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Abstract

We study the impact of frictions on the prevalence of systemic crises. Agents

privately learn about a fixed payoff parameter, and repeatedly adjust their investments

while facing transaction costs in a dynamic global game. The model has a rich structure

of externalities: payoffs may depend on the volume of aggregate investment, on the

concentration of investment, or on its volatility. We examine how small frictions,

including those similar to the Tobin tax, affect the equilibrium. We identify conditions

under which frictions discourage harmful behavior without compromising investment

volume. The analysis is driven by a robust invariance result: the volume of aggregate

investment (measured in a pivotal contingency) is invariant to a large family of frictions.
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provided excellent comments as discussants.
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Abstrakt 

Tento článek studuje dopad finančních frikcí na výskyt systemických krizí. Článek navazuje na 

literaturu takzvaných globálních her, kterou obohacuje o některé dynamické prvky: ekonomičtí 

agenti se postupně a soukromě učí o parametrech hry. Model vykazuje bohatou strukturu 

externalit. Zisky hráčů můžou záviset na celkovém objemu investic, na jeho koncentraci, nebo 

volatilitě. Zkoumáme jak malé frikce – kupříkladu Tobinova daň – ovlivňují rovnovážné chování 

hráčů. Popisujeme podmínky, za kterých frikce odrazují od škodlivých investičních projevů, aniž 

by poklesl objem investic. 

 



1 Introduction

The recent economic crisis has led to a renewed interest in Tobin’s proposal to “throw some

sand in the wheels” of the economy.1 One voice in the current public debate points to the

stabilizing role of small frictions. The advocates of the transaction tax, such as France or

Germany, believe that it would calm the self-fulfilling financial turmoils experienced in recent

years. The opponents, such as the United Kingdom or the United States, worry that the tax

may reduce financial liquidity or shift the investments outside of the taxing jurisdictions.

We examine the stabilizing role of frictions in a coordination game where both high and

low economic activity can become a self-fulfilling prophecy. In our model, the economic

turmoils arise as rational reactions to evolving information: investors try to outguess the co-

ordination outcome of the whole economy, and perpetually adjust their investment positions.

The frictions influence properties of the adjustment patterns, such as their volatility, thereby

impacting real economic performance. In equilibrium, frictions can have a large effect on the

prevalence of systemic crises.

We model the coordination of the economy in a dynamic global game. A continuum of

agents gradually and privately learn about the fixed state of the economy, and repeatedly

adjust their investment positions. An agent’s payoff depends on her investment path and

on the outcome of the economy, which either succeeds or fails. The outcome is a function

of various statistics of investors’ behavior, including the terminal volume of investment, the

volatility of investment, the exit rate, or the dispersion of investment across agents. Allowing

for general transaction costs, we examine how frictions impact these statistics and ultimately

how they affect the likelihood of successful coordination in equilibrium.

The common rationale behind Tobin tax-like proposals can be traced back to Pigou’s

suggestion to tax actions generating negative externalities; frictions may deter volatile or

other harmful investment patterns, the argument goes. However, frictions could backfire if

economic performance depends on many aggregates of investment behavior, including the

1See Tobin (1978).
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volume of aggregate investment. A policy maker may worry that the negative effect of

frictions on the investment volume may dominate the benefits of reduced volatility. Within

the studied model, we dispel such worries. The volume of aggregate investment at the end of

the adjustment process (terminal volume henceforth) is invariant to a large class of frictions

in a pivotal contingency — we call this the invariance result.

Let us illustrate the invariance result on an emerging economy attempting to attract

investments and to discourage capital reversals. Exit penalties may help achieve the latter

goal, but their effect on the investment volume is seemingly inconclusive. While investors

become less likely to exit upon receiving bad news about the economy, they are also less

likely to enter in the first place. In our model, these two effects offset each other exactly,

and under general conditions. The volume of capital that the economy attracts and retains

is independent of the frictions. Guided by this invariance result, the policy maker may

introduce efficiency-enhancing frictions based on their effect on capital reversals only. Section

2 develops this example further.

The invariance result is driven by relatively weak assumptions. It holds under a large

class of information structures that naturally extend those from the static global-games

literature. The result is independent of many details of the frictions, and of other details of

the investment incentives.

The invariance result provides a reliability test of the static global-game framework.

Static global games are a mainstream modelling tool for analyzing coordination processes;

see Morris and Shin (2003) for a review of applications. By nature, however, they omit all the

dynamic aspects of the studied interactions. Our model distinguishes interactions in which

the dynamic elements are important from those where static global games yield reliable

predictions. Indeed, there are dynamic specifications of our model where the equilibrium

reduces to the equilibrium of a simple static global game. This occurs in dynamic problems

where the terminal investment volume is the only determinant of the economic outcome. In

such settings, the explicit modelling of the learning process with action adjustments does
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not improve the predictions any more than to the static benchmark; frictions do not matter.

When economic success, however, depends on several statistics of investors’ behavior, as

in the example of the emerging economy, the dynamic elements of our model do impact

equilibrium behavior. This can be seen in the context of another example.

Consider a dynamic extension of the currency attack model of Morris and Shin (1998). In

each period preceding the meeting of a currency board, speculators learn additional informa-

tion about the fixed state of the economy and adjust their bets on the currency devaluation.

Suppose that the board’s devaluation decision depends on the aggregate position of the

speculators at the time of the meeting, but not on the history or cross-sectional distribution

of the positions. As in the example of the emerging economy, the invariance result holds.

The terminal aggregate position is independent of the dynamic details of the game. This

implies that, although the evolution of the attack may be sensitive to dynamic details, the ex

ante equilibrium probability of the attack’s success is not. If, however, the history or cross-

sectional distribution of the speculators’ positions influence the board’s decision, dynamic

elements become relevant in equilibrium and frictions start to influence the prevalence of the

attacks.

Our model is an intended compromise between the tractability of static global games

and the richness of dynamic coordination processes. On the one hand, we explicitly model

agents’ learning and their adjustments to arriving information so that we can analyze the

effects of frictions on dynamic investment paths. On the other hand, we do not keep track

of flow payoffs, and thus we do not distinguish between early and late economic success. We

also model social learning in a reduced form only. In a fully-fledged model of social learning,

the agents would receive noisy signals about others’ behavior. Since this behavior reflects,

in equilibrium, the underlying state of the economy, social learning would lead to an update

of agents’ beliefs about the state. We simplify the problem by treating arriving information

about the state exogenously. Such a reduced-form approach to social learning has been

formalized in Dasgupta (2007) and used in Angeletos et al. (2007), Angeletos and Werning
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(2006), and Goldstein et al. (2011). Our compromise between the fully dynamic approach

and the static equilibrium is in the tradition of the open-loop equilibria in dynamic games

(see Fudenberg and Levine 1988). The reduced-form approach to social learning allows us

to characterize equilibrium, and thereby to perform a welfare analysis of tax policies in a

general environment. Therefore, we view our model as a step towards providing a general

testing ground for various Tobin tax-like proposals.

Let us now discuss our contribution in more detail. The invariance result is driven by

the assumption that the local properties of the information structure are independent of the

realized state; we call this translational symmetry. The same assumption underlies the exist-

ing static global-game characterizations. For example, selection of the risk-dominant action

in Carlsson and van Damme (1993) or selection of the Laplacian2 action in Morris and Shin

(2003) are driven by this assumption. Kováč and Steiner (2008) use the symmetry to derive

a partial equilibrium characterization in a two-stage global game. Although such a symme-

try assumption drives uniqueness and characterization results in all global-game models, our

invariance result and the analysis in a dynamic setting are novel.3

As a second contribution, we provide sufficient conditions for the existence of monotone

equilibria in the dynamic model. The main challenge is to dispense with supermodularity,

an assumption which drives existence results in static global games but whose intertemporal

analog is overly restrictive.4 Our third contribution consists of a characterization result. For

settings with fast learning — that is, when the precision of the private information quickly

increases across rounds — we show equilibrium existence, provide its characterization, and

prove its independence from the assumed error distributions.

The importance of the dynamic aspects of coordination processes has been well recog-

2Morris and Shin use the term “Laplacian action” for the action preferred by an agent who has uniform
belief about the aggregate action.

3On its face, translational symmetry is strong, as it requires uninformative prior belief, but it approxi-
mately holds for general priors when private information is sufficiently precise; see for instance Frankel et al.
(2003). We focus on the uniform prior in the main text, and relegate the extension to general priors to a sup-
plement, available at http://www.kellogg.northwestern.edu/faculty/steiner/htm/supplement.pdf.

4As discussed by Echenique (2004), the assumption of intertemporal strategic complementarities is very
restrictive. See Vives (2009) for a particular approach.
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nized. One stream of the literature focuses on dynamic adjustments to an evolving economic

environment, see Burdzy et al. (2001), or Chassang (2010). Our paper falls into the class

of dynamic models where agents learn about a fixed economic environment. In Chamley

(2003), Angeletos and Werning (2006), and Angeletos et al. (2007) agents learn from en-

dogenous public signals such as prices or early coordination outcomes. Since the public

signals restore common knowledge in these models, they typically exhibit equilibrium multi-

plicity. Dasgupta (2007) provides a particular but tractable model of private social learning,

within a class of monotone equilibria, equivalent to the exogenous private learning process

employed in this paper. Unlike the public learning processes, the private ones preserve

strategic uncertainty and equilibrium uniqueness.

The paper is organized as follows. In the next section, we formalize the example of the

exit tax in an emerging economy. Section 3 describes the general model and highlights its

symmetry property. Section 4 states and proves the invariance result. Section 5 demonstrates

existence and characterization results when agents learn fast. Section 6 presents several

applied settings in which we use the invariance result to design welfare-enhancing frictions.

