
226

Charles University
Center for Economic Research and Graduate Education

Academy of Sciences of the Czech Republic
Economics Institute

Pavlo Blavatskyy

Axiomatization of a Preference for Most
Probably Winner

CERGE-EI

WORKING PAPER SERIES (ISSN 1211-3298)
Electronic Version



 1
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Abstract: 

In binary choice between discrete outcome lotteries, an individual may prefer lottery 
1L  to lottery 2L  when the probability that 1L  delivers a better outcome than 2L  is higher than 

the probability that 2L  delivers a better outcome than 1L . Such a preference can be 
rationalized by three standard axioms (completeness, continuity and first order stochastic 
dominance) and two less standard ones (weak independence and a fanning-in). A preference 
for the most probable winner can be represented by a skew-symmetric bilinear utility 
function. Such a utility function has the structure of a regret theory when lottery outcomes are 
perceived as ordinal and the assumption of regret aversion is replaced with a preference for a 
win. The empirical evidence supporting the proposed system of axioms is discussed. 
 

Abstrakt: 

V případě binární volby mezi loteriemi s diskrétním výsledkem, jednotlivec múže 
preferovat loterii 1L  před loterií 2L  když pravděpodobnost že 1L  nastane s lepším výsledkem 
než 2L  je větší než pravděpodobnost že 2L  nastane s lepším výsledkem než 1L .  Takové 
preference je možné racionalizovat podle třech standardních axiomú (spojitost, první 
stochastická dominance a kompletnost preferencií) a dvou méně standardních axiomú (slabá 
nezávislost a sevření). Preference najpravděpodobnejšího vítěze je možné reprezentovat 
funkcií užitečnosti, která je lineární v obou její argumentech a je symetricky sešikmená. 
Taková funkce užitečnosti má strukturu podle teorie lítosti když výsledky loterie jsou 
vnímány jako ordinální a předpoklad averze k lítosti je nahrazen preferencí pro vítězství. 
Empirické evidence, které podporují tento navrhovaný axiomatický systém jsou diskutovány.  
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1. Introduction 

An individual has menu-dependent preferences when his preference between two 

choice options depends on the availability of additional options (content of the choice set). 

The literature often describes such preferences as “context-dependent” (e.g. Stewart et al, 

2003, Tversky and Simonson, 1993, Simonson and Tversky, 1992). The context of a choice 

situation is a very general concept, however, that can be also used to describe aspects other 

than the content of a choice set. A more suitable term to describe a very specific 

phenomenon—the dependence of individual preferences on the menu of a choice set—is 

menu-dependence.  

In choice under risk (Knight, 1921), a special type of menu-dependent preference is a 

preference for a lottery that is most probable to outperform all other feasible lotteries. The 

literature refers to such a preference as “a preference for probabilistically prevailing lottery” 

(e.g. Bar-Hillel and Margalit, 1988) or “the criterion of the maximum likelihood to be the 

greatest” (e.g. Blyth, 1972). Recent experimental evidence suggests that a preference for most 

probable winner prevails in binary choice between lottery frequencies of equal expected 

value (Blavatskyy, 2003) and in small feedback-based problems (e.g. Barron and Erev, 2003, 

Blavatskyy, 2003a). In this paper, I build a system of axioms rationalizing a preference for 

most probable winner in binary choice.  

Given the probability distributions of any two independent lotteries it is always 

possible to calculate directly the (relative) probability of each lottery to outperform the other. 

Such calculation requires little cognitive effort when the state space (a joint distribution of 

lotteries) is available. Blavatskyy (2003) provides experimental evidence that a preference for 

most probable winner emerges when an individual follows a simple majority rule—to pick up 

a lottery that gives a better outcome in the majority of (equally probable) states of the world. 

In such a cognitively undemanding environment it is plausible to assume that an individual 
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follows a simple behavioral rule—he calculates the relative probabilities of each lottery to 

win over the other lotteries and then maximizes among those probabilities. This behavioral 

rule (the heuristic of relative probability comparisons) resembles one-reason fast and frugal 

decision making (e.g. Gigerenzer and Goldstein, 1996). Like all heuristics, it ignores some of 

the available information by treating lottery outcomes as ordinal. Additionally, like all 

heuristics, this behavioral rule applies only to a bounded subset of decision problems, e.g. 

when lotteries have equal or similar expected values.  

In cognitively demanding environments, a straightforward calculation of relative 

probabilities of a lottery to win over others, however, demands more cognitive effort. 

Examples include situations when probability information is presented visually (e.g. Tversky, 

1969) or not presented at all (e.g. Barron and Erev, 2003), when lotteries have many 

outcomes or an individual faces a choice among many lotteries. Nevertheless, assuming an 

individual preference for most probable winner it is possible to explain observed decision 

making in such environments, as demonstrated in Blavatskyy (2003a) in his alternative 

explanation of the data in Barron and Erev (2003).  

Since individuals are likely to use only simple rules of thumb (e.g. Gigerenzer et al., 

1999), a descriptive fit of a preference for most probable winner in cognitively demanding 

decision environments can be explained only through a general theory of preference. Unlike a 

heuristic approach that describes a plausible psychological process underlying observed 

decision making (e.g. Newell and Shanks, 2003), a theory of preference states that an 

individual has an underlying preference for most probable winner. The purpose of this paper 

is to explore the theoretical properties of an individual’s preference for most probable winner, 

how it is related to various non-expected utility theories (Starmer, 2000), what normative 

axioms are necessary and sufficient for rationalizing such preference, and how descriptive 

those axioms are. 
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The proposed axiomatization provides theoretical insights into an individual’s 

preference for most probable winner and highlights some surprising connections to other 

decision theories. It also provides “thought experiment” evidence for a descriptive validity of 

the theory (e.g. Friedman and Savage, 1952, Quiggin, 1982, Machina, 1982, Wakker, 2003). 

However, “thought experiment” evidence can be drastically different from actual decision 

making (e.g. Tversky, 1969). Therefore, the paper also focuses on the experimental evidence 

supposedly documenting the systematic violation of the proposed axioms.  

The remainder of this paper is structured as follows. Section 2 introduces the system 

of axioms with an emphasis on their normative appeal. The proposed axioms are used in 

section 3 to derive a utility function representation and family of indifference curves. The 

descriptive validity of the proposed axioms is discussed in section 4. Section 5 concludes. 
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2. The system of axioms 

2.1. Basic definitions 

An option A is strictly preferred to option B, or BA f , if an individual chooses A and 

is not willing to choose B from the choice set { }BA, . An individual is indifferent between 

choice options A and B, or BA ~ , if the choice of A and the choice of B are equally possible 

from the choice set { }BA, . 

This paper deals with individuals’ binary choices between discrete lotteries. The set of 

lottery outcomes { }nxx ,...1  is finite and ordered in such a way that nxx pp ...1 . Note that 

outcomes are not necessarily monetary (measured in reals). We only require the outcomes to 

be strictly ordered in terms of individual preference. A lottery ( )11 ,..., −nppL  is defined as a 

mapping { } [ ] 1
11 1,0,...,: −
−

n
nxxL a , where [ ]1,0∈ip  is the probability of occurrence of 

outcome ix , [ ]1,1 −∈ ni . The best outcome nx  is mapped to the residual probability 

0...1 11 ≥−−− −npp .  

In a joint independent distribution of any two lotteries 21, LL  only three events are 

possible: 1L  delivers a better outcome than 2L  (state 1s ), 2L  delivers a better outcome than 

1L  (state 2s ) and lotteries 21, LL  deliver the same outcome (state 3s ). An individual has a 

preference for most probable winner when ( ) ( )2121 sprobsprobLL >⇔f . This decision 

rule is rationalized below. 
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2.2. Standard axioms 

This section introduces a set of standard axioms that are routinely employed in one 

form or another in nearly all axiomatizations of decision theories (e.g. Abdellaoui, 2002, 

Segal, 1990). Notably, this set of standard axioms does not contain the transitivity axiom. 

Indeed, a preference for most probable winner can be intransitive (e.g. Blyth, 1972).  

Axiom 1 (Completeness) For any two lotteries 21 , LL  either 21 LL f  or 21 LL p  or 21 ~ LL . 

