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Abstract
For the biofuel markets and related commodities, we study their price transmission, which
is in fact equivalent to studying price cross-elasticities. Importantly, we focus on the price
dependence of the price transmission mechanism. Several methodological caveats are
discussed. Specifically, we combine the memory robust feasible generalized least squares
estimation with two-stage least squares to control for endogeneity bias and inconsistency.
We find that both ethanol and biodiesel prices are responsive to their production factors
(ethanol to corn, and biodiesel to German diesel). The strength of transmission between
both significant pairs increased remarkably during the food crisis of 2007/2008. Causality
tests further show that price changes in production factors lead the changes in biofuels
even after controlling for price effects.

Abstrakt
V této práci se zabýváme cenovým přenosem na trhu biopaliv a s nimi provázaných ko-
modit. Analýza cenového přenosu odpovídá analýze cenových křížových pružností. Za-
měřujeme se na závislost mechanismu cenového přenosu na úrovni cen. Diskutujeme
několik metodologických problémů. Propojujeme metodu zobecněných a dvoustupňových
nejmenších čtverců s cílem vzít v úvahu vychýlení a nekonzistenci odhadu způsobené endo-
genitou proměnných. V naší analýze zjišťujeme, že ceny etanolu i bionafty reagují na své
výrobní faktory (etanol na kukuřici, bionafta na německou naftu). Sila cenového přenosu
mezi oběma významnými páry komodit výrazně vzrostla během potravinové krize v letech
2007/2008. Testování kauzality dále odhaluje, že změny cen výrobních faktorů vedou ke
změnám cen biopaliv, i když bereme v úvahu cenové vlivy.
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1 Introduction

The development of biofuels is key to tackling the interrelated problems of climate

change and food and energy security. Early economic research of biofuels (Rajagopal

and Zilberman, 2007) was very much concerned with engineering-like calculations

of transformation ratios among basic food commodities used for the production of

biofuels, with energy and greenhouse gas emission comparisons between biofuels

and fossil fuels, and with the evaluation of economic effects of biofuel mandates and

subsidies. The most important economic research questions related to the current

development of biofuels are far more concerned with their price characteristics and

cross-relationships as basic building blocks for the economic modeling of indirect

land use changes related to biofuel production and consumption (Janda et al., 2012;

Serra and Zilberman, 2012).

Price linkages between the food, energy and biofuel markets have therefore be-

come one of the most discussed topics for energy, environmental and agricultural

economists interested in the question of sustainable development of biofuels (Tim-

ilsina et al., 2011; Langholtz et al., 2012; Zilberman et al., 2012; Kristoufek et al.,

2012a). A unique feature of our paper is that we consider price transmission in both

major biofuel production lines and over the whole biofuel production cycle. This is

a major step forward as compared with the literature which deals only with crude

oil and agricultural commodities (Cha and Bae, 2011; Ciaian and Kancs, 2011a,b;

Nazlioglu, 2011; Nazlioglu and Soytas, 2011, 2012), only with fossil fuels and bio-

fuels (Pokrivcak and Rajcaniova, 2011; Rajcaniova et al., 2011), only with biofuels

and agricultural feedstock (Carter et al., 2012) or only with one type of biofuel

(Thompson et al., 2009; Du et al., 2011). It is especially common that fossil fuels

(gasoline or diesel) are not directly included in the analysis (Serra et al., 2010). A

further advantage is that our paper is not restricted to one particular country like

the US, which receives major attention in the biofuel time-series literature.

We first analyze price transmission between the prices of the two most-used bio-

fuels (ethanol and biodiesel), related feedstock, and fossil fuels. Further, we examine
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whether increases in biofuel prices cause the prices of agricultural commodities to

rise as well, or vice versa. Moreover, a focus is put on potential price dependencies

of the transmission mechanism, i.e. whether the connections and effects between

specific pairs of commodities change with the price level of one of them.

An important novelty of our approach lies in its methodology as well. We

show that the prices of ethanol and biodiesel are strongly trending in time and are

seasonal. After controlling for these effects, the series neither contain a unit root

nor are fractionally integrated, implying that neither cointegration nor fractional

cointegration should be used for their analysis as is frequently done in the literature

(see e.g. (Zhang et al., 2009, 2010; Serra et al., 2011; Pokrivcak and Rajcaniova,

2011)). Obviously these studies used a different data set than our paper. Our

empirical results therefore do not imply that these studies were wrong, but they

emphasize the need for checking the validity of assumptions allowing the use of

cointegration techniques after controlling for time trends and seasonality. As the

series remain weakly dependent, we apply Prais-Winsten methodology to control

for such dependence. Moreover, the biofuel system is suspected to include at least

several endogenous variables. To control for this, we apply a combination of Prais-

Winsten methodology and two-stage least squares approach. Such an approach is

very novel in the biofuels-related literature. In causality testing, we again focus on a

methodological issue which is not usually dealt with in the literature – stationarity.

Even though stationarity is standardly tested in Granger-type causality tests, an

assumption of heteroskedasticity is frequently omitted (see e.g. (McPhail, 2011;

Ciaian and Kancs, 2011b; Pokrivcak and Rajcaniova, 2011)).