2 Example: Sudden Investment Reversals

As an illustration, we design an intuitive welfare improving friction in a simple dynamic

coordination game. An emerging economy is opening up to international capital. Foreign

investors make decisions in an early and an interim stage of the economic transformation.

In the early stage, each investor i of the continuum [0, 1] invests 0 or 2 units in the economy.

The early decisions are partially reversible in the interim stage: those who have invested

early can withdraw 1 unit, and those who have not invested early can invest 1 unit. We use

the same action labels 0 and 1 at each decision node, as in Figure 1.

Investment is risky and costly. Investor i’s terminal payoff before tax is bi(o − 1/2),

where bi = ai1 + ai2 denotes the investor’s terminal investment (or bet), o ∈ {0, 1} represents

6



invest $2
(ai1 = 1)

invest $0
(ai1 = 0)

add $1
(ai2 = 1)

$1

stay out
(ai2 = 0)

$0

stay in
(ai2 = 1)

$2

withdraw $1
(ai2 = 0)

$1

Figure 1: Dynamic investment problem.

the economic failure or success of the economy, and 1/2 is the cost of unit investment. The

economic outcome o is a function of the aggregate behavior and of the economic fundamental.

In this example, the economy succeeds if it attracts enough investment, and if it does not

experience too large capital reversal:

o =

⎧⎪⎨
⎪⎩

1 if b− e ≥ 1− θ,

0 if b− e < 1− θ,
(1)

where b =
∫ 1

0
bidi is the terminal aggregate investment, e =

∫ 1

0
ai1(1− ai2)di is the volume of

capital reversal, and θ is the state of the economy.

We impose tax τ on the detrimental reversals. That is, the after-tax total payoff at path

ai = (ai1, a
i
2) is:

u
(
ai, o
)
= bi(o− 1/2)− τai1(1− ai2).

The tax is levied only when an investor invests in the first round and withdraws in the

second.

Intuitively, the tax should (and indeed does in our model) discourage both exit and entry,

and thus it should reduce the volume of reversals. However, the effect on the investment

volume b is a priori ambiguous. A policy maker may worry that the net effect on the

investment volume will be negative and dominate the benefits of reduced capital reversals.

The overall tax effects cannot be understood without detailed modelling of strategic
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uncertainty. As in the global-game literature, the uncertainty about opponents’ actions is

induced by asymmetric information about the state in our model. The state θ is drawn from

the uniform distribution on [−1, 3]. Investors privately learn about the state as follows. Each

investor i receives a private signal xi
t = xi

t+1 + ηit in each round t = 1, 2, with convention

xi
3 = θ. The errors ηit are uniformly distributed on [−σ, σ] and are independent across

rounds and agents, where σ ∈ (0, 1/2) is a small scaling parameter. Thus, signal quality

increases over time. As shown below, the results do not rely on a particular error distribution.

Investors do not observe opponents’ actions.

We examine threshold equilibria of the following form: (i) there exists an endogenous

critical state θ∗ such that the project succeeds for θ ≥ θ∗, and fails for θ < θ∗, and (ii)

investors use threshold strategies: an agent at private action history h ∈ {∅, 1, 0} of length

t = 0, 1 invests in round t + 1 if and only if xi
t+1 ≥ x∗

h(τ). The private action history h

indicates the action taken by the investor up to round t, ∅ being the null history at the

beginning of the game. We have verified that the game has a unique threshold equilibrium

for τ = 0, and 1/10, with critical state θ∗(τ).

Each investor knows the critical state θ∗ in equilibrium but not the realized θ. Based

on her signal, the investor formulates her belief about the event that θ exceeds θ∗, that

is, that the economy succeeds. When the realized state is outside of the interval I(σ) =

[θ∗ − 2σ, θ∗ +2σ], the investors know the outcome of the project in each round because they

receive signals far enough from θ∗ (see Figure 2a). Investors invest and stay for states above

the interval, and they never invest for states below. Inside I(σ), however, the stochastic

learning leads to volatile investment; investment paths 10 and 01 may occur.

Investors’ ex ante welfare is (approximately) determined by the critical state. When σ

is small, the ex ante probability that the realized state is in I(σ) is negligible. Therefore,

the ex ante expected utility of an investor is approximately 0 × Prob(θ < θ∗) + Prob(θ >

θ∗) = (3 − θ∗)/4. Thus, ex ante welfare is decreasing in the critical state; see Figure 2b for

an illustration.
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θ*

θ[ ]

{
Ι(σ)Failure Success

{ {][

θ**

θ*
θ[ ]

{

Ι(σ)Failure Success

{ {Investor never invests (00) Investor invests and stays (11)

-1

-1

3

3

(a)

(b)

Figure 2: Ex ante Welfare.

Although the critical state is realized with zero probability, the behavior at θ∗ determines

the equilibrium value of θ∗ (as shown in the equation below), and therefore the behavior in

this contingency has a large indirect effect on ex-ante welfare. Thus, our analysis focuses on

the characterization of the critical behavior.

The condition for success, (1), is met with equality in the critical state:

b∗ − e∗ = 1− θ∗,

where b∗ and e∗ are the equilibrium values of investment volume b and reversal volume e in

the critical state. They are computed as follows. We choose an arbitrary value of θ∗ and find

the optimal thresholds x∗
h by solving a simple single agent optimization problem by backward

induction. Then, conditioning on the realized state θ = θ∗, we use the distribution of an

investor’s signals and the optimal thresholds to compute the probabilities of all investment

paths, represented in Figure 3. These probabilities are independent of the value of θ∗ chosen

at the beginning of the computation. We use the probabilities to compute the expected

values of investment and reversals, b∗ and e∗.

The effect of the tax on the aggregate behavior in the critical state is depicted in Figure

3. As expected, the tax τ discourages both exit and entry, and thus the critical volume of

reversals e∗ decreases with the tax. The effect of the tax on the investment volume is less
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0.50.5

0.25

$1

0.75

$0

0.75

$2

0.25

$1

0.460.54

0.27

$1

0.73

$0

0.86

$2

0.14

$1(A) (B)

Figure 3: Probabilities of playing action at ∈ {0, 1} in the critical state θ∗, conditional on
reaching history h ∈ {∅, 0, 1}. (A) τ = 0, and (B) τ = 1/10.

intuitive; it is invariant with respect to the tax; b∗ = 1 for both tax levels.5 The decrease

in b∗ caused by diminished early entry is exactly offset be the changes in behavior in the

interim stage. Thus, the critical state θ∗ = 1− b∗ + e∗ = e∗ is affected by the exit tax only

via the decrease of the reversal volume e∗. As a result of the tax, θ∗(0)− θ∗(1/10) > 0, and

this difference is independent of σ.

The invariance of the critical investment holds under general conditions, which greatly

simplifies the design of welfare improving frictions. In this example, the policy maker can

focus on frictions’ effect on reversals without worrying about investment volume. We con-

clude that the simple exit tax increases the ex ante probability that the emerging economy

succeeds, and thus its expected welfare.

3 The Model

Our model generalizes the example in many directions. The game has arbitrary (finite)

number of rounds. We make no distributional assumptions on the learning process. The

payoff functions allow for general investment incentives and specifications of transaction

costs. Finally, the outcome rule of the investment project may exhibit a broad class of

externalities beyond those in the example.

5Using Figure 3A, b∗ = (.5× .25) + (.5× .25) + 2(.5× .75) = 1. Using 3B, b∗ = (.54× .27) + (.46× .14) +
2(.46× .86) = 1.
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3.1 Payoffs

A continuum of agents i ∈ [0, 1] make binary decisions ait ∈ {0, 1} in rounds t ∈ {1, . . . , T}.

We write hi for a private action path (ai1, . . . , a
i
t) up to round t = |hi|, denote the initial

history at the beginning of the game by ∅, and often write zi ∈ {0, 1}T for terminal paths.

When not needed, we omit the index i. We let h(t′) be the truncation of h to the first t′

elements, and a(h, t′) be the t′th action of h. For h = (a1, . . . , at) and h′ = (a′1, . . . , a
′
t′), we

let hh′ be the path (a1, . . . , at, a
′
1, . . . , a

′
t′) of length t+ t′.

Agent i’s payoff u(zi, o) depends on her terminal path zi and on an outcome o ∈ {0, 1}

interpreted as the failure or success of a common investment project. Since the outcome is

binary, we can always express the payoffs as a linear function of o:

u(z, o) = bz × o− cz,

where bz = u(z, 1) − u(z, 0) and cz = −u(z, 0). We interpret bz as an agent’s bet on the

success of the project at the terminal path z — the agent receives the amount bz only if the

project succeeds. The parameter cz is the cost of placing the bet via the path z. In the

applications, cz will include transaction costs alongside the path z.

The outcome of the project is

o =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∫ 1

0
dzidi ≥ 1− θ,

0 if
∫ 1

0
dzidi < 1− θ,

where the parameter dz is the success contribution at the terminal path z; it describes how

conductive z is to success. State θ measures the project’s propensity to success. Since

the parameters bz, cz and dz can depend on the path z in an arbitrary manner, the model

accommodates very general dynamic settings. For instance, the example from Section 2 is

captured by the success contributions dz = bz−a(z, 1)(1−a(z, 2)). Section 6 contains further

applications featuring the role of dispersion or volatility of investment. There, we consider

11



success contributions of the form dz = ϕ(bz) − λvz, where vz =
∑T

t=2 |a(z, t) − a(z, t − 1)|

measures volatility of the path z. The curvature of the function ϕ determines the impact

of the investment dispersion on the project’s outcome, and parameter λ determines how

harmful volatility is to the outcome.

