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Abstract
We study coordination failures in many simultaneously occurring coordi-

nation problems called projects. Players encounter one of these projects, but
have an outside option to search for another of the projects. Drawing on the
global games approach, we show that such a mobile game has a unique equi-
librium which allows us to examine comparative statics. The endogeneity of
the outside option value and of the search activity leads to non-monotonicity
of welfare with respect to search costs; high mobility may hurt players. More-
over, outcomes of the mobile game are remarkably robust to changes in the
exogenous parameters. In contrast to the “static” benchmark global game
without a search option, successful coordination is frequent in the mobile
game even for extremely poor distributions of economic fundamentals, and
coordination failures are common even for extremely good distributions. The
strategic consequences of the search option are robust to various modifica-
tions of the model.

Abstrakt
V tomto článku studuji problém mnoha simultánních koordinačních her,

kde každá hra reprezentuje projekt. Každý hráč má možnost se zapojit do
jednoho náhodně vybraného projektu, má však možnost úniku — může se
poohlédnout i po jiném projektu. S použitím výsledku teorie globálních her,
ukazuji, že tato mobilní hra má jediný rovnovážný stav, což umožňuje provést
analýzu komparativní statiky. Hodnota možnosti úniku a mobilita hráčů je
endogenní, což způsobuje, že obecný užitek není monotónní vůči ceně mobil-
ity. Výsledky mobilní hry jsou robustní vůči změnám exogenních parametrů
modelu. Hráči se často dokáží zkoordinovat i když je pravděpodobnostní
rozdělení stavů ekonomie nepříznivé, a naopak občas se jim koordinace nez-
daří, i když rozdělení velmi příznivé.
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1 Introduction

Coordination problems are common in economics (see e. g. Cooper, 1999), though
typically they are modelled in isolation. For instance: players decide between
a risky investment with returns increasing in the number of investors and a safe
outside option which represents all other investment opportunities. In contrast, this
paper studies coordination failures in many simultaneously occurring coordination
problems and allows mobile players to move among them. More specifically, we
consider projects, or coordination problems, and a set of players uniformly matched
to projects at the beginning of the game. An outside option of a player who
considers investing into project j consists of a search which allows her to join one
of the other projects. Thus the outside option value in any coordination problem
j is endogenously determined by players’ behavior in all the other coordination
problems. Similarly, the mass of observers of j considering investment depends on
coordination outcomes of all other coordination problems, because players rejecting
any other project j′ will search and may end up being matched to j.

Intuitively, the outside option value and number of observers influence the coor-
dination outcome of each of the coordination problems. A valuable outside option
lowers the attraction of a Pareto dominant but risky equilibrium and hence un-
dermines successful coordination. On the opposite side a high number of observers
enhances coordination, as it is easier to find other investors. These two externalities
lead to non-trivial comparative statics and welfare effects. Searching players who
have rejected project j impose a negative externality on other observers of j and a
positive externality on observers of all other projects.

Both these causal links are difficult to analyze under the equilibrium multiplic-
ity of coordination games. We therefore study the model using the global games
approach, which uniquely predicts the coordination outcome for a given outside
option and number of players. Comparative statics of the global games equilibrium
is indeed in line with the causal links.1 We depart from the standard global game,
which we refer to as static and use as a benchmark, to build a mobile game, in
which not only one but many projects are realized, each with economic fundamen-
tals independently drawn from a prior distribution. Players receive an imprecise
signal about the project’s fundamentals they are matched to, and may move to
another project if dissatisfied with the current signal.

1Global games were introduced by Carlsson and van Damme (1993) and further developed by
Morris and Shin (2003). Heinemann, Nagel and Ockenfels (2004) test the theory experimentally,
and although reject the global games threshold prediction, confirm the qualitative features of the
predicted comparative statics.
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Introduction of search allows us to analyze the welfare effects of increased mo-
bility (decreased search costs). Counterintuitively, welfare is non-monotonic in
mobility. The direct non-strategic effect is always positive as, ignoring strategic
considerations, reaching a successful project is cheaper. However, the strategic ef-
fect is negative: smaller search costs increase the outside option value associated
with the search, which undermines successful coordination. Thus some projects
that would have succeeded had the search costs been high, fail if search costs are
low. This negative strategic effect may outweigh the positive direct effect, and
welfare may decrease with mobility.

The mobile game also has a natural self-regulatory property. Consider, for in-
stance, a shift in the distribution of economic fundamentals towards poorer states
of the world. This decreases the outside option value, as searching results in finding
poorer projects. The lower value of the outside option enhances successful coordi-
nation, and this positive strategic effect partially counteracts the negative direct
effect. Another channel through which the self-regulatory mechanism operates is
the increasing mass of players observing each project: the more projects have poor
fundamentals, the more players search. This makes coordination attempts more
likely to succeed and thus helps to partially counteract the direct effect of the
distribution’s shift.

Below we show that this self-regulatory mechanism is powerful. Players fre-
quently coordinate successfully on many projects even for distributions of funda-
mentals that almost preclude coordination in the static game. On the other hand,
if the distribution of fundamentals is such that a project almost always succeeds in
the static game, the value of the outside option in the mobile game is high and the
mass of observers of each project is low as players need not search much. Thus,
some coordination failures are to be expected in the mobile game. Because of this
self-regulatory mechanism, an intermediate willingness to invest is typical for the
mobile game equilibrium.

The above “general equilibrium” effects occur in a number of settings in which
players actively choose the coordination problem they will participate in; thus our
results can complement many of the existing global games applications. Let us
apply the mobility extension to the model of currency attacks of Morris and Shin
(1998). Allowing speculators to choose a currency they short-sell makes it possi-
ble to assess how the speculators’ freedom to choose the currency influences their
coordination on attacks. Another prominent example of coordination problems in
economics is the game of foreign investors in emerging markets with increasing re-
turns to scale. We can interpret the model as a study of many such markets on
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which mobile investors operate. Our main result under this interpretation is that
welfare is non-monotonic with respect to capital mobility.

Two independent broad streams of literature, global games (Carlsson and van
Damme, 1993) and stochastic stability concept (Kandori, Mailath and Rob, 1993),
agree that risk dominance rather than Pareto dominance selects the equilibrium
in coordination games. The influence of mobility on the coordination outcome has
been examined in various papers belonging to the latter stream with the main
conclusion that, if players are allowed to move and/or to choose with whom they
interact, then a Pareto efficient equilibrium may prevail.2 Goyal and Vega-Redondo
(2005) vary the cost of link formation and find a similar welfare effect to the one we
find: welfare is non-monotonic with respect to mobility — the efficient equilibrium
prevails only at high cost — while if the cost of the link formation is low the risk
dominant equilibrium prevails.

To our knowledge, mobility has not been studied within the global games lit-
erature. However, the outside option value is often varied exogenously in many
global games applications, which leads to a similar tension between the positive
direct effect and the negative strategic effect. Morris and Shin (2004 and section
2.3.1 in 2003) show that an increase in collateral may decrease debt value. The
collateral is an outside option of creditors, so its increase undermines their ability
to coordinate on (efficient) rolling over of the debt, which may outweigh the pos-
itive direct effect. Similarly, Goldstein and Pauzner (2005) study the influence of
demand-deposit contracts on bank run probability. While the direct effect of higher
short-term payment offered by banks is an increase in risk sharing, the strategic
effect is negative as it increases the probability of panic-based bank runs.

Jeong (2003) and Burdett, Imai and Wright (2004) study “break-up” external-
ities which occur when matched players search for new partners while not taking
into account the welfare loss of the abandoned partner. Jeong stresses the possi-
ble welfare improvements of mobility restrictions in environments with break-up
externalities, which is in line with our main finding. Burdett et al. focus on the
multiplicity of equilibria; if matched players search intensively, the partnerships
become unstable and intensive search is the best response. While our basic model
has a unique equilibrium, we encounter this self-fulfilling prophecy feature for gen-
eral payoff function in section 5.2. However, though the externality studied in our
model is similar to break-up externalities, it is of a subtler form. While break-up
externalities relate to players who cooperate on production, the searching player in
our model leaves the project before production starts and the mere fact that she has

2E.g. Oechssler (1997); Mailath, Samuelson and Shaked (2000).
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stopped contemplating involvement in the project induces the negative externality
on the rest of the project’s observers.

Technically, the present paper combines the modelling frameworks of Dasgupta
(2005) and Steiner (2005). Dasgupta studies the effects of social learning on co-
ordination failures by allowing players to delay investment and to learn from the
behavior of early investors. Players delaying investment stay with the same project
in Dasgupta’s model, whereas they search for a new project in our model. Though
the settings of both models are seemingly similar, the conclusions differ signifi-
cantly. Social learning, central to Dasgupta’s model, turns out to be irrelevant
in our model (see section 4). Moreover, while the delay option unambiguously
enhances welfare in Dasgupta’s model, it may decrease welfare in ours.