Controlling for all the mentioned effects, we find that ethanol is significantly

connected to corn and crude oil, while biodiesel is mainly connected to German

diesel. Other transmission effects are either economically or statistically insignifi-

cant. We also find that the significant price transmission is price-dependent. The

price dependence is most visible for the ethanol–corn pair – it is close to zero for

average prices of corn but can climb up to almost unity for high historical prices.
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As the price of commodities evolves over time, we are able to transform the price-

dependent transmission effects into time-dependent ones. By doing so, we show

that the price transmission mechanism between the analyzed commodities varies

over time while the most interesting dynamics were observed for the year 2008,

which is considered the year of the global food crisis.

The causality tests reveal that an increase in corn prices causes an increase in

ethanol prices in the short term. For biodiesel, we find a causal relationship from

German diesel to biodiesel, which is again positive in both the short and medium

term. When the possible price effect on causality is taken into consideration, the

found relationships are supported. The analyzed biofuels are thus influenced by

their producing factors and not vice versa.

Our paper is solely concerned with price analysis. This is consistent with a large

literature which aims to understand linkages between the prices of different fuels.

But prices are the outcome of a system that includes factors of quantity, supply and

demand, etc. Therefore, prices are affected by all of these variables and to some

extent they provide an understanding of how different related markets operate.

This is very important for the construction of economic models of indirect land use

change (Khanna et al., 2011; Chen et al., 2012) caused by biofuels. As opposed

to early models of direct land use changes, which were typically based on energy

and biology related transformation processes, indirect land use change (ILUC) is a

complex process driven by the economic (price) effects on demand and supply and

as such may be estimated only through economic models.

Our results suggest that economic models of ILUC should not assume constant

cross-price elasticities (price transmissions) and price-level independent causality

relationships among various elements of the biofuel production and consumption

cycle. We also confirm that ILUC models should take into account the dynamics of

the transmission mechanism and causalities related to extreme price changes during

food crises. More generally, our price- and time-dependent price transmissions and

causalities are very appropriate for modeling the effects of biofuels in the era of gen-
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eral commodity price increase, commonly reflected since the start of the 2007/2008

food crisis, as opposed to the long period of relative commodity price stability which

was characteristic of the earlier period.

The paper is organized as follows. In Section 2, we describe our methodology

in some detail. Section 3 contains a detailed description of the data set as well as

comments on its trending and seasonality. In Section 4, we present the results for

the price transmission mechanism as well as causality tests. Section 5 concludes.

2 Methodology

2.1 Theoretical framework

The biofuel market can be treated as a standard economic market with a market-

clearing price determined by a supply and a demand for the commodity. In a partial

equilibrium framework based on Serra et al. (2010), the basic characteristics of the

biofuel markets – technological and regulation constraints – are included. In the

standard equilibrium without constraints, biofuel prices are set at the intersection

E of the biofuel demand curve D(PB, PG) and the biofuel supply curve S(PB, PF )

in Fig. 1, where PB, PF , PG are the prices of relevant biofuel, its feedstock and an

appropriate fossil fuel, respectively. The price of biofuel increases with a demand

curve shift caused by the increasing price of the relevant fossil fuel, eventually

reaching a new equilibrium level E1 with a higher price and quantity. A supply

curve shifts with an increasing feedstock price leading to a new equilibrium E2 with

a higher price and a lower quantity. This simple unrestricted equilibrium analysis

implies that at least in the long term, the movements in prices of biofuels, fossil fuels

and feedstock are strongly positively correlated and the changes in biofuel prices

are caused by the behavior of the feedstock and fossil fuels.

However, important drivers of biofuel development are regulatory supports like

mandates, blending obligations, subsidies, etc. (Chen et al., 2011; Khanna et al.,

2008) and technological feasibility (production capacities and technological possi-
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Figure 1: Determination of the Price of Biofuel

bilities of biofuel utilization). Accounting for this, the description of supply and de-

mand in Fig. 1 includes regulatory and technological constraints denoted by vertical

straight lines through points BR and BT , respectively. Taking these constraints into

account, we obtain minimum and maximum possible quantity of a specific biofuel

on the market. Therefore, equilibria E1 and E2 are no longer attainable. Resulting

non-equilibrium market situations T or R are associated with biofuel prices P T
B or

PR
B , respectively, which are higher than for the equilibria situations E1 and E2.

In effect, the technological and regulatory constraints influence the shape of the

supply and demand curve, respectively. The demand curve is a vertical line overlap-

ping with the line of the constraint down to the intersection with the unrestricted

demand curve and then behaves just as a standard decreasing demand function. In

a similar way, the supply curve is increasing with quantity up to the intersection

with the technological constraint where it becomes a vertical. When the constraints

are taken as fixed, both the demand and supply functions change their shape when

the prices of relevant fossil fuels or feedstock, respectively, increase or decrease, i.e.

they are not just shifted one way or another. Moreover, we can consider the con-

straints as being variable (either in time, or for individual market agents so that
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they change on an aggregate level) or not precisely definable. This may lead to

demand and supply functions which are not just broken-linear functions but non-

linear functions converging to the constraint. One way or another, there is a strong

possibility that the demand and supply functions are not linear and are likely to

change their shape, which leads to possibly price-dependent links and co-movements

between commodities. This non-linear time-evolving dynamics of biofuel prices is

investigated in our paper. In our econometric model we explicitly control for prices

PF , PG while assuming that efficiently functioning commodity markets incorporate

into the prices PB, PF , PG the institutional features of biofuel markets like mandates

and blending walls which we introduced in Fig. 1.