3.2 Learning Process

The state θ is an unobserved random variable drawn from a uniform distribution on a

bounded interval [θmin, θmax]. Each agent receives a private signal xi
t = xi

t+1 + σηit in each

round t = 1, . . . , T , with convention xi
T+1 = θ. Thus, signal xi

t is a sufficient statistic for the

outcome with respect to the private signals up to round t. This specification simplifies the

structure of strategies and notation, but is not essential for our main result. The errors ηit

are independent across agents and rounds and have continuously differentiable density ft,

and distribution Ft with bounded support [−1/2, 1/2]. Densities ft are bounded from below

by f > 0. We abuse terminology by referring both to xi = (xi
1, . . . , x

i
T ) and to xi

t as the type

of agent i. The support of θ contains dominance regions: states below 1−maxz dz − Tσ in

which all agents in all rounds know that the project fails, and states above 1−minz dz +Tσ

in which all agents know that the project succeeds. Agents do not observe their opponents’

actions.

3.3 Strategies and Equilibrium

A pure strategy s is a family of functions sh(xt), one for each h ∈
⋃T−1

t=0 {0, 1}
t.6 An agent

following strategy s plays action at = sh(xt) at each private history h of length t− 1. Since

beliefs at round t are independent of earlier signals, so is the strategy. The independence of

the strategy at round t from signals x1, . . . , xt−1 constrains only indifferent types, and these

6While the type space of xt at each round is bounded, we extend the domain of the strategies to the real
line R. The purpose is to simplify the upcoming translation arguments. Let x

t
and xt be the minimal and

the maximal signal of the type space at round t. We extend sh to R as follows: sh(x) = sh
(
x|h|+1

)
for all

x > x|h|+1, and sh(x) = sh

(
x|h|+1

)
for all x < x|h|+1.
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have generically zero measure. We say that s is a threshold strategy if, for each path h, there

exists x∗
h such that sh(x) = 1 for x ≥ x∗

h, and sh(x) = 0 for x < x∗
h.

An outcome function O : R −→ {0, 1} specifies the outcome of the project; o = O(θ).

We say that O is a threshold outcome function if there exists a critical state θ∗ such that

O(θ) = 1 for θ ≥ θ∗, and O(θ) = 0 for θ < θ∗.

Strategy s is a best response to outcome function O if

sh
(
x|h|+1

)
∈ argmax

a
E
[
Vha

(
x|h|+2

)∣∣ x|h|+1

]
,

where

Vh

(
x|h|+1

)
= max

a
E
[
Vha

(
x|h|+2

)∣∣ x|h|+1

]
, with xT+1 = θ, and Vz(θ) = bzO(θ)− cz.

When O is a threshold outcome function with a critical state θ∗ we simply say that s is the

best response to θ∗. To avoid ambiguity, we assume that in the case of a tie, agents invest.

Then, the best response to any measurable outcome function O is uniquely defined.

Let z(x; s) be the terminal path that type x reaches if she follows strategy s. Assume

that all agents use the same strategy s and that the Law of Large Numbers applies to

the continuous population of agents. Then the aggregate success contribution
∫
dz(xi;s)di

in state θ equals the conditional expectation E
[
dz(xi;s)

∣∣ θ]. The realized state θ determines

the outcome of the project both through the conditional distribution of agents’ behavior

z (xi; s) |θ and through the critical aggregate success contribution 1 − θ required for the

success of the project. We say that outcome function O is generated by a strategy s if for

θ ∈ [θmin, θmax]

O(θ) =

⎧⎪⎪⎨
⎪⎪⎩
1 if E

[
dz(x;s)

∣∣ θ] ≥ 1− θ,

0 if E
[
dz(x;s)

∣∣ θ] < 1− θ.

For all outcome functions considered below we assume without loss of generality that O(θ) =
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1 for θ > θmax and O(θ) = 0 for θ < θmin. We extend the outcome function to all states on

the real line for a technical reason; it simplifies the definition of a translation of O.

An equilibrium (O, s) is an outcome function O and a strategy s such that s is the best

response to O, and O is generated by the strategy s. A pair (O, s) is a threshold equilibrium

if both O and s are threshold functions.

Our equilibrium concept is a symmetric, pure-strategy Bayes-Nash equilibrium. Since the

agents do not observe others’ actions, the usual complications with off-equilibrium beliefs,

common in dynamic games, do not arise. Our focus on symmetric, pure-strategy equilibria

is essentially without loss of generality. All agents optimize against a common outcome

function, and thus their best response strategies could differ or use mixed actions only at

indifferent types, and these have generically zero measure.

3.4 Translational Symmetry

We conclude the description of the model by highlighting its important symmetry. The joint

density of the state and the type, f(θ,x), is translation invariant:

f(θ,x) = f(θ + δ,x+ δe), (2)

where e = (1, 1, . . . , 1) is the T -dimensional diagonal vector. The translational symmetry is

a consequence of the uniform prior and of the additive errors. The symmetry is inherited

by the best response function: when O′(θ) = O(θ + δ), the best response s′ to O′ is the

translation of the best response s to O; s′h(x) = sh(x + δ) for all h. (The translational

symmetry of the density f is violated in neighborhoods of the boundary of its support. This

however will not play a role in the analysis. This is because the extreme values of θ at the

boundaries of the support lie in the dominance regions in which the project either succeeds

or fails independently of agents’ actions and the agents’ decisions are trivial. The analysis is

nontrivial only when θ is the intermediate interval, in which case the translational symmetry
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of f applies.)

For any variable, we define its critical value as its expectation in the critical state θ∗

when all agents best-respond to θ∗: for instance, critical success contribution is

d∗ = E
[
dz(x;s)

∣∣ θ∗] , where s is the best response to θ∗.

Since both the joint distribution f(θ,x) and the best response function are translation

invariant, the critical value of any variable is independent of θ∗. This implies equilibrium

uniqueness within an important class of equilibria:

Lemma 1. There exists at most one equilibrium (O, s) with a threshold outcome function

O. If it exists then the critical state θ∗ = 1− d∗. Moreover, θ∗ is independent of σ.

Proofs omitted in the main text are relegated to Appendix.

4 Invariance of the Critical Investment

This section presents the main insight of the paper — the invariance result. We will show

that the terminal volume of aggregate investment in the critical state θ∗ depends solely on

payoffs received on extreme investment paths. By Lemma 1, the equilibrium is determined

by the behavior at θ∗. Thus, though the invariance result applies in only one — the critical —

payoff state, it will have strong consequences on the equilibrium and on the ex ante welfare.

Define the success premium

S = max
z

u(z, 1)−max
z

u(z, 0)

as the benefit benefit gained by an informed optimizing agent when the outcome changes

from failure to success. Though the agents in the critical state are never perfectly informed

about the outcome in our game, the success premium S, defined by optimization under
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complete information, happens to characterize the critical aggregate investment. Let s be

the best response to θ∗ and let

b∗ = E
[
bz(x;s)

∣∣ θ∗]
denote the critical aggregate investment.

Invariance Result. The critical aggregate investment is

b∗ = S. (3)

In particular, the critical investment is invariant to any policy that does not affect the ex-

tremal payoffs maxz u(z, 1), and maxz u(z, 0).

The term “policy” refers to any change in the payoff parameters bz or cz.

The result provides an immediate equilibrium characterization for settings where the

outcome depends on the terminal investment volume, but not on other behavioral aggregates,

such as volatility or dispersion of investment:

Corollary 1. Suppose that dz = bz for all z, and that an equilibrium with a threshold outcome

function exists. Then:

1. the critical state θ∗ = 1− S,

2. the ex ante probability of success is invariant to any policy that does not affect the

extremal payoffs maxz u(z, 1), and maxz u(z, 0), and

3. the critical state of the dynamic game is identical to the critical state of the static

global game in which agents simultaneously choose between the two extremal paths

argmaxz u(z, 1), and argmaxz u(z, 0).

The corollary provides a robustness check for static global games. Let us illustrate this

on the model of currency attacks by Morris and Shin (1998). A currency board makes a

devaluation decision at a pre-announced date. Prior to the decision, speculators choose
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whether to short sell the currency, based on their private information. The board devaluates

the currency if the aggregate short sales exceed a level determined by economic fundamental

(specifically 1− θ). The static game of Morris and Shin is a special case of our model with

T = 1, b0 = c0 = 0, b1 = 1 and c1 ∈ (0, 1).7

In our dynamic model with T > 1 the agents gradually learn about the state and re-

peatedly adjust their bets on devaluation. We extend the devaluation rule to the dynamic

settings by assuming that the board devaluates the currency if the aggregate short-sales

volume at the time of the board meeting exceeds 1 − θ. Such a rule is captured by our

model with dz = bz. Parameters cz are the transaction costs incurred on the paths z. See

Subsection 6.1 for further formalization of this example.

In this case, the dynamic interaction reduces in equilibrium to the static game. A static

model in which agents simultaneously choose only from the two extremal investment paths

argmaxz u(z, 1), and argmaxz u(z, 0) leads to the same equilibrium critical state θ∗ as the

dynamic model because θ∗ = 1− S depends only on the extremal payoffs. Thus, modelling

the dynamic adjustments explicitly does not improve the performance of the model; the

static global-game framework is justified.