Axiom 2 (Continuity) For any three lotteries 321 ,, LLL  such that 21 LL f  and 32 LL f  

( ) ( ) 231 ~1:1,0 LLL ααα −+∈∃  

Axiom 3 (First order stochastic dominance) For any two lotteries ( )111 ,..., −nppL , 

( )112 ,..., −nqqL  such that [ ] [ ] ∑∑∑∑
====

<−∈∃−∈∀≤
i

j
j

i

j
j

i

j
j

i

j
j qpniniqp

1111
:1,1  and  1,1, 21 LL f⇒  

2.3. Weak independence axiom 

The cornerstone of EUT—the independence axiom—states that, if an individual has a 

preference between two lotteries 21  and LL , then he has the same preference between 

probability mixtures of 21  and LL  with an arbitrary third lottery 3L  (von Neumann 

Morgenstern, 1944). However, unlike the standard axioms (notably completeness and 

continuity), the independence axiom has a context-dependent normative appeal. Similar to 

heuristics, the independence axiom is intuitively appealing in the environments where its 

application requires little cognitive effort (probability mixtures are presented in a split format 

with transparent common consequences whose cancellation appears obvious) (e.g. Kahneman 

and Tversky, 1979, and Conlisk, 1989). In contrast, in cognitively demanding environments 

(probability mixtures are presented in a coalesced format), the independence axiom needs a 

reference to normatively appealing principles (reduction axiom, Segal 1990). It also looses an 

immediate intuitive appeal, for example, to considerations of similarity (e.g. Kahneman and 
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Tversky, 1979). Fortunately, a weak version of independence axiom is sufficient to 

characterize an individual’s preference for most probable winner. 

Definition 1 (Difference in probability distributions) For any two lotteries 

( ) ( )112111 ,...,  and  ,..., −− nn qqLppL  a difference in probability distributions 
→

21LL  is defined as 

( )111121 ,..., −−

→

−−= nn pqpqLL .  

A difference in probability distributions 
→

21LL  effectively measures the degree of 

similarity between lotteries 1L  and 2L . It shows what probability changes are required for a 

lottery 1L  to become a lottery 2L . 

Axiom 4 (weak independence) For any four lotteries ′′
2121 ~  and  ~ LLLL such that 

∈∃α ú:
→→
′=′ 2211 LLLL α  ( ) ( ) ( ) ′−+′−+∈∀⇒ 2211 1~1:1,0 LLLL βββββ  

Axiom 4 states that an individual’s preference within two lottery pairs extends to the 

cross-pair probability mixtures if the cross-pair differences in probability distributions are 

proportionate. An analogue of the independence axiom would be more restrictive—an 

individual’s preference within lottery pairs is preserved for the cross-pair probability 

mixtures if the cross-pair differences in probability distributions are the same ( 1=α ). For 

lotteries defined on a common three-outcome structure axiom 4 effectively guarantees that an 

individual’s indifference curves are either parallel lines (when 1=α ) or they have a unique 

point of intersection (when 1=/α )1. Chew (1983) and Fishburn (1983) offer an alternative but 

functionally equivalent formulation of the weak independence axiom. However, Starmer 

(2000) argues that their formulation lacks an intuitive appeal.  

                                                           
1 The point of intersection may be either a well-defined lottery (figure 9 in Machina, 1987), figure 3.2 in 
Fishburn (1988) p. 71) or a triple of real numbers summing up to one but not restricted to belong to interval 
[0,1] individually. In the latter case the point of intersection is outside the lottery space and the transitivity of 
preferences is preserved (e.g. Starmer (2000), p.343). Khrennikov (1999) builds a non-Kolmogorov probability 
theory restricting probabilities to sum up to one but not necessarily to belong to interval [0,1] individually.  
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By setting 21 LL =′  and 12 LL =′  axiom 4 implies a strong mixture symmetry 

( ( ) ( ) ( ) 212121 1~1:1,0,~ LLLLLL βββββ +−−+∈∀∀ ), which is the only possible form of 

mixture symmetry consistent with axioms 2 and 3 (e.g. Chew et al., 1991). If we allow 0=α  

then by setting 121 LLL =′=′  axiom 4 implies a betweenness axiom 4a. 

Axiom 4a (Betweenness) For any lotteries 21 ~ LL  and ( )1,0∈α  ⇒  ( ) 121 ~1 LLL αα −+  

Proposition 1 If axioms 1-3 and 4a hold then for any lottery ( )110 ,..., −nqqL  it is possible to 

find a vector of outcome-associated “utilities” { }∈−11 ,..., naa ú 1−n  such that ( ) :,..., 11 −∀ nppL  

1...~ 11110 =++⇔ −− nn papaLL .  ■ Proof is presented in appendix I ■  

Proposition 1 defines the set of all lotteries such that an individual is indifferent 

between them and a given lottery 0L . It is not a conventional indifference set because without 

transitivity an indifference relation is not an equivalence relation ( 210201 ~~,~ LLLLLL ⇒/ ). 

Proposition 1 defines this set as a ( )2−n -dimensional hyperplane (written in canonical form) 

exactly as an implicit weighted utility (Chew, 1989) or implicit expected utility (Dekel, 1986) 

without the assumption of transitivity. EUT satisfies proposition 1 as a special case when 

[ ],1,1, −∈
−
−

= ni
uu
uu

a
n

in
i  where ( ) nn

n

j
jj uqququ 11

1

1
...1 −

−

=

−−−+= ∑  is an individual’s utility of 

lottery ( )110 ,..., −nqqL  and [ ]niui ,1, ∈  is an individual’s utility of  an outcome ix . Cumulative 

prospect theory or CPT (Tversky and Kahneman, 1992) violates the betweenness axiom and 

consequently its utility function does not belong to the class defined by proposition 1 (apart 

from a trivial case when CPT simplifies into EUT). Interestingly, a preference for most 

probable winner also belongs to the betweenness class defined by proposition 1 although it 

can lead to intransitive preference ordering. Thus, an individual’s preference for most 

probable winner is a special case of implicit weighted (expected) utility theory without the 

transitivity axiom. 
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2.4. A fanning-in axiom 

The last axiom, and arguably the least intuitively appealing, assumes that individuals 

have a particular type of diminishing sensitivity to probability. Specifically, when probability 

mass is largely shifted to the best or the worst outcome, tiny probabilities attached to the 

intermediate outcomes become progressively unimportant to individuals. Unlike the previous 

four axioms, this axiom has not been used in other decision theory axiomatizations in the 

literature. 

Axiom 5 (A fanning-in) If ( ) ( )0,...,0,,0,...0~0,...,0,,0,...,0 21 ji pLpL , ij > 0lim
0

=
−

⇒
→

j

ij

p p
pp

i

, 

if ( ) ( )0,...,0,,0,...1~0,...,0,,0,...,1 43 llkk ppLppL −− , kl > 0lim
0

=
−

⇒
→

l

lk

p p
pp

l

 

 To understand the logic behind axiom 5 let us consider first the situation when 

0→ip . First of all, notice that ij pp >  because nji xxx pp . If 0→ip  then lottery 1L  

approaches to the lottery ( )0,...,0L , which gives the best possible outcome nx  for sure. Since 

there could be no other lottery 2
~L  such that ( )0,...,0~~

2 LL  it must be the case that 

0lim
0

=
→ jp

p
i

. When two lotteries 21 , LL  approach to the lottery ( )0,...,0L  the absolute 

differences in tiny probabilities attached to the not-best outcome disappear ( ) 0lim
0

=−
→ ijp

pp
i

. 

Axiom 5 additionally requires that the relative differences in probabilities attached to the not-

best outcome also disappear as 1L  and 2L  become increasingly similar to ( )0,...,0L . In other 

words 0lim
0

=
−

→
j

ij

p p
pp

i

.  

EUT violates axiom 5 since it implies const
p

pp

j

ij

pi

=
−

→0
lim . CPT satisfies axiom 5  

only in a special case when 
jn

in

p uu
uu

pp −
−

=
∂
∂

∂
∂ −

→

ππ 1

1
lim , where ( )pπ  is the probability weighting 
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function (e.g. Tversky and Kahneman, 1992, Abdellaoui, 2000). When 0lim
0

=
−

→
j

ij

p p
pp

i

 then 

an individual’s indifference curves plotted in the probability triangle2 are not parallel but 

fanning-in, which explains the name of the axiom. The assumption 0lim
0

=
−

→
j

ij

p p
pp

i

 also 

implies that an individual becomes infinitely risk seeking when probability mass is largely 

shifted to the best outcome.   

The second part of axiom 5 assumes that the above logical argument applies as well to 

the situation when lotteries ( )0,...,0,,0,...,0,13 kk ppL −  and ( )0,...,0,,0,...,0,14 ll ppL − , 

43 ~ LL , approach to the lottery ( )0,...,0,1L , which gives the worst possible outcome 1x  for 

sure. The only difference is that an individual becomes infinitely risk averse when probability 

mass is largely shifted to the worst outcome. The implication of axiom 5 that an individual 

becomes risk seeking (averse) when probability mass is largely shifted to the best (worst) 

outcome is the counterpart of Machina’s intuition for universal fanning out (Machina, 1987 

pp. 129-130) 

 

                                                           
2 Note that lotteries 21 , LL , although defined as probability distributions over n outcomes, have non-zero 

probabilities attached only to three outcomes nji xxx ,, . Therefore, lotteries 21 , LL  can be plotted in the 

probability triangle based only on outcomes nji xxx ,, .   
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3. Utility representation and indifference curves 

3.1. Lotteries defined on a common three-outcome structure 

This section derives a utility function representation and the family of indifference 

curves representing an individual’s preferences satisfying the system of axioms from section 

2. First, let us consider only lotteries defined on a common three-outcome structure. This case 

allows for a convenient representation of indifference curves in two-dimensional simplex 

(probability triangle). Additionally, 3=n  is the only case when transitivity holds and a 

conventional family of indifference curves (neo-classical utility function) can be constructed. 

