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Abstract

Atkinson’s Theorem (Atkinson, 1970) is a classic result in inequality measurement. It estab-

lishes Lorenz dominance as a useful criterion for comparative judgements of inequality between

distributions. If a Lorenz distribution A dominates distribution B, then all indices in a broad

class of measures must confirm A as less unequal than B. Recent research, however, shows that

standard inequality theory cannot be applied to ordinal data (Zheng, 2008), such as self-reported

health status or educational attainment. A new theory in development (Apouey, 2007; Abul

Naga and Yalcin, 2008) measures disparity of ordinal data as polarization. Typically a criterion

used to compare distributions is the polarization relation as proposed by Allison and Foster

(AF) (2004). We characterize classes of polarization measures equivalent to the AF relation

analogously to Atkinson’s original approach.
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1 Introduction

For several decades now, studies of well-being have sought to come to grips with measuring non-

income dimensions. Increasingly, this stance has also pervaded policy making, as exemplified by

the announcement of a happiness index by the British Prime Minister in November 2011, and by

the launching of the OECD Better Life index in May 2012. A great many non-income data, such

as the widely used self-reported health status data (Apouey, 2007; Zheng, 2011) and the happiness

data (Di Tella and McCulloch, 2006; Diener and Lucas, 1999; Frey and Stutzer, 2002; Kahneman

and Krueger, 2006; Layard, 2005; Oswald, 1997), are ordinal. To be precise, these are data that

are ordinal and discrete. By ordinal we mean invariant with respect to monotone transformations

(as opposed to cardinal, when particular numbers are meaningful). Discrete means that values of

variables are concentrated on a fixed number of points, as opposed to continuous variables which
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accord a particular value with probability zero.1 In health surveys, for example, individuals are asked

to choose one of five categories to describe their health, namely, very bad, bad, fine, good, very good.

The standard procedure for constructing measures of concentration from ordinal variables, such as

health status, is to assign numerical values to categories in a manner consistent with the ordering

of the preferences; this procedure is referred to as scaling. Clearly, any increasing transformation of

a scale reflects the same ordering of categories. The numerical data lend themselves to polarization

indices in order to measure polarization, but such a tempting procedure is flawed. Allison and

Foster (2004) and Kobus and Miłoś (2012) provided examples of inequality measures that change

the ranking of distributions depending on the scale of an ordinal indicator. Standard polarization

measures (Wolfson 1994, 1997; Wang and Tsui 2000) suffer from similar problems as the following

example illustrates. As Apouey (2007) notes, such measures are also only applicable to cardinal

data.

Let the distributions of self-reported health status among men, πM , and among women, πW , be

πM = (0.01, 0.48, 0.02, 0.48, 0.01) and πW = (0.31, 0.08, 0.22, 0.08, 0.31); that is, forty eight percent

of men are in the second health category and thirty one percent of women in the first category and so

on. By construction, a higher category number indicates better health status. Category m = 3 is the

common median. Consider Wang and Tsui index (Wang and Tsui 2000) PWT = θ
∑n
i=1 |ci− cm|rpi,

where c = (c1, . . . , ci, . . . , cn) denotes a scale i.e., a sequence of numbers assigned to an ordinal

variable, r ∈ (0, 1), and θ is a constant which we fix to one. We put r = 0.5. We now show that

there exist two different scales, c and c̃, such that under scale c health inequality is higher among

women than men (PWT (πW ) > PWT (πM )) and under scale c̃ health inequality is higher among men

than women (PWT (πW ) < PWT (πM )). We have PWT (πW ) = 0.31
√
|c1 − c3| + 0.08

√
|c2 − c3| +

0.08
√
|c4 − c3|+ 0.31

√
|c5 − c3| > PWT (πM ) = 0.01

√
|c1 − c3|+ 0.48

√
|c2 − c3|+ 0.48

√
|c4 − c3|+

0.01
√
|c5 − c3|, that is, 3/4

(√
|c1 − c3|+

√
|c5 − c3|

)
>
√
|c2 − c3| +

√
|c4 − c3|. This holds for

e.g., c = (1, 5, 9, 13, 17), because 3
√

2 > 4. On the other hand, for PWT (πW ) < PWT (πM ) to hold

we need
√
|c2 − c3| +

√
|c4 − c3| > 3/4

(√
|c1 − c3|+

√
|c5 − c3|

)
. Since |c1 − c3| > |c2 − c3| and

|c5−c3| > |c4−c3|, we also have
√
|c1 − c3|+

√
|c5 − c3| >

√
|c2 − c3|+

√
|c4 − c3|. Both inequalities

are fulfilled for e.g., c̃ = (1, 2, 6, 10, 11), since 2
√

5 > 2 + 2 > 3/2(
√

5).

Recently, researchers have acknowledged this problem, and a new theory for measuring disper-

sion of ordinal data has evolved, notably Blair and Lacy (2000), Allison and Foster (2004), Apouey

(2007), Abul Naga and Yalcin (2008), Zheng (2010, 2008), and Kobus and Miłoś (2012). This body

of work recognizes that, in the case of ordinal data, one should work with probability distributions

rather than values assigned to categories. Then, however, a problem arises with the distinction

between inequality and polarization. Polarization refers to the phenomenon of the “disappearing
1Other types of data are e.g., ordinal and continuous (such as the Body Mass Index (BMI) which, as the ratio

of two continuous variables, is continuous but the differences between two BMI’s are meaningful only in an ordinal

sense); cardinal and discrete data (the distribution of the number of cars in households, there is a fixed number of

values, and particular values are meaningful).

2



middle class” (Wolfson, 1994) and the emergence of a divided population. There is already broad

literature on polarization measurement, with particular emphasis on how it differs from inequality

measurement (Esteban and Ray, 2012). For cardinal variables such as income this difference is

clear; inequality decreases following the Pigou-Dalton transfer, whereas polarization may increase

i.e. if the transfer happens within groups, then it increases group homogeneity. The Pigou-Dalton

transfer is a rank-preserving transfer from a “rich” individual to a “poor” individual. In an ordinal

framework, it is difficult to imagine a meaningful version of a Pigou-Dalton transfer e.g., what would

transferring health from a healthy to a less healthy individual mean? Even when one thinks about

an underlying good that is transferable, the impact of the Pigou-Dalton transfer may remain inde-

terminate, depending on whether the transfer is sufficient to move individuals to different categories.

As a consequence, the distinction between inequality and polarization for cardinal variables may not

be easily translated into an ordinal setting.

In the standard inequality measurement literature, inequality is measured as deviation from the

perfectly equal distribution, namely, a distribution in which every individual exhibits the same value

for a given cardinal attribute, which then by definition is the mean value of the attribute. A natural

candidate for a perfectly equal (and the non polarized distribution) in an ordinal framework is a

distribution in which every individual is in the same category e.g., every individual enjoys the same

health status. Yet, while in a standard framework a perfectly equal distribution is unique, with

ordinal data there are as many perfectly equal distributions as there are categories. The choice

of perfectly equal distribution is arbitrary, but has an influence on results. Researchers avoid the

problem using deviation from a perfectly unequal distribution. A typical approach in the literature

(Leik, 1966; Berry and Mielke, 1992; Blair and Lacy, 2000; Allison and Foster, 2004) is to treat

the distribution in which half the probability mass is concentrated in the lowest category and half

in the highest category as the most unequal distribution. Yet while such a distribution is uniquely

defined, it reflects polarization rather than inequality because it measures concentration around the

tails. Clearly, more research is needed to determine any meaningful difference between inequality

and polarization in an ordinal framework. So far “a noteworthy approach is to measure the disparity

of ordinal data as polarization” (Zheng, 2008). We follow this approach here.

A criterion, typically used to compare distributions of ordinal variables in terms of dispersion,

is the partial ordering proposed by Allison and Foster (2004). A natural question arises about

robustness of comparisons based on their criterion. Formally, robustness here means that the ranking

of distributions induced by the AF condition is consistent with a class of polarization indices. In

a standard framework, Atkinson’s Theorem (Atkinson, 1970) provides an answer to this question.

