
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 
 
 

355 

Charles University 
Center for Economic Research and Graduate Education 

Academy of Sciences of the Czech Republic 
Economics Institute 

Andreas Ortmann
Sergey Slobodyan

(THE EVOLUTION OF) 
POST-SECONDARY EDUCATION: 

A COMPUTATIONAL MODEL 
AND EXPERIMENTS

 

CERGE-EI 

WORKING PAPER SERIES (ISSN 1211-3298) 
Electronic Version 



                Working Paper Series  355 
(ISSN 1211-3298) 

 
 
 
 
 
 

(The Evolution of)  
Post-Secondary Education:  

A Computational Model  
and Experiments 

 
 
 

Andreas Ortmann 
Sergey Slobodyan 

 
 
  

 
 
 
 

 
CERGE-EI 

Prague, June 2008 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-80-7343-155-6 (Univerzita Karlova. Centrum pro ekonomický výzkum  
a doktorské studium) 
ISBN 978-80-7344-144-9 (Národohospodářský ústav AV ČR, v.v.i.) 



1 
 

(The Evolution of)  
Post-Secondary Education: 

A Computational Model and Experiments 
 

Andreas Ortmann and Sergey Slobodyan* 
 

CERGE-EI† 

 
Abstract 

 
We propose a computational model to study (the evolution of) post-secondary 

education. “Consumers” who differ in quality shop around for desirable colleges or 
universities. “Firms” that differ in quality signal the availability of their services to 
desirable students. As long as they have capacity, colleges and universities make offers 
to students, who apply and qualify. 

Our model generalizes an earlier literature (namely, Vriend 1995) in an 
important dimension: quality, the model confirms key predictions of an analytical model 
that we also supply, and the model allows us to systematically explore the emergence of 
macro regularities and the consequences of various strategies that sellers might try. 

We supply three such exercises. In our baseline treatment we establish the 
dynamics and asymptotics of our generalized matching model. In the second treatment 
we study the consequences of opportunistic behavior of firms and thus demonstrate the 
usefulness of our computational laboratory for the analysis of this or similar questions 
(e.g., the problem of early admission). 

In the third treatment we equip some firms with economies of scale. This variant 
of our matching model is motivated by the entry of for-profit providers into low-quality 
segments of post-secondary education in the USA and by empirical evidence that, while 
traditional nonprofit or state-supported providers of higher education do not have 
significant economies of scale, the new breed of for-profit providers seems to capture 
economies in core functions such as curricular design, advertising, informational 
infrastructure, and regulatory compliance. Our computational results suggest that this 
new breed of providers is likely to continue to move up the quality ladder, albeit not 
necessarily all the way up to the top. 
 
JEL Classification: C63, D21, D83, I21, L15 
Keywords: post-secondary education, for-profit higher education providers, 
computational simulations 
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Abstrakt 

 
Navrhujeme výpočetní model pro studium (vývoje) vzdělávacího systému po 

středním stupni. “Spotřebitelé”, kteří se liší v kvalitě, nakupují od vysokých škol a 
univerzit. “Firmy”, které se také liší v kvalitě, nabízejí studentům své služby. Pokud 
mají volné kapacity, vysoké školy a univerzity dávají nabídky studentům, kteří se 
přihlásí a projdou přijímacím řízením. 

Náš model zobecňuje dřívější literaturu (jmenovitě Vriend 1995) z důležitého 
hlediska: kvalita, potvrzující důležité předpovědi analytického modelu, který rovněž 
nabízíme, což nám umožňuje systematicky studovat výskyt makro regularit a důsledky 
různých strategií, které můžou jednotlivý prodejci zkoušet. 

Nabízíme tři takovéto případy. V našem základním přístupu popisujeme 
dynamiku a asymptotiku našeho základního srovnávacího modelu. V druhém přístupu 
studujeme důsledky oportunistického chování firem a tudíž ukazujeme užitečnost naší 
výpočetní laboratoře pro analýzu, popřípadě podobných problémů (např. problém 
předčasného přijetí). 

V třetím přístupu přidáme některým firmám ekonomiku škál. Tato varianta 
našeho srovnávacího modelu je motivována vstupem proziskových poskytovatelů do 
části vzdělávacího odvětví s nízkou kvalitou vzdělávání po středním stupni ve 
Spojených státech a je také motivována empirickými pozorováními, že zatímco tradiční 
neziskový popř. státní provozovatelé vzdělání nedisponují významnou ekonomikou 
škál, nově přicházející proziskový poskytovatelé jí zřejmě disponují v základních 
funkcích jako je obsazení pracovních pozic, reklama, mezinárodní infrastruktura a 
plnění regulací. Naše výpočetní výsledky naznačují, že tento nový výskyt poskytovatelů 
bude pravděpodobně pokračovat ve zvyšování úrovně kvality, ačkoli ne nezbytně celou 
cestu až na vrchol. 
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1 Introduction

Post�secondary education in the USA, formerly known there as higher education,

has undergone dramatic changes over the past decade. The new label re�ects the

increasing orientation of traditional higher education providers toward vocationalism

(see e.g., Breneman, 1994; Sperling and Tucker, 2006; Washburn, 2005), and the

emergence of a new breed of higher education providers: publicly traded, degree�

granting providers of post�secondary education (e.g., Ortmann, 1997; Ortmann,

2001; Sperling, 2000; Ruch, 2001; Kirp, 2003; Newman, Couturier, and Scurry, 2004;

Pusser, 2005; Breneman, Pusser, and Turner, 2006) that we shall call for�pro�ts

from here on. These for�pro�t �mutants� now represent about 10 percent of the

post�secondary education institutions in the USA.1

That for�pro�ts have managed to invade the higher education sector is little

short of sensational. Higher education in the USA was, and for the most part still

is, an industry whose private not�for�pro�t and public segments were, and still are,

subsidized through signi�cant tax and regulatory breaks, see Facchina, Showell, and

Stone (1993), as well as �especially at the higher end �signi�cant donations and

the endowments they generate. In addition, not�for�pro�t and public institutions

of higher education in the USA do not have to pay investors a reasonable return.

Thus for�pro�ts were, and are, clearly handicapped. How then could they succeed?

This is the key question we address below.

For�pro�ts invaded higher education initially by providing services to market

niches such as information technology training and continuing education/workplace

training for adults (e.g., Sperling, 2000; Ruch, 2001; Sperling and Tucker, 2006; Ort-

mann, 2006). In terms of the classi�cation proposed by Zemsky, Shaman, and

1The major publicly traded, degree-granting providers of post-secondary education in the USA
(by way of their stock market symbols, APOL, CECO, COCO, DV, EDMC, ESI, STRA, and
WPO) will generate about $10 billion in revenue in 2006 which represents about 5% of the higher
education market as traditionally understood. The divergence between market share in terms of
number of institutions and in terms of revenue re�ects the particularities of the ways for-pro�ts
operate: Typically they own centralized administrative and curricular development facilities and
no-frills �campuses�/learning centers that are often located in malls for easy access. For more
details, see Ortmann (2001, 2006), Ruch (2001), and Sperling and Tucker (2006).
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Iannozzi (1997), for�pro�ts initially entered post�secondary education through seg-

ments in which one typically also �nds community colleges. Since then for�pro�ts

have successfully moved up to segments in which one typically also �nds state uni-

versities. It is thus an interesting question whether this invasion of ever higher

segments of post�secondary education by for�pro�t �mutants�will come to a halt,

or whether for�pro�ts will ultimately invade the top echelon of higher education as

we knew it. To put it starkly, could a liberal arts college � arguably the paragon of

what higher education once stood for � be organized as a for�pro�t institution?2

Towards a better understanding of these issues, we propose a computational

model, or laboratory, that, in principle, could be calibrated with data from post�

secondary education in the USA (e.g., the data on which the VIRTUAL U simulation

is based).3 However, while we believe that our model captures the key aspects

of post�secondary education, we prefer to think about it as a culture�dish that

allows us to explore how macro regularities might emerge through the repeated

local interactions of boundedly rational, heterogeneous agents. We will demonstrate

the usefulness of such a laboratory through three computational exercises. We also

relate our model to the simple theoretical model shown in the appendix that gives

us con�dence that our baseline results are sound.

Following exhortations in the literature to concatenate new computational mod-

els with predecessors (e.g., Axelrod, 1997), we �rst �reverse�engineered�and then

generalized (especially as regards the classi�er system) Vriend�s (1995) in�uential

model of decentralized markets consisting of locally interacting boundedly rational

and heterogeneous agents. Indeed, we have been able to replicate reasonably well

Vriend�s results (e.g., the service ratio approaching to 1, approximately one third of

consumers patronizing previously attended �rms, etc.)

Since his model presented a decentralized market, with buyers and sellers not

2We are agnostic on the issue of whether a liberal arts college should be organized as a for-pro�t
institution. Interestingly, a for-pro�t college with classic curriculum is scheduled to open in 2007
(see Anonymous, 2006).

