋(𝐻 |𝐿)
𝜋(𝐿|𝐻) 𝜋(𝐻 |𝐻)

]
=

[
0.9 0.1
0.1 0.9

]
. (36)

The remaining model parameterization is reported in Tab. 1.
To solve this benchmark model, we start the dynamic programming algorithm 1 by

uniformly drawing 100 samples for each type 𝜃 from the domain ℬ = [0, 10]2. Next, we
provide an initial guess for the value function at each of the sample points, that is,

𝐾 𝑖𝑛𝑖𝑡𝜃 = 𝜋(𝐿|𝜃)(ℎ𝐿 −𝑈−1(�̂�𝜃(𝐿)(1− 𝛽))) +𝜋(𝐻 |𝜃)(ℎ𝐻 −𝑈−1(�̂�𝜃(𝐻)(1− 𝛽)))/(1− 𝛽), (37)
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Parameter Value
𝛽 0.9
ℎ𝐻 0.35
ℎ𝐿 0.1

[𝑐, 𝑐] [0, 1]
ℬ [0, 10]2

Table 1: Parameterization of the privately observed endowment model by Fernandes and
Phelan [2000].

Error type 𝐿2 [%] 𝐿∞ [%]
global error 1.7·10−6 8.2·10−6

error along a simulated path 2.8·10−8 2.6·10−6

Table 2: Average and maximum percentage errors at convergence. The first error type,
‘global error,’ was computed by evaluating Eq. (33) at uniformly drawing 1, 000 samples on
ℬ, whereas ‘error along a simulated path’ was computed by generating the same number
of observations along a simulated path and that was launched at the point in the state
space given by arg max�̂�(𝜃),𝜃 𝐾(�̂�(𝜃), 𝜃).

where 𝜃 ∈ {𝐿, 𝐻}, and over which we fit GPs–using piece-wise polynomial kernels with
𝑞 = 1–over the initial training set. Thereafter, we iterate until we reach a ‘global error’
smaller than 𝜖 = 1 · 10−4% in the 𝐿2-norm (cf. Tab. 2). At this level of accuracy, the value
function and policies do not change anymore, even if the error is further decreased. To
solve this model, we perform BAL by generating candidate points along a simulation path
of 2, 000 steps that is started from the maximizer. Since the procedure is numerically
somewhat expensive, as was pointed out in Sec. 4.5, we add one additional point per
type to the training set after every five value function iteration steps, resulting in sets 𝒟𝜃

containing 205 samples per type at convergence. Fig. 5 depicts how BAL sequentially
adds samples to the training set where they matter the most, that is, in a subset of the
feasible region where a typical simulation of the model tends to go. This figure makes
it clear that BAL is a crucial ingredient for the overall efficiency of our algorithm, as it
helps to alleviate the curse of dimensionality by focusing the GP approximation on the
equilibrium path, which is a portion of the state space that is much smaller than the entire
feasible set (cf. Fig. 6 below). Note that one iteration step takes about 125 seconds to
execute when running on an ordinary desktop, using 12 MPI processes of an AMD Ryzen
9 processor. However, it could be reduced by at least another order of magnitude by
simply using proportionally more CPUs on a compute cluster (see Appendix C for more
details regarding the parallelization).

Once the value function iteration has reached its termination criterion, we evaluate the
error measure (33) along a simulation path, which shows very low values of 𝐿2 = 2.8 ·10−8

% and 𝐿∞ = 2.6 · 10−6%, respectively (see Tab. 2). Comparing the solutions found here to
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Figure 5: This figure displays the initial set Xℎ𝐿 of 100 points (blue dots), uniformly drawn
from ℬ, which then are systematically enhanced via BAL. The first 20 points being added
to this set are depicted as red stars, whereas the subsequently added 20 points are labeled
as a yellow plus. Notice that the points are added where needed most, that is, in the
region where the simulation of the model tends to move along.

model solutions with errors that are about an order of magnitude worse no longer showed
a change in the value and policy functions. Thus, we conclude that the value function
iteration has converged.

In the left panel of Fig. 6, we depict the value function of state 1, the ‘low’ type. To do so,
we uniformly draw 3,000 points fromℬ at which we evaluate the corresponding predictive
mean of the GP. In the example here, we distinguish the points that are approximately
feasible or infeasible by looking at a lower bound of the value function, 𝐾𝑚𝑖𝑛 = (ℎ𝐿 −
𝑐)/(1 − 𝛽), that is, the minimal payout minus maximal cost in perpetuity. The samples
below this cutoff are labeled as infeasible.

