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Abstract

Results of data envelopment analysis sensitively respond to stochastic
noise in the data. In this paper, by introduction of output augmentation and
input reduction I extend additive models for stochastic data envelopment
analysis (SDEA), which were developed by Li (1998) to handle the noise in
the data. Applying the linearization procedure by Li (1998) the linearized
versions of models are derived. In the empirical part of this work, the effi-
ciency scores of Indonesian rice farms are computed. The computed scores
are compared to the stochastic frontier approach scores by Druska and Hor-
race (2004) and weak ranking consistency with results of stochastic frontier
method is observed.

Abstrakt

Výsledky hodnocení efektivnosti získané analýzou obalu dat (DEA) jsou
citlivé na přítomnost náhodného šumu v analyzovaných datech. V tomto
článku odvodím orientované verze aditivních modelů prezentovaných v Li
(1998), které berou v úvahu vliv náhodného šumu na efektivnost produkční
jednotky. V části věnované aplikaci stochastických modelů analyzuji míru
konzistence odhadů technické efektivnosti v závislosti na zvolené metodě.
Skóre efektivnosti farem podle přístupu SDEA a DEA je porovnatelné s
výsledky, které Druska and Horrace (2004) získal pomocí metody stocha-
stické hranice produkční množiny.
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1 Introduction

Data envelopment analysis (DEA) involves an non–parametric principle for extract-

ing information about observations of a population of production mixes, so called

decision making units (DMUs), that are described by the same quantitative charac-

teristics. The primary objective of this work is to extent the work of Huang and Li

(2001) and Li (1998) on additive stochastic DEA models (SDEA) by derivation of

SDEA models that allow for proportional input reduction and output augmentation

– oriented SDEA models. The empirical part of this paper is motivated by Horrace

and Schmidt’s (1996) comparison of methods and by Mortimer’s (2002) conclusion,

that more comparative studies for the DEA and stochastic frontier approach are

needed to evaluate the consistency of results with respect to method choice.

Data envelopment analysis, developed by Charnes, Cooper, and Rhodes (1978),

involves an alternative approach to stochastic frontier analysis (SFA) that was de-

veloped at the same time by Aigner, Lovell, and Schmidt (1977), for efficiency

evaluation of the decision process observations. The DEA approach is a nonpara-

metric approach to production frontier estimation and requires specification of the

production possibility set properties rather than the production function form that

is required when the stochastic frontier approach is used. In contrast to parametric

approaches for information extraction, the objective of the DEA is to identify the

smallest set that satisfies production possibility properties.

The general model of production function is defined as: yj = f(xj, β)+ej, where

xj represents inputs, β unknown parameters of production function f(xj, β) and yj

represents output of the DMUj. The aggregate error term ej is considered as extent

of inefficiency in the DEA approach. In the SFA approach (e.g. Aigner, Lovell,

and Schmidt (1977); Meeeusen and van den Broeck (1977)) the error component

ej is decomposed into a stochastic random component and a true technical effi-

ciency component. Therefore, together with the extreme point nature of the DEA,
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the noise in data may lead to bias in the DEA technical efficiency measure. The

dilemma of the efficiency evaluation approach depends on the trade off between the

minimal specification of production function form that favors the DEA approach

and the handling of stochastic error in measuring efficiency that favors the SFA

approach. To compete with the SFA in error handling, the stochastic data envel-

opment analysis (SDEA) approach was developed by considering the used levels of

inputs and outputs as random variables in the DEA model specification.

The theoretical part of this paper extends the work on derivation of almost

100% confidence SDEA models by Li (1998) and Huang and Li (2001) by spec-

ification of the performance improvement direction, so called model orientation.

Further, assumptions to simplify the disturbance structure are taken and using lin-

earization methods the linear deterministic equivalents of these models are derived.

This is utilized in the application section where it allows for the use of the linear

programming method to solve SDEA problems. These SDEA results are compared

to SFA results, so the consistency of results across frontier estimation methods can

be assessed.

The following literature review section presents details of the motivation for the

SDEA. In the third and fourth section, notation and definitions used to construct

SDEA models are presented. Subsequently, the derivation of Huang and Li’s (2001)

additive models is summarized and in the fifth section I introduce input reduction

and output augmentation directions for efficiency measure definition. In the sixth

and following sections, I derive oriented models and their linearized forms. The

ninth section describes numerical methods used to solve derived linearized versions

of the oriented SDEA models. In the tenth section, I evaluate the SDEA, DEA

and SFA efficiency scores consistency assessing the results of the Indonesian rice

farms efficiency evaluation, as in Horrace and Schmidt (1996). The comparison

of methods reveals inconsistency between efficiency rankings acquired by the SFA

approach and SDEA approach. All figures and tables that I reference to, are
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included in the appendix.

2 Literature review

As Charnes, Cooper, Lewin, and Seiford (1994) explain in their introduction, the

story of data envelopment analysis began with Edwardo Rhodes’s dissertation,

which was the basis for the later published paper by Charnes, Cooper, and Rhodes

(1978). In his dissertation, Rhodes used the production efficiency concept by Farrell

(1957) to analyze the educational program for disadvantaged students in the USA.

Rhodes compared the performance of students from schools participating and not

participating in the program. Students’ performance was recorded in terms of

inputs and outputs, e.g. “increased self–esteem” (measured by psychological tests)

as one of the outputs and “time spent by mother reading with child” as one of the

inputs. The subsequent work on efficiency evaluation of multiple inputs and outputs

technology led to Charnes, Cooper, and Rhodes’s (1978) model (CCR model).

The introduced CCR model is suitable for analysis of the technological process

under the constant returns to scale assumption. This fact is reflected in the shape

of the production possibility frontier when the frontier is formed by a single half–ray

and the DMU identified as efficient is an element of the production possibility fron-

tier set up by this half–ray. To handle the variable returns to scale, introduced by

Farrell and Fieldhouse (1962) in the SFA framework, the CCR model was reformu-

lated by Banker, Charnes, and Cooper (1984) (BCC model). Since the production

possibility frontier of the BCC model is a piecewise linear set, they defined weak

efficiency (a weakly efficient DMU has nonzero slacks) and efficiency (an efficient

DMU has zero slacks). To review the DEA models Table 1 summarizes a general-

ized versions of the aforementioned DEA models. The generalized versions of the

DEA models collapse to the CCR model (constant returns to scale) for ϕ = 0 and

for ϕ = 1 it matches the form of the BCC model (variable returns to scale).
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As many applications suggest, the capability of handling multiple inputs–outputs

and the fact that the specification of production function form is not required, make

the DEA a powerful tool that is applied in various industries (e.g. in air transporta-

tion, Land, Lovell, and Thore (1993); fishing, Walden and Kirkley (2000); banking,

Ševčovič, Halická, and Brunovský (2001); health care, Byrnes and Valdmanis (1989)

where 123 US hospitals were covered; and in Halme and Korhonen (1998) dental

care units were assessed) for technical efficiency evaluation. The expanding num-

ber of papers using the DEA approach helped to identify the limitations that an

analyst should keep in mind when choosing whether or not to use the approach.

It is worth noting that the DEA approach performs very well when estimating

the “relative” efficiency but it is not such a powerful technique when estimating

“absolute” efficiency. In other words, the DEA reveals how well the considered

DMU is doing compared to the DMU’s peers but not compared to a “theoretical

maximum”. Figure 1 illustrates this situation as the difference between the true

production frontier and the estimated production frontier. This difference results

from the analyst’s limitation in knowledge of the true production function.

A more remarkable limitation originates from the extreme point nature of the

DEA approach which makes computed technical efficiency measure sensitive to

changes in data. Therefore, noise (even symmetrical noise with zero mean) such as

measurement error can cause significant problems. The literature on recent devel-

opments for noise incorporation in the DEA identifies three approaches: mixture

of the DEA and SFA approaches, bootstrapping, and taking inputs and outputs as

random variables.

