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1. INTRODUCTION

The econometric models of asset return which use only Brownian motion
as an error term are not able to explain certain stylized facts of financial
time series, like fat tails or high skewness. These models, therefore, do not
mimic real data and, consequently, misprice derivatives is based on these
models. The most obvious way to allow asset return distribution to have
fat tails and excess kurtosis is to include an additional source of variance
–Poisson jumps– into the model.
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One of the first asset price models with Poisson jumps is in Merton
(1976). After this seminal paper, the jump process has been applied in the
literature of asset price modeling in various contexts, e.g. interest rate or
exchange rates.1

Merton’s (1976) model assumes a simple specification of the jump com-
ponent. In his model the log of jump size is assumed to have a normal
distribution with a constant mean value and constant jump intensity. In
later papers, the jump size distribution is allowed to be sensitive to trends
in the market. Ball and Roma (1994) enriched the Vasicek (1977) model by
time varying jump diffusion. For the purposes of their study, the jump size
was modeled as a function of displacement from the central parity of EMS
currencies. Bates and Craine (1999) specify a model where the volatility
factor drives the intensity of jumps. Also Bates (2000) uses a time-varying
arrival rate of jumps. All the above-mentioned papers assume the para-
metric specification of all model functions: drift, continuous (Brownian)
diffusion and jump intensity.
Ait-Sahalia (1996) relaxes the assumption of the parametric diffusion

function and offers a procedure for estimating the nonparametric diffusion
function of the interest rate process. He estimates the diffusion function
nonparametrically while drift is still parametric. Stanton (1997) extends
this paper and presents a methodology for the estimation of both drift and
diffusion nonparametrically. However, neither of these two papers assume
a jump component. Bandi and Nguyen (2000) extend the methodology
even further and provide a complete asymptotic theory for nonparametric
estimates of drift, diffusion and jump intensity functions. Their paper is
based on Johannes (2000) who justifies the nonparametric extraction of
the parameters and functions controlling the arrival of a jump from the
estimated infinitesimal conditional moments.
However, there is one important problem connected with otherwise gen-

eral nonparametric methodology of Ait-Sahalia and Stanton or Johannes,
namely the data requirement. Ait-Sahalia (1996) uses 5500 daily obser-
vations (around 20 years), and Johannes (2000) and Bandi and Nguyen
(2000) use more than 8000 observations.
My motivation is to devise a technique that can be used for samples

of moderate size to alleviate the shortcomings of previous studies. This
can be used to study emerging markets where data are not available for
longer time spans. Naturally, this can be applied to transition countries as
well. For example, in the case of the exchange rate of Central European
currencies I have about 2500 daily observations that cover approximately
10 years.

1Examples are Ball and Torous (1983), Jorion (1988) and Bates (1996).
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I aim to propose a model of the exchange rate process as well as a proce-
dure for the estimation of this process. For this purpose I modify the pro-
cedure described in Johannes (2000) for exchange rate. The modification
for exchange rate requires imposing certain restrictions on and modifica-
tions to the model. The resulting methodology allows the nonparametric
estimation of diffusion on samples of moderate size.
This paper tries to achieve two goals: (1) to propose a model for exchange

rate with the presence of Poisson jumps, and (2) to offer an appropriate
estimation technique which would not be data-demanding. It has been rec-
ognized in the finance literature that one of the most important features for
derivative pricing is the specification of the diffusion function. Therefore,
the separation of continuous from discontinuous volatility should increase
the precision of derivative pricing and the two types of noise have differ-
ent should hedging requirements and possibilities. In fact, the ability to
disentangle jumps from volatility is the essence of risk management, which
should focus on controlling large risks leaving aside the day-to-day Brown-
ian fluctuations
In my paper I want to modify the Johannes (2000) model. To assess the

effect of this modification I perform a simulation study. The last part of this
paper is devoted to the calibration of my model on two Central European
currencies and two EMS currencies. Results reveal that the currencies
of the Central European region exhibit higher volatility generated by the
Poisson jump component. In addition, assumptions about the functional
form of the jump intensity function are reasonable.
The rest of this paper is organized as follows. Section 2 is devoted to

an overview of the literature. The specification of my model is in section
3 and the proposed estimation procedure is in section 4. In section 5 I
describe the simulation studies and empirical results for the four different
currencies. A brief conclusion is at the end.