An important novel feature of our paper is a consideration of the whole biofuel

related production cycle as opposed to most of the literature which looks only at a

small number of related markets. For example only ethanol, sugar, gasoline and oil

or ethanol, corn, gasoline, oil are considered in even the broadest and most inclu-

sive papers in the literature (for recent reviews of biofuel-related price transmission

models see Janda et al. (2012); Serra and Zilberman (2012)). Generally, the liter-

ature may have some locational emphasis (i.e. considering Brazilian ethanol when

looking at sugarcane and US ethanol when looking at corn) but the real underlying

assumption is that the global markets are considered implicitly. Yet, in reality, our

results suggest that by using data on more markets (US and German markets in

our case), we may identify linkages at the commodity level, linkages at the input

level, and most importantly, linkages due to time and space. Namely, it is not only

substitution in the final use that matters, but where production occurs and the

related substitution of use of inputs among activities. Furthermore, the time and

cost of moving commodities across locations really matters. This is why we find

a strong correlation between European and American prices and a low correlation

across the world. Even though modern economics speaks about globalized modern

markets, there are transaction costs that cause location to matter and affect prices.

Location does not only mean distances: different locations may have different regu-
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lations and these result in different patterns of price linkages between biofuel, fossil

fuel and agricultural commodities. Furthermore, another important element is that

time-different data tell a different story, and in the long run, relationships between

markets are stronger than in the short run.

2.2 Price transmission

Econometric estimation of an elasticity is often based on an approximation in a

log-log specification of a linear regression. When we have variables X and Y and

we estimate the model

log Y = α + β logX + ε, (1)

parameter β is then taken as an approximation to elasticity as β = ∆Y/Y
∆X/X

which is

the definition of the elasticity of Y with respect to X. In microeconomic demand

analysis (Luchansky and Monks, 2009; Meyer et al., 2012), we usually deal with the

elasticity of a demanded quantity with respect to a price, edp =
∆Qd/Qd

∆P/P
. To analyze

whether the relevant pair of goods is a pair of substitutes or complements, we are

interested in cross-price elasticities of demand, edjpi =
∆Qdj

/Qdj

∆Pi/Pi
. In cases when we

have no information about demanded quantities, we might be interested in price

elasticities epjpi defined as epjpi =
∆Pj/Pj

∆Pi/Pi
. To avoid confusion, we call this elasticity

a price transmission between assets i and j. This price transmission specifies how

the price of a good j reacts to the change in the price of a good i. It can be easily

shown (Kristoufek et al., 2012b) that the price transmission parameter is actually

a ratio between own-price elasticity of demand and cross-price elasticity of demand

for a good j. In words, if epjpi > 1, i.e. the price of a good i reacts more than

proportionally to a change in the price of a good j, then the demanded quantity

Qdi is more sensitive to changes in Pi than in Pj.

In the standard framework, all mentioned elasticities are assumed to be constant

for all price levels. However, constant elasticities are a strong simplification. Re-

turning to Fig. 1, there is no such restriction on the effect of PF and PG on PB. The
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effect of PF on the supply S(PB, PF ) and the effect of PG on the demand D(PB, PG)

may take various forms. The expectations are that the price transmission effect

between PF and PF is increasing in prices. This might reflect the situation in which

the substitution effect between fossil fuels and biofuels is low when the prices of

fossil fuels are low as well as the effect of increasing costs which is low when the

prices of feedstock are low (and are likely to be offset by subsidies). To analyze

such a price dependence of the transmission mechanism, we need to generalize the

expression of the elasticity from the original log-log regression in Eq. 1. To obtain

the price dependence, we aim to arrive at

eYX = β + γX + δX2 (2)

which captures price dependence to the second-order polynomial (the second-order

polynomial is arbitrary here and can be easily generalized to higher orders). This

form of the price transmission leads to the following model:

log Y = α + β logX + γX +
δ

2
X2 + ε. (3)

The introduced concept of price transmission has an additional advantage over

standard constant elasticities in its ability to control for price and, mainly, time de-

pendence. Analyzing the transmission thus enables us to comment on the evolution

of the relationship between two price series in time and its connection to relevant

events on the corresponding markets. Obviously, the proposed methodology is not

restricted only to biofuel markets, as we use it, but can be used on any portfolio of

assets. In most cases, we expect that the absolute value of the price transmission

effect is lower than one, i.e. that the price of i reacts more to the changes in de-

manded quantity of asset i than of asset j. However, it might happen that an asset

reacts more to the changes of demanded quantity of the other asset, which could be

associated with over reaction of market participants or explosiveness of the prices.

Indeed, we find that for biofuel markets, the absolute value of the transmission
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effects remains below unity and there is not a single period where it is higher than

unity on a statistical basis.