Proposition 2 (Transitivity) If 3=n  and axioms 1-3 and 4a hold then for any three lotteries 

321 ,, LLL  such that 21 ~ LL  and 32 ~ LL  13 ~ LL⇒ .  

■ Proof of proposition 2, and all subsequent propositions, is presented in appendix II ■ 

Proposition 3 (Indifference curve) If 3=n  and axioms 1-5 hold then for any arbitrary 

lottery ( )210 , ssL  the set { }0~: LLL  is ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
+
−

+
+
+

1
11

:, 2
21

1
1

21

2
21 r

ss
s

r
ss
s

rrL  and we call this 

set the indifference curve of lottery ( )210 , ssL .  

Proposition 3 demonstrates that for lotteries defined on a common three-outcome 

structure an individual’s preference for most probable winner can be captured by an utility 

function that has the structure of the weighted utility theory (e.g. Chew and MacCrimmon, 

1979, Chew, 1983). However, this result is not generic. Proposition 2 shows that an 

individual’s preference for most probable winner is transitive when 3=n . Fishburn (1982, 

1983, 1984) proved that the weighted utility theory coincides with the skew-symmetric 

bilinear utility theory when preferences are transitive. In general an individual’s preference 

for most probable winner may be intransitive (e.g. Blyth, 1972). Thus, although the weighted 

utility theory captures such preference when 3=n , this result may not hold in general. In 

fact, in subsection 3.2, it is demonstrated that when 4≥n  a binary individual’s preference 
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for most probable winner is still captured by the skew-symmetric bilinear utility but not by 

the weighted utility theory. 

Figure 1 plots the family of indifference curves from proposition 3 inside the 

probability triangle (Machina, 1982). The same family of indifference curves is obtainable 

from the weighted utility theory when ( ) 1>Mxw  (e.g. Chew, 1983, Chew and Waller, 1986). 

Notice that this indifference map is independent of individual-specific parameters (functions) 

and cardinal measures of lottery outcomes i.e. the map is invariant for all triples of lottery 

outcomes such that 321 xxx pp . The family of indifference curves implied by axioms 1-5 

consists of straight lines with different slopes reflecting a changing individual attitude 

towards risk (Humphrey and Verschoor, 2002). Specifically, a universal fanning-in, as in 

figure 1, shows that an individual becomes more risk seeking (averse) when probability mass 

is shifted to the best (worst) outcome, which Chew and Waller (1986) call “the heavy 

hypothesis”. Proposition 3 also implies that an individual is risk neutral along the 45° line on 

figure 1 i.e. he is exactly indifferent between a medium outcome for sure and a 50%-50% 

chance of the best and the worst outcome. More generally axioms 1-5 imply a symmetry 

axiom (e.g. Fishburn (1982, 1983, 1984). 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
 

Figure 1 Family of indifference curves inside the probability triangle 

Probability of the worst outcome 1x  

Probability 
of the best 
outcome 3x  
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The family of indifference curves from figure 1 represents the following preference:  

( ) ( ) 1
11

,~, 2
21

1
1

21

2
21021

>
=
<

+
−

+
+
+

⇔ r
ss
s

r
ss
s

ssLrrL
p

f

 ( )( ) ( )( )212121212112 11 rrsssrssrrsr +−−+
<
=
>

+−−+⇔  

The last equation states that an individual prefers lottery L  over lottery 0L  if and only if the 

probability of lottery L  to outperform lottery 0L  is greater than the probability of lottery 0L  

to outperform lottery L . This is exactly the definition of a preference for most probable 

winner. Thus, an individual preferring most probable winner respects axioms 1-5 when 

lotteries are defined on a common three-outcome structure. 

Since each indifference curve is uniquely mapped to some lottery ( )0,~
00 pL  we can 

think of probability 01 p−  as a utility measure (normalized between zero and unity). Then for 

any three-outcome lottery ( )210 , ssL : ( ) ( ) ( )210 11 ssLU +−= , where →LU : ú is the 

conventional utility function. Of course, any monotone transformation of →LU : ú will also 

be a utility measure. Interestingly, →LU : ú is a cardinal utility measure, which allows us to 

make interpersonal comparisons of lottery utilities.  

3.2. Lotteries with four and more outcomes 

In case of discrete lotteries with 4≥n  outcomes axioms 1-5 contradict the transitivity 

of individual preferences over lotteries. For an arbitrary lottery 0L  the set { }0~: LLL  can 

contain lotteries 21, LL  such that 21 LL f . Thus, we cannot regard this set as the neoclassical 

indifference curve. If we attempt to plot the family of such curves they will intersect 

reflecting intransitive preferences (e.g. Starmer, 2000, p.343). However, we can still represent 

such preferences by a menu-dependent (or relative) utility function. A menu-dependent (or 

relative) utility function evaluates a lottery not on the basis of its absolute characteristics 

alone but also takes into account the characteristics of other available lotteries, which can be 

chosen instead (e.g. Chechile and Cooke, 1997, pp. 90-91). Such a utility function is the 
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natural extension of the neoclassical single-argument utility to represent intransitive 

individual preferences (e.g. Fishburn, 1988, p. 67).  

Proposition 4 If axioms 1-5 hold then for any lottery ( )1210 ,...,, −nqqqL  the set { }0~: LLL  is 

( )
⎭
⎬
⎫

⎩
⎨
⎧

=
+++

+++−−−∑
−

= −

−+−
−

1

1 121

1111
121 1

...
......1:,...,,

n

i
i

n

nii
n p

qqq
qqqqpppL .  

Proposition 4 states that an individual respecting axioms 1-5 has preferences 

( ) ( ) 1
...

......1
,...,,~,...,,

1

1 121

1111
1210121

>
=
<

+++
+++−−−

⇔∑
−

= −

−+−
−−

n

i
i

n

nii
nn p

qqq
qqqq

qqqLpppL
p

f
. Let us denote 

by ( ) ( )∑
−

=

−−−=>
1

1
10 ...1

n

i
ii pqqLLprob  the probability of lottery 0L  to deliver a higher 

outcome than lottery L . Consequently, ( ) ( )∑
−

=

−−−=>
1

1
10 ...1

n

i
ii qppLLprob is the 

probability of lottery L  to deliver a higher outcome than lottery 0L . Then, simple algebra 

implies that ( ) ( )LLprobLLprobp
qqq

qqqqn

i
i

n

nii >
>
=
<

>⇔
>
=
<

+++
+++−−−∑

−

= −

−+−
00

1

1 121

1111       1
...

......1 . 

Note that ( )0LLprob >  satisfies the requirement of a menu-dependent (or relative) utility 

function since ( ) ( )LLprobLLprobLLLL >
>
=
<

>⇔∀ 0000 ~:,
p

f
. This last equation is also 

nothing but the definition of a preference for most probable winner. Proposition 4 indicates 

that axioms 1-5 are sufficient to characterize an individual’s preference for most probable 

winner. It is relatively straightforward to demonstrate that an individual’s preference for most 

probable winner also satisfies axioms 1-5. Thus, axioms 1-5 are both necessary and 

sufficient. 

In binary choice a menu-dependent (or relative) utility function 

( ) ( )2121 , LLprobLLU >=  is skew-symmetric in the sense that ( ) ( )1221 ,1, LLULLU −=  and 

it is also bilinear, which follows from a betweenness axiom 4a. Thus, in binary choice an 
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individual’s preference for most probable winner is captured by the skew-symmetric bilinear 

utility theory (e.g. Fishburn, 1982, 1983, 1984). Fishburn (1988) (Chapter 4) derives the 

skew-symmetric bilinear utility functional mainly from the symmetry axiom. The symmetry 

axiom imposes the same restrictions on a transitive individual preference relation over 

lotteries as the weak independence axiom does in this paper. To represent an individual’s 

preference for most probable winner by a skew-symmetric bilinear utility, Fishburn’s theory 

has to be further restricted by axiom 5.  

