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Abstract
Accurate forecasting of electricity demand is critical for stable grid operation,
energy policy formulation, and investment planning. Shocks threaten this sta-
bility, which in turn potentially introduces economic problems. This thesis
investigates the impact of COVID-19 on the Czech Republic’s electricity load
profile. Unlike most forecasting methods which rely on historical consumption
data, this study generates synthetic electricity load profiles based on weather
variables. The annual peak load is the only load input for the model and is
intended to condition the model to the consumption limits. The methodology
is inspired by Behm et al. (2020), and the resulting counterfactual analysis
lays the foundation for estimating the impact of future shocks on the Czech
Republic’s load profile in the medium and long term. Through an iterative
and systematic evaluation of a LASSO regression model, an Artificial Neural
Network (ANN), and an eXtreme Gradient Boosting (XGBoost) model, this
study identifies XGBoost as the most robust and accurate method for this
application. Using an XGBoost model with LASSO-selected features, I es-
timate that COVID-19 reduced electricity demand in the Czech Republic by
2.66 TWh between 2020 and 2021, equivalent to 4.0% of 2019’s total annual load
(66.15 TWh). This “COVID” effect was more pronounced in 2020 compared
to 2021. A statistically significant difference was found between day and night
impacts: the calculated average reductions in consumption were 145.68 MW
during the day and 157.37 MW at night (p = 0.03). While unexpected, the
pronounced night-time decline may reflect broader systemic changes in indus-
trial and commercial consumption patterns that persisted, and may still persist
beyond the typical working hours.
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Keywords Electricity demand forecasting, COVID-19,
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Abstrakt
Přesné predikce poptávky po elektřině jsou klíčové pro stabilní provoz elek-
trizační soustavy, tvorbu energetické politiky a plánování investic. Různé šoky
tuto stabilitu ohrožují a mohou vést k hospodářským problémům. Tato práce
analyzuje dopad pandemie COVID-19 na odběrový profil elektřiny v České re-
publice (dále jen ČR). Na rozdíl od většiny metod predikce, které vycházejí z
historických dat o spotřebě, tato studie generuje syntetické odběrové profily na
základě meteorologických proměnných. Roční špičkový odběr slouží jako jediný
vstup modelu a pomáhá model upravit s ohledem na limity spotřeby. Metodolo-
gie je inspirována prací Behma a kol. (2020) a výsledná kontrafaktuální analýza
poskytuje základ pro odhad dopadu budoucích šoků na odběrový profil ČR ve
střednědobém a dlouhodobém horizontu. Na základě iterativního a systemat-
ického srovnání modelů LASSO regrese, umělé neuronové sítě (ANN) a metody
eXtreme Gradient Boosting (XGBoost) identifikuje studie XGBoost jako ne-
jrobustnější a nejpřesnější metodu pro tuto úlohu. Pomocí modelu XGBoost s
proměnnými vybranými metodou LASSO odhaduji, že COVID-19 snížil pop-
távku po elektřině v ČR mezi lety 2020 a 2021 o 2,66 TWh, což odpovídá 4,0%
celkové roční spotřeby v roce 2019 (66,15 TWh). Tento „COVID efekt“ byl
výraznější v roce 2020 než v roce 2021. Statisticky významný rozdíl (p = 0, 03)
byl zjištěn mezi denními a nočními dopady: průměrné snížení spotřeby činilo
145,68 MW během dne a 157,37 MW v noci. Ačkoli je tento výsledek přek-
vapivý, výraznější pokles spotřeby v nočních hodinách může odrážet hlubší
strukturální změny v průmyslových a komerčních spotřebních vzorcích, které
přetrvávaly a mohou nadále přetrvávat i mimo běžnou pracovní dobu.
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load based on weather data. LASSO regression will also be crucial for initial model
testing and for effective feature selection, which is anticipated to reduce dimensional-
ity of the input features and improve the performance of both the ANN and XGBoost
models during the evaluation. Trialing multiple models ensures that the forecasts are
based on empirical performance and the systematic evaluation and selection process
provides reliable counterfactual load profiles necessary for accurately quantifying the
pandemic’s impact.

Expected Contributions: Behm et al. (2020) position their study as the first
to develop and validate ANN-generated synthetic profiles for European electricity
load modeling, and present it as an alternative to regression-based methods. This
study contributes to the literature on electricity load forecasting by demonstrating
how synthetic counterfactual profiles can be used to isolate the impact of exogenous
shocks. Furthermore, the proposed work offers one of the first empirical evaluations
of pandemic-related demand changes in the Czech Republic using high-resolution
data. The findings may inform future energy policy and electricity planning.



Master’s Thesis Proposal xiii

References
Behm, C., Nolting, L., & Praktiknjo, A. (2020). How to model European electricity

load profiles using artificial neural networks. Applied Energy, 277, 115564.
https://doi.org/10.1016/j.apenergy.2020.115564

ČEPS. (2016). Mid-term adequacy forecast of the Czech Republic. ČEPS.

Lai, J.-P., Chang, Y.-M., Chen, C.-H., & Pai, P.-F. (2020). A survey of machine
learning models in renewable energy predictions. Applied Sciences, 10 (17),
5975.

McKibbin, W., & Fernando, R. (2023). The global economic impacts of the COVID-
19 pandemic. Economic Modelling, 129.

Nabavi, S. A., Mohammadi, S., Motlagh, N. H., Tarkoma, S., & Geyer, P. (2024).
Deep learning modeling in electricity load forecasting: Improved accuracy
by combining DWT and LSTM. Energy Reports, 12, 2873–2900. https:

//doi.org/10.1016/j.egyr.2024.08.070

Řanda, M. (2023). Short-term electric load forecasting using Czech data [Master’s
thesis, Charles University].

https://doi.org/10.1016/j.apenergy.2020.115564
https://doi.org/10.1016/j.egyr.2024.08.070
https://doi.org/10.1016/j.egyr.2024.08.070


Chapter 1

Introduction

Today’s economies have a strong connection with energy consumption and relies on
a stable and predictable supply. Among all energy forms, electricity is particularly
critical. It is a core input for industrial processes and an everyday need in house-
holds. Furthermore, electricity consumption has a complex and often bi-directional
relationship with other economic indicators including industrial output and GDP. As
such, it can serve as an indicator of the economic performance of a country, and this
utility can be valuable for decision-making for economies that are coupled to elec-
tricity consumption. Electricity consumption can be represented by an electricity
load profile, which is defined as a graphical representation of this consumption over
a given period of time. Likewise, an energy profile is a broad representation of the
consumption patterns across the entire energy portfolio. These patterns can reflect
underlying structural changes and growth trends in an economy.

Consequently, unexpected changes to the dynamics of demand and supply can
have significant implications on the economy. The impact horizon can differ de-
pending on the nature of the change. Precise load forecasting is thus essential for
both economic stability and operational efficiency of the power grid. As early as
1985, Bunn and Farmer showed that improving forecasts by just a 1% reduction
in error could save the United Kingdom 10 million pounds annually in operating
costs. Although precise figures for the Czech Republic’s operating costs are not
available, this logic is universal. Nabavi et al. (2024) explain that lower predictions
can lead to shortages and blackouts, especially during peak times when power grids
are overloaded. On the other hand, if the predictions are too high, input, storage,
and maintenance costs rise. For the Czech Republic, the implications of forecasting
accuracy extend beyond the country’s borders. The Czech Republic is among the
top four net exporters of electricity in the European Union. According to the Czech
Statistical Office (2022), over 30,000 GWh of electricity were exported in 2022, an in-
crease from just over 26,000 GWh the previous year. This is over 40% of the current
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domestic consumption, making electricity an important commodity. The primary
export markets are Germany, Slovakia, and Poland, with the 2023 exports earning
the country over 2 billion United States dollars (World Bank, 2023). Based on this,
the economic implications of load forecasting precision are significant, and inaccu-
rate predictions of domestic demand directly affect the Czech Republic’s ability to
maximize revenue from exports. Underestimating domestic demand reduces the sur-
plus available for export, while overestimations could result in wasted resources and
higher operational costs, making exports less profitable. Load forecasting is a chal-
lenging exercise even under normal conditions. When sudden economic and societal
shocks are introduced, knock-on effects on the dynamics of electricity demand and
supply can be expected, which in turn have economic implications.

1.0.1 Impact of Shocks
The paralyzing power outage in Prague, which occurred in the first week of July
2025, brings perspective to the impact of shocks on the forces of demand and sup-
ply. In a preliminary report, ENTSO-E (2025) discloses that about 1,500 MW of
production and 2,700 MW of consumption were lost due to the event. While the
estimated financial losses are yet to be determined, projected losses from the 2025
Spanish blackout paint a picture. Mestres Domènech & Martín Vilató (2025) reveal
that on the day of the Spanish blackout, consumer spending declined by 34%, and
the financial losses amounted to an estimated 8% of the daily GDP. While this in-
terruption was a one-time shock in the short term, the disclosed financial losses are
economically significant.

This thesis aims to understand how COVID-19 affected the Czech Republic’s
electricity load profile for strategic energy infrastructure planning and policy formu-
lation. The impact horizon of the pandemic offers an opportunity to understand how
shocks that result in similar societal restrictions can alter the load profile. To achieve
this, a synthetic load profile of the Czech Republic is generated for the years 2020 and
2021. The research question is: to what extent did the COVID-19 pandemic
alter the Czech Republic’s load profile? While the blackouts in Spain and the
Czech Republic are examples of sudden and direct shocks, the government measures
accompanying the pandemic were sustained. COVID-19 represents indirect shocks
that have the potential to change the dynamics of supply and demand in the medium
and long term. The resulting measures led to widespread changes in mobility, work
routines, and global economic activity in general. McKibbin and Fernando (2023)
use a combination of a dynamic stochastic general equilibrium and computable gen-
eral equilibrium model, which they term “the G-cubed model,” to measure the global
economic effects of the pandemic. Their results show that the economic impact of
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COVID-19 was both severe and highly variable across sectors and countries. While
precise figures depend on assumptions, their simulations suggest that global GDP
losses ranged from significant short-term contractions in the most optimistic scenar-
ios to multi-trillion-dollar declines under more severe pandemic trajectories. Even
though the full economic impact is complex to quantify, McKibbin and Fernando
(2023) note how trade and manufacturing were heavily impacted, with utilities ex-
periencing shifts in demand patterns. Given the relationship between electricity
consumption and the economy, it is likely that changes in the economy are mirrored
by electricity consumption patterns. Several studies have explored the impact of the
pandemic on the electricity load profile from different perspectives. One study aimed
to compare the changes in sectoral demand, with increased residential and reduced
industrial consumption noted in the case of Sweden and Chile (van Zoest et al. 2023).
A detailed discussion of other studies related to the impact of the pandemic on elec-
tricity demand is presented in the literature review section. However, to the best
of my knowledge, no study has investigated the impact of COVID-19 on the Czech
Republic’s load profile in the medium to long term.