To obtain the price transmission effect for ethanol and biodiesel with respect to

other commodities, we need to construct models according to Eq. 3 and include the

variables of interest in set X. Since we are analyzing time series of the logarithmic

prices, we need to carefully check the assumptions of OLS estimation as well as sta-

tionarity and possible trending and/or seasonalities. Especially for the time series,

the assumption of no auto-correlation in the residuals is crucial. If we find that the

auto-correlation in residuals is strongly significant and the detrended/deseasonalized

explanatory variables are strongly auto-correlated as well (yet both remain far from

a unit-root), OLS becomes inefficient (Wooldridge, 2009). In such a case, we need

to switch to feasible GLS (FGLS) estimation – either Cochrane-Orcutt (Cochrane

and Orcutt, 1949) or Prais-Winsten (Prais and Winsten, 1954) estimation. Both

methods are based on quasi-differencing of the original series (see Kristoufek et al.

(2012b) for details). We will stick to the Prais-Winsten version as it is more efficient

for finite samples. Moreover, the analyzed biofuel system contains variables which

are highly interconnected and affected by one another. Therefore, some of the vari-

ables might be endogenous, causing the estimates to be inefficient. To control for

this, we also apply the two-stage least squares (2SLS) procedure.

To summarize the applied procedures and possibilities of estimation: if the series

are stationary after detrending and the residuals of the estimated models are not

highly autocorrelated, we apply standard OLS; if the residuals are autocorrelated

and the variables are not endogenous, we utilize FGLS; if the residuals are autocor-

related and some variables are endogenous, we apply 2SLS combined with FGLS

to obtain consistent estimates. Eventually, we apply the last procedure and the

results are presented in Section 4, which distinguishes our work from other studies

analyzing the price transmission between biofuels and related commodities.
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2.3 Causality

Even though transmission and elasticity give us some basic information about the

relationship between two series, we cannot say anything about causality (Dahl,

2012). For the specific case of biofuel markets and related economic policies, the

question of causality is probably more important that the price transmission itself.

If changes in the prices of a biofuel cause changes in the prices of the related

feedstock, then it can be interpreted as that the increasing price of the biofuel offers

profitable opportunities and more entrepreneurs will transfer into the biofuel mar-

ket. This increases demand for the feedstock resulting in its increasing price, which

might have some considerable social and environmental effects (e.g. higher prices of

food, and feedstock field expansion). Conversely, if changes in feedstock prices are

reflected in the changes of biofuel prices, it simply implies that the increased costs

of feedstock production were transmitted into the biofuel prices.

When we turn to the relationship between biofuels and related fossil fuels, the

causality is less clear. If the price change of the fossil fuel is transmitted to the

price of biofuel, it might be caused by two factors. First, the increasing price of

the fossil fuel motivates consumers to switch to using the biofuel, which increases

the demand for biofuel and in effect its price. Second, as the actual biofuels used

for powering motor vehicles are a mixture of the fossil fuel and only a fraction of

the biofuel, these practically need to be correlated by construction. Causality from

biofuel to the fossil fuel is quite unlikely but, if occurrent, can be attributed to an

indirect effect from increasing feedstock prices, which push the biofuel prices higher

resulting in higher demand for fossil fuels, i.e. higher prices.

To analyze the causality, we construct a Granger-like causality test (Granger,

1969), which is commonly used in a standard vector autoregression (VAR) frame-

work. The test itself is very simple and is based on the following regression:

yt = α +

p∑
i=1

βiyt−i +

p∑
j=1

γjxt−j + εt. (4)
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The null hypothesis ‘x does not Granger-cause y’ is tested with use of an F -statistic

for the hypothesis γ1 = . . . = γp = 0. The lag order p is chosen with respect to the

structure of the data. The test presented in Eq. 4 has only one assumption and

that is stationarity of both xt and yt for t = 1, 2, . . . , T . To test stationarity, we

will use standard ADF, ADF-GLS (Dickey and Fuller, 1979; Elliot et al., 1996) and

KPSS (Kwiatkowski et al., 1992) tests. To control for heteroskedasticity, we use

GARCH(1,1)-filtered series (Bollerslev, 1986) as homoskedasticity is also needed

for stationarity and is not controlled for in ADF and KPSS tests. The need for

GARCH-filtering is stressed more fully in the Results section.

3 Data description and model specifications

In this section, we carefully describe the dataset and follow with the model spec-

ification used for the estimation of the price transmission in the analyzed biofuel

system.

3.1 Dataset

The main aim of this paper is to analyze the price transmission mechanism be-

tween biofuels, their related production factors, and related fossil fuels. Since our

focus is on biodiesel and ethanol, we include only relevant agricultural commodities

which are used for their production, and only relevant fossil fuels, which are their

respective natural substitutes. Our dataset thus contains consumer biodiesel (BD),

ethanol (E), corn (C), wheat (W ), soybeans (S), sugarcane (SC), crude oil (CO),

German diesel (GD) and US gasoline (USG). Corn, wheat and sugarcane are the

feedstock for ethanol; soybeans are the feedstock for biodiesel. As ethanol is mainly

the US domain and its natural substitute is gasoline, we include US gasoline. In a

similar way, biodiesel is predominantly the EU domain and its substitute is diesel,

thence German (as the biggest EU economy) diesel is included. Crude oil (Brent) is

included as well because it serves as a production factor for all fuels in our dataset,
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at least indirectly. A majority of the dataset was obtained from the Bloomberg

database (Table 1): the two fossil fuels were obtained from the US Energy Infor-

mation Administration and include the countries’ average price. As the price series

of the biofuels are very illiquid, we analyze weekly data for the period between

24.11.2003 and 28.2.2011 (Monday closing prices).