3VIRTUAL U is an ambitious attempt to build a Sim City�like simulation of higher education
in the US. It draws on real�world data in parameterizing the underlying simulation machines. See
http://www.virtual-u.org/ for more details.
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strati�ed by quality (contrary to buyers and sellers of post�secondary education in

the USA), we generalized Vriend�s model in that key dimension. In our baseline

treatment (�Q-model� or T1), we explored the dynamics and asymptotics of this

generalized matching model. The results of that baseline treatment con�rm the

results of an analytic model that we supply in the appendix.

To further demonstrate the usefulness of our computational laboratory, in a sec-

ond treatment (T2) we study the consequences of opportunistic behavior of colleges

and universities (e.g., admittance of unquali�ed students for �scal reasons). The

results demonstrate that our computational model lends itself to the study of var-

ious other related issues, such as viable quality improvement strategies for colleges

and universities or the impact of various forms of early admissions (see Avery, Fair-

banks, and Zeckhauser, 2003). We could also study, and in fact have done so in a

previous version (see Ortmann, Slobodyan, and Nordberg, 2003), the emergence of

behaviorally di¤erent consumers (�hoppers�rather than traditional �patronizers�).

Finally, in a third treatment, we study the key question that motivated our

study originally: How could severely handicapped for�pro�t �rms succeed in an

environment that, at �rst glance, seemed utterly hostile? To this purpose we equip

one �rm with a cost structure that features initially higher cost but also economies

of scale once a certain number of customers has been attracted by the �rm. This

variant of our matching model (�QES�model�or T3) is motivated by the entry of

for�pro�t providers into low�quality segments of post�secondary education in the

USA and empirical evidence (detailed in section 2.3) that, while traditional not-

for-pro�t or state�supported providers of higher education do not have signi�cant

economies of scale, the new breed of for�pro�t providers seems to capture economies

in core functions such as curricular design, advertising, informational infrastructure,

rent-seeking, and regulatory compliance (e.g., Ortmann, 2001; Ruch, 2001).4 Our

computational results suggest that this new breed of providers is likely to continue

4While our study is motivated by recent developments in post�secondary education in the
USA, similar developments today can even be observed in transition economies that historically
were much less open to curricular and other educational innovations, see Kraft and Vodopoviec
(2003).
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to move up the quality ladder. There is, however, no guarantee that they will march

all the way to the top.

The article is structured as follows: Section 2 presents the matching model, a

discussion of our computational agents, and the details of experimental design and

implementation. Section 3 presents, among other things, �ndings on the equilbrium

distributions of �rms across the quality spectrum under various treatments. Sec-

tion 4 provides a brief discussion of related literature and a rationalization of our

approach. In Section 5 we pro¤er some concluding remarks. The appendix contains

an analytically tractable simpli�ed version of our baseline model which suggests our

computational results are robust to details of computational implementation.

2 Structure of the matching model

2.1 Summary of the matching model

Buyers (prospective students and/or their parents) and sellers (colleges and univer-

sities) of post�secondary education try to match optimally in a decentralized market

for a number of periods.5 In the �rst period, buyers are randomly and uniformly

distributed along a quality spectrum that is normalized to the interval [0, 100].6

Likewise, in the �rst period, sellers are randomly and uniformly distributed along a

quality spectrum that is normalized to the interval [0, 100].

Buyers and sellers are modeled as boundedly rational decision makers that select

actions probabilistically; we will rationalize this assumption in Section 4 below.We

explain how exactly buyers and sellers make decisions in the following section.

Table 1:
5For the remainder of the text we use as synonyms the words buyers, consumers, and students,

on the one hand, and sellers, �rms, and colleges and universities, on the other hand.
6We realize that it would be desirable to allow the distribution to change over time, re�ecting

for example the in�ux into post�secondary education, and especially into for�pro�ts, of students
who are the �rst in their families to go to college. However, given our current focus, no additional
insight would be gained from such a modi�cation.
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FIRMS CONSUMERS
�make production and
signaling decisions
�signal

�choose �rms,
apply to one

�accept or reject
consumers

�if rejected, choose
another �rm

. . . . . .
�calculate pro�ts,
adjust quality

Table 1 details, top�down, the timeline of interactions of sellers and buyers, i.e.,

the matching protocol, in each period. In every period, �rms �rst make production

and signalling decisions. Firms then signal potential buyers by picking a random

buyer (with replacement) and checking her or his quality. Only those buyers that are

within a pre�speci�ed range of quality ([Q��C ; Q+�F ]) get signalled, up to the

pre�determined number of signals that the �rm has chosen to send in that period.

This re�ects the practice of colleges and universities to admit only those students

that ful�ll certain minimum quality standards and to diligently track the yield of

various advertising and recruiting channels (i.e., not to waste recruiting e¤orts on

candidates that can be expected to be out of reach or undesirable). Implicitly, we

assume that �rms know buyers�preferences regarding the quality of school they are

willing to accept and thus avoid sending signals to consumers that are out of reach.

This explains the upper limit Q+�F of the quality range to which �rms send signals.

Consumers then choose their �rm from the o¤ers. Only those �rms become

candidates that are above a pre�speci�ed quality that equals buyers�own quality

minus �F . This re�ects the practice of the overwhelming number of students not to

go to colleges and universities with quality signi�cantly less than the desired quality

level. Symmetrically endowing consumers with knowledge of �rms�behavior rules

(making only �rms with Q 2 [Q � �F ; Q + �C ] candidates) makes no di¤erence,

as no consumer of quality Q receives a signal from a �rm with quality greater than

7



Q+�C .

Since, typically, a student will be signalled by several colleges or universities,

the question arises how he or she prioritizes among multiple o¤ers. We assume that

consumers collect all o¤ers and put those �rms that satisfy a minimum quality on

a list of desired �rms. For consumers who PATRonize, this list consists of only one

�rm whose quality they do not check because they must have done so at some point

in the past7 and because quality changes typically do not happen suddenly. All

consumers (including those who PATRonize) then �apply�to their desired �rm(s).

This matching process involves two random processes as follows: First, a consumer

is randomly drawn; second, that consumer randomly draws a �rm from her list

of desired �rms. As soon as such a �rm can and wants to provide, a match is

accomplished and it is another randomly drawn consumer�s turn.8 Firms do not

discriminate between consumers who patronize and those responding to o¤ers.9

Buyers and sellers are characterized by preferences and internal states, behav-

ioral rules (= rules for selecting actions out of the current choice set), the number of

behavioral rules, internal rules (= rules for selecting and modifying rules), and spec-

i�cations of the decision makers�interactions with the world. Table 1 summarizes

these characteristics which are discussed in more detail below.

Table 2
7Consumers are forced to take a KNOWN action in the �rst period; hence they are able to

PATRonize from the second period on.
8Think of a student who collects all the information she gets in a large folder and, when the

times come to apply, takes (randomly) the �rst one that ful�lls her aspiration level. If this attempt
fails, the student randomly selects another �rm of su¢ ciently high quality out of the folder. We�ll
rationalize that procedure in section 4. Other procedures are, of course, possible. For example,
rather than selecting �rms randomly, consumers might call on schools according to their quality.

9This is, in a sense, in contrast to Kirman and Vriend (2001) where loyal customers could receive
more or less preferential treatment. The implications of loyalty on the part of sellers remains an
issue for future research. Again, we believe that this issue is not of material relevance for the issues
we are interested in here.
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CONSUMERS FIRMS
PREFERENCES

�F �C

INTERNAL STATES
Weights; own Q, Weights; own Q, demand,
�rm attended last period, avg. Q of consumers,
list of schools that are desirable pro�t, average pro�t

BEHAVIORAL RULES
IF (SAT, no SAT, indi¤erent) (production, signal)
AND (INFO, no INFO, indi¤erent)
THEN (PATR, KNOWN)

NUMBER OF RULES
18 20

INTERNAL RULES
Rules for Selecting Rules Rules for Selecting Rules
stoch. auction; reinforcement stoch. auction; reinforcement

Rules for Changing Rules
production and signaling
adjustment, GA

MATCHING PROTOCOL
Speci�cation of �rm Speci�cation of consumer
selection selection

The preferences of buyers and sellers are de�ned by the minimal quality of a

counterpart they are willing to consider: Buyers will go only to �rms that meet a

given quality threshold (de�ned as own quality Q minus �F ); sellers are interested

only in those consumers who meet a given quality threshold (de�ned as own quality

Q minus �C).

The internal states of buyers and sellers are de�ned as follows: Buyers keep

track of the strengths (�weights�) of their behavioral rules, their own quality Q,10

the index of the �rm which they attended last period, and a list of schools that

10Currently, our consumers do not change their quality, i.e., exactly what school they attend
has no consequence for their educational outcomes. Firms thus face a quasi��xed distribution
of consumers in quality space. We call this distribution quasi��xed because the distribution of
patronizers across �rms changes over time. We note that there is no consensus about the value that
colleges and universities add to human capital formation, see Altonji and Dunn (1996), Behrman,
Rosenzweig, and Taubman (1996), and Tamura (2001).

9



are desirable (i.e., have a minimum quality Q��F ); sellers analogously keep track

of the strengths (�weights�) of their behavioral rules, their own quality Q,11 the

realized demand for their services, and current as well as average past pro�t.