2. OVERVIEW OF LITERATURE

2.1. Models with parametric drift, diffusion functions and

Poisson jumps

Continuous time models in finance typically rest on one or more station-
ary diffusion processes with dynamics represented by Itô stochastic differ-
ential equation. The evolution of interest rate is governed by the process:

drt = µ (rt) dt+ σ (rt) dWt

where functions µ (·) and σ (·) are drift and diffusion functions respec-
tively, and {Wt, t ≥ 0} is a standard Brownian motion. Usually drift and
diffusion functions are parameterized, µ (r, θ) and σ (r, θ), θ ∈ Θ ⊂ RK .
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Using parametric specification of the process definitely has its advan-
tages. We can express the process analytically and employ the maximum
likelihood estimation procedure to obtain consistent estimates of parame-
ters. However, a disadvantage lies in the possible misspecification of the
model. There is no reason to prefer one functional form of parametrization
of drift or diffusion to another.
An example of a parametric model of interest rate with Poisson jumps

is Das’s (1999) model, which includes mean-reverting drift, Brownian dif-
fusion and the Poisson jump process. This model may be written as:

drt = κ (θ − rt) dt+ σdWt + ξdJ (λ)

where ξ is a random jump whose size is lognormally distributed with
constant mean and volatility. The parameter θ represents the long-run
mean of the process and κ the speed of adjustment to this mean. The arrival
of jumps is governed by a Poisson process with a frequency parameter λ that
indicates the average number of jumps per year. The diffusion and Poisson
process are independent of each other and independent of ξ as well. Thus,
the interest rate evolves with a mean-reverting drift and two sources of
volatility: continuous Brownian diffusion and discontinuous Poisson jumps.

2.2. Models with nonparametric drift and diffusion (no jump)

Ait-Sahalia (1996), in his seminal paper, relaxes the assumption of para-
metric specification of diffusion and allows diffusion to be a nonparametric
function. More precisely, he uses parametric drift and a nonparametric
diffusion function to the model interest rate behavior (rt). He constructs
the diffusion function from the marginal distribution π (·) and the drift
parameter vector θ. Ait-Sahalia (1996) uses the following model:

drt = µ (rt) dt+ σ (rt) dWt

where {Wt, t ≥ 0} is a standard Brownian motion. µ (·) and σ (·) are the
drift and the diffusion functions of the process. Let π (·) be the marginal
density of the spot rate, and µ (·) estimated parametric drift. The diffusion
function is calculated by the formula:

σ2 (r) =
2

π (r)

rZ
o

µ (u, θ)π (u) du.

Stanton (1997) develops a procedure for estimating both functions −µ (·)
and σ2 (·)− nonparametrically from data observed only at discrete time in-
tervals. He uses Taylor expansions to construct a family of approximations
to functions of drift, diffusion, and market price of risk. Stanton’s estimate
of drift confirms the indication formulated in Lo and Wang (1995) about
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the misspecification of linear drift and shows evidence of substantial non-
linearity of drift. The estimated diffusion, σ (·) , is similar to that estimated
(parametrically) by Chan, Karolyi, Longstaff and Sanders (1992).

2.3. Models with nonparametric drift, diffusion and jump

intensity

Johannes (2000), as one of the first, presents a methodology for non-
parametric estimation of drift, diffusion and jump intensity functions of the
interest rate process. Bandi and Nguyen (2000) generalize his procedure,
provide the asymptotic theory and confirm that his proposed estimators are
consistent and efficient. Since the Johannes (2000) methodology is more
illustrative, I will describe his procedure.
Consider a transformation of the process into logarithms

d log (rt) = µ (r−) dt+ σ (r−) dWt + ξdJt

where {Wt, t ≥ 0} is a scalar Brownian motion. µ (·) and σ (·) are the
drift and the diffusion functions of the process modeled as the functions of
interest rate level; Jt is a time-homogeneous Poisson jump process. The
jumps arrive with intensity λ (r) and the jump sizes are assumed to be

normally distributed ξ ∼ N
³
0, σ2ξ

´
.