Gstach (1998) proposes using the DEA technique to estimate a pseudo–production

frontier (non–parametric production possibility set estimation) to select the efficient

DMUs that identify the production possibility frontier. After this selection, he ap-

plies a maximum likelihood–technique to estimate the scalar value in production

frontier form, by which this pseudo–frontier must be shifted downward to get the
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true production frontier (frontier location estimation), using the DEA–estimated

efficiencies. Simar (2003) described the iterative bootstrapping method for improv-

ing the performance of the deterministic DEA frontier estimation. However, this

bootstrapping approach is suitable only for cases where noise to signal ratio is low.

In this work, I focus on the approaches were the noise is introduced by consid-

ering DMUs as realizations of random variables. These theoretical attempts are

based on Land, Lovell, and Thore’s (1993) paper, where the authors use improved

models to examine the efficiency of the same schooling program for disabled schol-

ars as in Charnes, Cooper, and Rhodes (1978).Land, Lovell, and Thore (1993) offer

the prospect of stochastic data envelopment analysis and constructed their own

model (LLT model). The LLT model is derived as a chance constrained version

of the BCC output oriented model in envelopment form. Further, they transform

these chance constrained problems to their deterministic non–linear equivalents,

which allow them to determine the efficient DMUs.

Olesen and Petersen (1995) present a different approach to incorporating the

stochastic component into the DEA and their model (OP model) originates from the

multiplier formulation of the BCC model. They assume that the inefficiency term

of the considered DMU can be decomposed into true inefficiency and disturbance

term as in the SFA approach. Further, Olesen (2002) compares the approaches of

the models by Olesen and Petersen (1995) and Land, Lovell, and Thore (1993) and

identifies weaknesses of both model types. The LLT model is criticized because it

does not account for all the correlations that can occur in disturbances. Olesen

(2002) criticizes the OP model because it ignores correlations between DMUs. A

related weakness is the omission of the fact that a convex combination of two DMUs

can have a lower variance than the DMUs considered solely. A straightforward

remedy for the OP model is to take the union of confidence regions for any linear

combination of the stochastic vectors themselves rather than using a piecewise

linear envelopment of the confidence regions. Olesen (2002) implements this idea
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and derives the combined chance constrained model.

The approach that will be extended in this paper, originates from work by

Huang and Li (2001), where inputs and outputs are introduced as random vari-

ables and the relation of stochastic efficiency dominance is defined. Huang and Li

(2001) define the efficiency dominance of a DMU via joint probabilistic comparisons

of inputs and outputs with other DMUs which are evaluated by solving a chance

constrained programming problem. By utilizing the theory of chance constrained

programming, deterministic equivalents are obtained for both situations of multi-

variate symmetric random disturbances and a single random factor in production

relationships. Under the assumption of the single random factor, Huang and Li

(2001) obtain linear deterministic equivalent to stochastic programming problems

via linear programming theory. In this paper, I will propose the oriented form of

the additive SDEA models derived by Huang and Li (2001). Further, by use of the

reviewed linearization approach I linearize the proposed oriented SDEA models.

In the empirical part of this paper, I compare the results of the different meth-

ods to productivity evaluation as in Horrace and Schmidt (1996). This comparison

is motivated by Mortimer’s (2002) comparative study of recent literature that sum-

marizes the results from SFA and DEA studies to identify the amount of correlation

between scores in SFA and DEA comparative studies. Mortimer (2002) calls for

more studies that will compare efficiency scores correlation across production effi-

ciency approaches because the present comparative studies show either strong (e.g.

Ferro–Luzzi, Ramirez, Flückiger, and Vassiliev (2003)) or very weak (e.g. Lan and

Lin (2002), Wadud and White (2000)) correlation of obtained efficiency rankings.

The major problems associated with solving the DEA models are the analysis of

a large set of DMUs and interpretation of the optimal solutions with zero elements.

The analysis of a large data set leads to large size optimization problems that can

be costly to solve. The solutions that contain many zero elements can make the

results of the analysis questionable because the elements of optimal solutions are
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interpreted as shadow prices of inputs and outputs. Gonzales-Lima, Tapia, and

Thrall (1996) present the primal–dual interior–points computational methods as

the methods that significantly improve the reliability of the solution in comparison

to simplex methods. The interior–points methods maximize the product of the

positive components in the optimal solutions, so they identify optimal solution

with the minimal number of zero components. Due to this property of the optimal

solution it is easier to interpret the DEA models results. Therefore, as part of my

theoretical work the interior point method solver is constructed.

3 Notation

In this section, the notation used to construct the oriented stochastic DEA models

is introduced. Additional notation will be introduced in the following section to

describe the considered error structure. In contrast to the deterministic approach

to envelopment analysis, where DMUs are observations of decision realization, the

DMUs in the stochastic approach are characterized by random variables and the

technology realizations are observations of these random variables. The notation in

this paper coincides with the notation usually found in data envelopment analysis

literature (e.g. Charnes, Cooper, Lewin, and Seiford (1994),Cooper, Huang, Lelas,

Li, and Olesen (1998), and Huang and Li (2001)).1 The task is to analyze the set

of DMUj, where 1 ≤ j ≤ n. Each of the DMUs is described by a random vector

x̃j, x̃j = (x̃1j, . . . , x̃mj)
T of m input amounts (random variables) that are used to

produce s outputs in amounts described by random vector ỹj, ỹj = (ỹ1j, . . . , ỹsj)
T .

These vectors are aggregated to matrices of random vectors of inputs and outputs,

so the following matrix notation will be used:
1In the following text the random variables are denoted by˜and means of these variables are

denoted by an upper bar.
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matrix of inputs random vectors X̃ = (x̃1, . . . , x̃n)

ith row of “input” matrix X̃ ix̃ = (x̃i1, . . . , x̃in), i = 1, . . . , m

m× n matrix of expected inputs X̄ = (x̄1, . . . , x̄n)

ith row of expected “input” matrix X̄ ix̄ = (x̄i1, . . . , x̄in), i = 1, . . . , m

matrix of outputs random vectors Ỹ = (ỹ1, . . . , ỹn)

rth row of “output” matrix Ỹ rx̃ = (ỹr1, . . . , ỹrn), r = 1, . . . , s

s× n matrix of expected outputs Ȳ = (ȳ1, . . . , ȳn)

rth row of expected “output” matrix Ȳ rȳ = (ȳr1, . . . , ȳrn), r = 1, . . . , s.

4 Stochastic efficiency dominance

In this section, the efficiency dominance relation and derivation of additive almost

100% chance constrained models by Huang and Li (2001) is reviewed. These theo-

rems and definitions form the basis for derivation of the oriented SDEA derived in

the following sections.

Definition 1. General stochastic production possibility set T ⊂ Rm+s
+ is defined

as: T = {(x̃, ỹ) | outputs ỹ can be produced using inputs x̃}.2

This definition of the stochastic production possibility set relates to random

vectors that characterize DMUs and it means that all DMUs are required to be

an element of the stochastic production possibility set but not all observations of

DMUs are required to be in the stochastic production possibility set. As mentioned

in the literature review, the function form is not known, therefore the estimate of

the production possibility set is identified by the properties that the production

possibility set should fulfill.

Almost 100% confidence production possibility set T constructed from the set

of DMUj, j = 1, . . . , n should fulfill the following properties:

Property 1. Convexity: If (x̃j, ỹj) ∈ T, j = 1, . . . , n and λ ∈ Rn
+, ⇒ (X̃λ, Ỹ λ) ∈ T.

2Here, R+ means set of positive real numbers and 1 is column vector of ones.
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Property 2. Inefficiency property: If (x̄, ȳ) ∈ T and x ≥ x̄, then (x, ȳ) ∈ T.

If (x̄, ȳ) ∈ T and y ≤ ȳ then (x̄, y) ∈ T.

Property 3. Minimum extrapolation: T is the intersection of all sets satisfying

convexity and inefficiency property and subject to each of the observed random

vectors (x̃j, ỹj) ∈ T, j = 1, . . . , n.

