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Abstract

Players repeatedly face a coordination problem in a dynamic global game.
By choosing a risky action (invest) instead of waiting, players risk instanta-
neous losses as well as a loss of payoffs from future stages, in which they
cannot participate if they go bankrupt. Thus, the total strategic risk asso-
ciated with investment in a particular stage depends on the expected con-
tinuation payoff. High continuation payoff makes investment today more
risky and therefore harder to coordinate on, which decreases today’s payoff.
Thus, expectation of successful coordination tomorrow undermines success-
ful coordination today, which leads to fluctuations of equilibrium behavior
even if the underlying economic fundamentals happen to be the same across
the rounds. The dynamic game inherits the equilibrium uniqueness of the
underlying static global game.

Studujeme hru, ve které hráči opakovaně čelí koordinačnímu problému.
Výběrem riskantní akce (investování) místo bezpečné akce (neinvestování)
hráči riskují nejen okamžité ztráty, ale i ztráty příjmu v budoucích kolech,
kterých se nebudou moci zúčastnit, pokud zbankrotují. Celkové strategické
riziko spojené s investicí v některém z kol tedy závisí na očekávaných ziscích
v budoucnosti. Očekávání vysokých budoucích zisku̇ zvyšuje riziko dnešní
investice, na které se tudíž hráči obtížněji zkoordinují, což snižuje dnešní
zisk. Očekávání zítřejší úspěšné koordinace znesnadňuje úspěšnou koordi-
naci dnes, což vede k fluktuacím chování v equilibriu, i pokud je ekonomické
prostředí stacionární. Tato dynamická hra má, podobně jako její statická
předchu̇dkyně, jediné equilibrium.
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1 Introduction

Strategic complementarities resulting in multiple equilibria are com-

mon in many economic situations.1 Models with multiple equilibria

and self-fulfilling beliefs have been suggested to explain sudden shifts

of the economy from one state to another, but the weakness of early

coordination models was their reduced predictive power. Without an

additional selection principle, they could not discriminate among mul-

tiple equilibria, and thus such models severed the natural link between

fundamentals and economic outcomes; see concluding remarks in Mat-

suyama (1991) for discussion of pros and cons of models with multiple

equilibria. The global games literature, originating in Carlsson and

van Damme (1993) filled the gap by showing that the multiplicity of

equilibria in coordination games with complementarities is a peculiar

consequence of an unrealistic assumption that the underlying economic

fundamental is common knowledge. If observation of the fundamental

is noisy, the multiplicity of equilibria is eliminated and the fundamental

fully determines economic activity.

In static global games models, economic outcomes change only if the

fundamental changes (possibly by a small amount). Thus although the

global games framework solves the indeterminacy due to self-fulfilling

beliefs, it leaves no place for endogenous fluctuations unconnected to

the evolution of the underlying fundamentals, and hence it misses some

of the attractive features of the older models based on self-fulfilling

beliefs.

Some dynamic global games allow for a partial separation between

the current economic fundamental and behavior — equilibrium behavior

may differ across two rounds even if the fundamentals in these rounds

are identical. The obvious reason is that, in dynamic models, the cur-

rent fundamental is not a complete description of the economic environ-

ment; past or future rounds influence behavior as well. However, we are

unaware of a dynamic global game that would allow for fully endoge-

nous cycles. The change in behavior is always triggered by a change

in the fundamental, which is exogenous. See Section 4 for a detailed

review of the dynamic global game literature.

1Complementarities have been used to model search (Diamond, 1982); bank runs (Diamond
and Dybvig, 1983); currency attacks (Obstfeld, 1996); or business cycles ( Benhabib and Farmer,
1994). Cooper (1999) provides a survey of coordination problems in macroeconomics.
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The dynamic link among the coordination problems in the model at

hand is that each player, by her current action, influences not only her

instantaneous payoff, but also her future participation in the game. For

instance, a risky investment influences not only the instantaneous profit,

but also investor’s ability to participate in future projects: unsuccessful

investment can lead to bankruptcy. Fear of bankruptcy may motivate

an investor not to invest, especially in the days just before an expected

boom. The amount of strategic risk associated with investment depends

on the expected equilibrium outcome in the near future. It is higher

before a boom than before a slump, and this negative link between

tomorrow’s and today’s coordination leads to endogenous fluctuations

of investment that will never converge to a steady state.

The model at hand inherits equilibrium uniqueness from the un-

derlying static global game. Equilibrium behavior in each round is

determined by an equilibrium threshold; players invest only if the cur-

rent fundamental exceeds the threshold, and otherwise they wait. The

thresholds, although uniquely determined, differ across periods. This

can be interpreted as fluctuations of market sentiments; crises occur

when these sentiments are too pessimistic — thresholds are too high

— compared to the realized fundamentals. The model combines the

equilibrium uniqueness of global games with the cyclicality of strate-

gic delay models which analyze situations when players are motivated

to delay investment to match the timing of others’ investments. (e.g.

Shleifer, 1986; Gale, 1995).

We introduce the basic model in an abstract setup in Section 2. To

illustrate the economic intuition behind the main result, we apply the

model to three economic problems in Section 3. We compare the model

with other dynamic global games in Section 4. Section 5 covers certain

technical generalizations of the basic model and Section 6 concludes.

2 The Basic Game

2.1 The Model

A continuum of players interacts in a sequence of coordination problems.

Player i ∈ [0, 1] chooses action ai ∈ {0, 1} in each round t ∈ {1, . . . , T};

we briefly discuss infinite horizon at the end of 2.3. We will refer to
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action 1 as investing and to action 0 as waiting. The instantaneous

payoff ui
t of player i in round t is ui

t = 0 if she waits and ui
t = τ i

t π(θt, lt)

if she invests, where τ i
t ≥ 0 is the degree of player i’s involvement in

the game at round t, θt is the economic fundamental at t, and lt is

the measure of players investing at t. Players maximize the sum of

discounted instantaneous payoffs
∑T

t=1 δtui
t.

The fundamentals θt are i.i.d. random variables with twice contin-

uously differentiable c.d.f. Φ(·) on the real line. We relax the assump-

tion of i.i.d. fundamentals in Section 5.1. Players observe fundamentals

with an error. Each player receives in each round t a private signal

xi
t = θt + σεi

t, where the idiosyncratic errors εi
t are independent across

players and rounds and drawn from a continuous p.d.f. f(·) with sup-

port on the real line. We will be interested in the equilibrium of the

game in the limit as the size of the noise σ → 0.