The key to estimation is to identify the characteristics of the jump-
diffusion dynamics through instantaneous moment conditions. Intuitively,
the drift function should describe the size of expected change in interest
rate, the diffusion function should capture the magnitude of noise of the ex-
pected change, the lambda function should tell how often the interest rate
makes a sudden jump and the parameter of jump volatility should measure
the size of these jumps. The four moments encompass all four characteris-
tics of the process, which allows me to express them analytically.
It is shown in Bandi and Nguyen (2000) that under regularity conditions

the first two moments are specified as

1M lim
4↓0

1
4E

h
log
³
rt+4
rt

´
| rt = r

i
= µ (r)

2M lim
4↓0

1
4E

·
log
³
rt+4
rt

´2
| rt = r

¸
= σ2 (r) + λ (r)E

£
ξ2
¤
.

The higher moments can be expressed by this formula; lim
4↓0

1
4E

·
log
³
rt+4
rt

´j
| rt = r

¸
=

λ (r)E[ξj ], where E[ξj ] = σjξ
Qj/2

n=1 (2n− 1) if j is even number, E[ξj ] = 0
otherwise.
Therefore, the fourth and sixth moments are

4M lim
4↓0

1
4E

·
log
³
rt+4
rt

´4
| rt = r

¸
= 3λ (r)

³
σ2ξ

´2
6M lim

4↓0
1
4E

·
log
³
rt+4
rt

´6
| rt = r

¸
= 15λ (r)

³
σ2ξ

´3
.
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The identification scheme uses the fact that the 1st, 2nd, 4th and 6th
moments identify µ (r) , σ2 (r) , λ (r) , and σ2ξ .
The 4th and 6th moments completely identify the jump components.

Given the jump components, the second moment identifies the diffusion
function, σ2 (r), and the first moment identifies the drift. For estimation
of the conditional j-th moments (while assuming 4 = 1), Johannes (2000)
proposes nonparametric kernel estimators in the following form:

M j (a) =
1
h

Pn−1
i=1 K

¡
ri−a
h

¢
[ri+1 − ri]

k

1
h

Pn
i=1K

¡
ri−a
h

¢ .

Bandi and Nguyen (2000) prove that the estimation scheme outlined
above is consistent.

3. MODEL

The prime interest of this paper is the modeling of the exchange rates
of the Central European countries. For this purpose I modify the proce-
dure described in Johannes (2000) for exchange rate. The modification for
exchange rate requires certain restrictions and modifications to the model.
The resulting methodology allows the nonparametric estimation of diffusion
on samples of moderate size.
Using the concept of interest rate parity as a background motivation

(Keynes 1923) I model drift as a function of instantaneous expected rate
of appreciation of the foreign currency which is equal to the interest rate
differential (IRD). Interest rate parity is a concept challenged by the em-
pirical literature. In early papers, we can find a rejection of this hypothesis
(Fama 1984, Frankel and Froot 1987, among others). Baille and Bollerslev
(2000) claim that failure to find evidence for the presence of the interest
rate parity condition can be due to incorrect statistical modeling.
The same factor, IRD, influences the diffusion and jump intensity. Bilson

(1999) argues that the volatility is related to the difference between the
interest rates of the two currencies. Large interest rate differentials can
only exist in the presence of high currency volatility, otherwise arbitrage
opportunities would arise. Moreover, the IRD variable can attain a negative
value, whereas the diffusion and jump intensity can attain only positive
values. Therefore, I decided to model the diffusion and jump intensity as
a function of the absolute value of IRD.
The last modification lies in the different parametrization of model func-

tions. Johannes (2000) allows all model functions to be nonparametric. In
order to decrease the requirement for sample size I decided to use a para-
metric specification of jump intensity and jump volatility while diffusion is
still a nonparametric function. In other words, I replace the nonparametric
estimate of jump diffusion moments by linear parametric estimates.
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My model for exchange rate has the following specification:

d logS = µ (bt) dt+ σ (bt) dWt + ξtdJ

prob (dJ = 1) = λ (bt) dt and ξt ∼ N
³
0, σ2ξ

´
where

S is the nominal price of foreign currency in terms of domestic currency
µ (bt) is the parametric mean-reverting drift function: R→ R
σ (bt) is the diffusion function: R→ R+