Table 1: Analyzed Bloomberg Commodities

Commodity Ticker Contract type

Crude oil CO1 Comdty 1st month futures, ICE
Ethanol ETHNNYPR Index Spot, FOB
Corn C 1 Comdty 1st month futures, CBOT
Wheat W 1 Comdty 1st month futures, CBOT

Sugarcane SB1 Comdty 1st month futures, ICE
Soybeans S 1 Comdty 1st month futures, CBOT
Biodiesel BIOCEUGE Index Spot, Germany
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Figure 2: Logarithmic Prices of Ethanol (Left) and Biodiesel (Right) with Corresponding Time
Trends and Seasonal Effects

Logarithmic prices of the biofuels of interest – ethanol and biodiesel – are shown

in Fig. 2. In the charts, we also present the fitted values based on time trend and

seasonality. Since weekly data are analyzed, we can work with fact that a year has

52 weeks, which in turn enables us to include various seasonalities (cycles) into the

time-trend filtering. We pick an 8-year cycle as the longest (one year longer than

the actual length of the dataset due to evenness) and the shortest cycle is taken as

13 weeks, i.e. a quarter of a year. The filtering model looks as follows

logBFt = α +
4∑

i=1

βit
i +

2∑
j=1

γj sin

(
2πt

13j

)
+

8∑
k=1

δk sin

(
2πt

52k

)
+ εt, (5)
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where logBFt is the logarithmic price of the biofuel in time t. The insignificant

trend and seasonal variables were omitted to arrive at more efficient estimates and

thus more accurate fitted values. Nevertheless, it is clearly visible that both the

time trend and seasonality effects are significant for both biofuels. Therefore, these

time and seasonal variables should be included in the final regression estimating the

price transmission. Such a procedure is important for correct selection of an appro-

priate modeling procedure since we need to separate the potential unit roots from

the time trend and seasonality effects. If a unit root is found in the variable of inter-

est, it leads to either cointegration techniques (and vector error-correction models)

or vector autoregression (VAR) models with differenced series. Therefore, testing

for stationarity and unit roots becomes crucial (note that we are predominantly

interested in showing that the specific series is or is not unit root so homoskedastic-

ity is not important in this case). The results for ADF (Dickey and Fuller, 1979),

ADF-GLS (Elliot et al., 1996) and KPSS (Kwiatkowski et al., 1992) are summarized

in Table 2. The results are straightforward – unit root is not rejected for the origi-

nal series but is strongly rejected when the series are appropriately detrended and

deseasonalized. Even though the detrended series are strongly autocorrelated (the

sample first-order autocorrelations are 0.9218 and 0.8354 for ethanol and biodiesel,

respectively), they do not contain a unit root. Standard cointegration and VAR

with differences methods cannot therefore be used. Note that detrending and sea-

sonality effects are usually not taken into consideration in the relevant literature,

which raises serious questions about correctness of the results and following impli-

cations. Therefore, we can proceed with standard least squares estimation. If OLS

estimation is found inefficient and inconsistent, which is the case for strongly depen-

dent residuals, we will switch to Prais-Winsten regression. If the estimated models

do not pass the Hausman specification test (Hausman, 1978), we apply the 2SLS

estimation to additionally control for endogenity. The procedure is thus robust to

both strong memory in the disturbances and to endogenous variables. Note that

such an approach is applied for the first time to the biofuel system.
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Table 2: Unit-root and Stationarity Tests. Note: the null hypotheses are: “a unit
root series” for ADF and ADF-GLS, “stationary series” for KPSS)

Series ADF p-value ADF-GLS p-value KPSS p-value

Ethanol log-prices -2.3265 > 0.1 -1.8437 0.0622 1.9377 0.0000
Biodiesel log-prices -1.5075 > 0.1 0.9759 > 0.1 11.2302 0.0000

Ethanol detrended -4.4399 0.0001 -4.4390 0.0000 0.0653 > 0.1
Biodiesel detrended -4.5714 0.0001 -4.3329 0.0000 0.0961 > 0.1

3.2 Model specification

As we have shown in the previous section, both the time trend and seasonal effects

are significant in the dynamics of the logarithmic prices of ethanol and biodiesel.