Steiner (2005) considers a repeated coordination game in which players, by
choosing to invest today, risk their instantaneous payoffs as well as their ability
to participate in future projects — unsuccessful investment can cause bankruptcy.
The fear of bankruptcy motivates players not to invest, especially just before an ex-
pected boom. This negative feedback between tomorrow’s and today’s coordination
success leads to endogenous cycles in the willingness to invest.

Both Steiner (2005) and the model at hand are based on non-trivial effects
of the endogenous outside option but they differ in timing3 and interpretation.
Steiner (2005) focuses on cycles endogenously arising in the equilibrium, whereas
in this paper we emphasize the self-regulatory properties of the mobile game and
particularly the non-monotonicity of welfare with respect to mobility.

In section 2 we describe the mobile game formally. We compute the equilibrium
in the limit of precise signals in section 3, analyze its comparative statics, and
contrast it to the static game equilibrium. We relegate the analysis of the general
case away from the limit to appendix A.1. In section 4 we allow players to observe
actions of early investors and find that social learning is irrelevant in the mobile
game. We further demonstrate the robustness of the model in section 5 in which
we vary the number of search rounds, consider general payoff functions, and allow
players to direct their search toward better projects. Section 6 concludes.

3In the present model, there exist many projects simultaneously and returns are paid only
after all search and investment takes place. In Steiner (2005), there is only one project in each
round, and its returns are paid at the end of each round.
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2 The Model

We start by describing a simple coordination game in section 2.1 and then briefly
introducing the benchmark global game, dubbed static game here, by adding noise
to the observation of fundamentals. Then, having set the stage, we describe the
mobile game in section 2.2.

2.1 The Static Game

There is a continuum of homogeneous risk-neutral players of measure 1 and one
project; each player possesses one (indivisible) token and decides between investing
or not investing into the project. The payoff of those who have invested is

R(θ, l) =

{
1− c if l ≥ θ,

−c if l < θ,
(1)

where l is the measure of investors and 0 < c < 1 the sunk cost of investment.
We say that the project has succeeded when l ≥ θ. The payoff for not investing
is normalized to 0. The payoff function (1) is being used for its simplicity as
the workhorse of the global games literature;4 we study general payoff functions
in section 5.2. The payoff exhibits strategic complementarity; investment is more
attractive if many players invest, which typically leads to equilibrium multiplicity.
Clearly the game has, for non-extreme values of θ, two pure strategy equilibria in
which nobody, respectively everybody, invests.

Building on Carlsson and van Damme (1993), Morris and Shin (2003) show
that the equilibrium multiplicity disappears if we assume noise in observation of
the project’s parameters. We introduce this standard global games structure in the
rest of this paragraph: we refer to θ as a state of economic fundamentals and assume
that it is a realization of a random variable Θ distributed according to N(y, τ 2); we
denote c.d.f. of Θ by Φ(.). The players observe only an imprecise signal xi = θ+σεi

of the state θ which itself is unobserved. The parameter σ describes the size of the
noise term. The error terms εi ∼ N(0, 1) are independent across players. We
denote c.d.f. of N(0, 1) by F (.). The random variable corresponding to realization
xi is X i. Pure strategy is a function s : R → {0, 1}, which maps the signal xi to
an action where 0 corresponds to not investing and 1 to investing. We label this
benchmark global game a static game and denote it by ΓS(σ).

To avoid confusion, it is worth mentioning that the higher the value of θ the
4The payoff function (1) has been used in Morris and Shin (1999); Dasgupta (2005); Angeletos,

Hellwig, and Pavan (2004), and in others.
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Figure 1: Structure of the mobile game — The player of a mobile game is matched
to a project j and decides whether to invest or search. In the latter case, she
is randomly matched to another project j′ and decides whether to invest or not.
(The diagram is not a formal game tree, as it does not depict moves of Nature and
simultaneous moves of other players.)

worse the fundamental, as more investors are needed for the success of the project.
Some, but not all, global games papers use transformation θ̃ = 1− θ which we do
not use here.

2.2 The Mobile Game

The outside option payoff is treated exogenously and normalized to 0 in the static
game; our next step is to endogenize it, which we achieve by considering many
projects simultaneously and by allowing players to search for another project. More
formally, there is a continuum of projects indexed by j ∈ [0, 1]; each project has
a state of fundamentals θj independently drawn from the distribution with c.d.f.
Φ(.). Each project’s state is fixed during the whole game. The game has two
rounds. Players are randomly and uniformly matched to the projects at the begin-
ning of round 1. The measure of players observing each project in round 1 after
the matching is normalized to 1.5 At round 1, after the players are matched to
the projects, each player i observes a private signal xi

1 = θj(i) + σ1ε
i
1 about the

fundamentals of project6 j(i) she is matched to. Each player chooses from:

To Invest into the project she observes in round 1. The player can take no further
action afterwards.

5There is a continuum of continua of players and thus the total measure of players is undefined.
Formally, we should refer to a density, rather than to a measure of investors in a particular project.
However, our formal impreciseness does not lead to confusion, because we never refer to a total
measure of players in all projects. Occasionally, we will stress that we refer to measure per project.

6We will omit argument i and write simply j, but let us remember the matching process.
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To Search: The player continues to round 2, is randomly matched to another of
the existing projects j′, and observes signal xi

2 = θj′ + σ2ε
i
2 about the new

project j′. Errors εi
1 and εi

2 ∼ N(0, 1) are independent across players and
rounds.

Players who have searched decide in round 2 between investing and not investing
into their new projects. The payoff of players who have invested into project j

depends on its fundamentals θj, on the cumulative measure lj of investment into j,
and on the timing t ∈ {1, 2} of the investment:

ui(t, lj, θj) = δt−1R(θj, lj),

see figure 1. Players who have not invested in round 1 nor 2 receive payoff 0.
Note that the return depends on the cumulative measure of investments lj into

project j over both rounds. The return on the investment in round 2 is scaled
down by the factor 0 < δ < 1 which should not be understood as a time discount
factor because all payoffs are realized at the same moment, at the end of round
2. Rather, δ models implicit search costs: late investors (in round 2) may find the
largest profitable investment opportunities being taken by early investors in round
1. Also, the late investors have less time to realize their investments, thus they
will get less involved with the project. Alternatively, instead of discounting by δ,
we could model the search cost by a fixed cost q that searching players incur. But,
as expensive search cannot be mandatory, we would have to allow players who do
not want to invest or to search a third, outside option. The simplicity of the two-
action global games framework would be lost. Therefore, to enhance tractability,
we model search costs by discounting.7

In the basic setting, players in round 2 observing j do not observe the measure
of investors from round 1. The information sets of player i are histories of the
signals: I i

1 = {xi
1}, I i

2 = {xi
1, x

i
2}. Later, in section 4, we consider social learning:

we allow players to (imprecisely) observe the measure of previous investors, and we
find our results to be robust to such a modification, which is in contrast with the
study of social learning in the static game done by Dasgupta (2005).

Pure strategy of the mobile game is a pair of functions a1(x1) : R → {0, 1},
a2(x1, x2) : R2 → {0, 1} that prescribe actions in round 1 and 2 contingent on
the observed signals. A threshold strategy is a particularly simple pure strategy
characterized by two thresholds x∗1, x∗2 such that a player invests at round t ∈ {1, 2}

7Players in our setting can always choose not to invest in both rounds which assures 0, and
thus we do not have to consider a particular outside option for players who wish not to engage
in costly search.
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if and only if the observed signal xi
t is below x∗t . A critical state θ∗ is such a state

that only projects with θj < θ∗ succeed. Obviously, if players use sufficiently non-
monotone strategies, the critical state may not exist. However, we show below that
players play threshold strategies and that the critical state exists in equilibrium.
We call the whole game a mobile game and denote it by ΓM(σ), where σ ≡ (σ1, σ2)

describes the size of noise terms in both rounds. We consider different noise sizes in
both rounds primarily because it will be helpful in the analysis of social learning;
otherwise it does not play any substantial role.

We do not allow players to return to the project observed in round 1 after they
have observed a project in round 2. Later, in section 5.1, we study a game with an
infinite number of search rounds. In that game, returning to a previously observed
project is always suboptimal, and thus we can allow it without any consequences
on the equilibrium.

2.2.1 Economic Example

We offer an economic example similar to Dasgupta’s (2005) setting. There is a
continuum of risky bonds indexed by j ∈ [0, 1], whose returns increase with measure
of investment; bond j returns er(lj)(T−t) at time T , where t is the time of investment,
lj is the cumulative investment into j over the whole time period and r(l) = r < 0

if l < θj and r(l) = r > 0 if l ≥ θj.
Investors possessing one dollar observe a random bond at t = 0 and the measure

of investors per bond is 1. After observing a signal about the bond she is matched
to, each investor decides whether to invest one dollar at t = 0 to the first bond
she observes or whether to search for a new bond. However, the search lasts time
ts after which she observes a signal about the new bond and decides whether to
invest at time ts or not to invest at all. At time T , players who have not invested
consume 1 while players who have invested at t ∈ {0, ts} consume er(lj)(T−t). This
coincides with our model if rT = −c, rT = 1− c, T−ts

T
= δ and the utility function

is u(.) = ln(.).