λ (bt) is the jump intensity function: R→ R+

{Wt, t ≥ 0} is a standard Brownian motion

ξt ∼ N
³
0, σ2ξ

´
is the jump size (normally distributed random variable), and

bt = rdomestic
t − rforeignt is the short-term interest rate differential.

The jumps arrive with intensity λ (b) and the jump sizes are assumed
to be normally distributed. It is important to assume that mean jump
size is 0. For some assets this could be problematic, since jumps usually
move price in a certain direction. However, for the sake of simplicity I
assume that jumps just increase volatility rather than move the exchange
rate systematically in a certain direction. Of course, this assumption can
be relaxed. Moreover, specifying the process in logarithms with mean zero
jumps ensures that µ (b) retains its interpretation as the local mean of the
process.
The proposed model is derived from the Johannes (2000) model and

retains its spirit. Using this analogy, I am able to express four instantaneous
moment conditions and then find the estimates of the model functions. The
four instantaneous moments are as follows:
1M . lim

4↓0
1
4E

h
log
³
St+4
St

´
| St = S

i
= µ (bt)

2M lim
4↓0

1
4E

·
log
³
St+4
St

´2
| St = S

¸
= σ2 (bt) + λ (bt)E

£
ξ2
¤

4M lim
4↓0

1
4E

·
log
³
St+4
St

´4
| St = S

¸
= 3λ (bt)

³
σ2ξ

´2
6M lim

4↓0
1
4E

·
log
³
St+4
St

´6
| St = S

¸
= 15λ (bt)

³
σ2ξ

´3
.

For the rest of the paper I use the notation bt for the interest rate differ-
ential, e.g. bt = rt − r∗t .

4. ESTIMATION PROCEDURE

4.1. Jump intensity is constant

In the specification of my model I do not mention the exact parametriza-
tion of the jump intensity function. As the first candidate, I take the con-
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stant jump intensity. This very simple specification should ilustrate the
influence of Poisson jumps on the diffusion function estimate. In the next
section, I assume a more realistic functional form of jump intensity, namely
a linear function of IRD. These restrictions on shape of jump intesity func-
tion, e.g.linear versus nonparametric specification, are key for an efficient
estimation procedure in moderate sample sizes.
Let us assume constant jump intensity with respect to IRD, e.g. λ (b) =

λ = const. In the presence of Poisson jumps and constant jump intensity,
the shape of the diffusion function will be the same as without jumps, but
will be shifted downward. The exact formula for diffusion function is

σ2 (bt) = σ2T (bt)− λσ2ξ ,

where σ2 (bt) is the diffusion of the continuous part, σ2T (bt) is the total
diffusion (or 2nd moment), and σ2ξ is the variance of jumps.
The intuition behind this result is the following. The sizes of jump

and jump intensity are not conditioned on the actual level of interest rate
differential b and therefore, they have no influence on the shape of the
diffusion function. They just have an influence on the scale of this function.2

Under the assumption of constant jump intensity, the proposed estima-
tion procedure is as follows:

1. Estimate parametrically the drift µ (·) . Since I assume drift to be a
linear mean-reverting function of IRD, ordinary least squares identifies the
parameters α and β, E [logSt+1 − logSt | bt] = α+ βbt.

2. Estimate λ and σ2ξ . Based on the calculation of moments, the ratio of
the 6th and 4th moment will give me the desired estimate of σ2ξ. Conse-

quently, the estimate of λ will be bλ = 4thMoment

3(σ2ξ)
2 . Particular moments are

calculated as follows: 4th Moment = 1
n−1

Pn−1
i=1 log

³
St+4
St

´4
= 3λ

³
σ2ξ

´2
and 6th Moment = 1

n−1
Pn−1

i=1 log
³
St+4
St

´6
= 15λ

³
σ2ξ

´3
.