From the first two properties follows that less output can be produced with the

same amount of inputs. This reflects the situation when some portion of inputs is

wasted in the production process. The parametric production possibility set Tϕ;

Tϕ = {(x̃, ỹ) | x̃ ≥ X̃λ, ỹ ≤ Ỹ λ, ϕ(1T λ) = ϕ, λ ≥ 0}, where ϕ ∈ {0, 1}, satisfies
all aforementioned properties. T0 is the stochastic generalization of the production

possibility set under the assumption of the constant returns to scale production

function as used by Charnes, Cooper, and Rhodes (1978) in the derivation of the

CCR model. Similarly, the stochastic generalization of the production possibility

set T1 will be used to derive models with variable returns to scale as in a case of

the BCC model by Banker, Charnes, and Cooper (1984).

The concept of efficiency in the DEA (based on the following relative efficiency

definition) is used to define the α–stochastic efficiency dominance.

Definition 2. Relative Efficiency: A DMU is to be identified as efficient on the

basis of available evidence if and only if the performances of other DMUs does not

show that some of its inputs or outputs can be improved without worsening some

of its other inputs or outputs.

The efficient point of the production possibility set is identified if there is no

other production point that produces more output without consuming more input,

or consumes less input without producing less output. This leads to the following

efficiency domination definition of the production possibility set element:

Definition 3. Efficiency dominance relation: The point (x, y) is not dominated in

the sense of efficiency if @ (x∗, y∗) in the production possibility set such that x∗ ≤ x
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or y∗ ≥ y with at least one strict inequality for input or output components.

This definition demonstrates the efficiency concept of the DEA and is used to

derive the deterministic models with no possibility of a violation of the production

possibility set properties or efficiency dominance. In the deterministic environ-

ment, the non–dominated DMUs are elements of the production possibility set

frontier. Figure 1 illustrates this situation where the set of DMUs is divided into

efficient (DMU1, DMU2 and DMU3) and inefficient DMUs (DMU4 and DMU5).

The efficient DMUs – points that dominate in efficiency the other elements of the

production possibility set – are used to identify the production possibility frontier.

In the stochastic framework, where efficiency dominance can be violated due to

random errors, the efficiency dominance violations are allowed with the probability

α, 0 ≤ α ≤ 1. In chance constrained programming methodology the term 1− α is

interpreted as the modeler’s confidence level and α is interpreted as the modeler’s

risk (the extent of conditions violations). In the almost 100% confidence approach,

the production possibility constraints are almost certainly not violated and the

efficiency dominance can be violated with probability α. For the case of the almost

100% confidence chance constrained approach, Li (1998) and Huang and Li (2001)

define the α–stochastically efficiency of point as:

Definition 4. α–stochastic efficiency of point in set Tϕ: (x̃∗, ỹ∗) ∈ Tϕ is called

α–stochastically efficient point associated with Tϕ ⇔ if the analyst is confident

that (x̃∗, ỹ∗) is efficient with probability 1− α in the set Tϕ.

Definition 4 means that point (x̃∗, ỹ∗), considered as α–stochastically efficient

may be dominated (in the sense of efficiency dominance) by any other point in Tϕ

with a probability less or equal to α. For the DMUj associated with this point this

definition is used to evaluate the α–stochastic efficiency of DMUj.

This definition and the aforementioned properties of the set Tϕ straightforwardly

imply that for the efficient DMUj and for any λj ∈ Rn
+ such that ϕ(1T λj) = ϕ, λ ≥ 0
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the expression Prob(X̃λj ≤ x̃j, Ỹ λj ≥ ỹj) ≤ α holds with at least one strict

inequality in input–output constraints.

To illustrate the DEA and almost 100% confidence SDEA approach, Figure 1

illustrates the relation of the deterministic frontier to the possible true production

possibility frontier. The solid piecewise linear line is the possible true production

possibility frontier and the dashed line is the DEA estimate of this production

possibility frontier. In Figure 2 the expected values of DMUs (same values as

the observations in Figure 1) are pictured and the set of α–efficiency dominant

elements is presented as a grey shaded area. A comparison of Figures 1 and 2 shows

that for the almost 100% confidence SDEA approach, the deterministic production

possibility set frontier is a subset of the stochastic possibility set frontier. Due

to this fact more DMUs can be identified as efficiency dominant in the stochastic

framework than in the deterministic.

4.1 Stochastic model

In this subsection, the derivation of the almost 100% confidence chance constrained

problem is reviewed. The reviewed stochastic model for assessing efficiency of

DMUj is the equivalent to the additive DEA model and serves as the basis for the

further theoretical development of SDEA models. In the following subsection, spe-

cific assumptions about the error structure in the data are made and the stochastic

model is transformed into its deterministic equivalent.

Now, from the set properties for the virtual peers (X̃λ, Ỹ λ) that are used for

evaluation of efficiency of DMUj follows that

{X̃λ ≤ x̃j, Ỹ λ ≥ ỹj} ⊂ {1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0} (1)
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and using the probability properties the following inequality is derived:3

Prob(X̃λ ≤ x̃j, Ỹ λ ≥ ỹj) ≤ Prob(1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0).

Therefore, for λ ∈ Rn
+ such that ϕ(1T λ) = ϕ and λ ≥ 0 the condition

Prob(1T (X̃λ− x̃j) + 1T (ỹj − Ỹ λ) < 0) ≤ α

is a necessary condition for the DMUj to be α–stochastically efficient. Using the

necessary condition for α–stochastic efficiency of the DMUj, the following almost

100% confidence chance constrained problem (in matrix notation) for the technical

efficiency evaluation of the DMUj, j = 1, . . . , n is constructed (Cooper, Huang,

Lelas, Li, and Olesen (1998), Li (1998) and Huang and Li (2001))

max
λj

Prob(1T (X̃λj − x̃j) + 1T (ỹj − Ỹ λj) < 0)− α (2)

s.t. Prob(ix̃λj < x̃ij) ≥ 1− ε, i = 1, . . . , m;

Prob(rỹλj > ỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(1T λj) = ϕ,

λj ≥ 0,

where ε is a non–Archimedean infinitesimal quantity.4 The optimal solution of

problem 2 is related to the stochastic efficiency of the DMUj by following two

theorems which are direct corollaries of Theorem 3 by Cooper, Huang, Lelas, Li,

and Olesen (1998):5

3The inequality type change is due to the additional restriction that {X̃λ ≤ x̃j , Ỹ λ ≥ ỹj}
holds with at least one strict inequality. The accuracy of this simplification is closely discussed
in Ruszczynski and Shapiro (2003).

4This means that ε is a very small positive number such that
∑n

i=1 ε < 1 no matter how large
is n. According to the chapter “Computational Aspects of DEA” in Charnes, Cooper, Lewin, and
Seiford (1994), ε < minj=1,...,n 1/(

∑m
i=1 xij) is selected in the calculations of these models.

5See Theorem 3 and its proof in Cooper, Huang, Lelas, Li, and Olesen (1998).
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Theorem 1. Let the DMUj be α–stochastically efficient. The optimal value of the

objective function in the chance constrained programming problem 2 is less than or

equal to zero.

Theorem 2. If the optimal value objective functional of problem 2 is greater than

zero, then DMUj is not α–stochastically efficient.

Theorem 2 implies that if the maximum value of the chance functional

Prob(1T (X̃λj−x̃j)+1T (ỹj−Ỹ λj) < 0) exceeds α, then the considered DMUj is not

α–stochastically efficient. The value of the chance functional of the additive SDEA

model represented by problem 2 can be used as the simplest efficiency measure

when interpreted as the sum of input excess and output slack. In the section on

derivation of the oriented SDEA models, I introduce measures based on possible

proportional input reduction or output augmentation.