The right panel of Fig. 6 displays a projection of the approximate feasible set for the
‘low’ type. Notice that our numerical characterization of the approximate feasible set
may not be seen as highly accurate as for instance in Fernandes and Phelan [2000]. This
has merely to do with the fact that we draw a large but finite sample, on which we then
evaluate and visualize a GP. If the sample chosen was much larger, the boundaries between
feasible and infeasible would be much more distinct. However, in the applications at hand,
determining the exact boundary is not of key relevance. What matters in the application
at hand is that the approximate feasible set contains the true feasible set and that the
approximate value and policy functions are of high quality where the model ‘lives,’ that
is, along the simulated path (cf. Fernandes and Phelan [2000, p. 236]).

In Fig. 7, we depict a simulation of the optimal policy. The latter was launched at
the point of the state space with the highest value function value and then was evolved
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Figure 6: The left panel depicts the value function as a function of �̂�(𝐿) and �̂�(𝐻) (denoted as
v1 and v2) for the low type. The (orange) stars depict the draws for which the value function
is feasible, that is, from 𝒱, whereas the (blue) dots represent points from ℬ that were
deemed infeasible. Recall that the state variables consist of the promise utilities. Thus,
one cannot simply assume a certain shape for the resulting value function. Furthermore,
since we have a continuous relaxation of the problem, we know that once we approach the
boundary of the feasible set, the value function will decrease, as can be seen in the figure.
The right panel displays–in the same color-coding as before–the approximate feasible set
at convergence as a function of the promise utilities projected to the low state.

forward by sequentially drawing 1,000 random shocks that follow the distribution given
by Π (cf. Eq. (36)). In the left panel of Fig. 7, we display the simulation trajectory within
the feasible set for the low type, starting in the lower left and then moving quickly up
to the top right of the feasible set. This figure demonstrates that the remainder of state
space is irrelevant in this model setting, as the optimal policy does not traverse it, thereby
clearly demonstrating that the BAL indeed puts the high resolution where needed most
(cf. Fig. 5). On the right panel of Fig. 7 we show a simulation of the utility promise to the
truth-telling agent. The (blue) line represents the utility promise, whereas the (black) dots
indicate the type in a given simulation step. The 0 represents the low state 𝐿, whereas
1 denotes the high state 𝐻. The (blue) line suggests that the agent accumulates a utility
promise by sacrificing the current utility for a higher baseline utility in the long run.
Concretely, the agent starts with a low utility promise, which then rises for the first 17
periods of the simulation. After that, it oscillates conditional on whether the agent is in
the high or low state, thereby receiving a higher payout in the high than in the low state.
As a result, the payout is higher than what he could have achieved on his own, that is,
it is higher than ℎ𝐿 and ℎ𝐻 , respectively. Loosely speaking, the contract behaves like a
state-dependent retirement account, where we first accumulate wealth and then live off
of the returns.
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Figure 7: The left panel depicts the path of a simulation (dashed-starred blue line) of the
optimal policy as a function of �̂�(𝐿) and �̂�(𝐻) (denoted as v1 and v2) for the low type within
the approximate feasible set 𝒱. The right panel shows the promise to the truth-telling
agent as a function of the simulation step 𝑡 and its respective current type. The low type
is encoded by a value 0, whereas the high type is represented by a 1 on the 𝑦-axis.

Comparing our results to those reported by Fernandes and Phelan [2000], we can
(by visual inspection) state that we replicate their findings.29 In summary, our sequence
of figures and performance numbers verify that our proposed dynamic programming
method can successfully solve dynamic incentive problems. Thus, we are now prepared
to address in Sec. 5 dynamic incentive models with heterogeneous agents.

5 A Dynamic Incentive Model with Heterogeneous Agents
To study how heterogeneity in risk across agents affects adverse selection in insurance
markets, we present now the solutions to a stylized heterogeneous agents model with
multiple persistent types (cf. Sec. 3.2). We start by summarizing in Sec. 5.1 its parameter-
ization and the convergence of the numerical solution. After that, we discuss in Sec. 5.2
the results and their implications.