3. The diffusion function can be completely identified by subtracting the
2nd moment estimated nonparametrically from constant volatility gener-
ated by Poisson jumps, e.g. σ2 (b) = 2nd Moment (b) − bλσ2ξ, whereas
2ndMoment = lim

4↓0
1
4E

·
log
³
St+4
St

´2
| bt = b

¸
.

4. The diffusion estimator can be used to correct for heteroscedasticity
in the residuals from the OLS regression in step 1.

2This model for exchange rate evolution can be applied for option pricing. The contin-
uous and discontinuous diffusions have different impacts on option prices, and, therefore,
by separating them from each other, I should achieve a higher precision of option pricing.
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4.2. Jump intensity is not constant

In the previous section I use a very simple and unrealistic assumption
of constant jump intensity. Bilson (1999) argues that the higher the IRD,
the higher the volatility, and consequently the higher the jump intensity.
Therefore, I allow the jump intensity to be parametrically dependent on
IRD. Using parametric specification will allow me to use a smaller data
sample and, at the same time, benefit from the good properties of econo-
metric models that allow for a nonparametric diffusion function and contain
a Poisson jump component.
The first candidate for parametric specification of λ (·) is a simple linear

function, namely λ (bt) = γ+δ |bt|. Using the absolute value of IRD means
that the jump intensity is symmetric in magnitude of IRD. In other words,
a negative value of the differential has the same effect on jump intensity
as a positive differential of the same size. By letting δ = 0, the linear
specification collapses to the previous case of constant jump intensity. In
the case of linear jump intensity, the continuous diffusion, σ2 (b) , will have
a different shape than in case without Poisson jumps.
The estimation of all functions of the exchange rate process is the fol-

lowing

1. Estimate parametrically the drift µ (·) . Since I assume drift to be a
linear mean-reverting function of IRD, ordinary least squares identifies the
parameters α and β, E [logSt+1 − logSt | bt] = α+ βbt.

2. Estimate λ (b) and σ2ξ. Based on the calculation of moments, the ratio
of the 6th and 4th moment will give me the desired estimate of σ2ξ . Conse-
quently, the parameters of λ (b) = γ+δ |b| are identified via OLS regression
E
h
log4

³
St+4
St

´
|St=S

i
3(σ2ξ)

2 = γ + δ |bt| with restriction γ > 0.

3. The diffusion function can be completely identified by subtracting
the 2nd moment estimated nonparametrically from the volatility gener-
ated by Poisson jumps, e.g. σ2 (b) = 2nd Moment (b) − λ (b)σ2ξ, whereas

2ndMoment = lim
4↓0

1
4E

·
log
³
St+4
St

´2
| bt = b

¸
.

4. The diffusion estimator can be used to correct for heteroscedasticity
in the residuals from the OLS regression in step 1.

5. EMPIRICAL ANALYSIS

5.1. Monte Carlo Simulation

As the first step in the evaluation of my methodology, I compare the
estimated diffusion with those obtained in Johannes (2000). Using his
dataset I was able to completely replicate his results. In addition I used
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my methodology on this dataset to see differences originating in particular
assumption of jump intensity. The estimated diffusion functions are shown
in Figure 1.
Johannes (2000) estimates the jump intensity as a nonparametric func-

tion of the interest rate. My assumption of the constant jump intensity
clearly yields a biased estimate of the diffusion function. The linear jump
intensity, on the other hand, produces a similar diffusion function as the
nonparametric jump intensity. The reason for this interesting result could
be that the actual (nonparametric) shape of jump intensity is not far from
a linear shape, and in addition, the arising differences affect the overall
diffusion only marginally. This finding underlines the idea of the simple
specification of the jump intensity. However, the finding of near-linear
jump intensity cannot be generalized for any time series.
In order to show the sampling properties of the new method I run a Monte

Carlo simulation. Using the Bernoulli approximation first introduced by
Ball and Torous (1983), I downgrade the continuous model to a discrete
version. The assumption is that in each time interval either only one jump
occurs or no jump occurs. The drawback of discretization of the continuous
model lies in bias. This bias, however, should not be pronounced when
using daily frequency.
I generate the sample path that has parameter values similar to the