4.2 Error structure

In this subsection, the error structure that allows the transformation of the model

from a chance constrained problem to a linear deterministic equivalent is introduced

and the linearization approach by Cooper, Huang, Lelas, Li, and Olesen (1998) is

summarized. The following structure of m inputs and s outputs of the DMUj, for

j = 1, . . . , n with noise driven by normally distributed shocks is considered

x̃ij = x̄ij + aijζij i = 1, . . . , m; (3)

ỹij = ȳij + bijξrj, r = 1, . . . , s;
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where it is assumed E(ζij) = E(ξrj) = 0, j = 1, . . . , n and the following variance–

covariance structure of errors for all DMUs is assumed:6

V ar(ζij) = V ar(ξrj) = σ2
ε 1 ≤ i ≤ m; 1 ≤ r ≤ s; 1 ≤ j ≤ n;

Cov(ζij, ζkl) = 0 1 ≤ i, k ≤ m; 1 ≤ j, l ≤ n;

Cov(ξrj, ξkl) = 0 1 ≤ r, k ≤ s; 1 ≤ j, l ≤ n;

Cov(ξrj, ζil) = 0 1 ≤ r ≤ s; 1 ≤ i ≤ m; , 1 ≤ j, l ≤ n.

Under this error structure follows that inputs and outputs are normally distributed

with E(x̃ij) = x̄ij, E(ỹrj) = ȳrj and variance V ar(x̃ij) = (aijσε)
2, V ar(ỹrj) = (brjσε)

2.

When assessing the production processes it is also reasonable to consider the

case of log–normally distributed variables. In the case of log–normality of inputs

and outputs with disturbances driven by normal random variables, the following

structure of inputs and outputs can be considered:

x̃log
ij = exp(x̄ij + aijζij) i = 1, . . . , m; (4)

ỹlog
ij = exp(ȳij + bijξrj), r = 1, . . . , s.

The log–normal input–output structure can be transformed to normal input–output

structure by taking logs, therefore in the following text I assume only the input–

output structure with normally distributed input and output variables.

Additionally, when assuming ε = ξij = ξkl = ζrj = ζil, for 1 ≤ r ≤ s; 1 ≤ i ≤ m;

1 ≤ j, l ≤ n then the assumed error structure collapses to a single factor symmetric

error structure where ε follows normal distribution with E(ε) = 0, V ar(ε) = σ2
ε .

To simplify this notation, the vectors
6For linearization procedure the standard normal distribution N(0, 1) can be assumed. The

scaling of the measurement units is used when numerical problems with tiny diagonals of the
input–output variance matrices occurs, therefore the more general assumption of N(0, σ2

ε) is
used. This simplifying assumption also reduces the number of parameters to be estimated for
efficiency evaluation to 2n(m + s). Without simplifying assumption [n2(m + s)2 + 3n(m + s)]/2
parameters are needed to be estimated.
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aj = (a1j, . . . , amj)
T , bj = (b1j, . . . , bsj)

T , j = 1, . . . , n;

ia = (ai1, . . . , ain), rb = (br1, . . . , brn), i = 1, . . . , m, r = 1, . . . , s;

are introduced and these vectors are aggregated to construct the following matrices

of input and output variations Am×n = (a1, . . . , an), Bs×n = (b1, . . . , bn). Using the

properties of normal distribution it is derived that ix̃λj−x̃ij is distributed according

to N(ix̄λj − x̄ij; (iaλj − aij)
2σ2

ε) and (rỹλj − ỹrj) is normally distributed according

to N(rȳλj− ȳrj; (brj−rbλj)
2σ2

ε). Applying the inverse cumulative distribution func-

tion Φ−1(α), the constraints and objective function in the almost 100% confidence

chance constrained problem 2 can be rewritten as in Cooper, Huang, Lelas, Li, and

Olesen (1998) or Huang and Li (2001) and the following deterministic equivalent

of problem 2 is derived:

min
λj∈Rm+s

+

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj)+ | 1T (Aλj − aj) + 1T (bj −Bλj) | σεΦ
−1(α) (5)

s.t. ix̄λj ≤ x̄ij+ | iaλj − aij | σεΦ
−1(ε), i = 1, . . . , m,

ȳrj ≤ rȳλj+ | brj − rbλj | σεΦ
−1(ε), r = 1, . . . , s,

ϕ(1T λj) = ϕ,

λj ≥ 0.

Applying the linearization procedure, new variables q1r, q2r, h1i, h2i and the

cumulative term ε(
∑s

r=1(q1r + q2r)+
∑m

i=1(h1i +h2i)) introduced into the objective

function allows for the decomposition of the absolute value terms and to linearize

the constraints in problem 5.7 Moreover, this modification does not affect the

optimal solutions of problem 5 and this problem is equivalent to the following
7For simplicity of notation, in the following text the index j is omitted in the terms

q1r, q2r, h1i, h2i that are used to replace the absolute value term.
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problem with linear constraints:

min
λj ,qkr,hki

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) + (6)

+ | 1T (Aλj − aj) + 1T (bj −Bλj) | σεΦ
−1(α) + ε(

s∑
r=1

(q1r + q2r) +
m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλj − aij = h1i − h2i, i = 1, . . . , m,

ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ε),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1T λj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

In the following step, the absolute value from the objective function is removed.

The inverse of cumulative distribution function Φ(α) takes a positive or negative

values; to account for this factor let’s define δ such that

δ =





−1 if α < 0.5;

0 if α = 0.5;

1 if α > 0.5.

The absolute value term in the objective function is the sum of the absolute value

terms in the constraints of problem 6; therefore, the decomposition that was used

in these constraints is just substituted in the objective function. Thus as in used

literature (e.g. Li (1998) and Huang and Li (2001)), the absolute value terms are

eliminated from the objective function and the following problem with a linear
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objective function is obtained:

min
λj ,qkr,hki

1T (X̄λj − x̄j) + 1T (ȳj − Ȳ λj) + (7)

+δ(1T (Aλj − aj) + 1T (bj −Bλj))σεΦ
−1(α) + ε(

s∑
r=1

(q1r + q2r) +
m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλj − aij = h1i − h2i, i = 1, . . . ,m,

ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ε),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1T λj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

Problem 7 is known as the envelopment formulation of the DEA model, because

the optimal solution identifies the projected point on to the envelopment surface

for DMUj. Using Li’s (1998) definition of the dual problem, the dual problem 8 to

primal problem 7 is restated as:

max
µ,ν,η,ω,ψj

µT ȳj − νT x̄j − ηT bj − ωT aj − ϕψj (8)

s.t. µT ȳl − νT x̄l − ηT bl − ωT al − ϕψj ≤ 0, l = 1, . . . , n;

−σεΦ
−1(ε)µ + η ≥ −σε(Φ

−1(ε) + ε)1− δσεΦ
−1(α)1,

−σεΦ
−1(ε)µ− η ≥ −σε(Φ

−1(ε) + ε)1 + δσεΦ
−1(α)1,

−σεΦ
−1(ε)ν − ω ≥ −σε(Φ

−1(ε) + ε)1− δσεΦ
−1(α)1,

−σεΦ
−1(ε)ν + ω ≥ −σε(Φ

−1(ε) + ε)1 + δσεΦ
−1(α)1,

µ ≥ 1

ν ≥ 1,

η, ω, ψj unconstrained.