Instead of the common forecasting approaches that rely on historical values of
the target variable, this thesis builds on the approach proposed by Behm et al. (2020)
and generates synthetic load profiles from weather and calendrical data. The authors
used the annual peak load as an input parameter to scale synthetic load profiles while
preserving weather-dependent patterns. Similarly, I utilize the annual peak load for
2016, 2017, and 2018 to anchor the model in line with Behm et al. (2020). Using the
pre-pandemic annual peak grounds the analysis in actual grid conditions and guards
against grid overload (Nabavi et al. 2024). The hourly weather data was sourced from
Visual Crossing Weather, while the hourly electricity load data was sourced from
ČEPS, the Czech Transmission System Operator. To determine how the pandemic
altered the load profile for the Czech Republic, I conduct a counterfactual analysis
using a model trained on pre-pandemic data to predict consumption patterns, simu-
lating a "business-as-usual" scenario using weather variables to generate a synthetic
load profile. The severity of COVID-19 is represented by a COVID stringency index,
whose values are sourced from the Oxford COVID-19 Government Response Tracker
(OXGRT). Three different models will be trained and tested against 2019 data to
select the most accurate. The selected model will be used to generate the synthetic
load profiles for 2020 and 2021. In addition, a heuristic analysis is performed to
provide a simple estimation of the effects of weaker and stronger stringency policies.

Consequently, this thesis contributes to the existing literature by offering a de-
tailed case study to understand how COVID-19 and similar shocks may alter electric-
ity consumption patterns in the Czech Republic. A counterfactual analysis is con-
sistent with Perçuku et al.’s (2025) argument to future-proof electricity grids against
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unforeseen disruptions such as pandemics and weather-induced disasters. Finally, it
validates Behm et al.’s (2020) findings that a purely synthetic load profile can be
accurately generated without using past values of the dependent variable. Chapter 2
provides context of the Czech Republic’s load profile since the year 2000. It dis-
cusses the energy profile in general, before focusing on the observed electricity load
trends from 2016 to 2024. Chapter 3 reviews the existing literature and examines
approaches to load forecasting and studies related to the impact of the pandemic
on electricity consumption. Chapter 4 discusses the core models identified in the
literature review in greater detail, while Chapter 5 describes the data and details the
methodology. Chapter 6 presents the counterfactual analysis, including policy before
the conclusion in Chapter 7 summarizing the findings is presented.



Chapter 2

Czech Republic Electricity Load
Profile

This chapter contextualizes the electricity load profile of the Czech Republic, starting
with the an overview of the energy profile. The observed load trends from 2016 to
2024 are discussed, focusing on the pre-COVID trends before discussing the post-
COVID trends. Lastly, these observed trends are compared against earlier forecasts
from ČEPS, highlighting any deviations along with implications for understanding
the dynamics of Czech electricity demand.

2.0.1 Energy and Load Profile Overview
According to an ODYSSEE-MURE (2025) report, the general energy profile of the
Czech Republic has shifted across economic sectors since the start of the millennium.
From 2000 to 2022, the net energy consumption in Czechia increased by 0.5 million
tonnes of oil equivalent (Mtoe), reaching 24.5 Mtoe by the end of 2022. However, the
industrial and manufacturing base reduced their consumption by 26%, partly due to
efficiency gains which averaged 2.8% annually. The services sector experienced a 17%
reduction in consumption, and recorded average efficiency improvements of 1.4% per
year.

On the contrary, households increased their consumption over the same period.
Energy consumption increased by 12%, despite a 1.1% annual efficiency gain. The
report notes an increase in the number of residential buildings and appliance use as
the driving forces. Similarly, the transport sector showed a significant increase in
energy consumption by 65%, which was accompanied by a 2% decline in efficiency.
Road transport dominated, accounting for 97% of its consumption. Overall, the
net energy efficiency in the Czech Republic improved by an average of 1.5% per
year from 2000 to 2022, resulting in a 28% cumulative gain. Despite saving of 7.8
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Mtoe, the efficiency gains were inadequate to decouple general energy consumption
from economic activity. Uğurlu & Jindřichovská (2024) find evidence of this coupling
specific to electricity demand. In their analysis of the relationship between electricity
consumption, trade, and GDP post COVID-19, the authors find a long run elasticity
of 0.08, confirming that the Czech Republic’s electricity demand remains structurally
linked to macroeconomic performance.

ČEPS (2016) in their Mid-term Adequacy Forecast (MAF) detail the changes
of the Czech Republic’s electricity load profile. Starting in the second half of 2014
and becoming more pronounced in early 2015, the Czech electricity system experi-
enced a significant rise in overall consumption. This increase coincided with the first
measurable signs of economic recovery following the Great Recession of 2008, again
suggesting an economy coupled with electricity consumption. A correlation between
economic activity and electricity demand can be assumed (ČEPS, 2016). A more
detailed examination of average weekly peak loads revealed an annual increase of
around 1.6% between 2014 and 2015, pointing to a growth in baseline consumption
as well as higher volatility in demand throughout the year (ČEPS, 2016).

Projections provided by ČEPS anticipated that the peak load would rise from
9,900 MW in 2016 to approximately 10,500 MW by 2025, marking a 6.1% expected
increase. This relatively modest growth rate was among the lowest in the Central
and Eastern European (CEE) region and reflects a conservative outlook on economic
expansion and energy efficiency improvements (ČEPS, 2016). Furthermore, this
increase in peak load was expected to occur alongside structural changes in the
electricity energy mix, with higher penetration of variable renewable energy sources
expected. At the same time, gradual reduction of fossil fuel generated electricity
was expected. At the EU level, peak load was projected to grow faster after 2020,
leading to concerns about load volatility. The report stressed the need to improve
reserve capacity for the EU as an emerging risk likely to mirror the Czech electricity
distribution system (ČEPS, 2016). Figure 1 depicts the average load profile of the
Czech Republic from 2016 to 2024.
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Figure 2.1: Czech Republic Average Load Profile (2016 - 2024)

Source: This figure was compiled by the author.

2.0.2 Observed Load Trends (2016 to 2024)
An analysis of the Czech Republic’s monthly average consumption patterns for the
years 2016 to 2024 contextualizes the expected load profile in the absence of COVID-
19. From 2016–2019, the load profile was characterized by consistent and predictable
seasonality. The observed average monthly load was 7,523 MW, while the observed
annual average loads were 7,343 MW in 2016, 7,534 MW in 2017, 7,620 MW in
2018, and 7,554 MW in 2019. The first three years recorded a marginal increase in
the average annual load, followed by a slight decrease at the end of 2019. Monthly
patterns consistently showed peak demand in winter, reaching 9,177 MW in January
2017, and low demand in summer, with a minimum of 6,365 MW recorded in July
2017.

In addition to the seasonal pattern, a temporal analysis shows that daytime loads
were 8,158.38 MW compared to 6,874.56 MW at night, a statistically significant
difference of 1,283.82 MW (p < 0.001). The hourly variation was characterized by
standard deviations of 1105.13 MW for day and 1089.08 MW for night (difference of
approximately 16 MW), suggesting that the hour-to-hour changes were very similar
for day and night periods.
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Figure 2.2: Pre-Pandemic Day and Night Variations

Source: This figure was compiled by the author.

The subsequent period, from 2020 to 2024, shows a slight but notable change
in the load profile coinciding with the outbreak of the pandemic. The initial cases
were confirmed in the Czech Republic in March 2020. The year 2020 observed an
overall decline in the average monthly load, which fell to 7,247 MW. This reduction
represents a 3.66% change compared to the 2016–2019 average. Furthermore, the
Russia–Ukraine war broke out in late February 2022, which also coincided with the
change in the load profile. On average, the annual loads observed were 7,319 MW
in 2020, 7,607 MW in 2021, 7,355 MW in 2022, 6,955 MW in 2023, and 7,076 MW
in 2024. During the 2020–2024 period, the annual average load initially increased
from 2020 to 2021, then experienced a decline through 2023. This was followed by
a slight increase in 2024, suggesting a recovery. The highest monthly average load
observed after the pandemic was 8,882 MW in February 2021, and the lowest was
4,996 MW in July 2024. This fluctuating annual trend suggests a change in the
country’s electricity consumption patterns to which the response measures to the
COVID-19 pandemic likely played a role.

The observed deviations from previous load trends are in contrast to the expec-
tations outlined in the MAF published by ČEPS (2016). In their modeling, ČEPS
assumed that net consumption would continue to rise in tandem with GDP, forecast-
ing an increase to 65.5 TWh by 2020 and 67.0 TWh by 2025 (p. 8). The projections
featured Scenario A and B. Scenario A reflected unadjusted correlations between
GDP and electricity demand. Scenario B, on the other hand, incorporated addi-
tional factors such as energy efficiency improvements and the development of electric
vehicles. Both scenarios were grounded in the assumption that electricity demand
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would remain closely coupled with macroeconomic activity, especially consumption
for economic recovery following the 2008–2009 economic recession. Notably, ČEPS
had already observed a rebound in gross consumption as early as 2014–2015, adjusted
for temperature, and interpreted this as evidence of resumed coupling between en-
ergy use and economic growth (p. 9). This provides additional reasoning that the
electricity load profile was expected to continue its upward trend or plateau at the
very least. However, the data from 2020 to 2024 reveals a different pattern and
electricity demand did not return to its pre-pandemic trajectory. Instead, average
annual loads declined, particularly in 2022 and 2023, suggesting broader structural
changes.



Chapter 3

Literature Review

The non-linear nature of the variables that influence demand makes load forecasting
a complex task. For example, humidity amplifies temperature’s effect, while pre-
cipitation conditions can change the ambient temperature. Coupling this with the
categorical variable “day-of-the-week”, interaction effects add to the non-linearity.
For instance, the demand response to a specific high temperature on a workday can
differ from the response on a public holiday or a weekend, even if the temperature is
the same.