3 Equilibrium

The key observation in the analysis of the mobile game is that each project can be
treated as an independent coordination game with parameters induced by players’
aggregate behavior in other projects. Let V2 be the expected payoff in round 2,
and n2 be the measure of players per project continuing to round 2; the values V2,
n2 are defined for any strategy profile. The interactions of project j’s observers
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constitute a coordination game of two types of players: measure 1 has the outside
option δV2, measure n2 has the outside option 0, and payoff for investment of all
players is described by (1). Observers of each particular project interact in a global
game and thus their equilibrium behavior is uniquely determined for any assumed
values V2, n2: only projects with θj < θ∗ succeed, where the critical state θ∗ is a
function of V2, n2. Moreover, values V2, n2 are uniquely determined by θ∗, which
leads to a system of equations with a unique solution.

We first analyze the mobile game informally in the limit σ → 0. The simpli-
fication of the limit case is that players receiving infinitely precise private signals
xi

t neglect their prior beliefs. We defer the formal analysis to appendix A.1, where
we explicitly account for both prior distribution and the private signals, and only
then take the limit σ → 0. We deal only with symmetric equilibrium in thresh-
old strategies in this section and later prove that no other equilibria exist (also in
appendix A.1).

The following technical preliminary is needed. Denote P i
θ∗,t ≡ Prob(Θj <

θ∗|X i
t), which is a posterior probability player i assigns to the success of the project

she is matched to in round t; P i
θ∗,t is a random variable that depends on the signal

X i
t player i receives.

Lemma 1. Random variable P i
θ∗,t, conditional on Θj = θ∗ (which is unknown to

the players), is distributed uniformly on [0, 1] in the limit σ → 0.

Proof8: ignoring the prior distribution,

P i
θ∗,t = Prob(Θj < θ∗|X i

t) = Prob(X i
t−Ei

t < θ∗|X i
t) = Prob(Ei

t > X i
t−θ∗) = 1−F

(
X i

t − θ∗

σt

)
,

in round t ∈ {1, 2}. Then, for p ∈ [0, 1]:

Prob(P i
θ∗,t < p|Θj = θ∗) = Prob

(
1− F

(
X i

t − θ∗

σt

)
< p|Θj = θ∗

)

= Prob
(
θ∗ + σtF

−1(1− p) < X i
t |Θj = θ∗

)

= 1− F

((
θ∗ + σtF

−1(1− p)
)− θ∗

σt

)
= 1− F

(
F−1(1− p)

)
= p,

which is the c.d.f. of the uniform distribution. ¤ (lemma 1)
Having established lemma 1, we now guess arbitrary equilibrium values V2 ≥ 0,

n2 ≥ 0 and consider the interaction of players who have been matched to project
8Lemma 1 is a variation of Morris and Shin’s (2003) argument of Laplacian beliefs.
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j in round 1 or 2. The players observe xi
t, form posterior probabilities pi

t of the
project’s success that are realizations of P i

θ∗,t and decide about investing into a
lottery with expected payoff9

(1− c)pi
t + (−c)(1− pi

t) = pi
t − c.

A player invests if she prefers such a lottery to δV2 in round 1 or to 0 in round 2.
Thus she invests if pi

1 − c > δV2 in round 1 or, if pi
2 − c > 0 in round 2. Suppose

the state of project j (unknown to the players) happens to be just equal to the
critical state, θj = θ∗. Then, knowing the uniform distribution of pi

t and the trigger
probabilities c + δV2 and c in round 1 and 2 we can compute the total measure
of investors into j. The definition of the critical state implies that the measure of
investment is just equal to θ∗:

(1− c− δV2) + n2(1− c) = θ∗. (Crit.St.)

The expected payoff in round 2 is

V2 = (1− c)Φ(θ∗), (Value)

because in the limit of precise signals all observers of projects with θ < θ∗ success-
fully invest and receive 1− c, and other players do not invest and receive 0.

Using the law of large numbers, the measure of players per project not investing
in round 1 and thus continuing into round 2 is

n2 = 1− Φ(θ∗). (Search)

We substitute equation (Value) and (Search) into (Crit.St.) and get

(1− c)[2− (1 + δ)Φ(θ∗)]− θ∗ = 0. (Modif.Crit.)

Equation (Modif.Crit.) has a unique solution because its left hand side is contin-
uous, decreases in θ∗ and is asymptotically linear in θ∗. Thus there is a unique
equilibrium of the mobile game in the class of symmetric equilibria.

We justify the shortcut of computing the equilibrium in the limit σ → 0 by
computing the symmetric equilibrium out of the limit, for σ > 0. Moreover, we
show that there is no other equilibrium than the symmetric one:

9Downsized by δ in round 2.
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Proposition 1. 1. There exists σ such that if σ1 < σ and σ2 < σ, then: the
mobile game ΓM(σ) has a unique Bayesian Nash equilibrium, it is symmetric,
and all players play threshold strategies.

2. θ∗(σ), V2(σ), and n2(σ) describing the unique equilibrium of ΓM(σ) converge
in the limit σ → 0 to solution θ∗, V2, and n2 of the system of equations
(Crit.St.), (Value) and (Search).

The proof, found in appendix A.1, has a structure typical for the global games
literature. We first specify equations for a symmetric equilibrium in threshold
strategies and show that these have a unique solution. Then we show, by an
argument based on iterated dominance, that no other equilibrium exists: for any
assumed equilibrium values V2, n2 we find a unique set of fundamentals with which
projects succeed. Obviously, a project always succeeds if θj < 0 and never does
if θj > 2 and we iteratively expand intervals of sure success/failure until they
meet at the critical state θ∗, which is uniquely determined by the assumed values
V2, n2 according to a critical state condition. This is a unique candidate for an
equilibrium with the assumed values V2, n2 and if this truly is an equilibrium, the
critical state θ∗ has to generate the assumed values V2, n2 according to value and
search conditions. Thus any equilibrium satisfies all conditions that specify the
symmetric equilibrium and hence no other exists.

3.1 Comparative Statics

We examine comparative statics of the equilibrium in the limit σ → 0 described
by equation (Modif.Crit.) with respect to the exogenous parameters c, y, δ:

Corollary 1. The critical state θ∗ decreases in c, δ and increases in y.

Proof: the left hand side of (Modif.Crit.) decreases in c, δ, θ∗ and because
Φ(θ∗) ≡ F ( θ∗−y

τ
) it increases in y. The comparative statics of θ∗ follows from the

implicit function theorem. ¤ (corollary 1)
In particular, the set of successful projects shrinks with higher mobility, which

decreases welfare. We examine the welfare effects in the next step:

Corollary 2. Comparative statics of welfare with respect to c, δ, and y is as sum-
marized in table 1.

The ex ante expected payoff V at the beginning of the game is

V = (1− c)F

(
θ∗ − y

τ

)
+

(
1− F

(
θ∗ − y

τ

))
δ(1− c)F

(
θ∗ − y

τ

)
. (2)
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Parameter q c δ y

Direct effect ∂V
∂q

- + -
Strategic effect ∂V

∂θ∗
∂θ∗
∂q

- - +
Total effect dV

dq
- -/+ -

Table 1: Overview of welfare effects.

The total welfare effect with respect to parameters q ∈ {c, δ, y} consists of the
direct non-strategic effect ∂V

∂q
and the strategic effect ∂V

∂θ∗
∂θ∗
∂q

via the change of the
critical state θ∗, so the proof of corollary 2 consists of computing the derivations,
which we omit here. Note that ∂V

∂θ∗ is unambiguously positive, and hence the sign
of the strategic effect is the same as ∂θ∗

∂q
specified in corollary 1. The total effect

of the increase of y is unambiguously negative, despite the fact that the direct and
strategic effects are of opposite signs, because derivative ∂θ∗

∂y
turns out to be smaller

than 1 so θ∗−y decreases with y; hence the measure of successful projects decreases
with y.

We summarize both corollaries verbally: increased mobility, measured by higher
δ, makes players choosier (see figure 2a) because it increases the value of the outside
option δV , and this negative strategic effect may outperform the positive direct
effect (see figure 2b). Similarly, a decrease in the average project’s quality, higher10

y, makes players less choosy, as it decreases the outside option value and also
increases search activity, which in turn increases the measure of observers of each
project. Increase of c causes two strategic effects. A negative strategic effect, which
already exists in the static game, makes players choosier because the profits from
successful investment decrease, but this effect is partially counteracted by a positive
strategic effect in the mobile game: larger c decreases the endogenous outside option
value and increases search activity, both of which enhance successful coordination.
The negative strategic effect always prevails and ∂θ∗

∂c
is unambiguously negative.