Johannes (2000) data. More precisely, I take the parameter estimates of
the jump volatility, σ2ξ , constant (average) jump intensity, λ, and the non-
parametric diffusion function σ2. The simulated process has the following
specification:

log (rt+1)− log (rt) = µ (rt) dt+ σ (rt) (Wt+1 −Wt) + ξt+1Jt+1

where µ (rt) = −0.01(rt − 0.09), P [Jt+1 = 1|rt] = λ (r) = 0.09, σ2ξ =
0.0013, and σ (rt) is a nonparametric function equal to the diffusion func-
tion estimated by Johannes (2000). The properties of this time series are
similar to the Johannes (2000) interest rate data set. The difference lies in
the functional form of jump intensity and drift. The Johannes (2000) data
contains a nonlinear jump intensity, whereas my simulated series assumes
a constant intensity with respect to interest rate level.
The simulation study is done in the following way. I generated a sample

path with 10,000 observations. Then using the Monte Carlo method I
chose 2000 observations, because the typical sample size for the transition
country is around this value. Then, I estimate the parameters of the model
by my procedure. I repeat this process 5000 times. The results from the
simulation are in Table 1 below.
Both methods, Johannes’s (2000) and mine, calculate the diffusion in

same way, e.g. substracting the (nonparametric) second moment from
the (nonparametric or parametric) volatility generated by Poisson jumps,
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σ2 (r) = 2nd Moment (r)−λ (r)σ2ξ. The second moment is estimated in the
same way (with the same error) by both methods. Therefore, for assessing
the effect of my modifications on the diffusion function, it is sufficient to
evaluate the volatility generated from Poisson jumps.
The data generating process uses a constant jump intensity. In order to

check whether I do not detect spurious linear jump intensity, I also run
a regression of jump intensity on the interest rate level. In 8.3% of cases
I was able to reject the hypothesis of constant relationship; even the true
relationship is constant. This can be viewed as the error of model selection.

Table 1
Monte Carlo median, 10% and 90% confidence bands for the model

parameters

Sigma of Jumps Lambda of Jumps Linearity detected
True value 0.0013 0.09 0%
Median 0.001133 0.1225 8.3% cases
Std.Error 0.000157 0.0233
10% 0.000927 0.0960
90% 0.001337 0.1556

It is interesting that the method produces slightly biased coefficients.
The jump size volatility is biased downward, whereas jump intensity pa-
rameter lambda upward. I do not know the source of this bias nor the way
to modify the estimation to correct for it. Nevertheless, the effect of this
bias on the diffusion function is marginal.

5.2. Exchange rate

For the purpose of calibration of the model on exchange rates, I use
the nominal exchange rates expressed in terms of the Deutsche mark 3 to
calculate changes in exchange rate over two consecutive trading days. I
use interest rates of one-month maturity to calculate the required interest
rate differentials. In the literature we may also find shorter maturities
used to calculate IRD. However, one-month maturity is the maturity that
is published in each country for the longest period. It is also a standard
reference interest rate for most central banks.
I choose two currencies from the Central European (CE) region, the

Hungarian forint and Czech crown. For comparative purposes I choose two
currencies from the EMS region, the Belgian franc and French franc. The
sample for both EMS currencies starts on January 1, 1991 and lasts untill
December 31, 1998. The sample for the Czech crown starts on January 1,

3After the introduction of Euro in Janury 1, 1999, the exchange rate of the Deutsch
mark is calculated using the Euro exchange rate.
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1993 ends on July 31, 2002, and for the Hungarian forint starts on August
1, 1996 and ends on July 31, 2002.
The estimated diffusion functions are shown in Figure 2. There is a