The Theorem puts Lorenz dominance in the centre of inequality measurement theory making it

a robust criterion for evaluating income distributions. Formally, let x ∈ Rn denote a vector of

incomes; the Lorenz curve displays the percentage of income accruing to the 100l percent poorest

individuals in x for all l ∈ (0, 1). We say that distribution x Lorenz dominates distribution y if

the Lorenz curve for distribution x is the same as or lies above the Lorenz curve for distribution
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y for every l ∈ (0, 1) and strictly lies above distribution y for some l. Atkinson (1970) shows that

Lorenz dominance is the largest relation2 such that all symmetric inequality indices fulfilling the

Pigou-Dalton Transfer Principle do not decrease. Symmetry means that an index is invariant to

permutations of individuals, namely, individual labels do not matter for inequality measurement.

As a consequence, the measurement of inequality becomes largely independent of the arbitrariness

involved in using specific inequality indices. Instead of calculating inequalities in two distributions

using different inequality indices, one can compare two distributions on the basis of the Lorenz

criterion and the obtained result is compatible with many indices of inequality.

In this paper we prove a similar result in an ordinal setting. In the Atkinsonian spirit we relate

the Allison-Foster relation (which the authors view as analogous to Lorenz dominance in a standard

framework) to polarization measures. We start by generalizing the AF relation. In their paper

Allison and Foster (2004) assumed that two distributions had a unique and common median. This

assumption is not needed and can be generalized to include distributions with multiple medians

that share at least one median. Then, as main results we characterize two classes of polarization

measures which are equivalent to such a generalized AF relation. The AF is the largest relation

with which all polarization indices fulfilling “a median-preserving spread” principle and all T -convex

polarization indices agree.

A median-preserving spread is a (single) transfer of probability mass away from the median

such that the median remains unchanged.3 As already mentioned the disappearing middle class

phenomenon lies at the heart of polarization literature (Levy and Murnane, 1992; Wolfson, 1994).

Most studies define the middle by the median income and high concentration around the median

corresponds to low polarization (Blackburn and Bloom 1985; Foster and Wolfson 1992, 2009; Wolfson

1994; Wang and Tsui 2000).4 Therefore it is natural to assume that transferring probability away

from the median cannot decrease polarization. For instance, the Wang and Tsui (2000) index is

essentially a measure of the distance from the distribution for which all mass is concentrated in

the median category, which is assumed to represent the case of minimum polarization. Theorem 1

states that the unanimous ranking, rendered by the class of indices that do not decrease following

a median-preserving spread, is the AF relation. That the AF relation is sufficient to guarantee that

an index fulfills median-preserving spread principle is hardly surprising; however, it is not obvious

that the AF gives us the widest class of distributions5 that can be ranked without further restriction

on the indices.

A T -convex polarization index does not decrease after multiplication via a T -convex matrix. A

T -convex matrix is a column stochastic matrix which is formed from an upper triangular matrix
2Note that relations can be identified with sets; largest here is used as largest in the sense of inclusion.
3With two and more medians, such an assertion is not necessary, that is, transferring mass away from medians

does not remove medians (cf. Remark 6).
4Another strand of literature treats polarization as a clustering over arbitrary number of groups. Bimodal distri-

bution, however, emerges as the most polarized distribution (Esteban and Ray 1994).
5To be precise, as a two-argument relation the AF gives us the widest (in the sense of inclusion) subset of the set

of pairs of distributions.
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for columns below the median and a lower triangular matrix for columns above the median. A

multiplication via such a matrix increases the concentration of probability around the tails. If the

median is unique, then it needs to be fixed; otherwise multiplication via a T -concave matrix may

change the median. In the case of two and more medians, multiplication by a T -concave matrix

does not remove medians. Analogously, although in a reverse direction, in a standard framework,

multiplication by a bistochastic matrix is conceived as a process that concentrates a distribution

around the mean (e.g. Tsui (1999)). A function is S-convex (S-concave) if it does not increase (de-

creases) after its arguments are multiplied by a bistochastic matrix. S-convex (S-concave) functions

accord a lower (higher) score to distributions that are spread more equally. Given two distribu-

tions, there are many T -concave matrices that transform from one distribution to the other, but

each such matrix can be effectively constructed using the sequence of median-preserving spreads.

There is thus a close link between the two concepts. T -convex matrices are related to generalized

majorization i.e. majorization on sequences proposed by Parker and Ram (1997). The set of n× n

matrices with parameters m1, . . . ,ml is denoted Tn,m1,...,ml
. Parameters m1, . . . ,ml denote columns

for which there are no restrictions on the distribution of values other than they total to 1 i.e t is

a column stochastic matrix. For distributions with medians m1 < . . . < ml that are multiplied by

a T -convex matrix, parameters m1, . . . ,ml correspond to the medians. The set Tn,m1,...,ml
forms a

semigroup i.e. the set of matrices closed under multiplication that includes the identity. Utilizinng

this fact the preorder T -majorization can be defined. This preorder when restricted to the domain

of distributions with medians m1 < . . . < ml is the AF relation, but in general it is a richer than

the AF in the sense that it compares more distributions than the AF does.

Apart from showing the usefulness of Lorenz dominance in inequality measurement, Atkinson’s

Theorem also links inequality and welfare. On the basis of Atkinson’s Theorem, inequality measure-

ment is not merely a statistical exercise, but it also conveys a normative meaning. To be precise,

when the mean is fixed, inequality and welfare are the same (up to a sign). On the other hand,

when the mean rises, ceteris paribus, social welfare rises too. The mean income and the distribution

of income (relative to the mean) can be thus distinguished in the welfare analysis. In an ordinal

framework with dispersion measured using the AF relation, such a distinction does not seem to be

equally meaningful. If there is unique median, then it needs to be fixed in order for the AF criterion

to apply. Social welfare can then be represented as a function of the median and a polarization

measure. The median is, however, a poor indicator of potential efficiency gains. For instance, if the

median is in the third category, we may transfer probability mass from the fourth category to the

fifth category without changing the median. While this is a clear Pareto improvement (i.e., ceteris

paribus, people with good health become healthier), the social welfare function does not indicate

any change. More generally, as already noted by Allison and Foster (2004), the AF ranking is incom-

patible with the ranking of distributions induced by first order stochastic dominance (other than in

special cases). This suggests problems with inclusion of the AF criterion in welfare considerations

with ordinal data.
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The paper is organized as follows. In Section 2 we provide definitions and notation. Since

in a discrete framework a median need not be unique, we characterize discrete distributions with

several medians. In Section 3 we link the AF relation to a class of measures fulfilling a median-

preserving spread principle. Section 4 constitutes the central part of the paper and is divided into

three subsections. In Section 4.1 we define T -convex matrices and study some of their properties.

In Section 4.2 we state the main result of the paper, namely, we link the AF relation to a class of

T -convex polarization measures. In Section 4.3 the theory of T -convex matrices is developed further,

i.e., decomposition into elementary matrices and the relation between T -convexity and majorization

theory. In Section 5 we apply our methodology to data on educational attainment for men and

women taken from the US General Social Survey. Using three different inequality indices we show

that, when there is dominance in the sense of the AF of the women’s over the men’s distribution,

all indices assign a higher polarization score to the men’s distribution. Otherwise, when there is no

dominance, the three measures generate inconsistent rankings, rendering robust conclusions about

polarization impossible. When the AF dominance holds, we show a sequence of median-preserving

spreads and a T -convex matrix that links the two distributions.

2 Basic definitions and notation

Let c = (c1, . . . , cn) be a scale whenever c1 < . . . < cn; let C denote the set of all such ordered

scales. Since it makes no sense to work with single-category scales, we assume that n ≥ 2. In

what follows c, n are fixed. If for instance, we have ordered responses concerning health status, such

that c = (1, 2, 3, 4, 5), this means that the first health category is assigned number 1, the second is

assigned 2 and so on. Let pi denote the share of individuals in category ci; obviously, we require

pi ∈ [0, 1] and
∑n
i=1 pi = 1. A frequency distribution and an associated cumulative distribution

function are, π := (p1, . . . , pn) and Π = (P1, . . . , Pn), where Pi :=
∑i
k=1 pk.

6 Furthermore, π is an

element of λ and Π is an element of Λ, which denote the sets of all distributions and cumulative

distribution functions defined over n discrete states. Let P : λ× C 7→ R be a polarization index.7

A distribution is degenerate if pi = 0 for some i and non-degenerate otherwise. We let cate-

gory m be a median of π if for m > 1, Pm−1 ≤ 0.5 and Pm ≥ 0.5, and for m = 1, P1 ≥ 0.5.