For the moment, let us keep the involvement levels τ i
t fixed. We call

the simultaneous move game with the set of players I = [0, 1], action

sets Ai = {0, 1}, payoff function π(θ, l), and the informational structure

described above, the static stage game. We assume that the static stage

game is a global game satisfying the following assumptions taken from

Morris and Shin (2003):

A1 Action Monotonicity: π(θ, l) is weakly increasing in l.

A2 State Monotonicity: π(θ, l) is weakly increasing in θ.

A3 Strict Laplacian State Monotonicity:
∫ 1

0
π(θ, l)dl strictly in-

creases in θ.2

A4 Uniform Limit Dominance: There exist θ ∈ R ∪ {−∞,∞} and

θ ∈ R ∪ {−∞,∞} and ε > 0 such that 1. π(θ, l) < −ε for all l ∈ [0, 1]

and θ < θ and 2. π(θ, l) > ε for all l ∈ [0, 1] and θ > θ.3

A5 Continuity:
∫ 1

0
g(l)π(θ, l)dl is continuous with respect to θ and

densities g(·).

A6 Finite Expectations of Signals: E[z] =
∫

∞

−∞
zf(z)dz is well-

defined.

Each static stage game, if treated in isolation, is an identical co-

ordination problem which has under complete information (for large

2We use a slightly stronger version than Morris and Shin (2003), who only require that
∫ 1

0
π(θ, l)dl = 0 has a unique solution.
3This is a slightly weaker version of the original assumption in Morris and Shin (2003). By

allowing θ and θ to be ±∞, we admit also games in which one of the action is strictly dominant,
and hence the solution is trivial.
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set of fundamentals) two pure strategy equilibria in which either all or

no players invest. The incomplete information structure transforms the

game into a global game which, in the limit σ → 0, has a unique equilib-

rium characterized by a threshold signal above which players invest and

below which they wait, see Proposition 2.2 in Morris and Shin (2003).

The dynamic link among different stage games is that the involve-

ment τ i
t is endogenous: τ i

1 is normalized to 1, and values in later rounds

are defined recursively by τ i
t+1 = τ i

t b(a
i
t, θt, lt), with 0 ≤ b(ai

t, θt, lt).

While we focus on economic situations where current activity “wears

out” the player’s involvement, b(ai
t, θt, lt) ≤ 1, it is not a necessary con-

dition for Proposition 1. Define ρ(θ, l) = b(1, θ, l) − b(0, θ, l) and let it

satisfy the following three assumptions:

A7 ρ(θ, l) is weakly increasing in l.

A8 ρ(θ, l) is weakly increasing in θ.

A9
∫ 1

0
g(l)ρ(θ, l)dl is continuous with respect to θ and densities g(·).

High involvement is beneficial to players because the possibility of

waiting ensures that the payoff 0 is always available. Thus investors

benefit from high θt and lt twice, through increases not only in the

current profit, but also in the involvement in future rounds.

An example of a setup satisfying A7–A9 is a situation with players

constrained only to one investment, b(1, θ, l) ≡ 0, b(0, θ, l) ≡ 1. As

an alternative example, players are allowed to invest many times, but

investing players may go bankrupt with a probability that decreases in

the instantaneous payoff; that is, b(1, θ, l) ≡ r(π(θ, l)) with 0 ≤ r(·) ≤ 1

increasing, and b(0, θ, l) ≡ 1. In the latter example τ i
t+1 is expected

involvement, because bankruptcy is a random event.

The measure of players is kept constant across rounds; we assume

that players who disappear from play are replaced by new entrants.

This assumption is removed in Section 5.2. Finally, we assume a joint

condition on the instantaneous payoff function π(·, ·) and the continua-

tion function ρ(·, ·):

A10 π̃(θ, l) ≡ π(θ, l) + δρ(θ, l)V satisfies the uniform limit dominance

condition for all V > 0.

A sufficient condition for A10 to hold is that limθ→+∞ π(θ, 0) =

+∞ and limθ→−∞ π(θ, 1) = −∞.4 Another sufficient condition is that

4This is satisfied by the commonly used payoff function π(θ, l) = θ − 1 + l.
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ρ(θ, l) ≥ 0 for θ above some θ and ρ(θ, l) ≤ 0 below some θ.5

The information set of player i at t is

I i
t = {xi

1, . . . , x
i
t, θ1, . . . , θt−1, l1, . . . , lt−1, a

i
1, . . . , a

i
t−1}

. A pure strategy s = {s1, . . . , sT} is a sequence of functions that

assigns to each path of information sets {I i
1, . . . , I

i
T} a path of actions

{s1(I
i
1), . . . , sT (I i

T )}. However, as shown below, the equilibrium strategy

has a simpler structure; the equilibrium action depends only on the

current signal xi
t.

2.2 The Solution

The interaction in the last round T is a static stage game, and thus it is a

global game solvable by proposition 2.2 in Morris and Shin (2003). The

unique strategy surviving iterated elimination of dominated strategies

in the limit σ → 0 is a threshold strategy:

s∗T (x) =

{

1 if x > θ∗T ,

0 if x < θ∗T ,

with the threshold θ∗T such that s∗T (·) is the best response to the belief

according to which the measure lT of investing players is distributed

uniformly on [0, 1]. Morris and Shin (2003) “dub such beliefs ... as being

Laplacian, following Laplace’s (1824) suggestion that one should apply

a uniform prior to unknown events from the principle of insufficient

reason.” Such beliefs arise endogenously in global games for a player

observing the threshold signal.

Given Laplacian beliefs, the threshold θ∗T is the indifference point

solving
∫ 1

0

π(θ∗T , l)dl = 0,

which has a unique solution by A3.

Knowing the equilibrium strategy of the final stage game, we can

compute the expected profit τ iVT . In the limit σ → 0, all players invest

if and only if the fundamental θT > θ∗T . In that case lT = 1 and all

receive τ i
T [π(θT , 1) + b(1, θT , 1)VT+1] where VT+1 = 0 as the game does

not continue beyond the round T . If θT < θ∗T all players wait and receive

5This is satisfied by the payoff functions in applications 3.1 and 3.2.

6



τ i
T VT+1 ≡ 0. Thus we have

VT =

∫ θ∗
T

−∞

[

δb(0, θ, 0)×VT+1

]

dΦ(θ)+

∫ +∞

θ∗
T

[

π(θ, 1)+δb(1, θ, 1)×VT+1

]

dΦ(θ).