In general, weather variables are the most influential determinants of electricity
demand, with temperature exhibiting a strong relationship with demand. In the
Czech Republic, electricity spikes due to household air conditioning are minimal,
with its share in household electricity consumption being only 1% in 2022, according
to an ODYSSEE-MURE (2025) report. In cold weather, heating demand increases
more gradually as temperatures fall below comfortable levels (Liu et al., 2021). Be-
yond temperature and humidity, other variables such as cloud cover and the type of
precipitation play a role (Behm et al., 2020). Cloud cover can increase the need for
artificial lighting during the day. On the other hand, the precipitation type impacts
cooling needs. Snow conditions reduce temperature even further, which in turn in-
creases heating needs. Depending on the forecast horizon, these non-linear features
influence the appropriate forecast model. Short-term predictions typically focus on
the next hour to a few days, usually 48 hours. Medium-term forecasts focus on up
to 12 months, while long-term forecasts apply to anything 13 months and beyond
(Behm et al., 2020). Traditionally, forecasting methods heavily relied on statistical
techniques such as regression models and time-series methods before sophisticated
machine learning tools rose to prominence. The scope of this literature review is to
uncover the best medium- to long-term forecasting method for this counterfactual
analysis and to understand how other studies measured the impact of COVID-19 on
electricity demand in general.
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3.1 Electricity Load Forecasting Approaches
McGrath and Jonker (2024) explain the process for load forecasting, and emphasize
that the nature of the data and forecast horizon influences the model choice. For a
given model, performance can be measured using either the root mean square error
(RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and
R2 error (R2). The RMSE captures the average magnitude of prediction errors,
with larger errors penalized more heavily, making it sensitive to outliers. The MAE
calculates the average absolute difference between predicted and actual values, while
the MAPE expresses prediction error as a percentage of the actual values. This makes
it especially useful when comparing performance across different scales. Lastly, the
R2 error measures how well a model captures the variance in the data.

A model is considered to perform well when error metrics such as MAE, RMSE,
and MAPE are close to zero, indicating minimal difference between predicted and
actual values, while the R2 value is close to one. RMSE is best used to explain the
average magnitude of prediction errors in the original data, while R2 explains the
overall explanatory power of the model and goodness of fit. A model is known to
overfit when it learns the training data too well, capturing noise and specific details
that do not generalize to new, unseen data.

In addition, another concern is data leakage. For statistical time series models,
leakage occurs when future data is used to train a model, while for machine learning,
data not available during real-world use is accidentally included in model training. A
clear separation between training and testing datasets must be enforced and all data
transformations, including scaling, imputation, feature selection, and hyperparame-
ter tuning, must be applied exclusively to the training data and then propagated to
the test set. Leakages result in models that show superior performance in tests, but
have poor performance in real forecasting tasks. It is essential to prevent leakage to
have accurate model evaluation metrics that reflect true forecasting performance. In
this study, every step of the pipeline was designed to prevent leakage and mimic the
conditions under which the model would be used in practice. Scaling is particularly
important, and warrants a more detailed discussion which is presented.

3.1.1 Scaling and Hyperparameter Tuning
Scaling prevents feature dominance, encourages fair contribution and improves per-
formance while enabling quicker model convergence. Scaling does this by transform-
ing features to a common numerical range or distribution. This process ensures that
features with larger numerical magnitudes do not disproportionately influence the
model’s learning process (Ahsan et al., 2021). There are several methods for data
scaling, and the prominent ones are described below:
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• Standardization or Z-score Normalization: Usually performed using a
‘StandardScaler‘ method, this technique transforms features to have a mean of
zero and a standard deviation of one. For each feature, the original value (x)
is transformed into a new value (x′) using its mean (µ) and standard deviation
(σ). The mean and standard deviation are calculated from the training data:

x′ = x − µ

σ

This method works best for data that follows a Gaussian distribution (bell
curve) or when algorithms assume zero-centered data (Ahsan et al., 2021).

• Normalization or Min-Max Scaling: This method scales features to a
fixed range between 0 and 1. The formula for Min-Max scaling is:

x′ = x − min(x)
max(x) − min(x)

where min(x) and max(x) are the minimum and maximum values of the fea-
ture, respectively. This approach is beneficial when algorithms require input
features to be within a specific bounded range (Ahsan et al., 2021).

• Robust Scaling: Contrary to the standardization and normalization scal-
ing methods, robust scaling handles outliers more effectively by using the in-
terquartile range (IQR) instead of the mean and standard deviation. It scales
features using the median and the IQR, making it less susceptible to the influ-
ence of extreme values (Ahsan et al., 2021).

The choice of scaling method depends on the nature of the data and the require-
ments of the chosen machine learning algorithm. Scaling must be consistent scaling to
ensure fair contribution of all features to the model’s performance. Furthermore, the
architecture of the model is critical for machine learning models. The architecture is
defined by the parameters and hyperparameters Model parameters are internal vari-
ables that the model learns directly from the training data. They represent patterns
discovered within the dataset. As an example, for an ANN, the weights and biases
connecting neurons are the model parameters. These are adjusted during training.
On the other hand, hyperparameters are external configuration settings not learned
from data. Rather, they are set manually before training begins, although it is pos-
sible to optimize them automatically after the initial setting (Probst et al., 2019).
The learning rate is an example of a hyperparameter specification, which influences
how fast a model learns and its ultimate performance.

Hyperparameter tuning is applied to the external settings. This optimization
process involves systematically testing different combinations of hyperparameter set-
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tings (e.g., the number of decision trees in XGBoost, or how quickly it learns from
errors) to find the configuration that yields the most accurate and generalizable fore-
casts. Techniques such as randomized search and cross-validation are commonly
employed to explore this vast space of possibilities efficiently and robustly evaluate
performance on unseen data, ultimately minimizing errors like RMSE and maximiz-
ing explanatory power (R2). This comprehensive approach to architecture design
and hyperparameter optimization is the backbone of high-performing and reliable
forecasting models.

3.1.2 Forecast Horizon
For short-term forecasts, the traditional time series models, particularly the Auto Re-
gressive Integrated Moving Average with Exogenous (ARIMA), have shown strong
performance in forecasting demand. Řanda (2023) combined Seasonal Auto Regres-
sive Integrated Moving Average with Exogenous (SARIMAX) and Long Short-Term
Memory (LSTM)-based Recurrent Neural Networks (RNNs) to forecast short-term
electricity load for the Czech Republic. The hybrid model leveraged economet-
ric time-series techniques to address seasonality and external factors, particularly
weather and prices, while the LSTM component captured non-linear dependencies
and long-term patterns. Compared to standalone SARIMAX, RNN, and bagged
regression trees, the hybrid model was superior and outperformed official forecasts
provided by ČEPS. Even though the study was conducted after the pandemic, the au-
thor did not perform a quantitative analysis of how the pandemic affected short-term
demand.

For long-term predictions, mainly linear regression models have been in vogue,
but the emergence of AI and machine learning models, particularly deep learning
models, are changing the landscape (McGrath and Jonker, 2024). Support Vector
Machines (SVM) and neural networks are useful when modelling complex non-linear
relationships which are characteristic of load-weather variable data. Behm et al.
(2020) present one of the first approaches to model weather-dependent electricity
load profiles using only weather and calendrical variables. Their model was a deep
neural network, which they trained on German weather and load data. The authors
set up the model with 5 hidden layers and 1,024 hidden nodes per layer, making
their architecture a deep neural network. To justify choosing this machine learning
method, the authors assert that ENTSO-E relies on regression-based models, whose
forecasts are presented in their Mid-Term Adequacy Forecasts (MAF). Their ANN
model achieved a MAPE of 2.8% when predicting the 2016 German load profile,
compared to the MAF forecast presented by ENTSO-E, which had a MAPE of 4.8%.
To prove that the specified model could be used to forecast load for other European



3. Literature Review 14

countries, they applied the same methodology to model the load for France, Spain,
and Sweden using the respective countries’ data. Essentially, the model learned the
patterns from the German data to determine the internal architecture. The same
ANN model featuring five hidden layers featuring 1,024 nodes each was then used to
generate the profiles for France, Spain and Sweden. For validation, they compared
predicted hourly load values for 2016 against actual data. Spain’s MAPE was similar
to Germany at 2.8% while the results for Sweden and France showed MAPEs of 3.4%
and 3.2% respectively. These results led to their conclusion that their specific ANN
model architecture generalizes well across different European climate zones based on
improvements to ENTSO-E’s MAF.

While Behm et al. (2020) offer a promising ANN-based alternative to non-machine
learning approaches and machine learning approaches that rely on historical load val-
ues, their comparison with ENTSO-E’s MAF is not based on access to ENTSO-E’s
internal models. Instead, it relies on a reconstructed proxy. To build the proxy, the
authors extracted temperature-dependent cubic polynomial functions from published
MAF datasets and followed the methodological steps outlined in ENTSO-E’s publicly
available documentation. Afterward, they validated their replication by comparing
it to the original MAF load profiles for 1984 and 2007. Their replication matched
the published data closely, with a reported MAPE of around 1.6% and R2 above
0.98. This lends credibility to their approximation of ENTSO-E’s approach, but is
not a complete account of any unpublished procedures and parameter adjustments
ENTSO-E could have applied. As such, while the ANN model demonstrates superior
performance relative to this approximate benchmark, the strength of the comparison
is limited by the absence of direct validation or collaboration with ENTSO-E.

Furthermore, Baur et al. (2024) point out that complex deep learning models such
as the one used by Behm et al. (2020) can act as “black boxes” making their internal
decision-making difficult to interpret. Traditional statistical models provide clear and
interpretable relationships between input variables and outputs. On the other hand,
deep neural networks learn complex feature representations internally. Even though
there are methods such as feature importance or saliency maps to peek inside, the
explanations are approximate and may not always fully demystify a model’s decision-
making process. This complexity makes it challenging to trace how specific inputs
influence the final predictions. Consequently, the claimed improvements by Behm et
al. (2020) need to be interpreted carefully.

Jain and Gupta (2024) tested SVMs, RNNs, and LSTMs on five years of hourly
Indian load data. LSTM models were the most accurate. Although their study
was short-term, the authors suggest that these architectures are scalable to longer
horizons, depending on data quantity and tuning.

In addition to neural networks, tree-based ensemble methods like Random Forests
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(RF) and XGBoost perform well. XGBoost is especially strong for complex forecast-
ing. RF builds many independent trees and averages the results. XGBoost builds
trees sequentially, correcting prior errors with gradient boosting (Fatima et al., 2023).
It is faster, handles large datasets well, and tolerates missing data.