Thus defined, a median does not have to be unique. For example, in the six-category distribution

(0.25, 0.25, 0, 0, 0.25, 0.25) the definition of a median is met by the second, third, fourth and fifth

categories. For clarity, sometimes we write m(π) to underlie that m is a median of a particular

distribution, namely, distribution π.8 In the case of multiple medians we adhere to the following
6A cumulative distribution can also be identified with Π := (P1(c1), . . . , Pn(cn)). Slightly abusing the notation we

set Pi(ci) = Pi.
7We put P to denote a polarization index in order to be consistent with the notation in the received literature. To

avoid confusion with the notation of a cumulative distribution function, whenever we consider two different indices

we use an upper subscript, here namely, P 1 and P 2. Since the scale is fixed, in fact we work with P : λ 7→ R. The

polarization index can also be defined as P : Λ 7→ R.
8One can think of m(π) as a function which returns precisely median m.
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conventions. By l we denote the number of medians and by m1 < m2 < . . . < ml the set of medians,

always in the ordered fashion i.e., m1 is the first median as it corresponds to the lowest category

number among median categories.

We characterize discrete distributions with respect to the number of medians.

Remark 1. Let π = (p1, . . . , pn) be a distribution with l ≥ 1 medians. Then, the following state-

ments are true.

(i) If l > 2, the distribution is degenerate.

(ii) π is of one of three types.

(a) π has unique median

(b) π has two medians m1 < m2 if and only if they are not separated by any category (i.e.

m2 = m1 + 1 for clarification)

(c) π has three and more medians m1 < . . . < ml if and only if pmj = 0 for all m2 ≤ mj ≤

ml−1.

(iii) If l ≥ 2, then Pm1 = . . . = Pml−1
= 0.5.

Proof. From the definition of a median, it follows that Pm1
≥ 0.5, Pml−1 ≤ 0.5. Pi is non-decreasing

with i, therefore for l ≥ 2 we obtain Pm1
= . . . = Pml−1 = 0.5. Note that from this it follows that

all categories between m1 and ml are medians. This yields, for example, that ml−1 is the (l−1)-th

median ml−1. Therefore a distribution has two medians if and only if they are not separated by any

category. For l > 2 we get pm2
= . . . = pml−1

= 0 i.e. the distribution is necessarily degenerate.

In general, degeneracy of the distribution does not determine the number of medians. There are

both degenerate and non-degenerate distributions with one unique median e.g. Π = (0.2, 0.4, 0.6, 0.6, 0.8, 1)

and Π̃ = (0.2, 0.4, 0.6, 0.7, 0.8, 1). Yet when there are more than two medians, the distribution is

necessarily degenerate, so there are no non-degenerate distributions with three or more medians.

Non-degenerate distributions can have at most one or two medians. Furthermore, the only distri-

butions with two medians are such that the medians are not separated by any category and the

only distributions with three and more medians are such that except for the lowest and the highest

median, all other medians are empty categories.

As we mentioned in the Introduction, we draw on the Allison-Foster (AF) (Allison and Foster,

2004) partial ordering for evaluating the degree of polarization of given distributions.

Definition 1. AF partial ordering

Let π, ω be two probability distributions and mk be a median of π. Let Π,Ω := (Q1, . . . , Qn) be their

cumulative distribution functions. We write π -AF ω if and only if the following three conditions

are met:

(AF1) mk is a median of ω;
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(AF2) Pi ≤ Qi for any i < mk;

(AF3) Pi ≥ Qi for any i ≥ mk.

The interpretation of π -AF ω ordering is intuitive. In particular, we have that π -AF ω

when π is better concentrated (i.e., when there is more probability mass) around the median

than ω. For example, the cumulative distribution functions corresponding to distributions π =

(0.2, 0.2, 0.2, 0.2, 0.2) and ω = (0.3, 0.15, 0.15, 0.1, 0.3) are, respectively, Π = (0.2, 0.4, 0.6, 0.8, 1) and

Ω = (0.3, 0.45, 0.6, 0.7, 1). The common, and in this case unique, median of Π and Ω is the third

category. Because 0.2 < 0.3; 0.4 < 0.45 and 0.8 > 0.7, by Definition 1, π -AF ω. The AF partial

ordering is similar to the single - crossing criterion of Hemming and Keen (1983). Originally, in the

definition of the AF relation Allison and Foster (2004) assume that π, ω have a unique and common

median. This assumption can be substantially relaxed to cover distributions with several medians

and at least one common median and transitivity is still preserved.

Remark 2. Relation defined in Definition 1 is transitive.

Proof. Let π -AF ω and ω -AF δ, where ∆ := (S1, . . . , Sn) is the cumulative distribution function

associated with δ. We now show that π -AF δ i.e., (AF1)-(AF3) are met with respect to π, δ.

We start with (AF1). According to Definition 1 mk(π) is a median of ω and mh(ω) is a median

of δ. If mk(π) = mh(ω), then mk(π) is a median of δ and (AF1) is fulfilled. If mh(ω) < mk(π), then

we have the following set of observations.

(a) Given Remark 1 from π -AF ω (AF1) we have Qmh(ω) = . . . = Qmk(π)−1 = 0.5.9

(b) From ω -AF δ (AF3) we have that for i ≥ mh(ω), Si ≤ Qi.

(c) From ω -AF δ (AF1) we have that Smh(ω) ≥ 0.5.

(d) Si is non-decreasing with i.

Altogether these observations imply that Smh(ω) = . . . = Smk(π)−1 = 0.5 i.e., mk(π) is a median of

δ. We treat the case of mh(ω) > mk(π) similarly. We note the following.

(a) Given Remark 1 from π -AF ω (AF1) we have Qmk(π) = . . . = Qmh(ω)−1 = 0.5.

(b) From ω -AF δ (AF2) we have that for i < mh(ω), Si ≥ Qi.

(c) From ω -AF δ (AF1) we have that Smh(ω)−1 ≥ 0.5.

(d) Si is non-decreasing with i.
9Recall that mk(π) is a category number (which is also the k-th median of π). Therefore, Qmk(π)

denotes a

cumulative mass concentrated in the category mk(π) of a distribution ω, which a priori is not necessarily a median of

ω.
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Again Smk(π) = . . . = Smh(ω)−1 = 0.5 and mk(π) is a median of δ.

We now focus on (AF2). We have Pi ≤ Qi for i < mk(π) and Qi ≤ Si for i < mh(ω). If

mk(π) ≤ mh(ω), then Pi ≤ Si for i < mk(π) and (AF2) holds. If mh(ω) < mk(π), then Pi ≤ Si

for i < mh(ω). We recall Smh(ω) = . . . = Smk(π)−1 = 0.5 and that for mh(ω) ≤ i < mk(π) we have

Pi ≤ 0.5 since mk(π) is a median of π. Therefore, Pi ≤ Si as required.

Finally we deal with (AF3). We have Pi ≥ Qi for i ≥ mk(π) and Qi ≥ Si for i ≥ mh(ω). If

mh(ω) ≤ mk(π), then Pi ≥ Si for i ≥ mk(π) and (AF3) is fulfilled. If mh(ω) > mk(π), we have

Pi ≥ Si for i ≥ mh(ω). We recall Smh(ω) = . . . = Smk(π)−1 = 0.5 and that for i ≥ mk(π) we have

Pi ≥ 0.5 since mk(π) is a median of π. Therefore, Pi ≤ Si as required.

We conclude that π -AF δ.

Although in the condition (AF1) we require that at least one median is common, further con-

ditions ((AF2) and (AF3)) imply that all medians of π are also medians of ω. Formally, the set of

medians of ω is a superset of the set of medians of π. Through the AF relation it is not possible to

remove existing, but only to add new medians. Also the choice of mk does not affect the ranking of

distributions.

Remark 3. Let π, ω be two distributions such that π -AF ω, and let Mπ,Mω denote their sets of

medians. Then, Mπ ⊆Mω.

Proof. Let ω be a distribution with s medians. We first show that m1(ω) ≤ m1(π) by contradiction.