Besides modelling considerations, the invariance result has policy implications. The

critical state is independent of the transaction costs along all the non-extreme paths. Thus,

frictions in the spirit of the Tobin tax that do not impact the payoffs on the extremal, non-

volatile paths do not influence equilibrium probability of successful coordination and welfare

in this strategic situation.

The invariance result holds in settings with a general prior over θ as agents’ posterior

beliefs are approximately independent of the prior information when the private signals are

sufficiently precise.8 Let s(φ, σ) be the best response to θ∗ under prior φ(θ) when the scaling

parameter is σ, and let b∗(φ, σ) = Eφ,σ

[
bz(x;s(φ,σ))

∣∣ θ∗]. We prove in the supplement that, as

7Morris and Shin allow b1 and c1 to depend on the state θ. We discuss such an extension at the end of
this section.

8See Frankel et al. (2003) for an application of this argument to a large class of static global games.

17



σ → 0, the critical investment b∗(φ, σ) converges to the success premium S.

Similarly, we conjecture that the invariance result can be extended to settings in which

the translational symmetry of the model is violated by dependence of bz(θ) and cz(θ) on θ. If

bz(θ) and cz(θ) are continuous then they are approximately constant on a small neighborhood

of θ∗ and the invariance result (approximately) applies for small enough σ.

4.1 Sketch of Proof

We sketch the proof of the invariance result on the example from Section 2. The formal

proof is in Appendix.

We fix the value of the critical state θ∗ throughout the discussion. Let

r = max
z′

u(z′, o)− u(z, o) (4)

be the regret of an investor who has chosen investment path z = (a1, a2) when the out-

come is o. Abusing notation, let random variable r(x, o) be an investor’s regret when she

receives signals x = (x1, x2), follows her optimal investment strategy s(x) against θ∗, and

the outcome happens to be o. Conditionally on the realized state being θ, we can compute

the distribution of investors’ signals. Using this distribution, we define functions ro(θ) for

o = 0, 1 as E
x
[r(x, o) | θ]; it is the expected regret under the optimal strategy s, when the

outcome is o, conditional on the true state being θ.

The core of the proof is the observation that the optimal strategy equalizes expected

regret in the critical state across success and failure:

r1 (θ
∗) = r0 (θ

∗) . (5)

The invariance result is a corollary of the regret equalization. Rearranging the last equation
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Figure 4: A leftward translation of the strategy shifts functions r0 and r1 to the left and
decreases ex ante expected regret by area A.

gives:

max
z′

u(z′, 1)−max
z′

u(z′, 0) = E
x
[u(z(x), 1)− u(z(x), 0) | θ∗] .

The left hand side is S (notice that S = 1 for both τ in the example from Section 2), and

the right-hand side equals E
x

[
bz(x)|θ

∗
]
= b∗.

The regret equalization result (5) is implied by the translational invariance of the model.

Let us prove (5) by contradiction, using Figure 4. When θ � θ∗, investors receive low signals

in both rounds, and they know that the project will fail in equilibrium. Therefore, they do

not invest. Thus, if the outcome were a success (o = 1), as assumed in the definition of r1,

they would experience substantial regret, because they would wish they had invested in both

rounds. Accordingly, r1(θ) = 1 for sufficiently low θ. As θ increases, an investor is more

likely to draw high signals and invest, and thus her expected regret under o = 1 decreases

until it becomes null. A symmetric argument explains why r0 is increasing. The ex ante

expected regret corresponds to the shaded area in Figure 4. To see this, recall that when

θ < θ∗, the project fails (o = 0), and when θ > θ∗, the project succeeds (o = 1). Therefore,

for θ < θ∗, the relevant conditional expected regret is given by r0, and for θ > θ∗, it is given

by r1.

To establish a contradiction, suppose that the optimal strategy s does not equalize regrets,
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as outlined in Figure 4a, where r1(θ
∗) > r0(θ

∗). Translating the threshold strategy s to the

left, i.e. decreasing all the thresholds x∗
h by the same amount, translates the regret functions

r0 and r1 to the left because the model exhibits translational symmetry. The translated

strategy results in a lower expected regret, since the shaded area in Figure 4b is reduced by

the area A. By the definition in (4), expected regret is obtained by subtracting expected

utility from a constant. If expected regret can be decreased by translating the strategy, then

expected utility can be increased, contradicting the optimality of the original strategy s.

5 Fast Learning

This section presents one of the tractable specifications of the general model. We establish

equilibrium existence and characterization under mild restrictions on the payoffs, when the

precision of agents’ information increases greatly in each round. The online supplement

contains an alternative tractable specification that does not restrict the learning process but

it imposes stronger payoff restrictions.

To capture fast learning processes, we rescale the errors as

xi
t = xi

t+1 + σtηit, with xi
T+1 = θ,

keeping densities ft(ηt) unaltered, and we examine the limit σ → 0. The essential property

of fast learning is that the ratio of signal precisions across two rounds diverges as σ → 0.9 We

treat the limit of σ → 0 casually in the main text and relegate detailed proofs to Appendix.

We characterize the equilibrium under the assumption that an agent certain of success

prefers action 1 while an agent certain of failure prefers the opposite action.

A1: For all histories h,

max
h′

u(h1h′, 1) > max
h′

u(h0h′, 1),

9The results of this section hold if xi
t
= xi

t+1 + σk(t)ηi
t
where k is an increasing function.
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max
h′

u(h1h′, 0) < max
h′

u(h0h′, 0),

where h′ ∈ {0, 1}T−|h|−1 is a continuation path.

Consider the best response to a critical state θ∗. As σ vanishes, agents in each round

expect to receive information in the next round that is vastly more precise than their current

signal. However uncertain about the outcome an agent is in the current round t, she is nearly

sure that she will know the outcome and play optimally in the subsequent rounds. Thus,

an agent choosing action a at path h expects to receive payoff bha1...1 − cha1...1 if the project

succeeds and −cha0...0 if it fails. She invests if and only if she assigns probability at least p∗h

to success, where p∗h solves the indifference condition

(bh11...1 − ch11...1) p
∗
h − ch10...0 (1− p∗h) = (bh01...1 − ch01...1) p

∗
h − ch00...0 (1− p∗h) . (6)

Assumption A1 guarantees that p∗h exists, is unique, and lies in (0, 1).

The equilibrium critical state θ∗ is characterized by agents’ behavior in the critical state;

by Lemma 1:

θ∗ = 1− d∗.

To compute the critical success contribution d∗, we analyze the distribution of posterior

beliefs at θ∗. Let qt(xt) = Pr (θ ≥ θ∗| xt) be the posterior success probability evaluated by

type xt in round t. In the critical state, the posterior beliefs reflect solely the noise in the

private signals rather than information about the outcome. As a result, the posteriors are

uniformly distributed in the critical state; qt(xt)|θ
∗ ∼ U [0, 1] for any specification of the error

distribution.10

In the critical state, and at each history h, an agent chooses action 1 with probability

Pr (qt ≥ p∗h|θ
∗) = 1 − p∗h. Additionally, in the limit of fast learning, the posterior beliefs qt

are independent across rounds. Thus, in the limit as σ → 0, the probability that an agent

10This property has been used in Guimaraes and Morris (2007) and in Steiner (2006). The derivation is
as follows. Let α = xt − θ be the error and A its c.d.f. Then Pr(qt(xt) < p|θ∗) = Pr(xt < θ∗ +A−1(p)|θ∗) =
Pr(α < A−1(p)) = A

(
A−1(p)

)
= p.
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reaches a terminal path z is

lz =
T∏
t=1

[
a(z, t)

(
1− p∗z(t−1)

)
+ (1− a(z, t))p∗z(t−1)

]
,

where, as before, a(z, t) denotes t’th action on the path z and z(t − 1) is the truncation of

z to the first t− 1 rounds. This gives the following limit characterization result:

Proposition 1. If A1 holds and there exists σ such that the game has a threshold equilibrium

for each σ < σ then limσ→0 θ
∗(σ) = 1−

∑
z dzlz.

We supplement the last result with a sufficient condition for the existence of a threshold

equilibrium. It requires that investing contributes to success more than not investing, but

the restriction is imposed only for the extreme continuation paths:

A2: For all action histories h, dh1h′ > dh0h′ where h′ is an extreme continuation history

11 . . . 1 or 00 . . . 0 of length T − |h| − 1.

The assumption is relatively weak as it leaves the ranking of success contributions on most

paths unspecified, thus allowing for considerable modelling freedom.

Proposition 2. If A1 and A2 hold then there exists σ > 0 such that the game has a unique

threshold equilibrium for each σ ∈ (0, σ].

Equilibrium uniqueness was established in Lemma 1. Thus it remains to prove existence.

To that end, we show in Appendix that the best response s to θ∗ generates a non-decreasing

expected success contribution d(θ) = E
[
dz(x;s)|θ

]
. The main complication is that typical

paths in a neighborhood of θ∗ are volatile, and thus assumption A2 does not rank their

success contributions. The analysis simplifies when learning is fast. Then each agent at

any point of the game assigns very high probability to her knowing the outcome in the

next round. Hence, when learning is fast, agents believe that their continuation play will

be alongside the extreme histories 11 . . . 1 or 00 . . . 0. As the proof shows, the incomplete

ranking in A2 then suffices to establish monotonicity of d(θ).
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6 Applications

This section presents four specifications of the general model where the project outcome

depends on the terminal aggregate investment and possibly on its distribution across in-

vestors or on its historical volatility. We characterize the effects of frictions on the ex ante

success probability, relying on the invariance result. We focus on the limit of fast learning

throughout the section.