The stage game at T − 1 is again a static coordination problem but,

in contrast to stage T , players also influence the continuation payoff at

T by influencing τ i
T . The reduced payoff at T − 1 is b(0, θT−1, lT−1)VT

for waiting, and π(θT−1, lT−1)+ b(1, θT−1, lT−1)VT for investing. We will

refer to this interaction as the modified stage game. Its equilibrium

is determined by the payoff differential between investing and waiting:

π̃T−1(θ, l) = π(θ, l) + δρ(θ, l)VT .

The payoff differential π̃T−1(·, ·) satisfies all of the assumptions of

Proposition 2.2 in Morris and Shin (2003): 1. Action monotonicity is

implied by A1 and A7. 2. State monotonicity is implied by A2 and

A8. 3. Strict Laplacian state monotonicity is implied by A3 and A8. 4.

Uniform limit dominance is assumed in A10. 5. Continuity is implied

by A5 and A9. 6. Finite expectation of signals is assumed in A6.

The threshold at T −1 is again an indifference point of a player with

Laplacian beliefs; it solves
∫ 1

0
π̃T−1(θ

∗

T−1, l)dl = 0 and we can continue

to solve earlier rounds.

Proposition 1. For any ε > 0, there exists σ such that for all σ < σ,

if strategy s survives iterated elimination of dominated strategies in the

game Γσ, then st(xt) = 0 for all xt ≤ θ∗t − ε and st(xt) = 1 for all

xt ≥ θ∗t + ε for all t ∈ {1, . . . , T}, where θ∗t ≡ ϑ(Vt+1) is the unique

solution to
∫ 1

0

[

π(θ∗t , l) + δρ(θ∗t , l)Vt+1

]

dl = 0 (1)

and Vt is detemined recursively by

Vt = G(Vt+1) ≡

∫ ϑ(Vt+1)

−∞

δb(0, θ, 0)Vt+1dΦ(θ)+

∫ +∞

ϑ(Vt+1)

[

π(θ, 1)+δb(1, θ, 1)Vt+1

]

dΦ(θ),

(2)

together with the boundary condition VT+1 = 0.

Proof. Follows from the text above and from Proposition 2.2. in Morris

and Shin (2003).
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2.3 Evolution of Thresholds

The thresholds are a function of the expected continuation values, θ∗t =

ϑ(Vt+1). Thus the equilibrium is fully determined by the continuation

values Vt which evolve according to the mapping Vt = G(Vt+1). The

long-run behavior of the system is determined by the fixed points of

G(·) and their stability. For many setups, the mapping G(·) has a

unique, unstable fixed point, in which case the thresholds necessarily

fluctuate and the system never converges to a steady state.

For instance, consider payoff π(θ, l) = θ − 1 + l and let each player

invest only once, b(1, θ, l) = 0, b(0, θ, l) = 1. The equations (1) and (2)

simplify into

θ∗t = ϑ(Vt+1) =
1

2
+ δVt+1,

Vt = G(Vt+1) = δVt+1Φ

(

1

2
+ δVt+1

)

+

∫ +∞

1

2
+δVt+1

θdΦ(θ).

Let us plot a qualitative picture of the mapping G(·). An increase in

Vt+1 has two effects on Vt. The direct effect is positive: if the realization

of θt happens to be low and players wait, then they receive a higher

continuation payoff δVt+1. However, the strategic effect is negative: the

threshold θ∗t increases because players have more to lose by investing

if Vt+1 is high. This decreases Vt because the players coordinate on

investing at t less often. The relative size of the two effects depends on

Vt+1. Let us, qualitatively, distinguish three regions of Vt+1 given the

distribution of fundamentals as on Figure 1.

1. A very low value of Vt+1 means a very low threshold θ∗t , and thus

players almost always coordinate on investment; the continuation

value thus affects VT only minimally. Both effects are negligible.

This is the plateau on the graph of G(·) in Figure 1.

2. An increase in Vt+1 causes θ∗t to fall into the main mass of the

probability distribution Φ(·), where the negative strategic effect

is strong and it overbalances the positive direct effect. A small

increase in Vt+1 substantially decreases the probability of successful

coordination, and hence Vt sharply decreases.

3. Higher values of Vt+1 lead to a threshold θ∗t so high that players

almost always coordinate on waiting. Hence, the strategic effect is

negligible and the direct effect causes Vt to grow as δVt+1. This is

8



0.2 0.4 0.6 0.8
V

0.25

0.5

0.75

1

1.25

1.5

1.75

2

G Small public variance

Figure 1: Thick line — mapping G(·) for a nonzero variance of priors τ > 0. Thin
line — mapping G(·) in the limit τ → 0. Dotted line — the probability density
φ(ϑ(Vt+1)) at the threshold θ∗T = ϑ(Vt+1). Dashed line — diagonal.
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Figure 2: a) Evolution of the expected continuation values Vt generated by the
mapping G(·). b) Evolution of the thresholds θ∗t = ϑ(Vt+1). The symbol � denotes
periods in which players coordinated on investment for one particular realization
of random fundamentals {θ1, . . . , θT}.

the region of the steady increase of G(·) on the right of Figure 1.

The stability of the fixed point depends on the region in which G(·)

crosses the diagonal. The condition 1
2

< E[θ] < 1
2
/(1− δ) ensures that,

for V ar[θ] sufficiently small, the fixed point is unique and unstable. In

such a case, thresholds evolve in a regular cycle of fixed periodicity or

in a chaotic path. Figure 2 depicts a numerical example of a fluctuating

threshold path for particular parameters.6 The booms and slumps are

random events depending on the realized fundamentals, with booms

more probable in rounds with low thresholds. Thus the rounds with

low thresholds can be interpreted as times of investor’s optimism —

6Prior beliefs distribution N(0.6, 0.012) and δ = 0.8.
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players (correctly) believe that their opponents will invest even if the

realized fundamental happens to be low.

Equilibrium uniqueness holds for any T , and if the mapping G(·) has

a unique and unstable fixed point, permanent fluctuations must occur

even for very large, but finite T . Next, let us consider a game with

infinite time horizon. In such a game, the equilibrium uniqueness result

does not hold, as the boundary condition VT+1 = 0 is lost; nevertheless,

the continuation values Vt still evolve according to the mapping Vt =

G(Vt+1) in any equilibrium. Thus, in the case of a unique unstable fixed

point, although we cannot specify a unique sequence of Vt, we know that

the values and the thresholds fluctuate. Hence the main prediction of

the model is the existence of fluctuations rather than any particular

equilibrium path.