For counterfactual analysis, model interpretability and predictor importance are
critical. Feature selection is essential to prioritize key variables. While stepwise
or subset selection can be unstable, LASSO (Least Absolute Shrinkage and Selec-
tion Operator) selects variables and regularizes models simultaneously. It shrinks
some coefficients to zero, reducing overfitting and enhancing interpretability (Tib-
shirani, 1996). As Freijeiro-González et al. (2021) note, LASSO is well-suited to
high-dimensional problems. Its advantages and limitations are explored further in
the next chapter.

3.1.3 Forecasting and Counterfactual Analyses Post COVID-
19

Uğurlu & Jindřichovská (2024) investigated the relationship between electricity con-
sumption, trade, and GDP, and the effect of the pandemic for the Czech Republic,
Hungary, Poland, and Slovakia. Using a Pooled Mean Group-Autoregressive Dis-
tributed Lag (PMG-ARDL) approach designed to capture both short and long-run
effects while allowing for heterogeneity, they measured the difference in the total
amount of electricty consumed. A Pesaran CD test was used to confirm cross-
sectional dependency and their results revealed that COVID-19 measures had a
negative and statistically significant short-run effect on electricity consumption in
the region. This impact was quantified using coefficients for the COVID-19 dummy
variable. In the short run panel model, the coefficient for the COVID-19 dummy vari-
able was -0.015, and varied for individual countries. The coefficients were -0.1076
for the Czech Republic, -0.1357 for Hungary, -0.0842 for Poland, and -0.1088 for
Slovakia. These coefficients indicate a decrease in the electricity consumption due
to pandemic-related measures. While this study provides valuable insights into the
direct impact of COVID-19, it focuses on econometric modeling with dummy vari-
ables rather than employing forecasting or constructing a hypothetical "no-COVID"
scenario.

Gulati et al. (2021) study the short-term impact of COVID-19 on Haryana’s
load profile in India. By analyzing daily load data from January to April 2020, the
authors observed a significant drop in electricity demand following the lockdown.
Industrial consumption was impacted the most compared to residential areas. As an
example, the industrial hub of Faridabad reduced from around 900 MW to slightly
over 500 MW. The study employed several conventional machine learning methods
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(linear regression, support vector regression, decision tree regression, and random
forest) and an artificial neural network (ANN). Their results show that the ANN
was more accurate as it achieved a lower MSE compared to the other models. As
an example, the ANN’s forecast error was 354.28 MSE versus 516.55 MSE for the
textile region of Ambala. Based on this, the ANN captured non-linear demand
patterns better than conventional machine learning methods.

Jinran Wu et al. (2023) conducted a study evaluating the impact of COVID-19
lockdowns on electricity demand in Victoria, Australia. Their analysis utilized a time
series forecasting model incorporating predictors for pandemic impact and lockdown
periods. Their results show that the total demand in Victoria decreased by 3.0%
in 2020 compared to 2019, and by 1.81% from January to July 2021 relative to the
same period in 2019. Specifically, the average half-hourly demand saw a reduction
of 210.55 MW due to lockdowns. The study found that during lockdown periods,
the lowest points of electricity demand (around 4:00 AM and 2:00 PM) became
much lower. However, the highest demand times (around 9:30 AM and 6:30 PM)
stayed about the same as non-lockdown periods, with the average demand being
224.92 MW higher at these peak times during lockdown. Weekend demand showed
little difference, but weekdays, particularly Monday, Thursday, and Friday, had lower
demand during lockdowns.

In another study, Abulibdeh et al. (2022) examined the impact of the COVID-
19 pandemic on electricity consumption and forecasting accuracy in Qatar. They
trained three different models — namely SVM, XGBoost, and RF — using historical
electricity consumption data from 2010–2019. The trained models were then used to
simulate what the electricity consumption would have been in 2020 and 2021 if the
COVID-19 pandemic had not occurred. This simulation relied on historical load data
and was based on the patterns learned from the actual pre-pandemic data. Their
findings indicate that lockdowns led to decreased consumption in commercial and
industrial sectors. Increased consumption was noted in the residential, governmental,
and agricultural sectors, suggesting that the demand shifted to other sectors of the
economy.

Feras Alasali et al. (2021) examined the impact of the COVID-19 pandemic on
electricity demand and load forecasting accuracy in Jordan, utilizing five years of
half-hourly smart meter data. Their study’s primary tool was a proposed rolling
stochastic ARIMAX model, selected for its ability to handle the non-smooth na-
ture of demand during disruptions and to generate future demand scenarios through
a probabilistic approach, thereby aiming to improve forecast performance. This
model was benchmarked against a standard ARIMAX model and an Artificial Neu-
ral Network (ANN), with the proposed model demonstrating superior performance
by reducing forecast error by up to 23.7%. To specifically quantify the pandemic’s
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impact, the researchers performed a counterfactual analysis by forecasting electricity
demand for 2020 as if the pandemic had not occurred, and then compared these
forecasts with the actual consumption data.

This literature review shows how important advanced machine learning models
like Artificial Neural Networks (ANNs), XGBoost, and LASSO regression are for
dealing with the complex job of predicting electricity demand, especially because
weather and calendar details have non-linear effects (Behm et al., 2020; Jain &
Gupta, 2024; Fatima et al., 2023). ANNs have been good at understanding these
complex relationships and working well even during unexpected events (Gulati et
al., 2021). XGBoost is known for being accurate and efficient and can handle many
different types of data. It builds trees sequentially, where each new tree is designed to
learn from the mistakes made in the previous step, and corrects them thus reducing
forecast errors (Fatima et al., 2023). LASSO selects the most important factors and
simplifies models, which helps make predictions clear and easy to understand. This
is key for knowing what caused changes in ’what if’ situations (Baur et al., 2024;
Tibshirani, 1996; Freijeiro-González et al., 2021).

Similar to the study by Abulibdeh et al. (2022) exploring the pandemic’s effects
on the load profile, this research also measures changes in electricity demand. How-
ever, a main difference in method is using Behm et al. (2020)’s approach, which
creates electricity demand patterns based on observed hourly weather and calendric
information, instead of using past hourly values of electricity demand. The next
chapter explores the forecasting methods identified in the literature more closely.



Chapter 4

Understanding the Core Models

The preceding literature review identified the use of Artificial Neural Networks
(ANNs), XGBoost, and LASSO regression for handling the complex factors that
influence electricity demand. This chapter now explains in detail how each of the
models works to better understand why they are well-suited for electricity load fore-
casting.

4.1 LASSO Regression
As discussed in the previous chapter, LASSO is a powerful and popular type of linear
regression that can be applied to create models that are easier to understand and
more efficient, especially when there are many possible input variables (Tibshirani,
1996). LASSO attempts to find the best straight line or hyperplane that minimizes
the overall difference between the predicted and realized data points. LASSO adds
a penalty to this process, based on the total absolute size of the model’s coefficients
(the numbers that show how much each input variable affects the output). This is
known as L1 regularization. The objective of the LASSO method is to make the
sum of squared errors small, while also adding this penalty related to the size of
the coefficients. This penalty encourages the model to make the coefficients of some
less important input variables exactly zero. When a variable’s coefficient becomes
zero, that variable is effectively removed from the model. This automatic way of
selecting features is a major benefit of LASSO. It helps to simplify the model by
getting rid of unnecessary variables, leading to a clearer and more concise model
(Freijeiro-González et al., 2021).

With fewer variables, it becomes much easier to see which factors are truly driving
the predictions, making the model more understandable. By reducing the number of
variables and making coefficients smaller, LASSO also helps the model avoid being
too sensitive to minor details in the training data. This ensures it performs better
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on new data it hasn’t seen before, which helps prevent a problem called overfitting.
LASSO’s ability to select features automatically is very valuable in datasets with
many features where only a few might actually be important. Its improved clarity is
a big advantage, as simpler models are easier for people to understand. It also works
well in situations where there are many possible input variables (Baur et al., 2024).

The objective function for LASSO regression is as follows:

min
β0,β

⎧⎨⎩ 1
2n

n∑︂
i=1

(yi − (β0 + xT
i β))2 + λ

p∑︂
j=1

|βj |

⎫⎬⎭ (4.1)

In this equation, n is the number of data points, and p is the number of features.
yi stands for the actual value for the i-th data point, and xi is the set of features for
that data point. β0 is the intercept, and β is the set of coefficients for the features.
The term λ (lambda, which is zero or greater) controls how strong the L1 penalty
is. A larger λ means more coefficients will be set to zero.

Even though LASSO streamlines machine learning models through feature selec-
tion well, it does have some drawbacks which are important to note when the goal
is to perfectly identify every underlying feature. One example is when the dataset
contains features that are too similar. LASSO has the tendency to choose only
one from the feature group. In addition, Freijeiro-González et al. (2021) note that
in very complex scenarios with numerous features, it might occasionally include a
"noisy" feature that is not truly important. One way to mitigate this is a thresh-
olded LASSO (Zhou, 2010). This method aims to select a sufficiently small set of
important features without sacrificing the accuracy of the model. The result is close
to ideal, essentially getting close to the ideal result one would achieve if they already
knew which features were truly important.

4.2 Artificial Neural Networks (ANNs)
An ANN is made up of many connected processing units, often called "neurons" or
"nodes," which are organized into distinct layers. A single neuron is the basic building
block of an ANN. For any neuron j, its operation involves two main steps. First, it
calculates a weighted sum of its inputs from the previous layer, which is called zj .

zj =
m∑︂

k=1
wjkak + bj (4.2)

Where m is the number of inputs to neuron j, wjk are the weights (numbers that
are adjusted during training) that connect input k to neuron j, ak is the activation
(output) from input k in the previous layer, and bj is the bias term for neuron j.



4. Understanding the Core Models 20

Second, this weighted sum zj then goes through a non-linear activation function,
f(·), to create the neuron’s output, aj .

The network starts with an input layer, which is a matrix of all variables that
affect the load profile. Each neuron in this layer represents one input variable, such
as temperature, humidity, hour of the day, or day of the week. These neurons simply
pass the input values to the next layer.

After the input layer, there are one or more hidden layers. Although calcula-
tions can be made without hidden layers, hidden layers carry out more complex
computations to learn intricate non-linear relationships in the data. If the ANN ar-
chitecture includes hidden layers, each hidden layer neuron’s input is the output from
the previous layer. The inputs are multiplied by weights representing how strong the
connection between the neurons is, before they are added together along with a bias
value. The combined sum is subsequently processed by an activation function, to
result in an output.