Investment is only partially reversible and the investment opportunities decay over time

in all four specifications. We formalize this as follows. Each investor decides whether to

enter/stay in a project or exit/stay out of the project in each round. An investor who enters

in round tin invests T +1− tin, and withdraws T +1− tout if she leaves the project at round

tout. Therefore, an agent repeatedly entering and exiting at rounds tin1 < tout1 < tin2 < tout2 <

· · · < tinK < toutK has committed to the total investment
∑K

k=1 t
out
k − tink . We assign label 1 to

the action entering/staying in, and 0 to the action exiting/staying out. An agent receives

payoff 1/T per unit of investment if the project succeeds. Thus investor’s total investment

(or bet) is

bz =
1

T

T∑
t=1

a(z, t). (7)

This specification allows for an alternative interpretation. An agent decides at the beginning

of each round whether to participate in the project in the current round, and her total

investment equals the final number of rounds in which she has participated.

To study the effects of frictions, we specify

cz = cbz + τvz, where vz =
1

T

T∑
t=2

|a(z, t)− a(z, t− 1)| , (8)

with c+ τ < 1 so that assumption A1 is satisfied throughout this section. In words, the unit

cost of investment is c/T with c ∈ (0, 1), and the agent pays penalty τ/T ≥ 0 per entry or

exit. Entry at round 1 is not penalized (this is relaxed in Subsection 6.4).
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We assume incentives (7) and (8) in all four applications, but we examine different struc-

tures of externalities by varying the success contributions dz. The encompassing specification

for all the four applications is

dz = ϕ(bz)− λvz.

By varying the curvature of the function ϕ we capture the impact of investment dispersion

on the outcome. Parameter λ specifies the impact of volatility.

6.1 Reduction to the Static Game

This application formalizes our discussion of the currency attacks from Section 4. The

outcome depends only on the terminal aggregate investment; dz = bz. Assumption A2 holds,

and thus the game has a unique threshold equilibrium for sufficiently small σ. Corollary 1

implies:

Proposition 3. The critical state θ∗ = 1− S = c.

In this setting, the outcome of the dynamic game with T > 1 reduces to the outcome of the

static game with T = 1. The dynamic features of the model are unimportant, and the tax

is ineffective.

In the subsequent applications, the outcome depends on additional aspects of investment

behavior, apart of its terminal volume. Thus, Corollary 1 cannot be applied, and the dynamic

model does not reduce to a static game. Yet, the invariance result will be helpful because it

implies that the tax affects the equilibrium only via aggregates of behavior other than the

terminal investment volume.

6.2 Frictions and Volatility of Investment

We assume that volatility ceteris paribus hampers the outcome: the success contributions

are dz = bz−λvz. When λ < 1/2, assumption A2 holds and the game has a unique threshold

equilibrium for sufficiently small σ.
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Using Proposition 1, we can explicitly compute the distribution of the terminal paths

z in the critical state, and thus also the critical volatility v∗ defined as E[vz | θ∗]. As one

would expect, the critical volatility v∗ decreases when a small friction τ is introduced. This,

combined with the invariance of the critical investment b∗, formalizes Tobin’s intuition:

Proposition 4. Introduction of a small transaction cost τ increases the ex ante success

probability (and thus welfare):

d

dτ
θ∗(τ)

∣∣∣∣
τ=0

< 0.

6.3 Frictions and Concentration of Investment

In this application, we describe the effect of frictions on the cross-sectional distribution of

investment across agents. The management and finance literature (e.g. Carlin and Mayer

(2003), or Huddart (1993)) has pointed out several channels through which the concentration

of investment may affect the outcome of a project. Investment concentrated among few

investors may help mitigate the free-riding problem associated with monitoring of the project.

On the other hand, dispersed investment is beneficial when delegation from investors to

managers fosters success, as small investment levels make such delegation credible.

To capture such effects, we consider success contributions dz = ϕ(bz) with ϕ increasing

and convex or concave — in the convex case concentrated investment fosters and in the

concave case hampers the success. Assumption A2 holds, so the game has a unique threshold

equilibrium when learning is sufficiently fast.

Let us analyze how the frictions affect the distribution of investment across agents in the

critical state. As before, the terminal volume of investment is invariant to frictions. The

distribution of investment, however, varies with the level of friction. When frictions are low,

agents switch actions often and arrive at investment dispersed among many investors. When

frictions are high, investment will be concentrated among those investors who, by accident,

happened to be optimistic at the beginning of the game and have invested. Because of the

high frictions, they tend to stay in the project and arrive at high investment levels. The next
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lemma formalizes this using the concept of mean-preserving spread of Rothschild and Stiglitz

(1970).

Lemma 2. Consider τ, τ ′ ∈ [0, 1 − c), τ < τ ′. The limit distribution of bz|θ
∗ under τ ′ is a

mean-preserving spread of the limit distribution of bz|θ
∗ under τ .

Thus, the effect of the frictions on the ex ante success probability is unambiguous when

ϕ is convex or concave:

Proposition 5. 1. If concentrated investment ceteris paribus fosters success then fric-

tions increase the ex ante success probability: if ϕ is convex, then θ∗(τ) is decreasing

in τ .

2. If concentrated investment ceteris paribus hampers success then frictions decrease the

ex ante success probability: if ϕ is concave, then θ∗(τ) is increasing in τ .

6.4 Long-Horizon Games

Finally, we assume that both the cross-sectional distribution and the volatility of investment

influence the project’s outcome. Let the success contribution be dz = ϕ(bz) − λvz with

ϕ increasing, twice differentiable, but not necessarily convex or concave. We abandon the

simplifying assumption that investment in the first round is not penalized. By convention,

we count investment in round 1 as entry; i.e. we set a(z, 0) = 0 for all z, and we modify the

definition of the volatility to vz =
1
T

∑T

t=1

∣∣a(z, t) − a(z, t − 1)
∣∣. When 2λ < ϕ′(b) for every

b, then A2 holds and the game has a unique threshold equilibrium for sufficiently small σ.

We focus on long horizon, T → ∞. The invariance result applies in this case in a stronger

form. First, unlike in the finite-horizon games, the small entry penalty does not distort the

critical investment b∗. When investors pay an entry penalty in the first round, the invariance

of b∗T does not hold for finite T because the payoff for the extreme path 11 . . . 1 varies with τ .

However, as T becomes large, the aggregate investment b∗T = ST = 1− c− τ
T
approximates

1− c; the first-round entry penalty becomes negligible compared to the overall incentives.
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Second, the effect of frictions on the distribution of investment, emphasized in the previ-

ous subsection, diminishes for large horizons. When agents adjust to their randomly evolving

posteriors in many rounds, the Law of Large Numbers applies and the dispersion in the num-

ber of rounds that agents spend in the project becomes negligible. Therefore, the first part of

the critical success contribution, E[ϕ(bz)|θ
∗] converges to ϕ (E[bz|θ

∗]) = ϕ(1− c), as T → ∞,

which is independent of the friction τ .

Finally, we analyze investment volatility. We find that the effect of frictions on volatility

is large and non-vanishing in the long-horizon games. W explicitly compute the distribution

of the terminal paths z in the critical state, and show in Appendix that v∗T converges to

2(1−c)c
1+2τ

, as T → ∞. The next proposition summarizes:

Proposition 6. Frictions foster the ex ante success probability in long-horizon games:

lim
T→∞

θ∗(T ) = 1− ϕ(1− c) + λ
2(1− c)c

1 + 2τ
,

where the right hand side decreases in τ .

In the long-horizon games, frictions do not significantly affect volume of aggregate in-

vestment, nor its dispersion across investors. Yet, the frictions significantly reduce volatility

of investment in the critical state, thus increasing equilibrium ex ante welfare.

7 Conclusion

This paper presents a tractable dynamic global game in which agents privately learn from

an exogenous stream of information and repeatedly adjust their actions. The framework is

sufficiently rich to allow for the design of welfare-enhancing frictions. The design problem is

simplified by the fact that aggregate investment (in a critical contingency) is invariant to a

large family of frictions. Thus, a policy maker, using frictions to influence the volatility or

concentration of investment, need not worry about compromising the volume of investment.
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Relying on this insight, we have characterized the impact of a simple friction on the

coordination outcome in various economic situations. Small switching costs foster successful

coordination when the economy benefits from a reduction of volatility or from concentrated

investment. Frictions are irrelevant when the history and cross-sectional distribution of

investment do not impact the economic outcome. When the economy benefits from dispersed

investment, switching costs hamper the coordination outcome.

Invariance of critical aggregate investment is driven by the same assumption as the well-

known characterization results in static global games — by the translational symmetry of

the model. The paper extends our understanding of the consequences of the translational

symmetry assumption from static to dynamic settings, thus significantly expanding the range

of possible global-games applications.

We have focused on a dynamic extension of a so-called regime change game in which

the outcome of the project is binary. Such a setting exhibits a well-defined critical state

separating regions of success and failure, which simplified our analysis. Many applications,

however, exhibit several degrees of success. Our preliminary results suggest that the invari-

ance result extends to settings with a finite number of outcomes, and thus we believe that

the assumption of the binary outcome space is not driving the main result.