In fact, an individual’s preference for most probable winner may be alternatively 

rationalized by axioms 1-3, 5 and an analogue of Fishburn (1982) symmetry axiom instead of 

the weak independence axiom 4. Then, axioms 1-3 and the symmetry axiom enable us to 

represent an individual’s preference over lotteries by a skew-symmetric bilinear utility 

function (theorem 1 in Fishburn (1982): 

( ) ( ) ( )∑∑
= = <

=
>

⇔
n

i

n

j
jijinn xxqpqqLppL

1 1
1211 0,,...,~,.., ψ

p

f
. Additionally, the first part of axiom 5 

implies that ( ) ( ) [ ]1,1,,, −∈≠∀= njixxxx njni ψψ  and the second part of axiom 5 implies 

that ( ) ( ) [ ]njixxxx ji ,2,,, 11 ∈≠∀=ψψ . Intuitively, an addition of axiom 5 imposes 

ordinality on Fishburn’s function { } { }→× nn xxxx ,...,...: 11ψ ú. Since function ( ).,.ψ  is also 

skew-symmetric, we can write ( ) ( )11 ,, xxxx nn ψψ −= . Thus, when an individual’s preference 

over lotteries satisfies axioms 1-3, 5 and the symmetry axiom, it can be represented as 

( ) ( ) ∑∑
= = <

=
>

⇔
n

i

n

j
ijjinn qpqqLppL

1 1
1211 0,...,~,.., ψ

p

f
, where 

⎪
⎩

⎪
⎨

⎧

<−
=
>

=
jia
ji
jia

ij 0ψ , constaa =≠ ,0 . 

Then again simple algebra implies ( ) ( )122121 ~ LLprobLLprobLL >
<
=
>

>⇔
p

f
. 
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Alternatively, an individual’s preference for most probable winner may be captured 

within the structure of the utility function implied by regret theory, when lottery outcomes are 

perceived as ordinal. Regret theory proposed by Loomes and Sugden (1982) represents a 

binary individual’s preference over lotteries through the following functional (in our 

notation): ( ) ( ) ( ) 0,,...,,...,
1 1

112111 ~
<
=
>

∑∑
= =

−− ⇔
n

i
ji

n

j
jinn xxqpqqLppL ψ

p

f
, where ( )ji xx ,ψ  is an 

anticipated net advantage of having chosen 1L  rather than 2L  if 1L  yields an outcome ix  and 

2L  yields an outcome jx  (Loomes and Sugden, 1987).  

Clearly, when the function ( )ji xx ,ψ  is ordinal in outcomes 

( )
⎪⎩

⎪
⎨
⎧

<−
=
>

=

ji

ji

ji

ji

xx
xx
xx

xx
,1

,0
,1

,ψ , the decision rule of regret theory reduces to a preference for most 

probable winner. However, such “ordinal” function ( )ji xx ,ψ  always violates a key 

assumption of regret theory, regret aversion, which requires 

( ) ( ) ( )zyyxzxzyx ,,, ψψψ +>⇒>>∀  (e.g. Loomes et al., 1992). In terms of regret theory 

the “ordinal” function ( )ji xx ,ψ  of a preference for most probable winner always reflects 

regret seeking: ( ) ( ) ( )zyyxzxzyx ,,, ψψψ +<⇒>>∀ . 
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4. Descriptive validity of proposed axioms 

This section critically reviews the existing experimental evidence on the alleged 

violations of the five proposed axioms. To the best of my knowledge, there are no studies 

documenting any systematic violations of axioms 1 and 2 (completeness and continuity).  

4.1. Violations of first-order stochastic dominance 

A small number of experimental studies documents systematic violations of axiom 3 

(first-order stochastic dominance). Tversky and Kahneman (1986), Loomes et al. (1992), 

Birnbaum (1997), Birnbaum and Navarrete (1998) and Birnbaum et al. (1999) constitute 

perhaps a complete list. Apparently, when outcomes of two lotteries are tied together in a 

joint distribution over the states of the world, the concept of a first-order stochastic 

dominance loses its immediate intuitive appeal to the concept of a state-wise dominance (as 

defined in Loomes et al. (1992) p. 18). An individual often chooses a stochastically 

dominated lottery when it appears as a seemingly state-wise dominant.  

Tversky and Kahneman (1986) and Loomes et al. (1992) introduce a new state 

dimension of the decision problem (color of a drawn marble and a lottery ticket number, 

respectively) that ousts the probability dimension of the decision problem. An individual’s 

seeking for a dominance relation in a state-wise manner but not probabilistically is moreover 

surprising in a study of Loomes et al. (1992) that employs a visual presentation of the 

probability information under which the more probable states of the world should have 

received more attention than the less probable states. Violations of a first-order stochastic 

dominance found in Tversky and Kahneman (1986) and Loomes et al. (1992) are typically 

attributed to framing and event-splitting effects. 

Birnbaum (1997), Birnbaum and Navarrete (1998) and Birnbaum et al (1999) 

demonstrate that an individual’s preference for a seemingly state-wise dominant lottery 

prevails over an individual’s preference for a stochastically dominant lottery even when the 
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states of the world are endogenous (not exogenously framed): “worst outcome”, “medium 

outcome” and “best outcome”. In sum, when it is possible to establish a common state 

dimension between two lotteries, an individual may substitute a first-order stochastic 

dominance for a seemingly state-wise dominance. However, when first order stochastic 

dominance is transparent, it is an extremely robust descriptive axiom.  

4.2. Violations of betweenness 

Axiom 4 (weak independence) implies a betweenness axiom 4a. A casual survey of 

the experimental literature testing betweenness suggests that it is not a descriptive axiom. 

However, when this empirical evidence is thoroughly examined, a more favorable picture 

emerges. The literature on stochastic utility (Loomes and Sugden 1998) reached a generic 

conclusion that some behavioral patterns, which appear as a systematic violation of a certain 

principle when taken at a face value, may actually support the principle once a stochastic 

specification is allowed. This generic conclusion applies to the case of betweenness. In 

section 4.2.1. I review the alleged systematic violations of betweenness documented in the 

experimental literature. In section 4.2.2. this evidence is reconciled with a stochastic version 

of betweenness i.e. when an individual obeys betweenness with an occasional random error. 

4.2.1. Experimental evidence on betweenness 

A relatively large number of experimental studies in the late 1980’s and early 1990’s 

documents an alleged systematic violation of betweenness. The main findings from that 

literature can be summarized as follows. Coombs and Huang (1976) (experiment 1), Chew 

and Waller (1986), Camerer (1989), Battalio et al. (1990), Gigliotti and Sopher (1993) 

(experiments 1 and 3) and Camerer and Ho (1994) all find that approximately 68% of 

subjects respect betweenness. The remaining subjects are split between quasi-convex (i.e. 

they dislike randomization) and quasi-concave (i.e. they like randomization) preferences 

approximately in a (non-corresponding) proportion of 24% to 8%. This alleged systematic 
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violation of betweenness emerges when some lotteries used in the experiment are located on 

the edges of the probability triangle. 

Coombs and Huang (1976) (experiment 2), Camerer (1992), Starmer (1992) and 

Gigliotti and Sopher (1993) (experiment 2) find that approximately 76% of subjects respect 

betweenness and a split between quasi-convex and quasi-concave preferences is non-

systematic (approximately in a non-corresponding proportion of 14% to 10%) when all of the 

lotteries used in the experiment are located inside the probability triangle. Additionally, 

Camerer and Ho (1994) find that the asymmetry of alleged betweenness violations disappears 

and Bernasconi (1994) finds that the number of betweenness violations decreases (though not 

their asymmetry) when a probability mixture of two lotteries is presented in a compound and 

not a reduced form. 

Finally, Prelec (1990) finds  that 76% of subjects reveal quasi-concave preferences 

and only 24% of subjects respect betweenness when probability mass of the hypothetical 

lotteries is largely shifted to the worst outcome. Camerer and Ho (1994) find the same result 

for one lottery triple “TUV” with real payoffs. A similar strong asymmetric violation of 

betweenness when betweenness is not a modal choice pattern is found in two lottery pairs (1 

and 3) in Bernasconi (1994).  

To sum up, an asymmetric split between quasi-convex and quasi-concave preferences 

is frequently found in experimental studies but only in very few lottery pairs is betweenness 

not a modal choice. Since the concept of stochastic utility was formalized only in the mid 

1990’s, this empirical evidence initially had been accepted as strong support for frequent 

violations of betweenness (e.g. Camerer (1992). Section 4.2.2 shows that this experimental 

evidence is actually consistent with stochastic betweenness theories. 
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4.2.2. A reexamination of experimental methodology 

The studies reviewed in the above section 4.2.1 employ an experimental methodology 

that is questionable if an individual is assumed to respect betweenness in a noisy manner. All 

experimental studies mentioned above use the same method to test for betweenness 

violations. An experimenter determines two lotteries 1L  and 2L  and asks the subjects to 

choose one lottery from { }21 , LL , ( ){ }211 1, LLL αα −+  and ( ){ }212 1, LLL αα −+ , ( )1,0∈α . 