Buyers�behavioral rules each have a conditional and an action part (a Classi�er

System). The conditional part determines if a rule will be activated (to be explained

below) given the current state of the world while the action part encodes possible

actions. Speci�cally, rules have the following form:

IF (SAT, no SAT, Indi¤erent) AND (INFO, no INFO, Indi¤erent) THEN (PATR, KNOWN)

Here SAT denotes a buyer�s satisfaction (being served last period), and INFO records

whether a buyer has received signals from �rms in the current period. Think of this

signal as an invitation to apply. Some rules use a coarser representation of the state

of the world and are indi¤erent to SAT, INFO, or both. Buyers have two actions

available to them: they can try to patronize the �rm they attended (PATR) or try to

go to a �rm that signalled them (KNOWN).12 Buyers who are not able to take the

PATR or KNOWN action (because �rms do not accept them) do not get matched.

Buyers start with a complete set of 3 � 3 � 2 = 18 rules which remain unchanged over
the course of our computational experiments.

Unlike the classi�er system representing the behavior of buyers, the behavioral

rules for sellers encode pairs of integer numbers, one representing the number of units
11A �rm�s quality is updated according to the following rule, Q = w1 �Qavg +w2 � �; where Q is

the �rm�s quality, Qavg the average quality of its consumers, � the �rm�s pro�ts, and w1 and w2
are weights. Since the weight on pro�ts is rather low, we essentially model the quality of a college
or university as the average of the quality of its students. This follows well�established precedent
in the literature, e.g., Lazear (2001), Rothschild and White (1995). We conjecture that factoring in
the quality of faculty would not a¤ect our qualitative results for all reasonable parameterizations.
12Adelman (2000) is an eminently readable sketch of the emerging �parallel universe of postsec-

ondary credentials ... an education and training enterprise that is transnational and competency�
based, confers certi�cations not degrees, and exists beyond governments�notice or control.�(p. 20)
We note that competency�based certi�cation is also propagated by institutions such as Western
Governors University (http://www.wgu.edu/) which has made considerable headlines by o¤ering
its prospective students the advantage that skills and knowledge acquired at other universities, on
the job, or just through life may be counted toward one�s WGU degree. What all these develop-
ments point to is a new kind of student � �hoppers�we call them � who takes classes here and
there and then consolidates her or his portfolio at a school of her or his choice. In our model,
hoppers are modeled as consumers who never use the PATR action. Their behavior is analyzed in
Ortmann, Slobodyan, and Nordberg (2003).
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produced and the other the number of signals to be sent. Every integer is coded by

a bitstring of length 10; therefore, numbers from 0 to 210 � 1 = 1023 can be coded.
We restrict production to [0,255] because the average number of consumers per �rm

is 100 and we have not observed large deviations from that number except in the

initial adjustment process.

In each period, sellers produce slots whose availability is then signalled to prospec-

tive (and desirable) buyers. Note that rules in this sense translate directly into

actions. There are twenty such rules that are initialized randomly (for every bit in

a string, a fair coin is tossed to determine whether it is 0 or 1) so as to represent

various production�signaling combinations.13

2.2 Experimental implementation: Stochastic auction, re-
inforcement, and evolution of rules

Buyers and sellers select their actions probabilistically in a stochastic auction into

which all rules (for buyers, only the rules matching their current state) are entered.

However, these rules are not entered equally weighted. Rather, their weights re�ect

their past �success�: the better they performed in the past, the more weight they

get.14

With a small probability that we call �discard probability�, every rule�s total

bid can be discarded. This procedure makes sure that the �best� rule typically

wins the auction but that inferior rules have a small chance of winning as well. (In

essence this is the idea of a trembling hand well established in the literature.) In

the following the winning rule is called the active rule. The rule that was active in

13The two left-most bits of the production part of every rule are set to zero, so that a �rm�s
production is indeed between 0 and 28 � 1:
14In such an auction, every rule submits a �bid�proportional to its weight or �strength�w plus

i.i.d. error, b1w + ". The basic bid b1w represents a stake that a rule is willing to pay for the
right to win in the auction. This stake is higher the higher a rule�s weight is. Following Holland
(1992), the winning rule pays its basic bid, of which b2b1w is transfered to the previous winning
rule. Lettau and Uhlig (1999) show that there is an important connection between this so�called
bucket�brigading and dynamic programming: In particular, in the steady state the current rule�s
weight equals current payo¤ plus a share of the next period rule�s weight. Thinking of weight as
value, and of rule as state, this is an analogue of a convergent Bellman equation.
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the previous period obtains a share of the active rule�s basic bid.

The selection of the initial strength of a rule, its possible range (from zero to one

in our case); the standard deviation of the auction�s error term, "; the speed with

which that standard deviation decreases over time;15 and the discard probability all

in�uence two characteristics of the stochastic process generated by the stochastic

auction: the expected number of active rules (not more than three or four in our

case) and the variance of the number of rules that will be called to duty on a regular

basis.

Strengths of rules are restricted to [0,1]. This, together with the discard proba-

bility and the decreasing standard deviation of the auction�s error term, ", is done

to prevent, early in the simulation, the emergence of �runaway� rules that might

lead to premature convergence.

After the stochastic auctions have determined the buyers�and sellers�rules for

the current period, matching is implemented as described in the previous subsection

and payo¤s to buyers and sellers are realized. For a buyer, the payo¤ equals one if

she is served this period and zero otherwise. For a seller, the payo¤ equals the ratio

of the current pro�ts to average pro�ts over the last 200 periods,16 times � 2 [0; 1].17

Next, each buyer�s and seller�s payo¤ is multiplied by b1(1� b2 ) and this product is
added to the active rule�s weight.18

The stochastic auction and reinforcement mechanism described above closely

resembles various forms of probabilistic enforcement learning proposed in the litera-

ture. However, our evolutionary programming technique is more than simple individ-

15This is done by Vriend (1995) to reduce stochastic disturbances of the system as time pro-
gresses.
16This is motivated, �rst, by the parameterization in Vriend (1995) and, second, by our desire

to stabilize our computational model within a reasonable run length.
17Multiplication by � means that rules which produce average pro�t every period cannot achieve

the maximum strength; instead, their weight converges to 100�% of it. This construction facilitates
the never ending emergence of strategies that aim to beat the average performance: no seller
rule will be used forever and eventually new combinations of (production, signalling) pairs will
be experimented with. This �new broom e¤ect� speeds up adjustment to a rapidly changing
environment.
18Together with bucket�brigading, this ensures that weight of the rule used every period con-

verges to one for buyers and � for sellers.
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ual reinforcement learning. To model the behavior of �rms, we used a combination

of the Steepest�Ascent Hill�Climbing algorithm and the GENITOR algorithm.19

This evolutionary technique is arguably the simplest programming technique and as

such is a desirable baseline, e.g., see Chen, Du¤y, and Yen (2002) and the critique

of Valente (2002).

The Steepest�Ascent Hill�Climbing part of our algorithm is implemented as

follows: �rms update the production part of their rules in every period as in Vriend

(1995). If a �rm�s demand (number of consumers that applied to a �rm in the

current period) di¤ers from its production, production is adjusted by 10% of the

di¤erence or 1 unit if 10% of the gap is less than 1.

The GENITOR part of the algorithm is implemented by generating one com-

pletely new rule every 50 periods. Every �rm�s rules are ordered by their weight and

two �parent� rules are selected from the top quarter (top �ve rules). A standard

uniform crossover operator is applied to the binary strings� parent rules� and one

of the two �children�, randomly selected, is retained. Then, we mutate every bit of

the child string and replace a randomly selected rule from the bottom half (bottom

ten rules) with the child, which is assigned a weight equal to the average of its par-

ents�weights. We could use even simpler procedures, like the child being a linear

combination of the two parents�rules, but it would be essentially inconsequential.

Since the consumers�classi�er system is complete, there is no need to evolve it

further. Unlike �rms, consumers have a set of rules that does not change over time.

(Of course, the strengths of the rules might change.)

After buyers and sellers have been matched, �rms compute their revenues, costs,

and pro�ts. They also update their quality as the weighted average of the quality

of students who have chosen to enroll and current pro�ts, with weight on pro�ts

19In the GENITOR algorithm, rules are ranked according to their �tness, and the probability of
selecting a particular rule is proportional to its rank. Every nth period, two evolutionary operators
(crossover and/or mutation) are applied to produce a new rule, which is inserted into the existing
ranking and replaces an old rule. One of the advantages of the GENITOR algorithm, according to
Chattoe (1998) and Whitley (1989), is the relative stability of the ranking, which results in stable
actions. Chattoe (1998) argues furthermore that the GENITOR algorithm closely resembles the
real�world decision�making process in companies and humans.
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being relatively small.20 While this approach to determining the quality of colleges

and universities � essentially de�ning the quality of a school as the average of the

quality of the students that it attracts � is admittedly simplistic, it captures, in our

view, the most important aspect of what determines the quality of an institution.

Speci�cally, it allows us to study the trade�o¤ any typical college faces on the

margin of admitting a rich but not�too�smart, instead of a poor, but brilliant,

student. Below, we call such admittance of unquali�ed students for �scal reasons

opportunistic behavior.