3 Applications

We present three simple models illustrating the basic framework within

an economic context: a currency attack model building on Morris and

Shin (1998), a model of co-moving crises, and a model of search cycles.

While the solution of the first model is a straightforward application

of Proposition 1, the other two models slightly generalize the basic

framework. The crises model consists of two independent time series of

coordination problems observed by a common pool of investors. The

equilibrium actions happen to be correlated across the two series despite

that the fundamentals are not. The model of search differs from the

basic model in the details of the dynamic link among rounds.

3.1 Currency Attacks

In the first application we extend the Morris and Shin (1998)7 model

of currency crises by adding a continuation structure — unsuccessful

speculators may go bankrupt and thus lose access to future profits.

Morris and Shin consider a currency pegged to an exchange rate e∗

which, if the government does not protect the peg, will float to a rate

ζ(θt) ≤ e∗, where the function ζ(·) is continuous and increasing. A

continuum of speculators with measure 1 decide whether or not to sell

7See also Heinemann (2000).
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lt > a(θt) lt ≤ a(θt)
Attack 0 (1 − β)
Wait 0 1

Table 1: Continuation probability b(ai
t, lt, θt).

the currency short. The transaction cost of short-selling is c. If the

currency is devaluated, short-selling pays a net profit e∗−ζ(θt)−c. The

government defends the peg, but only if it is not too costly. The cost of

defending increases with the measure of the short sales; the government

will defend if the measure of attacking speculators is smaller than a(θt),

which is continuous and increasing in the economic fundamental θt. The

instantaneous payoff for not attacking is 0. The instantaneous payoff

for attacking is summarized by

π(θt, lt) =

{

e∗ − ζ(θt) − c if a(θt) < lt,

−c if a(θt) ≥ lt.
(3)

The authors assume the existence of dominance regions.8 The infor-

mational structure is that of a global game. The function π(θt, lt) is

weakly monotone9 in θt and lt, the Laplacian state is unique, and thus

the static stage game is a global game.

We extend this model by assuming that an unsuccessful specula-

tion results in bankruptcy with probability β. Alternatively, we could

assume that managers responsible for the attack decision get fired if

the attack fails (Chevalier and Ellison, 1999), in which case they miss

bonuses based on future profits. The speculative capital of unsuccessful

speculators is assumed to end up in the hands of other speculators after

the bankruptcy, so the measure of the potential speculative capital is

1 in all rounds. Abandoning the peg makes further attacks impossi-

ble, so all players have zero future profits after the successful attack

regardless of their action. The continuation probabilities b(ai, θt, lt) are

summarized in Table 1, and the process satisfies A7–A10.

Applying Proposition 1 we get:

Corollary 1. Proposition 1 applies with thresholds θ∗t = ϑ(Vt+1) solving

8The government devaluates for sufficiently bad fundamentals even without any speculators,
and even a coordinated attack of all speculators will not lead to devaluation for sufficiently good
fundamentals.

9π(θ, l) decreases with θ whereas, formally, Proposition 1 requires π increasing in θ. Such a
situation can be accommodated by introducing θ̃ = 1 − θ.
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Figure 3: Evolution of the thresholds below which the speculators attack. The
attack is more probable when the threshold is high. A (successful) attack has
happened in the period denoted by the symbol �, for a particular realization of
the random fundamentals.

equation

[1 − a(θ∗t )][e
∗ − ζ(θ∗t )] − a(θ∗t )δβVt+1 = c. (4)

The evolution of expected future payoffs is determined by

Vt = G(Vt+1) =

∫ ϑ(Vt+1)

−∞

(e∗ − ζ(θ) − c) dΦ(θ) + δVt+1[1 − Φ(ϑ(Vt+1))],

(5)

together with the boundary condition VT+1 = 0.

To illustrate the result, we study a numerical example with the ex-

change rate difference e∗ − ζ(θ) being constant and equal to 1. The

function a(θ) describing the willingness of the government to protect

the peg is set to a(θ) = θ. Equation (4) simplifies to ϑ(Vt+1) = 1−c
1+δβVt+1

and (5) simplifies to G(Vt+1) = Φ(ϑ(Vt+1))(1−c)+δVt+1[1−Φ(ϑ(Vt+1))].

We plot the evolution of thresholds for particular parameters10 in Fig-

ure 3. Periods with high thresholds are windows of probable attacks

because the speculators (correctly) believe that others attack even if

the fundamentals of the economy are quite high.

3.2 Emerging Markets Crises — Co-movement

The framework of Section 2 combines endogenous fluctuations of beliefs

with equilibrium uniqueness and thus it is suitable for a study of beliefs-

10The prior distribution is N(0.67, 0.0012), β = 0.5, c = 0.3, d = 0.9.
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based contagion of crises. We consider two developing countries without

any direct links but with a common set of investors. We assume that

investment in either of the two countries may cause bankruptcy. The

effect of bankruptcy on the unsuccessful investor is the same, regardless

of the country in which the unsuccessful investment has been realized

— future profits in both countries are lost. Thus, the willingness to

risk investment at date t is influenced in both countries by the common

value Vt+1. High future profits, regardless of the country in which they

will be realized, undermine coordination in both countries today, which

causes co-movement of the willingness to invest:

We consider two emerging market countries A and B with economic

fundamentals θA,t and θB,t respectively, each with a continuum of in-

vestment opportunities of measure 1. There is a continuum of investors

of measure 1, of which each observes two investment opportunities in

each round — one in A and one in B. In each round t, each investor can

invest in the project she observes in either country, in both, or in nei-

ther. The instantaneous payoff to an investor is the sum of returns from

her current investments in A and B. The investments are, within each

country, strategic complements. To keep the problem within the sim-

ple global games framework, we do not allow the players to choose the

amount of their investment; they choose in each country only whether

to invest one unit or not. We assume simple return functions:

πc(θ, l) =

{

1 − γc if l > 1 − θ,

−γc if l ≤ 1 − θ,

where γc > 0 for c ∈ {A, B}. The payoff from not investing is 0. The

return in A does not depend on investment lB,t or the fundamental θB,t,

and vice versa. The fundamentals θA,t and θB,t, drawn from distribu-

tions ΦA(·) and ΦB(·), respectively, are independent across countries

and times, so the instantaneous payoffs and the distributions cannot

themselves explain any correlation in economic outcomes.