For the DMUj represented by point (x̃j, ỹj), the following stochastic hyperplane
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Prob(cT x̃j + dT ỹj + fj ≤ 0) = 1− ε is the supporting hyperplane for Tϕ at (x̃j, ỹj)

if and only if

cT x̃j + dT ỹj + fj + Φ−1(ε)σε | cT aj + dT bj |= 0 (9)

and for ∀ (x̃, ỹ) ∈ Tϕ : cT x̃ + dT ỹ + fj + Φ−1(ε)σε | cT aj + dT bj |≥ 0. (10)

The dual problem 8 is known as the multiplier problem because the optimal solu-

tions (µ∗j , ν
∗
j , η

∗
j , ω

∗
j , ψ

∗
j ), for j = 1, . . . , n, set up the supporting hyperplanes that

are used to construction the production possibility frontier. If there is an unique

optimal solution (µ∗j , ν
∗
j , η

∗
j , ω

∗
j , ψ

∗
j ) to problem 8 that satisfies

µ∗j
T (bj − bk) + ν∗j

T (aj − ak)− Φ−1(ε)σε(| µ∗j T bj − ν∗j
T aj | − | µ∗j T bk − ν∗j

T bk |) ≥ 0,

for k = 1, . . . , n, then the optimal solution (µ∗j , ν
∗
j , η

∗
j , ω

∗
j , ψ

∗
j ) identifies the following

stochastic hyperplane Prob(µ∗j
T ỹj − ν∗j

T x̃j + f ∗j ≤ 0) = 1− ε, where

f ∗j = −η∗j
T bj − ω∗j

T aj − ϕψ∗j + Φ−1(ε)σε | µ∗j
T bj − ν∗j

T aj |. This almost 100%

confidence hyperplane is the supporting hyperplane to Tϕ at the DMUj. Further,

in the section on returns to scale, the sign of fj is related to the returns to scale

type and these relations are summarized in Table 2. In a case without a unique

optimal solution to problem 8, the supporting hyperplane for Tϕ at (x̃j, ỹj) is not

uniquely identified.

5 Efficiency measure

In this section, by introducing the input reducing and output augmenting direction

for projection into the data envelopment I derive the extension to the reviewed

additive models. As explained in the previous section, the optimal solution to the

envelopment problem 7 for the DMUj identifies the point (x̂j, ŷj) = (X̄λ∗j , Ȳ λ∗j)

and the optimal solution of the multipliers problem 8 identifies the supporting hy-

perplane assigned to the DMUj. Therefore, the simplest inefficiency measure can
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be defined by the distance measure of a discrepancy between the projected and

expected point as: |(x̂j, ŷj) − (x̄j, ȳj)|. This discrepancy measure expresses the

difference between the efficient frontier represented by the projected point (x̂j, ŷj)

and the present position of the DMUj. Starting from (x̄j, ȳj), various projection

paths on the corresponding part of the envelopment surface can be followed as is

illustrated by Figure 3. Figure 3 illustrates directions of inputs reduction and aug-

mentation in outputs. I will use these two directions to derive the input and output

oriented efficiency measures that are used to state the oriented SDEA models.

First, for inputs of the DMUj let’s denote eij ∈ R+, eij = x̄ij−ix̄λj, i = 1, . . . , m

and define the column vector of inputs excess ej ∈ Rm
+ , ej = (e1j, . . . , emj)

T . If the

following inequality Prob(ix̃λj < x̃ij) > 1 − ε holds there must exist eij > 0,

i ∈ {1, . . . , m} such that Prob(eij ≤ x̃ij− ix̃λj) = 1− ε. Therefore, for inputs of the

DMUj, by following the path −ej the inputs can be decreased and the projected

point is moved towards the production possibility frontier. This projection direction

is given in Figure 3 as the input reduction direction and the point DMU5i is the

input oriented projection of the DMU#5.

Similarly, the DEA output oriented model is derived using the column vector

of output slacks sj ∈ Rs
+, sj = (s1j, . . . , ssj)

T , srj = rȳλj − ȳrj, r = 1, . . . , s. For

r ∈ {1, . . . , s} such that Prob(rỹλj > ỹrj) > 1 − ε exists srj > 0 for which the

following equality holds: Prob(rỹλj − ỹrj ≥ srj) = 1− ε. The path sj projects the

DMUj on to the production possibility frontier in an outputs augmenting direction

and the projected point is shown in Figure 3 as the DMU5o.

Next, to determine the maximal scale effects in inputs reduction or outputs

augmentation, the projection paths sj, ej are decomposed to a proportional increase

(decrease) of output (input) and residual as follows: sj = ρj ȳj + δj
s, ej = γjx̄j + δj

e,

where a proportional increase of outputs ρj and proportional decrease of inputs γj
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for j = 1, . . . , n are defined as

ρj = minr=1,...,s
ŷrj − ȳrj

ȳrj

≥ 0,

γj = mini=1,...,m
x̄ij − x̂ij

x̄ij

≥ 0,

and δj
e ≥ 0, δj

s ≥ 0, j = 1, . . . , n.8

Next as in Ali and Seiford (1993), the new variables for the output oriented

model are defined as φj = 1+ρj and for the input oriented model θj = 1−γj. From

the construction of the scaling parameters, the θj satisfies 0 < θj ≤ 1 and for φj in

the output problem we have φj ≥ 1. The maximal output scale effect is identified

by optimal value φ∗j and the maximal input reduction is identified by the optimal

value of θ∗j .

For the identification of possible proportional scaling of inputs or outputs and

efficiency evaluation of the DMUj, two stage models are constructed. In the first

model stage, the maximal φj or minimal θj is found to identify the maximal equi–

proportional effect. In the second stage of modelling, the identified scale effect is

utilized to evaluate the efficiency of the DMUj with optimally reduced levels of

inputs (augmented levels of outputs, in case of the output oriented model). These

two stage models are summarized in Table 3. The optimal solution to the first stage

for the DMUj is denoted as θ̂j and in the case of the output oriented model φ̂j. The

second stage of almost 100% confidence problem is constructed by replacing x̄j (in

output oriented model: ȳj) with θ̂jx̄j (respectively for input model with: φ̂j ȳj) in

constraints and objective function of problem 2 as presented in Table 3.

When the two stage models are used, the inefficiency of the DMUj can be

evaluated by use of values of φ̂−1
j or θ̂j. The major drawback of use of φ̂−1

j and

θ̂j as inefficiency measures of the DMUj is that these measures do not uniquely

identify efficient points. This shortage is present because for φ̂j = 1 (θ̂j = 1) the
8Note that at least one component of each δ is zero because of the projection on to the

production possibility frontier.
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DMUj is the boundary point of Tϕ but the positive non–proportional slacks can

be present. The elements of production possibility set with φ̂j = 1 (θ̂j = 1) and

positive non–proportional slacks are usually referred to as weakly efficient points.

Due to the aforementioned shortage, the identification of efficiency of the DMUj

has to be done in two stages. Therefore, the DMUj is identified as efficient if the

proportional scaling parameter equality φ̂j = 1 (θ̂j = 1) holds and the second stage

model identify the DMUj as α–stochastically efficient. The additional condition

on slacks is referred to as the sum of slacks and for α–stochastic efficiency it is

required that it holds with probability 1− α.

6 Oriented SDEA models

In both stages the objective function optimization is subject to the same con-

straints, the only difference being the objective function, therefore the two stage

oriented SDEA models can be merged into a one–stage model. To merge these

stages in one optimization problem, the non–Archimedean ε is used as a weight

for the second stage objective function. The choice of non–Archimedean ε as the

weight guarantees that proportional movement towards the frontier pre–empts the

additive slacks optimization.

Output oriented model The one stage model for evaluation of efficiency of

the DMUj is derived from the two stages optimization model presented in Table 3
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and can be stated as:

max
λj ,φj

φj + ε(Prob(1T (X̃λj − x̃j) + 1T (φj ỹj − Ỹ λj) < 0)− α) (11)

s.t. Prob(ix̃λj < x̃ij) ≥ 1− ε, i = 1, . . . , m;

Prob(rỹλj > φj ỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(1T λj) = ϕ;

λj ≥ 0.