If m1(π) < m1(ω) ≤ mk(π), then using the notation as in Definition 1 we have the following.

(a) From the definition of a median m1(ω), Qi ≤ 0.5 for i ≤ m1(ω)− 1.

(b) From (AF2) Pi ≤ Qi for i < mk(π).

(c) From Remark 1 Pi = 0.5 for m1(π) ≤ i ≤ mk(π)− 1.

Therefore, Qi = 0.5 form1(π) ≤ i ≤ m1(ω)−1 i.e., categoriesm1(π) ≤ i ≤ m1(ω)−1 are medians

of ω, which contradicts the assumption m1(ω) > m1(π). The cases of m1(π) < mk(π) < m1(ω) and

ms(ω) ≥ ml(π) can be treated similarly.

Finally, all categories between m1(ω) and ms(ω) are medians of ω (Remark 1), in particular,

m1(π) < . . . < ml(π) are such in-between categories.

Remark 4. The choice of mk in the Definition 1 is arbitrary.

Proof. Our goal is to show that if we put md 6= mk in the Definition 1 we still have π -AF ω. From

Remark 3 md is a median of ω. Then, if md(π) < mk(π) we have Pmd(π) = . . . = Pmk(π)−1 = 0.5 and

also Qmd(π) = . . . = Qmk(π)−1 = 0.5, and if md(π) > mk(π) we have Pmk(π) = . . . = Pmd(π−1) = 0.5

and also Qmk(π) = . . . = Qmd(π)−1 = 0.5. Thus, Pi ≤ Qi for i < md and Pi ≥ Qi for i ≥ md.
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3 Polarization and median-preserving spreads

In this section we link the AF partial ordering to a class of polarization measures that do not decrease

following a spread away from the median. We show that when all polarization measures from this

class increase, it is equivalent to an increase in terms of the AF relation. That is to say, this is the

class of functions which are order-preserving for the AF relation.

Definition 2. Median-preserving spread

Let η > 0 and π, ω be two distributions and let m1,ml denote, respectively, the first and the last

median of π. We say that ω is obtained from π via a median-preserving spread if and only if

• For some i, j such that i < j ≤ m1 or ml ≤ j < i there is qj = pj − η, qi = pi + η and qk = pk

otherwise.

• If π has unique median m, then m is also median of ω.

It is straightforward to see how a median-preserving spread changes a cumulative distribution

function.

Remark 5. Let ω be obtained from π via a median-preserving spread. Then we have the following

cumulative distribution function Ω := (Q1, . . . , Qn).

• If a transfer is for i, j such that i < j ≤ m1 then, Qr = Pr for r < i, r ≥ j and r > m1, and

Qr = Pr + η for i ≤ r < j

• If a transfer is for i, j such that ml ≤ j < i then, Qr = Pr for r < j, r < ml and r ≥ i, and

Qr = Pr − η for j ≤ r < i.

Proof. Let us check the first case i.e., r < i. Then, Pr = p1 + . . . + pr = q1 + . . . + qr = Qr. Now

let r ≥ j and r > m1. Then, Pr = p1 + . . . + pi + . . . + pj + . . . + pr = p1 + . . . + (pi + η) +

. . . + (pj − η) + . . . + pr = q1 + . . . + qi + . . . + qj + . . . + qr = Qr. Further, let i ≤ r < j. Then,

Pr = p1 + . . .+ pi + . . .+ pr and Qr = q1 + . . .+ (pi + η) + . . .+ qr = Pr + η. The case of ml ≤ j < i

can be treated similarly.

In the case of more than one median, there is no need to fix any median, because the described

transfers do not change medians, although new medians may be created. Indeed, for a median-

preserving spread we can prove an analogue to Remark 3.

Remark 6. Let π, ω be two distributions such that ω is obtained from π via a median preserving

spread and let Mπ,Mω denote their sets of medians. Then, Mπ ⊆Mω.

Proof. For l = 1 this is asserted in the Definition 2. Let l > 1. First we show that transfers

for categories i < j ≤ m1(π) do not remove medians. Given Remark 5, Pm1(π) = Qm1(π) = 0.5,

and Pi = Qi for i ≥ m1(π), so m1(π) < . . . < ml(π) are medians of ω. Transfers for categories
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ml(π) ≤ j < i also do not remove any of the medians since Pi = Qi for i ≤ ml(π) − 1, which is

enough to assert that m1(π) < . . . < ml(π) are medians of ω.

New medians can be created e.g., j = m1(π) and pm1(π) = η after a transfer of η we have qj = 0,

Qm1(π)−1 = 0.5 and Qm1(π)−2 = Pm1(π)−2 < 0.5, therefore m1(π)− 1 is the first median of ω.

We now establish the equivalence between the AF relation and a finite sequence of median-

preserving spreads, which we further use in proving Theorems 1 and 2.

Lemma 1. π -AF ω if and only if ω can be obtained from π via a finite sequence of median-

preserving spreads.

Proof. We prove first the “if” part of Lemma 1. We first focus on i < mk(π) (AF2). If mk(π) = 1

then this case is redundant. From the definition of the AF ordering (Definition 1), we have that

Pi ≤ Qi. Let i0 be the smallest category for which Pi0 < Qi0 (if such i0 does not exist then the

following transfers are not necessary and two distributions agree up to mk(π)). We make a median-

preserving spread from i0+1 to i0 obtaining a new distribution p̃ such that P̃i0 > Pi0 and P̃i = Pi for

i 6= i0. Two cases are possible. The mass pi0+1 suffices to make P̃i0 = Qi0 . If the mass transferred is

insufficient, we make a median-preserving spread from i0 + 2 to i0, obtaining a distribution ˜̃π such

that (cf. Remark 5) ˜̃Pi0 > P̃i0 ,
˜̃Pi0+1 > P̃i0+1 and ˜̃Pi = P̃i otherwise. If

˜̃Pi0 < Qi0 , then we make a

median-preserving spread from i0 + 3 and so on, possibly up to mk(π). This procedure ends before

we reach mk(π) as Pmk(π) = Qmk(π) ≥ 0.5.10 Continuing the procedure, we can make all states

i < mk(π) equal.

Let us now focus on categories i ≥ mk(π). Let i0 denote the smallest category number such

that Pi > Qi. If l > 1 and if ml(π) > mk(π), then Pi = Qi for mk(π) ≤ i ≤ ml(π) − 1, therefore

the smallest possible i0 is ml(π), which in case of l = 1 is simply m i.e., the unique median. Via

median-preserving spreads from i0 to i0 + 1 similar to the case of i < mk(π), we can equalize all

categories.

To prove the converse implication (“only if”) part of Lemma 1 we first notice that relation -AF

is transitive (Remark 2). We show that each median preserving spread implies an increase in terms

of -AF . Let ω be obtained from π via a median-preserving spread. Given Remark 6 mk(π) is a

median of ω, hence (AF1) holds. Given Remark 5, for i < mk(π) we have Pi ≤ Qi i.e., (AF2) holds,

and for i ≥ mk(π) we have Pi ≥ Qi i.e., (AF3) holds. This together with transitivity establishes the

claim.

A direct consequence of Lemma 1 is the following.

Remark 7. Formally, the AF relation is a transitive closure of the relation induced by the median-

preserving spread.
10In fact, for l > 1, this procedure ends before we reach m1(π) because Pm1(π) = Qm1(π) = 0.5. There can be no

transfers from medians m2 < . . . < ml−1, because pm1(π) = . . . = pml−1 = 0 (cf. Remark 1).
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The transitive closure in question is the intersect of all transitive relations that contain a relation

induced by the median-preserving spread.

The following axiom defines the class of measures consistent with the AF partial ordering.

Definition 3. Median-preserving spread principle

A polarization index P : λ 7→ R satisfies a median-preserving spread principle if for any ω, π such

that ω is obtained from π via a median-preserving spread we have P (π) ≤ P (ω).

Essentially, Definition 3 requires that the polarization index does not decrease consequent to the

spread of probability away from the median. The intuition behind Definition 3 is the following. It

is typically assumed that the least polarized distribution is obtained when all individuals are in the

same category, that is, “by default,” all are in the median category. At the other extreme, the most

polarized distribution is equally concentrated around the tails. Therefore, shifting probability mass

away from the median to the tails without removing the median cannot plausibly reduce polarization.