5.1 Parameterization and Numerical Convergence
We consider again a discrete-time economy that consists of a risk-neutral principal that
minimizes her cost, and 𝑛 = 2 risk-averse agents of 𝑚𝑖 = 2 different, persistent shocks per
agent 𝑖. Consequently, the resulting state space of promised utilities is four-dimensional

29Note that Fernandes and Phelan [2000] do not report any convergence numbers, policies, or run-times.
Thus, we cannot perform a more detailed comparison beyond a visual inspection of the value functions and
approximate feasible sets.
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(cf. Sec. 3.2). The agents are further differentiated by their risk profile. For both agents,
we choose the utility over consumption 𝑐𝑖 to be

𝑈𝑖(𝑐𝑖) =
√
𝑐𝑖 , (38)

where 𝑐𝑖 is restricted to the compact interval [0, 1]. On an individual level, both agents
are exposed to a “low” shock (state 1; also denoted as 𝐿), and a “high” shock (state
2; also denoted as 𝐻). The corresponding endowments are the same for both agents,
and are denoted by ℎ𝐿 and ℎ𝐻 (see Tab. 3 for their numerical values). As above in the
single-agent setting (cf. Sec. 4.6), the agents “learn” their private type in each period, and
thereafter report it to the principal. Subsequently, she transfers consumption to every agent
conditional on what the particular agent reported. Since this problem depends on the full
history of reports, we need to use the recursive reformulation that was introduced before
(cf. Sec. 4.4) to avoid the previously mentioned numerical difficulties. Furthermore, we
entertain again the assumption by Fernandes and Phelan [2000] that agents cannot claim
to be a higher type than they are.

Heterogeneity across the two agents is introduced by equipping them with different
risk profiles. We model the first agent as the one in the single-agent benchmark (cf.
Sec. 4.6). In contrast, we choose the parameterization for the second agent in such a way
that he has a lower risk of dropping from the high state H into the low state L compared to
the first agent. The Markov process governing the endowments of the first agent is given
by the following transition probabilities across the different types:

Π(1) =

[
𝜋(1)(𝐿|𝐿) 𝜋(1)(𝐻 |𝐿)
𝜋(1)(𝐿|𝐻) 𝜋(1)(𝐻 |𝐻)

]
=

[
0.9 0.1
0.1 0.9

]
, (39)

whereas the Markov chain describing the second agent is chosen as

Π(2) =

[
𝜋(2)(𝐿|𝐿) 𝜋(2)(𝐻 |𝐿)
𝜋(2)(𝐿|𝐻) 𝜋(2)(𝐻 |𝐻)

]
=

[
0.9 0.1

0.0667 0.9333

]
. (40)

It is now straightforward to generalize those two components into a stylized heterogeneous
agents setting by assembling the transition matrices Π(i) from the individual agents into a
single one by following Eq. (14), that is,

Π =

[
Π(1) 0

0 Π(2)

]
, (41)

where we assume to model two distinct agents, and where a transition from one to the other
is not possible. Recall that the stationary distribution of a Markov chain with a transition
matrix 𝑃 is given by some vector, �̂�, such that �̂�𝑃 = �̂�. In other words, over the long run,
no matter what the starting state was, the proportion of time the chain spends in state 𝑘 is
�̂�𝑘 for all 𝑘. In a two-dimensional problem, the stationary distribution �̂� for a stochastic
matrix 𝑃 = (𝑃𝑖 𝑗) (such as Π(1) and Π(2)) is given by (𝑃21/(𝑃12 + 𝑃21), 1 − 𝑃21/(𝑃12 + 𝑃21)).
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Parameter Value
𝛽 0.9
ℎ𝐻 0.35
ℎ𝐿 0.1

[𝑐, 𝑐] [0, 1]
ℬ [0, 10]4

Table 3: Parameterization of the heterogeneous agent model.

Thus, it follows that agent 1 spends 50% of the time in either of the two states, whereas
agent 2 is 40% of the time in the low state, and 60% in the high state. Furthermore, starting
from a high state, agent 2 has a 33% lower risk of dropping into the low state compared
to agent 1. The rationale behind choosing this setup is that we intend to model a marked,
but not too significant difference, between the two agents. If, by contrast, the risk profile
across the two types would differ significantly, such information might be public in some
secondary metric, such as in the case when one compares insuring young and old agents,
thus rendering the “hidden information” modeling approach invalid. The remaining
parameterization of the model is summarized in Tab. 3.