One obvious direction for future research is to endogenize the learning process by social

learning — that is, by assuming that agents learn from private noisy observations of the early

actions of others. The details of social learning would likely alter the equilibrium coordination

outcome. Our model, with the exogenous learning process, provides a benchmark for such

an exercise.
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A Proofs

A.1 Proof of the Result from Section 3

Proof of Lemma 1. Consider an equilibrium with critical state θ∗. Then E
[
dz(x;s)

∣∣ θ] ≥ 1−θ

for all θ > θ∗, and E
[
dz(x;s)

∣∣ θ] < 1 − θ for θ < θ∗. Continuity of E
[
dz(x;s)

∣∣ θ] with respect

to θ implies 1 − θ∗ = E
[
dz(x;s)

∣∣ θ∗] = d∗. The right-hand side is independent of θ∗, as

discussed at the end of Section 3.4. Moreover, d∗ is also independent of σ as the model is

scale invariant: under two values σ and σ′, the best responses to θ∗ satisfy sh (θ
∗ + σε; σ) =

sh (θ
∗ + σ′ε; σ′), and therefore Prσ (z(x; s(σ)) = z′| θ∗) = Prσ′ (z(x; s(σ′)) = z′| θ∗) for any

terminal path z′.

A.2 Proof of the Result from Section 4

Proof of the Invariance Result. We will prove that an agent’s expected regret in the critical

state θ∗ is independent of the outcome: defining regret as

R(z, o) = max
z′

u(z′, o)− u(z, o), (9)

we prove that if agents play best-response s to θ∗ then the expected regret is equalized across

the success and the failure in the critical state θ∗:

E
[
R
(
z(x; s), 1

)∣∣ θ∗] = E
[
R
(
z(x; s), 0

)∣∣ θ∗] . (10)

Rearranging (10) immediately gives the invariance result:

max
z′

u(z′, 1)−max
z′

u(z′, 0) = E
[
u
(
z(x; s), 1

)
− u
(
z(x; s), 0

)∣∣ θ∗] = E
[
bz(x;s)

∣∣ θ∗] .
The left-hand side is S, which establishes (3), as needed.

The regret equalization (10) is implied by the following: once the agent optimizes her
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strategy s against θ∗, her ex ante expected regret cannot be decreased by a change in θ∗:

E
[
R
(
z(x; s),1θ≥θ̃∗

)]
≥ E

[
R
(
z(x; s),1θ≥θ∗

)]
, (11)

where 1θ≥θ̃∗ is the threshold outcome function with the critical state θ̃∗. Before we derive

(11), we first show how it implies (10).

Consider two thresholds θ∗ and θ∗ + δ, δ > 0. Since the outcome O(θ) differs only when

θ ∈ [θ∗, θ∗ + δ],

E
[
R
(
z(x; s),1θ≥θ∗

)]
− E

[
R
(
z(x; s),1θ≥θ∗+δ

]
=∫ θ∗+δ

θ∗
E
[
R
(
z(x; s), 1

)
−R

(
z(x; s), 0

)∣∣θ] dθ

θmax − θmin

.

The left-hand side is non-positive for any δ by optimality of θ∗, (11). Since E
[
R
(
z(x; s), o

)∣∣ θ]
is continuous in θ, we have proved that

0 ≥ E
[
R
(
z(x; s), 1

)
−R

(
z(x; s), 0

)∣∣θ∗].
Considering δ < 0 leads to the opposite inequality.

The last step of the proof, the derivation of (11), relies on the translational symmetry

of the model, on (2). For any strategy ŝ and its translation s̃h(x) = ŝh(x+ δ) the following

holds: the distribution of action paths z(x; ŝ) | θ under symmetric profile ŝ, conditional on

the realization of the fundamental θ equals distribution z(x; s̃) | (θ− δ) under s̃, conditional

on the fundamental being θ − δ. Thus, for any outcome function Ô, and its translation

Õ(θ) = Ô(θ + δ):

E
[
R
(
z(x; ŝ), Ô(θ)

)]
= E

[
R
(
z(x; s̃), Õ(θ)

)]
.

Letting s′ be the leftward translation of the optimal strategy s, s′h(x) = sh(x + δ), we
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have

E
[
R
(
z(x; s),1θ≥θ∗+δ

)]
= E

[
R
(
z(x; s′),1θ≥θ∗

)]
≥ E

[
R
(
z(x; s),1θ≥θ∗

)]
.

The last inequality holds because s is the best response to θ∗, and, under the definition (9),

payoff maximization is trivially equivalent to regret minimization. Comparing the left and

right hand sides gives (11).

A.3 Proofs of the Results from Section 5

Let us review the fast learning specification. Recall xi
t = xi

t+1 + σtηit, with xi
T+1 = θ. Each

error ηt has a continuous density ft with bounded support, and ft is bounded from above

and below by some positive f and f . We refer to εit =
xi
t
−θ

σt =
∑T

t′=t σ
t′−tηit′ as cumulative

error and denote its density by ασ
t ; it is bounded from above uniformly across all σ ∈ (0, 1]

and converges to ft as σ → 0. Similarly, for t′ < t, xt′−xt =
∑t−1

τ=t′ σ
τητ and thus there exists

α such that the conditional density of xt′ |xt is bounded from above by α

σt′ , for all σ ∈ (0, 1].

The following lemma summarizes the heuristic derivation of the optimal strategy from

Section 5.

Lemma 3. If A1 holds then

1. there exists σ such that for all σ < σ, the best response to θ∗ is a threshold strategy,

2. limσ→0 F|h|+1

(
x∗
h
(σ)−θ∗

σ|h|+1

)
= p∗h, where p∗h ∈ (0, 1) solves the indifference condition (6).

The second statement implies that the threshold type x∗
h(σ) assigns probability p∗h to the

success, as σ → 0.

Proof of Lemma 3. Claim 1: Let πσ
h(xt) = E [V σ

h1(xt+1)− V σ
h0(xt+1)| xt] denote the incentive

to invest of the type xt at history h. We will establish single-crossing of πσ
h(xt) for each h

and sufficiently small σ.

Type xt forms beliefs at round t about her signal xt+1 in the next round. If xt+1 >

θ∗ +
∑T

t′=t+1 σ
t′/2 (respectively xt+1 < θ∗ −

∑T

t′=t+1 σ
t′/2), then the agent will be certain at
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t+ 1 that the project will succeed (fail). The probability that the agent will be certain that

the project succeeds at t+ 1, given xt, is

Prσ

(
xt+1 > θ∗ +

T∑
t′=t+1

σt′

2

∣∣∣∣xt

)
= Ft

(
xt − θ∗ −

∑T

t′=t+1
σt

′

2

σt

)
. (12)

Let xt = θmin −
∑T

t′=t
σt

′

2
and xt = θmax +

∑T

t′=t
σt

′

2
denote the endpoints of the support

of xt. For each t we distinguish three intervals of xt:
11

[
xt, θ

∗ +
T∑

t′=t+1

σt′

2
−

σt

2

]
,

[
θ∗ +

T∑
t′=t+1

σt′

2
−

σt

2
, θ∗ −

T∑
t′=t+1

σt′

2
+

σt

2

]
,

[
θ∗ −

T∑
t′=t+1

σt′

2
+

σt

2
, xt

]
.

(13)

Consider xt from the third interval. The expression in (12) converges to 1, as σ → 0,

uniformly across all xt from the third interval. Therefore πσ
h(xt) converges to bh11...1 −

ch11...1 − bh01...1 + ch01...1, which is positive by A1. Thus πσ
h(xt) > 0 on the third interval for

small enough σ. By a symmetric argument πσ
h(xt) < 0 on the first interval for small σ.

Next, consider xt from the middle interval:

πσ
h(xt) = Prσ

(
xt+1 < θ∗ −

∑T

t′=t+1
σt

′

2

∣∣∣∣xt

)
(−ch10...0 + ch00...0)

+

∫ θ∗+
∑

T

t′=t+1

σ
t
′

2

θ∗−
∑

T

t′=t+1

σt′

2

(
Vh1(xt+1)− Vh0(xt+1)

)
ft

(
xt − xt+1

σt

)
dxt+1

σt

+Prσ

(
xt+1 > θ∗ +

∑T

t′=t+1
σt

′

2

∣∣∣∣xt

)
(bh11...1 − ch11...1 − bh01...1 + ch01...1),

and letting

M(xt+1) =

⎛
⎜⎜⎝Vh1(xt+1)− Vh0(xt+1)−

⎧⎪⎪⎨
⎪⎪⎩
−ch10...0 + ch00...0 if xt+1 < θ∗,

bh11...1 − ch11...1 − bh01...1 + ch01...1 if xt+1 > θ∗,

⎞
⎟⎟⎠

11The endpoints of the intervals are naturally ordered for σ < 1/2.
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we rewrite πσ
h(xt) as

πσ
h(xt) = Prσ (xt+1 < θ∗|xt) (−ch10...0 + ch00...0) +

∫ θ∗+
∑

T

t′=t+1

σ
t
′

2

θ∗−
∑

T

t′=t+1

σt′

2

M(xt+1)ft

(
xt − xt+1

σt

)
dxt+1

σt

+Prσ (xt+1 > θ∗|xt) (bh11...1 − ch11...1 − bh01...1 + ch01...1). (14)

The derivative with respect to xt of the sum of the first and the third terms is

[
(ch10...0 − ch00...0) + (bh11...1 − ch11...1 − bh01...1 + ch01...1)

]
ft

(
xt − θ∗

σt

)
1

σt
,

which is positive and of the order 1
σt because the term in the square brackets is positive by

A1 and ft
(
xt−θ∗

σt

)
is bounded from below by a constant f .

The derivative of the second term is

∫ θ∗+
∑

T

t′=t+1

σ
t
′

2

θ∗−
∑

T

t′=t+1

σt′

2

M(xt+1)f
′
t

(
xt − xt+1

σt

)
dxt+1

σ2t
.