This process repeats round after round. The matching process, in other words,

is a dynamic process that evolves over a number of periods. The dynamic process is

de�ned algorithmically in terms of the behavioral rules of our agents, their internal

states and preferences, their repeated interactions, and � through internal behav-

ioral rules that govern how rules are selected and changed � the evolution of rules

toward some stable outcome.

The program code is described in the working paper version of this manuscript,

Ortmann, Slobodyan, and Nordberg (2003).

2.3 Experimental design: Parameters and treatments

Following exhortations in the literature to concatenate new computational models

with predecesors, e.g., Axelrod (1997), we parameterize our baseline Q�model almost

completely with the parameters Vriend (1995) chose, with two notable modi�cations

(signaling costs are much lower in our model, and arguably were unrealistically high

in Vriend�s model; the variance of the error term in the consumer stochastic auction is

higher, allowing our consumers more experimentation which arguably re�ects search

behavior better in the market that we study here; see Boylan 1998). Table 3 below

details all relevant parameters common to our three treatments (the Q�model, the

Q�model with moral hazard, and the QES�model) and also relates these parameters

20The formula for updating the quality is Q = w1 �Qavg + w2 � �. w1 = 0:95 in all simulations,
and w2 is calibrated by requiring the average �rm quality to be equal to 50 which produces w2
about 0:1. Other ways of calibration are, of course, possible but seem less natural.
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to those employed by Vriend (1995).

Table 3

Run-length 3000 Vriend (1995)
Production cost CY (maximal quality) .25 � � � � �
Signal cost CS (maximal quality) .025 Vriend = .08
Price P (maximal quality) 1 Vriend (1995)
Average number of consumers per �rm 100 � � � � �
Maximum acceptable quality gap, consumers 10 NA
Initial rule weight, �rms (consumers) 0.3 (0.5) Vriend (1995)
Steady state weight � of an average rule, �rms 0.65 NA
Stdev, auction error term, �rms, N(0; R) 0.075#0.03 Vriend (1995)
Stdev, auction error term, consumers, N(0; R) 0.034 0.012
Parameter b1, �rms (consumers) 0.25 (0.1) � � � � �
Parameter b2, �rms (consumers) 0.4 (0.1) � � � � �
Mutation probability 0.01
Uniform crossover probability 0.50
Discard probability 0.025 Vriend (1995)

For all three treatments we used the same parameterization. In the �rst treat-

ment (T1) we implemented the Q�model to generate baseline equilibrium distri-

butions of �rms across the quality spectrum. In the second treatment (T2) we

continued to use the Q�model but inserted an opportunistic �rm in the set�up.

Such a �mutant�accepts consumers whose minimum quality is 12 rather than 10

points below its own quality. In the third treatment (T3) we continued to use the

Q�model but inserted a �mutant�(representing a for-pro�t �rm) that initially had

higher costs but also economies of scale once a certain number of customers had

been attracted; for ease of reference we refer to that model as �QES-model�.

The exact pro�t function for a �normal��rm (i.e., the �rms populating T1, and

all �rms that are not �mutants�in T2 and T3) is

� = (P �min(Y;D)� CY � Y � CS � S) �
Q

100
;

where Y is the �rm�s production, D the realized demand, S the number of signals,

and Q the �rm�s quality. For a for�pro�t mutant, the cost term CY � Y + CS � S is
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multiplied by 1:2: If Y is above MES = 50 for all runs reported in this paper, its

cost is further multiplied by MES
Y
.

Our parameterization is meant to capture the following facts about the cost

con�gurations of non�pro�ts and the kind of for�pro�ts (colleges and universities

that are part of publicly traded education companies): Traditional �rms � which

tend to be stand�alone, brick�and�mortar entities � do not have economies of

scale in a range that is relevant (e.g., Goetz, Siegfried, and Zhang, 1991; Laband

and Lentz, 2004). In fact, diseconomies of scale seem to set in fairly quickly. In

contrast, publicly traded for�pro�ts, while having signi�cant start�up costs, are

generally believed to have signi�cant economies of scale resulting from centraliza-

tion of such functions as curricular design, advertising, informational info structure,

rent�seeking, and regulatory compliance (e.g., Ortmann 2001; see also Ruch 2001,

especially chapter 4; see also Spelling and Tucker 2006). Our claim is not easy to

verify � the kind of data that one would need for it are proprietary � but a look at

the 10-K form supplied by the Apollo Group on its website (www.apollogrp.edu/)

is very suggestive: Average costs per student as reported there were $5,650 in �scal

year 1995, rose nominally to about $6,000 in 2000, and drifted down since then

to $5,000 in �scal year 2005. In real terms, after an initial increase, average costs

declined by about 30% over a decade, with student numbers having grown about

ten�fold during that time. A signi�cant part of that growth (and the economies of

scale being captured) seems to be attributable to the University of Phoenix online

division for which the Apollo Group issued a tracking stock for a couple of years.

Unfortunately, once pro�ts exploded � according to the UOPX 10-K the online

division turned a pro�t of $15 million in �scal year 2003 and $140 million in �scal

year 2004 � the Apollo Group killed the tracking stock (and hence an important

source of data).

Following Glaeser and Shleifer (2001), we do not handicap our for�pro�ts with

taxes although � from pilot runs that we do not report here � doing so would

not change our qualitative results; it would only slow down their movement up the

quality ladder. We also do not explicitly model the state appropriations that (some)
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nonpro�ts schools get, which have declined and continue to decline at a rapid pace

(e.g., Breneman, 2005) and, in any case, do not a¤ect the cost side. Overall, we feel

con�dent that our cost assumptions are reasonable (see also Ruch 2001, p. 87).

Since scaling e¤ects are notorious, we controlled for them by implementing treat-

ments T1 through T3 with combinations of 12 �rms/1200 consumers (Scale1) and

24 �rms/2400 consumers (Scale2). Table 4 below summarizes our 3x2 design, de-

tailing the number of runs in each cell and the number of mutants for treatments

T2 and T3 across all scales. The case of 10 �rms/1000 consumers was presented in

Ortmann, Slobodyan, and Nordberg (2003).

Table 4

treatmentsnscales Scale1: 12 �rms/1200 cons Scale2: 24 �rms/2400 cons
T1: Q� model 100 runs 100 runs
T2: T1 + MH 100 runs (1 mutant) 100 runs (1 mutant)
T3: QES� model 100 runs (1 mutant) 100 runs (1 mutant)

3 Results

We restrict ourselves to what we consider the essential characteristics of the runs

in a treatment cell.21 Before we analyze the equilibrium distribution of �rms across

the quality spectrum in Section 3.3, we describe convergence toward equilibrium

distributions and signaling, production, and demand trends for the baseline treat-

ment (without opportunistic �rms and without for�pro�t �rms). We focus on the

baseline treatment, T1. We do not discuss the emergence of behaviorally di¤erent

consumers (�hoppers�rather than �patronizers�); a discussion for a series of related

runs may be found in Ortmann, Slobodyan, and Nordberg (2003). The results for

the runs discussed here are qualitatively the same.

21A set of �gures presenting all 600 runs may be obtained from the authors upon request.
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3.1 Convergence toward equilibrium distributions

The results from the Q�model, in T1, show signi�cant path dependence for both

scales: the �slots�in the quality spectrum, or market niches characterized by quality

ranges (which we shall also call, inspired by Zemsky, Shaman, and Iannozzi (1997),

�segments�) in which a �rm will �nd itself, typically depend on its initial rank. If

a �rm, for example, is initially one of the top four �rms in Scale2, it is likely to end

up in the top segment even if its initial quality lies signi�cantly below the predicted

quality of the cluster. The adjustment process takes between 400 (Scale2) and 200

(Scale1) iterations.

While convergence to the equilibrium location is relatively fast, we do observe

� even in the absence of opportunistic �rms or entrants with economies of scale

� occasional eruptions and displacements in quality. A �rm that moves up or

down the quality spectrum typically dislodges another �rm from the segment it

invades. While the number and location of segments is relatively stable, there is

some jockeying going on for those segments.

Opportunistic �rms (T2) or entrants with economies of scale (T3) complicate

the picture, generating more eruptions and displacements and slower convergence

toward the equilibrium distribution. In fact, we often see cascade�like sequential

convergence toward the equilibrium distribution, see Figures 1 and 2.22

3.2 Signaling, production, and demand trends

Even though we initialize our computational experiments with quantity�signalling

pairs that may be widely o¤�equilibrium (recall that the initial number of slots could

be as high as 255, and the number of signals is initially bounded by 1023), production

and demand tend to converge to their equilibrium values � which are about 100

for slots independent of scale, and 450-950 for signals dependent on scale � within

22We have computed a measure of deviations of �rms from the theoretical equilibrium � essen-
tially the sum of squares of deviations � for all runs mentioned in Table 4. These computations
give a measure of convergence beyond our informal discussion above; they are available from the
authors upon request.
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the �rst 500 periods, both in the aggregate and for individual �rms (see a typical

aggregate picture in Figure 3). Signaling, however, converges much more slowly and

is much more volatile: a typical stochastic �uctuation in the �rms�demand (10 to

15%) can lead to a much larger change in the perceived optimal signal level. This is

a consequence of our signaling costs, relative to those in Vriend (1995), being fairly

low. An additional source of uncertainty arises because of the local nature of the

information that �rms collect: they do not observe demand at other �rms.