After the same linearization procedure that was applied to problem 2 and re-

viewed in the fourth section of this paper, the following linear model is derived:

max
λj ,qkr,hki,φj

φj − ε[1T (X̄λj − x̄j) + 1T (φj ȳj − Ȳ λj) + (12)

+δ(1T (Aλj − aj) + 1T (φjbj −Bλj))σεΦ
−1(α)] + ε(

s∑
r=1

(q1r + q2r) +
m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ x̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλj − aij = h1i − h2i, i = 1, . . . ,m,

φj ȳrj ≤ rȳλj + (q1r + q2r)σεΦ
−1(ε),

φjbrj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1T λj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

Input oriented model Similarly, as for the output oriented model, the al-

most 100% confidence chance constrained input oriented model for efficiency eval-
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uation of the DMUj is derived as:

min
λj ,θj

θj − ε(Prob(1T (X̃λj − θjx̃j) + 1T (ỹj − Ỹ λj) < 0)− α) (13)

s.t. Prob(ix̃λj < θjx̃ij) ≥ 1− ε, i = 1, . . . ,m;

Prob(rỹλj > ỹrj) ≥ 1− ε, r = 1, . . . , s;

ϕ(1T λj) = ϕ;

λj ≥ 0.

Finally, the linearized form of the almost 100% confidence chance constrained input

oriented model is stated as:

min
λj ,qkr,hki,θj

θj + ε[1T (X̄λj − θjx̄j) + 1T (ȳj − Ȳ λj) + (14)

+δ(1T (Aλj − θjaj) + 1T (bj −Bλj))σεΦ
−1(α)] + ε(

s∑
r=1

(q1r + q2r) +
m∑

i=1

(h1i + h2i))

s.t. ix̄λj ≤ θjx̄ij + (h1i + h2i)σεΦ
−1(ε),

iaλj − θjaij = h1i − h2i, i = 1, . . . , m,

ȳjλj ≤ rȳ + (q1r + q2r)σεΦ
−1(ε),

brj − rbλj = q1r − q2r, r = 1, . . . , s,

ϕ(1T λj) = ϕ,

λj ≥ 0, qkr ≥ 0, hki ≥ 0, k = 1, 2.

Furthermore, the optimal solution (λ∗j ,q
∗
1j,q

∗
2j,h

∗
1j,h

∗
2j, φ

∗
j) of output oriented

problem (12) (alternatively the optimal solution (λ∗j ,q
∗
1j,q

∗
2j,h

∗
1j,h

∗
2j, θ

∗
j ) of input

oriented problem (14)) is used to evaluate the technical efficiency of the DMUj. The

DMUj is α–stochastic efficient, when the following two conditions are satisfied:

1. φ∗j = 1 (θ∗j = 1);

2. 1T (X̄λ∗j − x̄j) + 1T (φ∗j ȳj − Ȳ λ∗j) + |1T (Aλ∗j − aj) + 1T (φ∗jbj −Bλ∗j)|σεΦ
−1(α) ≥ 0

(1T (X̄λ∗j − θ∗j x̄j) + 1T (ȳj − Ȳ λ∗j) + |1T (Aλ∗j − θ∗jaj) + 1T (bj −Bλ∗j)|σεΦ
−1(α) ≥ 0).
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As mentioned in the section on efficiency measure introduction, a class of weakly

efficient DMUs can be defined. The analyzed DMUj is identified as weakly efficient

when the optimal solution of the associated problem satisfies φ∗j = 1 or θ∗j = 1.

7 Introducing returns to scale

As mentioned in the second section, the CCR model was designed to analyze the

technology with property of constant returns to scale. Later, the BCC model and

its variations were developed by Banker, Charnes, and Cooper (1984) to analyze

the production function with variable returns to scale. Here, I follow this concept to

introduce the variable returns to scale into the stochastic framework. The following

definition uses the expected values to define types of returns to scale:

Definition 5. Returns to scale. Let the DMUj be stochastically efficient and the

point Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) is a point in δ–neighborhood of (x̄j, ȳj) :

• The Non–Decreasing returns to scale are present ⇔ ∃ δ∗ > 0 such that

Zδ ∈ Tϕ for δ∗ > δ ≥ 0 and Zδ∈\ Tϕ for − δ∗ < δ < 0

• The Constant returns to scale are present ⇔ ∃ δ∗ > 0 such that Zδ ∈ Tϕ

for | δ |< δ∗

• The Non–Increasing returns to scale are present⇔ ∃ δ∗ > 0 such that Zδ∈\ Tϕ

for δ∗ > δ ≥ 0 and Zδ ∈ Tϕ for − δ∗ < δ < 0.

The differences in types of returns to scale are reflected by different shapes of

the production possibility set frontier that is set up by the intersection of sup-

porting hyperplanes identified by optimal solutions of multiplier formulation of the

DEA models. In the case of constant returns to scale (the CCR model by Charnes,

Cooper, and Rhodes (1978)) the envelopment surface consists of a single half line

that passes through the origin as shown in Figure 4. In the case of variable returns
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to scale, the production frontier is a piecewise linear set. Therefore, Figure 4 also

shows the production possibility frontier of the model with the variable returns to

scale that is referred to as the BCC model (Banker, Charnes, and Cooper (1984))

and in Figure 5 the BCC frontier is related to the frontier under the assumption of

increasing returns to scale. These frontiers of production possibility set under vari-

ous types of returns to scale are parameterized via the selection of ϕ and constraint

type associated with the ϕ as follows:

ϕ =





0 Constant returns to scale (CCR model)

1 Variable returns to scale (BCC model).

Since the α–stochastically efficient point (x̃j, ỹj) satisfies condition 9, for the

point Zδ = ((1 + δ)x̄j, (1 + δ)ȳj) can be derived

cT (1 + δ)x̃j + dT (1 + δ)ỹj + fj + (1 + δ)Φ−1(ε)σε | cT aj + dT bj | =

= (1 + δ)(cT x̃j + dT ỹj + fj + Φ−1(ε)σε | cT aj + dT bj |)− δfj = −δfj (15)

and the point Zδ ∈ Tϕ if and only if −δfj ≥ 0. Using definition 5, the relations

between the type of the returns to scale and the sign of fj is revealed and these

relations are summarized in Table 2 together with choice of constrain on intensity

variable vector λj.

8 Summary of SDEA models

In the previous sections, the oriented SDEA models were derived and these models

are summarize in Table 4. It should be stressed that even the models using the

same efficiency dominance definition but with different orientation choice result

in different efficiency scores. Therefore, the choice of the efficiency dominance

type, returns to scale and projection path to the envelopment surface (the set of
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dominating points in the production possibility set) are crucial for the efficiency

analysis and the choice should reflect the aims of this study.

The returns to scale choice affects the shape of the production possibility set

envelopment. The restrictions on returns to scale are related to four types of the

envelopment surface shape through the geometry of the production possibility set

and these restrictions are interpreted as the restriction on intensity variable λ in the

envelopment problem or a restriction on supporting hyperplanes in the multiplier

problem.

The evaluation of the efficiency score is based on distance measurement between

the point that represents DMU and the associated point on the envelopment sur-

face. This distance measure used in additive models is the most simple efficiency

measure. A more sophisticated efficiency measure is created using the measure of

maximal proportional inputs reduction (output augmentation) while keeping the

levels of outputs (inputs) fixed. This proportional input (output) scaling approach

is interpreted as the selection of a projection path towards the envelopment surface

and results in the creation of oriented SDEA models.

The use of Non–Archimedean infinitesimal ε is closely related to the unit invari-

ance property of the objective function values of the derived models because the

result of multiplication by ε is not unit dependent. The use of unit invariant mod-

els also delivers the possibility of units of measurement change to avoid numerical

problems (e.g., tiny diagonal matrices) when the SDEA models are solved.

Table 4 compares the derived SDEA with the most popular DEA models that

appear in the present studies on efficiency evaluation. The additional SDEA models

can be derived as extensions of models covered in this paper using the extensions

procedures for the DEA models.
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9 Method for SDEA model solving

To solve the linear optimization problems associated with the derived SDEA models

the variant of the interior point method (IPM) is used because it is less compu-

tationally costly than the simplex methods when large sized problems are solved.