Rectified linear unit (ReLU) and the sigmoid function are common activation
functions used to introduce non-linearity, mimicking the complex relationships found
in load forecasting problems (Behm et al., 2020). Without activation functions, even
a network with many layers would act like a single simple linear model affecting the
quality of the final predictions produced by the output layer.

ANNs learn through training by adjusting weights and biases to minimize pre-
diction errors. This involves a forward pass to generate predictions, error calculation
to quantify the difference between predictions and actual values, backpropagation to
distribute the error back through the network, and weight adjustment using optimiza-
tion methods like gradient descent. Repeating this process over many epochs allows
the ANN to learn and improve its accuracy in identifying patterns and relationships
within the data.

4.3 Extreme Gradient Boosting (XGBoost)
Fatima et al. 2023 describe how the algorithm works. Essentially, XGBoost combines
many simple decision trees. The framework is precise and highly adaptive to most
types of data. The decision trees are sequentially created, and each new tree corrects
the mistakes of the ones built before it. This stacking improves the predictive power
of the model. Learning the patterns begins with an initial prediction for all data
points, usually the mean. From there, the algorithm calculates the errors, which are
the differences between the actual values and the current predictions. Importantly,
instead of trying to predict the original target value directly, the next decision tree
is specifically built to predict these errors, also known as residuals. This new tree’s
role is to fix the inaccuracies made by the previous model or prediction.
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The predictions from this new error-predicting tree are then added to the previous
overall prediction, gradually making the combined model more accurate. This process
repeats: in each step, a new tree is added that works to correct the remaining errors
from all the trees built so far. The term "gradient" refers to the use of mathematical
optimization methods, similar to those for finding the lowest point on a graph, to
determine the best way to reduce these errors.

The general objective function that XGBoost minimizes at each step t combines
a function measuring how well the model fits the data with terms that control the
model’s complexity and help prevent it from overfitting:

Obj(t) =
n∑︂

i=1
L(yi, ŷ

(t−1)
i + ft(xi)) +

t∑︂
k=1

Ω(fk)

L is a function that measures the difference between the actual value yi and the
prediction ŷ

(t)
i . ŷ

(t−1)
i is the prediction from the model in the previous t − 1 steps,

and ft(xi) is the new tree (or simple model) added at step t for data point xi. Ω(fk)
is a regularization term for the k-th tree, which discourages the tree from becoming
too complicated. A common form for Ω(fk) is: The general objective function that
XGBoost minimizes at each step t combines a function measuring how well the model
fits the data with terms that control the model’s complexity and help prevent it from
overfitting:

Obj(t) =
n∑︂

i=1
L

(︁
yi, ŷ

(t−1)
i + ft(xi)

)︁
+

t∑︂
k=1

Ω(fk) (4.3)

L is a function that measures the difference between the actual value yi and the
prediction ŷ

(t)
i . ŷ

(t−1)
i is the prediction from the model in the previous t − 1 steps,

and ft(xi) is the new tree (or simple model) added at step t for data point xi. Ω(fk)
is a regularization term for the k-th tree, which discourages the tree from becoming
too complicated. A common form for Ω(fk) is:

Ω(f) = γT + 1
2λ

T∑︂
j=1

w2
j (4.4)



Chapter 5

Methodology

5.1 Theoretical Framework: Approaches to Coun-
terfactual Analysis

This section reviews empirical strategies used to construct counterfactual electric-
ity load profiles and discusses the assumptions and limitations. The Difference-in-
Differences method is popular for counterfactual analysis, and would be used to
compare load changes over time between a ’treated group and an untreated group.
While reliable, the global nature of the pandemic makes it impossible to have the
two groups, as the measures were applied to the whole country. Another method is
the Synthetic Control Method (SCM), which would involve constructing a "synthetic
Czech Republic" from a weighted combination of other countries’ pre-pandemic load
data to serve as the counterfactual. This is a useful method, but the major challenge
is replicating granular hourly load values which can be challenging (Chen, 2023).
Last but not least, Computable General Equilibrium (CGE) models have the ability
to simulate economy-wide impacts of shocks and policies influencing energy demand
at a macro level (Jia & Lin, 2022). However, one main challenge is that their aggre-
gate nature means they are unable to directly model granular hourly electricity load.
In this case, matching methods, which aim to balance covariates between treated
and control groups would be impractical for widespread national shocks due to per-
vasive "treatment" and unobservable confounders. Given these limitations, this thesis
naturally employs a generative, machine learning-based approach. This framework
is supported by Kirilenko et al. 2024 who advocate for their suitability in complex
problems, where other methods fail or require too much computation.
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5.2 Data Description
Hourly electricity load data was sourced from the Czech Transmission System Op-
erator, ČEPS. The data was available in sets, which had to be merged to create
one complete dataset for the load. Weather data was sourced from Visual Crossing
Weather and was available as a full dataset. To handle missing values, interpolation
was applied to the datasets. Missing values for the variables solarradiation,
uvindex, sealevelpressure, snow, snowdepth, and load were subsequently
handled using a linear interpolation method. This approach was chosen as it is well-
suited for environmental and time-series data, effectively filling gaps by estimating
values based on a straight line between known data points. This method has been
shown to be efficient for predicting missing values ?.Merging of electricity load and
weather datasets was performed manually using Excel, and subsequent pre-processing
steps were applied to this merged dataset using Python 13.

1.

5.2.1 Data Preprocessing Steps
The datetime column was converted to a datetime format. Public holidays in the
Czech Republic (for the years 2016–2024) were identified, and their weekday value
was changed to 6 (Sunday). Datetime components, specifically month, day, and hour,
were extracted into separate columns. Data from January 2016 was removed from
the dataset due to either missing weather values or load values for the entire month.
The annual peak load was calculated and merged into the dataset. The column
with the type of precipitation observed, preciptype, was split into separate binary
columns, with 0 for no precipitation and 1 otherwise regardless of the type i.e. rain
and snow. Following these transformations, some columns were manually dropped to
remove non-feature identifiers and redundant variables from the dataset. Examples
are stations (due to being a weather station identifier and thus not a feature),
severerisk (weather risks e.g. flood), windgust, the original preciptype col-
umn (as it was replaced by its binary encodings), and solarenergy (since its
information was incorporated into the radiation variable).

1The datasets and code (.ipynb files) are available in the GitHub repos-
itory: https://github.com/NyxC33/load-forecasting-cz. The
workflow is split into seven notebooks that must be executed in chrono-
logical order: data_processing, lasso_features_and_training,
ann_with_lasso_features, gradient_boost, model_tuning,
counterfactual_analysis, and Heristic_Counterfactual_Analysis. These
notebooks cover data preparation, modeling, evaluation, and both standard and heuristic
counterfactual analyses.

https://github.com/NyxC33/load-forecasting-cz
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5.2.2 Features and Target Definition
month Month of the year. Unit: Integer (1–12).
day Day of the month. Unit: Integer (1–31).
hour Hour of the day. Unit: Integer (0–23).
weekday Day of the week. Public holidays are marked as Sunday

(6). Unit: Integer (0–6, where 0 is Monday).
annual_peak Maximum load observed for a given year. Unit: MW.
temp Average temperature, ranging from −16.7 to 37.3◦C.
humidity Relative humidity, ranging from 11.19% to 100%.
feels_like Apparent temperature, ranging from −20.7 to 36.1◦C.
dew Dew point temperature, ranging from −19.9 to 23.3◦C.
wind_speed Wind speed. Unit: m/s.
wind_dir Wind direction (0–360°).
solar_radiation Solar radiation (unit not specified).
cloud_cover Cloud cover (0–100%).
uv_index UV index (0–10+).
year Year of the observation.
sea_level_pressure Atmospheric pressure at sea level.
snow Amount of snow. Unit not specified.
visibility Visibility (0 to 68.1 km).
snow_depth Snow depth in meters.
preciptype_columns Binary indicators for rain/snow. 1 = precipitation

present, 0 = otherwise.
load Target variable.

The dataset was split by year. The training data includes all processed observa-
tions from 2016 to 2018. The test data comprises observations from 2019 to prevent
data leakage.

5.2.3 Stringency Index
The stringency index was used to represent the severity of COVID-19, and not di-
rectly used as an input feature in the model. It quantifies the strictness of government
lockdowns implemented as a response to the pandemic. Sourced from the Oxford
Covid-19 Government Response Tracker (OxCGRT), this composite index ranges
from 0 to 100. The higher the value, the more stringent the measures. The in-
dex creators systematically tracked and scored several closure policies, particularly
school and workplace closures, public event cancellations, restrictions on gatherings,
public transport closures, stay-at-home requirements, general restrictions on internal



5. Methodology 25

movement, and international travel controls. The authors normalized and combined
through a weighted average. In my thesis, I utilized the stringency index specifi-
cally over the broader Government Response Index (GRI) because its focused scope
on restrictive measures allows for a more precise analysis of their direct impact on
the Czech Republic’s electricity load profile. This ensures that observed changes in
electricity demand can be directly attributed to the enforcement of these specific
restrictive policies.

Figure 5.1: Stringency Index (2020–2021)

Source: This figure was compiled by the author using data from Hale et al.
(2021)

5.3 Model Development
Table 5.1 below summarizes the modeling approaches tested in this study. The
performance metrics are presented along with the relevant implementation notes.
These initial results guided the model selection as described in the discussion that
follows.
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Table 5.1: Overview of Model Methods and Performance

Framework R2 / RMSE (MW) Comment
LASSO 0.453 / 926.1 Used LassoCV with 5-fold CV; ≥10

MW coefficient threshold for selection.
ANN -4.204 / 2855.7 3-layer ANN (100-50-25); negative test

R2 suggests indicates that the model is
worse than just predicting mean. Can
be poor model set up. Overfitting likely
happening.

ANN_LASSO 0.746 / 631.2 Same architecture as above; trained on
LASSO-selected features; alpha tuned
via GridSearchCV.

XGB 0.924 / 344.4 GridSearchCV tuning; used all avail-
able features.

XGB_LASSO 0.929 / 334.3 Final model; trained on LASSO-
selected features; optimized via Ran-
domizedSearchCV.

Behm et al. (2020) justify selecting an ANN to forecast load due to its ability
to represent the same “input-output” relationships as common regression models
such as the one the authors purport ENSTOE use. Moreover, the authors were
motivated by a need to transfer promising machine learning methods to electricity
load forecasting, partly influencing their model choice. Instead of selecting a single
model directly, in this study, I use an iterative approach to select the best model
from LASSO regression, ANN, and XGBoost based on the review of the literature.