Earlier studies typically consider only the first and the second pair-wise choices. A particular 

fallacy of such a truncated experimental procedure is discussed below. If a probability 

mixture ( ) 21 1 LL αα −+  is frequently (almost never) chosen in the second and third pair-wise 

choices it has been interpreted as an evidence of quasi-concave (quasi-convex) preferences. 

Harless and Camerer (1994), Hey and Orme (1994) and Loomes and Sugden (1995) 

propose different ways of incorporating a stochastic element into deterministic decision 

theories. The following argument is built upon a more general stochastic specification that is 

consistent with the stochastic specifications of Hey and Orme (1994) and Loomes and 

Sugden (1995) but not with Harless and Camerer (1994). Harless and Camerer (1994) p. 1261 

propose a constant choice-independent error rate, which apparently has a less intuitive appeal 

apart from its simplicity. 

Suppose that the true preference of an individual is governed by the betweenness 

axiom. Hence, a probability mixture ( ) 21 1 LL αα −+  is located between lotteries 1L  and 2L  in 

terms of utility. An individual’s actual (observed) choice is obscured by a random error. 

Lotteries 1L  and 2L  are more distinct in terms of utility than lotteries ( ) 21 1 LL αα −+  and 1L  

( 2L ). Therefore, the impact of a random error is more significant in the second and the third 

pair-wise choices than in the first pair-wise choice. In terms of the approach of Loomes and 

Sugden (1995), the strength of an individual’s preference relation is greater in the first pair-

wise choice than in the second and the third pair-wise choices.  
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A stochastic betweenness axiom implies either 

( ) ( )( ) ( )( ) 5.01Prob,1ProbProb 21122121 >−+−+> LLLLLLLL αααα fff  or 

( ) ( )( ) ( )( ) 5.01Prob,1ProbProb 21122121 <−+−+< LLLLLLLL αααα fff . Therefore, if an 

individual respects stochastic betweenness, a choice pattern when a probability mixture 

( ) 21 1 LL αα −+  is chosen only once in the second and third pair-wise choices should be a 

modal (most frequent) choice pattern. Additionally, when 

( )( ) ( )( )211221 1Prob1Prob LLLLLL αααα −+>−+ ff , a more frequent choice of a 

probability mixture ( ) 21 1 LL αα −+  is observed in the second and third pair-wise choices, 

which appears as evidence of quasi-concave preferences. When 

( )( ) ( )( )211221 1Prob1Prob LLLLLL αααα −+<−+ ff , a rare choice of a probability 

mixture ( ) 21 1 LL αα −+  is observed in the second and third pair-wise choices, which appears 

as evidence of quasi-convex preferences. However, both of these choice pattern are consistent 

with stochastic betweenness that does not impose any restrictions on the relationship between 

( )( )221 1Prob LLL fαα −+  and ( )( )211 1Prob LLL αα −+f .  

For example, let us suppose that lotteries 1L  and 2L  are sufficiently distinct in terms 

of an individual utility in the sense that a random error reverses very rarely a true individual’s 

preference 21 LL f  so that ( ) 99.0Prob 21 =LL f . However, a probability mixture 

( ) 21 1 LL αα −+  is not that distinct from either lottery 1L  or 2L  in terms of individual utility. 

An occasional random error can reverse a true underlying individual preference 

( ) 211 1 LLL αα −+f  and ( ) 221 1 LLL fαα −+ . Furthermore, let us assume a mixture 

( ) 21 1 LL αα −+  is closer to lottery 2L  than to lottery 1L  in terms of an individual utility. 

Thus, a random error obscures an individual’s preference ( ) 221 1 LLL fαα −+  more often so 

that ( )( ) 73.01Prob 221 =−+ LLL fαα  is closer to a chance performance (50%) than 
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( )( ) 89.01Prob 211 =−+ LLL ααf 3. In terms of the approach of Loomes and Sugden (1995), 

an individual’s preference 21 LL f  is stronger than the preference ( ) 211 1 LLL αα −+f , 

which in turn is stronger than the preference ( ) 221 1 LLL fαα −+ . Then, the above 

experimental procedure reveals that an individual apparently respects betweenness with 

probability 65%, apparently has quasi-convex preferences with probability 24% and 

apparently has concave preferences with probability 8%.  

However, it is misleading to interpret these results as a systematic violation of 

betweenness. To illustrate, Camerer and Ho (1994) p.176 found a similar asymmetric split 

between quasi-convex and quasi-concave preferences in 11 different experiments and 

concluded that “betweenness is clearly violated”. However, when these authors tried to fit 

different stochastic theories to the same 11 data sets, a disappointment aversion theory (Gul 

1991), which is a betweenness theory, fit best in 5 out of 11 studies and on aggregate it 

accommodated data better than CPT and EUT (Camerer and Ho 1994 p. 189). 

An asymmetric pattern of betweenness violations arises because lotteries 1L , 2L  and 

( ) 21 1 LL αα −+  are not equally spaced in terms of individual utility (Hey and Orme, 1994) or, 

alternatively, the strength of an individual’s preference between lotteries 1L , 2L  and 

( ) 21 1 LL αα −+  is not uniform (Loomes and Sugden, 1995). Therefore, random errors obscure 

an elicited individual’s binary preference relation more severely for some lottery pairs than 

for others. Persuasive evidence of systematic betweenness violations would have been an 

asymmetric split between quasi-convex and quasi-concave preferences when betweenness is 

not a modal choice pattern. However, as documented before, such violations are rare. 

Notice that if an asymmetric split between quasi-convex and quasi-concave 

preferences is caused by random errors, the observed violations of betweenness are likely to 

                                                           
3 For demonstration purposes the numerical values of probabilities were chosen deliberately to match a typically 
observed proportion between quasi-convex and quasi-concave preferences in the experimental literature. 
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be more symmetric for mixtures with α  close to 0.5 and they are likely to be highly 

asymmetric with α  close to 0 or 1. This prediction is confirmed exactly by experimental 

evidence. A highly asymmetric split between quasi-convex and quasi-concave preferences 

reported in Prelec (1990) and Camerer and Ho (1994) (triple TUV) is elicited for 171=α , in 

Bernasconi (1994)—for 05.0=α  and 95.0=α . 

Moreover, all empirical studies using 5.0=α  except Camerer and Ho (1994) elicit an 

individual’s choice only from { }21 , LL  and ( ){ }211 1, LLL αα −+ . Under such truncated 

experimental procedure an individual obeying stochastic betweenness exhibits more often a 

preference ( ) 2121 1 LLLL ffαα −+ , which appears as if a quasi-concave preference, when  

( ) ( )( )21121 1ProbProb LLLLL αα −+> ff . The same individual exhibits more often a 

preference ( ) 2112 1 LLLL αα −+ff , which appears as if a quasi-convex preference, when  

( ) ( )( )21121 1ProbProb LLLLL αα −+< ff . Thus, stochastic betweenness implies a more 

frequent incidence of quasi-concave (quasi-convex) preferences when ( ) 5.0Prob 21 >LL f  

( ( ) 5.0Prob 21 <LL f ) but this asymmetry is due to the fact that an individual’s preference 

between lotteries 1L  and 2L  is stronger i.e. less vulnerable to random error than an 

individual’s preference between 1L  and ( ) 21 1 LL αα −+ . In the extreme case when 

( ) 99.0Prob 21 =LL f  there may be still some chance to observe “as if” quasi-concave 

preferences ( ) 2121 1 LLLL ffαα −+  but almost no chance at all to observe “as if quasi-

convex” preferences ( ) 2112 1 LLLL αα −+ff . 
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4.3. Evidence for fanning-in 

A survey of experiments testing the shape of individuals’ indifference curves suggests 

that there is non-negligible evidence for fanning-out going back to the Allais paradox (Allais, 

1953) and common consequence and common ratio effects (Starmer, 2000). However, it 

appears that a universal fanning-out hypothesis (Machina, 1982) is rejected and that there is 

growing evidence that supports a universal fanning-in. That growing evidence suggests that 

an individual’s indifference curves tend to fan in when probability mass is associated with the 

best and the worst outcome and tend to fan out when probability mass is associated with 

outcomes in between. In addition, evidence for fanning-in in all regions of the probability 

triangle has recently emerged. 

Conlisk (1989) finds strong experimental support for the type of fanning-in implied 

by axiom 5 — 53% and 80% of subjects choose a more risky gamble in a common 

consequence problem when probability mass is largely shifted to the medium and the best 

outcome, correspondingly. This finding can be interpreted as an individual's indifference 

curves becoming almost horizontal when probability mass is largely shifted to the best 

outcome. Analogously, so-called vertical fanning-in is documented in Starmer and Sugden 

(1989), Camerer (1989) p.92 and Battalio et al (1990). Wu and Gonzalez (1998) p.119 report 

vertical fanning-in when the probability of the best outcome is above 0.33 and vertical 

fanning-out when it is below 0.334.  