For the purpose of the IPM employment the linearized problems 12 and 14 can be

easily transformed to the standard linear programming form:9

Primal: minx cT x Dual: maxy,z bTy

s.t. Ax = b,x ≥ 0 s.t. ATy + z = c, z ≥ 0.
(16)

Using the complementarity constraint zTx = 0 (equivalent to duality gap con-

dition cTx− bTy = 0) together with the feasibility constraints the following opti-

mality condition for problem 16 is stated as




Ax− b

ATy + z− c

zTx




=




0

0

0




, (17)

where z,x ≥ 0. To solve problem 17, I use Mehrotra’s predictor–corrector algo-

rithm that belongs to the class of the central path following IPM algorithms.10

This primal–dual algorithm uses the combination of Newton’s direction (duality

gap reduction direction) and centering direction to solve the sequence of problems

that comes from problem 17, where the complementarity constraint is modified to

xT
k zk = µk and sequence {µk} converges to 0 for k → ∞. So, the IPM algorithm

generates an infinite sequence of points that converges to an optimal solution and

the iteration process stops when the iterations are sufficiently close to the optimal
9In the case of linearized stochastic problems, vectors x, c, z ∈ Rn+3(m+s)+1;

vectors y, b ∈ R2(m+s)+1 and matrix A ∈ R(2(m+s)+1)×(n+3(m+s)+1).
10The solver for the stated oriented SDEA models is constructed using the procedures package

known as PCx linear solver obtained from Optimization Technology Center at Argonne National
Laboratory and Northwestern University.
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solution or the limit for the number of iterations is reached. The advantage of

the primal–dual version of the interior point method is that the primal and dual

problem 16 are solved simultaneously.

Further, the IPM solutions satisfy the strong complementarity slackness condi-

tion (SCSC). The SCSC solution is the solution with the maximal product of the

positive components of the optimal solution and therefore it is the optimal solu-

tions with a minimal number of zero components. The SCSC property of optimal

solutions helps to eliminate interpretation problems when the optimal solution to

the DEA model are rendered as the shadow prices of inputs and outputs.11

10 Indonesian rice farms efficiency

To demonstrate the use of the oriented SDEA models, the results from the proposed

SDEA models are compared to the DEA and SFA results. This comparison is

motivated by Horrace and Schmidt’s (1996) work, where parametric methods for

efficiency estimation are compared using data on Indonesian rice farms. To compare

with results presented in Druska and Horrace’s (2004) methodological work on

spatial effects in the SFA framework, I use the same data set to compute the

SDEA and DEA scores.

Indonesia is the biggest rice importer in Asia at the same time almost 70% of the

country’s 213 million people are farmers, hence the identification of the linkages

between different factors and rice yield in the West Java area is the subject of

many studies on farming efficiency (e.g. Wadud (2002) and Daryanto, Battese,

and Fleming (2002)). For research purposes, the Indonesian Ministry of Agriculture

surveyed rice farms over six growing periods (3 wet and 3 dry periods) in six villages

in the area of the Cimanuk River basin in West Java. The data set from this

survey is filtered for outliers that reported yields over the maximum hectare yields
11For more details on the use of interior point methods solutions of the DEA related problems

see Brázdik (2001).
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reached in laboratory conditions. After this correction, the panel used for analysis

is balanced and describes the production mixes of 160 rice farms with average yield

of 3265.20 kg/ha that resemble the observed average yields in this area.

For the purpose of comparison with the SFA results, I use the same inputs and

outputs to specify the inputs–output production mixes of the surveyed rice farms

as were used in the SFA study by Druska and Horrace (2004). The considered

inputs include total area of rice cultivation in hectares (Size), seed in kilograms

(Seed), urea in kilograms (Urea), phosphate in kilograms (Phosphate) and total

labor (Labor). As the measure of output the total output of rough rice in kilograms

(Gross yield) is used and the summary statistics for the used inputs and output

are presented in Table 5. All of the production factors exhibit very high variation

and presence of noise that influence efficiency evaluation is expected. The presence

of noise provides rationale for use of the SDEA approach.

To calculate the DEA efficiency scores, the output oriented DEA model pre-

sented in Table 1 is used. The α–stochastic efficiency of farms is evaluated by use

of the linearized output oriented SDEA model described by problem 12. Moreover,

I also compute the time average DEA efficiency scores and the DEA scores calcu-

lated using the mean values of farms’ production mixes. The average DEA score for

a rice farm is calculated by averaging the farm’s efficiency scores when the data set

is considered as a sample of 960 individual observations. The DEA–mean score is

calculated using a sample with 160 observations, where each farm is characterized

by mean values of its production mix characteristics.

For all data envelopment models, I consider the cases of normal (denoted by

subscript N or Norm) and log–normal (denoted by subscript LN or LogN) distri-

bution of the farms’ inputs and outputs. Under the assumption of log–normal dis-

tribution, inputs and output are transformed by taking logs, therefore the efficiency

scores are no more scale of operations invariant. The DEA and SDEA efficiency

scores are calculated under assumption of constant returns to scale (choice ϕ = 0
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and denoted by CCR) and variable returns to scale (ϕ = 1, BCC). The efficiency

scores estimated by almost 100% chance constrained SDEA models are reported

for α = 0.05 as a level of modeler’s risk because calculations shows that for higher

levels the SDEA method suffers from a loss of discriminatory power and too many

DMUs are evaluated as efficient.

The descriptive statistics of the computed DEA, SDEA and SFA efficiency scores

are summarized in Table 6 and compared to Druska and Horrace’s (2004) SFA

scores FE and FEsp that are estimated by the fixed effect method and fixed

effect method with correction for spatially corrected errors, respectively. Table 6

reports higher mean values of efficiency scores for data envelopment approaches

than for SFA scores. These SDEA and DEA results suggest that Indonesian rice

farms are operating closer to the production frontier than in the SFA studies.

Wadud (2002) observes a similar pattern for Bangladesh rice farms efficiency scores

and he reports 0.80 as the mean score for the SFA and 0.86 and 0.91 for the

CCR and BCC data envelopment models, respectively. From this comparison, I

deduce that on average the considered Indonesian rice farms were operating at

lower efficiency levels than rice farms in Bangladesh. As Table 6 reports, scores

calculated by data envelopment approaches show a variance twice as high as scores

calculated by the SFA. This is contrary to results by Wadud (2002), Ferro–Luzzi,

Ramirez, Flückiger, and Vassiliev (2003) and Jaforullah and Premachandra (2003)

that report comparable variance for SFA and DEA efficiency scores.

Further, to highlight differences in efficiency scores among the used approaches,

Table 7 compares efficiency scores for group of chosen DMUs. These DMUs were

chosen according to the SFA efficiency scores estimates by Druska and Horrace

(2004) to represent farms with the highest, median and the lowest technical effi-

ciency scores. Due to the differences in nature of the compared methods differences

in efficiency scores estimates are expected. However, the differences in efficiency

rankings presented in Table 8 indicate inconsistency of efficiency evaluation across
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the assessed methods.

The nature of the SFA approach allows only one DMU to achieve a score of 1

while the data envelopment approaches assign efficiency score 1 to all DMUs on the

production possibility frontier. Therefore, the peak at 1 with height proportional

to the numbers of DMUs identified as efficient occurs in distribution of efficiency

scores calculated by use of the data envelopment approaches. Keeping this fact

in mind, the shapes of efficiency score distributions displayed in Figure 6, Figure

7 and Figure 8 can be compared. Examination of these figures reveals that the

shape of the SFA efficiency score distribution function is matched at best by the

distribution function estimate for the DEA average efficiency score under assump-

tion of linearly distributed production characteristics for constant (CCRnorm) and

variable (BCCnorm) returns to scale specification.

Due to the aforementioned differences in nature of efficiency scores, the results’

consistency among the used approaches should be assessed through correlation of

efficiency rankings rather than an efficiency scores. For ranking correlation evalua-

tion, Spearman’s (1904) correlation coefficient is used because its important feature

is lower sensitivity to extreme values when compared to the standard correlation

coefficient. Further, by evaluating the significance of calculated rankings correla-

tions the hypothesis that considered rankings are not correlated is tested. Table 9

presents correlation coefficients for rankings generated using DEA on mean values,

oriented SDEA and SFA efficiency scores. In Table 10, correlation coefficients for

DEA on mean values, the oriented SDEA, and SFA efficiency rankings are summa-

rized.