LASSO played a central dual role in my modeling approach, and was first used
as a standalone model before being used for feature selection for both the ANN
and XGBoost models. Leveraging LASSO to identify and use the most influential
variables as features reduces model dimensionality to enhance performance. Results
by Řanda (2023) validate the systematic review by Nti et al. (2020) that a hybrid
model enhances accuracy when forecasting load. This is justification for my approach
to iteratively test a combination of LASSO with ANN and LASSO with XGBoost.
For a hybrid model, LASSO functions only to select the features that are important
to forecast load. Each iteration featured a central tracker to identify the overall
best-performing model across the entire workflow. This ensured a structured and
reproducible method for selecting the final candidate model for forecasting.

To select the best performing model, I will score them by how well they can
predict 2019, the year before COVID-19. Once the best-performing model has been
identified, I use the best-scoring model to create the counterfactual scenario.
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5.3.1 LASSO Model: Technical Specifications
The LASSO feature selection process began by loading training data from 2016 to
2018. All potential features were identified and then scaled using a StandardScaler.
This was necessary to ensure equal contributions to the L1 penalty by each feature
when training the model. As a result, variables with larger scales were prevented
from dominating the regularization process for the model and for feature selection
in the subsequent steps.

The model was trained on the scaled training data, employing 5-fold cross-
validation to select the optimal alpha parameter from a logarithmically spaced range
of 100 values between 0.000001 and 1000. Five-fold cross-validation was used to bal-
ance bias and variance in estimating the optimal regularization parameter without
excessive computational cost (Tibshirani, 1996). A wide alpha range specification
allowed the model to explore both light and strong penalization to accommodate
possible variations in feature relevance and multicollinearity. Features were selected
if the absolute value of their coefficient in the trained LASSO model exceeded a
minimum impact threshold of 10 MW, representing roughly 0.001% of the annual
peak load. This additional thresholding step filtered out features with negligible
real-world influence, promoting interpretability and focusing the model on drivers
with operational significance. To interpret the coefficient, a rescaler was applied and
the coefficients were grouped into temporal and non-temporal categories to better
contextualize their effects.

Table 5.2: Quantitative Impact of Selected Features (Above 10 MW)

Feature Impact (MW per unit)
temp -4.68 per ◦C
feelslike -67.26 per ◦C
dew -11.93 per ◦C
windspeed +1.80 per km/h
winddir -0.56 per ◦

solarradiation +2.55 per W/m2

cloudcover +3.69 per %
snow +193.11 per cm
visibility -1.87 per km
snowdepth +73.14 per cm
preciptype_rain +13.18 when raining

1LASSO selected 16 out of 21 available features, including both meteorological and tem-
poral indicators. Temporal variables like month, day, hour, weekday, and year were also
included but are not shown here due to their categorical nature. The same selected features
were identified and used in the downstream ANN and XGBoost models.
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Subsequently, the test set from 2019 was prepared using the same features and
scaling transformation. The model’s performance was evaluated on this test set using
only the selected features, calculating the Root Mean Squared Error and R-squared.
Finally, the list of selected features and the trained model, including the fitted scaler,
selected coefficients, and performance metrics were saved for later comparisons pro-
vided that the test R-squared exceeded 0.6 with at least one feature selected.

5.3.2 The Artificial Neural Network
The first ANN was trained using all available features, excluding the manually
dropped variables which were not relevant such as weather stations’ identification
numbers. After splitting the data into training (2016–2018) and testing (2019) sets,
all features were scaled using a StandardScaler. This transformation of the fea-
tures set the mean to 0 and the standard deviation to 1 to help with convergence and
improve stability of the model. ANNs can adjust for varying feature scales internally,
but external scaling accelerates convergence and improves stability during training.

The ANN was configured as a Multi-Layer Perceptron Regressor (MLP), similar
to Behm et al. (2020). While inspired by Behm et al.’s deep MLP architecture for
national load forecasting, a more computationally feasible design of three hidden
layers with 100, 50, and 25 neurons was used to effectively capture complex non-
linear relationships. This architecture resembles a pyramid (larger base) and was
intended to progressively condense representations to balance model capacity with
generalization.

The ReLU activation function was selected over the sigmoid function to mitigate
the vanishing gradient problem. Vanishing gradient occurs when gradients become
too small to effectively update network weights in the hidden layers, leading to poor
learning. In addition, an Adam solver was used to automatically adjust the learning
rate. Dynamic learning rates respond to training performance and reduce the need
for manual tuning should the ANN be selected as the best performing model. A batch
size of 32 was selected to balance computational efficiency and gradient estimation
quality. Training was set to a maximum of 1000 iterations and incorporated early
stopping, with 20% of the training data reserved for validation and a patience of 50
iterations without improvement. These specifications aimed to prevent overfitting
while allowing sufficient learning time.

The model’s performance was evaluated by calculating RMSE and R-squared
(R2) on both training and test sets, and an overfitting check was performed. The
test R2 error was negative, suggesting that irrelevant features were included, or poor
model architecture. In addition, internal feature importance was assessed based on
the average magnitude of the first layer’s weights. While not definitive, this internal
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check can provide a rough idea of feature influence in the model’s attempt to improve
the test R2 error.

A second independent training was conducted using input features selected by
LASSO regression. The same regression from the LASSO model was applied to
the dataset to identify a subset of features based on a minimum impact thresh-
old of 10 MW. These selected features were then independently scaled using a new
StandardScaler. This second ANN had the same architecture as in the first and
was trained on this reduced set of features. The model’s R2 score improved to 0.76
suggesting that the initial model was affected by noisy features which swamped the
signal. Keeping the architecture the same allowed for a direct comparison between
models trained on the full feature set versus the model trained on LASSO-selected
features.

In addition, the regularization parameter, alpha, for this ANN was optimized
using a three-fold GridSearchCV, searching across a logarithmic range of alpha
values. GridSearchCV works by defining a grid of hyperparameter values to test
and then systematically tries every single possible combination of these values. The
regularization aimed to reduce overfitting, especially with smaller feature sets, while
tuning alpha ensured the right balance between model complexity and generalization.
The performance of this optimized ANN, using the LASSO-selected features, was
then evaluated with RMSE and R2 on both training and test sets. Its results were
compared against the previously trained standalone LASSO model’s performance
and the ANN trained in the first stage.

5.3.3 XGBoost
The XGBoost implementation also followed a two-part approach, similar to the ANN,
focusing on training with all features first before training a model with LASSO-
selected features.

For the first XGBoost model, all features were scaled using a StandardScaler
after splitting the data. Although XGBoost is less sensitive to scaling, this was nec-
essary to maintain pipeline uniformity across the models and allow a fair comparison.
A basic XGBoost Regressor was created, which is a powerful algorithm for predicting
continuous numbers, similar to how an MLP works. This initial setup became the
foundation for systematically identifying the best configuration.

The hyperparameters were optimized using a three-fold cross-validation with
GridSearchCV. This means the dataset designated for hyperparameter tuning was
divided into three equal subsets with the model being iteratively trained on two sub-
sets and validated on the last subset. The results from these three iterations were
then averaged to provide a robust estimate of performance and reduce overfitting.
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The parameters tuned were the number of estimators, learning rate, maximum
tree depth, subsample ratio, and column subsample ratio. These parameters were
selected because they control model capacity, regularization strength, and overfitting
tendencies which are key drivers of performance for gradient-boosted trees. After
training the optimal model, its performance was evaluated using RMSE and R2 on
both the training and test sets. Feature importance was also calculated using the
model’s inherent feature importance scores, which offer insight into which variables
contribute most to reducing prediction error across the individual decision trees.

Similar to the ANN, the second training of the XGBoost used features selected
by the LASSO model. The selected features were loaded, and new training and
test datasets were created using only these features, which were then scaled indepen-
dently with a StandardScaler. The same XGBoost Regressor was again used, and
its hyperparameters were optimized with GridSearchCV, similar to the first part.
However, the hyperparameter ranges were adjusted to account for the smaller input
set, leading to a less complex model. The optimal model’s performance was then
evaluated using RMSE and R2 on the training and test sets, and feature importance
was determined for the selected features.

The two-stage implementation of the XGBoost algorithm was designed to enable
fair comparisons while keeping accuracy and interpretability consistent when using
all versus LASSO-selected inputs.

5.3.4 Theoretical Framework: Approaches to Counterfac-
tual Analysis

This section reviews empirical strategies used to construct counterfactual electricity
load profiles and discusses the assumptions and limitations. The first method is the
Difference-in-Differences (DiD) method, which compares load changes over time be-
tween a ’treated group and an untreated group. While reliable, the global nature of
the pandemic makes it impossible to have the two groups, as the measures were ap-
plied to the whole country. Another method is the Synthetic Control Method (SCM),
which would involve constructing a "synthetic Czech Republic" from a weighted com-
bination of other countries’ pre-pandemic load data to serve as the counterfactual.
This is a useful method, but the major challenge is replicating granular hourly load
values which can be challenging (Chen, 2023). Last but not least, Computable Gen-
eral Equilibrium (CGE) models have the ability to simulate economy-wide impacts
of shocks and policies influencing energy demand at a macro level (Jia & Lin, 2022).
However, the challenge is that their aggregate nature means they are unable to di-
rectly model granular hourly electricity load. In this case, matching methods, which
aim to balance covariates between treated and control groups would be impracti-
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cal for widespread national shocks due to pervasive "treatment" and unobservable
confounders. Naturally, this thesis utilizes a generative, machine learning-based ap-
proach.

5.3.5 Model Selection and Tuning
The systematic and iterative model selection process ultimately identified the XG-
Boost model with LASSO-selected features as the top performer for load forecasting.
Before settling on the model, tuning was also performed. Initially, each model type
(LASSO, Artificial Neural Network, and XGBoost) underwent separate hyperpa-
rameter optimization. For instance, the LASSO model utilized LassoCV to find its
optimal alpha through 5-fold cross-validation across a wide range of values. Both
ANN and XGBoost models, when trained with all features and then with LASSO-
selected features, underwent hyperparameter tuning using GridSearchCV function.
This facilitated a systematic search for the best parameters such as the number of
estimators, learning rate, and tree depth for XGBoost, or network architecture and
regularization in the case of the ANN. Throughout these training phases, the perfor-
mance of each model on the test set (measured by R2 and RMSE) was continuously
compared against a running record of the overall best model. This ensured that the
best model identified at any point was always tracked.