We now introduce a continuation structure which leads to correlation

in investment in the otherwise independent countries. Investment in

country c causes bankruptcy of the investor with probability bc. More

precisely, if a player does not invest in either of the countries, then the

probability of bankruptcy is 0; if she invests only in country c, then the

probability is bc; if in both countries, then the probability is bA + bB.
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We do not model a detailed mechanism of bankruptcy. The bankruptcy

is a black box for distress that a company (or manager) may meet in an

emerging market and which may constrain the company’s (manager’s)

future activities. Bankruptcy, although it was caused by a problem in

one country, precludes the player from operating in both A and B in

all future rounds. We assume that events in A and B that lead to

bankruptcy are independent.

The modified stage game of country c ∈ {A, B} in period t is de-

scribed by the payoff difference between investing and not investing:

π̃c,t(θc,t, lc,t) = πc(θc,t, lc,t) − bcδVt+1, (6)

which constitutes two independent global games, one for each country.

These can be solved in each round, so we can again solve the game

backwards.

Proposition 2. The game has, for generic parameter values, a unique

equilibrium (in the limit of precise signals σ → 0). Investors invest in

country c ∈ {A, B} at date t if and only if the fundamentals θc,t are

above the threshold θ∗c,t where

θ∗c,t ≡ ϑc(Vt+1) = γc + bcδVt+1 (7)

if γc + bcδVt+1 < 1, and ϑc(Vt+1) = +∞ otherwise.

The evolution of Vt is determined by

Vt = G(Vt+1) ≡ ΦA(ϑA(Vt+1))δVt+1 + ΦB(ϑB(Vt+1))δVt+1 + (8)

(1 − ΦA(ϑA(Vt+1)))[1 − γA + (1 − bA)δVt+1] +

(1 − ΦB(ϑB(Vt+1)))[1 − γB + (1 − bB)δVt+1],

together with the boundary condition VT+1 = 0.

Proof. The incentive π̃c,t(θc,t, lc,t) to invest in country c described by

(6) satisfies Assumptions A1, A2, A3, A5. The noise distribution f(·)

satisfies A6. The modified payoff π̃c,t(·, ·) exhibits dominance regions for

any Vt+1 > 0 except when 1−γc−δbcVt+1 = 0. Thus, unless Vt+1 = 1−γc

δbc

,

which happens only for non-generic parameters, the dominance regions

exist. Therefore, coordination problems of both countries at each stage

14
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Figure 4: a) The evolution of the future expected profits Vt+1 is common for both
countries. b) As a consequence, the evolution of the thresholds θ∗A and θ∗B is corre-
lated. The probability of crisis is high when the thresholds are high. The symbol
� denotes a crisis for one particular realization of random fundamentals.

are global games, and the thresholds11 ϑc(Vt+1) are the solutions to the

equation
∫ 1

0
π̃c,t(l, θ)dl = 0, which gives (7). Equation (8) describes

that, in the limit of precise signals, all players invest if and only if

θc,t > θ∗c,t = ϑc(Vt+1), in which case they receive the instantaneous payoff

1−γc and go bankrupt with probability bc; players wait if θc,t < ϑc(Vt+1)

and receive δVt+1.

We have generated the random fundamentals and marked the crises

during which investors do not invest by �, see Figure 4.12 The fluctu-

ations of the thresholds and the occurrence of the crises are correlated

across the two countries despite the lack of direct links between them.

A high threshold above the country’s average fundamental means that

crisis is probable, as investors will (correctly) believe that others invest

only if the realized fundamental is high. The high thresholds can thus

be interpreted as pessimistic market sentiments.

The effect is related to changes in the degree of strategic risk caused

by a wealth increase, and the implied decrease of absolute risk aver-

sion studied in Goldstein and Pauzner (2003). In contrast to this ap-

proach, our fluctuations of strategic risk are caused by changes in the

lottery rather than by changes in risk attitudes; our players are risk-

neutral. Another difference is that our model, compared to Goldstein

and Pauzner, has a reverse causality: profits tomorrow influence strate-

11Or investing is trivially dominated if Vt+1 > 1−γc

δbc

.
12γA = 0.3, γB = 0.5, prior beliefs distribution in country A is N(0.78, 0.0022); in country B

N(0.82, 0.0012), δ = 0.9, bA = 0.15, bB = 0.1.
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gic risk today, whereas wealth accumulated yesterday influences risk

aversion today in the Goldstein and Pauzner model. A crisis in A at t

is not caused by a crisis in B at t or earlier in our model. Rather, the

correlation of crises is caused by the commonality of the expected fu-

ture profit. Thus, the outcome of our model is a contagion in the broad

sense of an excess co-movement, but not in a narrow sense requiring a

causal link from an earlier crisis to a later one.

3.3 Fluctuations of Search Activity

In this section we study a model of one-sided search in which, unlike

in the two previous applications, the ability to search tomorrow is not

decreased by any outcome of the search today. Rather, the incentive to

search is determined by the current expected difference in continuation

values between employed and unemployed players. It is easier to find

a partner if potential partners are actively searching for a partnership

than in a society where nobody else searches, see Diamond (1982). High

future search activity decreases the current incentive to search, because

it makes long term unemployment unlikely and thus decreases the dis-

advantage of being currently unemployed. The model again exhibits

a negative link between future and current activity levels, which leads

to endogenous fluctuations in search activity and in the unemployment

level.

There is a continuum of identical players, each player needing a

partner to produce. Players receive an instantaneous payoff of 1 in

each round in which they have a partner, in which case we call them

employed. After the payoff is received, the partnership survives into the

next period with probability 0 < p < 1, or dissolves with probability

1 − p. Players without a partner receive 0 instantaneous payoff, we

call them unemployed, and they can search for a partner by incurring

(stochastic) cost θt drawn from a c.d.f. Φ(·).13

An unemployed player who searches at t finds a partner with prob-

ability mt = m(lt), where lt is the relative share of searching players

among the unemployed ones, not their absolute number,14 which ef-

13We assume that costs are sometimes prohibitively high which implies the existence of the
right dominance region, and that the costs are sometimes negative, which implies the existence of
the left dominance region. This can be justified by government paying a subsidy for the search,
which exceeds the true costs, or by an intrinsic motivation exceeding pecuniary costs.

14This can be justified in the following way: Unemployed players first simultaneously decide
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fectively renormalizes the measure of players to 1 in each round. The

function m(lt) is assumed to be increasing, and for simplicity, we let

m(lt) = lt.

Proposition 3. The game has a unique equilibrium (in the limit of

precise signals σ → 0). Let Ve,t, Vu,t be the expected continuation values

for employed and unemployed players respectively, and let ∆t = Ve,t −

Vu,t be the expected payoff advantage of an employed player.