strong nonlinear relationship between the diffusion and interest rate dif-
ferential that cannot be a priori analytically described. The volatility of
EMS currencies starts to rise when the IRD reaches 5 percentage points.
On the other hand, the volatility of CE currencies starts to rise when the
IRD reaches 10 percentage points. These findings support the use of the
nonparametric method even more. The jump intensity is constant in the
case of the Czech crown, Hungarian forint and Belgian frank. The French
frank is the only case where I find the jump intensity to be a linear function
of interest rate differential. Naturally, I could model the relationship with a
richer analytical form, but this is a topic for further research. Nevertheless,
there seems to be a tendency of the constant jump intensity that is in line
with my proposed methodology. The estimations of the drift parameters
show that none of the currencies comply with interest rate parity. This
result is line with the literature on exchange rate, where exchange rate
is considered as unpredictable (Andersen, Bollerslev, Diebold, and Labys
2001).
The values of estimated volatilities of jump size and jump intensity are

in Table 2 below. The jump volatilities of Central European currencies
are significantly higher than EMS currencies. Higher jump volatilities are,
on the other hand, compensated for lower jump intensity. Yet, the to-
tal volatility generated by Poisson jumps is higher for Central European
currencies than EMS currencies.

Table 2
Estimates of the model

log (St+1)− log (St) = α+ β (it − i∗t ) + σ (b) (Wt+1 −Wt) + ξdJ

prob (dJ = 1) = α2 + β2λ (b) dt or prob (dJ = 1) = λdt and ξ ∼ N
³
0, σ2ξ

´
β σ2ξ λ β2 Total Jump Volatility

CZK/DEM -0.00152 0.000915 0.0070 0.1888 0.00000643
HUF/DEM 0.00234 0.000272 0.0237 -0.319 0.00000649
FRF/DEM -0.00841 0.000025 0.0512 3.976*** 0.00000132
BEF/DEM 0.00024 0.000141 0.0178 4.508 0.00000253

Note: *** denotes significance at the 1% level.

The estimated diffusions presented in Figure 2 require mention of one
important drawback to using nonparametrics. This is the most pronounced
in the diffusion of the Hungarian forint. The diffusion exhibits quite a
volatile shape. This volatility in shape can have two reasons. The first
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reason is that the true relationship between diffusion and IRD is trully
volatile. The more probable, second reason, is the lack of values of exchange
rate for certain IRD levels. The OLS would simply bridge the gaps in the
IRD level, but the nonparametric regression is not able to make such a
bridge. The result is the sudden decreases in diffusion to low levels or even
levels near zero. These sudden decreases would not be so problematic unless
I would not need to subtract from it the volatility of the jump component.
At the end, I would reach negative values of volatility. This result is, of
course, not correct. Therefore, I report the 2nd moment instead of the
continuous diffusion function. The effect of jump volatility is in most cases
constant with respect to IRD and would not have the impact on shape.

6. CONCLUSION

In this paper I analyzed the volatility of the exchange rates of Central
European countries (Hungary and the Czech Republic) and the European
Union countries participating in the former European Monetary System
(Belgium and France). In the proposed model I modify the Johannes
(2000) methodology of nonparametric estimation of diffusion function of
interest rate with Poisson jumps. In my methodology I assume a constant
or linear jump intensity that enables me to use a nonparametric framework
for smaller data samples.
Using the simulation studies I show that my proposed methodology

should be better in terms of error band than the general Johannes (2000)
methodology for the case of constant jump intensity, though I introduce a
slight bias. Further, I calibrate the model on the four above-mentioned cur-
rencies. I find that CE currencies exhibit constant jump intensity whereas
one EMS currency exhibits a linear jump intensity with respect to interest
rate differential (IRD) and one a constant jump intensity.
In general, the currencies of the CE countries exhibit a higher volatility

generated from the jump component than the currencies of EMS. More-
over, the nonparametric estimates of conditional volatility reveal a higher
sensitivity of volatility to the size of the interest rate differential. In partic-
ular, the volatility of EMS currencies starts to rise when the IRD reaches
5 percentage points. On the other hand, the volatility of CE currencies
starts to rise when the IRD reaches 10 percentage points.
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Estimated diffusion functions on the Johannes (2000) dataset using three
different assumptions about the jump intensity function: (1) nonparametric, (2) linear,
and (3) constant.

FIGURE 1
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 Figure 2
Estimated diffusion function for Czech koruna, Hungarian forint, French and Belgian frank
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