Finally, the optimized XGBoost model with LASSO-selected features was further
subjected to hyperparameter tuning using a scikit-learn pipeline. This pipeline
integrated the StandardScaler with the XGBoost model. RandomizedSearchCV
was used for this final optimization, exploring a broader set of hyper-parameters than
in the initial tuning phases. Table 5.3 below presents the final parameters, while ta-
ble 5.4 illustrates the hyper-parameter optimization process.

Table 5.3: Final XGBoost Hyper-parameters after Tuning

model__subsample 0.8
model__reg_alpha 0.001
model__n_estimators 500
model__min_child_weight 5
model__max_depth 4
model__learning_rate 0.1
model__gamma 0.2
model__colsample_bytree 0.9
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Table 5.4: Python Code for Model Tuning and Evaluation

# Performing hyperparameter tuning

tuner = RandomizedSearchCV(

estimator=pipeline,

param_distributions=param_distributions,

n_iter=n_iterations_tuning,

cv=cv_folds_tuning,

scoring=’neg_mean_squared_error’,

n_jobs=-1,

verbose=2,

random_state=42 )

tuner.fit(X_train_full, y_train)

final_pipeline = tuner.best_estimator_

# Evaluating final model performance

train_pred = final_pipeline.predict(X_train_full)

test_pred = final_pipeline.predict(X_test_full)

train_rmse = np.sqrt(mean_squared_error(y_train, train_pred))

test_rmse = np.sqrt(mean_squared_error(y_test, test_pred))

train_r2 = r2_score(y_train, train_pred)

test_r2 = r2_score(y_test, test_pred)
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Optimizing subsample and reg_alpha (L1 regularization) was performed to en-
courage simpler models by penalizing larger weights and control data sampling, while
n_estimators and learning_rate were tuned to improve the model’s overall
learning capacity. The parameters min_child_weight, max_depth, and gamma

were adjusted to manage individual tree complexity and prevent overfitting. Fur-
ther generalization was achieved by tuning colsample_bytree to control feature
sampling. Model tuning re-confirmed the XGBoost model with 16 LASSO selected
features as the most robust and accurate model. The final performance metrics
showed an R2 of 0.929 and a RMSE of 334.5 MW on the test set. Despite the exten-
sive final tuning, this performance was consistent with the previous best, indicating
the stability and optimal configuration achieved earlier.

Figure 5.2: Actual vs Predicted Scatter Plot

Source: This figure was compiled by the author.
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Figure 5.3: Model Performance: Actual Load vs Predicted Load

Source: This figure was compiled by the author.

This chapter outlined the methodology for constructing a counterfactual electric-
ity load profile, including the pre-processing steps, iterative model development, and
model tuning. The next chapter presents the results of the counterfactual analysis,
showing the estimated COVID-19 impact on the Czech Republic’s electricity load. It
also provides insights into possible scenarios along with recommendations for energy
economics policy.



Chapter 6

Counterfactual Analysis

The counterfactual analysis was performed using the optimized XGBoost model to
project the counterfactual load profile for 2020 and 2021. The model with LASSO
selected features was provided with the actual observed values for the weather vari-
ables. Since this model was trained solely on pre-COVID-19 data, its predictions
for 2020 and 2021 directly represent the electricity demand that would have been
realized without the pandemic. The code block below illustrates the key steps in the
counterfactual analysis. Table 6.1 details the key steps in the counterfactual analysis,
while the resulting counterfactual load profile illustrated in Figure 6.1.

Formally, for each hour t in the years 2020 and 2021, let:

• Y actual
t : the observed electricity load,

• Xt: the vector of weather and calendar features used by the model (excluding
any COVID-related indicators),

• fXGB(·): the trained XGBoost model from the final pipeline.

The counterfactual prediction is then:

Y cf
t = fXGB(Xt) (6.1)

The estimated impact of the COVID-19 pandemic on load is calculated as:

∆t = Y actual
t − Y cf

t (6.2)

The total and average hourly impact over the analysis window T ⊆ {t : year(t) ∈
{2020, 2021}} are:

Total Impact =
∑︂
t∈T

∆t, Average Hourly Impact = 1
|T |

∑︂
t∈T

∆t (6.3)
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Table 6.1: Python Code for Counterfactual Impact Calculation

counterfactual_data = counterfactual_data[

(counterfactual_data[’datetime’].dt.year >= 2020) &

(counterfactual_data[’datetime’].dt.year <= 2021)

].copy()

# Prepare features for the counterfactual period

X_counterfactual_full = counterfactual_data[loaded_features]

y_counterfactual_actual = counterfactual_data[’load’]

# Generate counterfactual predictions (what load would have been

without COVID)

y_counterfactual_pred = final_pipeline.predict(X_counterfactual_full)

# Calculate estimated COVID_19 impact

estimated_covid_impact = y_counterfactual_actual -

y_counterfactual_pred

# Calculate total and average impact

total_impact_mwh = estimated_covid_impact.sum()

average_hourly_impact_mw = estimated_covid_impact.mean()

Figure 6.1: Actual and Counterfactual Load Profile

Source: This figure was compiled by the author.

While the stringency index was instrumental to link the observed difference to
the severity of the measures, the model did not learn from this index since pre-
Covid data was used to train the model. During the study period, the maximum
observed stringency was 82.41, while the minimum observed value was 5.56. By the
end of 2021, the stringency value had fallen to 39.59. To calculate the "COVID
impact" on the load profile, the difference between the actual observed load during
the pandemic and the generated counterfactual load was used. The results show
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that for the entire period (2020 - 2021), electricity demand fell by 2,658,411 MWh
(or about 2.66 TWh representing about 270 million euro if the electricity is valued at
€100/MWh), corresponding to an average hourly reduction of 151.53 MW. For the
year 2020, the total consumption was reduced by 2,123,687.71 MWh with an average
hourly reduction of 241.77 MW. On the other hand, for the year 2021 the impact of
COVID-19 was less pronounced with a total reduction of 534,723.31 MWh compared
to the baseline indicating a recovery. The calculated average hourly reduction for
2021 is approximately 61 MW. The figure below depicts the relationship between
stringency and the corresponding changes to the load profile.

Figure 6.2: Load Reductions vs Stringency (2020)

Source: This figure was compiled by the author.

Figure 6.3: Load Reductions vs Stringency (2021)

Source: This figure was compiled by the author.
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Figure 6.4: Distribution of Estimated COVID-19 Impact on Electric-
ity Load

Source: This figure was compiled by the author.

6.0.1 Rationale
In the first quarter of 2020, the stringency index rose sharply indicating the increased
lockdown measures. This was accompanied by a sharp decline, which peaked at
around 850 MW in May 2020 when the stringency was around 0.65. This suggests
a direct association between the initial, rapid implementation of strict government
interventions and a significant decrease in electricity consumption. Following the
initial peak, the stringency declined and then rose again from August 2020 into early
2021. During this period, the estimated load impact exhibited a more consistent but
visually inverse relationship. As stringency measures tightened towards late 2020 and
early 2021, the estimated load impact generally became more negative, dipping below
zero again after a period of less negative impact. Conversely, when stringency eased,
the load impact became less negative or moved towards recovery, demonstrating a
developing correspondence between the intensity of interventions and the direction
of load reduction. Throughout 2021, as the lockdown measures eased to just over
0.4, the estimated load impact reduced to under 200 MW.

Further examination into the temporal dynamics of the change revealed distinct
patterns between day and night periods. The average hourly COVID-19 impact dur-
ing the day was a reduction of 145.68 MW with demand dropping even further during
the night by 157.37 MW (T-statistic: 2.1758, P-value: 0.0296). The COVID-19 im-
pact was more pronounced during night hours. A more granular analysis showed
average negative impacts of approximately 112 MW for mornings, 179 MW for af-
ternoons, 175 MW for evenings and 149 MW for night time.



6. Counterfactual Analysis 39

6.0.2 A Proposed Heuristic for Stringency Impact Simula-
tion

To illustrate the model’s capabilities to simulate how the load profile could have
looked under different stringency levels without retraining the model, a heuristic
approach has been implemented. This method allows an estimation of the potential
impact on electricity load if COVID-19 stringency measures had been consistently
lower or higher than observed. The data shows that the highest observed stringency
index was 82.41. A factor of 1.21 would represent a stringency of 99.71 which is
close to the maximum level of 100. Likewise, a more relaxed scenario is calculated
by dividing the observed stringency values by a factor of 1.21 for a balanced analysis.
The heuristic operates on the assumption that the observed deviation in electricity
load due to COVID-19 is proportionally related to the average stringency level during
the period. This is a strong assumption, but is sufficient to illustrate this potential
application.

The Heuristic Estimated Impact (Iheuristic(t)) at any given time t for a hypothet-
ical, sustained target stringency level (Starget) is calculated as:

Iheuristic(t) = Iobserved(t) × Starget

S̄actual
(6.4)

Where:

• Iobserved(t) = Lactual(t) − Lno_covid(t): The observed deviation of actual load
(Lactual(t)) from the "no COVID" baseline predicted load (Lno_covid(t)) at time
t.

• Starget: The specific, sustained target stringency index value for the hypothet-
ical scenario.

• S̄actual: The average actual stringency index observed over the entire counter-
factual period (2020–2021).

Once Iheuristic(t) is determined, the Heuristic Hypothetical Load (Lheuristic(t)) for
that scenario is:

Lheuristic(t) = Lno_covid(t) + Iheuristic(t) (6.5)

The actual stringency profile correlates to a load reduction of approximately
2.66 million MWh over the 2020–2021 period, averaging -151.53 MW hourly. Af-
ter simulating a low stringency scenario the estimated total impact is reduced to
approximately -2.13 million MWh, with an average hourly impact of -121.22 MW.
Simulating a high stringency scenario shows a higher impact of approximately -
3.32 million MWh over 2020–2021, corresponding to an average hourly reduction of
-189.41 MW. These simulations demonstrate that, under the assumed proportional
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relationship, stricter measures would have led to a more pronounced suppression of
electricity demand, while less stringent measures would have resulted in a compara-
tively smaller reduction.

It is important to acknowledge that this approach is a simplification. Another
key assumption is the relaxation or strengthening of the measures would have oc-
curred at the same time as the government implemented the observed measures.
Even though a model explicitly trained on stringency data as one of the inputs is
developed, the results would still rely on the same assumption. Furthermore, the
simulation requires one to account for the Russia–Ukraine war which followed the
end of the lockdown measures. Nevertheless, for the current scope of this thesis, a
simple heuristic approach offers valuable insights.

Table 6.2: Hypothetical Impact of Different Stringency Levels on
Electricity Consumption (2020–2021).