3.3 Equilibrium distributions of �rms across the quality spec-
trum

We analyze the distribution of �rms after 3000 iterations but, as the selected �g-

ures illustrate, an analysis after 1500 iterations leads qualitatively to very similar

results.23 As we will also see, segments are typically occupied by clusters of �rms.

We shall use the terms �segments�and �clusters�interchangeably.

Baseline treatment T1. In Appendix A we show that, theoretically, we should

have 6 clusters for all �rm numbers modulo 6.24 Our choice of Scale1 and Scale2

was motivated by these theoretical results, although we have explored other scales,

with qualitatively similar results, see Ortmann, Slobodyan, and Nordberg (2003).

Looking at 12 �rms and 1200 consumers (Scale1), and 24 �rms and 2400 con-

sumers (Scale2), respectively, we do observe indeed 6 clusters of 2 and 4, as the-

oretically predicted. The number of �rms in each cluster is essentially constant,

with occasional eruptions and displacements re�ecting the probabilistic nature of

our modeling technique, see Figure 4. Interestingly, but in light of the results from

23As mentioned, convergence to relatively stable con�gurations (6 clusters of �rms) occurs in T1
within the �rst couple of hundred iterations (which could be thought of as semesters, trimesters,
quarters or some such time unit). Even in T2 and T3, the distribution of �rms closely resembles
the theoretical con�guration within 1500 iterations. Recall that we initialize production randomly
on [0,255] and therefore typically o¤ the equilibrium of 100 units per �rm. Doing runs of 3000
allows us to estimate the likelihood of disturbances and switching behavior. More details below.
24We note that this number is a function of the width of the quality range and the width

of the segment (to be made precise later). Ceteris paribus, increasing the quality range leads
monotonically to a higher number of clusters. We speculate that this relation can be described by

the formula
h
range(Q)
�F+�C

i
+ 1; where [A] denotes an integer part of A and range(Q) is the quality

range.
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our model in Appendix A not surprisingly, such displacements regularly result in

an exchange of members of adjacent clusters.25 We note, �nally, that clusters are

distributed approximately equidistantly, again as predicted by the calculations in

Appendix A. This result is also independent of the scale.

From the above it follows that scale is important in two respects. First, only

scales modulo 6 can be accurately described by our symmetric steady state calcu-

lations. In other words, there is a large degree of freedom for scales that are not

of modulo 6, especially if the number of �rms is rather small. As we increase the

number of �rms, it becomes less important whether the number of �rms is modulo

6 or not. This is good news because it means that the computational model that

we propose here is rather insensitive to integer constraints. Second, as we increase

scales, we �nd � somewhat contradicting our initial intuition � a rather stable

con�guration of six clusters or segments which attract whatever number of �rms

populate our computational laboratory.

Moral hazard treatment T2. For both Scale1 and Scale2 the opportunistic �rms

almost never manage to markedly increase their position in the quality spectrum

after the initial adjustment process.

Table 5. Transition frequencies, T2

Scale 1 Scale 2
1 2 3 4 5 6 Tot 1 2 3 4 5 6 Tot

1 33 0 0 0 0 0 33 26 0 0 0 0 0 26
2 16 3 0 0 0 0 19 16 2 0 0 0 0 18
3 8 5 2 0 0 0 15 10 3 2 0 0 0 15
4 5 2 3 2 2 0 14 14 2 3 1 0 0 20
5 2 3 2 1 2 1 11 7 8 1 0 0 0 16
6 0 0 0 4 1 3 8 0 0 0 2 1 1 3

Table 5 represents the transition frequencies separately for 100 runs of Scale1

and Scale2. Each of these runs featured one opportunistic �rm (�mutant�). The

right�most column in the Scale1 and Scale2 panels represents the starting position

25We note that we have similar results for exploratory runs with scales of 20/2000
�rms/consumers, as well as 40/4000, 48/4800, and 120/12000 all of which are not reported here.
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of the mutants, with �1�denoting the bottom segment and �6�denoting the top

segment.26 For example, 15 �rms started in both Scale1 and Scale 2 in segment �3�.

In Scale1, 13 of these mutants could not hold on to their positions and moved down

to segment �2�and �1�. Similarly, for Scale 2, 13 of this mutants moved to segment

�2�and �1�. In fact, that is the clear�cut message: not counting the 33 and 26 �rms

that started in the lowest segment in Scale1 and Scale2, respectively, and got stuck

there, only three moved slightly up, 12 stayed put, and 52 moved down in Scale1,

whereas none moved up, 6 stayed put, and 68 moved down in Scale2. Thus, about

80% to 90% moved down, some of those that moved down did so considerably, in

Scale2 more so and faster than in Scale1 (compare Figures 5 and 6).

The results reported here emerge from the very mild parameterization of moral

hazard that we chose; increasing the moral hazard parameter increases the proba-

bility of downward drift systematically. If, for example, the moral hazard parameter

is doubled (i.e., decreasing the quality of the worst student from Q� 12 to Q� 14),
the o¤ending �rm nearly always (more than 90%) goes to the bottom of the quality

spectrum.

Therefore, at least in our model, opportunism does not pay in the long run: it

increases customer numbers at best marginally and leads typically to a sharp drop

in quality and hence pro�ts.

For�pro�t invasion treatment T3. In contrast, for both Scale1 and Scale2 and

after the initial adjustment process, a for�proft �rm never lowers its position in the

quality spectrum.

26The initial distribution was indeed symmetric and uniform over the whole quality spectrum
range. In order to smooth the trajectories, we computed quality as a moving average over 50
rounds. Since opportunists tend to lose their quality rather fast, the right-most column reports
distributions for Scale1 and Scale2 that are skewed to the bottom.
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Table 6. Transition frequencies, T3

Scale 1 Scale 2
1 2 3 4 5 6 Tot 1 2 3 4 5 6 Tot

1 26 9 3 2 0 1 41 34 0 0 0 0 12 46
2 0 8 8 2 2 21 41 0 0 0 0 0 41 41
3 0 0 0 0 2 11 13 0 0 0 0 0 11 11
4 0 0 0 0 0 5 5 0 0 0 0 0 2 2
Table 6 represents the transition frequencies separately for 100 runs of Scale1 and

Scale2. Remember that each of these runs featured one for�pro�t �rm (�mutant�).

The right�most column in the Scale1 and Scale2 panels represents the starting po-

sition of the mutants, with �1�denoting the bottom segment and �6�denoting the

top segment.27 In fact, for�pro�ts increase their quality most of the time, often

dramatically so, as in Figures 7 and 8. Table 6 allows us to make more quantitative

statements. For example, 41 �rms started in both Scale1 and Scale 2 in segment

�2�. In Scale1, 8 of these mutants stayed while everyone else moved up, with slightly

more than 50 percent of the for�pro�ts that started in segment �2�moving up all

the way to segment �6�. Even more dramatically, for Scale 2, all for�pro�ts that

started in segment �2�moved up all the way to segment �6�; similarly for those

for�pro�ts that started in segment �2� and �4�. The interesting exception is the

high number of for�pro�ts that start out in segment �1�and do not manage to move

out of that attractor. For Scale2, we even see a complete bifurcation, with about 3

mutants being stuck in segment �1�for every mutant that manages to escape and

that indeed manages to escape all the way to the top. Also note that successful mu-

tants do not necessarily start climbing the quality ladder immediately after iteration

500 when the increasing returns to scale regime is switched on in simulations.

In sum, the probability of moving up increases with the cluster number in which

the for�pro�t �nds itself immediately before the increasing returns regime (iteration

501) starts. Moreover, there is a threshold quality level somewhere between clusters 1

and 2, such that random deviation in quality of the for�pro�t is dampened (for�pro�t

27The initial distribution was uniform over the lower half of the quality spectrum range, since
we knew from the results reported in Ortmann, Slobodyan, and Nordberg (2003) and various pilot
runs with the new cost con�guration that we would see wide-spread upward drifts.
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returns to its equilibrium position in cluster 1). For those above, such deviations are

accelerated and for�pro�ts stops at the very top. Some cluster 1 for�pro�ts do move

up because a particularly large positive quality deviation pushes them beyond the

threshold. The existence of such a threshold could be con�rmed using a simpli�ed

symmetric model of the appendix, however, the algebra becomes extremely tedious.

There are various metrics that can further quantify the trends above. Table 7

summarizes one such metric.