When the rankings correlation coefficients presented in Table 9 and Table 10 are

assessed, I conclude that higher level of rankings consistency is observed between

SFA efficiency rankings and data envelope analysis rankings than between SFA and

SDEA rankings. The highest DEA–mean ranking correlation coefficients values are

0.7205 and 0.5531 and the values 0.8539, 0.8214 for average DEA scores are substan-
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tially higher than the highest values 0.2534, 0.2448 of the SFA–SDEA correlation

coefficients. The presented SFA and DEA rankings correlation results correspond

to findings in recent studies on the SFA and DEA ranking consistency. Wadud

(2002) reports the highest correlation coefficients values ranging from 0.61 to 0.83,

Jaforullah and Premachandra (2003) report 0.74 and Ferro–Luzzi, Ramirez, Flück-

iger, and Vassiliev (2003) report significant correlation coefficients between SFA

and DEA ranking in range from 0.594 to 0.677.

The purpose of this work was to improve the stochastic non–parametric ap-

proach for efficiency evaluation by introducing frontier projection direction. There-

fore, the improvement in consistency of the SFA and SDEA results is expected.

Contrary to this expectation, more consistency (in terms of significance of corre-

lation coefficients and their absolute values) is found between the SFA and DEA

(SFA–average DEA in range 0.1130, 0.8539, SFA–DEA mean in −0.0231, 0.5016)

rankings than between the SFA–SDEA rankings (from −0.0835 to 0.2534). The

observed low consistency of SFA–SDEA rankings may be a consequence of the high

variance of the rice production characteristics that affects the accuracy of efficiency

dominating set approximation. This conclusion originates from comparison of the

DEA on mean values and SDEA efficiency rankings, where rankings correlations are

insignificant or low and simultaneously the SDEA approach is derived from DEA

on mean values approach by including correction for variance in data. Therefore,

high values of the ranking correlation between SDEA and DEA–mean rankings

are expected to be achieved when considered DMUs are characterized by random

variables with low variances.

11 Conclusion

In the theoretical part of this work, I reviewed the technique used to derive linear

deterministic equivalents to Huang and Li’s (2001) SDEA models and this tech-
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nique was used to develop the oriented stochastic DEA models and to describe their

properties. Using the techniques of stochastic problems linearization the proposed

oriented SDEA models were linearized, so the solver based on the interior point

method for linear problems can be used to solve linear programming problems asso-

ciated with the models. The created solver for problems associated with the SDEA

and DEA models implements the primal–dual interior point method algorithm.

The empirical part of this work that was motivated by Horrace and Schmidt’s

(1996) comparison of SFA methods and presents results of the technical efficiency

evaluation of Indonesian rice farms by the SDEA and DEA models. Further, effi-

ciency rankings were constructed and compared with the SFA rankings constructed

by Druska and Horrace (2004). While I was able to reject the hypothesis that the

DEA, SDEA and SFA rankings are independent in the majority of the considered

cases the consistency of results from the SFA and oriented SDEA models is ques-

tionable due to the low values of ranking correlation coefficients. Assessing the

results of the DEA on the mean values approach, I conclude that in this data set

the low rankings consistency originate from high variance present in the data. In

spite of the low consistency of the SFA–SDEA approach the findings on the SFA–

DEA rankings correlation are consistent with the recent studies on the SFA and

DEA comparisons, e.g. Wadud and White (2000) and Jaforullah and Premachan-

dra (2003) that report considerable consistency of efficiency rankings.
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Output oriented model
maxλj ,φj

φj + ε(1T (Xλj − xj) + 1T (φjyj − Y λj))
s.t. ixλj < xij, i = 1, . . . , m;

ryλj > φjyrj, r = 1, . . . , s;
ϕ(1T λj) = ϕ;
λj ≥ 0

Input oriented model
minλj ,θj

θj − ε(1T (Xλj − θjxj) + 1T (yj − Y λj))
s.t. ixλj < θjxij i = 1, . . . , m;

ryλj > yrj r = 1, . . . , s;
ϕ(1T λj) = ϕ;
λj ≥ 0

Table 1: Generalized versions of input and output oriented DEA models
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Model (Orientation) Returns to scale Constraint Hyperplane(s)
CCR model

(Input, Output) Constant None, ϕ = 0 Passes trough origin

BCC model
(Input, Output) Variable 1T λj = 1 Not constrained

SDEA models
(Input) Non–Decreasing 1T λj ≥ 1 f ∗j ≥ 0
(Input) Non–Increasing 1T λj ≤ 1 f ∗j ≤ 0
(Input) Constant None f ∗j = 0

(Output) Non–Decreasing 1T λj ≥ 1 f ∗j ≤ 0
(Output) Non–Increasing 1T λj ≤ 1 f ∗j ≥ 0
(Output) Constant None f ∗j = 0

Table 2: Returns to scale

Output oriented model
First stage Second stage
maxλj ,φj φj maxλj Prob(1T (X̃λj − x̃j) + 1T (φ̂j ỹj − Ỹ λj))− α

s.t. Prob(ix̃λj < x̃ij) ≥ 1− ε s.t. Prob(ix̃λj < x̃ij) ≥ 1− ε

Prob(rỹλj > φỹrj) ≥ 1− ε Prob(rỹλj > φ̂j ỹrj) ≥ 1− ε
ϕ(1T λj) = ϕ ϕ(1T λj) = ϕ
λj ≥ 0 λj ≥ 0

i = 1, . . . , m; r = 1, . . . , s.

Input oriented model
First stage Second stage
minλj ,θj θj maxλj Prob(1T (X̃λj − θ̂j x̃j) + 1T (ỹj − Ỹ λj))− α

s.t. Prob(ix̃λj < θj x̃ij) ≥ 1− ε s.t. Prob(ix̃λj < θ̂j x̃ij) ≥ 1− ε
Prob(rỹλj > ỹrj) ≥ 1− ε Prob(rỹλj > ỹrj) ≥ 1− ε
ϕ(1T λj) = ϕ ϕ(1T λj) = ϕ
λj ≥ 0 λj ≥ 0

i = 1, . . . ,m; r = 1, . . . , s.

Table 3: Two stages of oriented almost 100% confidence chance constrained models
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Data summary statistics
Variable Obs. Mean Std. Dev. Minimum Maximum
Size 960 0.4398 0.5607 0.0140 5.3220
Seed 960 18.4708 46.6819 1.0000 1250.0000
Urea 960 96.5250 130.3932 1.0000 1250.0000
Phosphate 960 33.8072 48.3489 0.0000 700.0000
Labor 960 394.2240 496.0169 17.0000 4774.0000
Gross yield 960 1413.9340 1966.0950 42.0000 20960.0000

Table 5: Indonesian rice farm summary statistics

Efficiency scores summary statistics
Model Obs Mean Std. Dev. Minimum Maximum

DEA
BCCNorm 960 0.5672 0.2044 0.1912 1
CCRNorm 960 0.5256 0.1943 0.1775 1
BCCLogN 960 0.8987 0.0565 0.6484 1
CCRLogN 960 0.7561 0.0817 0.5143 1

DEA–mean
BCCNorm 160 0.7641 0.1723 0.3698 1
CCRNorm 160 0.6721 0.1616 0.3436 1
BCCLogN 160 0.9360 0.0427 0.7730 1
CCRLogN 160 0.7918 0.1026 0.5867 1

SDEA
BCCNorm 160 0.7343 0.2614 0.1500 1
CCRNorm 160 0.6594 0.2569 0.0791 1
BCCLogN 160 0.8714 0.1867 0.1519 1
CCRLogN 160 0.7260 0.2331 0.1456 1

SFA
FE 160 0.5613 0.0992 0.3655 1
FEspatial 160 0.5435 0.1023 0.3274 1

Table 6: Efficiency scores summary statistics
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