We next proceed to solve the heterogeneous agent model by using algorithm 1. As for
the two-dimensional benchmark model (cf. Sec. 4.6), we need to provide an initial guess
for the value function at each of the four-dimensional sample points �̂� = (�̂�1

𝜃 , �̂�
2
𝜃), that is,

𝐾 𝑖 ,𝑖𝑛𝑖𝑡𝜃 = (𝜋(𝑖)(𝐿|𝜃)(ℎ𝐿−𝑈−1(�̂� 𝑖𝜃(𝐿)(1−𝛽)))+𝜋
(𝑖)(𝐻 |𝜃)(ℎ𝐻−𝑈−1(�̂� 𝑖𝜃(𝐻)(1−𝛽))))/(1−𝛽), (42)

where 𝜃 ∈ {𝐿, 𝐻}. We start the value function iteration by drawing 128 points for each
type and each agent from the domainℬ = [0, 10]4. We iterate until we reach a ‘global error’
smaller than 𝜖 = 1 · 10−3% in the 𝐿2-norm (cf. Tab. 4). Our numerical experiments show
that in the heterogeneous agents setting too, at this level of accuracy, the value function
and policies do not change anymore, even if the error is further decreased. During the
value function iteration procedure, we perform BAL by again generating candidate points
along a simulation path of 2, 000 steps every five iteration steps until the training sets
𝒟 𝑖

𝜃 contain about 370 samples per agent and type. To approximate the value and policy
functions, we use a piece-wise polynomial kernel with 𝑞 = 0.

Solving this four-dimensional model requires substantially more computing time than
the two-dimensional benchmark model studied in Sec. 4.6. Using two compute nodes with
Intel Ice Lake processors that are each equipped with 64 cores and that are installed at
the research computing cluster of Lancaster University, our numerical experiments show
that at the beginning of the value function procedure, one iteration step consumes less
than 2 minutes. In contrast, at convergence, when many additional samples have been
added to the training set via BAL, an iteration step takes around 8 minutes. The increase
in compute time compared to the baseline model discussed in Sec. 4.6 is a consequence
of the fact that the optimizer requires more time to solve the individual problems (cf.
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Error type 𝐿2 [%] 𝐿∞ [%]
global error 7.7 · 10−4 4.0 · 10−3

error along a simulated path 7.4 · 10−8 5.5 · 10−6

Table 4: Average and maximum percentage errors at convergence. The first error type,
the ‘global error,’ was computed by evaluating Eq. (33) at uniformly drawn 1, 000 samples
on ℬ, whereas the ’error along a simulated path’ was computed by generating the same
number of observations along a simulated path for each agent. The simulation was started
at the maximizer of the associated value function.

maximal payoff to principal Low type 𝐿 High type 𝐻
One agent
high-risk agent 1.193 1.616
low-risk agent 1.199 1.774
Two agents
high-risk agent 1.161 1.607
low-risk agent 1.193 1.774

Table 5: Optimal payoff to the principal for all model combinations.

Eq. (34)) than in the simpler model. In addition, the time-to-solution suffers from the
cubic algorithmic complexity 𝒪(𝑁3) of standard GPs with respect to the sample size 𝑁 :
Since every 𝒟 𝑖

𝜃 consists of about twice as many data points as in the benchmark model, the
runtime increases by about an additional order of magnitude per value function iteration
step. However, the runtime could again substantially be reduced by simply using more
CPUs (cf. Appendix C), and also by applying scalable GPs (cf. Appendix B, and references
therein).

Table 4 reports the errors once the value function iteration has converged. As before,
we find very low values for the different error measures such as 𝐿2 = 7.4 · 10−8% and
𝐿∞ = 5.5 · 10−6% along a simulated path. Thus, reaching such low errors allows us next to
study the implications of the model solutions.

5.2 Results
The main issue of hidden heterogeneity in insurance markets, such as unknown risk
profiles, is that it can impede the proper functioning of markets by imposing significant
costs on the insurers, rendering it unprofitable to offer insurance [Akerlof, 1970]. Thus, to
obtain a notion of how additional hidden information affects the payoff to the principal,
one needs to find the optimal value for the contract in the case of a model that consists of
multiple agents with different risks, and compare them to the situation where one studies
these agents in isolation. Formally, the payoff is specified by the quantity 𝐾 (�̃� (𝜃) , 𝜃),
where 𝜃 ∈ {𝐿, 𝐻}, and �̃�(𝜃) ∈ arg max𝑣 𝐾 (𝑣, 𝜃). Monitoring this metric provides a first
hint on how costly adverse selection is, thereby allowing us to answer questions such as
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Mean payoff
One agent
high-risk agent -3.12
low-risk agent -1.67
Two agents
high-risk agent -6.77
low-risk agent -4.55

Table 6: Average payoff to the principal for all model combinations along a simulation
path of length 1, 000. All the simulations were launched at the maximizer of the associated
value function.

whether adding high-risk individuals to the pool of customers decreases payoffs for the
insurance company, that is, the principal.