Table 7

Qend �Qstart
min avg�std max

T1, average for all �rms -3.6 3.5�5.3 12.6
Scale1 T2, opportunistic �rm -59.5 -6.4�13.6 5.9

T3, for�pro�t mutant -10.4 30.1�26.7 75.9
T1, average for all �rms -9.0 1.8�5.0 14.2

Scale2 T2, opportunistic �rm -58.0 -7.9�11.5 0.6
T3, for�pro�t mutant -4.1 44.9�33.6 86.7

Qstart and Qend denote the average quality of a �rm during periods 100 � 500

and the last 500 periods, respectively;28 therefore Qend � Qstart is a measure of

the change of a �rm�s position in the quality spectrum over time. This measure

quanti�es in particular the default outcome of opportunistic �rms moving down and

for�pro�ts moving up in quality for Scale1 and Scale2. Compare, for example, row

1 of the Scale1 section with rows 2 and 3 respectively. The average quality change

for all �rms in T1 (3.5) is larger than that of opportunistic �rms in T2 (-6.4) and

smaller than that of for�pro�ts in T3 (30.1). Along similar lines, note that the

quality change range has increased dramatically in for�pro�ts, going from 12.6 to

75.9 at the upper limit. Similar e¤ects can be observed for Scale2.

28We do not incorporate the �rst 100 periods because several hundred periods are needed for
the initial noise to get worked out of the system. Including the �rst 100 periods makes the data
noisier but does not change any of the qualitative results. Excluding more initial periods would
not leave enough periods for averaging before the increasing returns to scale regime of for�pro�ts
takes e¤ect in period 501.
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Turning to the di¤erence between Scale1 and Scale2, the key result is that oppor-

tunistic �rms tend to fare slightly worse in Scale2 (upper limit of the range being

0.6) than in Scale1 (5.9). Average downward movement of opportunistic �rms for

Scale2 is larger but not statistically di¤erent from that in Scale 1 (-7.9 vs. -6.4).

Somewhat analogously, we see a stronger average upward movement of for�pro�ts

for Scale2 (44.9 vs. 30.1 for Scale1). Also, mutants�movements in Scale2 tend to

be more abrupt than in Scale1: compare Figures 5 and 6 with 7 and 8, which are

rather typical.

The correlation between �rms�mobility and scale has a straightforward ratio-

nale: when a �rm, for some reason, manages to get more than equilibrium share

of its segment, its increment in quality will be proportional to pro�ts, which are in

turn proportional to the total number of consumers. Grabbing an additional 5%

of a segment with 300 consumers adds 0.18 quality units to an average �rm; an

additional 5% of a segment with 100 consumers adds just 0.06 quality units to an

average �rm. Analogously, competitive advantage (of for�pro�ts) or disadvantage

(of opportunistic �rms) translates readily into more pronounced quality changes

and hence into more turbulent environments as the number of �rms and consumers

per segment increases. Less stability creates, of course, more opportunities, both

positive and negative, for mutants.

4 Related literature and rationalization of our ap-
proach

The computational matching model presented above has three reference points in

the literature.

First, there is the classic work by Gale and Shapley (1962) on college admissions

and later related work on two�sided matching, e.g., Roth and Sotomayor (1990);

Roth and Xing (1994); Roth and Xing (1997); Roth (2002); Pingle and Tesfat-

sion (2001); Vriend (1995); Kirman and Vriend (2001); and Weisbuch, Kirman,

and Herreiner (2000). This literature has theoretically illustrated the heavy math-
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ematical machinery necessary to model matching processes; it has also provided

compelling evidence, both theoretically and empirically, on the importance of insti-

tutional arrangements that prevent, for instance, lower�ranked market participants

from �jumping the gun�on other (higher�ranked) market participants. In the con-

text of post�secondary education in the USA, this issue has been of long�standing

interest as evidenced by Avery, Fairbanks, and Zeckhauser (2003) or Kirp (2003).

Second, there is work that attempts to document the changes in higher education

over the past couple of decades. What little is out there in academic journals has

already been mentioned in the introduction; for the time being much of the relevant

information on those developments remains available only in o¢ cial SEC forms or

in research reports of investment houses. The situation is changing slowly, e.g.

Ruch (2001); Kirp (2003); Newman, Couturier, and Scurry (2004); Pusser (2005);

Breneman, Pusser, and Turner (2006); and Laband and Lentz (2004). None of

these references contains, however, a satisfying analysis of (the evolution of) post�

secondary education. (The description in Laband and Lentz, for example, is based

on 1996 data). Part of the problem is the proprietary nature of the data that would

be necessary for a hard�headed analysis of the recent developments (e.g., data about

the economies of scale resulting from centralization of curricular design, advertising,

informational infrastructure, and regulatory compliance).

While not directly addressing recent changes in higher education, two academic

papers deserve mention here. Rothschild and White (1995) study peer e¤ects and

show theoretically why it is imperative for colleges and universities to give out

need�based �nancial aid to deserving students. Only by doing so will colleges and

universities be able to attract those bright (but poor) students that are an indis-

pensable input in the production process of those students that can pay but are

not so smart. The analysis of these authors also makes clear why there is nothing

sinister about giving merit�based (rather than need�based) �nancial aid to students

that are deserving (whether they are poor or rich). Not surprisingly, colleges and

universities do routinely monitor the comparative attractiveness of their own �nan-

cial aid packages and those of their close competitors. The resulting competition
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adds to the pressure to cheat on the margin (i.e., admitting �legacy�or rich stu-

dents for their prospective �nancial rather than academic contributions.) It is this

development, and the insightful analysis in Rothschild and White (1995), that mo-

tivated our moral hazard treatment. Epple and Romano (1998) theoretically and

computationally study the competition between tax��nanced, tuition�free public

schools and competitive, tuition��nanced private schools in primary and secondary

education; the impact of vouchers; and peer�group e¤ects when students di¤er by

ability and income. The equilibrium of their model shows that schools stratify along

the quality spectrum and that students in private schools, dependent on their mar-

ginal productivity, either receive tuition discounts (or have to pay tuition premia),

as (implicitly) suggested in Rothschild and White (1995).

Third, there is a literature on modeling social processes through GAs and re-

lated evolutionary programming techniques. Arthur (1994) and Arthur (1991) per-

suasively argue the case for agent�based models of interactions of boundedly ra-

tional and heterogeneous agents. Arthur (1994) points out that such models are

grounded in plenty of evidence. Indeed, much of the evidence in experimental eco-

nomics (e.g., Camerer, 2003) and experimental psychology (e.g., Cosmides and

Tooby, 1996; Gigerenzer, Todd, and ABC Research Group, 1999; Cowan, 2001)

has reinforced the impression that Arthur gets it right � people (whether real or

�ctitious, such as organizations) are �intuitive statisticians�(Cosmides and Tooby

1996) who inductively keep track of the performance of a set of plausible, simple

models of the world that they can cope with. When the time to make choices comes,

people act upon the most credible and possibly most pro�table one. The others they

keep in the backs of their minds, so to speak (Arthur 1994, p.407, slightly modi�ed).

Arthur (1991) makes a similar argument but also stresses the importance of calibrat-

ing computational agents to accurately re�ect how human agents learn. Not much

attention has been paid during the last decade to this exhortation, although recent

developments comparing the performance of human and computational agents in

more or less identical settings (e.g., Chen, Du¤y, and Yen, 2002; Pingle and Tesfat-

sion, 2001; Roth, 2002) are encouraging.
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In our model, we translate this literature by assuming that both �rms and con-

sumers are boundedly rational decisions makers. Speci�cally, we model buyers and

sellers as boundedly rational decision makers that select their best actions proba-

bilistically by selecting a rule from the sets of rules available to them. The rules,

to recall, are weighted and their weights are updated continuously to re�ect their

past �success�: the better they performed in the past, the more weight they get.

We believe that such probabilistic choice behavior, or reinforcement learning, is a

valid description of actual agents�behavior although the behavioral rules are not

derived from a well-speci�ed dynamic optimization problem. In fact, such a deriva-

tion is not possible (unless the decision problem is simpli�ed so as to become almost

unrecognizable).

Take consumers: Even US educators in economics are unable to partition US

Ph.D. granting economics departments into more than 17 segments, see Thursby

(2000). Never mind that the professors of economics who were the experts in that

study are much more sophisticated decision�makers than the average consumer (a

prospective student), consumers of postsecondary education evaluate colleges and

universities along many more criteria than the quality of a Ph.D. (as discussed

delightfully in Boylan, 1998). In fact, a veritable cottage industry has emerged

that guides those applicants that can a¤ord to shell out thousands of dollars in the

admissions game (Kirp 2003).

Take �rms: To adjust the production/signaling pair for the next period exactly,

the �rm needs to know the number of competitors, their exact quality, how their

quality changes given this period�s pro�ts, how their student mix is expected to

change (and this, in turn, depends on how many students were turned away by the

competitors and the exact weight structure of rules of these students), and what

will be the student mix in the next period (this changes from period to period, as

every �rm changes its quality, which in turn makes some new students desirable

or willing to consider this �rm; properties of these students, i.e., weights of their

rules and therefore the probability of them selecting PATR or KNOWN, is unknown

to the �rm). In other words, a gradual adjustment of production/signaling pairs,
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combined with an occasional change of the strategy (selecting a di¤erent rule) seems

reasonable.

The model�s structure is extremely complicated, and the inference problems of

�rms correspondingly daunting, especially when the model is still converging to

the equilibrium with 6 clusters with stable membership. By selecting a produc-

tion/signaling pair, every �rm is in�uencing its quality and thus trying to �nd a

steady state quality subject to all other �rms doing the same. This optimization

problemmight be well�behaved locally (there is a single maximum), but not globally:

it is always possible to switch places with a �rm from the higher segment. Trying

di¤erent starting points (di¤erent rules) for the Hill Climbing algorithm gives the

�rm a chance of getting into a neighborhood of a better local optimum, or a better

initial position around the present local maximum, thus improving the convergence

speed.