The comparative statics is simpler to analyze in a limit τ → 0 for which we
obtain a closed form solution.11 We report the limit solution in appendix A.2,
because the expressions, although in principle simple, are tiresome. We find that:

Corollary 3. Welfare unambiguously decreases with increased mobility (higher δ)
in the ordered limit τ → 0,σ → 0 (such that σ

τ
→ 0).

Proof can be found in appendix A.2.
10We remind that θj is a measure necessary for the success of project j. Hence higher θj means

worse quality of the project.
11We take the ordered limit limτ→0,σ→0. This assures that σ

τ → 0 and thus we stay in the
equilibrium uniqueness region.

13



a)

0.2 0.4 0.6 0.8 1
delta

0.82

0.84

0.86

threshold

b)

0.2 0.4 0.6 0.8 1
delta

0.47

0.48

0.49

0.51

0.52

0.53
V

Figure 2: Welfare and comparative statics analysis of the mobile game, parameters:
c = 0.3, y = 0.8, τ = 0.1. a) θ∗(δ), b) V (δ).

Though we vary mobility exogenously in our model, the finding of the welfare’s
non-monotonicity with respect to δ implies that, if welfare V decreases with δ, then
were the players able to influence their mobility, they could find themselves in a
prisoners’ dilemma-like situation: each would benefit from a unilateral increase of
mobility but a mutual increase would harm all.

3.2 Comparison of the Mobile and the Static Game — the

Self-Regulatory Property

The mobile game is constructed in such a way that its outcomes are directly com-
parable with the static game outcomes because the measure of players per project
is the same in both games, the fundamentals are drawn from the same distribution,
and players can invest only once in both games. The solution to the static game is
described by the following proposition:

Proposition 2. (Morris and Shin) There exists σ such that the game ΓS(σ) is
dominance solvable for all σ < σ. The unique strategy surviving iterated elimination
of dominated strategies is a threshold strategy

s(xi) =

{
1 if x < x∗σ,

0 if x > x∗σ,

where the threshold x∗σ converges to 1− c for σ → 0.

Proof is in Morris and Shin (2003).12

12The threshold in the limit σ → 0 can be found by informal arguments similar to those behind
the equation (Crit.St.): only players preferring lottery with expected payoff (1− c)pi + (−c)(1−
pi) = pi − c to the safe outside option payoff 0 invest, and because the conditional probabilities
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Figure 3: a) Comparison of V (c) in the mobile game — thick line, and the static
game — dashed line. (parameters: δ = 0.9, y = 0.6, τ = 0.03) b) Comparison
of V (y) in the mobile game — thick line, and the static game — dashed line.
(parameters: c = 0.3, δ = 0.9, τ = 0.03)

Welfare in the static game is

Vstat = (1− c)F

(
θ∗stat − y

τ

)
,

and thus, if variance τ of the fundamentals’ distribution is small, welfare Vstat

declines sharply with y or c in the neighborhood of θ∗stat. In contrast, the critical
state θ∗mob in the mobile game adjusts to an increase of y or c because players
increase their thresholds — they become less choosy. As a result, V decreases with
c and y markedly more slowly in the mobile game than in the static game; this
self-regulatory property is depicted in figures 3a,b.

Let us further examine the self-regulatory property analytically. Denote by P

the equilibrium measure of successful projects P = Φ(θ∗) ≡ F ( θ∗−y
τ

); the welfare
increases in P . Let us compare the dependence of P on y in the case of the static
and the mobile game.13 The derivative ∂Pstat

∂y
can be computed straightforwardly

in the case of the static game:

∂Pstat

∂y
= −1

τ
f

(
θ∗stat − y

τ

)
,

hence for small τ , Pstat declines quickly when y ≈ θstat. In the case of the mobile
game, we get from equation (Modif.Crit.):

Pmob = Φ
(
(1− c)[2− (1 + δ)Pmob]

)
. (3)

pi of the project’s success are distributed uniformly on [0, 1] if the state happens to be critical,
the mass of players believing that pi > c is 1− c which must coincide with the critical state.

13The analysis of dependence of P on c is virtually identical, and hence omitted.
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The self-regulatory property is caused by the negative influence of Pmob on the right
hand side of (3), which is absent in the static case. We express the derivative

∂Pmob

∂y
=

− 1
τ
f

(
θ∗mob−y

τ

)

1 + 1
τ
f

(
θ∗mob−y

τ

)
(1− c)(1 + δ)

.

P.d.f. 1
τ
f

(
θ∗mob−y

τ

)
is both in the numerator and in the denominator, and hence

the derivative ∂Pmob

∂y
does not diverge even for τ → 0 and θ∗mob ≈ y. In fact, the

derivative simplifies to −1
(1−c)(1+δ)

in the limit τ → 0 and for non-extreme y (see
appendix A.2).

3.3 Limit of the Inefficient Search

Next, we examine the mobile game with very inefficient search, when δ → 0, and
show that it does not approximate the static game. Let us consider the mobile
game with parameter δ ≡ 0, which is out of the assumed range of δ ∈ (0, 1) and
thus proposition 1 does not hold. Obviously, players are indifferent between in-
vesting and not investing in round 2, which creates equilibrium multiplicity. The
equilibrium in which nobody invests in round 2 can be associated with the equi-
librium of the static game. However, this equilibrium is not approximated by the
equilibrium of the mobile game as δ → 0+. The critical state θ∗0 ≡ limδ→0+ θ∗(δ)

solves the limit of equation (Modif.Crit.):

(1− c)[2− Φ(θ∗0)]− θ∗0 = 0,

the solution of which differs from θ∗stat = 1 − c. This can be seen in figure 2a,b:
limδ→0+ θ(δ) > θstat and also limδ→0+ V (δ) > 0 whereas welfare of the static game
would be virtually 0 for that setting of the parameters.14 The intuition is that
search increases the measure of observers of each project from 1 to 1 + n2, which
enhances successful coordination (also) in round 1. Hence the critical state moves
towards worse states and players are matched to a successful project in round 1
more often. Welfare in the mobile and the static game thus differs for purely
strategic reasons for small δ and the difference does not disappear even if the gains
from investment in round 2 are negligible but positive. Therefore, search options
should not be ignored in the analysis of coordination problems even when search
is very inefficient.

14More precisely, it would be very small, V → 0 in the limit τ → 0.
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4 Social Learning

We have assumed until now that players matched to a project j in round 2 do not
observe the measure of investment into j realized in round 1. This assumption is
abandoned in this section and we find, somewhat surprisingly, that social learning
is irrelevant in the mobile game. The game analyzed in this section remains as
the mobile game described in section 2.2 except that, additionally, players matched
to j in round 2 observe a signal zi about the measure of investment lj,1 into j in
round 1. We assume Dasgupta’s (2005) error structure which allows for analytical
solution of the game:

zi = F−1(lj,1) + ωξi, (4)

where the error terms ξi ∼ N(0, 1) are independent across players and also inde-
pendent of the error terms εi

t of the signals xi
t. We argue below that ω depicts the

informativeness of signal zi compared to xi
1; if ω = 1 the two signals have the same

informativeness.
A pure strategy is a pair of functions a1(x1) : R → {0, 1}, a2(x1, x2, z) : R3 →

{0, 1} which prescribe actions in rounds 1 and 2 conditional on the observed signals.
We refer to this game as a learning game ΓL(σ). A monotone strategy is a pair
of functions a1(x1), a2(x2, z) such that a1(.) is non-increasing, a2(x2, z) is non-
increasing in x2, non-decreasing in z, and does not depend on x1; hence we omit
x1 from its arguments. We restrict players to monotone strategies in this section.
We find that the equilibrium in monotone strategies of the learning game coincides
with the unique equilibrium of the mobile game in the limit σ → 0. Although we
have not ruled out an equilibrium in non-monotone strategies that differs from the
equilibrium of the mobile game, we have not found such.

Proposition 3. The learning game ΓL(σ) has a unique Bayesian Nash equilib-
rium in monotone strategies. This equilibrium is symmetric and converges to the
equilibrium of the mobile game ΓM(σ) as σ → 0.