To establish a baseline, we first consider the payoffs from the two-dimensional bench-
mark models of the low and high-risk agent we introduced in Sec. 5.1 separately. The
results are summarized in the top two rows of Tab. 5 and are denoted as “One agent”. As
shown there, the payoffs to the insurance for solely insuring the high-risk agent are 1.193
and 1.616 when we assume that the agent is either in the low state 𝐿 or the high state 𝐻,
respectively. In contrast, the payoffs to the principal for solely insuring the low-risk agent
are 1.199 and 1.774 if we assume again that the agent is in state 𝐿 or 𝐻, respectively.

Next, we consider the heterogeneous agents model, where both the low and high-risk
agents are present simultaneously. In this setting, the principal offers four contracts; two
for the high-risk agent and two for the low-risk agent. These contracts are conditional on
the state the agent is currently in. The computed payoffs are summarized in the lower
two rows of Tab. 5 and are denoted as “Two agents”. In this joint problem, the principal’s
optimal values are 1.161 and 1.607 for the high-risk agent, and 1.193 and 1.774 for the
low-risk agent. We can see that the payoffs in the model with heterogeneous agents are
up to 2.5% lower than in the benchmark case. This finding is unsurprising since, in the
heterogeneous agents model, the principal has to incentivize the agents to report truthfully
for four possible reports compared to two in the benchmark case. This result is due to the
fact that there are more constraints in the heterogeneous agent model. Consequently, the
contract’s payoff should be less or equal than in the model with solely one agent.

To complement this first finding on how heterogeneity in risk affects adverse selection,
we provide several results from simulations, as they help us describe the long-run behavior
of the contract. Tab. 6 reports the principal’s mean payoff along a simulation for the
two different single-agent benchmark models (denoted as “One agent”), as well as the
heterogeneous agents model (denoted as “Two agents”). This table shows that for the
heterogeneous agents’ case, the average payoff is −6.77 and −4.77 for high and low-
risk agents, whereas for the single agent models, those values yield −3.12 and −1.67,
respectively. We can see that the average payoff to the principal along a simulation is
markedly lower in the heterogeneous agents’ case compared to the single-agent models.
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Figure 8: The left panel shows the promise to the high-risk, truth-telling agent as a
function of the simulation step 𝑡 and his respective current type. The low type is encoded
by 0, whereas the high type is represented by a 1 on the 𝑦-axis. The right panel displays
projections of utility promises along 1, 000 simulation steps for the agent with the high-
risk type (blue dots) and the low-risk type (orange stars). The 𝑧-axis, labeled as “state”,
indicates the discrete state the simulation is in. The numbers 0 and 1 encode the 𝐿 and 𝐻
state for the high-risk agent, whereas the numbers 2 and 3 represent the low-risk agent.
𝑣(𝐿) and 𝑣(𝐻) encode the promise to the agent when he previously reported 𝐿 or 𝐻,
respectively.

To further investigate the discrepancy between the findings reported in Tab. 5 and
Tab. 6, we take a closer look at the simulated behavior of the contract. The left panel of
Fig. 8 displays the utility promise to the truth-telling high-risk agent along a simulation
of 1, 000 steps length, and the corresponding type he is in. We can see that for the first 130
simulation steps, the utility promises steadily increase to a maximum level of just below
10. After these 130 periods, the contract behavior becomes almost static, as can be seen
by the fact that it alternates between a narrow range of values, depending on the current
reported shock. Comparing these simulation results to those from the benchmark model
(cf. the right panel of Fig. 7), we can see that the promises to the truth-telling agent are
higher in the heterogeneous agents model than in the original problem, which implies
that the payoff of the principal is lower. The latter finding is also reflected by the values
reported in Tab. 6.

The right panel of Fig. 8 depicts projections of utility promises for two simulations,
one for each risk type, along 1, 000 steps. The 𝑧-axis encodes the type the simulation was
in. The values 0 and 1 represent the low and high state for the high-risk agent, whereas
the levels 2 and 3 represent the low and high type of the low-risk agent, respectively. Fur-
thermore, the 𝑣(𝐿)-axis and the 𝑣(𝐻)-axis represent the utility promises to the respective
agent if he reported 𝐿 or 𝐻. The overall behavior we observe here for the heterogeneous
agents case resembles that previously observed for the one-agent benchmark model (cf.
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the left panel of Fig. 7): The simulation starts somewhere in the lower left corner of the
set of promised utilities, but then quickly ends up in a relatively focused region in the top
right corner in the space of utility promises.