The main result of this section is that the AF partial ordering is the largest (in the sense of

inclusion) relation compatible with each polarization index fulfilling the “median-preserving spread”

principle. The key word in Theorem 1 is “all”. While it is quite straightforward that the AF condition

implies that indices fulfilling median preserving spread show less polarization in π than ω11, it is not

at all obvious that when we take all indices fulfilling median-preserving spread, they jointly imply

the AF relation.

Theorem 1.

π -AF ω iff P (π) ≤ P (ω) for all P satisfying Definition 3 .

Proof. Assume that π -AF ω and that P satisfies Definition 3. Taking into account Lemma 1,

ω is obtained from π via a finite sequence of median-preserving spreads. We note that after each

median-preserving spread, P does not decrease (Definition 3), hence P (ω) ≤ P (π).

The next part of the proof follows by contradiction. Assume that Definition 1 is not true. Then,

either (AF1) or (AF2) or (AF3) fails. We start with (AF1); mk(π) is a median of π but not a median

of ω. Let mh(ω) be a median of ω. We have mh(ω) 6= mk(π). Let P 1 be the following polarization

index. We have P 1(δ) = 1 if mk(π) is a median of δ and P 1(δ) = 0 otherwise.12 P 1 fulfils Definition

3 i.e., it is constant if mk(π) is a median of ψ and it increases when mk(π) becomes a median of δ

via a median-preserving spread. We have P 1(π) > P 1(ω), which contradicts the assumption that

P (π) ≤ P (ω) for all P satisfying Definition 3.

If mk(π) = 1, then (AF2) is always fulfilled. We now assume that (AF2) fails, thus it makes

sense to consider mk(π) > 1. There exists i < mk(π) such that Pi > Qi. Let δ be a distribution with
11Indeed, Allison and Foster (2004) even write explicitly that their AF relation might be termed a “median-preserving

spread.”
12Given Remark 4 one may ask what happens to P 1 if we put a different median in the Definition 1. P 1 changes

then from 1 to 0. Indeed, if π has l medians, we have a family of indices P 1
mj(π)

, where 1 ≤ j ≤ l, such that

P 1
mj(π)

(δ) = 1 if mj(π) is a median of δ and 0 otherwise.
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cumulative distribution function ∆ := (S1, . . . , Sn) and let P 2(δ) := Si if i < mk(π) and 0 otherwise.

We show that P 2 fulfils Definition 3. From Remark 5 transfers within k < j ≤ m1 either increase

or leave Si unchanged. For transfers ml ≤ j < k, P 2 is constant. Then, P 2(π) > P 2(ω), which

contradicts the assumption that P (π) ≤ P (ω) for all P satisfying Definition 3. The case of negation

of (AF3) can be treated similarly by taking P 3(δ) := 1− Si for i ≥ mk(π) and 0 otherwise.

Theorem 1 points to a potential trade-off. One could further restrict the class of indices/welfare

functions to then rank more pairs of distributions than the AF partial ordering achieves. Yet the

conclusions from this ranking are less robust, applying only to the restricted class of measures. For

a class of measures that fulfill only median-preserving spread principle, nothing beyond the AF

relation can be ordered.

4 Polarization and T -convex matrices

We now impose a property called T -convexity on polarization measures to ensure compatibility with

Definition 1. The theory and results are presented in three sections. In Section 4.1 we define and

study some properties of T -convex matrices. In Section 4.2 we state and prove the main result of this

paper, namely, the equivalence between the AF and the set of all T -convex polarization measures.

In Section 4.3 we show that every T -convex matrix can be decomposed into elementary T -convex

matrices. We show that the set of T -convex matrices forms a semigroup. We use this observation

to define a majorization preorder based on T -convex matrices.

4.1 T -convex matrices

Definition 4. T -convex matrices

Given parameters m1 < . . . < ml ≤ n we define a set of n×n matrices t with the following properties

(i denote rows, j denote columns).

1. For any i, j ∈ {1, 2, . . . , n} we have tij ≥ 0.

2. For any j ∈ {1, 2, . . . , n} we have
∑n
i=1 tij = 1.

3. If l = 1, then for any j < m we have that for any i > j there is tij = 0 and for any j > m we

have that for any i < j there is tij = 0.

4. If l > 1, then for any j ≤ m1 we have that for any i > j there is tij = 0 and for any j ≥ ml

we have that for any i < j there is tij = 0.

A set of all such matrices is denoted by Tn,m1,...,ml
. An element t ∈ Tn,m1,...,ml

is called a T -convex

matrix.

Matrices in the set Tn,m1,...,ml
are column stochastic matrices; that is, elements in the columns

sum up to one. Elements i < m1, j ≤ m1 form an upper triangular matrix and elements i >
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ml, j ≥ ml form a lower triangular matrix. Parameters m1 < . . . < ml ≤ n can be thought of as

medians when t is applied to π. If there is unique median, then for a column which corresponds to

a median, the elements can be distributed in any way, as long as they sum up to unity. If there are

more medians, the elements can be distributed in any way only for columns which correspond to

in-between medians i.e., m2, . . . ,ml−1.

Remark 8. Tn,m1,...,ml
is a convex set.

Proof. Let α ∈ [0, 1] and t, t̃ ∈ Tn,m1,...,ml
be two matrices. We need to show that αt + (1 − α)t̃ ∈

Tn,m1,...,ml
. Zero elements do not change, because α0 = 0. Further,

∑n
i=1 αtij +

∑n
i=1(1 − α)t̃ij =

α
∑n
i=1 tij + (1− α)

∑n
i=1 t̃ij = α+ (1− α) = 1.

Example 1

Let n = 5 and m = 3 be unique median. An example of a matrix from the set T5,3 is

t̃ =



1 0.8 0 0 0

0 0.2 0.3 0 0

0 0 0.3 0 0

0 0 0.4 0.9 0

0 0 0 0.1 1


.

Multiplying vector π = (0.2, 0.2, 0.2, 0.2, 0.2) by t̃ yields ω = (0.36, 0.1, 0.06, 0.26, 0.22); that is, by

Definition 1 ω is more spread than π. The probability mass concentrated in the median category is

now lower and correspondingly the mass concentrated in the tails of the distribution is higher. The

best way to understand how matrix t̃ “operates” is by looking at its columns. For example, column 2

reveals how the probability mass from category 2 is distributed after multiplication. Eighty percent

of this mass is shifted to category 1, and twenty percent of the initial mass is retained by category

2, hence spread is increased. Matrix t̃ is not unique. For example, for the following matrix we also

have π = t̄ω.

t̄ =



1 0.5 0.3 0 0

0 0.5 0 0 0

0 0 0.3 0 0

0 0 0.3 1 0

0 0 0.1 0 1


Comparing to matrix t̃ multiplication via matrix t̄ leads to more median-preserving spreads from

the median to other categories and fewer spreads between non-median categories. If the median is

unique then multiplication via a T -convex matrix from the set Tn,m can change the median as the

following example shows.
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Example 2

Let n = 5 and m = 3 be unique median. An example of a matrix from the set T5,3 is

t̄ =



1 0.8 0 0 0

0 0.2 0.6 0 0

0 0 0.3 0 0

0 0 0.1 0.9 0

0 0 0 0.1 1


.

Multiplying vector π = (0.2, 0.2, 0.2, 0.2, 0.2) by t̃ yields ω = (0.36, 0.16, 0.06, 0.20, 0.22). Cumu-

lative distribution functions change accordingly, namely, from Π = (0.2, 0.4, 0.6, 0.8, 1) to Ω =

(0.36, 0.52, 0.58, 0.78, 1). The median is changed from m = 3 to m = 2. On the other hand, for

a given distribution π with l > 1 medians, matrices that preserve medians constitute the whole set

Tn,m1,...,ml
.

Example 3

Let n = 6 and m1 = 2,m2 = 3,m3 = 4 be three medians. An example of a matrix from the set

T6,2,3,4 is

t̃ =



1 0.8 0.2 0 0 0

0 0.2 0.2 0 0 0

0 0 0.2 0 0 0

0 0 0.2 0.3 0 0

0 0 0.2 0.4 0.9 0

0 0 0 0.3 0.1 1


.