As to the interaction of �rms and consumers, the matching problem is extremely

complicated, especially when both �rms and consumers are still far from learning

a symmetric equilibrium with 6 clusters or something similar to it. It would be

extremely naive to expect that any individual �rm or consumer would be able to set

up a dynamic optimization problem and solve it, especially far from the equilibrium.

In general, learning optimal behavior in a dynamic problem is not an easy task: see,

e.g., Lettau and Uhlig (1999) for a consonant view on using rules of thumb.

Even though our model lacks explicit intertemporal links such as savings or

investment, it is dynamic: �rms�quality tomorrow depends on their behavior today,

�rms�behavior in�uences what the consumers are doing tomorrow, and consumers�

actions (decision to go to this or that �rm, to use a signal or disregard it and go for

PATR action, etc.) also in�uence a �rms�future behavior through pro�tability of

di¤erent production/signaling pairs. This dynamic nature is the reason we decided

to include �bucket brigading� into our Classi�er System, as described in Section

2.2. Lettau and Uhlig (1999) describe a connection between �bucket brigading�in

Classi�er System and dynamic programming approach to maximization.

We note that �bucket brigading�is not really necessary, as we observed conver-
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gence to a neighborhood of the symmetric 6�cluster equilibrium without it; however,

it does improve the convergence speed. We also note that despite the complexity of

the problem the �rms and consumers are facing, they are able to locate the equilib-

rium across a large variety of di¤erent variations in the model parameters, such as

presence of �bucket brigading�, details of implementation of the stochastic auction,

precise weight on the pro�ts in the �rm�s quality update equation, details of the

matching protocol (in early versions of this paper, consumers with action KNOWN

randomly selected a single �rm among those that have sent a signal instead of form-

ing a list of all such �rms as in the current version), etc. This behavior of our model

allows us to say that equilibrium with �rms located in 6 equidistant clusters is a

�deep minimum�, and so any sensible speci�cation of the learning behavior by �rms

and households will probably converge to it.

A standard objection to agent�based modeling is, �why not model the matching

process the good old�fashioned way, i.e. using an equilibrium search model with per-

fectly rational agents?�Firstly, drawing on Arthur�s arguments and the experimental

literature already mentioned, we believe it is self�evident that agents (including ag-

gregate agents such as �rms) are not perfectly rational. (That, of course, does not

mean that they do not optimize. Surely our agents optimize, noisily, within the

constraints they have been given.) Secondly, we (see also Roth (2002) for a similar

argument) simply do not see a way to model the issues we have addressed above in

the good�old fashioned way. (That said, we stress that in the appendix we provide

analytic results for a simpli�ed version of the problem we analyzed above).

We do acknowledge that the sensitivity and arbitrariness of agent�based mod-

eling is an important issue. An important feature of our technique is that we can

easily incorporate competing behavioral assumptions, and that we can do so even

by modelling various types. Think of this feature as a list of assumptions that is

initially given to a reader who then might (dis)agree with their (un)reasonableness.

To illustrate, recall how we conceptualized the consumer�s decision: Consumers ran-

domly draw a �rm from their lists of desired �rms that have signaled them. One

might argue in favor of a higher degree of rationality and have consumers select the
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best �rm instead. It is obvious that checking the sensitivity of the model to this

change in assumption would require only a couple of key strokes and another set of

runs.

Relatedly, there is the question of the speci�cs of the evolutionary modeling tech-

nique, such as the speci�c parameter values of the standard deviation of the auc-

tion�s error terms, the speed with which that standard deviation decreases over time,

and the discard probability. Speci�cally, a number of authors such as Michalewicz

(1999); Mitchell (1996); and Chattoe (1998), have voiced a concern that the degrees

of freedom inherent in evolutionary modeling techniques � similar to the degrees

of freedom of the design and implementation of human experiments � subject any

computational model to the real danger of being a mere example, and one, for that

matter, that may be rather unrepresentative as regards the complete set of sensible

parameterizations. This issue is admittedly an important and tricky one. For now,

we have solved it by relying almost exclusively on the implementation details in

Vriend (1995).

Axelrod (1997) has enumerated some of the problems that complicate replica-

tion of computational simulations (and re�engineering of extant models). Our own

experience supports Axelrod�s exhortation to make a model description and presen-

tation of results as unambiguous and complete as possible, and to facilitate other

researchers�attempts to re�engineer one�s model; see also the related discussion in

Valente and Andersen (2002) although we have our own reservations about the ap-

proach they propose. Replicability, on that we agree, is the hallmark of good science

among experimental economists and psychologists alike (see Roth (2002) and the

commentaries on that article) and it seems worthwhile to establish it as a funda-

mental methodological tenet in agent-based modeling, too;29 for other tenets see

Hollenbeck (2000).

29In this spirit, we will make our code available to interested researchers.
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5 Concluding remarks

We have proposed a computational model to study (the evolution of) post�secondary

education. Although our model is motivated by developments in the USA, the in-

sights it generates should be easily transferable to related developments in other

countries. While, in principle, we could calibrate our model with data from the

USA (or other countries, for that matter), and while we believe that it captures

key aspects of post�secondary education �e.g., our results on the detrimental con-

sequences of opportunism and the likely advances of the for-pro�t enterprises we

were interested in � we prefer to think about our model primarily as a computa-

tional laboratory. It is useful to conceptualize such a laboratory as a culture�dish,

as Tesfatsion (2002) does, which allows us to explore how macro regularities might

emerge from the bottom up through the repeated local interactions of boundedly

rational, heterogeneous agents and that in turn allows us to explore systematically

the consequences of various strategies that sellers might try.

We do believe that our computational agents�decision making is a reasonable

approximation of real agents�decision making. Rendering our computational model

a more reliable laboratory of post�secondary education requires, in our view, not

so much a more re�ned calibration of our computational agents as a more re�ned

mapping of post�secondary education to our computational model.
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A Theoretical equilibrium con�gurations

In the following we describe the symmetric steady state of the Q�model. �Sym-

metric steady state� denotes situations where every �rm serves the same number

of agents, where every �rm has the same pro�t share (which is indeed what we

observe empirically), and where the quality of the �rm equals the average quality

of its consumers. We calibrate the model so that the average �rm quality Q equals

the average consumer quality of 50 (which, given our assumption of uniform distri-

bution of consumers along the quality spectrum [0,100], is what we can expect on

average). We note that symmetric steady state implies Q = 50 but that the reverse

implication does not necessarily hold. Since �rm quality is de�ned as a weighted

sum of both average consumer quality and pro�ts, we begin with the pro�t weight

calibration before proceeding with an analysis of the equilibrium number of clusters

and, in fact, the exact location of the clusters (cluster con�guration).

A.1 Pro�t weight calibration

A �rm�s quality is updated according to the following rule:

Q = w1 �Qavg + w2 � �; (1)

where Q is the �rm�s quality, Qavg the average quality of its consumers, � is the

�rm�s pro�ts, and w1 and w2 are weights. Symmetric steady state pro�ts are given

by

� =
N

[Q]
�Q;

where N is the number of consumers per �rm (100 in all runs), [Q] the quality

range (100 in all runs), and � the pro�t share (average � is 0:46� 0:48 for di¤erent
con�gurations, with a standard deviation 0:02 � 0:03). Note that � is determined
experimentally.

The requirement that Q = Qavg amounts to Q(1 � �w2) = Qw1; or w2 = (1 �
w1)=�: The empirical value of w2 which prompts Q = 50 is indeed very close to the
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one just derived. For example, with 24 �rms and � = 0:48; w1 = 0:95; the derived

value is w2 = 0:107, while Q t 50 requires an empirical value of w2 t 0.104.

A.2 Equilibrium number of clusters

In this subsection we show why the con�guration that we observe in most runs

with the number of �rms modulo 6 (6 relatively tight clusters of �rms) is a stable

symmetric steady state for our choice of the quality range. For the sake of argument,

assume that �rms�quality is adjusted according to (1) with w1 = 1 and w2 = 0; i.e.,

a �rm�s quality equals the average quality of its consumers. (Runs with this quality

adjustment rule reveal the same distribution of 6 relatively tight clusters of �rms).

Additionally assume that if a given number of T consumers can be served by n �rms,

then T=n of them will be served by every �rm, that is, competition leads to even

distribution of consumers among �rms in equilibrium. A �rm will accept customers

who are at least of quality Q � �; where Q is the �rm�s quality. A customer will

accept a �rm that has at least quality of Qcust � � where Qcust is the customer�s

quality. Therefore, a �rm with quality Q can serve only customers in the quality

interval [Q��; Q+�].
Assume that all �rms are in steady state. Assume next that one of them has,

by some random disturbance, its quality adjusted upwards by dq: The �rm under

consideration loses some consumers at the lower end of its segment at quality Q��
but also obtains some consumers at the upper end of its segment at quality Q+�:

If n other �rms are competing at the lower end and n + j other �rms can serve

consumers at the upper end, the number of consumers lost and obtained are re-

spectively 1
n+1

dq
[Q]
Ntot and 1

n+j+1
dq
[Q]
Ntot; where Ntot is the total number of consumers.