Term M(xt+1) is bounded as payoffs are bounded. The derivative f ′
t is bounded as well as

error densities are assumed to be continuously differentiable. The whole integral is of the

order σt+1 1
σ2t =

1
σt−1 . Thus, for sufficiently small σ, the sum of derivatives of the first, third

and the second term is positive; that is, d
dxt

πh(xt) is positive on the middle interval in (13).

For small σ, πσ
h(xt) is negative on the first interval, positive on the third interval, increas-

ing on the middle interval and continuous. Thus, the indifference condition πσ
h(xt) = 0 has

a unique solution x∗
h(σ).

Claim 2: Equation (14) implies that, as σ → 0, πσ
h(θ

∗ + σtε) converges, uniformly across

ε to (
1− Ft(ε)

)
(−ch10...0 + ch00...0) + Ft(ε)(bh11...1 − ch11...1 − bh01...1 + ch01...1).

Hence Ft

(
x∗
h
(σ)−θ∗

σt

)
converges to the solution of the limit indifference condition (6).
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Proof of Proposition 1. By Lemma 1, θ∗(σ) = 1− d∗(σ) where

d∗(σ) =
∑
z′

dz′Prσ
(
z(x; s(σ)) = z′ |θ∗

)
,

and s(σ) is the best response to θ∗. Let Rh be the event that the agent reaches path h.

Prσ
(
z(x; s(σ)) = z′ |θ∗

)
=

T∏
t=1

[
a(z′, t)Prσ

(
xt ≥ x∗

z′(t−1)(σ)
∣∣ θ∗ and Rz′(t−1)(σ)

)
+(1− a(z′, t))Prσ

(
xt < x∗

z′(t−1)(σ)
∣∣ θ∗ and Rz′(t−1)(σ)

) ]
.

To show that the last expression converges to lt, it suffices to prove that for each t and each

path h of length t− 1:

lim
σ→0

Prσ
(
xt ≥ x∗

h(σ)| θ
∗ and Rh(σ)

)
= 1− p∗h.

We use

Prσ
(
xt ≥ x∗

h(σ)| θ
∗ and Rh(σ)

)
=

∫
Prσ
(
xt ≥ x∗

h(σ)| θ
∗ and xt−1

)
gh(xt−1)dxt−1,

where gh(xt−1) is the density of xt−1, conditional on Rh(σ) and θ∗. We rewrite this further

as ∫
Prσ
(
εt ≥ ε∗h(σ)| εt−1

)
g̃h(εt−1)dεt−1,

where g̃h(εt−1) = gh (θ
∗ + σt−1εt−1) σ

t−1 is the density of εt−1 conditional on Rh(σ) and

θ∗, and ε∗h(σ) =
x∗
h
(σ)−θ∗

σt . The second statement in Lemma 3 implies that all histories are

reached with positive, non-vanishing probability in the critical state, as σ → 0. Thus g̃h(εt−1)

is bounded. We will show that Prσ
(
εt ≥ ε∗h(σ)| εt−1

)
converges to 1−p∗h, for each εt−1. Then

by the Dominated Convergence Theorem, the last integral converges to 1− p∗h.
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Prσ
(
εt ≥ ε∗h(σ)| εt−1

)
=

∫∞

ε∗
h
(σ)

ft−1 (εt−1 − σεt)α
σ
t (εt)dεt∫∞

−∞
ft−1 (εt−1 − σεt)ασ

t (εt)dεt
,

where ασ
t is the unconditional density of εt. Additionally, the second statement of Lemma 3

implies that limσ→0 ε
∗
h(σ) = η∗h, where Ft(η

∗
h) = p∗h. Since ft−1 and ασ

t are bounded, ft−1 is

continuous, and ασ(·) converges to ft(·):

lim
σ→0

Prσ
(
εt ≥ ε∗h(σ)| εt−1

)
= lim

σ→0

∫ ∞

ε∗
h
(σ)

αt(εt)dεt = 1− Ft (η
∗
h) = 1− p∗h.

Proof of Proposition 2. By Lemma 3, the best response to any θ∗ is a threshold strategy.

Thus, it suffices to prove that there exists σ such that for any θ∗ and all σ ≤ σ the best

response to θ∗ generates a non-decreasing expected success contribution dσ(θ).

Recall the convention xT+1 = θ, and let x∗
z = θ∗ for all z. Define auxiliary functions

dtσ(xt) = E
[
dz(x;s̃t)

∣∣xt

]
, where the strategy s̃t coincides with the best response s to θ∗ up to

(including) round t− 1, and specifies action 0 in round t and thereafter; s̃th(x) = sh(x) when

|h| < t− 1 and s̃th(x) = 0 when |h| ≥ t− 1. Notice that dσ (xT+1) = dT+1
σ (xT+1).

We prove by induction over t that there exists σ such that for all σ ≤ σ, and all t =

1, . . . , T + 1:

d

dxt

dtσ(xt) ≥ 0 for all xt ≤ min
h:|h|=t−1

x∗
h. (15)

For t = T + 1 this is identical to the claim that d
dθ
d(θ) ≥ 0 for all θ ≤ θ∗. The proof of the

monotonicity above θ∗ is symmetric, and we omit it.

Claim (15) holds for t = 1 because d1σ(x1) = d0...0. We show that if the claim holds

for t − 1 then it holds for t. Consider first xt ≤ minh:|h|=t−2 x
∗
h −

σt−1

2
. Conditional on any

xt from this range, only signals xt−1 ≤ minh:|h|=t−2 x
∗
h have positive probability density in

round t − 1. For such xt−1, sh(xt−1) = 0 for all h of length t − 2. Thus, for the considered

range of xt, d
t
σ(xt) = E [dt−1

σ (xt−1)| xt]. Translation invariance of the joint distribution of
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signals, (2) implies that, for any function g, E [g (xt−1)| xt + δ] = E [g (xt−1 + δ)| xt], and so,

d
dxt

E [g(xt−1)|xt] = E
[

d
dxt−1

g(xt−1)
∣∣∣ xt

]
. Thus,

d

dxt

dtσ(xt) = E

[
d

dxt−1

dt−1
σ (xt−1)

∣∣∣∣ xt

]
≥ 0

by the induction hypothesis.

To close the induction step, it remains to prove (15) for t and for

xt ∈

[
min

h:|h|=t−2
x∗
h −

σt−1

2
, min
h:|h|=t−1

x∗
h

]
.

For this range,

dtσ(xt) =
∑

h:|h|=t−2

(∫ x∗
h
(σ)

−∞

dh00...0 Pr(Rh|xt−1)ft−1

(
xt−1 − xt

σt−1

)
dxt−1

σt−1
+

∫ +∞

x∗
h
(σ)

dh10...0 Pr(Rh|xt−1)ft−1

(
xt−1 − xt

σt−1

)
dxt−1

σt−1

)
.

Therefore

d

dxt

dtσ(xt) =
∑

h:|h|=t−2

(dh10...0 − dh00...0) Pr(Rh|x
∗
h)ft−1

(
x∗
h(σ)− xt

σt−1

)
1

σt−1
+

∑
h:|h|=t−2

∫
dhsh(xt)0...0ft−1

(
xt−1 − xt

σt−1

)
d

dxt−1

Pr(Rh|xt−1)
dxt−1

σt−1
.

We show that the first sum on the right-hand side is positive of order 1
σt−1 , and that the

second sum is of order 1
σt−2 . Therefore,

d
dxt

dtσ(xt) ≥ 0 for small enough σ.

Let us discuss the first sum: dh10...0 − dh00...0 > 0 by A2. The second claim of Lemma

3 implies that Pr(Rh|x
∗
h) > 0 for all histories h when σ is sufficiently small. Finally, for at

least one path h,
x∗
h
(σ)−xt

σt−1 is in the support of ηt−1 for the examined interval of xt, and thus

ft−1

(
x∗
h
(σ)−xt

σt−1

)
> f for at least one path h of length t− 2.

To prove that the second sum is of order 1
σt−2 we show that d

dxt−1
Pr(Rh|xt−1) is of order
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1
σt−2 . We establish a bound on |Pr(Rh | xt−1 + δ)− Pr(Rh | xt−1)|. Let zt(x) be the first

t elements of z(x; s). Using this notation, Pr(Rh | xt−1) = Pr(zt−2(x) = h | xt−1), and

Pr(Rh | xt−1 + δ) = Pr(zt−2(x) = h | xt−1 + δ). Recalling that the distribution of x is

translation invariant, the last expression equals Pr (zt−2(x+ δe) = h | xt−1). Furthermore

∣∣Pr (zt−2(x+ δe) = h | xt−1

)
− Pr

(
zt−2(x) = h | xt−1

)∣∣
≤ Pr

( {
x : ∃τ < t− 1 such that sh(τ−1)(xτ + δ) �= sh(τ−1)(xτ )

}∣∣ xt−1

)
≤
∑
τ<t−1

Pr
({

x : sh(τ−1)(xτ + δ) �= sh(τ−1)(xτ )
}∣∣ xt−1

)
≤
∑
τ<t−1

δ
α

στ
,

where we used in the last step that, for τ < t − 1, the conditional density of xτ | xt−1 is

bounded by α
στ . The last expression is of order δ

σt−2 .

A.4 Proofs of the Results from Section 6

Proof of Proposition 4. Critical volatility v∗ = v∅/T where v∅ is defined recursively as:12

v∅ = p∗∅v0 + (1− p∗∅)v1,

vh = p∗h (a(h, |h|) + vh0) + (1− p∗h) (1− a(h, |h|) + vh1) , when |h| = 1 . . . T − 2,

vh = p∗ha(h, |h|) + (1− p∗h) (1− a(h, |h|)) , when |h| = T − 1,

where probabilities p∗h are given by the indifference condition (6): p∗∅ =
c+τ
1+2τ

. For all histories

of length 1, . . . , T − 2, p∗h = c+2τ
1+2τ

if h ends with 0, and p∗h = c
1+2τ

for all h ending with 1.