Multiplying vector π = (0.2, 0.3, 0, 0.1, 0.2, 0.2) via t̃ results in ω = (0.44, 0.06, 0, 0.03, 0.22, 0.25).

Medians remain unchanged, because no mass concentrated in m1 is distributed to the higher cate-

gories and no mass concentrated in ml is distributed to the lower categories, analogously to spreads

that preserve medians. The elements can be distributed in any way in columns that correspond to

median m2 (and more generally, to all medians between m1 and ml), because probability is zero for

those categories and therefore multiplication cannot change anything. We can show an analogue to

Remark 3.

Remark 9. Let l > 1 and let π, ω be two distributions such that ω = tπ. Further, let Mπ,Mω

denote their sets of medians. Then, Mπ ⊆Mω.

Proof. We start by showing that m1(π) is a median of ω. For i ≤ m1 we have

q1 = 1× p1 + t12p2 + t13p3 + . . .+ t1m1
pm1

+ . . .+ t1ml−1
pml−1

+ 0× pml−1
+ . . .+ 0× pn
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q2 = (1− t12)p2 + t23p3 + t24p4 + . . .+ t2m1pm1 + . . .+ t2ml−1
pml−1

q3 = (1− t13 − t23)p3 + t34p4 + . . .+ t3m1
pm1

+ . . .+ t3ml−1
pml−1

. . . . . . . . .

qi =

1−
i−1∑
j=1

tji

 pi + ti(i+1)p(i+1)
+ . . .+ tim1

pm1
+ . . .+ timl−1

pml−1
.

Given that pm2
= . . . = pml−1

= 0, we have Qi =
∑i
j=1 pj +

∑m1

k=i+1 pk

(∑i
j=1 tjk

)
, where∑i

j=1 tjk ≤ 1, because conditions (1)-(4) in Definition 4 jointly imply
∑k
j=1 tjk = 1 and

∑i
j=1 tjk is

obviously non-decreasing with respect to j. Thus, Pi ≤ Qi = Pi+
∑m1

k=i+1

∑i
j=1 tjk ≤ Pm1 = 0.5 for

all i ≤ m1. For i = m1 we have Qm1 = Pm1−1 + pm1

(∑m1

j=1 tjm1

)
= Pm1 = 0.5. Therefore, m1(π)

is a median of ω.

For m1 < i ≤ ml−1 we have qi =
∑ml−1

k=i tikpk = 0, because pm2
= . . . = pml−1

= 0. Thus

Qm2 = . . . = Qml−1
= 0.5 are medians of ω, which is enough to assert that ml is also a median of ω.

New medians can be created though. Let t1m1 = 1. Then Qm1−1 = Pm1−1 + pm1

(∑m1

j=1 tjm1

)
and

(∑m1

j=1 tjm1

)
= 1, because t1m1 = 1, that is, all mass pm1 is transferred to the first category.

4.2 T -convex polarization indices

We now define a class of T -convex polarization measures in the following way.

Definition 5.

A polarization index P : λ 7→ R is T -convex if and only if the following conditions hold.

(i) Let l = 1 i.e., π is a distribution with unique median m. Then, for π, ω, t ∈ Tn,m such that m

is a median of ω and w = tπ we have that P (π) ≤ P (ω).

(ii) Let l > 1 i.e., π is a distribution with medians m1 < . . . < ml. Then, for π, ω, t ∈ Tn,m1,...,ml

such that w = tπ we have that P (π) ≤ P (ω).

T -convex functions are functions that do not decrease after their arguments are multiplied by a t

matrix. Because a t matrix increases the spread of a distribution, for T -convex polarization indices,

a higher spread infers greater polarization.

We now state and prove the main result of this section.

Theorem 2.

π -AF ω iff P (π) ≤ P (ω) for all P that are T -convex.

Proof. Assume that π -AF ω and that P satisfies Definition 5. We first prove that P (π) ≤ P (ω). By

Lemma 1 there exists a sequence ψ1, . . . , ψn such that π = ψ1, ω = ψn and for each j we have that

ψj+1 is obtained from ψj by means of a median preserving spread. To proceed, it suffices to show

that for any j we have P (ψj) ≤ P (ψj+1), namely, a T -convex index does not decrease following a
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median-preserving spread. If ψj+1 is obtained from ψj by means of a median-preserving spread, then

the two distributions differ by two categories.13 Without loss of generality, we assume that they differ

for the first and the second category, that is, ψj = (a1, a2, a3, . . . , an), ψj+1 = (b1, b2, a3, . . . , an) and

b1 > a1 since the spread increases the mass concentrated in the tails (recall Definition 2). Obviously

a1 + a2 = b1 + b2. We put

t̂ =

 1 b1−a1
a2

0 1− b1−a1
a2

 .
We obtain (b1, b2) = t̂(a1, a2), and t̂ that can be easily extended to t such that ψj+1 = tψj via the

identity matrix. For example, for n = 7, it is

t =



1 b1−a1
a2

0 . . . . . . . . . 0

0 1− b1−a1
a2

0 . . . . . . . . . 0

0 0 1 0 . . . . . . 0

0 0 0 1 0 . . . 0

0 0 0 0 1 . . . 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


.

Moreover, matrix t is just as described in Definition 5, and hence function P does not decrease.

The second part of the proof goes along similar lines as the second part of the proof of Lemma

1, namely, by contradiction. (AF1) fails i.e., let mh(ω) be a median of ω and mh(ω) 6= mk(π).

Let P 1 be the following polarization index. We have P 1(δ) = 1 if mk(π) is a median of δ and 0

otherwise. Multiplication via a T -convex matrix does not remove medians (cf. Remark 9), therefore

P 1 is T -convex. Yet we have P 1(π) > P 1(ω), which contradicts the assumption P (π) ≤ P (ω) for

all T -convex functions P .

If mk(π) = 1, then (AF2) is always satisfied, therefore it makes sense to consider mk(π) > 1.

(AF2) fails. There exists i < mk(π) such that Pi > Qi. We define P 2(δ) := Si for i < mk(π)

and 0 otherwise. Obviously, P 2(π) > P 2(ω), which contradicts the statement P (π) ≤ P (ω) for all

T -convex functions P . We need to show, however, that P 2 is indeed T -convex. We define

v = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0︸ ︷︷ ︸
n−i

).

Obviously we have Si = v.δ, where a dot denotes the standard dot product. Using this operator, we

can write the cumulative distribution function for ω = tδ as

Qi = v.(tδ) = (tTrv).δ,

where Tr denotes the matrix transposition. Let ṽ := tTrv and ṽ = (ṽh)nh=1. Our goal now is to

characterize vector ṽ. T -convex matrix transposition fulfills the following conditions (cf. Definition

4).
13In Definition 2 ω is obtained from π via a median-preserving spread and qj , pj and qi, pi differ by the amount of

spread η.
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(i) tTrij ≥ 0.

(ii)
∑n
j=1 t

Tr
ij = 1.

(iii) If l = 1, then for i < m we have that for j > i there is tTrij = 0 and for any i > m we have that

for j < i, tTrij = 0.

(iv) If l > 1, then for i ≤ m1 we have that for j > i there is tTrij = 0 and for any i ≥ ml we have

that for any j < i there is tTrij = 0.

One can show that for h ≤ min(m1, i) (and in the case of unique median for h ≤ min(m− 1, i))

we have ṽh = 1. In general, ṽh =
∑n
j=1 t

Tr
hj vj . For j > h there is tTrij = 0. Further,

∑h
j=1 t

Tr
ij = 1

(implied by conditions (i) − (iv) above) and vh = 1 for h ≤ i (from the definition of vector v). On

the other hand, for h ≥ max(ml, i) (and in the case of unique median for h ≥ max(m + 1, i)) we

obtain ṽh = 0, because ṽh =
∑n
j=h t

Tr
hj vj and for j > i there is vj = 0. Finally, for min(m1, i) < h <

max(ml, i) (and in the case of unique median for h = m) we have ṽh ≤ 1. Indeed, ṽh =
∑n
j=1 t

Tr
hj vj ,

but vh = 0 for h > i, hence ṽh =
∑i
j=1 t

Tr
hj vj ≤

∑n
j=1 t

Tr
hj = 1. Further, ṽh = 1 if and only if∑i

j=1 t
Tr
hj = 1.