Thus, the new average quality of the �rm if given by

eQ = P
Q� 1

n+1
dq
[Q]
Ntot � (Q��) + 1

n+j+1
dq
[Q]
Ntot � (Q+�)

N � 1
n+1

dq
[Q]
Ntot +

1
n+j+1

dq
[Q]
Ntot

;

where
P
Q is the sum of the �rm�s consumers�quality in steady state and equal

to Q �N by assumption. Dividing the numerator and denominator by
P
Q and N
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respectively and using the fact that 1+x
1+y

t 1 + x� y for x� 1; y � 1; one obtains

eQ t Q+ dq

[Q]

Ntot
N

�
Q+�

n+ j + 1
� Q��
n+ 1

� Q

n+ j + 1
+

Q

n+ 1

�
;

or

dq0 = eQ�Q t dq

[Q]

Ntot
N

�� � n+ 1 + n+ j + 1
(n+ 1) (n+ j + 1)

:

The steady state is stable if random �uctuations in quality are dampened over

time, or jdq0j < jdqj.30 Therefore, the stability of the steady state depends on the
magnitude of the following term:

�

[Q]
Nf �

n+ 1 + n+ j + 1

(n+ 1) (n+ j + 1)
; (2)

where Nf = Ntot
N
is the number of �rms in the economy.

Let us consider some special cases of (2). Suppose that a �rm in steady state

does not have any competition at the lower end of its segment, n = 0: Then (2)

becomes �
[Q]
Nf � 2+j1+j

; and for parameter values (� = 10; [Q] = 100) this expression is

greater than one for any j > 0; and any Nf > 10: In other words, any steady state
that implies no competition at the lower end is not stable, because a random upward

quality movement is ampli�ed. Similarly, suppose that there is no competition at

the upper end of a �rm�s segment. In this case, j = �n; and (2) is �
[Q]
Nf � 2+n1+n

which

is again greater than one for any n > 0; and any Nf > 10: Therefore, a steady state
involving zero competition at the upper end cannot be stable.

The preceding result demonstrates that steady states with fewer than �ve clusters

are unstable, because they necessarily involve zero competition either at the lower

or at the upper end of the quality segment. How about �ve segments then? Assume

a steady state with �ve �rm clusters, numbered in ascending quality order. Given

the parameter values that we used for our treatments, � = 10; [Q] = 100; the

�ve �rm clusters will be located at qualities 10, 30, 50, 70, and 90. Suppose now

that clusters number 2 and 4 move down and up, respectively. In this case, a �rm

30In other words, we want the eigenvalue of the di¤erence equation Qn+1 = f(Qn); linearized
around the steady state, to be less than one. It is always positive, therefore oscillating dynamics
around the steady state are impossible.
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from cluster 3 that randomly increased its quality by dq will have dq0 > dq; while

the one that had its quality decreased by dq will have jdq0j > jdqj: (Recall that
dq0 is the deviation from steady state after one iteration.) In other words, cluster 3

will be torn apart by any non�negligible simultaneous movements of clusters 2 and

4. Therefore, a con�guration with 5 clusters is stable but the associated basin of

attraction is very small. In numerical simulations with Nf = 10 we have observed

stable constellations with 5 clusters of �rms only once or twice every 100 runs.

Why, then, do we observe constellations of 6 clusters for runs with a large number

of �rms, say 24 and 48? And why do we observe constellations with between 6 and

8 clusters for runs with 10 �rms? Compare two steady states, one with C clusters

and another with C + 1; where 10 > C > 5: A �rm that moved up by dq faces the

same competition at its lower end from members of its own cluster and the lower

one, with the total number of other �rms given by Nf
C
�1+ Nf

C
(disregarding integer

constraints). On the other hand, at the upper end of its segment, competition from

members of its own cluster disappears and only that from the upper cluster remains.

Therefore, j = 1� Nf
C
: (2) is now proportional to �

[Q]
Nf �

3
Nf
C
+1

2
Nf
C
�
�
2
Nf
C
+1
� or

�

[Q]
Nf �

C � (3Nf + C)
2Nf � (2Nf + C)

: (3)

The partial derivative of the preceding expression with respect to C is proportional

to
2Nf �

�
6N2

f + 4CNf + C
2
�

4N2
f � (2Nf + C)

2 ;

which is always positive. Therefore, the movement to a higher number of clusters

implies a larger eigenvalue, and hence a less stable steady state.31

Summarizing the results, we see that con�gurations with 4 clusters are unstable

and those with 5 clusters are likely to be destroyed even by small �uctuations.

Furthermore, con�gurations with more than 6 clusters are less stable than those

with 6, and indeed they are increasingly less stable as the number of clusters goes

31A similar result is true for any number of clusters. The math, however, becomes tedious.
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up. Therefore, in numerical simulations one is likely to observe a con�guration with

6 clusters.

Finally, observe that with C = 6; (3) equals 0.42 for Nf = 12; 0.433 with

Nf = 24; and approaches 0.45 as Nf ! 1: This means that con�gurations of 6
clusters are always stable for any number of �rms.

A.3 Cluster con�gurations

Having established theoretically the most likely distribution of clusters, we next

calculate their exact location in the symmetric steady state with C clusters. We

assume that there is an equal number of �rms in each cluster. Under the symmetric

steady state assumptions spelled out in the previous subsection, calculations are the

same for one or n �rms in a cluster; we thus restrict our discussion to one �rm per

cluster.

Order quality locations in a symmetric steady state in ascending order from Q1

to QC : For 10 > C > 5; the �rst �rm (remember we restrict our discussion to

one �rm per cluster) has no competition at its lower end and competition from the

second �rm only at the upper end. Denote as D the density of customers per unit

of quality: Then the �rst �rm will serve customers located in [0; Q2 ��] alone and
those in [Q2 � �; Q1 + �] together with the second �rm. Since in the symmetric
steady state the average quality of consumers equals its own quality, we have

Q1 =

D
Q2��R
0

QdQ+ 1
2
D

Q1+�R
Q2��

QdQ

D
Q2��R
0

dQ+ 1
2
D

Q1+�R
Q2��

dQ

=

1

2

(Q2 ��)2 + (Q1 +�)2

Q2 ��+Q1 +�
=

(Q2 ��)2 + (Q1 +�)2

2 � (Q2 +Q1)
: (4)

Consider now the second �rm. It is the sole provider to consumers in [Q1 +

�; Q3 � �] and a joint provider with �rst and third �rm in [Q2 � �; Q1 + �] and
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[Q3��; Q2+�], respectively. The symmetric steady state condition then becomes

Q2 =

1
2
D

Q1+�R
Q2��

QdQ+D
Q3��R
Q1+�

QdQ+ 1
2
D

Q2+�R
Q3��

QdQ

1
2
D

Q1+�R
Q2��

dQ+D
Q3��R
Q1+�

dQ+ 1
2
D

Q2+�R
Q3��

dQ

=

(Q3 ��)2 + (Q2 +�)2 � (Q2 ��)2 � (Q1 +�)2

2 � [(Q3 ��) + (Q2 +�)� (Q2 ��)� (Q1 +�)]
: (5)

After some algebra, (5) transforms into

Q2 =
Q1 +Q3

2
; (6)

which says that the symmetric steady state location of the second �rm is exactly

between the �rst �rm and the third �rm. It is trivial to show that a similar result

holds for all other �rms located in the interior of the quality spectrum,

Q3 =
Q2 +Q4

2
; (7a)

Q4 =
Q3 +Q5

2
; (7b)

: : : (7c)

QC�1 =
QC�2 +QC

2
: (7d)

Finally, for the last �rm C; the symmetric steady state condition is given by

QC =
2 � [Q]2 � (QC ��)2 � (QC�1 +�)2

2 � [Q]�QC�1 �QC
: (8)

Combining (6) and (7) we obtain Q4 = 3Q2 � 2Q1; Q3 = 2Q2 � Q1 or Q3 =
Q2+ (Q2 �Q1) ; Q4 = Q3+2 (Q2 �Q1) : In other words, �rms are located at equal
distance � = (Q2 �Q1) from each other. The problem of �nding symmetric steady

state locations is thus reduced to solving a system of two quadratic equations, (4) and

(8), in two unknowns, Q1 and � (remember thatQ2 = Q1+�; QC�1 = Q1+(C � 2)��;
QC = Q1+(C � 1) � �). The solution can be found numerically when C; the number
of clusters in symmetric equilibrium, is given.

In the previous subsection we have argued that, given our parameter values �

and [Q] ; the symmetric steady state with 6 clusters should be the most stable one.
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Steady state positions with 6 clusters are given by [8.48; 25.09; 41.70; 58.30; 74.91;

91.52].
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Figure 5. Thick line: mutant.
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Figure 6. Thick line: mutant.
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Figure 7. Thick line: mutant.
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Figure 8. Thick line: mutant.
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