Proof: for any equilibrium in monotone strategies the critical value θ∗ must
exist because the measure of investors lj monotonically decreases in θj. The exis-
tence of the critical state implies that the equilibrium is symmetric, because the
maximization problem of each player is identical as it depends only on the com-
mon values of V2, θ∗ and on the exogenous parameters, and the best responses are
strict.15

15Precisely, players are indifferent between investing and not investing only when observing
threshold signals, which happens with 0 probability.
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The measure of early investors is lj,1 = F
(

x∗1−θj

σ1

)
because only those who receive

a signal below x∗1 invest. We define z̃i ≡ x∗1 − σ1z
i and because of the assumed

error technology z̃i = θj−σ1ωξi. Thus, receiving signal zi is equivalent to receiving
signal z̃i about θj with error drawn from N(0, (σ1ω)2) and independent of error of
signal xi

2. Finally, players form sufficient statistics x̃i
2 for θj using xi

2 and z̃i:

x̃i
2 =

σ2
2 z̃

i + σ2
1ω

2xi
2

σ2
2 + σ2

1ω
2

,

with an error term (x̃i
2 − θj) ∼ N(0,

σ2
1σ2

2ω2

σ2
2+σ2

1ω2 ).
The equilibrium of the learning game therefore corresponds to the unique equi-

librium of the mobile game with σ̃ = (σ1,
√

σ2
1σ2

2ω2

σ2
2+σ2

1ω2 ). If (σ1, σ2) → 0 then σ̃ → 0

as well, so the equilibrium of the learning game converges to the limit equilibrium
of the mobile game. ¤ (proposition 3)

We have found that social learning is irrelevant in the mobile game, whereas
in Dasgupta (2005) social learning matters. This difference is due to the mobility
present in our mobile game but not in Dasgupta’s. Players delaying investment in
Dasgupta’s game remain in the same project as they were in round 1; they only
gain additional information — the signal zi. In contrast, the motivation to wait
(search) in our model is to find a project with better fundamentals. Additional
information zi cannot be the decisive motivation for search, because if signal xi

2

is far away from θ∗, it is a sufficient guideline for the investment decision. The
additional signal zi is useful only if the distance of xi

2 from θ∗ is of the order of
σ2, which has negligible probability for σ → 0. Hence giving players additional
information zi does not alter the mobile game equilibrium, because players are
almost sure they will not need this information in round 2 in the limit σ → 0. In
contrast, in Dasgupta’s game, a player in need of additional information in round
1 knows that this information will be useful in round 2.

5 Robustness

We consider several other modifications of the mobile game and show that the
qualitative features of the equilibrium are robust to them. See figure 4 for the
relationships among individual modifications. In section 5.1, we let the players
search repeatedly. In section 5.2 we generalize the payoff function, and players are
able to direct their search towards projects with better fundamentals in section 5.3.
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Figure 4: Modifications Structure — We develop the benchmark static game into
a network of related models.

5.1 Infinite Number of Search Rounds

The players of the mobile game have only one possibility of search. Are the results
robust to a change in the number of search rounds? We examine the following
modification: the game remains the same as the mobile game described in section
2.2 except it does not end after round 2. Instead, players decide in infinity of
rounds, indexed by t ∈ N, whether to invest into a currently observed project or to
search and continue to round t + 1. As in the mobile game, players can invest only
once, hence they can search only until they invest and afterwards cannot take any
further action. The return R(θj, lj) of a project j depends on its fundamentals θj

and on the cumulative investment lj over all rounds. Payoffs of late investors are
downsized to δt−1R(θj, lj), t being the time of investment. The payoff of players
who never invest is normalized to 0. Player i who has continued to round t receives
signal xi

t = θj + σεi
t, where j is the project she is matched to in round t and errors

εi
t are independent across players and rounds. For the sake of simplicity, we assume
the same value of σ in all rounds. We refer to this game as the infinite game.

We sketch the solution of the infinite game in the limit σ → 0 in a similar
manner as we did for the mobile game in section 3. Let V be the ex ante expected
payoff at the beginning of the game and n be a measure of observers of any project
cumulative over all rounds; n is a common value for all projects because the search
is undirected. Consider the interaction of players matched to a project j in any of
the rounds t ∈ N. All observers of j are in the same situation, except the payoffs
of those in round t are linearly re-scaled by factor δt−1, which does not alter their
strategic position. Thus they are of the same type and simultaneously16 decide
between investing, which pays R(θj, lj), and the outside option, which pays δV .
Therefore, observers of j interact in a simple global game.

We denote player i’s posterior probability of the project’s success by P i
θ∗ ≡

Prob(Θj < θ∗|X i) as in section 3 and we reiterate that P i
θ∗ is distributed uniformly

16We can treat the decision of players in all rounds as simultaneous because players do not
observe the measure of investments from previous rounds.
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on [0, 1] conditional on θj = θ∗. Player i invests if and only if she prefers the lottery
of investment to the outside option:

P i
θ∗(1− c) + (1− P i

θ∗)(−c) > δV,

which implies the critical mass condition:

(1− c− δV )n = θ∗. (Crit.st.’ )

The value condition is

V = (1− c)Φ(θ∗) + δV (1− Φ(θ∗)) . (Value’ )

The measure of observers per project in round 1 is 1. Ratio 1 − Φ(θ∗) of the
observers are matched to a project with θ > θ∗ so they continue into round 2. Out
of these, the ratio 1 − Φ(θ∗) continue into round 3,. . . The cumulative measure of
observers per project is

n =
∞∑

t=1

(
1− Φ(θ∗)

)t−1
=

1

Φ(θ∗)
, (Search’ )

and because the search is undirected, each project is observed by the same measure
of players.

We substitute (Value’) and (Search’) into (Crit.st.’) and get

(1− c)
1− δ

[1− δ + δΦ(θ∗)]Φ(θ∗)
− θ∗ = 0. (Modif.Crit.’ )

Equation (Modif.Crit.’) has a unique solution because its left hand side is contin-
uous, decreases and is asymptotically linear in θ∗. Moreover, it decreases in c, δ,
θ∗ and because Φ(θ∗) ≡ F ( θ∗−y

τ
), it increases in y. The implicit function theorem

implies that θ∗ decreases in c, δ and increases in y, exactly as in the mobile game.
The welfare effects are also the same as in the mobile game and table 2, which
summarizes the signs of the welfare effects, remains valid.

The infinite game has no other equilibrium except the symmetric one: any
assumed pair V and n imply a particular simple global game describing the inter-
action of players observing a project j. This global game has a unique equilibrium,
with critical state θ∗ depending on V and n according to (Crit.st.’). Thus any
V and n imply a unique θ∗, and any θ∗ implies a unique V and n according to
equations (Value’) and (Search’). Hence any equilibrium has to satisfy the triplet
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of equations (Crit.st.’), (Value’) and (Search’), which has a unique solution.
As we have mentioned in section 2.2, a player of the infinite game never wishes

to return to a project she has observed in an earlier round. If she has considered
the expected payoff of some project inferior to search, then she will not change her
opinion after any number of search rounds, as she does not learn anything new about
the project nor about the underlying distribution of fundamentals. Thus, we could
introduce the possibility of returning to earlier projects without any consequences
on equilibrium behavior.

5.2 General Payoff Functions

Until now, we have been analyzing games with a particular return function (1). In
this section we take first steps in examining the effects of mobility for a general
return function. We do the analysis in the framework of the infinite game rather
than the mobile game because the former is simpler to analyze, as all the players
are of the same type, whereas in the mobile game the players of round 1 and 2
differ in their outside options.

We analyze the same game as the infinite game described in the previous sec-
tion 5.1, except with a general return function R(θj, lj). As in the previous section,
we want each project to generate a simple global game with a unique equilibrium,
conditional on V and n. To assure this, we impose Morris and Shin’s (2003) as-
sumptions on R(θj, lj), slightly modified to fit our setting: let V denote the positive
part of the range of the return function R(θj, lj).
MS1: Action Monotonicity : R(θj, lj) is weakly increasing in lj.
MS217: State Monotonicity : R(θj, lj) is weakly increasing in θj.
MS3: Strict Laplacian State Monotonicity : for any V ∈ V , n ∈ [1, +∞), there
exists a unique θ∗ ∈ R such that 1

n

∫ n

0
R(θ∗, l)dl = δV.

MS4: Uniform Limit Dominance: for any V ∈ V , n ∈ [1, +∞), there exist θ and
θ and ε > 0 such that 1. R(θ, l) < −ε + δV for all l ∈ [0, n] and θ < θ and 2.
R(θ, l) > ε + δV for all l ∈ [0, n] and θ > θ.
MS5: Continuity :

∫ 1

0
g(l)R(x, l)dl is continuous with respect to signal x and den-

sity g(.).

Proposition 4. Suppose MS1–MS5 are satisfied. Then, in the limit σ → 0, all
Bayesian Nash equilibria of the infinite game with the return function R(θj, lj)

are symmetric and in threshold strategies. Variables θ∗, V and n describing the
17Note that R(θj , lj) as described in (1) is weakly decreasing in θj instead of increasing and

thus MS2 is formally not satisfied. However, this can be accommodated by introducing θ̃ = 1−θ.
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Figure 5: Payoff R(θj, lj) = θj − 1 + l2 generates equilibrium multiplicity. In one
equilibrium, the full line, players invest only in projects of very high quality; hence
search activity and measure of investment into successful projects are high, and
returns of successful projects are very high. The incentive to search is thus high too.
In the other equilibrium, the dashed line, players also invest in projects of medium
quality, search activity and measure of investment into successful projects is low,
and hence successful projects have only medium returns and the motivation to
search is low. Welfare in the first equilibrium decreases with improving distribution
of fundamentals. Parameters: δ = .9, τ = .01.

equilibrium satisfy:
1

n

∫ n

0

R(θ∗, l)dl = δV, (Crit.st.g.)