How do the differences between the simulations of the baseline model and those
presented in this section mesh with the fact that the value of the contract for the principal
is almost identical, no matter whether we consider a setting with one or two agents? This
question can be answered by the fact that in the particular model setting we are using
(cf. Fernandes and Phelan [2000]), the relatively small discount factor 𝛽 = 0.9 eliminates
the influence of the long-run behavior on the contract at time zero, and therefore enables
the principal to postpone the payments to the agents into the future. To put a concrete
number on this problem: at a simulation step 100, the payoff is discounted with a value
as small as 𝛽100 ≈ 2.7 · 10−5 at time zero.

In summary, the numerical results of our stylized dynamic adverse selection model
with heterogeneous agents and persistent shocks provide two main insights. First, our
findings imply that it is unsurprising that observing adverse selection in real data is a
difficult task (see, e.g., Spinnewĳn [2017], and references therein). For the infinite horizon
model under consideration, the contracting behavior changes during its lifetime (cf. the
left panel of Fig. 8). In particular, the price of adverse selection only shows up at certain
times in the contract. Therefore, it is unclear how such behavior could be extracted from
real data, as every insurance company typically has customers at different stages of their
contract. Second, one of the central arguments for government intervention in insurance
markets is that heterogeneity in risk causes a market failure due to its impact on the
profitability of the insurance contract [Akerlof, 1970]. In contrast, our findings suggest
that this impact is too small to affect profitability to a significant extent, thereby confirming
the findings of the empirical literature, which failed to find adverse selection in several
markets (see, e.g., Cardon and Hendel [2001]).

Finally, note that in order to quantify our findings more precisely, a carefully calibrated
model would be required. However, this is beyond the scope of this article. The main
objective of the work presented here is to lay the foundations for making dynamic adverse
selection models with heterogeneous agents and persistent shocks numerically tractable.

6 Conclusion
This article makes a series of contributions that enable the study of dynamic incentive
models with heterogeneous agents and persistent shocks, that is, for high-dimensional
models where the feasible set is not known ex ante. First, we introduce a penalty-based
reformulation of dynamic incentive problems that is numerically easier to handle than
the standard recursive formulation commonly used in the literature, as it allows us to
bypass the explicit computation of the feasible set. Second, we provide formal proof
that this reformulation converges to the same solution as the original model. Third,
we propose a scalable and flexible value function iteration algorithm that combines
Gaussian process regression with Bayesian active learning for solving a wide range of
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high-dimensional dynamic programming problems, including–but not limited–to those
studied in this paper. Fourth, to demonstrate the capabilities of our framework, we apply
it to the dynamic adverse selection model by Fernandes and Phelan [2000] as a verifi-
cation test for our method, as the approximate numerical solutions are known for their
two-dimensional baseline setting, and the results can be compared. Furthermore, since
the models we study no longer have analytical solutions, but have to be determined it-
eratively, the final ingredients for our framework are measures to assess the credibility
and correctness of our computational results. To do so, we follow the best practices
in a sub-field of computational sciences called validate, verify, and uncertainty quantifica-
tion, and propose to use two particular error criteria jointly. Fifth, we use our modeling
framework to study to what extent risk heterogeneity causes adverse selection in insur-
ance markets, a question where the theoretical and empirical literature are at odds, and
that could not be answered using existing techniques. We find that considering multi-
ple agents with a hidden risk profile only has a minor effect on the overall value of the
contract. This observation suggests that, at least in our model setting, heterogeneity in
risks fails to explain adverse selection, thereby confirming the findings of the empirical
literature [Cardon and Hendel, 2001] in a numerical setting. Our results thus imply that
the scope for government intervention due to adverse selection is limited by the consid-
ered contracting environment and that care has to be taken when extrapolating findings
from simplified models. In addition, all our methodological developments are supple-
mented by a Python-based toolbox that can be found under the following URL: https:
//github.com/GaussianProcessesForDynamicEcon/DynamicIncentiveProblems.

In summary, this all suggests that our proposed framework will enable researchers to
study dynamic incentive problems of a greater richness than was possible prior to this
work, as they no longer need to drastically restrict their modeling choices from the outset.