Prelec (1990) and Kagel et al. (1990) find fanning-in when probability mass is largely 

shifted to the worst outcome. Wu and Gonzalez (1996) report so-called horizontal fanning-in 

when a probability of the worst outcome is above 0.63 and horizontal fanning-out when it is 

below 0.63. Camerer (1989) p.92 finds similar evidence for small gains5.  

                                                           
4 Neilson (1992) proposed a mixed-fan hypothesis for fanning-in when the best outcome is highly probable and 
fanning-out otherwise. 
5 Trying to match this empirical evidence Jia et al (2001) developed a generalized disappointment model that 
can imply fanning-in in the neighborhood of the best and the worst lottery outcome. 
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Bernasconi (1994) p.63 finds experimental evidence for fanning-in by observing a 

reverse common ratio effect. Cubitt and Sugden (2001), Bosman and van Winden (2001) and 

Cubitt et al (2002) find indirect evidence for a reverse common ratio effect in dynamic 

decision making under risk. Barron and Erev (2003) find a reverse common ratio effect in 

small feedback-based decision making. Battalio et al (1990) and Thaler and Johnson (1990) 

find evidence for fanning-in i.e. an increased risk seeking for stochastically dominant lotteries 

when lotteries involve only guaranteed gains. Finally, Starmer (1992) and Humphrey and 

Verschoor (2002) find strong evidence consistent with universal fanning-in in all regions of 

the probability triangle.  

The above literature elicits fanning-in/out of an individual’s indifference curves from 

an observed binary choice in a common consequence or common ratio problem involving 

lotteries typically defined on a common three-outcome structure. The main findings from this 

literature can be summarized in the probability triangle (figure 2). 

                                      1 
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5. Conclusions 

The proposed axiomatization explores theoretical features of an individual’s 

preference for most probable winner in a binary choice under risk. Although such preference 

is implied by a simplistic behavioral rule (the heuristic of relative probability comparisons), I 

find some surprising perhaps even unexpected connections with other decision theories 

(implicit weighted utility, implicit expected utility, skew-symmetric bilinear utility, weighted 

utility and regret theory). A preference for most probable winner can be rationalized by a 

system of five axioms: three standard axioms (completeness, continuity and first order 

stochastic dominance) and two less standard ones (weak independence and a fanning-in). 

Notably, transitivity of preferences is not required. The present paper deals with binary 

choice; a natural extension of this work is to axiomatize a preference for most probable 

winner in a choice among many lotteries. 

A preference for most probable winner falls into the betweenness class of decision 

theories that assume linearity in probability of sets { } 00 ,~: LLLL ∀ . Thus, it is a special case 

of implicit weighted (expected) utility theory when the assumption of transitivity is relaxed 

and individual indifference curves exhibit a universal fanning-in. The alleged systematic 

violations of betweenness found in the experimental literature in the late 1980’s and early 

1990’s can be explained within the concept of a stochastic utility developed in the mid 

1990’s. If the experimental evidence is reevaluated in the light of notions of stochastic utility, 

the betweenness axiom turns out to be quite descriptive.  

All in all, four of the proposed axioms (completeness, continuity, first order stochastic 

dominance, and betweenness) appear to be empirically sound. Additionally, experimental 

evidence is emerging for universal fanning-in of individuals’ indifference curves. However, 

this evidence seems to be stronger for some areas of the probability triangle than for others. 

The experimental evidence for the system of axioms proposed here to rationalize an 
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individual’s preference for most probable winner provides indirect evidence for the domain 

of applicability of the heuristic of relative probability comparisons.  

The five proposed axioms are necessary and sufficient conditions to characterize an 

individual preference for most probable winner.  This preference can be captured by a menu-

dependent (relative) utility function ( ) ( )2121, LLprobLLU >= . This utility function is a 

special case of a skew-symmetric bilinear utility theory that coincides with the weighted 

utility theory when lotteries are defined on a common three-outcome structure (when an 

individual’s preference for most probable winner is transitive). In general, an individual’s 

preference for most probable winner is intransitive but it is captured within the structure of a 

regret theory utility function when outcomes are perceived as ordinal and the assumption of 

regret aversion is replaced with a preference for a win. Thus, an individual’s preference for 

most probable winner is a simplified mirror image of regret theory. 

Finally, as a theoretical byproduct this paper shows that betweenness implies 

transitivity (assuming completeness, continuity and first-order stochastic dominance) in a 

choice between lotteries defined on common three-outcome structure. Some studies e.g. 

Camerer and Ho (1994) tested separately the violations of transitivity and betweenness inside 

a probability triangle. Proposition 2 of this paper shows that such an experiment is trivial. It 

may also explain why many experiments (employing choices inside the probability triangle) 

document a very low incidence of intransitive preferences. For example, an individual 

preferring most probable winner has transitive preferences inside a probability triangle but in 

general he chooses intransitively. Thus, the results from a binary choice between lotteries 

defined on a common three-outcome structure may be biased in conclusions on the 

transitivity of preferences. 
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Appendix I 

Proof of proposition 1 

Lemma 1 If axiom 4a holds then for any lotteries nLLL ,...,, 10  such that [ ]niLLi ,1,~ 0 ∈  and 

( )1,0,...,1 ∈∀ nαα , ∑
=

=
n

i
i

1

1α , 011 ~... LLL nnαα ++⇒   

■ Proof by mathematical induction. If 2=n  lemma 1 immediately follows from axiom 4a: 

( ) ( ) 02121000201 ~1:1,00,~,~ LLLLLLLLLLL ααα −+∈∀⇒⋅=
→→

. Let us assume that 

lemma holds for 1−≤ Nn . If Nn =  then ( ) *
11 1... LLLL NNNNN αααα −+=++ , where 

1
1

1
1*

1
...

1 −
−

−
++

−
= N

N

N

N

LLL
α

α
α
α . 0

* ~ LL  because we assumed that lemma 1 holds for 

1−≤ Nn . Then it follows from axiom 4 that ( ) 0
* ~1 LLL NNN αα −+ . Thus, lemma holds for 

Nn =  and accordingly to the principle of mathematical induction it also holds for any n. ■ 

Proof of proposition 1 is organized in several steps. First we find 1−n  lotteries such 

that an individual is indifferent between them and a given lottery ( )110 ,... −nqqL . Then we 

prove that an individual is also indifferent between 0L  and any lottery which is a compound 

lottery (probability mixture) over these 1−n  lotteries. Finally we show that any lottery, such 

that an individual is indifferent between it and 0L , is the reduced form of some compound 

lottery over the obtained 1−n  lotteries. 

Let us consider lottery ( )0,...,0,11L  yielding the worst possible outcome 1x  for sure 

and lottery ( )0,...,01L  giving the best possible outcome nx  for sure. From axiom 1 it follows 

that either 01 LL f  or 01 LL p  or 01 ~ LL . Since 1x  is the worst possible outcome it must be 

the case that either 01 LL p  or 01 ~ LL . The special case when 01 ~ LL  will be considered 
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later. Similarly we prove that 10 LL p . From axiom 2 it follows that 

( ) ( ) ( ) 01111111 ~0,...,0,1:1,0 LLLL αααα =−+∈∃ .  

Now we will consider lottery ( )0,...,0,1,02L  and ( )0,...,02L . If 202 LLL pp  we define 

( ) 022 ~0,...,0,,0 LL α  in a similar manner as 1L  and we continue this process until either 

lottery 1−nL  is defined or for some [ ]1,2 −∈ ni : { 00,...,0,1,0,...,0 LL
thi

i f⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

 (special case of 

indifference is considered below). In such case ( ) 00,...,0,1 LLi p  by the definition of the worst 

possible outcome and { 00,...,0,1,0,...,0 LL
thi

i f⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

. From axiom 2 it follows that 

( ) ( ) 0~0,...,0,1,0,...,0,1:1,0 LLLL
thi

iiiiiiii ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=−+∈∃
−
321
ααααα . We continue this process 

further until lottery 1−nL  is defined. If for some [ ]1,1 −∈ ni  ( ) 0~0,...,0,1,0,...,0 LLi  then 

ii LL = . Thus, for any lottery ( )1210 ,..., −nqqqL  we obtain a sequence of 1−n  lotteries 

{ } 0
1
1 ~: LLL i

n
ii
−
=  except for the case when ( )0,...,0,1~ 10 LL  and ( )0,...,0~ 10 LL . If an 

individual is indifferent between lottery 0L  and a lottery yielding the worst outcome for sure, 

then 0L  is ( )0,...,0,10L . Since there could not be any lottery such that an individual is 

indifferent between it and a lottery yielding the worst outcome for sure, proposition 1 is not 

applicable to the case when 0L  is ( )0,...,0,10L . Similarly the degenerate case ( )0,...,0~ 10 LL  

is disregarded. 