Therefore, these need to be included in the final model. The general form of the

model estimating the price-dependent mutual responsiveness while controlling for

time and seasonal effects is

logBFt = α +
4∑

i=1

βit
i +

2∑
j=1

γj sin

(
2πt

13j

)
+

8∑
k=1

δk sin

(
2πt

52k

)
+

I∑
l=1

ξl logPl+

I∑
m=1

φmPm +
I∑

n=1

νnP
2
n + εt, (6)

where logBFt is the logarithmic price of either ethanol or biodiesel in time t and

I is the number of impulse variables. In the sums with parameters ξ, φ and ν, the

relevant impulse variables are included. Logarithmic, linear and quadratic forms

should uncover potential price-dependent relationships between the specific biofuel

and relevant commodities and/or other fuels. For ethanol, the set of impulse vari-

ables includes corn, wheat, sugarcane, soybeans, crude oil and US gasoline. And

for biodiesel, we include corn, wheat, sugarcane, soybeans, crude oil and German

diesel. We keep all agricultural commodities of the dataset in both models because

we are mainly interested in the possible effect of biofuels on their prices (or vice

versa). A single fossil fuel is kept in each regression to avoid collinearity problems

as these are highly correlated. From a technological point of view, we expect corn,

wheat, sugarcane and US gasoline to influence the dynamics of the ethanol prices,
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and only soybeans and German diesel to affect biodiesel.

4 Results

We present the results separately for price transmission and causality.

4.1 Price transmission

After running the OLS regression for ethanol price transmission, we arrived at

the first-order autocorrelation coefficient of the residuals equal to 0.7609 with the

Durbin–Watson statistic equal to 0.4758. The residuals are thus highly positively

autocorrelated as suspected, which leads us to more efficient FGLS methodologies.

However, the Hausman test statistic comparing FGLS and 2SLS yields 50.99 with

a p-value of 0.0236, thus rejecting that FGLS estimation is consistent, and leading

us to the 2SLS procedure. The estimates for the reduced ethanol model based on

2SLS–FGLS regression are summarized in Table 3. We first observe that the model

includes only two impulse variables – corn and crude oil. Note that the final model

explains the behavior of ethanol very well (R2 = 0.9574 for the quasi-differenced

variables). The estimated price-dependent price transmission effects are shown in

Fig. 3. Here, only corn shows interesting results. Note that the price of corn

ranges approximately between $200 and $700. Therefore, most of the time, the

elasticity between corn and ethanol is close to zero, and becomes both statistically

and economically significant for high prices of corn and attains values up to 0.7.

The price dependence of ethanol–crude oil transmission shows a linear dependence

on the price of crude oil, but the confidence intervals remain very wide so that for

all realistic values of the crude oil price, we remain very close to the zero price

transmission.

The results for biodiesel are in general quite similar to those of ethanol. Most

importantly, the OLS estimation procedure again yields highly autocorrelated resid-

uals (with the first-order autocorrelation coefficient of residuals of 0.5664 and the
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Table 3: Reduced 2SLS-FGLS Model for Ethanol
Estimate SE t-statistic p-value

const 5.0167 0.1138 44.0982 0.0000
CO 0.0021 0.0009 2.3927 0.0172
C2 4.47 ∗ 10−7 1.68 ∗ 10−7 2.3927 0.0083

period . . 25.9425 0.0002

time 0.0030 0.0011 2.6385 0.0087
R2 0.9574 Adjusted R2 0.9564
F (9, 370) 128.9732 P-value(F ) 0.0000
ρ̂ 0.0770 Durbin–Watson 1.8453

Figure 3: Price-dependent Mutual Responsiveness Between Ethanol and Corn (Left) and Crude
Oil (Right)

Durbin-Watson statistic of 0.8693), which leads to Prais-Winsten regression. How-

ever, the Hausman specification test yields a test statistic of 948.79 which implies

a p-value of practically zero, which again leads us to the 2SLS-FGLS estimation

procedure. The reduced model (Table 4) gives us four statistically significant com-

modities – corn, wheat, soybeans and German diesel. In Fig. 4, we observe that the

price transmissions of corn and soybeans with respect to biodiesel show the same

behavior as for the crude oil–ethanol pair, i.e. the values of price transmission are

statistically very close to zero for all feasible price levels. For wheat–biodiesel price

transmission, we observe a non-zero effect only for very extreme prices of wheat.

Therefore, the only statistically and economically significant price transmission ef-

fect is the biodiesel–German diesel pair. The effect is again price-dependent and

reaches values around 0.3 for high prices of German diesel.

By obtaining the estimates of β, γ and δ, we are now able to comment on the time

dependence of the price transmission between biofuels and related commodities.
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Table 4: Reduced 2SLS-FGLS Model for Biodiesel
Estimate SE t-statistic p-value

const 5.1134 0.4530 11.2877 0.0000
C 0.0001 0.0001 2.4858 0.0134
W −0.0013 0.0003 −4.4844 0.0000
S 0.0001 0.0000 −2.6291 0.0147
GD 0.0563 0.0083 6.7616 0.0000
logW 0.3152 0.0909 3.4680 0.0006
W 2 5.64 ∗ 10−7 1.23 ∗ 10−7 4.5746 0.0000

time . . 287.811 0.0000
period . . 216.405 0.0000

R2 0.9911 Adjusted R2 0.9907
F (15, 364) 2493.103 P-value(F ) 0.0000
ρ̂ −0.0605 D–W statistic 2.1157

Figure 4: Price-dependent Mutual Responsiveness Between Biodiesel and Corn, Wheat, Soybeans
and German Diesel
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With use of Eq. 2, we are able to construct the time-dependent price transmission

controlling for the effects of other variables, time trends, seasonality, autocorrelation

and endogenity in the biofuel network. The results for the pairs with statistically

and economically significant price transmission effects are summarized in Fig. 5.