V =

∫ +∞

θ∗
R(θ, n)dΦ(θ) + δV Φ(θ), (Value.g.)

n =
1

1− Φ(θ)
. (Search.g.)

Proof: values V and n are defined in any equilibrium. For any assumed pair
V , n interaction of observers of any particular project is a simple global game
with the payoff function R(θj, lj), the outside option value δV , and the measure
of players n. Because of the assumptions MS1 – MS5 and the normality of the
errors’ distribution, this simple global game satisfies proposition 2.2 in Morris and
Shin (2003) and thus has a unique equilibrium with threshold θ∗ satisfying equation
(Crit.st.g.). Moreover, threshold θ∗ determines expected value and search activity,
which gives equations (Value.g.) and (Search.g.). ¤ (proposition 4)

However, proposition 4 does not guarantee equilibrium uniqueness. We have
found an example of the return function

R(θ, l) = θ − 1 + l2, (5)

for which the system of equations (Crit.st.g.), (Value.g.) and (Search.g.) have mul-
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tiple solutions (see figure 5). In such a case, each solution represents a symmetric
equilibrium in threshold strategies differing in the endogenous values of the outside
option and in the search activity and hence also in the threshold.

Though the uniqueness is not guaranteed generally, we pinpoint two simple
classes of return functions, for which the equations (Crit.st.g.), (Value.g.) and
(Search.g.) have a unique solution and hence the equilibrium uniqueness is guaran-
teed:

Corollary 4. Let the return function, satisfying MS1-MS5, be of the form R(θ, l) =

p(θ) + q(l) where q(l) is concave and the derivative q′(.) exists. Then the game has
a unique Bayesian Nash equilibrium.

Proof is in appendix A.3.
Another class of return functions guaranteeing equilibrium uniqueness is

R(θj, lj) =

{
ζ(θj)− c if a(θj) < lj,

−c if a(θj) ≥ lj,
(6)

where a(θj) decreases and ζ(θj) increases in θj. This return function generalizes
the coordination problem induced by return function (1) and was studied in Morris
and Shin’s (1998) model of currency attacks.

Corollary 5. Let the return function be of the form (6) and the derivatives a′(.),
ζ ′(.) exist. Then the game has a unique Bayesian Nash equilibrium.

Proof can be found in appendix A.3.

The simple form of the particular return function (1) has allowed us to elim-
inate integrals in (Crit.st.g.) and (Value.g.), which is not possible for a general
return function, and therefore we do not draw general conclusions about the com-
parative statics. However, examination of the return function (5) shows that the
non-monotonicity of welfare with respect to δ is not a special feature of return
function (1); it can be observed also in the case of (5).18 Moreover, the return
function (5) generates non-monotonicity with respect to y (see figure 5). The intu-
ition is that worse distribution of fundamentals increases search activity and hence
the measure of observers of each project. Thus the measure of investment into suc-
cessful projects increases, and this positive strategic effect dominates the negative
direct effect because the return steeply increases in the measure of investors.

18For instance, for parameters y = 10, δ = .9, τ = .01 and for the solution θ∗ = .997, V = 11.0,
n = 1.67 welfare V locally decreases with δ.

23



5.3 Directed Search

To this point we have assumed that search and matching to projects is undirected,
and hence that each project has been observed by the same measure of players
which, although computationally convenient, is unrealistic. We let the agents di-
rect their search toward better projects in this section. As a consequence, the
distribution of projects describing the matching outcome differs from the distribu-
tion of physically existing projects.

Let the fundamentals of physically existing projects be distributed according to
p.d.f. φ(.), but let us assume in this section that players are able to influence the
matching process such that they are matched to a project drawn from ψ(.), with
c.d.f. Ψ(.). We assume return function 1 and use the framework of the infinite
game; players can search in an infinite number of search rounds, and each search
leads to a project drawn from ψ(.). We also assume that φ(.) and ψ(.) satisfy
the monotone likelihood property, ψ(.)

φ(.)
is decreasing. Accordingly, better projects,

characterized by lower θ, are observed by more players than are worse projects. We
dub this game a directed search game.

Proposition 5. The directed search game has a unique BNE in the limit σ → 0.

Proof: The measure of observers o(θj) depends on project j’s fundamentals θj.
Let n be the measure of all searchers per project cumulatively over all rounds. The
number n would also be the measure of observers of each project in the previous
sections, but in this section the observers are distributed unevenly. Value n induces
on(θj) observers of project j:

on(θj) = n
ψ(θj)

φ(θj)
. (7)

Number n and the expected ex ante payoff V are defined for each strategy
profile. Interaction among all observers of project j could be formalized as a simple
global game in the previous sections. To proceed in the same way here, we need
to renormalize the measure of observers in order to avoid its dependence on θj.
Interaction of on(θj) observers described by the return function

R(θj, l) =

{
1− c if l ≥ θj,

−c if l < θj

can be equivalently described as the interaction of players with measure 1 and the
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return function

R̃n(θj, l̃) =

{
1− c if l̃ ≥ θj

on(θj)
,

−c if l̃ <
θj

on(θj)
,

where R̃n(., .) is defined on R × [0, 1]. In other words, we measure investment
in relative instead of absolute terms, and modify the return function accordingly.
Function R̃n(., .) is non-decreasing in l̃ and non-increasing in θ on its definition
range.19 This modified description of the interaction associated with project j is
a global game and satisfies conditions of theorem 2.2 in Morris and Shin (2003).
Thus each assumed pair of values n, V generates a unique critical state θ∗ according
to ∫ 1

0

R̃n(θ∗, l)dl = δV,

which can be simplified into

θ∗

on(θ∗)
= 1− c− δV. (Crit.st.DS.)

The critical state θ∗ implies values V and n: The value condition is

V = (1− c)Ψ(θ∗) +
(
1−Ψ(θ∗)

)
δV. (Value.DS.)

Measure n of searchers per project cumulatively over all rounds is

n =
∞∑

t=1

(
1−Ψ(θ∗)

)t−1
=

1

Ψ(θ∗)
. (Search.DS )

Note that the value and search condition depend on the distribution describing
the matching process, not on the distribution describing the physical occurrence of
states.

Substituting (Value.DS.), (Search.DS ) and (7) into (Crit.st.DS.) gives:

(1− c)
1− δ

[1− δ + δΨ(θ∗)] Ψ(θ∗)
− θ∗

ψ(θ∗)
φ(θ∗)

= 0, (Modif.Crit.DS )

which has a unique solution as the left hand side of (Modif.Crit.DS) is continuous,
positive for θ∗ ≤ 0, decreasing for θ∗ > 0, and negative for sufficiently large θ. ¤
(proposition 5)

Comparative statics can be computed in the same way as in the case of the
19Note the non-monotonicity of θ

on(θ) . However, θ
on(θ) increases for θ ≥ 0 and though it can

decrease for θ < 0, it is then always negative and thus smaller than l̃ ∈ [0, 1].
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mobile or the infinite game: the left hand side of (Modif.Crit.DS) decreases in c, δ

and θ∗, hence the solution θ∗ decreases in c and δ. The comparative statics thus
remains the same as in the case of the mobile and the infinite game. Furthermore,
numerical solution of (Modif.Crit.DS) shows that welfare is non-monotonic in δ for
some parameters.

6 Conclusion

We have studied search among many simultaneous projects, each being a coordina-
tion problem. Players, dissatisfied with the signal about the project they currently
observe, may search for another of the projects, but search is costly. This mo-
bile game is an expansion of a simple benchmark global game, labelled a static
game, from which it inherits equilibrium uniqueness allowing for examination of
comparative statics. The mobile game has a “self-regulatory” property: any effects
characteristic for the benchmark static game are partially counteracted by a strate-
gic effect in the opposite direction through the endogenous changes of the outside
option values and of the mass of observers of each project. Thus the occurrence
of coordination failures is notably robust to the changes of exogenous parameters
such as the distribution of fundamentals.

The self-regulatory mechanism implies that a project’s coordination failure is
determined not only by the absolute state of economic fundamentals but also by
its relative ranking compared to other projects. This may explain the occurrence
of investment crises despite substantial improvements in the distribution of coun-
tries’ fundamentals over the past decades. In fact, we have found a payoff function
for which an improvement in the distribution of fundamentals may increase the
amount of coordination failures and decrease welfare. Improvement in the distri-
bution decreases search activity which results in investment scattered among more
projects, and this may outweigh the direct positive effects.

Similarly, welfare may decrease with mobility. The positive direct effect of lower
search costs is counteracted by a negative strategic effect since lower search costs
increase the outside option value, which hampers successful coordination. Again,
the strategic effect may prevail and so the welfare is non-monotonic with respect
to mobility. The result may be a prisoners’ dilemma-like situation. While we have
considered a fixed, exogenously given mobility, real investors are able to unilaterally
increase their mobility, which could be modelled as an increase of δ. Obviously,
any investor would benefit from the unilateral increase, but the collective increase
would harm all.
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The qualitative features of the comparative statics of the mobile game seem to
be robust to modifications; we have considered the possibility of social learning, in-
finite number of search opportunities, directed search, and general payoff functions
satisfying strategic complementarity.