From lemma 1 it follows that ( ) ∑
−

=
− =∈∀

1

1
11 1,1,0,...,

n

i
in βββ : 01111 ~... LLL nn −−++ ββ . 

Let us denote the reduced form of lottery 1111 ... −−++ nn LL ββ  as ( )121 ,...,, −npppL . 

Obviously, since there are only 2−n  free parameters 21 ,..., −nββ  ( 1−nβ  is automatically 
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determined from condition ∑
−

=

=
1

1

1
n

i
iβ ) there is a restriction on 1−n  reduced form 

probabilities 121 ,...,, −nppp . To find out this restriction we eliminate 21 ,..., −nββ  from the 

following system of equations: 

( )

( )

( )
( )( )⎪

⎪
⎪
⎪

⎩
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⎪
⎪
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βα
βα

βα
βββαβαβαβαβα

 

The result is: 1
1

1
...

1
11...1

1
1

111
1

1
1

1

=
−

−
++

−
−

+++ −
−

−
−

−
n

n

n
i
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i
i

i

pppp
α

αα
α
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αα
 

Or 1... 1111 =++ −− nn papa  where [ ]1,1,1
−∈∀= ija

j
j α

 and [ ]1,,
1

1 1 −∈∀
−

−
= nija

j

j
j α

αα
.  

Thus we have found 1−n  real parameters 11 ,..., −naa  such that for any lottery 

( )11 ,..., −nppL  satisfying the restriction 1... 1111 =++ −− nn papa  it must be the case that 

0~ LL . Now we will prove that ( ) 1~...~~~:~,...,~~
1111011 =++⇒∀ −−− nnn papaLLppL . 

First we will prove that the above statement holds for 0
~ LL =  i.e. 

1... 1111 =++ −− nn qaqa . Suppose 1... 1111 =/++ −− nn qaqa . Then it is possible to construct a 

lottery 0~ LL  such that its reduced form is ( )121 ,...,, −nqqpL  by setting 
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Then 1
1

11
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α

αααα
α  If 11 qp >  (or 

11 qp < ) then accordingly to axiom 3 0LL p  (or 0LL f ), which contradicts to 0~ LL . Thus, 

it must be the case that 1... 111111 =++⇒= −− nn qaqaqp . 

Now suppose there exists a lottery ( )11
~,...,~~

−nppL  such that 0~~ LL  but 

1~...~
1111 =/++ −− nn papa . Since 0~~ LL  and 01 ~ LL  then accordingly to lemma 1 

( )1,0∈∀γ : ( ) 01 ~1~ LLL γγ −+ . The reduced form of lottery ( ) 11~ LL γγ −+  is 

( )( )12111
~,...,~,1~~

−−+ npppL γγαγγ . Similarly we can construct lottery 

( )( ) 0132212 ~~,...,~,1~,~~ LppppL n−−+ γγαγγγ  and so forth until lottery 1
~

−nL  is constructed. 

Lemma 1 guarantees that ( )1,0,... 11 ∈∀ −nββ , ∑
−

=

=
1

1
1

n

i
iβ , 01111 ~~...~ LLL nn −−++⇒ ββ . It 

is possible to construct lottery 1111
~...~

−−++ nn LL ββ  in such a way that its reduced form is 

( )132
*
1 ,...,,, −nqqqpL  by setting 
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Lottery L  exists because it is always possible to choose a sufficiently small 0≠γ so that the 

reduced form probabilities of lottery L  are all positive. Then ( ) 11
*
1 1~ qpp γγ −+=  and if 

11
~ qp ≠ , accordingly to axiom 3, either 0LL f  (when 11

~ qp < ) or 0LL p  (when 11
~ qp > ), 
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which contradicts to 0~~ LL . Thus, it must be the case that 11
~ qp = . In a similar manner we 

can prove that [ ]1,2,~ −∈∀= njqp jj . Hence, the only lottery ( )121
~,...,~,~~

−npppL  that can 

violate restriction 1~...~~
112211 =+++ −− nn papapa  is 0

~ LL = . But we already proved that 

1... 112211 =+++ −− nn qaqaqa . Thus, ( ) ⇒∀ − 0121 ~,...,, LpppL n 1... 112211 =+++ −− nn papapa . 

This completes the proof. 

Appendix II 

Proof of proposition 2 

Without the loss of generality let us assume that lotteries 

( ) ( ) ( )213212211 ,,,,, ssLrrLqqL  are labeled in such a way that  111 rsq ≥≥ . Accordingly to 

proposition 1 the set of lotteries { }2~: LLL  is ( ){ }constaapapappL ==+ 21221121 ,    ,1:, . 

All three lotteries 321  and , LLL  belong to this set. Therefore, the probability distributions of 

these lotteries satisfy the restrictions 1,1,1 221122112211 =+=+=+ sasararaqaqa . Using 

these restrictions it is possible to show that the reduced form of a compound lottery 

( ) 21 1 LL αα −+  is ( )213 , ssL  when 
11

11

rq
rs

−
−

=α . Accordingly to axiom 4a, since 21 ~ LL  and 

( )1,0∈α  then it must be the case that ( ) 1321 ~1 LLLL =−+ αα    

Proof of proposition 3 

Proof of proposition 3 is organized in several steps. First it is demonstrated that when 

axioms 1-4 hold then for any distinct lotteries 21, LL  the sets { }1~: LLL  and { }2~: LLL  

have a unique crossover point ( )21 , xx  though this point does not necessary belong to lottery 

space (see footnote 1 on page 8). Then it is demonstrated that if, additionally, axiom 5 holds 

this point is ( )1,1 − . This fact allows us to derive the exact functional form of indifference 

curve as presented in proposition 3. 
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Let us consider four arbitrary distinct lotteries ( ) ( ),,,, 212211 qqLppL  , 211 ⎟
⎠
⎞⎜

⎝
⎛ ′′′ ppL  

⎟
⎠
⎞⎜

⎝
⎛ ′′′

212 , and qqL  such that 21 ~ LL , ′′
21 ~ LL  and 

→→
′=′ 2211 LLLL α  for some ∈α ú. 

Accordingly to proposition 1 the set of lotteries { }1~: LLL  is ( ){ }1:, 221121 =+ rararr . Since 

both lotteries ( ) ( )212211 , and , qqLppL  belong to this set it must be the case that 

12211 =+ papa  and 12211 =+ qaqa . Solving for parameters 21 , aa  we can define the set 

{ }1~: LLL  as ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
−
−

+
−
−

1:, 2
2112

11
1

2112

22
21 r

pqpq
qp

r
pqpq

pq
rr . Similarly, the set { }′1~: LLL  

can be defined as ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=′′−′′

′−′
+′′−′′

′−′ 1:, 2

2112

11
1

2112

22
21 r

pqpq

qpr
pqpq

pqrr .  

The sets { }1~: LLL  and { }′1~: LLL  are defined on lottery space ( )21 , rr . If we relax 

the restriction [ ]1,0, 21 ∈rr  allowing ∈21 , rr ú plus actual infinities then the sets { }1~: LLL  

and { }′1~: LLL  necessarily have a common crossover point ( )21 , xx : 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ′−′−−−⎟
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⎝
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211222211222

2

22112211
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x

 

 Since lotteries ′′
2121  and ,, LLLL  satisfy the requirement of axiom 4 it follows that 

( ) ( ) ( ) ′−+′−+∈∀ 2211 1~1:1,0 LLLL βββββ . Calculating the reduced form of probability 

mixtures ( ) ( ) ′−+′−+ 2211 1 and 1 LLLL ββββ  we can demonstrate the set 

( ){ }′−+ 11 1~: LLLL ββ  is ( ){ }1:, 221121 =+ rararr ββ  where: 
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The set ( ){ }′−+ 11 1~: LLLL ββ  is defined on lottery space. If we define it on pairs ( )21 , rr  of 

real  numbers plus actual infinities then for ( )1,0∈∀β  the crossover point ( )21 , xx  as defined 

above also belongs to the set ( ){ }1:, 221121 =+ rararr ββ  as long as  

22

11

22

11

qq

qq

pp

pp

−′
−′

=
−′
−′  

The last equality always holds because ∈∃α ú:
→→
′=′ 2211 LLLL α  i.e. the difference between 

probability distributions of lotteries ′
11  and LL  is “similar” to the difference between 

probability distributions of lotteries ′
22  and LL . Thus, for four arbitrary distinct lotteries 

( ) ( ),,,, 212211 qqLppL ⎟
⎠
⎞⎜

⎝
⎛ ′′′

211 , ppL ⎟
⎠
⎞⎜

⎝
⎛ ′′′

212 , and qqL  such that 21 ~ LL , ′′
21 ~ LL  and 

→→
′=′ 2211 LLLL α  for some ∈α ú we found a unique crossover point ( )21 , xx  such that for any 

probability mixture ( ) ′−+ 11 1 LL ββ  the set ( ){ }′−+ 11 1~: LLLL ββ  contains the point 

( )21 , xx . 