Moreover, we emphasize that while the focus of the work presented in this paper
lies in solving dynamic adverse selection problems with discrete, persistent shocks, the
methods proposed here, being generic, have a far broader scope: They can prove useful
in solving models where one or several of the following features occur: the state space is
endogenous, of irregular geometry, or multi-dimensional. These situations can arise in
problems such as:

• Dynamic adverse selection with a continuum of hidden states. If one applies the
first-order approach to tackle such models, it becomes necessary to track the utility
promise and the marginal utility promise as part of the state space. Furthermore, not
all promises are feasible.

• Dynamic moral hazard problems with multiple agents. Such models require keeping
track of the utility promises to every agent. If the principal is constrained, for
example, via a budget, then the state space becomes endogenous, as not all states
will be affordable. That is, there are promises that cannot be paid with current cash
on hand.

• Dynamic games. In these models, one needs to keep track of the history in order for
the players to punish or reward the past behavior of their opponents. This history
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dependence also has a recursive formulation using promise utilities as an endogenous
state space.

• Problems with debt and endogenous default. These models typically require that
the researcher endogenously determines the borrowing limits as part of the model.
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A Machine Learning Glossary
In this appendix, we provide a short glossary of terms that we use in this paper that are
common in the machine learning literature. In addition, we try to link this terminology
to the terms commonly used in economics. For a more complete overview, see, for ex-
ample, Goodfellow et al. [2016], Bishop [2006], and https://developers.google.com/
machine-learning/glossary, as well as Igami [2020], who clarifies the connections be-
tween certain algorithms to develop artificial intelligence and the econometrics of dynamic
structural models.

• Machine learning: Mitchell [1997] provides a succinct definition: A computer program
is said to learn from experience𝐸with respect to some class of tasks𝑇 and performance measure
𝑃, if its performance at tasks in 𝑇, as measured by 𝑃, improves with experience 𝐸. In simple
language, machine learning is a field in which human-made algorithms (such as linear
regression or GPR) have the ability to learn by themselves and make predictions for
unseen data. In the context of our proposed algorithm, 𝐸 corresponds to the training
set 𝒟 that contains solutions to the Bellman equation at various locations of the state
space at a given iteration step 𝑗, whereas the term prediction in our context refers to
interpolating the value and policy functions.

• Model: A machine learning model is a data structure that stores a representation of a
dataset, for example, a GP and its hyperparameters that are used to fit a value function
based on a collection of Bellman equations solved at various feasible locations in the
state space in a given iteration step of the value function iteration algorithm.

• Training set: A set of observations used to generate machine learning models. In
our concrete case, the training set contains a collection of solutions to the Bellman
operator, solved at a particular point in the state space at each iteration step of the
value function procedure.

• Hyperparameters: They are higher-level properties of a model, such as how fast it
can learn, or the complexity of a model. In the context of GPs, the hyperparameters
are, for instance, the characteristic lengthscale and variability defining the SE kernel
(cf. Eq. (22)).

• Training: Training a model such as a GP means learning, that is, determining good
values for all the hyperparameters, for example, via maximizing the likelihood.

• Supervised machine learning: Training a model using a labeled dataset. A label
refers to an answer portion of an observation in supervised learning. For example, in
our case, we have labels to classify observations into feasible and infeasible (cf. Sec. 3.1).

– Regression: Predicting a continuous output. In application, prediction refers to
interpolate value or policy functions.

– Classification: Predicting a categorical output, such as feasible and infeasible.
• Unsupervised learning: Training a model to find patterns in an unlabeled dataset.

An example of unsupervised machine learning popular in economics is principal
component analysis (PCA).
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• Reinforcement learning: A branch of machine learning that, among other things, is
concerned with solving dynamic programming problems. Reinforcement learning is
a data-driven approach to solving dynamic programming problems, where the data
can be created artificially via simulations or by real-life observations. See Sutton and
Barto [2018] for a thorough introduction.

• Active learning: A training approach in which the algorithm chooses some of the
data it learns from. Active learning is particularly valuable when labeled examples
are scarce or expensive to obtain, such as solving constrained optimization problems
within every step of the value function iteration. Instead of blindly seeking a diverse
range of labeled examples, an active learning algorithm selectively seeks the particu-
lar range of examples it needs for learning. In the algorithm we propose in this paper,
we use BAL to enrich the training set so that the Bellman equations are solved at the
locations of the state space where they improve the GP function approximation the
most (cf. Sec. 4.3).