The mobile game is a realistic extension to many static global games applica-
tions. For instance, while Morris and Shin (1998) study a coordination game of
speculators considering an attack on an isolated currency, the mobile game allows
for the incorporation of parallel coordination problems of other currencies. The
cost of search can be associated with the cost of acquiring the private signal xi

j

about currency j. We have argued that occurrence of successful coordination al-
ways decreases with lower search costs. Thus, the low cost of acquiring private
signals about other currencies decreases the occurrence of currency attacks.

The possibility of analyzing the influence of mobility on coordination failures
makes the model a useful framework for a study of globalization’s consequences.
Numerous projects succeed only if many agents coordinate their efforts. Global-
ization allows people skeptical about the risky project they were matched (born)
with, to search for another risky opportunity. On the one hand, higher mobility
allows agents to avoid risky projects with bad fundamentals; on the other hand,
it lowers their ability to coordinate on risky investments. We show that either
effect may prevail under certain circumstances. A firmer connection of the model
to globalization processes is an opportunity for future research.

A Appendix

A.1 Proof of Proposition 1

1. We first formulate conditions for symmetric equilibrium in threshold strategies
characterized by V2, n2, x∗1, x∗2 and θ∗ and later prove that no other equilibrium
exists.

Critical state θ∗ satisfies a critical mass condition: if the realized state of a
project j is θ∗, the measure of players investing into j, because they have received
a signal below x∗t , must be precisely θ∗:

F

(
x∗1 − θ∗

σ1

)
+ F

(
x∗2 − θ∗

σ2

)
n2 = θ∗. (crit.st.”)

The players combine signals xi
t and prior beliefs to form a posterior belief about

the fundamental θj. Both the prior distribution and the distribution of errors are
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normal distributions and thus the posterior distribution in round t ∈ {1, 2} is
also a normal distribution N(et(x

i
t, y), u2

t ) where et(x, y) ≡ σ2
t y+τ2x

σ2
t +τ2 and u2

t ≡ σ2
t τ2

σ2
t +τ2 .

Knowing the posterior distribution, we can express the expected payoff for investing
into j, conditional on signal xi

t:

(1− c)F

(
θ∗ − et(x

i
t, y)

ut

)
− c

[
1− F

(
θ∗ − et(x

i
t, y)

ut

)]
= F

(
θ∗ − et(x

i
t, y)

ut

)
− c.

A player observing x∗1 must be indifferent between investing and the outside option
value δV2. This gives an indifference 1 condition:

F

(
θ∗ − e1(x

∗
1, y)

u1

)
− c = δV2. (indif.1 )

A player observing x∗2 must be indifferent between investing and the outside option
which is 0 in round 2. This gives an indifference 2 condition:

F

(
θ∗ − e2(x

∗
2, y)

u2

)
− c = 0. (indif.2 )

The equilibrium value V2 can be expressed in terms of θ∗ as a solution of a
nonstrategic maximization problem. Investing into j gives a lottery with expected
payoff Prob(Θj < θ∗|x2)− c and players invest only if that is greater than 0. This
gives a value condition:

V2 = E[Max(Prob(Θj < θ∗|X i
2)− c, 0)], (Value”)

where the expectation is over unconditional distribution of X i
2.

The unconditional distribution of signal xi
1 is N(y, τ 2 + σ2

1). Players observing
signal xi

1 > x∗1 search, which gives a search condition:

n∗2 = 1− F

(
x∗1 − y√
τ 2 + σ2

1

)
. (Search”)

We have specified a system of five equations (crit.st.”), (indif.1), (indif.2),
(Value”), and (Search”) for five unknowns θ∗, x∗1, x∗2, V2 and n2. Next, we prove
that this system has a unique solution if σ is sufficiently small. We express
x∗1 = χ1(θ

∗, V2) as a function of θ∗ and V2 from (indif.1):

χ1(θ
∗, V2) = (1 +

σ2
1

τ 2
)θ∗ − σ1

τ

√
τ 2 + σ2

1F
−1(c + δV2)− σ2

1

τ 2
y, (8)
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and x∗2 = χ2(θ
∗) as a function of θ∗ from (indif.2):

χ2(θ
∗) = (1 +

σ2
2

τ 2
)θ∗ − σ2

τ

√
τ 2 + σ2

2F
−1(c)− σ2

2

τ 2
y. (9)

We substitute (8) and (9) into (crit.st.”):

F

[
−

√
τ 2 + σ2

1

τ
F−1(c + δV2) +

σ1

τ 2
(θ∗ − y)

]
+

F

[
−

√
τ 2 + σ2

2

τ
F−1(c) +

σ2

τ 2
(θ∗ − y)

]
n2 − θ∗ = 0, (10)

and denote the left hand side of (10) as Λ(V2, n2, θ
∗). The function Λ(V2, n2, θ

∗)

increases in n2 and decreases in V2. It also decreases in θ∗ for sufficiently small σ

because the derivative ∂Λ
∂θ∗ is bounded above by 1√

2π
σ1+n2σ2

τ2 −1 ≤ 1√
2π

max(σ1,σ2)
τ2 2−1

which is negative for small σ. The function Λ(V2, n2, θ
∗) can be naturally in-

terpreted as a measure of investment into j when the project’s fundamentals θj

(unknown to players) happens to be θ∗ and V2, n2, θ
∗ are equilibrium values.

Our next aim is to eliminate unknowns V2 and n2 by expressing them as func-
tions of θ∗ in order to express Λ as a one-dimensional function of θ∗. The con-
dition (Value”) has the form V2 = v(θ∗) but variable n2 = η(x∗1) is a function
of x∗1 according to (Search”), so first we have to express x∗1 as a function of θ∗:
x∗1 = χ̃1(θ

∗) ≡ χ1 (θ∗, v(θ∗)). Function v(θ∗) increases in θ∗ but monotonicity of
χ̃1(θ

∗) is not guaranteed:
dχ̃1

dθ∗
=

∂χ1

∂θ∗
+

∂χ1

∂V2

dv

dθ∗
,

because the term ∂χ1

∂θ∗ is positive but the term ∂χ1

∂V2

dv
dθ∗ negative. However, the sign

of the derivative dχ̃1

dθ∗ is determined for sufficiently small σ1 because the two terms
are of different orders of magnitude. The term ∂χ1

∂θ∗ = 1 +
σ2
1

τ2 is of order σ0
1. The

derivative ∂χ1

∂V2
is of order σ1τ , and dv

dθ∗ is of order 1
τ
because v(θ∗) increases from 0

to 1− c within the increase of θ∗ of order τ . So the term ∂χ1

∂V2

dv
dθ∗ is of order σ1 and

thus it is negligible compared to the first term ∂χ1

∂θ∗ for sufficiently small σ1. We
conclude that χ̃1(θ

∗) increases with θ∗ for sufficiently small σ1.
Condition (Search”) specifies that n2 = η(x∗1) is a decreasing function of x∗1, so

n2 = η̃(θ∗) ≡ η(χ̃1(θ
∗)) increases in θ∗. We can now substitute V2 = v(θ∗), n2 =

η̃(θ∗) into (10) and get the equation with one unknown: λ(θ∗) ≡ Λ(v(θ∗), η̃(θ∗), θ∗) =

0. Given the monotonicity of v(θ∗) and η̃(θ∗) it is easy to check that λ(θ∗) decreases
in θ∗. Moreover it is asymptotically linear in θ∗ and continuous, therefore the equa-
tion λ(θ∗) = 0 has a unique solution.
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We have found a symmetric equilibrium in threshold strategies and have shown
that there is only one of this kind for sufficiently small σ. Next, we show that, for
sufficiently small σ, no other equilibrium exists: each equilibrium generates values
V2, n2 and a success set S of all values θj for which a project j succeeds. Note that
V2, n2 and S are known by players in equilibrium.

Let us consider a project j and a random variable P i
S,t = Prob(Θj ∈ S|X i

t) that
denotes the posterior probability of the project’s success after player i observes
signal X i

t . Let k(V2, n2, S, θj) be the measure of investors for given V2, n2, S and
for the state of the project (unknown to players) being θj:

k(V2, n2, S, θj) = Prob(P i
S,1 > c + δV2|θj) + n2Prob(P i

S,2 > c|θj).

Note that k(.) increases in S; precisely S ⊇ S ′ ⇒ k(V2, n2, S, θj) ≥ k(V2, n2, S
′, θj).