Figure 5: Mutual Responsiveness and Its Evolution in Time.

Both pairs (ethanol–corn and biodiesel–German diesel) share one main feature –

the price transmissions both increase remarkably during the food crisis of 2007/2008.

The most evident is the situation for corn and ethanol where we observe a very low

price transmission effect, which is very close to zero, between 2003 and the end of

2007 followed by a rapid increase up to values around 0.5 in the middle of 2008

and dropping to near zero elasticity from 2009 till the middle of 2010. The price

transmission between biodiesel and German diesel reaches lower values than the

previous case. Nevertheless, the dynamics shows interesting behavior as well. The

values of the price transmission between biodiesel and German diesel start around

0.1 and grow slowly from the end of 2003 till the first half of 2007. From the second

19



half of 2007, the transmission rockets upwards and reaches its peak in the middle of

2008 with values around 0.3. Similar to the previous pair, it falls back to relatively

low values by the end of 2008. Afterwards, the price transmission begins another,

rather slow, growing trend.

4.2 Causality

For analyzing causality between a pair of commodities with the previously defined

Granger-type test, we need covariance stationary series. Such stationarity requires a

constant mean, variance, and autocorrelation structure. We test these assumptions

with standard ADF and KPSS tests. Moreover, we test for conditional heteroskedas-

ticity (varying variance) with the help of GARCH(1,1) and ARCH(4) models. Note

that conditional heteroskedasticity tests are usually omitted in the literature, which

raises serious questions because without stable variance we can hardly talk about

stable autocorrelation structure and VAR models, which are the basis for Granger-

type tests, cannot be correctly estimated. Recall that ADF and ADF-GLS tests have

a null hypothesis of a unit-root series, KPSS has a stationarity null, GARCH(1,1)

test has a null of no GARCH(1,1) effect in the series and similarly, ARCH(4) has

a null of no ARCH effect up to the fourth order (a trading month in our case). We

take into consideration only those commodities which have been found to be statis-

tically and economically significant in the previous subsection analyzing the price

transmission. The results for the tests for detrended and deseasonalized series, and

detrended, deseasonalized and GARCH(1,1)-filtered series are summarized in Ta-

bles 5 and 6, respectively. For the detrended and deseasonalized series, we reject a

unit-root in all the series (ADF and ADF-GLS), we do not reject a basic form of sta-

tionarity (KPSS) but we discover very strong conditional heteroskedasticity of the

series (both (G)ARCH tests). Therefore, we need to control for heteroskedasticity

to meet the stationarity assumption. To do so, we construct GARCH(1,1)-filtered

series, i.e. we estimate GARCH(1,1) for the specific series, obtain a conditional vari-

ance, and then standardize the original series with a square root of the conditional
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variance. The same set of tests shows that the filtered series pass standard ADF,

ADF-GLS and KPSS tests as well as tests for additional heteroskedasticity in the

series (the filtered series for US gasoline cannot be tested for additional GARCH

effect because the covariance matrix is not positive definite: the ARCH test works

as needed). Therefore, we can use these GARCH(1,1)-filtered series for causality

tests.

Table 5: Stationarity and Heteroskedasticity Tests for Detrended and Deseason-
alized Series of Logarithmic Prices. (Note: ∗, ∗∗ and ∗∗∗ stand for a rejection of
the null hypothesis at 10%, 5% and 1% level of significance. The null hypotheses
are: “a unit root series” for ADF and ADF-GLS, “stationary series” for KPSS, “no
GARCH(1,1) effect” for GARCH(1,1) and “no ARCH effect up to fourth lag” for
ARCH(4))

Series ADF ADF-GLS KPSS GARCH(1,1) ARCH(4)

Ethanol −4.4399∗∗∗ −4.4390∗∗∗ 0.0653 273.507∗∗∗ 280.686∗∗∗

Corn −3.6789∗∗∗ −3.4756∗∗∗ 0.1356 274.804∗∗∗ 276.25∗∗∗

Biodiesel −4.5714∗∗∗ −4.3329∗∗∗ 0.0961 138.633∗∗∗ 172.339∗∗∗

German diesel −5.1016∗∗∗ −4.2765∗∗∗ 0.1077 146.890∗∗∗ 217.673∗∗∗

The results of causality tests are summarized in Table 7. Apart from the previ-

ously defined Granger-type causality test, we also test whether the aggregate effect,

i.e. the sum of coefficients, is significantly different from zero. To discriminate

between immediate effects and delayed effects, we run both tests on lags of 4 (a

month) and 12 (a quarter) weeks.