Returning to P 2, we have for h ≤ min(m1, i), ṽh = 1 and for m2 ≤ i < mk, Si = 0, thus Si ≤ Qi
and P 2(δ) ≤ P 2(ω) consistent with Definition 5. The case of i ≥ mk(δ) can be treated similarly by

putting P 3 := 1− Si.

The proof of Theorem 2 shows how to effectively construct a T -convex matrix given two distribu-

tions (i.e. matrix t̂). Let ηij denote a median-preserving spread from category j to category i. If ω

is obtained from π via a sequence of median-preserving spreads, then a T -convex matrix t such that

ω = tπ can be constructed by putting tij =
ηij
pj

or tij = 0 if there is no transfer between categories.

4.3 Simple T -convex matrices and T -majorization

Every T -convex matrix can be decomposed into elementary matrices. We call such elementary

matrices simple T -convex matrices.

Definition 6. A matrix s is called a simple T -convex matrix if it is T -convex and is diago-

nal, except for (possibly) one column. Formally, given a T -convex matrix t ∈ Tn,m1,...,ml
, where

t = (tij)i,j∈{1,2,...,n}, we define a sequence of simple T -convex matrices tk = (tkij)i,j∈{1,2,...,n},

k ∈ {1, 2, . . . , n} by

tkij =


1 if i = j, j 6= k,

0 if i 6= j, j 6= k,

tik if j = k.
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Intuitively, we modify a diagonal matrix by replacing its k-th column with the k-th column of

the matrix t. Applying such a matrix to a given distribution, we change the probability mass in a

single category only. An example will clarify.

Example 4

Given matrix t from Example 1 we have the following sequence of simple matrices: t1 = id, t5 = id,

t2 =



1 0.8 0 0 0

0 0.2 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


, t3 =



1 0 0 0 0

0 1 0.3 0 0

0 0 0.3 0 0

0 0 0.4 1 0

0 0 0 0 1


, t4 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0.9 0

0 0 0 0.1 1


Multiplying t2 by π = (0.2, 0.2, 0.2, 0.2, 0.2) yields t2π = (0.36, 0.04, 0.2, 0.2, 0.2). In other words, we

redistributed probability mass concentrated in the second category , transferring 80 percent of this

mass to the first category, leaving only 20 percent in the second category.

As Lemma 2 shows, simple matrices are building blocks of any T -convex matrix.

Lemma 2. Let t ∈ Tn,m1,...,ml
and tk be defined as above. Then

t = tml−1 . . . tm1tm1−1 . . . t1tmltml+1 . . . tn.

In the case of unique median m we have

t = tmtm−1 . . . t1tm+1tm+2 . . . tn.

Proof. We prove the result inductively. Let t be a T -convex matrix and tk be a sequence of simple

T -convex matrices as in Definition 6. As a preliminary, we define, for any set of indices A ⊂

{1, 2, . . . , n}, a matrix tA by tA = (tAij)i,j∈{1,2,...,n}, where

tAij =


1 if i = j, j /∈ A,

0 if i 6= j, j /∈ A,

tik if j ∈ A.

Obviously, when A is a singleton, we obtain simple matrices introduced in Definition 6. We claim

that the following equalities hold.

t{ml+k,ml+k+1,...,n} = tml+ktml+k+1 . . . tn, (1)

t{k,...,1,ml+1,ml+2,...,n} = tk . . . t1tm+1tm+2 . . . tn. (2)

We note that (2) suffices to conclude the proof of the theorem, as we have t = t{ml−1,...,1,m+1,m+2,...,n}.

19



We now resort to the induction. We start with (1). The base step t{n} = tn is obvious. We next

assume (1) for some k ≥ 1, and we consider

h := tml+k−1t{ml+k,m+k+1,...,n}.

We refer to the j-th column of h. We have the following cases:

• j ≤ ml +k− 1. Such a column is constructed by taking the j-th column of t{ml+k,m+k+1,...,n},

which is ej (the unit vector with 1 on the j-th coordinate) and scalar product it with the

consecutive rows of tml+k−1. The result is the j-th column of tml+k−1.

• j > ml + k − 1. The j-th column of t{ml+k,m+k+1,...,n}, denoted by w, is the same as the j-th

column of t. Hence, by the fact that t is T -convex, we have wi = 0 for i ≤ ml + k − 1. We

note that the lower (n− (ml + k − 1), n− (ml + k − 1)) sub-matrix of tml+k−1 is an identity

matrix. The last two observations amount to stating that the result of the multiplication of w

by the consecutive rows of tml+k−1 is still w.

We can conclude that h = t{ml+k−1,ml+k,...,n}. This completes the proof of (1). (2)is proved

similarly.

T -convex matrices are related to generalized majorization formulated by Parker and Ram (1997).

For x, y ∈ Rn+, define the majorization ordering x - y by

k∑
i=1

xi ≤
k∑
i=1

yi, k = 1, . . . , n− 1 and
n∑
i=1

xi =

n∑
i=1

yi.

For instance, (2, 4) - (3, 3) - (4, 2). If x, y are descendingly-sorted vectors, then generalized ma-

jorization becomes classical majorization. Let π be a distribution with l medians and let πL, πH de-

note, respectively, πL = (p1, . . . , pm1), πH = (pml
, . . . , pn) and in case of l = 1, πL = (p1, . . . , pm−1),

πH = (pm+1, . . . , pn). Note that the AF relation is such that for πL generalized majorizes ωL and

ωH generalized majorizes πH . A necessary and sufficient condition for x - y is that there exists

a lower triangular matrix L such that x = Ly, or equivalently, an upper triangular matrix U such

that Ux = y. Coming back to the AF, we have UπL = ωL and LπH = ωH . Thus the definition of a

T -convex matrix becomes clear.

We have the following result.

Lemma 3. The set Tn,m1,...,ml
is a semigroup i.e. a set of matrices closed under multiplication that

includes the identity.

Proof. The identity matrix is a T -convex matrix, so it belongs to Tn,m1,...,ml
. Let t, t̃ ∈ Tn,m1,...,ml

and t̄ = tt̃, where t̄ij =
∑n
k=1 tik t̃kj . Obviously, t̄ij ≥ 0. Further,for any j we have

∑n
i=1 t̄ij =∑n

i=1

∑n
k=1 tik t̃kj =

∑n
i=1 t̃ij

∑i
k=1 tki = 1, because t, t̃ fulfill (2) in the Definition 4. Let j ≤ m1.

For any i > j we have t̄ij = 0, because t̃kj = 0 for k > j and similarly for j ≥ ml.
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Following Parker and Ram (1997) we define the preorder Tn,m1,...,ml
-majorization.

Definition 7. The preorder Tn,m1,...,ml
-majorization ω -T π holds whenever there exists a matrix

t ∈ Tn,m1,...,ml
such that ω = tπ.

This is a preorder because Tn,m1,...,ml
is a semigroup i.e. the identity matrix ensures reflexivity and

closure under multiplication ensures transitivity. Note that in the Definition 7 it is not required that

π have medians in categories corresponding to parameters m1, . . . ,ml. For instance, t is a matrix

from the set T4,2, whereas π is such that Π = (0.1, 0.4, 0.6, 1), so m = 3. On the other hand, this

preorder restricted to the set of distributions with medians m1, . . . ,ml is the AF partial ordering.

5 Empirical application: educational polarization among men

and women

In previous sections we showed that the AF relation is the partial ordering with which a broad class

of polarization measures is in agreement. Thus, the AF relation can be used to rank distributions

in a robust way, namely, to a great extent the comparison of polarization between two distributions

does not depend on the choice of polarization measure because all polarization measures belonging to

particular classes rank distributions in the same way. To illustrate the usefulness of this property, we

compare the educational polarization among men with the educational polarization among women

in years 1989 and 2004 in the United States, using the General Social Survey data that contain

information on a sample of adults aged 18 and over. Note that these two particular years are only

chosen as a clear example. In particular, we show that in cases when AF dominance does not

hold, the comparison of health polarization among men and women is inconclusive and depends

on the choice of polarization measure. We calculate polarization using three indices and obtain

inconsistent results in the case of no dominance. On the other hand, these measures fulfill the

median-preserving spread principle and are T -convex, therefore according to Theorems 1 and 2, if

only the AF dominance holds, they all should rank the distributions in a consistent manner, which

is indeed the case in our dataset. In cases when the AF dominance holds, we show the sequence

of median-preserving spreads and T -convex matrices that increase the spread of the less polarized

distribution.