Finally, for all histories of length T − 1, p∗h = c+ τ if h ends with 0, and p∗h = c− τ for all h

ending with 1.

Proposition 1 implies that θ∗ = 1− b∗+λv∅/T . The critical investment b∗ is independent

of τ by the invariance result, and thus it suffices to prove that dv∅
dτ

∣∣∣
τ=0

< 0. We will prove

this by induction over the length of the history h.

12Variable vh is the expected number of switches on the continuation path, conditional on agent reaching
action history h, and on the state being critical.
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First, we let the reader verify that dvh
dτ

∣∣
τ=0

< 0 when |h| = T − 1. Next, consider h of

length 1 . . . T − 2, and assume
dv

h′

dτ

∣∣∣
τ=0

< 0 for histories h′ of length |h|+ 1.

dvh
dτ

∣∣∣∣
τ=0

= [2a(h, |h|)− 1]
dp∗h
dτ

∣∣∣∣
τ=0

+ p∗h
dvh0
dτ

∣∣∣∣
τ=0

+ (1− p∗h)
dvh1
dτ

∣∣∣∣
τ=0

+
dp∗h
dτ

∣∣∣∣
τ=0

(vh0 − vh1) .

Using the expressions for p∗h, it is straightforward to verify that the first summand is negative.

The second and the third summands are negative by the induction hypothesis. The fourth

summand is zero as vh0 = vh1 when τ = 0. The last statement holds because the optimal

strategy is history-independent when τ = 0.

Finally,

dv∅
dτ

∣∣∣∣
τ=0

= p∗∅
dv0
dτ

∣∣∣∣
τ=0

+ (1− p∗∅)
dv1
dτ

∣∣∣∣
τ=0

+
dp∗∅
dτ

∣∣∣∣
τ=0

(v0 − v1) .

The first two summands are negative, as we have established that dvh
dτ

∣∣
τ=0

< 0 for h ∈ {0, 1},

and the last summand is again zero when τ = 0.

Proof of Lemma 2. Let (a1, . . . , aK ; p1, . . . , pK) be a lottery in which outcomes ak have a

probabilities pk. Recall that lottery L′ is a mean-preserving spread of L if there exist lotteries

Z1, . . . , ZK , each with mean ak, such that L′ can be identified with the compound lottery

(Z1, . . . , ZK ; p1, . . . , pK). We write L′  L if L′ is a mean preserving spread of L.

We say that a set of real numbers {b1, . . . , bK} is a spread of {a1, a2} if for each k ∈

{1, . . . , K}, bk ≤ a1 or bk ≥ a2, the inequality is strict for some k, and mink bk ≤ a1 < a2 ≤

maxk bk. We omit the proof of the following lemma:

Lemma 4. 1. If {b1, . . . , bK} is a spread of {a1, a2}, lotteries L and L′ have equal means,

and supports {a1, a2} and {b1, . . . , bK}, respectively, then L′  L.

2. Suppose L′
k  Lk for all k = 1, . . . , K. Let L = (L1, . . . , LK ; p1, . . . , pK) and L′ =

(L′
1, . . . , L

′
K ; p1, . . . , pK) be compound lotteries. Then L′  L.
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Fix τ and omit it from the notation for now. Recall that

lh =

|h|∏
t′=1

[
a(h, t′)

(
1− p∗h(t′)

)
+
(
1− a(h, t′)

)
p∗h(t′)

]

is the probability of reaching path h in the critical state, and let LT be lottery
(
(bz)z; (lz)z

)
.

Define the success premium at path h as

Sh = max
z:∃h′ s.t. z=hh′

u(z, 1)− max
z:∃h′ s.t. z=hh′

u(z, 0).

Note that Sz = bz for each terminal path z, and S∅ = S. Define a sequence of lotteries Lt =(
(Sh)h:|h|=t, (lh)h:|h|=t

)
for t = 0, . . . , T . The definition of LT coincides with the definition

from the previous paragraph.

We can rewrite the indifference condition (6) as

Sh = (1− p∗h)Sh1 + p∗hSh0,

where 1−p∗h is the probability that agent chooses action 1 at path h, conditional on the state

being θ∗. Thus, for each t = 1, . . . , T , the lottery Lt can be identified with the compound

lottery (
(Qh)h:|h|=t−1; (lh)h:|h|=t−1

)
,

where Qh = (Sh0, Sh1; p
∗
h, 1− p∗h) has mean Sh.

We will prove by induction over t that LT (τ
′)  LT (τ) for each τ, τ ′ ∈ [0, 1− c), τ ′ > τ .

Notice that L1(τ
′)  L1(τ) because both lotteries have identical means equal to S∅ = S,

and support of L1(τ̃) is {S0(τ̃), S1(τ̃)} =
{

(1−c)(T−1)−τ̃

T
, (1−c)(T−1)+1+τ̃

T

}
, for τ̃ ∈ {τ, τ ′}. Thus

{S0(τ
′), S1(τ

′)} is a spread of {S0(τ), S1(τ)}.

From now on, we write variables associated with tax τ ′ with an apostrophe and variables

associated with τ without an apostrophe. For instance, we use L′
t = Lt(τ

′) and Lt = Lt(τ).

Assume for induction L′
t−1  Lt−1, so that for each h of length t− 1 there exists a lottery Zh
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with support
{
S ′
g

}
g:|g|=t−1

and probabilities (zhg )g:|g|=t−1, with mean E[Zh] = Sh, such that

L′
t−1 can be identified with the compound lottery

(
(Zh)h:|h|=t−1; (lh)h:|h|=t−1

)
.

Define a compound lottery Q̂h =
((

Q′
g

)
g:|g|=t−1

; (zhg )g:|g|=t−1

)
. It is constructed from Zh

by replacing each outcome S ′
g by binary lottery Q′

g =
(
S ′
g0, S

′
g1; p

′∗
g , 1 − p′∗g

)
with mean S ′

g.

By construction, the mean of Q̂h is Sh.

Lotteries L′
t and Lt can be identified with the compound lotteries

((
Q̂h

)
h:|h|=t−1

; (lh)h:|h|=t−1

)
, and

(
(Qh)h:|h|=t−1 ; (lh)h:|h|=t−1

)
,

respectively.

Using the second statement of Lemma 4, L′
t  Lt if Q̂h  Qh for each path h of length

t − 1. For each h, the means of both Q̂h and Qh equal Sh and thus, by the first statement

of Lemma 4, it suffices to show that the support of Q̂h is a spread of the support of Qh.

Support of Q̂h is
{
S ′
g

}
g:|g|=t

, whereas support of Qh is {Sh0, Sh1}. Let bg = 1
T

∑|g|
t′=1 a(g, t

′)

be the investment to which the agent has committed at path g. For each path g of length

t < T

Sg(τ) =
(T − t)(1− c)

T
+ bg

⎧⎪⎪⎨
⎪⎪⎩
+τ/T if h ends with action 1,

−τ/T if h ends with action 0,

and for g of length T , Sg(τ) = bg. Fix any path h of length t−1. Then for any τ, τ ′ ∈ [0, 1−c),

τ < τ ′, the following holds: Sg(τ
′) ≤ Sh0(τ) or Sg(τ

′) ≥ Sh1(τ) for all g of length t, the

inequality is strict for at least some g, and ming Sg(τ
′) ≤ Sh0(τ) < Sh1(τ) ≤ maxg Sg(τ

′).

Proof of Proposition 6. Recall that in the critical state θ∗, and in the limit σ → 0, the agent

invests at path h with probability 1−p∗h where p∗h is the solution of the indifference condition

(6). For all histories of length t < T −1, p∗h = c+2τ
1+2τ

if h ends with action 0, and p∗h = c
1+2τ

for

all h ending with action 1. Since the probability of playing an action at path h only depends

on the last action of h, the sequence at constitutes in the critical state a Markov chain with

40



transition matrix

Q (at−1, at) =

⎛
⎜⎝ c+2τ

1+2τ
1− c+2τ

1+2τ

c
1+2τ

1− c
1+2τ

⎞
⎟⎠ ,

and with a0 = 0.

The investment bz = 1
T

∑T

t=1 az(t) is the average action at in the first T rounds of a

realization z of the Markov chain. For large T , we can apply the Central Limit Theorem for

Markov chains (see Kemeny and Snell (1960)) and approximate the distribution of bz|θ
∗ by

the normal distribution N
(
b̃, ω

2

T

)
. The parameter b̃ is the mean of the chain’s steady state

distribution π that solves π.Q = π. Thus (π0, π1) = (c, 1− c), and b̃ = 1− c. We report that

the variance parameter is ω2 = (1 − c)c(1 + 4τ), and omit the calculation. For any twice

differentiable ϕ,

E [ϕ(bz)|θ
∗] = ϕ(1− c) +

ϕ′′(1− c)ω2

2T
+ o

(
1

T 2

)
→ ϕ(1− c),

where o
(

1
T 2

)
is an expression of order of 1

T 2 .

When T is large, we can approximate critical volatility v∗T applying the stationary distri-

bution π of the ergodic Markov chain: v∗T converges to v∗ = π0Q(0, 1) + π1Q(1, 0) = 2(1−c)c
1+2τ

.

Thus, altogether, θ∗(T ) → 1− ϕ(1− c) + λ2(1−c)c
1+2τ

, as T → ∞.
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