The threshold search cost θ∗t , below which unemployed players search,

is

θ∗t = ϑ(∆t+1) =
δ∆t+1

2
. (9)

The evolution of the expected payoff advantage ∆t of having a partner

is determined by

∆t = G(∆t+1) = 1 +

∫ ϑ(∆t+1)

−∞

θdΦ(θ) + [p − Φ (ϑ(∆t+1))]δ∆t+1, (10)

together with the boundary condition

∆T+1 = 0.

Proof.

Lemma 1. ∆t > 0 for all t = 1, . . . T .

Proof. (Lemma 1) In the appendix.

Fix t and suppose Ve,t+1, Vu,t+1 are uniquely determined. The em-

ployed players face no decisions and receive the expected payoff

Ve,t = 1 + pδVe,t+1 + (1 − p)δVu,t+1. (11)

Unemployed players face a coordination problem characterized by the

payoff

u(at, lt, θt) =

{

ltδVe,t+1 + (1 − lt)δVu,t+1 − θt if ai
t = 1,

δVu,t+1 if ai
t = 0.

whether to prepare for future production by incurring cost θt. They are afterwards randomly
matched to pairs and partnership is formed if both members of a pair are prepared.

17



An unemployed player’s incentive to search is

π̃t(θt, lt) ≡ u(1, lt, θt) − u(0, lt, θt) = δ∆t+1lt − θt.

Thus the modified stage game satisfies A1-6 and can be solved as a

global game.15 The threshold ϑ(Vt+1) in equation (9) is the unique

solution of
∫ 1

0
π̃t(θ, l)dl = 0. Given the threshold, we may express the

expected profits of an unemployed player as

Vu,t = δVe,t+1Φ(ϑ(∆t+1)) −

∫ ϑ(∆t+1)

−∞

θdΦ(θ) + δVu,t+1[1 − Φ(ϑ(∆t+1))].

(12)

The function G(∆t+1) in (10) can be found by subtracting (12) from

(11).

We compute the evolution of ∆t for particular16 parameters, see

Figure 5. The value of ∆t oscillates. When tomorrow’s advantage

∆t+1 of being employed is high, players coordinate on searching even

if the search costs are relatively high. Thus, the probability that the

unemployment level falls at t is increasing in ∆t+1.

Like Diamond (1982), we have limited ourselves to a one-sided search

model, in which we do not distinguish the roles of employers and em-

ployees; rather, any pair of players can form a productive pair. The ad-

vantage is that we stay within the framework of simple global games in

which all players are the same ex ante. Both our model and Diamond’s

model admit fluctuations in the measure of partnerless players, which

Diamond interprets as unemployment fluctuations. However, whereas

the fluctuations are a possible outcome of Diamond’s model, they are a

necessary outcome in our model.

4 Dynamic Global Games Literature

The dynamic global games literature can be organized according to the

assumed intertemporal links.

Frankel and Pauzner (2000), Burdzy, Frankel and Pauzner (2001)

15π̃t(θt, lt) decreases in θ instead of increasing as required in A2, but this can be accommodated
by introducing θ̃ = 1 − θ.

16The prior beliefs distribution is N(1.3, 0.052), p = 0.95, δ = 0.9; the ratio of partnerless
players at t = 0 is 0.1.
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Figure 5: a) Evolution of the advantage of being partnered ∆t = Ve,t − Vu,t. b)
Evolution of the unemployment level for a particular realization of the random
fundamentals. A decrease is more probable when ∆t+1 is high.

and Frankel and Burdzy (2005), study a series of coordination problems

in which fundamentals evolve according to a stochastic process and play-

ers experience frictions in changing their actions. These models have a

unique equilibrium in which the actions may depend not only on the

current fundamental, but also on the current level of investment. The

models thus, under some specifications of parameters, exhibit hysteresis.

Oyama (2004) assumes complementarities between actions of successive

generations in an OLG model. This model also exhibits hysteresis; the

equilibrium strategy is characterized by two thresholds θ∗ < θ∗∗. During

a boom, players wait only if the fundamental falls below θ∗, but after-

wards they return to investing only after the fundamental rises above

θ∗∗, and vice versa. Because of the hysteresis, the coordination outcome

can differ across two instances in these models even if the fundamentals

happen to be identical. However, fluctuations of equilibrium behavior

occur only after an exogenous, though possibly small shock to the eco-

nomic fundamental; the economy cannot shift during a period in which

the fundamental happens to be stationary.

Morris and Shin (1999)17 consider another dynamic link: past fun-

damentals serve as a public signal for the current period. Such a public

signal influences equilibrium behavior if the noise is non-vanishing. The

thresholds θ∗t thus fluctuate, but they are exogenously determined by

the realizations of θt−1.

Angeletos, Hellwig and Pavan (forthcoming) allow players to post-

17See also Chamley (1999) who lets players receive information about previous fundamentals
by observing the history of investment levels.

19



pone decisions on an attack for the sake of acquiring additional infor-

mation about the fundamental. The economic fundamental is kept con-

stant, but private beliefs evolve as the players observe the outcomes of

previous attacks and receive new private signals. The failure of a more

aggressive attack yesterday conveys a more pessimistic signal about the

current fundamental, and hence hinders today’s attack, compared to a

less aggressive attack yesterday — this negative link allows for equi-

librium fluctuations in the intensity of attacks. The fluctuations can

be entirely fundamental-independent, and driven solely by changes in

beliefs, thanks to the exogenous arrival of new information.

The next subsection is devoted to the part of the dynamic global

games literature that is most closely related to the paper at hand.

4.1 Recursive Global Games

Giannitsarou and Toxvaerd’s (2003) general study of recursive global

games is a natural benchmark for the model at hand. As in our model,

players interact in a finite series of interrelated stage games. The state

of a player is described by an idiosyncratic variable τ i
t , and the state

of the economic environment by common variables θt and wt. The

informational structures of this and our model are identical and typical

of the global games literature; players observe θt with small idiosyncratic

errors, but more generally than our basic model, the authors allow θt to

follow a Markov process. The variables τ i
t and wt are defined recursively:

τ i
t+1 = b(τ i

t , a
i
t, θt), wt+1 = c(wt, lt, θt).

The authors assume that the transition functions b and c are increas-

ing in all arguments, the instantaneous payoff function u(ai, θ, l, τ i, w)

is supermodular in all pairs of arguments, and the distribution of θt

stochastically increases in θt−1.