Scenario Year Total Impact (MWh) Avg. Hourly Impact (MW)
Actual 2020 -2,123,687.71 -241.77

2021 -534,723.31 -61.04
Total -2,658,411.02 -151.53

Low 2020 -1,698,950.17 -193.41
2021 -427,778.65 -48.83
Total -2,126,728.82 -121.22

High 2020 -2,654,609.64 -302.21
2021 -668,404.13 -76.30
Total -3,323,013.78 -189.41

6.1 Discussion of Results
The results of the counterfactual analysis provide strong evidence that the COVID-19
pandemic significantly altered electricity consumption patterns in the Czech Repub-
lic, both in magnitude and distribution across time periods. Using the most accurate
forecasting model — XGBoost with LASSO-selected features — this study estimated
a total reduction of 2.66 TWh in electricity demand across 2020 and 2021. This
represents a meaningful 4.0% decrease compared to 2019’s baseline consumption of
66.15 TWh.

These findings reinforce the assertion by McKibbin & Fernando (2023) that the
pandemic introduced non-linear shocks to economic activity, which were clearly re-
flected in electricity load profiles. In addition to measuring the total change, the
analysis also measured the variations between day and night time. The average
load dropped by 145.68 MW during daytime hours and by 157.37 MW during the
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night. These differences were statistically significant (p = 0.03). While unexpected,
this trend may point to a deeper structural shift, where industrial and commercial
baseloads were more heavily curtailed than residential consumption. Furthermore,
this finding aligns with similar patterns noted in the Victoria, Australia study by
(Wu et al. 2023), where industrial zones demonstrated flatter and more depressed
load curves during lockdowns.

Importantly, the stringency index analysis confirms a close correlation between
governmental restrictions and demand reductions. The second quarter of 2020 expe-
rienced the most severe stringency, which coincided with the most substantial drops
in load. This correlation further validates the use of non-demand-side predictors
(weather and calendar variables) in generating accurate counterfactuals, as first pro-
posed by Behm et al. (2020). It also supports Nabavi et al.’s (2024) argument that
building models capable of anticipating the effects of non-linear societal disruptions
is essential to load forecasting.

When compared with other studies, particularly Gulati et al. (2021) for India
and Abulibdeh et al. (2022) for Qatar, the Czech case mirrors falls in line with their
findings of decreased industrial demand and somewhat stable residential consump-
tion. However, this study adds to the understanding of how the pandemic changed
the load profile for the Czech Republic by synthetically generating a load profile
based on weather variables only. This methodological distinction avoids problems
of post-shock model distortion and validates Behm et al.’s (2020) core idea of using
weather related features without relying on historical load values.

Going to the specifications, a final consideration is the performance of the mod-
eling framework itself. The robustness of the XGBoost model with LASSO-selected
features (R2 = 0.929, RMSE = 334.3 MW) validates both the model choice and
feature reduction strategy. Compared to standalone LASSO (R2 = 0.453) and unfil-
tered ANN (R2 = −4.204), the hybrid approach achieved a superior balance between
predictive accuracy and interpretability — crucial for policy-relevant insights.

6.2 Economic Implications
The results of this study show that the measures to contain the pandemic changed
the load profile. The findings contrast ČEPS’s expectations presented in their 2016
Mid-term Adequacy Forecast for the Czech Republic. At that time, ČEPS projected
an increase in the Czech Republic’s net consumption, expecting it to reach 65.5 TWh
in 2020 and 67.0 TWh in 2025. While the analysis quantifies the immediate impact
of the pandemic on the load profile, it is possible that these changes may be part
of broader underlying economic transformations. One possibility is the potential
decoupling between economic growth and electricity consumption.
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The overall energy efficiency gains reported in the ODYSSEE-MURE (2025) en-
ergy profile report suggest an economy that is on track to decouple in the medium
term. Net energy gains became 28% more efficient from 2000 to 2022. Although
these efficiency gains and structural shifts have not yet fully offset the growth in
energy consumption driven by overall economic activity, they suggest a weakening
link between economic expansion and increased electricity demand. Therefore, the
measured impact of COVID-19 might partially overlap with an accelerated manifes-
tation of existing or new economic trends. For policy makers interested in exploring
the economic link, this implies that future load profile predictions must account for
these complex interactions, moving beyond single-factor explanations such as the im-
pact of COVID-19 explored in this thesis. It is prudent to account for the dynamic
relationship between energy efficiency, sectoral shifts, and overall economic activity
even in the context of unforeseen shocks.

6.3 Future Work
The counterfactual analysis quantifies the change in the electricity load during the
2020–2021 period that coincided with the COVID-19 pandemic and associated mea-
sures. By comparing the observed load with a synthetic load profile, this study
estimates how the load profile deviated from expectations. While the observed im-
pact clearly demonstrates the influence of the pandemic, the load forecasting model
was not designed to directly incorporate the stringency index as a predictive feature.
The scope of the thesis was confined to measuring the extent to which the COVID-19
pandemic changed the load profile. Consequently, the pre-COVID data would fea-
ture stringency index values of zero before 2020. The feature selection would have
eliminated this variable.

However, integrating the COVID stringency index into the model’s feature set is
an opportunity to understand how different stringency levels affected the load profile.
By extending the training set to the end of 2021 and retraining the model, the model
could learn the relationship between policy measures and electricity demand. This
can facilitate more sophisticated counterfactual simulations. From there it will be
possible to determine how a different level of stringency could have affected the load
profile. In the event of a future shock that requires the government to implement
similar measures, it will be possible to simulate different scenarios.

Furthermore, the model can be expanded to incorporate a broader set of other
economic indicators as feature. Examples are macroeconomic variables such as GDP,
sectoral output, or demographic trends like population growth. This study has
demonstrated the effectiveness of LASSO as a feature selection tool. It is possible use
LASSO to select the appropriate features from a richer set of candidate features Zt,
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which would include not only traditional economic and demographic variables but
also variables capturing societal shocks and behavioral responses. The electricity
load can then be modeled as:

Lt = f(Zt) + ϵt,

where f(·) is a flexible non-linear function such as XGBoost, trained on LASSO-
selected features from Zt.

A broad model with other macroeconomic variables will likely lead to more nu-
anced forecasts. As a policy recommendation, planners should adopt synthetic fore-
casting models as part of scenario planning for future crises. For shocks that exhibit
structural similarities to COVID-19, this approach could support rapid contingency
planning and enhance the resilience of electricity systems.

6.3.1 Opportunities to Incorporate Artificial Intelligence
Beyond enhancing the model to incorporate a broader range of economic indicators,
another opportunity lies in Artificial Intelligence (AI). It is generally expected that
AI will be used more in a wide range of tasks. Large Language Models (LLMs)
and conversational AI in particular, could be potentially be used to analyze exten-
sive datasets to identify patterns and predict future outcomes. Su et al. (2024),
in their systematic literature review highlight that LLMs are inherently well-suited
for timestamped data. They also have the ability to recognize deviations from the
norm. Interactive AI could be used to draw insights from the core forecasting model
to quickly deliver insights. For example, a stakeholder could pose questions in nat-
ural language, such as: "What is the projected electricity demand for next winter
under a specific scenario?" or "How would a given percentage increase in renewable
energy sources impact grid stability?" This interactive capability would enable real-
time exploration, allowing input for hypothetical questions for policy and related use
cases.



Chapter 7

Conclusion

This thesis sought to understand how the electricity load profile for the Czech Repub-
lic would have been had the COVID-19 pandemic not occurred. Given the non-linear
nature of variables that affect electricity demand, it was essential to specify a model
capable of dealing with the complex interaction between variables. By generating
synthetic load profiles based solely on weather and calendrical variables, the study’s
finding is that the Czech Republic’s load profile was significantly altered during the
pandemic. Using a modeling approach inspired by Behm et al. (2020), selecting the
machine learning algorithm for the model took an iterative approach.

Three models types were evaluated, namely LASSO regression model, an artificial
neural network model, and an extreme gradient boosting model. LASSO was also
used to perform feature selection, and each model was trained on pre-pandemic data
from 2016—2018 and tested on 2019 data. The XGBoost model with LASSO selected
features was the best performing model with an R2 of 0.929 and RMSE of 334.3 MW.
This model was used to produce the counterfactual load profiles for 2020 and 2021,
representing what electricity demand would have been without the pandemic.

A comparison between the observed and counterfactual load profiles showed that
COVID-19 reduced electricity consumption by approximately 2.66 TWh over the two
years. This change is equivalent to 4.0% of 2019’s total demand, with the biggest
change observed in 2020. The changes were more significant during night hours.
This suggests that the effects of societal restrictions extended beyond typical working
hours, perhaps due to prolonged reductions in commercial and industrial activity.

The results also confirm that synthetic load profiles generated from weather and
calendar features can serve as reliable estimates of baseline demand. Although this
study intentionally limited model inputs to weather and calendrical variables for
interpretability and transferability, future work could improve this framework by
incorporating additional predictors such as population data among other factors
related to electricity consumption. Further research could also apply this method to
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regional or sector-specific data, or test in other countries.
In closing, this study establishes an adaptable approach to counterfactual model-

ing framework that can help energy planners and policymakers better understand and
prepare for medium to long-term changes in electricity demand following unexpected
events.
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Appendix A

Pre-COVID Load Analysis

Table A.1: Pre-COVID (2016-2019) Day vs Night Load Analysis
Summary

Metric Value
Average Day Load (MW) 8,158.38
Average Night Load (MW) 6,874.56
Difference (Day - Night, MW) 1,283.82
Standard Deviation Day Load (MW) 1,105.13
Standard Deviation Night Load (MW) 1,089.08
T-statistic 108.39
P-value < .001



Appendix B

Iterative Modelling

Figure B.1: LASSO-selected features and their impacts used in down-
stream models.1



B. Iterative Modelling III

Figure B.2: ANN model training (No LASSO).



B. Iterative Modelling IV

Figure B.3: ANN model training (LASSO selected features).



B. Iterative Modelling V

Figure B.4: XGBoost model training (No LASSO).

Figure B.5: XGBoost model training (LASSO selected features).



Appendix C

Model Tuning

Figure C.1: Model Tuning Results (part 1).

Figure C.2: Model Tuning Results (part 2).



C. Model Tuning VII

Figure C.3: Tuned Model Performance.



Appendix D

Counterfactual Analysis

Figure D.1: Counterfactual Analysis Summary.



D. Counterfactual Analysis IX

Figure D.2: Heuristic Counterfactual Analysis.
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