Let m(V2, n2, θ
′, θj) ≡ k(V2, n2, (−∞, θ′), θj) − θj be the measure of investors

net of θj in a special case when the success set is an interval, S = (−∞, θ′). Note
that m(V2, n2, θ

∗, θ∗) ≡ Λ(V2, n2, θ
∗) as Λ(V2, n2, θ

∗) was formed from condition
(crit.st.”) and hence it coincides with the definition of m(V2, n2, θ

∗, θ∗).
Next, we assume that V2, n2 attain some particular values in equilibrium. We

will find that there is a unique success set S compatible with this assumption: surely
S ⊇ (−∞, 0) as the measure of investment lj ≥ 0. Moreover Λ(V2, n2, 0) > 0, hence
m(V2, n2, 0, 0) > 0 and because the function m is continuous, there exists ε > 0

such that m(V2, n2, 0, ε) > 0. Value m(V2, n2, 0, ε) is a lower bound for the measure
of equilibrium investment into a project with θj = ε because the true success set
contains (−∞, 0). Thus a project with θj = ε surely succeeds. We conclude that a
project surely succeeds for all θ ≤ ε because m(V2, n2, θ

′, θ) decreases in θ. Hence
S ⊇ (−∞, ε). We can iterate this argument in the same manner and expand the
interval of sure success further into the region of higher θj, up to the minimal θ′

for which m(V2, n2, θ
′, θ′) = 0, which is the minimal θ′ solving Λ(V2, n2, θ

′) = 0.
Symmetric arguments apply from above. The project never succeeds for θ > 2

because 2 is the upper bound of observers of each project. Again, we can expand
the interval of infeasible success to (θ′′,∞), where θ′′ is the maximal solution of
Λ(V2, n2, θ

′′) = 0.
Λ(V2, n2, θ) decreases in θ for any V2, n2 so equation Λ(V2, n2, θ) = 0 has a

unique solution, and therefore θ′ = θ′′. Hence any pair V2, n2 imply a unique
critical state θ∗V2,n2

that satisfies equation (10). On the other hand, the critical
state θ∗ uniquely determines equilibrium values V2, n2 as functions v(θ∗) and
η̃(θ∗). Therefore equilibrium values V2, n2 and θ∗ must coincide with values of the
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y < (1− c)(1− δ) (1− c)(1− δ) < y < (1− c)2 (1− c)2 < y
θ∗ (1− c)(1− δ) y (1− c)2

Φ(θ∗) 1 2−2c−y
(1+δ)(1−c)

0

Table 2: Closed form solution of the mobile game in the ordered limit τ → 0,
σ → 0.

unique symmetric equilibrium in threshold strategies and thus no other equilibrium
exists.

2. Equations (10), (Value”) and (Search”) converge to equations (Crit.St.),
(Value) and (Search) as σ → 0, hence their solution θ∗(σ), V2(σ), and n2(σ)

converges to the solution of the latter equation system. ¤ (theorem 1)

A.2 Limit τ → 0

We find a closed form solution for the mobile game in the ordered limit τ → 0,
σ → 0, where τ and σ approach 0 in such a way, that the private signals are much
more precise than the prior distribution, σ

τ
→ 0.

The equilibrium is described by equation (Modif.Crit.) which we reproduce here
for convenience:

(1− c)[2− (1 + δ)Φ(θ∗)] = θ∗.

We solve (Modif.Crit.) by guessing and verifying:

• θ∗−y
τ
¿ 0 ⇒ Φ(θ∗) → 0 ⇒ θ∗ → (1− c)2 < y,

• θ∗−y
τ
À 0 ⇒ Φ(θ∗) → 1 ⇒ θ∗ → (1− c)[1− δ] > y,

• θ∗ ≈ y ⇒ (1− c)[2− (1 + δ)Φ(θ∗)] = y ⇒ Φ(θ∗) = 2−2c−y
(1+δ)(1−c)

.

Table 2 summarizes the solution of equation (Modif.Crit.) in the limit τ → 0.
Next, we substitute Φ(θ∗) into the welfare equation (2) and get a closed form

expression for V . Welfare in the extreme regions is 0 respectively 1 − c. Welfare
for the medium value of y is

V =
2 c2 (1 + δ2) + c [−4 + δ2 (−4 + y) + y − 2 δ y] + (2− y) (1 + δ2 + δ y)

(1− c) (1 + δ)2 .

We can compute dV
dδ

explicitly:

dV

dδ
= −(1− δ) (2− 2 c− y)2

(1− c) (1 + δ)3 ,
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which is negative for all δ ∈ (0, 1), so an increase of mobility unambiguously de-
creases welfare in the limit τ → 0. ¤ (lemma 3)

A.3 Proof of Corollaries 4 and 5

Proof of corollary 4: we eliminate unknown V by expressing it from (Value.g.) and
substituting it into (Crit.st.g.). For the sake of simplifying tedious expressions we
omit arguments of functions, but let us keep in mind that n = 1

1−Φ(θ∗) etc. We get

1

n

∫ n

0

Rdl =
δ

1− δΦ

∫ +∞

θ∗
RdΦ(θ). (11)

We denote the left and right hand side of (11) by LHS(θ∗) and RHS(θ∗) and
show that they satisfy the single-crossing property: A simple manipulation gives
derivatives:

LHS ′(θ∗) =

(
−

∫ n

0

Rdl + nR

)
φ + p′, (12)

RHS ′(θ∗) =


−R + nRl +

δ

1− δΦ

∫ +∞

θ∗
RdΦ(θ)

︸ ︷︷ ︸
(∗)




δφ

1− δΦ
(13)

We use the equality in (11) and replace the term (*) in (13) by 1
n

∫ n

0
Rdl. Next,

combining (12) and (13) we find the difference of derivatives:

LHS ′(θ∗)−RHS ′(θ∗) = p′+



R (n(1− δΦ) + δ)−
∫ n

0

Rdl

(
1− δΦ +

δ

n

)
− δnRl

︸ ︷︷ ︸
(∗∗)





φ

1− δΦ
.

We now show that LHS ′(θ∗) − RHS ′(θ∗) is positive. Derivative p′ is non-
negative by assumption MS2, fraction φ

1−δΦ
is positive, and the term (∗∗) is positive

because

(∗∗) =

(
1− δΦ +

δ

n

)(
Rn− Rln

2

2
−

∫ n

0

Rdl

)

︸ ︷︷ ︸
(I)

+ (1− δ)
n2

2︸ ︷︷ ︸
(II)

,

where part (I) is positive as R(θ, l) is assumed to be concave with respect to l;
part (II) is a residuum of the examined expression and it is positive. Therefore
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LHS(θ∗) crosses RHS(θ∗) always from below, and the single-crossing property
implies uniqueness of the solution. ¤ (corollary 4)

Proof of corollary 5: equations (Crit.st.g.), (Value.g.) and (Search.g.) simplify
into

(
1− a(θ∗)

n

)
ζ(θ∗)− c = δV (14)

V =

∫ +∞

θ∗
(ζ(θ∗)− c)dΦ(θ) + Φ(θ∗)δV (15)

n =
1

1− Φ(θ∗)
(16)

After eliminating V and n we get

[1− a(1− Φ)]ζ − c =
δ

1− δΦ

∫ +∞

θ∗
(ζ − c)dΦ(θ). (17)

We denote the left and right hand side of (17) by LHS(θ∗) and RHS(θ∗) and show
that they satisfy the single-crossing property: The derivatives are

LHS ′(θ∗) = −a′(1− Φ)ζ + aφζ + (1− a(1− Φ))ζ ′, (18)

and LHS ′(θ∗) is positive in an equilibrium, because a′ < 0, ζ ′ > 0 and in equilib-
rium 0 < ζ(θ∗), 0 < a(θ∗) < n(= 1

1−Φ
).

RHS ′(θ∗) =
−δ

1− δΦ
(ζ − c)φ +

δ2φ

(1− δΦ)2

∫ +∞

θ∗
(ζ − c)dΦ(θ)

︸ ︷︷ ︸
(∗)

(19)

We use the equality in (17) and replace the term (*) in (19) by δφ
1−δΦ

[(1 − a(1 −
Φ))ζ − c]. A simple manipulation leads to

RHS ′(θ∗) = −δa (1− Φ)ζφ

1− δΦ
, (20)

and hence RHS ′(θ∗) is negative in equilibrium. Therefore the single-crossing prop-
erty is satisfied and thus the solution is unique. ¤ (corollary 5)
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B Summary of the Main Notation

Exogenous parameters: Endogenous variables:
c Sunk cost of investment. V2 Expected payoff in round 2.
δ Discount factor. n2 Measure of players observing each project in round 2.
σ2

t Variance of private signal at t. x∗t Threshold signal at round t.
τ 2 Variance of prior distribution. θ∗ Critical state.
y Average state of fundamentals. lj Cumulative investment into project j.
θj Fundamentals of project j.
xi Private signal of player i.

Games analyzed:

Static game: A benchmark simple global game.

Mobile game: Same as the static game but players are allowed to search once for
another project.

Learning game: Same as the mobile game but players in round 2 receive a signal
about the amount of early investment from round 1.

Infinite game: Same as the mobile game but players are allowed to search in-
finitely many times.

General payoff: Same as the infinite game but a general payoff function satisfying
strategic complementarity is assumed.

Directed Search game: Same as the infinite game but the search is directed,
and hence better projects are observed more often.
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