The authors solve the game by backwards induction. The modified

payoff at each stage is

u(ai
t, θt, lt, τ

i
t , wt) + δVt+1(θt, lt, τ

i
t , wt),

where Vt+1(θt, lt, τ
i
t , wt) is the expected continuation payoff conditional

on its arguments. The main result is that the modified stage game in
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each round is a global game with a unique equilibrium solvable by the

techniques of Frankel, Morris, and Pauzner (2003).

The result rests on the assumption that all of the intertemporal links

in the model are of a positive nature. For instance, today’s high invest-

ment increases future investment, because high future w will increase

future motivation to invest. In turn, high future investment motivates

players to increase current investment in order to increase the future in-

volvements τ i. Thus, the positive intertemporal links further strengthen

the contemporaneous complementarity.

Interestingly, there are dynamic economic processes that violate the

positive links assumed in Giannitsarou and Toxvaerd (2003), and yet

each modified stage game is a global game with a unique equilibrium.

Toxvaerd (2004) studies a dynamic interaction in which the static stage

game violates the complementarity in each round, and yet the modified

stage games, taking into account the continuation payoff, are global

games. Another example that deviates from the positive dynamic links

in Giannitsarou and Toxvaerd (2003) and yet is solvable by the iter-

ation of global games techniques is the model at hand. The future

involvement τ i does not increase with a player’s action; on the con-

trary, it “wears out” if the player currently invests. This negative link

— tomorrow’s high investment motivates players to invest less today —

distinguishes the paper at hand from both Giannitsarou and Toxvaerd

(2003) and Toxvaerd (2004), in which the link between tomorrow’s in-

vestment and today’s investment is positive. Thus while these models

result in an endogenous growth or decline, our model offers a framework

suitable for an analysis of endogenous cycles.

5 Generalizations

In the next two sections, we enrich the basic model from Section 2 with

some of the structure of Giannitsarou and Toxvaerd (2003). We allow

for a Markov process in the evolution of θt in Section 5.1. Changes in

the number of players are allowed in Section 5.2, which can be under-

stood within Giannitsarou’s and Toxvaerd’s framework as a change in

an aggregate state variable wt. As stressed in the previous section, our

model violates Giannitsarou’s and Toxvaerd’s (2003) assumption of the

positive intertemporal links: the number of future participating players,
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and the individual involvement decrease with current investment. Con-

sequently, these generalizations are not straightforward, and we need

to impose certain restrictions to obtain equilibrium uniqueness. We

impose a restriction on the degree of the intertemporal dependence of

fundamentals in Section 5.1, and we limit the number of players to two

in Section 5.2. For the sake of simplicity, we assume a simple evolution

of the involvement τ i
t : players are allowed to invest only once, so that

b(1, θ, l) = 0 and b(0, θ, l) = 1 in both Sections 5.1 and 5.2. While we

examine the two generalizations in the two independent extensions of

the basic model, these can be easily combined into one.

5.1 Relaxing the I.I.D. Nature of Shocks

The fundamental θt follows a Markov process; θt is distributed accord-

ing to Φ(θt; θt−1), with a starting distribution Φ0(θ1) in Round 1. As in

the basic model from Section 2, θt−1 is observable at t. We assume

A11 Φ(·; θ′t−1) weakly first order stochastically dominates Φ(·; θt−1)

whenever θ′t−1 ≥ θt−1.

The equilibrium continuation value Vt+1(θt) is no longer a constant

as it was in the case of i.i.d. fundamentals. Rather, it depends on

θt through the influence on the distribution of θt+1 and the modified

stage payoff π̃t(θ, l) = π(θ, l) − δVt+1(θ) may fail to exhibit strategic

complementarities. In order to assure the state monotonicity of the

modified payoff, Vt+1(θ) must not increase in θ too quickly compared

to π(θ, l). For this reason, we impose additional assumptions on the

instantaneous payoff function:

A12 The derivative ∂
∂θ

π(θ, l) is bounded below by m > 0 and above by

n < +∞.

A13 π(θ, 1) − π(θ, 0) is bounded above by q < +∞.

The modified payoff π̃t(θ, l) has a left-hand dominance region be-

cause π̃t(θ, l) < π(θ, l). One possible way to assure existence of a right-

hand dominance region is to assume:

A14 There exists Φ(·) which first order stochastically dominates Φ(·; θt−1)

for any θt−1.

As a consequence, Vt(θt−1) is bounded and A12 assures that limθ→+∞ π(θ, 0) =

+∞, and hence the right-hand dominance region exists.

Proposition 4. Suppose A1–A6 and A11–A14. There exists k > 0,
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independent of the length of the game T , such that if ∂
∂θt−1

E[θt|θt−1] < k

and − ∂
∂θt−1

Φ(θt; θt−1) < k, then the game has a unique equilibrium (in

the limit σ → 0). The thresholds θ∗t and continuation values Vt(·) are

uniquely determined by

∫ 1

0

π(θ∗t , l)dl − δVt+1(θ
∗

t ) = 0, (13)

Vt(θt−1) =

∫ θ∗
t

−∞

δVt+1(θ)dΦ(θ; θt−1) +

∫ +∞

θ∗
t

π(θ, 1)dΦ(θ; θt−1), (14)

together with the boundary condition VT+1(θ) ≡ 0, and the continuation

value Vt(θt−1) increases in θt−1 for each t = 2, . . . T .

Proof. Define V to be the solution to

V =

∫ +∞

−∞

max[δV , π(θ, 1)]dΦ(θ). (15)

This value is well defined because ∂

∂V

∫ +∞

−∞
max[δV , π(θ, 1)]dΦ(θ) is be-

low δ and the right-hand side of (15) is positive for V = 0; hence (15)

has a unique solution.

We solve the game by induction. Fix t, and suppose Vt+1(θ) ≤ V and

δ ∂
∂θ

Vt+1(θ) < m, both for all θ ∈ R. Then the modified stage game at t

with the payoff π̃t(θ, l) = π(θ, l)− δVt+1(θ) satisfies all of the six global

game assumptions. Therefore, it has a unique equilibrium described by

(13) and (14).

For the induction argument, we need to show that Vt(θ) ≤ V and

δ ∂
∂θ

Vt(θ) < m. Vt(θ) ≤ V holds because the integrand in (14) is weakly

smaller than the integrand in (15). We prove that δ ∂
∂θ

Vt(θ) < m in the

next two lemmas.