B Computational bottlenecks
Let𝑁 be the number of observations in the training set 𝒟 (cf. Sec. 4.2). The computational
cost of standard GPR is dominated by the need to perform a Cholesky decomposition of
the 𝑁 × 𝑁 covariance matrix at each iteration step of Alg. 1, which scales as 𝑂(𝑁3) [Ras-
mussen and Williams, 2005]. Thus, using standard implementations of GPs will cause
problems when 𝑁 is in the order of 10, 000. In such cases, one has to resort to fast GP
approximations. In our applications, we use GPs based on Blackbox Matrix-Matrix multi-
plication (BBMM) [Gardner et al., 2018]. BBMM inference uses a modified batched version
of the conjugate gradients algorithm to derive all terms for training and inference in a sin-
gle call. BBMM reduces the asymptotic complexity of exact GP inference from 𝑂(𝑁3) to
𝑂(𝑁2). Moreover, there are other recent fast methods available such as KISS-GP [Wilson
and Nickisch, 2015] or Deep Kernel Learning [Wilson et al., 2016] that allow GPs to scale
up to millions of observations if one prescribes some structure in the prior covariance
kernels. Note that we have implemented and tested those kernels in the Python code
accompanying this paper. However, in the context of our models, we achieved the best
overall performance with BBMM. For a more detailed discussion, see Murphy [2022, Ch.
18.5], and references therein.

C Parallelization
In order to solve “large” problems in a reasonably short time, we use parallel computation.
There is one key location where the value function iteration algorithm described in Sec. 4.5
can trivially exploit the availability of parallel computing: the evaluation of the Bellman
operator. At every iteration step 𝑗 of the value function procedure, there are 𝑚 · 𝑁
independent optimization problems that need to be solved and are all independent from
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each other. Recall that 𝑚 is the number of discrete states (resulting, for instance, from the
number of persistent, discrete shocks in the model) in the model, and 𝑁 is the number of
observations per discrete state. Consequently, the generation of the training data for the
GPs is embarrassingly parallel. We now outline the basic steps in our parallelization using
the Message Passing Interface (MPI; see, e.g., Skjellum et al. [1999]). For simplicity, we
assume that we have 𝑛cpu computational cores available, which we refer to as workers or
processes (that correspond to individual MPI processes) from this point on. At each iteration
step 𝑗 of the value function iteration algorithm, we broadcast the current value function
to all processes such that every process can evaluate the Bellman operator independently.
The communication cost required to perform this operation is negligibly small. Then, the
collection of the𝑁 training inputs per discrete state 𝜃 (see Alg. 1) becomes embarrassingly
parallelizable. In consequence, each worker simply evaluates the Bellman operator at a
fraction of the test points, that is, and every worker is assigned with a fractional workload
equal to solving (𝑚 · 𝑁)/𝑛cpu times. This is where most of the computational time is
spent. Subsequently, all the workers gather the distributed data. This operation also has
a negligible communication cost. Furthermore, the fitting of the GP hyperparameters is
also parallelized across MPI workers, thereby also being moderately accelerated.

D Why use Gaussian processes?
Apart from GPs, also other methods of machine learning, such as deep neural networks
(see, e.g., Goodfellow et al. [2016]) have also recently piqued the interest of computational
economists to solve and estimate dynamic models (see, e.g. Azinovic et al. [2022], Villa
and Valaitis [2018], Duarte [2018], Fernández-Villaverde et al. [2019], Maliar et al. [2021],
Didisheim et al. [2020], Chen et al. [2021], Ebrahimi Kahou et al. [2021]. However, in our
setting, we deem GPs the more suitable choice as, among many reasons, their expres-
siveness allows to obtain excellent predictions with considerably fewer observations. In
addition, GPs provide an estimate of uncertainty or confidence in the predictions through
the predictive variance. While the predictive mean is often used as the best guess of the
output, that is, the interpolation value, the full distribution can be used in a meaningful
way. For example, we can estimate a 95% confidence bound for the predictions, which
can be used to measure control performance (cf. Sec. 4.3). Moreover, GPs allow to include
prior knowledge of the system behavior by defining priors on the hyperparameters or
by constructing a particular structure of the covariance function. This feature enables
incorporating domain knowledge into the GP model to improve its accuracy. For more
reasons on when to apply GPs instead of neural networks, see Murphy [2022, Ch. 18.1].
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