There are five educational levels: adult high school, high school, junior college, bachelor, and

graduate. The median category for both groups in both years is high school. An appealing way of

presenting the AF ordering is through the use of dominance curves. Let U : Λ 7→ R be defined as

follows: U(Pi) = 1 − Pi for i < m (or i < m1 for multiple medians) and U(Pi) = Pi for i ≥ m

(or i ≥ ml). Then, π -AF ω if and only if U(Pi) ≥ U(Qi) for all i, that is, we have a monotone

representation of the AF relation. In particular, when π AF dominates ω, then the U curve for π

is equal to or above the U curve for ω. We utilize U curves in what follows. As shown in Table 1

and as depicted in Figure 1, in year 1989 there is no clear dominance of the women’s over the men’s
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distribution in terms of educational polarization; the two U curves cross each other. Furthermore,

the two curves are significantly different from each other at the lower end of the distribution.

Figure 1: Educational polarization in the US in 1989 for men and women: U curves
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Source: Own calculations based on the US General Social Survey, 1989.

As seen in Figure 2, in year 2004 the U curve for women lies above the U curve for men, hence

there is less educational polarization among women than men, and this conclusion is robust in the

sense that all polarization indices that fulfill the median-preserving spread principle and at the same

time are T -convex, rank the two distributions in the same way. The difference between the two U

curves based on bootstrap confidence intervals is, however, not statistically significant.

We consider the following family of indices:

Pa,b =
a
∑
i<m Pi − b

∑
i≥m Pi + b(n+ 1−m)

a(m−1)+b(n−m)
2

. (3)

To recall, n is the number of categories, m is the median, and a, and b are parameters.14 When

a > b the index Pa,b is more sensitive to dispersion below the median, whereas the opposite holds

when a < b, as more weight is attached to dispersion above the median. When a = b = 1, dispersion

below and above the median are weighted equally. In this case, we get an absolute value index as
14This can be easily generalized to accommodate multiple medians noting that Pi = 0.5 for m1 ≤ i ≤ ml−1.
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Figure 2: Educational polarization in the US in 2004 for men and women: U curves
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Source: Own calculations based on the US General Social Survey, 2004.

proposed by Abul Naga and Yalcin (2008) and Apouey (2007). Clearly, Pa,b fulfills Definitions 2

and 5. When the probability mass is transferred away from the median or when the distribution is

multiplied by a T -convex matrix, the mass changes for either categories below or above the median.

If the transfer takes places below the median, then (cf. Remark 5) for i < m Pi cannot decrease,

therefore
∑
i<m Pi does not decrease and given a > 0 the index does not decrease either. If the

transfer takes place above the median, then i ≥ m Pi cannot increase, therefore
∑
i≥m Pi does not

increase and given b > 0 the index does not decrease.

We now compare the polarization rankings in years 1989 and 2004 according to three indices:

P1,10, P1,1, P10,1, where the choice of parameters is for demonstration purposes only. In particular,

we would like to work with indices for which it is evident that dispersions below and above the

median are treated differently (hence, the spread of weights, 1 and 10), and an absolute value index.

Before we present the results, we note key observations that can be inferred from looking at the

raw data. First, the most notable change in completed educational level between 1989 and 2004

occurred for women at the lower end of the distribution. The percentage of women obtaining the

lowest educational level (adult high school) reduced by 13 percentage points: from 24 in 1989 to 10.8

in 2004. For men this also dropped, but by 5 points (from 18.6 in 1991 to 13.8 in 2004). Thus, while

23



Table 1: A comparison of educational polarization among men and among women in the US in 1989

and in 2004

Year Index Men vs. Women Verbal description

1989 P1,10 0.41 > 0.27 Less educational polarization among women than among

men

P1,1 0.39 > 0.32 Less educational polarization among women than among

men

P10,1 0.37 < 0.44 More educational polarization among women than

among men

2004 P1,10 0.53 > 0.45 Less educational polarization among women than among

men

P1,1 0.47 > 0.40 Less educational polarization among women than among

men

P10,1 0.34 > 0.29 Less educational polarization among women than among

men

Source: Own calculations based on the US General Social Survey, 1989 and 2004.

in 1989 the percentage of women at the lowest educational level was higher than the comparable

percentage of men (24 vs. 18.6), in 2004 this trend reversed (10.8 vs. 13.8). This largely accounts

for the fact that the distribution is more compressed for women, which we will also observe using

polarization indices. Second, for high school graduates the decrease is more pronounced for men (6

percentage points) than for women (almost no change). Third, the percentage of women holding

junior college degrees increased by a little more than the comparable percentage for men (2 vs. 1.3).

Fourth, bachelor level trends are similar for both groups, namely, we observe a 6 percentage point

rise between 1989 and 2004. Finally, for graduate level the increase is more visible among women

than men (5 vs 3.3).

The results are in Table 1. In year 1989 there is no consistent dominance (the two U curves

cross); the P10,1 index delivers a different verdict than the other two indices. An explanation for

this “dissonance” is that it preferentially weights the percentage of individuals below the median,

which in 1989 is higher for women (24) than for men (18.6). In year 1989 polarization as measured

by the P10,1 is significantly greater for women than for men whereas in year 2004 the opposite holds

(Figure 3).

Let π2004 and ω2004 denote distributions of educational attainment in year 2004 for women

and men, respectively. Since we find that in this year π2004 -AF ω2004, there is a sequence of

transfers (cf. Lemma 1) that allows transformation of π2004 into ω2004. In particular, π2004 =

(0.108, 0.546, 0.082, 0.178, 0.086) and ω2004 = (0.138, 0.476, 0.075, 0.197, 0.114). Using the algorithm
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Figure 3: Educational polarization in the US in 1989 and in 2004 for men and women: P10,1 and its

confidence intervals
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in the proof of Lemma 1 we start by transferring η1 = 0.03 from the second (unique median) to the

first category, which results in ψ1 = (0.138, 0.516, 0.082, 0.178, 0.086). Then, transferring η2 = 0.028

from the fourth to the fifth category we obtain ψ2 = (0.138, 0.516, 0.082, 0.150, 0.114). Next, shifting

η3 = 0.047 from the third to the fourth category results in ψ3 = (0.138, 0.516, 0.035, 0.197, 0.114).

Finally, a transfer of η4 = 0.04 from the median to the third category gives us ψ4 = ω2004 =

(0.138, 0.476, 0.075, 0.197, 0.114). Having the sequence of median-preserving spreads it is easy to

construct simple T -convex matrices. For example, the overall mass transferred from the median

category is η1 + η4 = 0.07, which contributes 0.07
0.546 = 0.128 to the overall mass concentrated in the

median of π2004. From this, 0.03
0.546 = 0.055 goes to the first category, 0.04

0.546 = 0.073 goes to the third

category, and 0.872 is left in the median category. Therefore, matrix t2 is the following.

t2 =



1 0.055 0 0 0

0 0.872 0 0 0

0 0.073 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Multiplying all simple matrices in a manner shown in Lemma 2, we obtain the following T -convex

matrix.
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t =



1 0.055 0 0 0

0 0.872 0 0 0

0 0.073 0.426 0 0

0 0 0.573 0.842 0

0 0 0 0.158 1


and π2004 = tω2004. The largest relative transfer between the women’s and men’s distributions is a

transfer of almost 60 percent of mass from the third to the fourth category, with a similar mass in

the median and below median categories representing relatively more men with the bachelor degrees,

increasing the spread.

To sum up, the AF relation is a fairly robust criterion to evaluate dispersion in ordinal data.

It is consistent with measures that do not decrease following a median-preserving spread and mul-

tiplication by a T -concave matrix. On the other hand, the rankings induced by both concepts are

richer than the AF relation, because they allow comparison of distributions with different medians.

Naturally future research should address comparisons between distributions which do not share a

common median. Some effort in this vein have been made by Abul Naga and Yalcin (2010); more is

called for.
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