Lemma 2. Suppose t(θ′)− t(θ) ≥ u(θ′)−u(θ) whenever θ′ ≥ θ. Define

T (θ) ≡
∫

∞

−∞
t(θ̃)dΦ(θ̃; θ) and U(θ) ≡

∫

∞

−∞
u(θ̃)dΦ(θ̃; θ). Then, under

A11,

T (θ′) − T (θ) ≥ U(θ′) − U(θ), (16)

whenever θ′ ≥ θ.

Proof. In the appendix.
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We have Vt(θ) =
∫ +∞

−∞
vt(θ̃)dΦ(θ̃; θ), where

vt(θ) =

{

π(θ, 1) if θ > θ∗t ,

δVt+1(θ) if θ < θ∗t .

Next, we define v′

t(·) which increases more quickly than vt(·):

v′

t(θ) =

{

π(θ∗t , 1) + n(θ − θ∗t ) if θ > θ∗t ,

π(θ∗t , 0) + n(θ − θ∗t ) if θ < θ∗t .

Lemma 3. v′

t(θ
′) − v′

t(θ) ≥ vt(θ
′) − vt(θ) whenever θ′ ≥ θ.

Proof. In the appendix.

According to Lemma 2, δ ∂
∂θ

Vt(θ) is smaller than δ ∂
∂θ

V ′

t (θ), where

V ′

t (θ) =
∫ +∞

−∞
v′

t(θ̃)dΦ(θ̃; θ).

δ
∂

∂θt−1
V ′

t (θt−1) = δn
∂

∂θt−1
E[θ|θt−1] − δq

∂

∂θt−1
Φ(θ∗t ; θt−1), (17)

and (17) is, for k > 0 sufficiently small, smaller than m.

The induction assumption that Vt+1(θ) < V and δ ∂
∂θ

Vt+1(θ) < m

holds trivially for t = T because VT+1(θ) ≡ 0.

5.2 Evolving Number of Players

Two players repeatedly interact in the stage games with i.i.d. funda-

mentals. The static stage game payoff function π(θ, a−i) satisfies all of

the global games assumptions. In particular, π(θ, a−i) satisfies A1, A2,

A4, A5, A6. Assumption A3 must be modified for a finite set of players:

A3’ 1
2
[π(θ, 0) + π(θ, 1)] strictly increases in θ.

The investing players are not replaced by new entrants. Thus, if

a player waits and her opponent invests, the player finds herself in a

nonstrategic situation in the subsequent round with the instantaneous

payoff for investing being π(θ, 0).

Proposition 5. Suppose A1, A2, A3’, A4, A5, A6 and A10. The game

with evolving number of players has a unique equilibrium (in the limit

σ → 0). Each player at t conditions her investment s∗(xi
t, r) on her
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signal xi
t and the number of remaining opponents r ∈ {0, 1}:

s∗T (xi
t, r) =

{

1 if xi
t > θ∗T (r),

0 if xi
t < θ∗T (r).

The thresholds θ∗t (r) are the unique solutions of

r
∑

a−i=0

[

π(θ∗t (r), a
−i) − δVt+1(r − a−i)

]

= 0, (18)

where

Vt(r) = δVt+1(r)Φ (θ∗t (r)) +

∫

∞

θ∗
t
(r)

π(θ, r)dΦ(θ), (19)

with the boundary condition VT+1(r) = 0, for r = 0, 1.

Proof. Fix t and suppose that the equilibrium continuation values at t

satisfy Vt+1(1) ≥ Vt+1(0). Then the modified stage game with payoff

function π̃t(θ, a
−i) = π(θ, a−i)− δVt+1(1− ai) satisfies A1, A2, A3’, A4,

A5 and A6. The modified stage game at t for two player interaction

is thus a global game, and its equilibrium threshold solves (18) with

r = 1. In the case that the opponent has invested before t, the player

solves the nonstrategic problem and the optimal threshold is given by

(18) with r = 0. The expected continuation payoff at t is given by (19).

It remains to show that Vt(1) ≥ Vt(0):

Vt(0) =

∫ +∞

−∞

max[π(θ, 0), δVt+1(0)]dΦ(θ), (20)

while Vt(1) is weakly larger than

∫ +∞

−∞

max

[

π(θ, 0) + π(θ, 1)

2
, δ

Vt+1(1) + Vt+1(0)

2

]

dΦ(θ), (21)

because the players optimize under Laplacian beliefs. Both arguments

of the max operator are weakly larger in (21) than in (20).

The initial statement that Vt+1(1) ≥ Vt+1(0) is trivially true for

t = T , as VT+1 = 0, which closes the induction.

The generalization of Proposition 5 to a larger number of players is

not straightforward. The complication is that the continuation values

Vt(r) may fail to increase in the number of remaining opponents. In a

static game, three players coordinate on investment more easily than
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two players, because the expected number of investing players under

the Laplacian belief is larger in the first case. At the same time, in the

dynamic game, the expected continuation values are larger for three

players than for two, which makes coordination harder in the latter case.

As a result, Vt(r) may be non-monotone even if Vt+1(r) is not, which

may lead to multiple equilibria, as the modified stage game may fail

to satisfy the action monotonicity condition. Thus, for a large number

of players, the equilibrium thresholds may be uniquely determined for

some stages at the end of the game, but multiple equilibria may exist

in the earlier stage games.

6 Summary

Bankruptcy is worse prior to a boom than prior to a slump. Searching

for a job today is more important if tomorrow’s search prospects look

grim, than if tomorrow looks bright. We have formalized this ideas

in a dynamic global game model which consists of a series of simple

static global games. The non-trivial dynamic link among the rounds

is that players influence not only their instantaneous payoff, but also

their ability to participate in future projects. Successful coordination

tomorrow increases the strategic risk associated with bankruptcy today,

and thus makes today’s investment more risky. Coordination tomorrow

thus undermines today’s coordination, creating a negative feedback ef-

fect between tomorrow and today, which leads to cycles. The dynamic

model inherits attractive features of static global games: it is dominance

solvable and thus, in the unique equilibrium, fluctuations unconnected

to economic fundamentals not only may happen, but are a certain out-

come of the model.

The unique equilibrium with a chaotic path should not be taken

as a literal prediction of behavior, because the slightest error in com-

putation of thresholds would multiply greatly after a few iterations.

It is extremely difficult to coordinate on such a chaotic equilibrium,

and yet no other equilibrium exists. We believe that such a chaotic

equilibrium of perfectly rational players is a benchmark for a dynamic

system of boundedly rational agents. That the system of perfectly ra-

tional agents necessarily fluctuates suggests that a boundedly rational

dynamic system would fluctuate as well.
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