Table 6: Stationarity and Heteroskedasticity Tests for Detrended, Deseasonalized
and GARCH(1,1)-filtered Series of Logarithmic Prices. (Notation holds from Table
5)

Series ADF ADF-GLS KPSS GARCH(1,1) ARCH(4)

Ethanol −5.6715∗∗∗ −5.6600∗∗∗ 0.1673 0.7909 5.5910
Corn −5.6367∗∗∗ −4.9886∗∗∗ 0.1550 0.1825 3.8210

Biodiesel 6.2520∗∗∗ −6.0822∗∗∗ 0.0881 1.6671 0.9331
German diesel −6.4116∗∗∗ −5.2689∗∗∗ 0.1008 0.3055 0.5193

For ethanol, we find that corn Granger-causes ethanol in both the short and

medium term. Moreover, the effect is positive. This implies that the increased

price of corn increases the price of ethanol in a relatively short time, but the effect
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vanishes quite quickly (the aggregate effect is insignificant after 12 weeks). For

biodiesel, we find that German diesel very strongly Granger-causes biodiesel with a

positive effect in both the short and medium term. Therefore, we find that produc-

tion factors influence their products, and not vice versa. To check for potential price

dependence in causality, we also apply an augmented version of Eq. 4 where we add

an impulse variable also dependent on price – a product of detrended, deseasonal-

ized and GARCH(1,1)-filtered series and a price of relevant commodity. The final

product is again GARCH(1,1)-filtered to obtain stationary series. This way, we can

distinguish between constant and price-dependent parts of the causal relationship.

The results for Granger-type causality tests with 4 lags are summarized in Table 8.

We observe that the previously found relationships are confirmed.

Table 7: Causality Tests for Ethanol and Biodiesel. (Note: ∗, ∗∗ and ∗∗∗ stand for
a rejection of the null hypothesis “for X → Y , X does not Granger-cause Y” and
“zero aggregate effect”, respectively for F and t-statistics, at 10%, 5% and 1% level
of significance, respectively)

Impulse F -statistic t-statistic F -statistic t-statistic
→ (causality) (agg. effect) (causality) (agg. effect)

response 4 weeks 4 weeks 12 weeks 12 weeks

C → E 4.8799∗∗∗ 1.8546∗ 2.8420∗∗∗ 0.9935
E → C 1.4785 -1.3667 1.2452 -1.3413

GD → BD 9.3019∗∗∗ 4.6701∗∗∗ 6.1185∗∗∗ 3.1075∗∗∗

BD → GD 0.9343 -0.9276 1.0157 -0.9901

Table 8: Causality Tests with Price-Level Effect for Ethanol and Biodiesel. (Note:
∗, ∗∗ and ∗∗∗ stand for a rejection of the null hypothesis “for X → Y , X does not
Granger-cause Y” for F and t-statistics, at 10%, 5% and 1% level of significance,
respectively)

Impulse F -statistic F -statistic F -statistic
→ (constant (price-level (joint

response effect) effect) effect)

C → E 1.1055 0.495778 2.8607∗∗∗

E → C 0.5823 0.6349 1.2092

GD → BD 2.6442∗∗ 3.4600∗∗∗ 7.6316∗∗∗

BD → GD 0.4818 0.5846 1.0482
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5 Conclusions

The main focus of the paper was twofold: to analyze potential price and time

dependence in price transmission (cross-price elasticities) between series, and to

examine causal relationships in the biofuel system. We found that ethanol prices are

elastic with respect to corn and the effect is price dependent. For biodiesel, the only

significant price transmission effect was found with German diesel, which is again

price dependent. When converting the price dependence into time dependence, we

showed that the food crisis of 2007/2008 had a huge effect on the price transmission

levels – for both significant pairs (ethanol–corn and biodiesel–German diesel), the

transmission increased markedly – starting at the beginning of 2008, reaching its

peak in the middle of the year and returning back to pre-crisis values at the end

of the same year. The food crisis thus had an enormous, yet short-lived, effect on

elasticities between biofuels and related commodities. These results are quite robust

compared to previous studies as we take time trends, seasonality, autocorrelation

and endogenity of the series into consideration.

The causality tests uncovered that ethanol is positively affected by corn. For

consumer biodiesel, we find that it is very strongly influenced by German diesel

prices. The results are supported even when the price effect is taken into consider-

ation.

In this paper, we investigated the linkages between the prices of fuels and related

commodities not only as a mechanism to quantitatively understand these markets

per se, but also to provide a different way of looking at price transmission. A price

transmission analysis (for example GARCH) that is based on assuming complex

multivariate relationships with many lags provides good insight on some aspects,

for example the time pattern of the impacts of certain shocks, but at the same time

it may conceal other important knowledge. For instance a shock on the price of

ethanol in Brazil may differ considerably from a the shock on the ethanol price in

the US, and there may be a stronger link between biodiesel and fossil fuel prices

in Germany that is greater than one would expect if considering fossil fuels and
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biofuels generically.

Our price-dependent causality framework may be applied to understand link-

ages between fuel and commodity prices around the world, since the question of

understanding the relationship of fuel and food prices between various developing

countries, China, the West, etc. is one of the key aspects of food and energy se-

curity issues. Our analysis also emphasizes that the price transmission between

commodities and causal relationship will change over time. While our approach of

concentrating on price linkages is much easier to understand and interpret than the

complex linkages between quantities, especially because of data reliability, the more

detailed biofuel price analysis at the level of all biofuels important countries will

help us to understand how food and fuel security are linked through biofuel prices

at the global level.
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