Let us pick up lottery ( )0,11 pL  so that it almost gives the best possible outcome for 

sure ( 1p  approaches zero). By choosing 1p  to be very small we obtain ( ) ( )0,01,0 1 LLLm pp . 

From axiom 2 it follows that ( ) 1222 ~:,0 LLqL∃ . Note that 0lim 201

=
→

q
p

. Consider lottery 

( )222 ,1 qqL −′ . Since ( ) ( )0,00,1 2 LLL pp
′  it follows from axiom 2 that 
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′′⎟
⎠
⎞⎜

⎝
⎛ ′′∃ 2111 ~:0, LLpL . Since 0lim 201

=
→

q
p

 it must also be the case that 1lim 101

=′
→

p
p

. 

⎟
⎠
⎞⎜

⎝
⎛ −′=′

→

0,1111 ppLL  and ( )0,1 222 qLL −=′
→

. Obviously, ( )∈−⎟
⎠
⎞⎜

⎝
⎛ −′=∃ 211 1 qppα ú such that 

→→
′=′ 2211 LLLL α . Therefore, there is a unique crossover point ( )21 , xx  such that for any 

probability mixture ( ) ( )0,1 11 ββββ pLLL =′−+  the set { }βLLL ~:  contains the point 

( )21 , xx . 

For any arbitrary lottery 0L : ( ) ( )0,00,1 0 LLL pp  and therefore accordingly to axiom 

2 there exist a lottery ( ) 000 ~0,~ LpL . Since 1lim 101

=′
→

p
p

 it is possible to pick up a sufficiently 

small 1p  such that ( ) 1001 0,~ LpLL pp
′  due to axiom 3. Thus, there exist ( )1,0∈β  such that 

( ) ( ) ( )0,~0,1 0011 pLpLLL ==′−+ ββββ . Consequently, lottery 0L  belongs to the set 

{ }βLLL ~:  as well as the point ( )21 , xx . Accordingly to proposition 2 transitivity holds and 

lottery βL  as well as the point ( )21 , xx  also belong to the set { }0~: LLL . Therefore, if 

axioms 1-4 hold then it is possible to find a unique point ( )21 , xx  such that for any arbitrary 

lottery 0L : ( ) { }021 ~:, LLLxx ∈ . Effectively this means that there is a unique crossover 

point at which all indifference sets { }0~: LLL  intersect.  

Specifically, for lotteries ( )0,11 pL , ( )22 ,0 qL , ( )222 ,1 qqL −′  and ⎟
⎠
⎞⎜

⎝
⎛ ′′ 0,11 pL  this 

crossover point ( )21 , xx  is: 
( )

112

112

2

112

21
1

1
,

1

1

ppq

ppq
x

ppq

qpx
−′+−

⎟
⎠
⎞⎜

⎝
⎛ −′

=
−′+−

−
= . Accordingly to 

axiom 5 1lim,0lim
2

1

0
1

21

0 11

=⇒=
−

→→ q
p

p
qp

pp
 and 01lim,01lim

2

12

12

12

01 11

=
′+−

⇒=
′+−

→′→′− q
pq

q
pq

pp
. 

Let us explore crossover point ( )21 , xx  when 01 →p  (and consequently 11 →′p ). 
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( ) ( ) 1
10
101

lim1lim

1limlim

1

1limlim

2

1

0
2

12

1

20
2

1

0

112

21

0110

11

11

11

=
−
−⋅

=

−
′+−

⎟
⎠
⎞⎜

⎝
⎛ −⋅

=
−′+−

−
==

→→′

→→

→→

q
p

q
pq

q
q
p

ppq

qpxx

pp

pp

pp
,

1
10
01

lim1lim

lim

1
limlim

2

1

0
2

12

1

110

2

1

2

12

11

0220

11

1

11

−=
−
−

=

−
′+−

⎟
⎠
⎞⎜

⎝
⎛ −′

=

−
′+−

−′
==

→→′

→

→→

q
p

q
pq

pp

q
p

q
pq

ppxx

pp

p

pp
. 

Therefore, if axioms 1-5 hold then for any arbitrary lottery ( )210 , ssL : 

( ) { }0~:1,1 LLL∈− . Accordingly to proposition 1 the set { }0~: LLL  is linear in 

probabilities { } ( ){ }1ˆˆ:,~: 2211210 =+= rararrLLLL . Since ( ) ( ){ }1ˆˆ:,, 221121210 =+∈ rararrLssL  

and ( ) ( ){ }1ˆˆ:,1,1 221121 =+∈− rararrL  it follows that 1ˆˆ 2211 =+ sasa  and 1ˆˆ 21 =− aa . Solving 

for parameters 21 ˆ and ˆ aa  we obtain that the set { }0~: LLL  is 

( )
⎭
⎬
⎫

⎩
⎨
⎧

=
+
−

+
+
+

1
11

:, 2
21

1
1

21

2
21 r

ss
s

r
ss
s

rrL . 

Then for any arbitrary three-outcome lottery ( )210 , ssL  the set { }0~: LLL , defined on 

the same three-outcome structure, is ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
+
−

+
+
+

1
11

:, 2
21

1
1

21

2
21 r

ss
s

r
ss
s

rrL .  

Proof of proposition 4 

Proof by mathematical induction. In proposition 3 we demonstrated that proposition 4 

holds for 3=n . Let us assume that the proposition holds for 1−≤ Nn . Now we will prove 

that it also holds for Nn = . Consider the compound lottery ( )13210 ,...,, −+′ NqqqqL  defined 

over the set of outcomes { }NxxL ,...,, 321+ . 21+L  is a lottery yielding outcome 1x  with 

probability 
21

1

qq
q
+

 and outcome 2x  with probability 
21

2

qq
q
+

. Obviously 00 LL =′ . Since 

NxxL ppp ...31  we can treat lottery 0L′  as 1−N  outcome lottery satisfying the 
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prerequisites of axioms 1-5. We assumed that proposition 3 holds for 1−≤ Nn . Thus, the set 

{ }0~: LLL ′  is ( )
⎭
⎬
⎫

⎩
⎨
⎧

=
++

+++−−−
+

++
+++ ∑

−

= −

−+

−

−
−

2

2 11

121
1

11

13
21 1

...
......1

...
...1

:,...,
N

i
i

N

Nii

N

N
N p

qq
qqqq

p
qq

qq
ppL . 

However, the compound lottery ( )21,..., −NppL  is defined over the set of lottery outcomes 

{ }NxxL ,...,, 321+ . We will rewrite lottery L  in a reduced form as a probability distribution 

over the prime lottery outcomes { }Nxx ,...,1 — ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++ −221

21

2
1

21

1 ,...,,, Nppp
qq

qp
qq

qL .  

Accordingly to proposition 1 Raa N ∈∃ −11 ,...  such that ( ) 011 ~:,..., LLrrL N−∀  

1... 1111 =++⇔ −− NN rara . Since 00~ LLL =′  the reduced form probabilities of lottery L  

should also satisfy the restriction 1... 1111 =++ −− NN rara . Algebraically this corresponds to 

1... 21231
21

2211 =+++
+
+

−− NN papap
qq

qaqa . But we know already that 

∑
−

= −

−+

−

− =
++

+++−−−
+

++
+++ 2

2 11

121
1

11

13 1
...

......1
...

...1 N

i
i

N

Nii

N

N p
qq

qqqq
p

qq
qq

. The only possibility when 

these two equations are mutually compatible for any lottery ( )21,..., −NppL  is when 

[ ]1,3,
...

......1

11

1111 −∈
++

+++−−−
=

−

−+− Ni
qq

qqqq
a

N

Nii
i  and 

11

13

21

2211

...
...1

−

−

++
+++

=
+
+

N

N

qq
qq

qq
qaqa . 

Using the compound lottery ( )1543210 ,...,,,, −+′′ NqqqqqqL  defined over the set of outcomes 

{ }NxxLxx ,...,,,, 54321 +
6 we can also demonstrate in the same manner as above that 

[ ] [ ]1,52,1,
...

......1

11

1111 −∪∈
++

+++−−−
=

−

−+− Ni
qq

qqqq
a

N

Nii
i . Thus, we have proven that 

proposition 4 holds for Nn = . Then accordingly to the principle of mathematical induction 

proposition 4 holds for all n outcome lotteries. 

                                                           

6 43+L  is a lottery yielding outcome 3x  with probability 
43

3

qq
q
+

 and outcome 4x  with probability 
43

4

q̀q
q
+

. 
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